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Abstract

On-line decision problems – in which a decision is made based
on a sequence of past events without knowledge of the future –
have been extensively studied in theoretical computer science.
A famous example is the Prediction from Expert Advice prob-
lem, in which an agent has to make a decision informed by the
predictions of a set of experts. An optimal solution to this prob-
lem is the Multiplicative Weights Update Method (MWUM).
In this paper, we investigate how humans behave in a Predic-
tion from Expert Advice task. We compare MWUM and sev-
eral other algorithms proposed in the computer science litera-
ture against human behavior. We find that MWUM provides
the best fit to people’s choices.
Keywords: on-line problems; decision-making; resource-
rationality; cognition

Many problems we face in our daily lives require us to
make decisions about the future based on only our knowl-
edge of the past. We may only discover our decision is sub-
optimal in years to come. Since we cannot return to the past
and remake the decisions, how should we make decisions in
the present so that our regret in the future will be minimized?
This is the question explored in the computer sciencce liter-
ature studying on-line optimization problems (as opposed to
off-line problems, in which we already have all the informa-
tion) (e.g., Helmbold, Schapire, Singer, & Warmuth, 1998)
and in the psychological literature on human decision-making
(e.g., Hogarth, 1977; Rieskamp & Otto, 2006).

A famous example of an on-line optimization problem in
computer science is Prediction from Expert Advice (Vovk,
1995; Cesa-Bianchi & Lugosi, 2006). For a period of T trials,
one is asked to choose from m options based on advice from
n experts. No other information is supplied except for the ex-
perts’ advice. At the end of each trial, an outcome is revealed
and each option incurs a cost. The goal is to minimize the
overall decision costs over T trials. One simple and effective
solution to the problem is the Multiplicative Weights Update
Method (MWUM) (Arora, Hazan, & Kale, 2012). MWUM
has been extensively used and studied in machine learning,
game theory, and linear programming (Freund & Schapire,
1997; Blum, 2005; Foster & Vohra, 1999; Clarkson, 1988).
Despite an intuitive resemblance between the algorithm and
human decision-making, MWUM has not been investigated
as an account of human behavior on this task.

To understand how humans behave in this on-line opti-
mazation setting and compare their performance to that of
algorithms that have been proposed in computer science, we

designed experiments simulating the Prediction from Expert
Advice problem. Participants made a series of investment de-
cisions based on suggestions provided by a set of financial
advisors. The decision problems were constructed so as to be
diagnostic of the strategies that people use to solve this prob-
lem, allowing us to compare their performance with several
algorithms from the optimization literature.

Our results showed that MWUM provided the most accu-
rate account of the human data of the six models we exam-
ined. Given that MWUM is one of the optimal solutions
to the problem (Arora et al., 2012), this result is consistent
with previous work using optimization-based frameworks to
account for human cognition (e.g., Anderson, 1990; Marr,
2010). These results provide a connection between theoret-
ical computer science and cognitive science that may be a
productive source of new models of human cognition.

On-line Decision-Making
In an on-line decision-making task, an agent is required to
generate an immediate response without knowledge about the
future. The response will then incur a cost contingent upon a
future outcome. For example, in the Prediction from Expert
Advice task a prediction is made based on the guidance of n
experts. Practical examples of similar tasks include predict-
ing whether it will rain today based on information from dif-
ferent forecasts and identifying opportunities for investment
based on input from different financial advisors. The overar-
ching objective is to minimize errors in prediction, approxi-
mating the performance of the most proficient expert.

Similar problems have been explored in the psycholog-
ical literature on reinforcement learning. Since the early
days of behaviorism, psychologists have explained human be-
havior via mechanisms that adjust our decisions according
to rewards and punishment from our environment (Skinner,
1966). Feedback is only delivered after a behavior is cho-
sen. From this perspective, the opinions of the experts could
be treated as cues that become associated with outcomes.
This process was formalized in the Rescorla-Wagner model,
demonstrating how learning can occur via the adjustment of
weights assigned to cues (Rescorla, 1972).

The Prediction from Expert Advice problem also shares
some similarities with the multi-armed bandit problem that
has been a focus of more recent work on reinforcement learn-
ing (e.g., Sutton & Barto, 2018). The key difference lies in
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the fact that the rewards obtained by all the experts are visible
to the player after each round, while in the multi-armed ban-
dit problem the player can only observe the reward of the arm
that they have chosen to play. This means there is no explore-
exploit problem, which is a critical part of the multi-armed
bandit problem (e.g., Thompson, 1933; Lai, Robbins, et al.,
1985; Auer, Cesa-Bianchi, & Fischer, 2002).

Many of the algorithms that computer scientists have pro-
posed to solve the Prediction from Expert Advice problem
take the approach of allocating a distinct weight to each ex-
pert, denoted by w1,w2, ...,wn, and forming predictions based
on a weighted average of the experts’ predictions. At the end
of each trial, when the outcome is revealed, the algorithm
modifies the weight wi of expert i, decreasing it if a mistake
is made or increasing it if the prediction is correct. As a direct
comparison of these algorithms with human decision-making
has not been explicitly conducted, our objective is to devise
an experiment that facilitates the examination of human be-
havior in relation to this task, as well as its comparison to
the various algorithms. In doing so, our goal is connecting
the theoretical computer science literature with human behav-
ior rather than exhaustively testing different psychological ac-
counts of how people might be performing this task. We thus
confine our analysis to algorithms related to those proposed in
computer science, rather than considering a broader range of
models, but we do highlight connections to the psychological
literature when presenting these algorithms.

The Problem
The version of the Prediction from Expert Advice problem
we analyze can be formalized as follows. For a trial t ranging
from 1 to T , a binary decision must be made (e.g., choosing
between “up” and “down”), contingent upon a collection of n
expert opinions that provide predictions regarding the binary
event. After choosing to adhere to an expert’s prediction, the
actual outcome is unveiled, and each expert’s prediction in-
curs a cost, denoted as m(t)

i , ∀i ∈ {1,2, . . . ,n}. If the expert is
incorrect this cost is 1, and if they are correct it is 0. The pri-
mary objective is to minimize the cumulative cost associated
with decisions made across a total of T trials.

Considering the absence of performance guarantees for the
experts (all experts may exhibit bad performance), optimality
in this scenario is often characterized by attaining a perfor-
mance level comparable to that of the most accurate expert
instead of aiming for zero mistakes. Keeping this optimality
criterion in mind, we now proceed to examine six potential
algorithms for the Prediction from Expert Advice problem.

Algorithms
The Simple Majority Method (SSM) This algorithm sim-
ply follows the majority prediction at the current trial without
using any historical information. For example, should 3 out
of 5 experts predict “up” (constituting the majority), while
the remaining 2 predict “down” in the current trial, then the
method would yield a prediction of “up”.

The Randomized Simple Majority Method (RSMM)
RSMM represents a stochastic variant of SMM. Rather than
deterministically adhering to the majority prediction, it se-
lects a prediction with a probability proportional to the num-
ber of experts advising that prediction at the current trial.
Once more, RSMM does not incorporate the experts’ past
performance. Using the same example used in SMM, the
method would predict “up” with a probability of 3

5 and pre-
dicts “down” with a probability of 2

5 .

The Weighted Majority Method (WMM) First proposed
by Littlestone and Warmuth (1994), the WMM maintains
a weighting of experts and returns the weighted majority
prediction in each trial. Upon mistakes and successes, the
method decreases and increases experts’ weights, respec-
tively, via a multiplicative update. The full algorithm is:

• Initialization: Fix a step-size parameter η ≤ 1
2 . For each

expert i, associate the weight w(1)
i = 1

• For t = 1,2, ...,T

1. Predict “up” or “down” depending on which predic-
tion has a higher total weight of experts advising it:

(Predict “up” if ∑
up-pred experts i

w(t)
i ≥ ∑

down-pred experts j
w(t)

j )

2. Observe the costs of the experts m(t)

3. For every expert i, update their weight:

w(t+1)
i = w(t)

i (1−ηm(t)
i )

The update rule in Step 3 says if an expert makes an error
(i.e., m(t)

i = 1), their weight is reduced.

The Multiplicative Weights Update Method (MWUM)
MWUM is a randomized version of WMM. Instead of deter-
ministically making a weighted majority prediction, it makes
a prediction with probability proportional to the weights of
the experts advising each option. It resolves the worst-case
scenario in WMM when one option receives slightly higher
weight than the other. The full algorithm is as follows:

• Initialization: Fix a step-size η ≤ 1
2 . For each expert i,

associate the weight w(1)
i = 1

• For t = 1,2, ...,T

1. Predict “up” with probability pup and predict “down”
with probability pdown, where

pup =
∑up-pred experts i w(t)

i

∑up-pred experts i w(t)
i +∑down-pred experts j w(t)

j

pdown = 1− pup

2. Observe the costs of the experts m(t)

3. For every expert i, update their weight:

w(t+1)
i = w(t)

i (1−ηm(t)
i )
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It has been shown that the randomized version, MWUM, per-
forms better than MWW by a factor of 2 (Arora et al., 2012).
This procedure also has a meaningful connection to Bayesian
inference and models based upon it such as Thompson sam-
pling, as discussed in the Appendix.

The Deterministic Correct-rate Method (DCM) While
keeping a weighting of experts, we now introduce an alter-
native update rule. Rather than being multiplicative, we pro-
pose the Deterministic Correct-rate Method (DCM), in which
experts’ weights are equal to the rate at which they have been
correct so far. This can be seen as an additive update rule,
similar to the Rescorla-Wagner rule (Rescorla, 1972), since
we are updating the number of correct decisions for each ex-
pert in the numerator while the denominator remains the same
for all experts. The full algorithm is as follows:

• Initialization: Associate the weight w(1)
i = 1 for all experts

• For t = 1,2, ...,T

1. Predict “up” or “down” depending on which predic-
tion has a higher total weight of experts advising it:

(Predict “up” if ∑
up-pred experts i

w(t)
i ≥ ∑

down-pred experts j
w(t)

j )

2. Observe the actual outcome. For every expert i, update
their weight:

w(t+1)
i =

# correct predictions up until t
t

The Randomized Correct-rate Method (RCM) Moti-
vated by preceding stochastic adaptations, we establish RCM
in a similar way. The full algorithm is as follows:

• Initialization: Associate the weight w(1)
i = 1 for all experts

• For t = 1,2, ...,T

1. Predict “up” with probability pup and predict “down”
with probability pdown, where

pup =
∑up-pred experts i w(t)

i

∑up-pred experts i w(t)
i +∑down-pred experts j w(t)

j

pdown = 1− pup

2. Observe the true result. For every expert i, update its
weight:

w(t+1)
i =

# correct predictions up until t
t

Testing the Algorithms
In order to compare these algorithms with human behavior,
we devised a behavioral experiment based on the Predic-
tion from Expert Advice Problem. To render the problem

more tangible, we concentrated on the practical issue of stock
prediction. Participants engaged in a sequence of decisions
across a 10-day period, exclusively possessing access to the
consultations of five experts: Alice, Bob, Chris, Diana, and
Evan (we incorporated both conventional male and female
names to circumvent potential gender stereotypes). Endowed
with 10 points, participants would gain or lose one point for
each correct or incorrect choice, respectively. Each day, a
table recording the experts’ performance in preceding trials
was also displayed, permitting participants to consider the ex-
perts’ historical performance if desired. This design aimed
to help relax participant’s memory constraints. To more ef-
fectively differentiate between the proposed models, we con-
structed multiple conditions targeting distinct model compar-
isons. A screenshot of the experiment is shown in Figure 1.

Figure 1: Screenshot of the experiment. Experts’ advice for
Day 3 was displayed on the top along with the participant’s
cumulative score. In addition, the historical record (Day 1
and 2) of each expert was shown in the bottom panel.

Methods
Participants A total of 120 participants (30 assigned to
each of the four conditions) were recruited. These partici-
pants were chosen at random from a pool of Prolific users
who resided in the United States, exhibited an approval rate
exceeding 95%, and had completed over 100 submissions.
Participants were compensated at an hourly rate of $12, and
additional bonuses were awarded contingent upon their final
score at the end of the experiment.

Stimuli Our goal was to develop sequences of expert advice
and actual outcomes to maximally differentiate between the
predictions generated by the algorithms. In order to gauge the
capacity of a sequence to distinguish between models, we in-
troduced a qualitative measurement. A diagnostic difference
(dd) between the two models arises when one model predicts
“up” with a probability greater than 50+α%, while the other
predicts “up” with a probability less than 50−α%, where α

is a variable that modulates the extent of the gap.
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Table 1: Sequences of expert advice and true outcomes used in the experiment.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Correct rate
Alice down up down up up down up up up up 50%
Bob down up up up up up up up up up 50%
Chris down up up down down up down down up up 50%
Diana up down down down up down down up down down 50%
Evan down up up up down up up up down up 50%
True (Condition 1) up down down down down up up up up up
Alice down up down down down up down down up down 50%
Bob down down down down down down up down down down 50%
Chris down down down down down down up down down down 50%
Diana down down down down down down up down down down 50%
Evan up up up up up up down up up up 50%
True (Condition 2) up up up up down down down down down down
Alice down down down down down up down down down up 50%
Bob up up up up down down down down down up 60%
Chris down up down down down down down down down up 50%
Diana down up up up down down down down down up 70%
Evan down up up up up up up up up down 70%
True (Condition 3) down up up up up up up down down up
Alice down up up down down down down up up up 60%
Bob up up down down up down down up up down 60%
Chris up up up down down down down up down up 60%
Diana up up up up up up up down down down 60%
Evan down down up up down down down up up up 60%
True (Condition 4) up up up up up up down up up up

The ideal sequence would maximize the number of days
on which each pair of models have a diagnostic difference.
Note that MWUM, RSMM, and RCM are the randomized
versions of WMM, SMM, and DCM, respectively. Hence, if
a setup can maximally differentiate among these algorithms it
can effectively distinguish among their deterministic counter-
parts, and hence all six models. Not incorporating historical
information in the algorithm, RSMM is easily separable from
MWUM and RCM. However, RCM and MWUM are intrin-
sically similar in their model predictions because both mod-
els perform similar weight updates. We therefore focused on
finding sequences that differentiate MWUM and RCM.

Specifically, we randomly simulated 108 sequences with
the gap parameter α = 10. We set the step-size parameter

η≈
√

lnn
T =

√
ln5
10 ≈ 0.4 because this value provides provably

the tightest upper bound of regret for MWUM (Arora et al.,
2012). One iteration of the procedure for finding the best
sequence is as follows:

1. Randomly generate a 10-day ground truth sequence: “up”
with probability 1

2 and “down” with probability 1
2 .1

2. Randomly assign a correct rate to each of the five experts.
2 The correct rates were uniformly sampled from the fol-
lowing set {50%,60%,70%,80%,90%}. 3

1To reduce the impact of prior beliefs on stock behavior and rely
solely on expert advice, the actual movement of the stock is not pre-
dictable from its past movements.

2An odd number of experts was chosen instead of an even num-
ber to prevent “tie” scenarios.

3Correct rates are always ≥ 50% to prevent scenarios where poor
experts (i.e., those with < 50% correct rates) are considered as valu-
able as good experts, as participants could potentially switch their

3. For each expert, randomly select a proportion of days that
also matches the correct rate for the expert and copy the
true outcomes of those days as the expert’s advice. Fill the
remainder of the days with the opposite to ground truth.

Using this approach, we obtained four sequences that
have the most diagnostically different days among MWUM,
RSMM, and RCM: conditions 1 (dd = 5) and 2 (dd = 5) con-
trast RCM and RSMM, and conditions 3 (dd = 5) and 4 (dd =
4) contrast MWUM and RCM (see Table 1).

Procedure In each condition, for a 10-day period, partici-
pants were asked to make a prediction of whether the stock
would go up or down given predictions suggested by the five
experts (Alice, Bob, Chris, Diana, Evan). On each day, a
table recording the past performance of the experts was pro-
vided. We used different colors for correct (green tick) and
incorrect (red cross) predictions as visual aids supplied to the
participants. Participants won one point for each correct deci-
sion and lost one point for each incorrect decision. Data were
automatically collected by Qualtrics.

Results
We compare group-level data against the six on-line decision-
making algorithms, assessing the percentage of participants
who choose “up” (see Figure 2). To simplify the analysis, we
assume that decisions made on each day are independent. As
a result, our analysis considers each day’s data as distinct data
points in model comparison. To quantify the correspondence
between model predictions and human data, we employ two
metrics: Bayesian Information Criterion (BIC) and Pearson
correlation coefficient (Pearson’s r). Note that only WMM

recommendations to obtain similar payoffs.
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Figure 2: Comparing the proportions of individuals choosing “up” (represented by grey bars) with stochastic models including
the Multiplicative Weights Update Method (MWUM) in blue (best-fitting η) and red (optimal η ≈ 0.4) circles, the Randomized
Correct-rate Method (RCM) in yellow triangles, and the Randomized Simple Majority Method (RSMM) in purple squares.
Conditions 1 to 4 of our experiment appear in panels (A) to (D). Errorbars denote 95% confidence intervals across participants.

and MWUM require a choice of the step-size parameter η

while the other four models have no free parameter. For η in
WMM, we set η ≈ 0.4, the value that minimizes the upper
bound of the number of mistakes (Arora et al., 2012). For η

in MWUM, we consider both the optimal η ≈ 0.4 and the η

that maximized the likelihood of human data.4

In aggregate, participants’ behavior systematically devi-
ated from complete randomness. Moreover, stochastic mod-
els tend to better correspond with human behavior (see Table
2). We thus focus on the comparison among stochastic mod-
els (i.e., MWUM, RCM, and RSMM). Figure 2 shows that
MWUM and RCM are more indicative of empirical data than
RSMM, suggesting people took into account the past perfor-
mance of the experts. In addition, MWUM with η = 0.3454
in condition 1, 0.4254 in condition 2, 0.2384 in condition 3,
0.1707 in condition 4 fit via maximum likelihood best ex-
plains human data. Out of the four conditions, the best-fitting
MWUM only has 1 diagnostically different day when com-
paring its predictions with human data, whereas RCM has 5
and RSMM has 17 diagnostically different days.

Given the increased complexity and the presence of an ad-
ditional free parameter in MWUM compared to the other al-
gorithms examined, we performed a quantitative model com-
parison using the Bayesian Information Criterion (BIC). The
BIC balances accuracy and complexity by penalizing more
intricate models. For simplicity, the BIC calculations were
excluded for deterministic models (i.e., SMM, WMM, and
DCM) as they need additional assumptions for likelihood cal-
culations with discrete data. Table 2 reveals that the MWUM
displayed the lowest BIC values, thereby designating it as the
most preferable model. A similar conclusion can be drawn
when examining the Pearson’s r of the six models. It is note-

4This choice of η is not optimal in the sense that it always renders
the smallest error; it is optimal because it achieves least upper bound
on the regret. In practice, the best η depends on the actual sequence.

worthy that the fitted MWUM offers a robust representation
of human data, with Pearson’s r > 0.82 (p < .01) across all
four conditions, indicating a strong correlation.

Discussion
We face many on-line problems in our daily lives. For exam-
ple, we have to decide whether to turn left or right at an inter-
section without knowing which route has less traffic and takes
us home faster. So how do we make reasonably good deci-
sions only knowing about the past but not the future? On-line
optimization has been a popular area of research in theoreti-
cal computer science, resulting in algorithms such as the Mul-
tiplicative Weights Update Method (MWUM). In this paper,
we compared the predictions of algorithms from the computer
science literature against human behavior on the Prediction
from Expert Advice problem, a classic problem in this lit-
erature. Our findings indicate that MWUM outperforms the
other five algorithms we analyzed in terms of accounting for
human behavior.

The analysis we presented here has several limitations.
We acknowledge that our definition of “correct-rate” used in
DCM and RCM is fairly arbitrary. One might, for example,
argue that including a smoothing factor to the “correct-rate”
will affect the results. In future work, we wish to explore
more variations of models based on correct-rates, or more
generally, additive rather than multiplicative rules for weight
updates. We also recognize that the performance table we
provided in the study could potentially bias the results, as it
may encourage individuals to favor MWUM over other algo-
rithms. In future studies, it may be worthwhile to explore dif-
ferent ways of presenting the past performance of experts in a
manner that makes MWUM less salient. In particular, repli-
cating the experiment under different conditions can help to
validate our findings and verify if the performance table has a
decisive impact on the strategies adopted by the participants.
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Table 2: Summary of model fitting results.

Condition 1 Condition 2 Condition 3 Condition 4
Algorithm BIC Pearson’s r BIC Pearson’s r BIC Pearson’s r BIC Pearson’s r
MWUM (fitted) 351.44 0.91∗∗∗ 354.34 0.88∗∗∗ 306.28 0.92∗∗∗ 352.58 0.82∗∗∗
MWUM (optimal) - 0.90∗∗∗ - 0.87∗∗∗ - 0.65∗∗ - 0.32∗∗

RCM 4003.72 0.75∗∗ 4215.40 0.41∗∗ 4732.20 0.87∗∗∗ 3887.19 0.76∗∗

RSMM 4996.94 0.69∗∗∗ 5543.76 -0.21∗ 5361.35 0.74∗∗ 4703.20 0.69∗∗

SMM - 0.47∗ - -0.39∗ - 0.76∗∗ - 0.76∗∗

WMM - 0.88∗∗∗ - 0.75∗∗ - 0.60∗ - 0.29∗

DCM - 0.85∗∗∗ - 0.36∗ - 0.76∗∗ - 0.76∗∗

Note. ∗ denotes non-significant results with p ≥ .05, ∗∗ denotes .01 ≤ p < .05, and ∗∗∗ denotes p < .01. MWUM: Multiplica-
tive Weights Update Method, RCM: Randomized Correct-rate Method, RSMM: Randomized Simple Majority Method, SMM:
Simple Majority Method, WMM: Weighted Majority Method, DCM: Deterministic Correct-rate Method. The Bayesian Infor-
mation Criterion (BIC) was used to evaluate the performance of stochastic models, with smaller BIC values indicating a better
fit. We also calculated the Pearson correlation coefficients between the observed and the predicted proportions of choosing
“up.” The lowest BIC values and highest Pearson’s r among the four conditions is shown in bold.

The results of this research not only contribute to a deeper
understanding of human decision-making processes in on-
line learning environments, but also highlight the efficacy of
MWUM in modeling human behavior. Our findings can be
used to enhance the development of decision support systems
and expert advice platforms, which can enhance their ability
to forecast and facilitate human decision-making. Previous
research has demonstrated that humans make decisions in a
stochastic manner (Herrnstein, 1961; Vulkan, 2000), and our
results serve to reinforce the probabilistic aspect of human
decision-making.

Future research could explore the impact of additional fac-
tors, such as individual cognitive abilities and preferences, on
the adoption of specific on-line decision-making strategies.
Moreover, investigating the influence of varying expert pro-
files or expanding the scope of the task to include more di-
verse and complex scenarios may provide valuable insights
into the generalizability and adaptability of the optimal on-
line algorithm in modeling human decision-making across
various cognitive domains. We anticipate that ideas from the
computer science literature will continue to be useful in ex-
ploring how people perform this wider range of on-line opti-
mization problems.

Appendix
In this section, we explore the connections between MWUM
and Bayesian inference. We first note that MWUM can be
reformulated via the following update rule, maintaining the
same optimality guarantee (Arora et al., 2012):

w(t+1)
i = w(t)

i e−ηm(t)
i = w(1)

i e−η∑
t
τ=1 m(τ)

i (1)

This form of MWUM can be shown to be related to Bayesian
inference, treating each expert as a model that could explain
the data and trying to infer which model is correct. In the
context of binary events, the true model is assumed to gener-

ate the observed sequence of “up” and “down” values with an
error probability of ε (i.e., there is an ε chance that “up” can
be misgenerated as “down” and vice versa). The likelihood
function in the Bayesian updating rule is a binomial function,
giving

p(t+1)
i ∝ p(1)i

t

∏
τ=1

(1− ε)1−m(τ)
i · εm(τ)

i (2)

= p(1)i (1− ε)t
(

ε

1− ε

)
∑

t
τ=1 m(τ)

i
(3)

where p(1)i is the prior probability of the i-th model (or ex-
pert) being the true data-generating model. Assigning the
experts initial weights of 1 is equivalent to assuming a uni-
form prior. Moreover, the probability of following an ex-
pert’s advice, acquired by normalizing the weights in Eq.(1),
and the posterior probability of selecting a model as the data-
generating model, acquired by normalizing Eq.(3), are equiv-
alent when η = log 1−ε

ε
. This implies that reducing the error

probability ε < 0.5 should increase the step-size parameter in
MWUM. The optimal step-size η ≈ 0.4 in MWUM can be
construed as around 40% error probability in the Bayesian
model. This link also helps connect MWUM with a variety
of Bayesian models in cognitive science such as Thompson
sampling (Thompson, 1933), which selects an option based
on the posterior probability of that model being the best. The
stochastic choice procedure in the MWUM is equivalent to
selecting the expert with the highest posterior probability,
providing a direct equivalence.
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periments. We wish to acknowledge the insightful discussions with
Huacheng Yu and Matt Weinberg that contributed to this research.
This research project and related results were made possible with the
support of the NOMIS Foundation.

2644



References

Anderson, J. R. (1990). The adaptive character of thought.
Psychology Press.

Arora, S., Hazan, E., & Kale, S. (2012). The multiplicative
weights update method: a meta-algorithm and applications.
Theory of Computing, 8(1), 121–164.

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-
time analysis of the multiarmed bandit problem. Machine
Learning, 47, 235–256.

Blum, A. (2005). On-line algorithms in machine learning.
Online algorithms: the state of the art, 306–325.

Cesa-Bianchi, N., & Lugosi, G. (2006). Prediction, learning,
and games. Cambridge University Press.

Clarkson, K. L. (1988). A las vegas algorithm for linear pro-
gramming when the dimension is small. In Proceedings of
the 29th Annual Symposium on Foundations of Computer
Science (pp. 452–456).

Foster, D. P., & Vohra, R. (1999). Regret in the on-line de-
cision problem. Games and Economic Behavior, 29(1-2),
7–35.

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences, 55(1),
119–139.

Freund, Y., & Schapire, R. E. (1999). Adaptive game playing
using multiplicative weights. Games and Economic Behav-
ior, 29(1-2), 79–103.

Griffiths, T. L. (2020). Understanding human intelligence
through human limitations. Trends in Cognitive Sciences,
24(11), 873–883.

Helmbold, D. P., Schapire, R. E., Singer, Y., & Warmuth,
M. K. (1998). On-line portfolio selection using multiplica-
tive updates. Mathematical Finance, 8(4), 325–347.

Herbster, M., & Warmuth, M. K. (1998). Tracking the best
expert. Machine Learning, 32(2), 151–178.

Herrnstein, R. J. (1961). Relative and absolute strength of re-
sponse as a function of frequency of reinforcement. Journal
of the Experimental Analysis of Behavior, 4(3), 267.

Hogarth, R. M. (1977). Methods for aggregating opinions. In
Decision Making and Change in Human Affairs (pp. 231–
255).

Kahneman, D., & Tversky, A. (2013). Prospect theory: An
analysis of decision under risk. In Handbook of the Funda-
mentals of Financial Decision Making (pp. 99–127). World
Scientific.

Kale, S. (2007). Efficient algorithms using the multiplicative
weights update method. Princeton University.

Karp, R. M. (1992). On-line algorithms versus off-line algo-
rithms: How much. In Algorithms, Software, Architecture:
Information Processing 92: Proceedings of the IFIP 12th
World Computer Congress, Madrid, Spain (p. 416).

Lai, T. L., Robbins, H., et al. (1985). Asymptotically efficient
adaptive allocation rules. Advances in Applied Mathemat-
ics, 6(1), 4–22.

Littlestone, N., & Warmuth, M. K. (1994). The weighted
majority algorithm. Information and Computation, 108(2),
212–261.

Marr, D. (2010). Vision: A computational investigation into
the human representation and processing of visual infor-
mation. MIT press.

Rescorla, R. A. (1972). A theory of Pavlovian conditioning:
Variations in the effectiveness of reinforcement and non-
reinforcement. Classical conditioning, Current research
and theory, 2, 64–69.

Rieskamp, J., & Otto, P. E. (2006). SSL: A theory of how
people learn to select strategies. Journal of Experimental
Psychology: General, 135(2), 207.

Skinner, B. F. (1966). Contingencies of reinforcement in the
design of a culture. Behavioral Science, 11(3), 159–166.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning:
An introduction. MIT press.

Thompson, W. R. (1933). On the likelihood that one un-
known probability exceeds another in view of the evidence
of two samples. Biometrika, 25(3-4), 285–294.

Vovk, V. G. (1995). A game of prediction with expert ad-
vice. In Proceedings of the Eighth Annual Conference on
Computational Learning Theory (pp. 51–60).

Vul, E., Goodman, N., Griffiths, T. L., & Tenenbaum, J. B.
(2014). One and done? Optimal decisions from very few
samples. Cognitive Science, 38(4), 599–637.

Vulkan, N. (2000). An economist’s perspective on probability
matching. Journal of Economic Surveys, 14(1), 101–118.

2645


	References



