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There are three main hypotheses about mental representations of arithmetic facts: the independent
representation hypothesis, the operand-order-free single-representation hypothesis, and the operand-
order-specific single-representation hypothesis. The current study used electrical recordings of eye
movements to examine the organization of arithmetic facts in long-term memory. Subjects were
presented single-digit addition and multiplication problems and were asked to report the solutions.
Analyses of the horizontal electrooculograph (HEOG) showed an operand order effect for multipli-
cation in the time windows 150–300 ms (larger negative potentials for smaller operand first problems
than for larger operand first ones). The operand order effect was reversed in the time windows from 400
to 1,000 ms (i.e., larger operand first problems had larger negative potentials than smaller operand first
problems). For addition, larger operand first problems had larger negative potentials than smaller
operand first in the series of time windows from 300 to 1,000 ms, but the effect was smaller than
that for multiplication. These results confirmed the dissociated representation of addition and multipli-
cation facts and were consistent with the prediction of the preferred operand-order-specific represen-
tation hypothesis.
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After extensive practice, arithmetic facts are stored in
long-term semantic memory. The nature of mental
representation of arithmetic facts has long been a
major research topic in the field of numerical
processing. There are three main hypotheses:
the independent representation hypothesis, the
operand-order-free single-representation hypothesis,

and the operand-order-specific single-represen-
tation hypothesis.

The independent representation hypothesis

According to the independent representationhypoth-
esis, each arithmetic fact is stored in long-term
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memory. This would be true for facts of different
operations (e.g., 4× 6= 24 vs. 24 ÷ 4= 6), also true
for those with the same operations but with different
operands, and even true for those with the same oper-
ations and the sameoperandsbutwithdifferent orders
of the operands (e.g., 4× 6= 24 vs. 6× 4= 24).
This has been the dominant view in the past.
Robert and Campbell (2008) recently declared, “For
much of the modern history of arithmetic cognition
research, the assumptionwas that both orders of oper-
ands are represented (cf. the models proposed by
Ashcraft, 1982; Campbell, 1995; Siegler & Shrager,
1984)” (p. 136).

A typical model of the independent represen-
tation hypothesis is the table search model in
simple arithmetic. According to the table search
model, there are mental tables of addition and mul-
tiplication facts. The rows correspond to one
operand (e.g., from 0 to 12), and the columns corre-
spond to the other operand (e.g., also from 0 to 12).
The correct answer for a problem is stored at the
intersection of the row and column corresponding
to the two operands (Ashcraft & Battaglia, 1978;
Widaman, Geary, Cormier, & Little, 1989).
When subjects solve an arithmetic problem, they
have to move down the rows to find the first
operand and move across the column to find the
second operand so they can get to the intersection
and retrieve the answer. The table search model
can explain commonly observed effects such as the
problem-size effect. Given the layout of the table,
it takes longer to search for answers that are farther
away from the starting point of [0, 0]. Indeed,
Geary, Widaman, and Little (1986) showed that
the reaction time was a linear function of the
number of steps. Widaman et al. (1989) asked
undergraduate students to respond to addition and
multiplication problems in a true–false reaction
time paradigm and found that the table search
model was the best predictor for mental addition
and multiplication.

The single-representation hypotheses

In contrast to the independent representation
hypothesis, the single-representation hypotheses
(either operand-order-free or operand-order-

specific) state that certain sets of arithmetic facts
are stored as single representations. Specifically,
because addition and multiplication follow the
commutative law, commuted pairs of facts are
stored as one representation. According to the
single- representation hypotheses, arithmetic facts
sharing the same operands and answer (e.g., 3+
8= 11 and 8+ 3= 11; 4× 7= 28 and 7× 4=
28) would be represented as a single long-term
memory node. Which of the commuted pairs is
stored in the memory? There are two hypotheses.
The identical element (IE) model proposed by
Rickard (Rickard, 2005; Rickard & Bourne,
1996; Rickard, Healy, & Bourne, 1994) proposes
operand-order-free single representations in the
cognitive stage of simple arithmetic. They posit
that “the cognitive stage involves access to semantic
representations that are independent of the
modality-specific representations within the per-
ceptual stage” (Rickard & Bourne, 1996,
p. 1281). For example, the problems “4× 7= 28”
and “7× 4= 28” share the same memory (4, 7,
×)→ 28. The representation does not contain any
order information. In contrast, the COMP model
for simple addition proposed by Butterworth,
Zorzi, Girelli, and Jonckheere (2001) proposes
operand-order-specific (max+min) single rep-
resentations. In the following paragraphs, we
provide some details about these two models.

According to the IE model (Rickard, 2005;
Rickard & Bourne, 1996; Rickard et al., 1994),
the problems consisting of the same operands and
answer have a single long-term memory node.
For example, multiplication problems “6× 8=
48” and “8× 6= 48” shared the same represen-
tation. The problems consisting of different oper-
ands and answers would have independent
representations. For example, “48 ÷ 8= 6” and
“48 ÷ 6= 8” are stored separately. To support the
IE model, Rickard and colleagues (Rickard &
Bourne, 1996; Rickard et al., 1994) trained subjects
extensively on single-digit multiplication and div-
ision problems and then tested performance on
the same problems, problems with the operand
order reversed, inverse problems with the other
operation, and unpractised control problems.
There was strong positive transfer when the

662 THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2012, 65 (4)

ZHOU ET AL.



elements of the test problem matched exactly with
those of a practice problem, but virtually no positive
transfer when the presented elements of a test
problem did not match exactly those of a practice
problem. Moreover, Rickard et al. (Rickard &
Bourne, 1996; Rickard et al., 1994) found that sub-
jects took longer to answer the multiplication pro-
blems with reversed operand order than to answer
the problems with no changes. Rickard and col-
leagues argued that this effect originated at the per-
ceptual (visual memory) stage, not the cognitive
stage. Therefore, it should be noted that the IE
model is one form of single representation only at
the cognitive stage. It actually allows for order
specificity at the perceptual stage (Rickard &
Bourne, 1996), a point to which we return in the
Discussion section.

Campbell, Fuchs-Lacelle, and Phenix (2006)
demonstrated that the IE model also applies to
addition and subtraction by examining transfer of
response time (RT) savings between prime and
probe problems tested in the same block of trials.
There were equivalent probe RT savings for addition
with identical repetition (prime 6+ 9→ probe 6+
9) or an order change (9+ 6→ 6+ 9), but much
greater savings for subtraction with identical rep-
etition (15 – 6→ 15 – 6) than with an order change
(15 – 9→ 15 – 6), and no savings with an operation
change (15 – 9→ 6+ 9, or 6+ 9→ 15 – 6).

In contrast to the IE model, the other single-
representation model— Butterworth et al.’s
(2001) COMP model (also called the min model)
of simple addition—proposes operand-order-
specific single-representations. The basic idea for
the model is that people build addition fact
memory on a max+min organization, with no
separate representation for the min+max com-
muted version (e.g., 9+ 2= 11, but not 2+ 9=
11). When solving addition problems, people first
compare operands to find the max (larger) and
the min (smaller) of the two numbers. Then they
use the max and min to access stored addition
facts. Butterworth et al. (2001) asked college stu-
dents to perform a number-naming task, a magni-
tude-comparison task, and an addition task. They
found that performance on the naming and magni-
tude-comparison tasks accounted for 71% of the

variance of the performance on the addition task.
Verguts and Fias (2005) extended the COMP
model to multiplication and built a similar
operand-order-specific model for multiplication—
that is, only max×min or min×max multipli-
cation facts are stored. Consistent with that
notion, Butterworth, Marchesini, and Girelli
(2003) found that children responded progressively
more quickly to multiplication problems with the
larger digit as the first operand (e.g., 7× 5= 35)
than to the problems with the smaller digit as the
first operand (5× 7= 35).

In contrast to the max×min order found by
Butterworth et al. (2003), previous studies repeat-
edly found that Chinese subjects showed an oppo-
site operand order effect for multiplication—that is,
the smaller operand first problems (e.g., 7× 9) took
less time to solve and/or had fewer errors than the
larger operand first problems (e.g., 9× 7; e.g.,
Lefevre, Lei, Smith-Chant, & Mullins, 2001;
Lefevre & Liu, 1997; Zhou & Dong, 2003). The
main reason for this order effect is that a Chinese
multiplication table has only smaller operand first
and tie entries. It seems that Chinese subjects
only have the representations for smaller operand
first problems and ties but not those for larger
operand first problems. They have to transform
the larger operand first problems into smaller
operand first problems in order to retrieve the rel-
evant solutions.

Eye movement recording and representations
of arithmetic facts

All three main hypotheses of mental represen-
tations of arithmetic facts received support from
chronometric studies. Another approach to
testing them is to use the eye movement recording
technique. Previous studies have shown that eye
movement recordings can indicate the magnitude
of the number being processed (Loetscher,
Bockisch, Nicholls, & Brugger, 2010). Because
of these connections between eye movements
and number processing, it is possible for us to
infer how the mental representations of arithmetic
facts are organized according to eye movement
patterns. If the independent representation
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hypothesis is correct, we would expect no operand
order effects in eye movements because the retrie-
val of each fact is directly mapped onto the given
order of operands. Similarly, if the hypothesis of
operand-order-free single-representations is
correct, eye movements should not differ
between smaller and larger operand first problems.
On the other hand, if the hypothesis of operand-
order-specific single-representations is correct,
we would expect an operand order effect in eye
movements because subjects had to compare the
presented order of operands with the order of
operands as stored in memory of arithmetic facts
and, if necessary, manipulate the order of pre-
sented operands. For example, Chinese subjects
should move their eyes from the smaller operand
to the larger operand for a multiplication
problem due to the smaller operand first verbal
sequence for multiplication facts as mentioned
above (e.g., “sa ̄n qı ̄ èr shí yı”̄ for multiplication
fact “3× 7= 21”, literally “three seven twenty
one”). Thus, for the problem “3× 7”, their eyes
should have a rightward movement, but for the
problem “7× 3”, the eyes should have a leftward
movement (see Figure 1, bottom panel, the retrie-
val stage).

For addition facts, the early acquisition experi-
ence for the Chinese is the same as that for children
in other countries. That is, children typically use the
min model (or the COMP model). The counter in
the min model is set to the maximum digit and is
then incremented by the minimum digit. Previous
studies have shown that the min model is the best
model to account for solution time on addition pro-
blems (e.g., Groen & Parkman, 1972). It has been
found that even children as young as 4 years of age
use the min model to solve addition problems
(Groen & Resnick, 1977). Baroody and Ginsburg
(1986) also found that 6-year-olds could understand
addition and use the minmodel. As experience with
addition increases, children and adults can directly
retrieve answers from memory. As Butterworth
et al. (2001) claimed, the counting procedure
could affect the organization of facts in memory—
that is, the preferred form is likely to be 5+ 3= 8
rather than 3+ 5= 8. In addition to the min
model, children and adults also rely on

transformation strategies to acquire and practise
addition facts, such as, 8+ 5= 8+ 2+ 3, 5+
8= 3+ 2+ 8 (e.g., Dehaene & Cohen, 1997;
Geary, Hoard, Byrd-Craven, & DeSoto, 2004;
LeFevre, Sadesky, & Bisanz, 1996; LeFevre,
Smith-Chant, Hiscock, Daley, & Morris, 2003;
Roussel, Fayol, & Barrouillet, 2002; Siegler,
1987). It seems that the larger operand is the basis
for calculation in both the min model and the use
of transformation strategy. With extensive practice
on addition, older children and adults can directly
retrieve the answer, which may decrease the
operand order effect. However, it is possible that
the remnants of the experience of using the min
model or the transformation strategy may be
stored in the long-term memory. Furthermore,
these procedures may be a backup method when
direct retrieval fails. In other words, the larger
operand might play a central role in the represen-
tation of addition facts. Consequently, for the
larger operand first addition, subjects’ eyes should
have a leftward movement, and for the smaller

Figure 1. Schematic representation of expected eye movement

patterns and associated horizontal electrooculograph (HEOG).

Arrows indicate directions of expected eye movements, and the

signs indicate expected HEOG (“0” indicates no changes, “+ ”

positive HEOG, and “–” negative HEOG). Tie problems are

expected to show the same rightward pattern as the smaller

operand first problems because of the natural left-to-right reading

direction.
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operandfirst addition, their eyes should have a right-
ward movement in order to focus on the larger
operand (see Figure 1, top panel, the retrieval stage).

In the current study, we used the tie problems
(i.e., problems with the same digit as the operands,
3+ 3, 3× 3) as the baseline. Because no manipu-
lation of the order of operands is needed for such
problems, subjects are expected to follow a regular
left-to-right reading direction and have rightward
eye movements, which are the same as those for
the smaller operand first problems.

We used the electrooculograph (EOG) record-
ing technique, focusing on the horizontal EOG
(HEOG). The HOEG can be recorded by placing
two channels at the outer canthi of both eyes. The
EOG recording has received much attention in
the field of eye movement-controlled human–com-
puter interface. Although in event-related potential
studies, the EOG signal would always be removed
from potentials recording on the scalp electrodes,
the psychophysiological electric signals have tem-
poral resolution and sensitivity that are sufficient
for detecting potential deflection resulting from
any changes in the eye position. This technique
has several advantages over the traditional eye-track-
ing technique (e.g., video-oculography), such as
better spatial resolution and the ability to record
eye movements even when eyes are closed (Fenn
& Hursh, 1936).

To clearly demonstrate the relation between
deflection direction of EOG and eye movement,
an additional eye movement task was conducted
in the current study with a separate sample.
Subjects were asked to move their eyes in specific
directions, and their EOGs were recorded and ana-
lysed. Rightward eye movements were expected to
elicit negative HEOG, and leftward eye move-
ments positive HEOG.

Method

Subjects
Thirty-four healthy right-handed university stu-
dents (16 males and 18 females) were recruited
from Beijing Normal University, China. The
average age of the subjects was 23.2 years,
ranging from 19.8 to 27.8 years. Thirty-two

students performed the arithmetic tasks. The
remaining two students performed an eye move-
ment task, which was used to validate that EOG
deflections are directly linked to eye movements.
They self-reported to have normal or corrected-
to-normal eyesight. They had not participated in
any experiments similar to the present one (i.e.,
involving simple arithmetic tasks of addition and
multiplication) during the previous half a year.
Informed written consent was obtained from
each subject after procedures had been fully
explained. The experiment on these subjects was
approved by the State Key Lab of Cognitive
Neuroscience and Learning at Beijing Normal
University.

Experimental design
For the arithmetic tasks, we used a 2 × 3 within-
subject design, with operation (one-digit addition
vs. multiplication) and operand order (smaller first
vs. larger first vs. tie) as independent variables.
For the eye movement task, we used a 2 × 4
within-subject design, with distance of eye move-
ment (far vs. near), and direction (left vs. right vs.
up vs. down) as independent variables.

Materials
Sixty-four addition problems from 2+ 2 through
9+ 9 and 64 multiplication problems from 2× 2
through 9× 9 were used for the arithmetic task
in this study (cf. Zhou, Chen, Zang, et al., 2007).
Problems with 0 or 1 as an operand were excluded
because they are rule-based problems. Due to the
limited number of problems, we had to present
each problem twice in different blocks to allow
for enough trials for the event-related potentials
recording. There were 128 trials for each type of
operation. The addition and multiplication pro-
blems were divided into smaller operand first,
larger operand first, and tie problems. For each
operation (i.e., addition or multiplication), there
were 56 larger operand first trials, 56 smaller
operand first trials, and 16 tie problems.

For the eye movement task, there were eight
conditions (four directions in each type of distance
of eye movement and two types of distances of eye
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movement; see Procedure for details). There were
100 trials for each condition.

Procedure
Subjects were seated 105 cm away from the compu-
ter screen in a dimly lit, sound-attenuated room.
For the arithmetic tasks, all stimuli were presented
visually in white against black background at the
centre of the computer screen. To reduce proces-
sing load, we presented addition and multiplication
problems in different blocks so that subjects could
focus on memory retrieval of arithmetic facts
without the additional need to recognize type of
operation. Before each block, subjects were
instructed which type of operation they would
perform. Subjects were asked to orally report the
answer for each problem. Before each arithmetic
problem was presented, a fixation sign “*” was pre-
sented in the centre of the screen. The asterisk’s
position was the operator’s position at the centre
of the arithmetic problem. Subjects were asked to
focus on the asterisk for 500 ms. Each trial (i.e., a
problem), consisting of two numbers and the oper-
ation sign “+ ” for addition or “× ” for multipli-
cation, remained on the centre of the screen until
the subject responded. Following the response, a
2,000-ms blank screen was presented. During the
experiment, an experimenter sat beside the subject
to record what he or she reported. Before formal
tests, subjects were given practice problems invol-
ving “0” and “1” as an operand. They were trained
to respond orally so that their oral response could
activate the voice-controlled switch. Subjects were
also asked to keep their head steady and avoid eye
blinks before an oral response. Eye blinks were
allowed in the 2,000-ms blank interval after each
oral response.

For the eye movement task, a fixation sign “*”
was first presented in the centre of the screen for
500 ms, which was the same as in the experiment.
Then the asterisk was randomly presented in one of
four directions (i.e., up, down, left, and right) at
one of two distances (“close”= the distance
between an operand and the operation sign;
“far”= twice the “close” distance) for 1,000 ms.
During the experiment, subjects were asked just

to focus on the asterisk, and they did not need to
make any response.

HEOG recording and analysis
HEOG and scalp voltages for the arithmetic task
were recorded using a SCAN system (Neurosoft,
Inc., Sterling, USA) with a 64-channel Quick-
cap. Linked ears served as reference, and the
middle of the forehead served as ground. Two
channels were placed at the outer canthi of both
eyes to record the horizontal electrooculogram
(HEOG; Figure 2), and another two channels
above and below the left eye for the vertical electro-
oculogram (VEOG). The default algorithms were
used, in which HEOG was calculated as the right
eye minus the left eye, and VEOG as the top of
the eye minus the bottom of the eye. Therefore,
the wave was negative-going when the eyes
moved towards the left, but positive-going when
they moved towards the right. The electroenceph-
alogram (EEG) was amplified online with a low-
pass frequency filter of 30 Hz. The sampling rate
was 1,000 Hz. The impedance of all electrodes
was kept below 5 kΩ. The scalp EEG and
VEOG were not analysed in the current study.

HEOG was processed in NeuroScan EDIT
(Version 4.3). A direct current (DC) correction
was first applied. The continuous EEG data were
segmented into epochs starting from 200 ms
before the onset of the second operand and conti-
nuing for 1,500 ms. The 200-ms prestimulus
served as the baseline. Epochs exceeding the
range of –100∼ 100 μV were rejected as artefacts.
A total of 93.5% of trials, from 86.0% to 98.8%
for all subjects, were kept. The remaining trials
were baseline corrected. The corrected data were

Figure 2. Surface electrodes placed around the eyes for horizontal

electrooculograph.
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averaged for each subject by conditions (i.e., those
involving smaller operand first problems, larger
operand first problems, and tie problems). A filter
with a low pass of 30 Hz (12 dB/octave) was
applied to the averaged results.

For the eye movement task, the EOG recording
was made using the same procedure as that for the
arithmetic task. The EOG analysis was similar to
that for the arithmetic task with one exception.
That is, epochs exceeding the range of –400∼
400 μV, other than –100∼ 100 μV, were rejected
as artefacts. Just three trials were discarded for 1
of the 2 subjects. The deflection of EOG as a
result of direct eye movement seemed to be much
larger than that induced by the mental processing
in the arithmetic task.

Statistical analysis
One subject’s EOG data for the arithmetic task
were not further analysed because fewer than 50%
of the trials were valid across all conditions. We
conducted analyses of variance (ANOVAs) with
the time window and operand order (smaller
operand first vs. larger operand first) as indepen-
dent variables for addition and multiplication sep-
arately. A separate set of ANOVAs were
conducted comparing tie with nontie problems.
ANOVAs were conducted on the mean amplitude
for several small time windows. These time
windows were selected on the basis of the step of
50 ms from 150 ms after the onset of stimulus to
1,000 ms. These time windows should have
covered the whole period of arithmetic processing
except for the early visual perception of numbers.
The mean EOG data for each condition of the
eye movement task were used to demonstrate the
relation between deflection directions of EOG
and eye movements.

For the behavioural data, any trial with a reac-
tion time of more than 2 s was discarded.
Reaction times were further trimmed with the
three-standard-deviations convention (i.e., a trial
with a reaction time three standard deviations
above or below the mean was treated as an erro-
neous response). Only 2.3% of trials were dis-
carded. Reaction times and error rates were

subjected to repeated measures ANOVA as
described above.

Results

Behaviour results
The grand mean error rates across all subjects were
3.7% for addition and 4.7% for multiplication. The
error rates were low and thus were not further ana-
lysed. Mean reaction time (RT) for the arithmetic
task is shown in Figure 3. To examine the
operand order effect, RTs were analysed with
two-factor repeated measures ANOVA with arith-
metic operation (addition and multiplication) and
operand order (smaller operand first problems and
larger operand first problems) as the within-
subject factors. The two-way interaction was sig-
nificant, F(1, 30)= 11.74, MSE= 770.57,
p, .005, η2= .28. Simple effects tests showed
that the operand order effect was significant for
multiplication problems, F(1, 30)= 16.64,
MSE= 1,725.18, p, .001, η2= .36, but not for
addition problems.

To examine how each operand order differs
from the baseline (the tie problems), we conducted
two additional two-factor repeated measures
ANOVAs with arithmetic operation (addition
and multiplication) and tie effect (smaller operand
first and larger operand first problems vs. tie pro-
blems) as the within-subject factors as well as
associated simple effects analyses. Results showed

Figure 3. Operation, operand order, and tie effects based on the

reaction time. Error bars indicate the standard error.
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that for multiplication, RTs were longer for both
smaller operand first and larger operand first pro-
blems than for the tie problems, F(1, 30)= 28.03,
MSE= 1,327.53, p, .001, η2= .48, and F(1,
30)= 55.73, MSE= 1,644.88, p, .001, η2= .65,
respectively. For addition, smaller operand first
problems, but not larger operand first problems,
took longer to solve than the tie problems, F(1,
30)= 7.11, MSE= 1,073.18, p, .05, η2= .19. It
should be noted that we also conducted the above
analyses with median RTs, and the results were
the same as those from the analyses of mean RTs.

HEOG results
Figure 4 shows the HEOGs for simple addition
and multiplication. The HEOG was first analysed
in a series of time windows of 50 ms from 150 ms
after the onset of stimulus to 1,000 ms. ANOVA
showed significant operand order and tie effects
in multiple time windows (see Figure 4, the hori-
zontal solid grey bars). The operand order effect
(i.e., smaller operand first problems had larger
negative potentials than larger operand first pro-
blems) was first observed for multiplication in
time window 150–300 ms. Then the reversed
operand order effect was observed in the time
windows from 400 to 1,000 ms. For addition, the
operand order effect (i.e., larger operand first pro-
blems had larger negative potentials than smaller
operand first problems and tie problems) was
observed in time window 300–1,000 ms. As
expected, tie problems showed the same HEOG
deflection as the smaller operand first problems
for both addition and multiplication, and they dif-
fered from larger operand first problems.

The operation effect occurred as early as 200 ms
post stimulus. The operation effect was consistent
till the last time window analysed. Generally, mul-
tiplication had greater negative HEOG than
addition, which is consistent with our hypothesis.

Finally, as a verification of the HEOG as a
direct and sensitive measure of eye movements,
we collected HEOG data from 2 subjects who fol-
lowed specific directions to move their eyes, as
shown in Figure 5. The up–down eye movement
seemed to have little effect on the HEOG accord-
ing to the 2 subjects’ results. The leftward eye

movement led to greater negative potentials. The
farther the eyes moved towards the left, the larger
the negative potentials were. The rightward eye
movement led to greater positive potentials, and
the farther the eyes moved towards the right, the
larger the positive potentials were.

Discussion

Eye movement patterns during arithmetic processing
The current study used the electrical recording
method of eye movements to examine the organiz-
ation of arithmetic facts in long-term memory. Our
analyses of the HEOG in a series of small time

Figure 4. Operand order effect in horizontal electrooculograph

(HEOG) for single-digit addition and multiplication. The light

grey bar shows the operand order effect and tie effect (the larger

operand first vs. the tie problems) from the analysis of variance

with time window (from 150∼ 200, 200∼ 250, . . . , to 950–

1,000 ms) and operand condition as independent variables.
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windows of 50 ms showed that the operand order
effect was first observed for multiplication in time
window 150–300 ms (i.e., smaller operand first
problems and tie problems had larger negative
potentials than larger operand first problems).
The operand order effect was reversed in the time
windows from 400 to 1,000 ms (i.e., larger
operand first problems had larger negative poten-
tials than smaller operand first problems). For
addition, larger operand first problems had larger
negative potentials than smaller operand first
problems in the series of time windows from
300–1,000 ms. For both addition and multipli-
cation, no differences in HEOG were found

between the tie problems and the smaller operand
first problems in all of the time windows. These
results were consistent with the preferred
operand-order-specific representation hypothesis
that eye movements would vary according to the
order of operands in the long-term memory of
arithmetic facts.

A special note is needed about the relevance of
our results to the IE model. As mentioned in the
introduction, the IE model focuses on single rep-
resentations at the cognitive stage. It makes no
strong prediction about order effect at the percep-
tual stage. As Rickard and Bourne (1996)
showed, much of the learning with training

Figure 5. Two subjects’ horizontal electrooculograph (HEOG) for the eye movement task in four directions (left, right, up, and down) and two

types of distances (near and far).

THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2012, 65 (4) 669

MENTAL REPRESENTATION OF ARITHMETIC FACTS



occurs within the perceptual stage, and order speci-
ficity is possible at this stage. In that sense, if our
results were based on the perceptual stage, they
would appear consistent with the IE model (as dis-
cussed by Rickard & Bourne, 1996). There two
main reasons, however, that we believe our findings
were not limited to the perceptual stage, but were
extended to the cognitive stage. First, the operand
order effect in HEOG was observed from the
time of the presentation of arithmetic problems to
the time of oral reports of answers. The time
course covered both the encoding and retrieval
stages. Second, the dissociated eye movement
patterns of HEOG between addition and multi-
plication also reflected the dissociation of the
long-term memory of arithmetic facts (as discussed
a following section).Taken together, although the
IE model allows for order specificity at the percep-
tual stage, which is consistent with our results, the
IE model’s order-free representations in long-term
memory were not supported by our results.

Differences between representations of addition and
multiplication facts
Previous studies have shown the dissociated rep-
resentations of addition, subtraction, and multipli-
cation facts. Addition and subtraction have a
greater reliance on visuospatial processing or magni-
tude manipulation, whereas multiplication has a
greater reliance on verbal processing (e.g., Prado
et al., 2011; Zhou et al., 2006; Zhou, Chen, Zang,
et al., 2007). For example, Zhou et al. (2006) found
that, compared to addition and subtraction,multipli-
cation elicited a greater N300 at the left frontal elec-
trodes, peaking around 320 ms (in the interval
between 275 and334ms after the onset of the visually
presented arithmetic problems). The greater N300
component could be interpreted as greater verbal pro-
cessing. In another study, Zhou, Chen, Zang, et al.
(2007) compared the patterns of brain activation eli-
cited by single-digit addition andmultiplication pro-
blems. They found that, compared to multiplication
problems, addition problems elicitedmore activation
in the intraparietal sulcus and the middle occipital
gyri at the right hemisphere and the superior occipital
gyri at both hemispheres. These brain regions are
known to be involved in visual perception, visual

mental imagery, visuospatial working memory, and
spatial attention (e.g., Corbetta et al., 1998;
Corbetta, Kincade, Ollinger, McAvoy, & Shulman,
2000; Postle, Awh, Jonides, Smith, & D’Esposito,
2004; Vingerhoets, de Lange, Vandemaele,
Deblaere, & Achten, 2002; Zurowski et al., 2002).
Thus, the greater activation for addition than for
multiplication in these regions could be reasonably
interpreted as a result of a greater reliance on visuos-
patial processingduring the retrieval of addition facts.
In contrast, multiplication hadmore activation in the
precentral gyrus, supplementary motor areas, and
posterior and anterior superior temporal gyrus at
the left hemisphere. These brain regions are associ-
ated with verbal production, such as planning and
execution of throat and tongue movements (e.g.,
Cowell, Egan, Code, Harasty, & Watson, 2000;
Hanakawa, Honda, Okada, Fukuyama, &
Shibasaki, 2003; Hickok et al., 2000; Paus, Perry,
Zatorre, Worsley, & Evans, 1996; Riecker,
Wildgruber, Dogil, Grodd, & Ackermann, 2002;
Wildgruber, Ackermann, Klose, Kardatzki, &
Grodd, 1996; Zhou et al., 2006; Ziegler, Kilian, &
Deger, 1997).

The current study found two major differences
in the eye movement data between addition and
multiplication. First, operand order did not elicit
differences in eye movements at the early stage
(i.e., 150–300 ms) of solving addition problems,
but it did for multiplication problems. Second,
multiplication showed two types of eye movement
patterns sequentially, which had opposite direc-
tions. As discussed in the introduction, the two
operands of addition problems were most likely
encoded simultaneously through their visual
Arabic digit codes (Dehaene & Cohen, 1997;
Zhou & Dong, 2003). Therefore, there was no
operand order effect during the encoding stage.
At the retrieval stage, subjects focused their atten-
tion on the larger operand, which resulted in the
operand order effect in HEOG. In contrast, for
multiplication, to access the linear verbal sequences
of multiplication facts, subjects had to first move
their eyes to the smaller operand from the fixation
point (i.e., the centre of the problem or the position
for operation sign) and then move their eyes from
the smaller operand to the larger operand.
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Consequently, we observed the two types of oppo-
site patterns of eye movements.

Differences in the operand order effect between
behavioural and HEOG measurements
The current study found that the operand order
effect was evident for both addition and multipli-
cation. In terms of the behavioural measurements,
however, only multiplication showed the operand
order effect. The finding that addition showed
the operand order effect in eye movements, but
not in the behavioural measurement, was probably
due to the greater sensitivity of the HEOG
measurements than of behavioural measurements.
Previous research has shown that the operand
order effect for addition was consistent but very
weak (Butterworth et al., 2001; Zhou & Dong,
2003). Zhou and Dong found that smaller
operand first problems took 8 ms longer to
answer than did larger operand first problems.
Butterworth et al. (2001) found a similar effect of
9 ms. However, due to differences in sample size
and variance, the operand order effect was statisti-
cally significant in Zhou and Dong, whose
sample size was 24, but not in Butterworth et al.,
whose sample size was 20. In the current study
with 32 subjects, we found no significant differ-
ences in RT (in fact the RTs favoured the smaller
operand first problems by 6 ms, with a standard
error of 5). The HEOG measurements, however,
were sensitive enough to detect a significant
operand order effect. It should be noted that pre-
vious studies have also shown dissociations
between behavioural data and eye movement data
(e.g., Castelhano & Henderson, 2007). For
example, Castelhano and Henderson recorded eye
movements to explore whether the information
acquired from a scene in an initial glimpse can
facilitate subsequent eye movements, and they
found significant effects in eye movement data,
but not in reaction time data.

Experience during acquisition shapes preferred
operand-order-specific representations of the
commuted pairs of arithmetic facts
Operand order specificity appears to have resulted
from the experience of acquiring these arithmetic

facts. Children acquire the facts of single-digit
arithmetic mainly through two types of strategies:
procedural strategies and rote verbal memory
(e.g., Dehaene & Cohen, 1997; Roussel, Fayol,
& Barrouillet, 2002; Zhou & Dong, 2003).
Procedural strategies, such as counting, transform-
ation (e.g., 6+ 7= 6+ 6+ 1; 9+ 7= 9+ 1+ 6),
and repeated addition, typically involve quantity
manipulation along the mental number line. With
the rote memory strategy, children repeatedly
recite arithmetic facts so that the facts can be
stored in memory as a type of modularized phono-
logical association between a digit pair and their
answer. Schoolchildren are usually taught to use
procedural strategies for simple addition and sub-
traction, but to use verbal memory strategy to mem-
orize multiplication facts (only the smaller operand
first and tie entries in the case of mainland Chinese
subjects; e.g., Dehaene & Cohen, 1997; Roussel
et al., 2002; Zhou & Dong, 2003). These differen-
tial strategies during the acquisition of arithmetic
facts may play an important role in shaping their
mental representations (e.g., Siegler & Shipley,
1995; Siegler & Shrager, 1984) and the associated
eye movements as summarized above (i.e., focusing
on the larger operand for addition and moving from
the smaller operand to the larger operand for
multiplication).

It should be noted that our results for the eye
movements associated with multiplication should
be specific to subjects such as mainland Chinese
who memorize only the smaller operand first and
the tie entries of the multiplication table. Even
within China, the Hong Kong and Macao
Chinese used the multiplication table that included
both smaller operand first and larger operand first
entries. We found that these samples did not
show the mismatch negative waveform for the
larger operand first problems in an event-related
potential (ERP) study (Zhou, Chen, Zhang,
et al., 2007). We would speculate that Hong
Kong and Macao subjects would not show the
operand order effect in HEOG, because they
have both smaller and larger operand first multipli-
cation facts in their long-term memory.

Also in contrast to mainland Chinese (with
smaller operand first representations), Italian
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adults might have preferred larger operand first rep-
resentations (i.e., max×min). Butterworth et al.
(2003) found that Italian fourth- and fifth-graders
had an advantage in their responses to the larger
operand first problems as compared to the smaller
operand first problems. Although Italian children
are taught the whole multiplication table, they
appear to convert multiplication to addition
(i.e., dynamic reorganization), according to
Butterworth et al. (2003). They seem to take the
larger operand and perform multiplication as mul-
tiple addition problems (Butterworth et al., 2003).
For Italian subjects, therefore, we would expect to
find a pattern of HEOG for multiplication that is
opposite of the one for mainland Chinese.

Limitations
Several limitations of the current study need to be
noted. First, as mentioned earlier, theoretical
models such as the IE model make different predic-
tions about the order effect for different stages of
processing. Unfortunately, our paradigm did not
allow for a clear separation of encoding from the
retrieval stage. Future research should develop
ways to examine different stages separately.

Second, it is not clear exactly when the relative
digit magnitude of the operand is determined
(before or after any eye movement from fixation).
If relative magnitude can be determined without
eye movement, then the very first eye movement
may reflect the type of memory storage (i.e., the
retrieval stage processing). Although there have
been debates regarding whether subjects could
determine the relative digit magnitude before they
retrieve arithmetic facts (Butterworth et al., 2001;
Robert & Campbell, 2008), the most recent evi-
dence (Robert & Campbell, 2008) is that there is
no number comparison in simple addition and
multiplication before the retrieval of arithmetic
facts. Robert and Campbell (2008) asked 64 volun-
teers to complete a number comparison task, an
addition task, and a multiplication task with both
size-congruent and size-incongruent stimuli. The
size congruity effect occurred only in the compari-
son task, not in the addition and multiplication
tasks. They thus concluded that the participants
did not compare operands before the retrieval of

arithmetic facts. For the eye movement data to be
a valid indicator of stored number facts, future
research is needed to further substantiate that
there is no early comparison stage.

Third, a frequently ignored but nevertheless
important issue in number cognition is individual
differences. For the current study, if groups of indi-
viduals had different preferred order of processing
operands or natural tendency of eye movements,
our results would have been affected. There exist
prior data on this issue. Within our data (see
Online Supplementary Material, Figures S1 and
S2), we examined individual subjects’ data and
found variations around the group means. It is not
clear whether they represented systematic variations
in strategies or eye movement “habits” (in those
cases, however, a bimodal distribution might have
been expected) or mere measure errors. Future
researchmay consider linking these variations to be-
havioural measures to see whether these variations
were related to individual differences in behaviours.

CONCLUSION

In sum, mental representations of arithmetic facts
(e.g., addition and multiplication) can be investi-
gated through the eye movement technique. The
eye movement patterns can directly reflect how
arithmetic facts are stored in long-term memory.
To our knowledge, this is the first study that used
the direct eye movement recording technique to
examine how arithmetic facts are represented.
The results supported the preferred operand-
order-specific representation hypothesis.
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