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Abstract

Analysis of Dictionary Learning and Random Forest under Data-inspired Models

by

Yu Wang

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Bin Yu, Chair

Many algorithms in Machine Learning have demonstrated powerful empirical performance in
terms of prediction accuracy and ability to extract knowledge from data. Inspired by the
empirical success, researchers study the behavior of those algorithms under theoretical models.
Two challenges must be addressed when one tries to understand those algorithms from a
theoretical perspective. First, a sound theoretical model should be considered. A good model
should reflect key properties of the real data. If the models do not capture important aspects
of the real data, the observations and/or conclusions made on those theoretical models may
not be relevant to practice. Thus, theoretical models that reflect certain properties of real data
are required so that the insights obtained from those models are convincing to practitioners.
Second, many of these algorithms are hard to analyze via traditional techniques. Therefore,
novel techniques are required to analyze those algorithms under new theoretical models. In
this thesis, we analyze two problems under novel real-data inspired theoretical models: `1-
minimization for dictionary learning and seeking important features and feature interactions
from Random Forest (RF). Both analyses give unique insights into the problem by studying a
novel data generative model. For dictionary learning, we propose two novel theoretical models:
exact sparse model and Bernoulli-type models. Unlike most previous analyses that assume
the data is generated from Gaussian distributions with sparsity constraints, these new models
can capture non-Gaussian data distributions and allow us to analyze the algorithms under
novel data properties such as non-negativity and heavy-tail. We show that `1-minimization
model in Dictionary Learning does not satisfy the classic global identifiability condition under
the new model. However, the reference dictionary still enjoys some global property across all
the feasible dictionaries. Our theoretical analysis leads to a novel algorithm called Dictionary
Learning Block Coordinate Descent (DL-BCD). For RF, we start off with analyzing the
feature importance bias for noisy features when using Mean Decrease Impurity (MDI). Then,
we study the feature interaction recovery problem and analyzed the data-inspired Local-Spiky
Sparse (LSS) model without Lipschitz assumptions that are often present in the previous
literature. We show that the depth-weighted-prevalence of a true feature interaction in the



2

decision paths of trees does not depend on the model coefficients but only on the size of the
interaction. The theoretical analysis leads to a novel feature ranking method called LSSrank.
We examine the performance of LSSrank on simulated data and it has high probability to
rank true interactions at the top under the LSS model.
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Chapter 1

Introduction

Machine Learning algorithms have been successfully applied to many real-world problems
such as image processing and genomics [61, 12, 82, 10]. Though the machine learning models
have higher predictive power than the traditional methods, they are usually viewed as black
boxes and it is difficult to understand how and why they achieve high predicative power.
To go beyond their plain empirical success and pursue a deeper understanding of when a
machine learning model will work or break, it is important for researchers to investigate
an algorithm’s behavior under some theoretical model. However, a theoretical model is a
double-edged sword. A carefully chosen theoretical model can capture the key properties of
a real data set and sheds insight on the behavior of an algorithm. Metaphorically, a good
model serves as a microscope that zoom into the key aspects of the algorithm and extracts
hidden information. On the other hand, a bad model does not capture properties of real data.
As a result, lessons learned from studying those models do not readily provide insights into
the algorithm performance on a real data set.

Studying an algorithm under a new theoretical model is often not easy. First of all,
many machine learning algorithms are quite complex and considered a black box. From
optimization point of view, they are usually non-convex, which means their behavior can
be affected by many seemingly mundane things such as the initialization. Also, techniques
developed for classic theoretical models are often not able to be carried over to analyze a new
theoretical model. There is also less literature one can rely on. As a result, novel techniques
are required to analyze those algorithms under new theoretical models. Due to limitations
of the available resources for analyzing new theoretical models, there is usually a trade-off
between utility, i.e., how well a model approximates reality, and feasibility, i.e., whether it is
feasible to analyze the algorithm under such a model.

In this thesis, we analyze two problems: `1-minimization for dictionary learning and
seeking important features and feature interactions via RF. Both cases show the importance
of studying an ML algorithm under a data inspired model, allowing one to draw many useful
insights.
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1.1 Local and Global identifiability of dictionary
learning

In the first part of thesis (Chapter 2–6) we study the problem of globally recovering a
dictionary from a set of signals via `1-minimization. We assume that the signals are generated
as i.i.d. random linear combinations of the K atoms from a complete reference dictionary
D∗ ∈ Rp×p, where the linear combination coefficients are from either a Bernoulli type model
or exact sparse model. First, we obtain a necessary and sufficient norm condition for the
reference dictionary D∗ to be a sharp local minimum of the expected `1 objective function.
Our result substantially extends that of [100] and allows the combination coefficient to be
non-negative. Second, we obtain an explicit bound on the region within which the objective
value of the reference dictionary is minimal. Third, we show that the reference dictionary
is the unique sharp local minimum, thus establishing the first known global property of
`1-minimization dictionary learning. Motivated by the theoretical results, we introduce a
perturbation based test to determine whether a dictionary is a sharp local minimum of the
objective function. In addition, we also propose a new dictionary learning algorithm based
on Block Coordinate Descent, called DL-BCD, which is guaranteed to decrease the obective
function monotonically. Simulation studies show that DL-BCD has competitive performance
in terms of recovery rate compared to other state-of-the-art dictionary learning algorithms
when the reference dictionary is generated from random Gaussian matrices.

The chapters are organized as follows. We give a high-level review of the related works and
summarize our theoretical contributions in Chapter 2. In Chapter 3, we introduce necessary
notations and propose two novel theoretical models: exact sparse model and Bernoulli-type
models. These new models can capture non-Gaussian data distributions and allow us to
analyze the algorithms under novel data properties such as non-negativity and heavy-tail.
In Chapter 4, we present main theorems and discuss their implications. In Chapter 5, we
propose the sharpness test and the block coordinate descent algorithm for dictionary learning
(DL-BCD) and evaluate their numerical performance. We conclude our results and discuss
possible extensions in Chapter 6.

1.2 Feature importance and feature interaction
discovery via RF

Random Forest (RF) is at the cutting edge of supervised machine learning methods especially
for genomics problems, and for biological interaction discovery as by stabilized RF or iterative
random forest (iRF)[10]. We introduce the problem setup of feature importance and feature
interaction of RF in Chapter 7. We study how to compute RF feature importance in Chapter
8 and how to use RF to discover high-order feature interactions in Chapter 9 – Chapter 11.
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RF feature importance

To understand how tree ensembles make predictions, people routinely turn to feature impor-
tance measures calculated from tree ensembles. It has long been known that Mean Decrease
Impurity (MDI), one of the most widely used measures of feature importance, incorrectly
assigns high importance to noisy features, leading to systematic bias in feature selection.
We address the bias of MDI from both theoretical and methodological perspectives. Based
on the original definition of MDI by Breiman et al.[13] for a single tree, we derive a tight
non-asymptotic bound on the expected bias of MDI importance of noisy features, showing
that deep trees have higher (expected) feature selection bias than shallow ones. However, it is
not clear how to reduce the bias of MDI using its existing analytical expression. We derive a
new analytical expression for MDI, and based on this new expression, we are able to propose
a debiased MDI feature importance measure using out-of-bag samples, called MDI-oob. For
both the simulated data and a genomic ChIP dataset, MDI-oob achieves state-of-the-art
performance in feature selection from RF for both deep and shallow trees.

Feature interaction discovery

There is no theoretical results on how to use tree-based methods to find high-order feature
interactions in the existing literature. We propose a new model, the Locally Spiky Sparse
(LSS) regression model, which is biologically inspired without Lipschitz assumptions. The
regression function in LSS is a linear combination of a set of piece-wise constant, discontinuous
Boolean local interaction functions. We show that (with high probability) the depth-weighted
prevalence (DWP) of interactions among decision paths of RF is universal (i.e., independent
of any model coefficients) and only depends on the size of the interactions. Our theoretical
analysis reveals for the first time that the feature subsampling strategy used in RF, i.e.,
splitting each node of a tree with a subset of mtry candidate features, is key to obtain exact
interaction recovery. Inspired by this theoretical result, we propose a novel method, namely
LSSrank, to rank high-order interactions based on DWP. We conduct a series of simulations
on synthetic data and biologically-inspired data, and find that LSSrank gives correct ranking
results with high probability under the LSS model.
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Part I

Local and global identifiability in
dictionary learning
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Chapter 2

Dictionary learning and `1-minimization

Dictionary learning is a class of unsupervised learning algorithms that learn a data-driven
representation from signals such as images, speech, and video. It has been widely used in
many applications ranging from image imputation to texture synthesis [77, 59, 71]. Compared
to pre-defined dictionaries, data-driven dictionaries can extract meaningful and interpretable
patterns from scientific data [65, 66] and exhibit enhanced performance in blind source
separation, image denoising and matrix completion. See, e.g., [104, 43, 48, 25, 3, 61, 73] and
the references therein. Dictionary learning is also closely related to Non-negative Matrix
Factorization (NMF) [46] which has broad applications in biology [14, 101]. Despite many
successful applications, dictionary learning formulations and algorithms are generally hard to
analyze due to their non-convex nature. With different initial inputs, a dictionary learning
algorithm typically outputs different dictionaries as a result of this non-convexity. For those
who use the dictionary as a basis for downstream analyses, the choice of the dictionary
may significantly impact the final conclusions. Therefore, it is natural to ask the following
questions: Can dictionary learning algorithms recover the "ground-truth" dictionary if there
is one? Among the many outputs from a dictionary learning algorithm, which one should be
selected for further analysis? In this chapter, we give a high level overview of the existing
literature and introduce our methodology and contributions.

Literature review

To answer the above questions, we need to understand the theoretical properties of dictionary
learning under generative models. In a number of recent works, the signals are generated as
linear combinations of the columns of a reference dictionary [32, 30, 31]. Specifically, denoting
by D∗ ∈ Rd×K the reference dictionary and x(i) ∈ Rd, i = 1, . . . , n the signal vectors, we
have:

x(i) ≈D∗α(i), (2.1)

where α(i) ∈ RK denotes the sparse coefficient vector. If K = d and D∗ is full rank, the
dictionary is called complete. If the matrix has more columns than rows, i.e., K > d, the
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dictionary is overcomplete. Under the model (2.1), for any reasonable dictionary learning
objective function, the reference dictionary D∗ ought to be equal or close to a local minimum.
This wellposedness requirement, also known as local identifiability of dictionary learning,
turns out to be nontrivial. For a complete dictionary and noiseless signals, [32] studies the
following `1-minimization formulation:

minimizeD,{β(i)}ni=1

n∑
i=1

‖β(i)‖1 (2.2)

subject to ‖Dj‖2 ≤ 1, j = 1, . . . , K,

x(i) = Dβ(i), i = 1, . . . , n; (2.3)

whereD is a complete dictionary andDj is its j-th column. [32] proved a sufficient condition
for local identifiability under the Bernoulli-Gaussian model. A more refined analysis by [100]
gave a sufficient and almost necessary condition. The sufficient local identifiability condition
in [32] was extended to the over-complete case [30] and the noisy case [31].

As most of dictionary learning formulations are nonconvex, local identifiability alone does
not guarantee that the output dictionary is the reference dictionary — the initial dictionary
must also be quite close to the reference dictionary. There are only limited results on how
to choose an appropriate initialization. For example, [7] showed that their initialization
algorithm guarantees that the output dictionary is within a small neighborhood of the
reference dictionary when certain µ-incoherence condition is met. In practice, initialization is
usually done by using a random matrix or randomly selecting a sample of signals [60]. These
algorithms are typically run for multiple times and the dictionary that achieves the smallest
objective value is selected.

The difficulty of initialization is a major challenge of establishing the recovery guarantee
that under some generative models, the output dictionary of an algorithm is indeed the
reference dictionary. This motivates the study of global identifiability . There are two versions
of global identifiability. For the first version, we say that the reference dictionary D∗ is
globally identifiable with respect to an objective function L(·) if D∗ is a global minimum
of L. The second and stricter version, requires all local minima of L are the same as D∗
up to column sign changes and permutation. If the second version of global identifiability
holds, all local minima are global minima. Thus any algorithm capable of converging to a
local minimum will also recover the reference dictionary. For some matrix decomposition
tasks such as low rank PCA [85] and matrix completion [29], despite the fact that the
objective function is non-convex, the stricter version of global identifiability holds under
certain conditions. For dictionary learning, several papers proposed new algorithms with
theoretical recovery guarantees that ensure the output is close or equal to the reference
dictionary. For the complete and noiseless case, [84] proposed a linear programming based
algorithm that provably recovers the reference dictionary when the coefficient vectors are
generated from a Bernoulli Gaussian model and contain at most O(

√
K) nonzero elements.

[90, 91] improved the sparsity tolerance to O(K) using a Riemannian trust region method.
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For over-complete dictionaries, [5] proposed an algorithm which performs an overlapping
clustering followed by an averaging algorithm or a K-SVD type algorithm. Additionally,
there is another line of research that focuses on the analysis of alternating minimization
algorithms, including [1, 2, 6, 7]. [9] proposed an algorithm based on sum-of-square semi-
definite programming hierarchy and proved its desirable theoretical performance with relaxed
assumptions on coefficient sparsity under a series of moment assumptions.

Our contributions

Despite numerous studies of global recovery in dictionary learning, our result is the first
global identifiability result for the `1-minimization problem. As we illustrate in Chapter 4, the
reference dictionary may not be the global minimum even for a simple data generation model.
This motivates us to consider a different condition to distinguish the reference dictionary
from other local minima. We show that the reference dictionary is the unique "sharp" local
minimum (see Definition 3.2.1) of the `1 objective function when certain conditions are met –
in other words, there are no other sharp local minima than the reference dictionary.

Based on this new characterization and the observation that a sharp local minimum is
more resilient to small perturbations, we propose a method to empirically test the sharpness
of the objective function at a given dictionary. Furthermore, we also design a new algorithm
to solve the `1-minimization problem using Block Coordinate Descent (DL-BCD) and the
re-weighting scheme inspired by [15]. Our simulations demonstrate that the proposed method
compares favorably with other state-of-the-art algorithms in terms of recovery rate if the
reference dictionary is generated from random Gaussian matrices.

Our work differs from other recent studies in two main aspects. First, instead of propos-
ing new dictionary learning formulations, we study the global property of the existing
`1-minimization problem that is often considered difficult in previous studies [61, 100]. While
there are many dictionary learning algorithms that do not rely on the `1-type penalty, formu-
lations with `1 penalties remain as the most frequently used method in many applications
due to their good practical performance and the availability of efficient algorithms [61, 59].
The theoretical understanding of `1-minimization is therefore of interest to a wider audience
than other dictionary learning methods. Second, our data generation models are novel and
cover several important cases not studied by prior works, e.g., non-negative linear coefficients.
Even though there is a line of research that focuses on non-negative dictionary learning in
the literature [4, 37, 6], the reference dictionary and the corresponding coefficients therein
are both non-negative. In comparison, we allow the dictionary to have arbitrary values but
only constrain the reference coefficients to be non-negative. This non-negative coefficient case
is difficult to analyze and does not satisfy the recovery conditions in previous studies, for
instance [9, 90, 91].
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Chapter 3

Exact sparse models and Bernoulli-type
models

3.1 Preliminaries
For a vector w ∈ Rm, denote its j-th element by wj. For an arbitrary matrix A ∈ Rm×n,
let A[k, ], Aj, Ak,j denote its k-th row, j-th column, and the (k, j)-th element respectively.
Denote by A[k,−j] ∈ Rn−1 the k-th row of A without its j-th entry. Let I ∈ RK×K denote
the identity matrix of size K and for k ∈ {1, . . . , K}, Ik denotes I’s k-th column, whose k-th
entry is one and zero elsewhere. 1 ∈ RK×1 denotes a column vector whose elements are
all ones. For a positive semi-definite square matrix X ∈ RK×K , X1/2 denotes its positive
semi-definite square root. We use ‖ · ‖ to denote vector norms and |||·||| to denote matrix
(semi-)norms. In particular, |||·|||F denotes the Frobenius norm, whereas |||·|||2 denotes the
spectral norm. For any two real functions w(t), q(t) : R → R, we denote w(t) = Θ(q(t)) if
there exist constants c1, c2 > 0 such that for any t ∈ R, c1 <

w(t)
q(t)

< c2. If q(t) > 0 and
limq(t)→0

w(t)
q(t)

= 0, then we write w(t) = o(q(t)). Define the indicator and the sign functions
as

1(x = 0) =

{
1 x = 0
0 x 6= 0

, sign(x) =


1 x > 0
0 x = 0
−1 x < 0

.

The `1 dictionary learning objective

In dictionary learning, a dictionary is represented by a matrix D ∈ Rd×K . We call a column
of the dictionary matrix an atom of the dictionary. In this thesis, we consider complete
dictionaries, that is, the dictionary matrix is square (K = d) and invertible. Note that for
the noiseless case, an undercomplete dictionary (K < d) can always be reduced to a complete
dictionary by removing certain rows. A complete or undercomplete dictionary matrix is
typically used in applications such as Independent Component Analysis [21] and Non-negative
Matrix Factorization [46, 14, 101].
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For a complete dictionary D, define L as the `1 objective function:

L(D) =
1

n

n∑
i=1

‖β(i)‖1. where β(i) = D−1x(i) ∀ i ∈ 1, . . . , n. (3.1)

The `1-minimization formulation (2.2) is equivalent to the following optimization problem
[100]:

minimizeD∈B(RK)L(D), (3.2)

where B(RK) is the set of all feasible dictionaries:

B(RK) ,
{
D ∈ RK×K

∣∣∣‖D1‖2 = . . . = ‖DK‖2 = 1, rank(D) = K
}
. (3.3)

3.2 Generative models
Let D∗ ∈ B(RK) be the reference dictionary of interest. We assume that the signal vector
x ∈ RK is generated from a linear model without noise: x = D∗α, where α ∈ RK is a
random reference coefficient vector. Below, we will introduce two classes of generative models
for α: Bernoulli-type models and exact sparse models.

• Bernoulli-type model B(p1, . . . , pK ; f). Let z ∈ RK be a random vector whose probability
density function exists and is denoted by f . Let ξ ∈ {0, 1}K be a random boolean
vector. The coordinates of ξ are independent and ξj is a Bernoulli random variable
with success probability P (ξj = 1) = pj ∈ (0, 1). Define α ∈ RK such that αj = ξjzj
for all j. We say that α is generated from the Bernoulli-type model B(p1, . . . , pK ; f).

• Exact sparse model S(s; f). Let z ∈ RK be a random vector whose probability density
function exists and is denoted by f . Let S be a size-s subset uniformly drawn from
all size-s subsets of 1, . . . , K. Let ξ ∈ {0, 1}K be a random variable such that ξj = 1
if j ∈ S otherwise 0. Define α ∈ RK such that αj = ξjzj for all j. We say that α is
generated from the exact sparse model S(s; f).

These two classes can be viewed as natural extensions of Bernoulli Gaussian models and
sparse Gaussian models, which have been extensively studied in dictionary learning [32, 100,
80, 81]. Denote by N (0, Ik×k) the k-dimensional standard Gaussian distribution:

• Bernoulli Gaussian model. If α is generated from the Bernoulli-type model with
parameters pj = p (p > 0) for all j and f is the density of N (0, Ik×k), we say that α
follows a Bernoulli Gaussian model with parameter p, or BG(p).

• Sparse Gaussian model. If α is generated from the exact sparse model with sparsity
parameter s and f is the density of N (0, Ik×k), we say that α follows the sparse Gaussian
model with parameter s, or SG(s).



CHAPTER 3. EXACT SPARSE MODELS AND BERNOULLI-TYPE MODELS 10

Remarks: The advantage of using sparse Gaussian and Bernoulli Gaussian distributions is
that they are simple and yet capable of capturing the most important characteristic of the
reference coefficients: sparsity. By using sparse Gaussian and Bernoulli Gaussian distributions,
Wu and Yu[100] obtains a sufficient and almost necessary condition for local identifiability.
Take the sparse Gaussian distribution as an example: let the maximal collinearity µ of
the reference dictionary D∗ be µ = maxi 6=j

∣∣∣D∗i TD∗j ∣∣∣ and s be the sparsity of the reference
coefficient vector in the sparse Gaussian model. Wu and Yu[100] show that local identifiability
holds when µ < K−s√

s(K−1)
. From the formula, we can see a trade-off between the maximal

collinearity µ and the sparsity of the coefficient vector s. If the coefficient is very sparse, i.e.,
s� K, local identifiability holds for a wide range of µ. Otherwise, local identifiability holds
for a narrower range of µ. While sparse/Bernoulli Gaussian models can be used to illustrate
this trade-off, they are rather restrictive for real data. Several papers [84, 6, 5, 7, 31] studied
more general models such as sub-Gaussian models.

Other important examples include models with z drawn from the Laplacian distribution
or a non-negative distribution. In particular, the non-negativity of the coefficients violates
the popular assumption Eαj = 0 [32, 31].

• Sparse Laplacian model. If α is generated from the exact sparse model with sparsity
parameter s and density f(z) = 1

2K
exp(−‖z‖1), we say that α follows the sparse

Laplacian model with parameter s, or SL(s).

• Non-negative Sparse Gaussian model. A random vector α is said to be drawn from
a non-negative sparse Gaussian model with parameter s, denoted by |SG(s)|, if for
j = 1, . . . , K, αj = |α′j| where α′ ∼ SG(s).

Identifiability of the reference dictionary

In this subsection, we introduce commonly used terminology in dictionary learning with
respect to the identifiability of the reference dictionary.

• Sign-permutation ambiguity. In most dictionary learning formulations, the order of the
dictionary atoms as well as their signs do not matter. Let P ∈ RK×K be a permutation
matrix and Λ ∈ RK×K a diagonal matrix with ±1 diagonal entries. The matrix
D′ = DPΛ and D essentially represent the same dictionary but D′ 6= D element-wise.

• Local identifiability. The reference dictionary D∗ ∈ B(RK) is locally identifiable with
respect to L ifD∗ is a local minimum of L. Local identifiability is a minimal requirement
for recovering the reference dictionary. It has been extensively studied under a variety
of dictionary learning formulations [32, 30, 31, 100, 2, 81].

• Global identifiability. The reference dictionary D∗ ∈ B(RK) is globally identifiable with
respect to L if D∗ is a global minimum of L.
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Clearly, whether local or global identifiability holds depends on the objective function and
the signal generation model. If the objective function is `0, i.e., 1

n

∑
i ‖D−1x(i)‖0, and the

linear coefficients are generated from the Bernoulli Gaussian model, the reference dictionary is
globally (and hence locally) identifiable (see Theorem 3 in [84]). However, for the `1 objective
considered here, global identifiability might not hold. In Chapter 4, we give an example
where the reference dictionary is only a local minimum but not a global minimum.

We consider a variant of global identifiability: instead of the global minimum, we require
the reference dictionary D∗ to be the unique sharp local minimum of the dictionary learning
objective function. In other words, no dictionary other than D∗ is a sharp local minimum.
Other dictionaries can still be local minima but cannot be sharp at the same time. This
property allows us to globally distinguish the reference dictionary from other spurious local
minima and can be used as a criterion to select the best dictionaries from a set of algorithm
outputs. Sharp local minimum, as per Definition 3.2.1, is a common concept in the field of
optimization [23, 72]. However, to the best of our knowledge, we are the first to connect
dictionary learning theory with sharp local minimum and use it to distinguish the reference
dictionary from other spurious local minima.

Definition 3.2.1 (Sharp local minimum). Let L : B(RK) → R be a dictionary learning
objective function. A dictionary D0 ∈ B(RK) is a sharp local minimum of L(·) with sharpness
ε [72] if there exists δ > 0 such that for any D ∈ {D : |||D −D0|||F < δ}:

L(D)− L(D0) ≥ ε|||D −D0|||F + o(|||D0 −D|||F ).

Remarks: The definition here can be viewed as a matrix analog of the sharp minimum in
the one dimensional case. For a function f : R → R, v0 is a sharp local minimum of f if
f(v) − f(v0) ≥ ε|v − v0| + o(|v − v0|). Note that the definition of sharp local minimum is
different from the definition of strict local minimum, which means there are no other local
minima in its neighborhood. A sharp local minimum is always a strict local minimum but
not vice versa. For example, consider `q functions |x|q for q > 0. When q ≤ 1, x = 0 is a
strict local minimum as well as a sharp local minimum of `q. When q > 1, x = 0 is still a
strict local minimum but not a sharp local minimum. This definition is also different from
the sharp local minimum concepts that are commonly used in the study of artificial neural
networks and stochastic gradient descent [34].

Technical assumptions

In this subsection, we introduce two important technical assumptions that will be used in
our theoretical analysis. All the models introduced in Section 3.2 satisfy these assumptions.
Their relationship is depicted in Fig. 3.1.

We need additional notations before introducing the assumptions. For any D ∈ B(RK),
define M(D) = DTD as the collinearity matrix of D. For example, if the dictionary is an
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Figure 3.1: Both exact sparse models and Bernoulli-type models satisfy Assumption I and
II. Sparse Gaussian distribution is a special case of exact sparse models, while Bernoulli
Gaussian distribution is a special case of Bernoulli-type models.

orthogonal matrix, M(D) = I is the identity matrix. If all the atoms in the dictionary are
collinear with constant µ > 0, then M(D) = µ11T + (1− µ)I is a matrix whose off-diagonal
elements are all µ’s. When the context is clear, we use M instead of M(D) for notation
ease. Denote by M∗ ≡M∗(D∗) the collinearity matrix for the reference dictionary D∗. Also,
define the matrix B(α,M) ∈ RK×K as

(B(α,M))k,j , Eαjsign(αk)−Mj,kE|αj| for k, j = 1, . . . , K.

Here the expectation is with respect to the random coefficient vector α. By the definition of
B(α,M∗), the quantity is the difference between two matrices

B(α,M∗) = B1(α)−B2(α,M∗),

where (B1(α))k,j = Eαjsign(αk) and B2(α,M∗)k,j = M∗
j,kE|αj|. Roughly speaking, the first

matrix measures the "correlation" between different coordinates of the coefficients while
the second matrix measures the collinearity of the atoms in the reference dictionary. For
instance, when the coordinates of α are independent and mean zero, B1(α) = 0. When all
atoms in the dictionary are orthogonal, i.e., M∗ = I, B2(α,M∗) = 0. In that extreme case,
B(α,M) = 0.

For any random vector α, define the semi-norm |||·|||α induced by α as:

|||A|||α ,
K∑
k=1

E
[
|
K∑
j=1

Ak,jαj|1(αk = 0)
]
.
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Note that the subscript α in |||·|||α is used to indicate the dependence on the distribution of
α. |||·|||α is a semi-norm but not a norm because |||A|||α = 0 does not imply A = 0. Actually,
for any nonzero diagonal matrix A 6= 0, |||A|||α = 0 because

∑K
k=1 E

[
|Ak,kαk|1(αk = 0)

]
= 0.

Note that the reason why we define B and |||·|||α this way is because these quantities appear
naturally in the first order optimality condition of `1-minimization. Hopefully, the motivation
of defining these definitions will become clear later.

Assumption I (Regular data-dependent norm) |||·|||α is cα-regular: There exists a
number cα > 0, dependent on the distribution of α, such that for any matrix A ∈ HK , where
HK = {A ∈ RK×K | Ai,i = 0 for all 1 ≤ i ≤ K}, |||A|||α is bounded below by A’s Frobenious
norm: |||A|||α ≥ cα|||A|||F .

Note that similar to |||·|||α, we use the subscript α in cα to indicate that the quantity cα
depends on the distribution of α. Assumption I has several implications. First, it ensures
that the coefficient vector α does not lie in a linear subspace of RK . Otherwise, we can make
rows of A orthogonal to α and show that |||·|||α is not regular. Second, it also guarantees
that the coefficient vector α must have some level of sparsity. To see why this is the case,
suppose there exists some coordinate k′ such that the coefficient αk′ 6= 0 almost surely. We
can then construct A such that all of its elements are zero except the k′-th row. Thus,
|||A|||α = E

[
|
∑K

j=1Ak′,jαj|1(αk′ = 0)
]

= 0, but |||A|||F > 0. Third, if we define the dual
(semi-)norm of |||·|||α in the subspace HK as

|||X|||∗α = sup
A 6=0,A∈HK

tr(XTA)

|||A|||α
, for X ∈ RK×K ,

the regularity of |||·|||α implies that the corresponding dual semi-norm is bounded above
by the Frobenius norm. To see this, simply note that |||X|||∗α ≤

1
cα
|||X|||F with the above

definition. Assumption I is crucial for the study of the local identifiability property. As can
be seen later in Theorems 4.1.1 and 4.1.2, regularity of |||·|||α is indispensable in determining
the sharpness of the local minimum corresponding to the reference dictionary D∗ as well as
the bounding region.

Assumption II (Probabilistic linear independence) For any fixed constants c1, . . . ,
cK ∈ R, the following statement holds almost surely

K∑
l=1

clαl = 0 =⇒ clαl = 0 ∀ l = 1, . . . , K,

or equivalently, for any fixed c1, . . . , cK ,

P

(
K∑
l=1

clαl = 0,
K∑
l=1

c2
lα

2
l > 0

)
= 0.
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Assumption II controls the sparsity of any coefficient vector β under a general dictionary
D. For the noiseless signal x = D∗α, its j-th coefficient under a dictionary D can be
written as a linear combination of reference coefficients αl: βj = D−1[j, ]D∗α =

∑K
l=1 clαl

where cl = D−1[j, ]D∗l for l = 1, . . . , K. Thus, Assumption II implies that under any
general dictionary, the resulting coefficient βj is zero if and only if for each l, either the
reference coefficient is zero (αl = 0) or the corresponding constant is zero (cl = 0). In other
words, elements in the reference coefficient vector cannot "cancel" with each other unless
all the elements are zeros. This assumption seems very similar to the linear independence
property of random variables [76]: Random variables ψ1, . . . , ψK are linearly independent
if c1ψ1 + . . . + cKψK = 0 a.s. implies c1 = c2 = · · · = cK = 0. It is worth pointing out
that Assumption II is a weaker assumption than linear independence. Many distributions of
interest, such as Bernoulli Gaussian distributions, are not linearly independent but satisfy
Assumption II (Proposition 3.2.2). This assumption is essential when we study the uniqueness
of the sharp local minimum in Theorem 4.2.1.

In the following propositions, we show that both Bernoulli-type models and exact sparse
models satisfy Assumption I and II.

Proposition 3.2.1. The norm |||·|||α induced by exact sparse models or Bernoulli-type models
satisfy Assumption I. The regularity constant has explicit form when the coefficient is from
SG(s) or BG(p):

• If α is from SG(s), the norm |||·|||α is cs-regular, where cs ≥ s(K−s)
K(K−1)

√
2
π
.

• If α is from BG(p), the norm |||·|||α is cp-regular, where cp ≥ p(1− p)
√

2
π
.

Proposition 3.2.2. If the coefficient vector is generated from a Bernoulli-type model or an
exact sparse model, Assumption II holds.

Remarks: Although the above assumptions are quite general, certain distributions consid-
ered in other papers do not satisfy our assumptions. A key requirement in Bernoulli-type or
exact sparse models is that the probability density function of the base random variable z must
exist. For instance, the Bernoulli Randemacher model [84] does not satisfy Assumption II. To
see this, take the following Bernoulli Randemacher model for K = 2 as an example: suppose
ξ ∈ {0, 1}2 where P (ξ1 = 1) = p1, P (ξ2 = 1) = p2. The base random vector z ∈ {−1, 1}2 with
P (z1 = 1) = P (z2 = 1) = 1/2. If we take c1 = 1 and c2 = −1, P (c1α1 + c2α2 = 0, c1α1 6=
0, c2α2 6= 0) = P (α1 − α2 = 0, ξ1 6= 0, ξ2 6= 0) = P (ξ1 = 1, ξ2 = 1, z1 = z2) = p1 · p2/2 > 0.
Therefore, Assumption II does not apply in this case.



15

Chapter 4

Local and global identifiability

Similar to [100], we first study the following optimization problem:

minimize
D

EL(D) = E‖D−1x‖1 (4.1)

subject to D ∈ B(RK)

Here, the notation E is the expectation with respect to x = D∗α under a probabilistic
model for α. Therefore, this optimization problem is equivalent to the case when we have
infinite number of samples. As we shall see, the analysis of this population level problem
gives us significant insights into the identifiability properties of dictionary learning. We also
consider the finite sample case (3.2) in Theorem 4.2.2.

4.1 A necessary and sufficient condition for local
identifiability

In this subsection, we will establish a necessary and sufficient condition for the reference
dictionary to be a sharp local minimum.

Theorem 4.1.1 (Local identifiability). Suppose |||·|||α is cα-regular (see Assumption I) and
the `1 norm of the reference coefficient vector α has bounded first order moment: E‖α‖1 <∞.
D∗ is a sharp local minimum of Formulation (4.1) with sharpness at least cα√

2|||D∗|||22
(1 −

|||B(α,M∗)|||∗α) if and only if
|||B(α,M∗)|||∗α < 1. (4.2)

If |||B(α,M∗)|||∗α > 1, D∗ is not a local minimum.

Remarks: [100] studied the local identifiability problem when the coefficient vector α is
from Bernoulli Gaussian or sparse Gaussian distributions. They gave a sufficient and almost



CHAPTER 4. LOCAL AND GLOBAL IDENTIFIABILITY 16

necessary condition that ensures the reference dictionary to be a local minimum. Theorem
4.1.1 substantially extends their result in two aspects:

• The reference coefficient distribution can be exact sparse models and Bernoulli type
models, which is more general than sparse/Bernoulli Gaussian models.

• In addition to showing that the reference dictionary D∗ is a local minimum, we show
that D∗ is actually a sharp local minimum with an explicit bound on the sharpness.

To prove Theorem 4.1.1, we need to calculate how the objective function changes along
any direction in the neighborhood of the reference dictionary. The major challenge of this
calculation is that the objective function is neither convex nor smooth, which prevents us
from using sub-gradient or gradient to characterize its local structure. Instead, we obtain a
novel sandwich-type inequality of the `1 objective function (Lemma A.4.4). With the help of
this inequality, we are able to carry out a more fine-grained analysis of the `1-minimization
objective. The detailed proof of Theorem 4.1.1 can be found in the Appendix.

Theorem 4.1.1 gives the condition under which the reference dictionary is a sharp local
minimum. The below Theorem 4.1.2 gives an explicit bound of the size of the region. To the
best of authors’ knowledge, this is the first result about the region where local identifiability
holds for `1-minimization.

Theorem 4.1.2. Under notations in Theorem 4.1.1, if |||B(α,M∗)|||∗α < 1, for any D in the
set

S =

{
D ∈ B(RK)

∣∣∣|||D|||2 ≤ 2|||D∗|||2, |||D −D
∗|||F ≤

(1− |||B(α,M∗)|||∗α) · cα
8
√

2|||D∗|||22 maxj E|αj|

}
,

we have EL(D) ≥ EL(D∗).

Remarks: First of all, note that the set S we study here is different from what [2] called
the "basin of attraction". The basin of attraction of an iterative algorithm is the set of
initialization dictionaries under which the algorithm converges to the reference dictionary
D∗. For an iterative algorithm that decreases its objective function at each step, its basin of
attraction must be a subset of the region within which D∗ has the minimal objective value.
Second, Theorem 4.1.2 only tells us that D∗ admits the smallest objective function value
within the set S. It does not, however, indicate that D∗ is the only local minimum within S.

For certain generative models, the conditions in Theorem 4.1.1 and 4.1.2 can be made
more explicit to compare with other local identifiability results. In what follows, we will
study two examples to gain a better understanding of those conditions. These examples
demonstrate the trade-off between coefficient sparsity, collinearity of atoms in the reference
dictionary and signal dimension K. For simplicity, we set the reference dictionary to be the
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constant collinearity dictionary with coherence µ > 0: D∗(µ) = ((1− µ)I + µ11T )1/2 where
11T ∈ RK×K is a square matrix whose elements are all ones. This simple dictionary class
was used to illustrate the local identifiability conditions in [32] and [100]. The coherence
parameter µ controls the collinearity between dictionary atoms. By studying this class of
reference dictionaries, we can significantly simplify the conditions and demonstrate how the
coherence µ affects dictionary identifiability.

Corollary 4.1.1. Suppose the reference dictionary D∗ is a constant collinearity dictio-
nary with coherence µ > 0: D∗(µ) = ((1 − µ)I + µ11T )1/2, and the reference coeffi-
cient vector α is from SG(s). D∗ is a sharp local minimum with sharpness at least

s√
π(1+µ(K−1))K

(
K−s
K−1
− µ
√
s
)
if and only if

µ
√
s <

K − s
K − 1

.

If the above inequality holds true, for any

D ∈ S =

{
D ∈ B(RK)

∣∣∣|||D|||2 ≤ 2
√

1 + µ(K − 1), |||D −D∗|||F ≤
K−s
K−1
− µ
√
s

8
√

2(1 + µ(K − 1))

}
,

we have EL(D) ≥ EL(D∗).

Three parameters play important roles for the reference dictionary to be a sharp local
minimum: dictionary coherence µ, sparsity s and dimension K. Since µ

√
s − K−s

K−1
is a

monotonically increasing function with respect to µ and s, local identifiability holds when
the dictionary is close to an orthogonal matrix and the coefficient vector is sufficiently sparse.
Another important observation is that µ

√
s− K−s

K−1
is monotonically decreasing as K increases.

Thus, given that the number of nonzero elements per signal s is fixed, it is easier for the local
identifiability condition to hold for larger K. If K tends to infinity, the condition becomes
s < 1√

µ
. Also, the set S shrinks as s or µ increases, implying that the region is smaller when

the coefficients are less sparse or the dictionary has higher coherence. When µ = 0, the set S
becomes

{
D ∈ B(RK)

∣∣∣|||D|||2 ≤ 2, |||D −D∗|||F ≤
1

8
√

2
K−s
K−1

}
.

Next, we consider non-negative sparse Gaussian distribution in the following example.
Since we do not have the explicit form of the regularity constant cα for non-negative sparse
Gaussian distribution, we omit the corresponding results for the sharpness and the region
bound.

Corollary 4.1.2. Suppose the reference dictionary is a constant collinearity dictionary with
coherence µ > 0: D∗(µ) = ((1−µ)I+µ11T )1/2, and the reference coefficient vector α is from
non-negative sparse Gaussian distribution |SG(s)|. If∣∣∣µ− s− 1

K − 1

∣∣∣ < K − s
K − 1

,

then D∗ is a sharp local minimum.
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Note that the condition K−1
K−s ·

∣∣∣µ− s−1
K−1

∣∣∣ < 1 is equivalent to 2s−K−1
K−1

< µ < 1. When K
tends to infinity, the reference dictionary is a local minimum for µ < 1. Compared to the
same bound from Corollary 4.1.1, µ < 1√

s
for large K, the bound for non-negative coefficients

is less restrictive. Therefore, the non-negativity of the coefficient distribution relaxes the
requirement for local identifiability.

Corollary 4.1.3. Let the reference dictionary be a constant collinearity dictionary with
coherence µ. Assume that the reference coefficients are generated from the Bernoulli Gaussian

model BG(p). If µ
√
p(K−1)

1−p < 1, the reference dictionary is a sharp local minimum of EL(D)

with sharpness at least p√
π(1+µ(K−1))

(
1− p− µ

√
p(K − 1)

)
. In addition, for any

D ∈
{
D ∈ B(RK)

∣∣∣|||D|||2 ≤ 2
√

1 + µ(K − 1),

|||D −D∗|||2F ≤
1

8
√

2(1 + µ(K − 1))

(
1− p− µ

√
p(K − 1)

)}
,

we have E‖D−1x‖1 ≥ E‖α‖1.

Corollary 4.1.4. Let the reference dictionary be a constant collinearity dictionary with
coherence µ. Assume that the coefficients are generated from the sparse Laplacian model
SL(s). If

µs(K − 1)

(K − s)
∫∫∞

0
|y − x|(xy)s−1 exp(−(x+ y))Γ(s)−2dxdy

< 1,

then the reference dictionary is a sharp local minimum of D 7→ EL(D).

Although the condition in Corollary 4.1.4 is quite convoluted, we can compare it with the
sparse Gaussian case empirically. For sparse Gaussian distributions, there are two parameters:
sparsity s and dimension K. Define the phase transition curve to be the asymptotic boundary
that separates the region where local identifiability holds (the area below the curve) and
the region where local identifiability fails (the area above the curve). When K = 10 and
K = 20, the phase transition curve (|||B(α,M∗)|||∗α = 1) for sparse Laplace distribution
and sparse Gaussian distribution can be found in Fig. 4.1. As can be seen in the figure,
the phase transition curve for sparse Laplace distribution is slightly higher than that for
sparse Gaussian distribution, suggesting that the Laplace distribution has less stringent local
identifiability condition. That is consistent with our intuition: while the density function of a
standard Gaussian distribution is rotation symmetric, which implies that it does not prefer
any direction, the density function of the Laplace distribution is not. For example, consider a
simple two-dimensional case: letD∗ be the identity matrix in R2×2. If the reference coefficient
is from the standard Gaussian distribution with no sparsity, i.e. s = K, all the orthogonal
dictionaries will have the same objective value

√
2
π
. So local identifiability does not hold for

Gaussian distribution under the setting s = K. However, for the Laplace distribution, even
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Figure 4.1: Theoretical phase transition curve for constant collinearity dictionary with
coherence µ and sparsity s for K = 10 (left) and K = 20 (right).

if s = K, for an orthogonal dictionary
(

cos θ sin θ
sin θ − cos θ

)
with θ ∈ [0, π/2], its `1 objective

function value is 2(sin θ+ cos θ+ 1
sin θ+cos θ

), which attains its minimum when θ = 0 or π
2
. This

means the local identifiability still holds.

4.2 A counterexample of global identifiability and a
remedy

For `1-minimization, multiple local minima exist: as a result of sign-permutation ambiguity,
if D is a local minimum, for any permutation matrix P and any diagonal matrix Λ with
diagonal elements ±1, DPΛ is also a local minimum. These local minima are benign in
nature since they essentially refer to the same dictionary. Can there be local minima other
than the benign ones? If so, how can we distinguish benign local minima from them? In this
subsection, we consider the problem of global identifiability. First, we give a counterexample
to show that the reference dictionary is not necessary a global minimum of the `1-minimization
problem even for orthogonal dictionary and sparse coefficients.

Counterexample on global identifiability. Suppose the reference dictionary is the
identity matrix I ∈ R2×2. The coefficients are generated from a Bernoulli-type model α ∈ R2

such that αi = ziξi for i = 1, 2, where ξ1 and ξ2 are Bernoulli variables with success probability
0.67, and (z1, z2) is drawn from the below Gaussian mixture model:

1

2
N
(

0,

(
101 −99
−99 101

))
+

1

2
N
(

0,

(
101 99
99 101

))
.

We generate 2000 samples from the model and compute the dictionary learning objective
L(·) defined in (3.1) for each candidate dictionary (Fig. 4.2). As can be seen from the
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Figure 4.2: The empirical data (left) and the objective surface plot (middle). We parameterize
a candidate dictionary as D = (a1, a2), where a1 = (cos(θ1), sin(θ1)), a2 = (cos(θ2), sin(θ2)).
The objective of D is defined as in (3.1). Green dots/lines indicate global minima, whereas
red dots/lines are the reference dictionary or its sign-permutation equivalents. The right
figure shows the objective curve for all orthogonal dictionaries (θ1 − θ2 = π/2). While the
reference dictionary is a sharp local minimum, it is not a global minimum.

objective function surface plot, the global minimum for this data set is not the reference
dictionary. Furthermore, one can show that the global minimum is not sharp, i.e., the
directional derivative along certain directions at the global minimum is close to zero for finite
samples and exactly zero for the population case.

The above example shows a potential drawback of directly minimizing the `1 objective
compared to other objectives such as `0. For the `0 objective, under certain Bernoulli Gaussian
models, the reference dictionary is a global minimum [84] and even in our counterexample,
which is not Bernoulli Gaussian, the reference dictionary can still be shown to be a global
minimum. Still, the computation complexity of the `0 objective remains too high to switch
from `1. To remedy this drawback of `1, we observe that in the above example, although the
reference dictionary is not a global minimum, it is still a sharp local minimum and there are
no other sharp local minima. Therefore there is hope that we can combine the `1 objective
and a "sharpness" test to recover the reference dictionary. Is this observation true for general
cases? The answer is yes. The following theorem shows that the reference dictionary is the
unique sharp local minimum of `1-minimization up to sign-permutation.

Theorem 4.2.1 (Unique sharp local minimum). Suppose the reference coefficient vector α
satisfies probabilistic linear independence (see Assumption II). If D∗ is a sharp local minimum
of Formulation (4.1), it is the only sharp local minimum in B(RK). If it is not a sharp local
minimum, there are no sharp local minima in B(RK).

Note that Theorem 4.2.1 works for the population case where the sample size is infinite.
For the finite sample case, we can show that the sharpness of spurious local minima is close
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to zero. Define Dε to be

Dε =
{
D ∈ B(RK)

∣∣∣D is a sharp local minimum of (3.2) with sharpness at least ε.
}
.

Define eig(D) to be the set of eigenvalues of the matrix D. For any fixed ε > 0 and
ρ2 > ρ1 > 0, define the event A(ρ1, ρ2, ε) to be

A(ρ1, ρ2, ε) = {There exists D ∈ Dε s.t. eig(D) ⊂ (ρ1, ρ2) and (4.3)
D 6= D∗ up to sign-permutation.} .

In other words, the event A represents the "bad" event that at least one of the sharp local
minima in Dε with bounded eigenvalues is not the reference dictionary. With this notation,
Theorem 4.2.1 basically shows that for the population case, the event A(ρ1 = 0, ρ2 =∞, ε = 0)
will never happen. The next theorem shows that for the finite sample case, P (A(ρ1, ρ2, ε)) is
upper bounded.

Theorem 4.2.2 (Finite-sample case). Suppose x(1),x(2), . . . ,x(n) are drawn i.i.d. from a
model satisfying probabilistic linear independence (see Assumption II) and for any i = 1 . . . n,
‖x(i)‖2 ≤ L <∞. Then for any fixed ρ2 > ρ1 > 0 and ε > 0,

P (A(ρ1, ρ2, ε)) ≤ 4 exp

(
2K
(

ln
n

2K
+ 1
)
− n

(
ρ3

1ε

2Lρ2

− 1

n

)2
)
.

In particular, P (A(ρ1, ρ2, ε))→ 0 as K
n
→ 0.

Remarks: Theorem 4.2.2 ensures that as K/n→ 0, with high probability no dictionaries
other than D∗ are sharp local minima within a region {D ∈ B(RK)

∣∣∣eig(D) ∈ (ρ1, ρ2)}.
However, it does not tell whether or not D∗ is a sharp local minimum. For the population
case, this issue is resolved in Theorem 4.1.1, which gives a necessary and sufficient condition
for the reference dictionary to be a sharp local minimum.
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Chapter 5

Algorithms for checking sharpness and
solving `1-minimization

As shown in the previous section, the reference dictionary is the unique sharp local minimum
under certain conditions. Here, we will design an algorithm that uses this property as a
stopping criterion for `1-minimization. If the algorithm finds a sharp local minimum, we
know that it is the reference dictionary. To do so we need to answer the following practical
questions:

• How to determine numerically if a given dictionary is a sharp local minimum?

• How to find a sharp local minimum and recover the reference dictionary?

In this section, we first introduce an algorithm to check if a given dictionary is a sharp local
minimum. We then develop an algorithm to recover the reference dictionary. The latter
algorithm is guaranteed to decrease the (truncated) `1 objective function at each iteration
(Proposition 5.2.2).

5.1 Determining sharp local minima
Despite the intuitive concept, checking whether a given dictionary is a sharp local minimum
can be challenging. First of all, the dimension of the problem is very high (p2). Second, if a
dictionary is a sharp local minimum, the objective function is not differentiable at that point,
precluding us from using gradients or the Hessian to solve the problem. One might also
consider using sub-gradients to minimize the objective [8]. However, because the problem is
actually non-convex, sub-gradients might not be well-defined.

We propose a novel algorithm to address these challenges. We decompose the problem
into a series of sub-problems each of which is low-dimensional. In Proposition 5.1.1, we show
that a given dictionary is a sharp local minimum in dimension p2 if and only if certain vectors
are sharp local minima for the corresponding sub-problems of dimension p. The objective
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function of each subproblem is strongly convex. To deal with non-existence of gradient or
Hessian, we design a perturbation test based on the observation that a sharp local minimum
ought to be stable with respect to small perturbations. For instance, x = 0 is the sharp
local minimum of |x| but is non-sharp local minimum of x2. If we add a linear function as
a perturbation, x = 0 is still a local minimum of |x|+ ε · x for any ε such that |ε| < 1 but
not so for x2 + ε · x. The choice of the perturbation is crucial. In Proposition 5.1.1, we show
that adding a perturbation to the dictionary collinearity matrix M is sufficient. Note that
perturbations to other quantities might work as well. Intuitively, a "good" perturbation
should provide enough variability along any direction. Otherwise, a local minimum that is
not sharp along certain directions might be mistakenly deemed as sharp.

Proposition 5.1.1. The following three statements are equivalent:

1) D is a sharp local minimum of (3.2).

2) For any k = 1, . . . , p, Ik is the sharp local minimum of the strongly convex optimization:

Ik ∈ argminw E|
〈
β,w

〉
|+

p∑
h=1,h6=k

√
(wh −Mk,h)2 + 1−M2

k,h · E|βh|. (5.1)

subject to w = [w1, . . . , wp] ∈ Rp, wk = 1.

3) For a sufficiently small ρ > 0 and any M̃ s.t. |M̃k,h−Mk,h| ≤ ρ for any k, h = 1, . . . , p,
Ik is the local minimum of the convex optimization:

Ik ∈ argminw E|
〈
β,w

〉
|+

p∑
h=1,h6=k

√
(wh − M̃k,h)2 + 1− M̃2

k,h · E|βh|. (5.2)

subject to w = [w1, . . . , wp] ∈ Rp, wk = 1.

for k = 1, . . . , p.

Proposition 5.1.1 tells us that, in order to check whether a dictionary is a sharp local
minimum, it is sufficient to add a perturbation to the matrix M = DTD and check whether
the resulting dictionary is the local minimum of the perturbed objective function. Empirically,
we can add a Gaussian noise with a small enough variance ρ and minimize the objective
(5.2). If Ik, the k-th column vector of the identity matrix, is the local minimum for the
perturbed objective, by Proposition 5.1.1 the given dictionary is guaranteed to be a sharp
local minimum. We formalize this idea into Algorithm 1. We acknowledge that this algorithm
might be conservative and misclassify a sharp local minimum as a non-sharp local minimum
if ρ is not small enough as required in Proposition 5.1.1. There is no good rule-of-thumb
in choosing ρ as it can be dependent on the data. We will explore the sensitivity of this
algorithm with respect to choice of ρ in the simulation section.
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Algorithm 1 Sharp local minimum test for `1-minimization dictionary learning
Require: Dictionary to be tested D, samples x(1), . . . ,x(n), perturbation level ρ ∈ R+,
threshold T ∈ R+.
for i = 1, . . . , n do
β(i) ←D−1x(i).

end for
for j = 1, . . . , p do
Generate εj ∼ N (0, ρ · Ip×p).
D̃j = Dj + εj.

end for
for k, h = 1, . . . , p do
M̃k,h ←

〈
D̃h, D̃k

〉
if k 6= h or 0.

end for
r ← 0
for k = 1, . . . , p do
Solve the strongly convex optimization via BFGS:

w(k) ← minimizew

n∑
i=1

|
〈
β(i),w

〉
|+

p∑
h=1,h6=k

√
(wh − M̃k,h)2 + 1− M̃2

k,h ·
n∑
i=1

|β(i)
h |.

(5.3)
subject to w = [w1, . . . , wp] ∈ Rp, wk = 1. (5.4)

Ik ← (0, . . . , 0, 1, 0, . . . , 0) where only the k-th element is 1.
r ← max(r, ‖w(k) − Ik‖2

2).
end for
if r < T then
Output D is a sharp local minimum.

else
Output D is not a sharp local minimum.

end if

The main component of Algorithm 1 is solving the strongly convex optimization (5.3). To
do so we use Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [97], which is a second
order method that estimates Hessian matrices using past gradient information. Each step of
BFGS is of complexity O(np+ p2). If we assume the maximum iteration to be a constant,
the overall complexity of Algorithm 1 is O(np2 + p3). Because sample size n is usually larger
than the dimension p, the dominant term in the complexity is O(np2). In the simulation
section, we show that the empirical computation time is in line with the theoretical bound.
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5.2 Recovering the reference dictionary
We now try to solve formulation (3.2). One of the most commonly used technique in solving
dictionary learning is alternating minimization [66, 59], which is to update the coefficients
and the dictionary in an alternating fashion until convergence. This method fails for noiseless
`1-minimization: when the coefficients are fixed, the dictionary must also be fixed to satisfy
all constraints. To allow dictionaries to be updated iteratively, researchers have proposed
different ways to relax the constraints [2, 60]. However, those workarounds tend to have
numerical stability issues if a high precision result is desired [60].

This motivates us to propose Algorithm 2. The algorithm uses the idea from Block
Coordinate Descent (BCD). It updates each row of D−1 and the corresponding row in the
coefficient matrix simultaneously. As we update one row of D−1, we also scale all the other
rows of D−1 by appropriate constants. This is because if we only update one row of D−1

while keeping the others fixed, columns of the resulting dictionary will not have unit norm.
The following lemma gives an admissible parameterization for updating one row of D−1.

Proposition 5.2.1. For any dictionary D ∈ B(Rp) and any coordinate k ∈ 1, . . . , p, given a
vector w = [w1, . . . , wp] ∈ Rp such that wk = 1, we can define a matrix Q ∈ Rp×p:

Q[k, ] =

{
wTD−1 h = k√

(wh −Mk,h)2 + 1−M2
k,h ·D−1[h, ] h 6= k

.

Then Q−1 ∈ B(Rp), which means each column of Q−1 is of norm 1.

With the parameterization in Proposition 5.2.1, we derive the following subproblems from
`1-minimization dictionary learning: for k = 1, ..., K,

argminw

n∑
i=1

|
〈
β(i),w

〉
|+

p∑
h=1,h6=k

√
(wh −Mk,h)2 + 1−M2

k,h ·
∑
|β(i)
h |.

subject to w = [w1, . . . , wp] ∈ Rp, wk = 1.

where β(i) = D−1x(i) for a dictionary D. This new sub-problem is strongly convex, making it
relatively easy to solve. Note that this problem is exactly the same as (5.1) in Proposition 5.1.1.
Thus the optimization problem (5.1) is closely related to `1-minimization dictionary learning
from two different perspectives: First, the sharpness of any solution of `1-minimization
is equivalent to the sharpness of Ik for the optimization (5.1). Second, the optimization
problem (5.1) can be viewed as a subproblem of `1-minimization under an appropriate
parameterization.

A natural way to solve `1-minimization dictionary learning is to solve the above subprob-
lems iteratively for each coordinate k. Similar ideas of learning a dictionary from a series of
convex programs have been explored in other papers. For example, [84] reformulated the
dictionary learning problem as a series of linear programs (LP) and construct a dictionary
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from the LP solutions. Nonetheless, their algorithm is not guaranteed to minimize the `1

objective at each iteration.
We propose a coordinate-descent-based dictionary learning Algorithm 2. It has a tuning

parameter τ , which aims at improving the performance of `1-minimization under the high
signal-to-noise ratio settings. When τ is set to be infinity, Algorithm 2 minimizes the `1

objective at each update. However, when the signal-to-noise ratio is high, `1-minimization
sometimes ends up with a low quality result. This is commonly due to the fact that the `1-
norm over-penalizes large coefficients, which breaks the local identifiability, i.e., the reference
dictionary is no longer a local minimum. Similar ideas are used in the re-weighted `1

algorithms in the field of compressed sensing [15]. The motivation of re-weighted algorithms
is to reduce the bias of `1-minimization by imposing smaller penalty to large coefficients.
In our algorithm, we simply truncate coefficient entries beyond the given threshold τ . The
obtained problem is still strongly convex but this trick improves the numerical performance
significantly.

The following theorem guarantees that the proposed algorithm always decreases the
objective function value.

Proposition 5.2.2 (Monotonicity). Define

f(D) =
n∑
i=1

p∑
j=1

min
(∣∣∣D−1[j, ]x(i)

∣∣∣, τ) ,
where τ is the threshold used in Algorithm 2. Denote by D(t,p) the dictionary at the t-
th iteration from Algorithm 2. f(D(t,p)) decreases monotonically for t ∈ N: f(D(0,p)) ≥
f(D(1,p)) ≥ f(D(2,p)) . . .

5.3 Numerical experiments
In this section, we evaluate the proposed algorithms with numerical simulations. We will
study the empirical running time of Algorithm 1 in the first experiment and examine how the
perturbation parameter ρ affects its performance in the second. In the third experiment, we
study the sample size requirement for successful recovery of the reference dictionary. Finally,
we will compare Algorithm 2 against other state-of-the-art dictionary learning algorithms [68,
69, 67]. The first two less computationally intensive simulations are run on an OpenSuSE
OS with Intel(R) Core(TM) i5-5200U CPU 2.20GHz with 12GB memory, while the last
two simulations are conducted in a cluster with 20 cores. The source code of the DL-BCD
algorithm can be found in the github repository1.

1https://github.com/shifwang/dl-bcd
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Algorithm 2 Dictionary Learning Block Coordinate Descent (DL-BCD)
Require: Data x(1), . . . ,x(n), threshold τ .
Initialize D(0,1), t← 0. Q← (D(0,1))−1.
while Stopping criterion not satisfied do
for j = 1, . . . , p do
for i = 1, . . . , n do
β(i) ← Qx(i).

end for
for h = 1, . . . , p do
mh ←

〈
D

(t,j)
h ,D

(t,j)
j

〉
.

end for
Solve the convex optimization via BFGS:

minimizew
∑
i=1..n,

|β(i)
j |<τ

|
〈
β(i),w

〉
|+

p∑
h=1,h 6=j

√
(wh −mh)2 + 1−m2

h ·
∑
i=1..n,

|β(i)
h |<τ

|β(i)
h |.

subject to w = [w1, . . . , wp] ∈ Rp, wj = 1.

Update j-th row of Q: Q[j, ]← wTQ.
for h = 1, . . . , p, h 6= j do
Q[h, ]← Q[h, ] ·

√
(wh −mh)2 + 1−m2

h.
end for
if j = p then
D(t+1,1) ← Q−1.

else
D(t,j+1) ← Q−1.

end if
end for
t← t+ 1.

end while

Empirical running time of Algorithm 1

We evaluate the empirical computation complexity of Algorithm 1. Let the reference dictionary
be a constant collinearity dictionary with coherence µ = 0.5, i.e.,

D∗ = (0.5I + 0.511T )1/2,

The sparse linear coefficients are generated from the Bernoulli Gaussian distribution BG(p)
with p = 0.7. This specific parameter setting ensures that the reference dictionary is not
a local minimum, thus making Algorithm 1 converge slower. For a fixed dimension, the
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Figure 5.1: Computation time of Algorithm 1. Left: For p = 20 and n = 500, . . . , 5000. Right:
For p = 5, . . . , 50 and n = 400.

computation time scales roughly linearly with the sample size, while for fixed sample size,
the computation time scales quadratically with dimension p (Fig. 5.1). This shows that the
empirical computation complexity of Algorithm 1 is of order O(np2), which is consistent with
the theoretical complexity. Simulation results remain stable for different parameter settings.

Sensitivity analysis of the perturbation parameter ρ

In this experiment, we test the sensitivity of Algorithm 1 by varying the perturbation
parameter ρ. We set dictionary dimension p = 20, sparsity parameter s = 10 and sample size
n = 1600. Also, we consider constant collinearity dictionaries with coherence µ = 1√

s
( p−s
p−1

+0.1)

(Fig. 5.2 Left) and µ = 1√
s
( p−s
p−1
− 0.2) (Fig. 5.2 Right). For the first experiment, the reference

dictionary is not a sharp local minimum of the objective function given sufficiently large
sample size. Hence a small perturbation to the dictionary results in a large distance between
the global minimum of the perturbed optimization and Ik, i.e., the quantity r defined in
Algorithm 1. In the second experiment, the reference dictionary is sharp, indicating the
distance r in Algorithm 1 should be small after adding a perturbation. For each value of ρ
between 0.05 and 0.5, we repeat the algorithm 20 times to compute the resulting distances.
When ρ is small, the distance r for the non-sharp case is very big (around 1.0) whereas
for the sharp case it remains small (around 10−12). For the sharp case, once ρ increases
beyond 0.35, r increases drastically to 10−3. This experiment shows for a wide range of
parameter ρ values (0.05 to 0.3), Algorithm 1 succeeds in distinguishing between the sharp
and non-sharp local minima. Nonetheless, there are two caveats when using this algorithm.
First, the parameter ρ depends on the data generation process, which is usually not known
in practice. Thus, it is still an open question about how to select ρ. Second, this algorithm is
only useful for the noiseless case or when the noise is negligible. When the noise is significant,
the reference dictionary is no longer a sharp local minimum. In that case, instead of checking
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the sharpness, an alternative is to check the smallest eigenvalue of the Hessian. This idea has
not been fully explored and will be studied in future work.

Empirical sample size requirement for local identifiability

When the reference dictionary is the constant collinearity matrix and the coefficients are sparse
Gaussian, [100] shows that if the sample size n is of order O(p ln p), local identifiability holds
with high probability. However, the corresponding constants that ensure local identifiability
are unknown. In this subsection, we study the empirical sample size required for local
identifiability with the help of Algorithm 1.

Suppose the reference dictionary has constant coherence µ = 0.5 for various sizes K =
12, 16, 20 and the coefficients are drawn from the Sparse Gaussian distribution with sparsity
s = 5. This specific parameter setting ensures the reference dictionary is a sharp local
minimum given sufficient samples. Perturbation level is set at ρ = 0.01 and the threshold
T = 10−6. The experiment is repeated 20 times. Fig. 5.3 shows the percentage of experiments
in which Algorithm 1 identifies D∗ as a sharp local minimum for a variety of sample sizes
n. Under this specific setting, to ensure local identifiability with 50 percent probability, the
sample size n is roughly 20p.

To further explore how dimension p affects the sample size for local identifiability, we run
simulations for p = 25, ..., 70 and estimate the sample sizes that ensure the local identifiability
with at least 50% chance. As shown in Fig. 5.4, the required sample size and dimension
closely follow a linear relation 16.5p+ 63. It is linear, i.e., O(p), instead of O(p ln p) because
the sample size only ensures local identifiability with 50% chance.
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Figure 5.3: The percentage of experiments in which the reference dictionary is a local
minimum, for different dimensions p = 12, 16, 20 and different sample sizes. The fitted line is
obtained using a logistic regression. The sample size ensuring 50% chance is 253, 316, 375
respectively for p = 12, 16, 20.
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Figure 5.4: The estimated sample size that achieves 50 percent chance to ensure local
identifiability for different p when the reference coefficient is generated from sparse Gaussian
distribution and the reference dictionary has constant collinearity.

Global recovery performance of DL-BCD

The empirical performance of DL-BCD depends on the hyper-parameter τ and the initializa-
tion. In practice, we can set τ =∞ and initialize from a random orthogonal dictionary to
obtain a rough approximation. Next, using the resulting dictionary as the initialization, we
run the algorithm again with a reduced value of τ , say, 0.5. Compared with starting from a
random initialization and using τ = 0.5 directly, this two-step procedure performs better in
our simulations.

In the below experiment, we set the reference dictionary to be a constant collinearity
dictionary with p = 10 and µ = 0.7, the coefficient is generated from sparse Gaussian model
with sparsity s = 4 and the sample size is 400. Then we record the number of iterations for
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DL-BCD to find the reference dictionary. As shown in Fig. 5.3, in 70 out of 100 experiments,
DL-BCD recovers the reference dictionary with a single run. Note that if random initialization
is used instead of `1-minimization with τ = ∞, the one iteration recovery rate will drop
from 70 percent to 5 percent. That means the initialization really plays an important role
here: using `1-minimization as the initialization for truncated `1-minimization yields a good
performance.
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Figure 5.5: Histogram of number of iterations in DL-BCD and boxplot of the time complexity
when initializing with the solution of `1-minimization with τ =∞.
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Figure 5.6: Histogram of number of iterations in DL-BCD and boxplot of the time complexity
when initializing with random initialization. This shows random initialization is much worse
than initializing with the solution of `1-minimization with τ =∞.

Comparison with other algorithms

We compare the performance of DL-BCD with other state-of-the-art algorithms, including the
greedy K-SVD algorithm [3], SPAMS for online dictionary learning [61, 59], ER-SpUD(proj)
for square dictionaries [84], and EM-BiG-AMP algorithm [68, 69]. The implementation of
these algorithms is available in the package BiG-AMP [68, 69].
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We use the following hyperparameter settings for each algorithm.

• EM-BiG-AMP: The outer loop that performs EM iterations is allowed up to 20 iterations.
The inner loop is allowed a minimum of 30 and a maximum of 1500 iterations.

• K-SVD: K-SVD has two parameters: number of iterations and the enforced sparsity.
The number of iterations is set to be 1000. The enforced sparsity is set to be the same
as the true sparsity of the underlying model s.

• SPAMS: SPAMS optimizes an LASSO type objective iteratively. The number of
iterations is set to be 1000 and the penalty parameter in front of the `1 norm is
λ = .1/

√
N .

• DL-BCD: Our algorithm has an outer loop and an inner loop. The outer loop is set to
be at most 3. The inner loop is allowed a maximum of 100 iterations. τ is either ∞ or
0.5.

• ER-SpUD: We use the default settings in the package developed by the authors of
ER-SpUD.

First we introduce the simulation setting. We generate n = 100p samples using a noisy
linear model:

x(i) = D∗α(i) + ε(i), i = 1, . . . , n.

The reference dictionary D∗, the reference coefficients α(i), and the noise ε(i) are generated
as follows.

• Generation of D∗: First, we randomly generate a Gaussian matrix X ∈ Rp×p where
each entry Xjk is i.i.d. and Xjk ∼ N (0, 1). We then scale columns of X to get columns
of the reference dictionary D∗j = Xj/‖Xj‖2 for j = 1, . . . , p.

• Generation of α(i): We generate the reference coefficient from sparse Gaussian distribu-
tion with sparsity s: α(i) ∼ SG(s) for i = 1, . . . , n.

• Generation of ε(i): We generate ε(i) using a Gaussian distribution with mean zero. The
variance of the distribution is set such that the signal-to–noise ratio is 100:

E‖D∗α(1)‖2

E‖ε(1)‖2

= 102.

We choose the dimension p between 2 and 20 and sparsity s between 2 and p. For each
(s, p)-pair, we repeat the experiment 100 times. The accuracy of an estimated dictionary D̂
is quantified using the normalized mean square error (NMSE):

NMSE(D̂,D∗) = min
J∈J

‖D̂J −D∗‖2
F

‖D∗‖2
F

,
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Figure 5.7: NMSE of recovered dictionaries using different algorithms. The reference dictionary
is constant linearity matrix (I + µ1)1/2. Coefficients are positive sparse Gaussian α ∼ |S(T )|.
Noise is standard Gaussian. SNR is 100dB.

where J = {Γ · Λ | Γ is a permutation matrix and Λ is a diagonal matrix whose diagonal
elements are ±1.} is a set of matrices introduced to resolve the permutation and scale
ambiguities. We say an algorithm has a successful recovery if the NMSE of D̂ is smaller than
the threshold 0.01. We compare different algorithms in terms of their recovery rate, defined
as the proportion of simulations that an algorithm has a successful recovery.

The algorithms being tested have several important parameters. For the purpose of
comparison, we choose these parameters in a way such that they are consistent with other
papers [68, 69]. The details of parameter settings can be found in Appendix D. We also
added 40 dB noise.

Fig. 5.10 shows the recovery rate for a variety of choices of dimension p and sparsity
s. For each algorithm, the blue region corresponds to (s, p) configurations under which an
algorithm has high recovery rate, whereas yellow region indicates low recovery rate. Our
results demonstrate that DL-BCD with τ = 0.5 has the best recovery performance compared
to other algorithms. We tried τ = 0.1, 0.5, 1, 2, 10, and ∞ but with no further fine tuning.
The algorithm EM-BiG-AMP has the second best performance.

We also compare the algorithms in terms of their computation cost. We record the average
computation times for p = 20 and s = 10 (Fig. 5.11). It can be seen that the SPAMS package
is the fastest. The speed of our DL-BCD is roughly the same as that of K-SVD. ER-SpUD is
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Figure 5.8: NMSE of recovered dictionaries using different algorithms. The reference dictionary
is constant linearity matrix (I + µ1)1/2. Coefficients are standard sparse Gaussian α ∼ S(T ).
Noise is standard Gaussian. SNR is 100dB.

the slowest among all the algorithms.

Drosophila embryonic gene expression images

To study organ formation of Drosophila, or fruit fly, developmental biologists use dye chemistry
to visualize the gene expression of the fly embryos [33]. For early stage embryos, a study
by [101] using nonnegative matrix factorization (NMF) reveals 21 principal patterns that
correspond to different body parts and pre-organ regions. The data set contains 1640 gene
expression images each of which is of dimension 32 × 16 pixels. A sample of original images
can be found in Fig. 5.12. This dataset contains biologically interpretable image patterns
that can be learned through Dictionary learning or NMF. In our following experiments, the
dictionary size is chosen to be 21 in order to compare directly with [101].
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Figure 5.9: NMSE of recovered dictionaries using different algorithms. The reference dictionary
is constant linearity matrix (I + µ1)1/2. Coefficients are sparse Laplacian α ∼ SL(T ). Noise
is standard Gaussian. SNR is 100dB.

Figure 5.12: A sample of early stage Drosophila embryonic gene expression images. Each
image corresponds to the spatial expression of one gene. There can be multiple replicates for
the same gene in the data. The blue region is where the gene is expressed.

For this dataset, we are learning an under-complete dictionary. In order to apply DL-BCD,
we first perform a PCA and select the first 21 principle components. The DL algorithms are
then applied to the loading coefficients of the 21 PCs. Each algorithm is repeated 5 times
and the best result is selected. NMF, SPAMS-DL, DL-BCD, K-SVD, EM-BiG-AMP, and
ER-SpUD results are shown in Fig. 5.13. From the result, it can be seen that NMF gives the
most interpretable result in the sense that all learned patterns are well localized in different
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Figure 5.10: Recovery rate of different algorithms for p = 2, . . . , 20 and s = 2, . . . , p.
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Figure 5.11: Average running time of different algorithms for p = 20 and s = 10.

geographic locations of the embryo. Then SPAMS-DL also gives dictionaries that are very
similar to the NMF result. DL-BCD and EM-BiG-AMP both recover some of the atoms
in the dictionary but there are certain patterns that are not recognizable. This shows that
DL-BCD has reasonable performance even for noisy data. The ground truth dictionary is the
NMF result.
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(a): NMF

(b): SPAMS-DL

(c): DL-BCD (τ =∞)

(d): EM-BiG-AMP

(e): K-SVD

(e): ER-SpUD

Figure 5.13: Learned dictionaries using different DL algorithms. Positive values are painted
blue while negative values are painted red.



38

Chapter 6

Conclusion and future work

6.1 Conclusion
In the first part of the thesis, we study the theoretical properties of `1-minimization dictionary
learning under complete reference dictionary and noiseless signal assumptions. First, we
derive a sufficient and almost necessary condition for local identifiability of `1-minimization.
Our theorems not only extend previous local identifiability results to a much wider class
of coefficient distributions, but also give an explicit bound on the region within which the
objective value of the reference dictionary is minimal and characterize the sharpness of a local
minimum. Second, we show that the reference dictionary is the unique sharp local minimum
for `1-minimization. Based on our theoretical results, we design an algorithm to check the
sharpness of a local minimum numerically. Finally, We propose the DL-BCD algorithm and
demonstrate its competitive performance over other state-of-the-art algorithms in noiseless
complete dictionary learning.

6.2 Future directions
Although we mainly focus on complete dictionaries, we believe that some of the results
can be extended to the over-complete case. The challenge is that the representation of
the optimization problem in the complete case (Formulation 4.1) will become much more
complicated as the dictionary is no longer invertible. To deal with this issue, we note that
some collections of the columns of the dictionary are invertible and as a result, the problem
is now a double minimization minD∈D EminD′∈Rp×p,D′⊂D ‖D′−1x‖1. Techniques used in
compressed sensing [18, 28] and prior works of overcomplete dictionary learning [30] can be
useful in establishing the generalized results. Besides over-complete settings, it would also be
interesting to generalize the result to the noisy case [31].

Although our results only apply to complete dictionaries, the insights gained from the
analysis has potential to be generalized to the over-complete dictionary. Under appropriate
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models, we conjecture that the possibly overcomplete reference dictionary could be the only
sharp local minimum for the `1 minimization objective.
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Part II

Feature importance and feature
interaction recovery via RF
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Chapter 7

Feature importance and feature
interaction discovery: Introduction

Machine learning algorithms have been empirically proven to be extremely powerful in terms
of prediction accuracy for various supervised learning tasks. However, prediction accuracy
is not the only goal in many scientific and industrial problems. Information about how a
model makes predictions is of paramount value [62]. For example, when a geneticist wants
to understand a particular phenotype, e.g., hair color, having an black-box algorithm that
predicts hair color from someone’s genotype does not provide any new biological insights.
Instead, the primary focus of interest is often the mechanism behind the data itself – what
genes are important and what genes interact with each other for a particular phenotype?
Thus, in these research areas, it is a pressing task to interpret the ML models and extract
information beyond prediction.

Among many ML algorithms, tree ensembles including Random Forests (RF) [12] and
gradient boosted decision trees [27] stand out as they enjoy both state-of-the-art prediction
performance in a variety of practical problems and have relatively reliable interpretation
algorithms [86, 56, 103, 53, 50]. To interpret a tree ensemble model, two questions are at the
center:

• Feature importance: What features are important for the model’s prediction?

• Feature interaction: How do features interact with one another to form the final
prediction?

In the following section, we give a high-level overview of works in each of these directions.

RF feature importance

Understanding how a machine learning (ML) model makes predictions is important in many
scientific and industrial problems. Appropriate interpretations can help increase the predictive
performance of a model and provide new domain insights. While a line of study focuses
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on interpreting any generic ML model [89, 74], there is a growing interest in developing
specialized methods to understand specific models. In particular, interpreting Random Forests
(RF) [12] and its variants [54, 88, 86, 87, 10, 44] has become an important area of research
due to the wide ranging applications of RF in various scientific areas, such as genome-wide
association studies (GWAS) [24], gene expression microarray [47, 75], and gene regulatory
networks [38].

A key question in understanding RF is how to assign feature importance. That is, which
features does a RF rely on for prediction? One of the most widely used feature importance
measures for RF is mean decrease impurity (MDI) [13]. MDI computes the total reduction in
loss or impurity contributed by all splits for a given feature. This method is computationally
very efficient and has been widely used in a variety of applications [79, 38]. However,
theoretical analysis of MDI has remained sparse in the literature [41]. Assuming there are
an infinite number of samples, Louppe et al. [56] characterized MDI for totally randomized
trees using mutual information between features and the response. They showed that noisy
features, i.e., features independent of the outcome, have zero MDI importance. However,
empirical studies have shown that MDI systematically assigns higher feature importance
values to numerical features or categorical features with many categories [87]. In other words,
high MDI values do not always correspond to the predictive associations between features
and the outcome. We call this phenomenon MDI feature selection bias. Louppe [55] studied
this issue and demonstrate via simulations that early stopping mechanisms (e.g., limited
depth and larger leaf sizes) are effective to reduce the feature selection bias.

In addition to MDI [96, 57], some other feature importance measures have been studied
in the literature and used in practice:

• Split count, namely, the number of times a feature is used to split [87], can be used as a
feature importance measure. This method has been studied in [88, 10] and is available
in XGBoost [19].

• Mean decrease in accuracy (MDA) measures a feature’s importance by the reduction in
the model’s accuracy after randomly permuting the values of a feature. The motivation
of MDA is that permuting an important feature would result in a large decrease in
the accuracy while permuting an unimportant feature would have a negligible effect.
Different permutation choices have been studied in [88, 39].

Recently, Lundberg et al. [57] show that for feature importance measures such as MDI and
split counts, the importance of a feature does not always increase as the outcome becomes
more dependent on that feature. To remedy this issue, they propose the tree SHAP feature
importance, which focuses on giving consistent feature attributions to each sample. When
individual feature importance is obtained, overall feature importance is straightforward to
obtain by just averaging the individual feature importances across samples.

There is another line of work that focuses on modifying the tree construction procedure
to obtain better feature importance measures. Hothorn et al. [36] introduced cforest in the
R package party that grows classification trees based on a conditional inference framework.
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Strobl et al. [87] showed that cforest suffers less from the feature selection bias. Sandri and
Zuccolotto [79] proposed to create a set of uninformative pseudo-covariates to evaluate the
bias in Gini importance. Nembrini et al. [64] gave a modified algorithm that is faster than
the original method proposed by Sandri and Zuccolotto [79] with almost no overhead over the
creation of the original RF and available in the R package ranger. In a very recent paper,
Zhou and Hooker [103] proposed to evaluate the decrease in impurity at each node using
out-of-bag samples. However, our implementation is different from that in [103] and MDI-oob
enjoys higher computational efficiency.

Feature interaction discovery

In gene-interactions studies (also called epistasis), some papers [95, 102] empirically analyze
the extraction of feature interactions from paths of ensembles of decision trees. Wan et
al. [95] consider a boosting algorithm called MegaSNPHunter, where they interpret all
groups of features that jointly appear on one of the decision paths as a candidate interaction.
However, for genome-wide data this approach is computationally challenging even for mid-
sized trees because the algorithm generates a massive list of candidate interactions. Moreover,
MegaSNPHunter does not derive a ranking of those candidate interactions from the tree
structure. Yoshida and Koike [102] propose to rank candidate interactions of genetic variants
based on how often they appear together on decision paths in RF. However, this approach
requires a brute-force search among all possible feature combinations, thus can only be applied
to a relatively small number of features. Recently, iterative Random Forests (iRF) [10] is
proposed to seek predictive, stable, and high-order feature interactions based on a similar
idea as in Yoshida and Koike [102] that the set of interacting features often appear together
on individual decision paths of a tree. However, iRF incorporates a soft dimension reduction
step via iterative re-weighting of features in terms of their Gini importances, in order to
stabilize individual decision paths in the trees. Using the random intersection trees (RIT)
algorithm, iRF can extract stable interactions of arbitrary order in a computationally efficient
way, even when the number of features is large. There is positive evidence that iRF extracts
predictive, stable, and high-order interaction information from RF in genomics and other
fields [10, 45].

While these works provide strong empirical evidence that interactions extracted from
the ensemble of decision trees via RF are informative about underlying biological functional
relationships, the theoretical foundation of tree-based methods remain unexamined. In the
following chapters, we aim to provide theoretical understanding into RF based algorithms
for both feature importance and feature interaction discovery. We study the problem of RF
feature importance in Chapter 8. Then we introduce the LSS model and our main theoretical
results on feature interaction discovery in Chapter 9. Inspired by our theoretical results on
LSS model, we propose a novel ranking criterion called LSSrank and evaluate its empirical
performance in Chapter 10. Finally, we conclude our work in Chapter 11.
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Chapter 8

Debiased feature importance via
out-of-bag samples

In this chapter, using the original definition of MDI, we analyze the non-asymptotic behavior
of MDI and bridge the gap between the population case and the finite sample case. We find
that under mild conditions, if the samples used for each tree are i.i.d, then the expected
MDI feature importance of noisy features derived from any tree ensemble constructed on n
samples with p features is upper bounded by dn log(np)/mn, where mn is the minimum leaf
size and dn is the maximum tree depth in the ensemble. In other words, deep trees with
small leaves suffer more from feature selection bias. Our findings are particularly relevant
for practical applications involving RFs, in which scenario deep trees are recommended [12]
and used more often. To reduce the feature selection bias for RFs, especially when the trees
are deep, we derive a new analytical expression for MDI and then use this new expression
to propose a new feature importance measure that evaluates MDI using out-of-bag samples.
We call this importance measure MDI-oob. For both regression and classification problems,
we use simulated data and a genomic dataset to demonstrate that MDI-oob often achieves
5%–10% higher AUC scores compared to other feature importance measures used in several
publicly available packages including party [16], ranger [99], and scikit-learn [70].

The rest of the chapter is organized as follows: we first provide a non-asymptotic analysis
to quantify the bias in the MDI importance when noisy features are independent of relevant
features in Section 8.1. In Section 8.2, we give a new characterization of MDI and propose a
new MDI feature importance using out-of-bag samples, which we call MDI-oob. In Section
8.3, we compare our MDI-oob with other commonly used feature importance measures in
terms of feature selection accuracy using the simulated data and a genomic ChIP dataset.
We conclude our work and discuss possible future directions in Section 8.4.
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8.1 Understanding the feature selection bias of MDI
In this section, we focus on understanding the finite sample properties of MDI importance and
why it may have a significant bias in feature selection. We first briefly review the construction
of RFs and introduce some important notations. Then, using the original definition of MDI,
we give a tight upper bound to quantify the expected bias of MDI importance for a noisy
feature. This upper bound is tight up to a log n factor where n is the number of i.i.d. samples.

Background and notations

Suppose that the data set D contains n i.i.d samples from a random vector (X1, . . . , Xp, Y ),
where X = (X1, . . . , Xp) ∈ Rp are p input features and Y ∈ R is the response. The ith sample
is denoted by (xi, yi), where xi = (xi1, . . . , xip). We say that a feature Xk is a noisy feature
if Xk and Y are independent, and a relevant feature otherwise. Note that this definition
of noisy features has also been used in many previous papers such as [56, 83]. We denote
S ⊂ [p] as the set of indexes of relevant features. We are particularly interested in the case
where the number of relevant features is small, namely, |S| is much smaller than p. For any
number m ∈ N, [m] denotes the set of integers {1, . . . ,m}. For any hyper-rectangle R ⊂ Rp,
let 1(X ∈ R) be the indicator function taking value one when X ∈ R and zero otherwise.

RFs are an ensemble of classification and regression trees, where each tree T defines a
mapping from the feature space to the response. Trees are constructed independently of one
another on a bootstrapped or subsampled data set D(T ) of the original data D. Any node t
in a tree T represents a subset (usually a hyper-rectangle) Rt of the feature space. A split
of the node t is a pair (k, z) which divides the hyper-rectangle Rt into two hyper-rectangles
Rt ∩ 1(Xk ≤ z) and Rt ∩ 1(Xk > z), corresponding to the left child tleft and right child tright

of node t, respectively. For a node t in a tree T , Nn(t) = |{i ∈ D(T ) : xi ∈ Rt}| denotes the
number of samples falling into Rt and

µn(t) :=
1

Nn(t)

∑
i:xi∈Rt

yi (8.1)

denotes their average response.
Each tree T is grown using a recursive procedure which proceeds in two steps for each

node t. First, a subsetM⊂ [p] of features is chosen uniformly at random. Then the optimal
split v(t) ∈M, z(t) ∈ R is determined by maximizing:

∆I(t) := Impurity(t)− Nn(tleft)

Nn(t)
Impurity(tleft)− Nn(tright)

Nn(t)
Impurity(tright) (8.2)

for some impurity measure Impurity(t). The procedure terminates at a node t if two children
contain too few samples, i.e., min{Nn(tleft), Nn(tright)} ≤ mn , or if all responses are identical.
The threshold mn is called the minimum leaf size. If a node t does not have any children, it
is called a leaf node; otherwise, it is called an inner node. We define the set of inner nodes of
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a tree T as I(T ). We say that T ′ is a sub-tree of T if T ′ can be obtained by pruning some
nodes in T .

Some popular choices of the impurity measure Impurity(t) include variance, Gini index,
or entropy. For simplicity, we focus on the variance of the responses, i.e.,

Impurity(t) =
1

Nn(t)

∑
i:xi∈Rt

(yi − µn(t))2, (8.3)

throughout the thesis unless stated otherwise. Later we show that this definition of impurity
is equivalent to the Gini index of categorical variables with one hot encoding (see Remark in
Section 8.2)

The Mean Decrease Impurity (MDI) feature importance of Xk, with respect to a single
tree T (first proposed by Breiman et al. in [13]) and an ensemble of ntree trees T1, . . . , Tntree ,
can be written as

MDI(k, T ) =
∑

t∈I(T ),v(t)=k

Nn(t)

n
∆I(t) and MDI(k) =

1

ntree

ntree∑
s=1

MDI(k, Ts), (8.4)

respectively. This expression is the best known formula for MDI and was analyzed in many
papers such as Louppe et al. [56].

Finite sample bias of MDI importance for RF

Given the set S of relevant features and a tree T , we denote

G0(T ) =
∑
k/∈S

MDI(k, T ) (8.5)

as the sum of MDI importance of all noisy features. Ideally, G0(T ) should be close to zero with
high probability, to ensure that no noisy features get selected when using MDI importance
for feature selection. In fact, Louppe et al. [56] show that G0(T ) is indeed zero almost
surely if we grow totally randomized trees with infinite samples. However, G0(T ) is typically
non-negligible in real data, and finite sample properties of G0(T ) are not well understood.
In order to bridge this gap, we conduct a non-asymptotic analysis of the expected value
of G0(T ). Our main result characterizes how the expected value of G0(T ) depends on mn,
the minimum leaf size of T , and p, the dimension of the feature space. We start with the
following simple but important fact.

Proposition 8.1.1. If T ′ is a sub-tree of T , then MDI(k, T ′) ≤ MDI(k, T ) for any feature
Xk.

This fact naturally follows from the observation that by definition, ∆I(t) ≥ 0 for any
node t. Since the impurity decrease at each node is guaranteed to be non-negative, G0(T )
will never decrease as T grows deeper, in which case the minimum leaf size mn will be smaller.
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Indeed, if T is grown to purity (mn = 1), and all features are noisy (S = ∅), then G0(T )
would simply be equal to the sample variance of the responses in the data D(T ). How fast
does G0(T ) increase as the minimum leaf size mn becomes smaller? To quantify the relation
between G0(T ) and mn, we need a few mild conditions which we now describe. Let

yi = φ(xi,S) + εi, i = 1, . . . , n (8.6)

for some unknown function φ : R|S| → R, where εi are i.i.d zero-mean Gaussian noise. We
make the following assumptions.

(A1) Xk ∼ Unif[0, 1] for all k ∈ [p]. In addition, the noisy features {Xk, k ∈ [p]\S} are
mutually independent, and independent of all relevant features. Here S denotes the set of
relevant features.

(A2) φ is bounded: supx∈[0,1]|S| |φ(x)| ≤M for some M > 0.
The Assumptions (A1) and (A2) are weaker than the assumptions usually made when

studying the statistical properties of RF. The marginal uniform distribution condition in (A1)
is common in the RF literature [83], and can be easily satisfied by transforming the features
via its inverse CDF. Since we are interested in characterizing the MDI of noisy features, we
do not require the relevant features to be independent of each other. We do require that
noisy features are independent of relevant features, which is a limitation of Theorem 8.1.1
below. Correlated features are commonly encountered in practice and difficult for any feature
selection method.

We now state our first main result which provides a non-asymptotic upper and lower
bound for the expected value of the maximum of G0(T ) over all tree T with minimum leaf
size mn.

Theorem 8.1.1. Let Tn(mn) denote the set of decision trees whose minimum leaf size is
lower bounded by mn, and Tn(mn, dn) ⊂ Tn(mn) denote the subset of Tn(mn) whose depth is
upper bounded by dn. Under Assumptions (A1) and (A2), there exists a positive constant C
such that,

EX,ε sup
T∈Tn(mn,dn)

G0(T ) ≤ C
dn log(np)

mn

. (8.7)

In addition, when f = 0 and mn ≥ 36 log p+ 18 log n,

EX,ε sup
T∈Tn(mn)

G0(T ) ≥ log p

Cmn

. (8.8)

We give the proof in the Appendix. To the best of our knowledge, Theorem 8.1.1 is the
first non-asymptotic result on the expected MDI importance of tree ensembles. In particular,
the upper bound can be directly applied to any tree ensembles with a minimum leaf size mn

and a maximum tree depth dn, including Breiman’s original RF procedure, if subsampling is
used instead of bootstrapping.

Proof Sketch. Every node t in a tree T ∈ Tn(mn, dn) corresponds to an axis-aligned
hyper-rectangle in [0, 1]p which contains at least mn samples and is formed by splitting on at
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most dn dimensions consecutively. Therefore, bounding the supremum of impurity reduction
for any potential node in Tn(mn, dn) boils down to controlling the complexity of all such
hyper-rectangles. Two hyper-rectangles are considered equivalent if they contain the same
subset of samples, since the impurity reductions of these two hyper-rectangles are always the
same. Up to this equivalence, it can be proved that the number of unique hyper-rectangles of
interest is upper bounded by (np)dn , which corresponds to the dnlog(np) term in the upper
bound. The final result is obtained via union bound.

In the upper bound, each node t is obtained by splitting on at most dn features. In
practice, dn is typically at most of order log n. Indeed, if the decision tree is a balanced
binary tree, then dn ≤ log2 n. Therefore, for balanced trees, the upper bound can be written
as

EX,ε sup
T∈Tn(mn,dn)

G0(T ) ≤ C
dn log(np)

mn

≤ C
(log n)2 + log n log p

mn

, (8.9)

and the theorem shows that the sum of MDI importance of noisy features is of order log p
mn

,
i.e.,

sup
φ:‖φ‖∞≤M

EX,ε sup
T∈Tn(mn)

G0(T ) ∼ log p

mn

, (8.10)

up to a log n term correction, which is typically small in the high dimensional p� n setting.
If all features Xj are categorical with a bounded number of categories, then the upper bound
can be improved to

EX,ε sup
T∈Tn(mn,dn)

G0(T ) ≤ C
dn log p

mn

, (8.11)

which shows that the MDI importance of noisy features can be better controlled if the noisy
features are categorical rather than numerical. That is consistent with the previous empirical
studies because the number of candidate split points for a numerical feature is larger than
that for a categorical feature.

Theorem 8.1.1 shows that the supremum of MDI importance of noisy features over all
trees with minimum leaf size mn is, in expectation, roughly inversely proportional to mn.
Fig. 8.5, we show that the inversely proportional relationship is consistent with the empirical
G0(T ) on a simulated dataset described in the first simulation study in Section 8.3. Therefore,
to control the finite sample bias of MDI importance, one should either grow shallow trees, or
use only the shallow nodes in a deep tree when computing the feature importance. In fact,
since G0(T ) depends on the dimension p only through a log factor log p, we expect G0(T ) to
be very small even in a high-dimensional setting if mn is larger than, say,

√
n. For a balanced

binary tree grown to purity with depth dn = log2 n, this corresponds to computing MDI
only from the first dn/2 = (log2 n)/2 levels of the tree, as the node size on the dth level of a
balanced tree is n/2d.

Fact 8.1.1 implies that the MDI importance of relevant features might also decrease as
mn increases, but we will show in simulation studies that they will decrease at a much slower
rate, especially when the underlying model is sparse.
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8.2 MDI using out-of-bag samples (MDI-oob)
As shown in the previous section, for balanced trees, the sum of MDI feature importance
of all noisy features is of order log(p)

mn
if we ignore the log(n) terms. This means that the

MDI feature selection bias becomes severe for trees with smaller leaf size mn, which usually
corresponds to a deeper tree. Fortunately, this bias can be corrected by evaluating MDI
using out-of-bag samples. In this section, we first introduce a new analytical expression of
MDI as the motivation of our new method, then we propose the MDI-oob as a new feature
importance measure. For simplicity, in this section, we only focus on one tree T . However,
all the results are directly applicable to the forest case.

A new characterization of MDI

Recall that the original definition of the MDI importance of any feature k is provided in
Equation (8.4), that is, the sum of impurity decreases among all the inner nodes t such that
v(t) = k. Although we can use this definition to analyze the feature selection bias of MDI
in Theorem 8.1.1, this expression (8.4) gives us few intuitions on how we can get a new
feature importance measure that reduces the MDI bias. Next, we derive a novel analytical
expression of MDI, which shows that the MDI of any feature k can be viewed as the sample
covariance between the response yi and the function fT,k(xi) defined in Proposition 8.2.1.
This new expression inspires us to propose a new MDI feature importance measure by using
the out-of-bag samples.

Proposition 8.2.1. Define the function fT,k(·) to be

fT,k(X) =
∑

t∈I(T ):v(t)=k

(
µn(tleft)1(X ∈ Rtleft) + µn(tright)1(X ∈ Rtright)− µn(t)1(X ∈ Rt)

)
.

Then the MDI of the feature k in a tree T can be written as:

1

|D(T )|
∑
i∈D(T )

fT,k(xi) · yi, (8.12)

Proof of Proposition 8.2.1. For simplicity, here we only present the proof for a single tree T .
The case of multiple trees is straightforward. Recall that tleft and tright are the left and right
children of the node t. Based on (8.4), MDI at the node t is

Nn(t)

|D(T )|
∆I(t) =

1

|D(T )|
∑
i∈D(T )

[yi − µn(t)]21(xi ∈ Rt)

− [yi − µn(tleft)]21(xi ∈ Rtleft)− [yi − µn(tright)]21(xi ∈ Rtright).

(8.13)



CHAPTER 8. DEBIASED FEATURE IMPORTANCE VIA OUT-OF-BAG SAMPLES50

Because 1(xi ∈ Rt) = 1(xi ∈ Rtright) + 1(xi ∈ Rtleft), the above term becomes
1

|D(T )|
∑
i∈D(T )

(
(yi − µn(t))2 − (yi − µn(tleft))2

)
1(xi ∈ Rtleft)

+
(
(yi − µn(t))2 − (yi − µn(tright))2

)
1(xi ∈ Rtright)

=
1

|D(T )|
∑
i∈D(T )

(µn(tleft)− µn(t))(2yi − µn(t)− µn(tleft))1(xi ∈ Rtleft)

+ (µn(tright)− µn(t))(2yi − µn(t)− µn(tright))1(xi ∈ Rtright). (8.14)

Since
∑

i∈D(T ) yi1(xi ∈ tleft) = Nn(tleft)µn(tleft), we know
∑

i∈D(T )(yi−µn(tleft))1(xi ∈ Rtleft) =
0. Similar equations hold for the right child tright, too. Then (8.14) reduces to

1

|D(T )|
∑
i∈D(T )

(µn(tleft)− µn(t))(yi − µn(t))1(xi ∈ Rtleft) (8.15)

+ (µn(tright)− µn(t))(yi − µn(t))1(xi ∈ Rtright) (8.16)

Because of the definitions of µn(tleft), µn(tright), and µn(t), we know

Nn(tleft)µn(tleft) +Nn(tright)µn(tright) = Nn(t)µn(t). (8.17)

That implies
∑

i∈D(T )(µn(tleft) − µn(t))1(xi ∈ Rtleft) + (µn(tright) − µn(t))1(xi ∈ Rtright) = 0.
Using this equation, (8.16) can be written as

1

|D(T )|
∑
i∈D(T )

(µn(tleft)− µn(t))yi1(xi ∈ Rtleft) + (µn(tright)− µn(t))yi1(xi ∈ Rtright). (8.18)

In summary, we have shown that:
Nn(t)

|D(T )|
∆I(t)

=
1

|D(T )|
∑
i∈D(T )

(µn(tleft)− µn(t))yi1(xi ∈ Rtleft) + (µn(tright)− µn(t))yi1(xi ∈ Rtright).

Since the MDI of the feature k is the sum of Nn(t)

|D(T )|∆I(t) across all inner nodes such that
v(t) = k, we have∑

t∈I(T )

Nn(t)

|D(T )|
∆I(t)1(v(t) = k)

=
∑

t∈I(T ):v(t)=k

1

|D(T )|
∑

i∈D(T )

(µn(tleft)− µn(t))yi1(xi ∈ Rtleft) + (µn(tright)− µn(t))yi1(xi ∈ Rtright)

=
1

|D(T )|
∑

i∈D(T )

[ ∑
t∈I(T ):v(t)=k

(µn(tleft)− µn(t))1(xi ∈ Rtleft) + (µn(tright)− µn(t))1(xi ∈ Rtright)
]
yi

=
1

|D(T )|
∑

i∈D(T )

fT,k(xi)yi.
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That completes the proof.

Although we have not seen this analytical expression in the prior works, we found that
the functions fT,k(·) have been studied from a quite different perspective. Those functions
were first proposed in Saabas [78] to interpret the RF predictions for each individual sample.
According to this paper, fT,k can be viewed as the "contribution" made by the feature k
in the tree T . For any tree, those functions fT,k can be easily computed using the python
package treeinterpreter.

It can be shown that
∑

i∈D(T ) fT,k(xi) = 0. That implies 1
|D(T )|

∑
i∈D(T ) fT,k(xi) · yi is

essentially the sample covariance between fT,k(xi) and yi on the bootstrapped dataset D(T ).
This indicates a potential drawback of MDI: RFs use the training data D(T ) to construct the
functions fT,k(·), then MDI uses the same data to evaluate the covariance between yi and
fT,k(xi) in Equation (8.12).

Remark: So far we have only considered regression trees, and have defined the impurity
at a node t using the sample variance of responses. For classification trees, one may use
Gini index as the measure of impurity. We point out that these two definitions of impurity
are actually equivalent when we use a one-hot vector to represent the categorical response.
Therefore, our results are directly applicable to the classification case. Suppose that Y is a
categorical variable which can take D values c1, c2, . . . , cD. Let pd = P(Y = cd). Then the
Gini index of Y is Gini(Y ) =

∑D
d=1 pd(1 − pd). We define the one-hot encoding of Y as a

D-dimensional vector Ỹ = (1(Y = c1), . . . ,1(Y = cD)). Then

Var(Ỹ ) = ‖Ỹ −EỸ ‖2
2 =

D∑
d=1

(EỸ 2
i − (EỸi)2) =

D∑
d=1

(EỸi− (EỸi)2) =
D∑
d=1

pd(1− pd) = Gini(Y ),

(8.19)
thereby showing that Gini index and variance are equivalent.

Evaluating MDI using out-of-bag samples

Proposition 8.2.1 suggests that we can calculate the covariance between yi and fT,k(xi) in
Equation (8.12) using the out-of-bag samples D\D(T ):

MDI-oob of feature k =
1

|D\D(T )|
∑

i∈D\D(T )

fT,k(xi) · yi. (8.20)

In other words, for each tree, we calculate the fT,k(xi) for all the OOB samples xi and then
compute MDI-oob using (8.20). Although out-of-bag samples have been used for other feature
importance measures such as MDA, to the best of the authors’ knowledge, there are few
results that use the out-of-bag samples to evaluate MDI feature importance. A naive way of
using the out-of-bag samples to evaluate MDI is to directly compute the impurity decrease at
each inner-node of a tree using OOB samples. However, this approach is not desirable since
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the impurity decrease at each node is still always positive unless the responses of all the OOB
samples falling into a node are constant. In this case, an argument similar to the proof of
Theorem 1 can show that the bias of directly computing impurity using OOB samples could
still be large for deep trees. The idea of MDI-oob depends heavily on the new analytical MDI
expression. Without the new expression, it is not clear how one can use out-of-bag samples
to get a better estimate of MDI. One highlight of the MDI-oob is its low computation cost.
The time complexity of evaluating MDI-oob for RFs is roughly the same as computing the
RF predictions for |D\D(T )| number of samples.

8.3 Simulation experiments
Simulated study on the effect of minimum leaf size and the tree depth

In this simulation, we investigate the empirical relationship between MDI importance and
the minimum leaf size. To mimic the major experiment setting in the paper [87], we generate
the data as follows. We sample n = 200 observations, each containing 5 features. The first
feature is generated from standard Gaussian distribution. The second feature is generated
from a Bernoulli distribution with p = 0.5. The third/fourth/fifth features have 4/10/20
categories respectively with equal probability of taking any states. The response label y is
generated from a Bernoulli distribution such that P (yi = 1) = (1 + xi2)/3. While keeping
the number of trees to be 300, we vary the minimum leaf size of RF from 1 to 50 and record
the MDI of every feature. The results are shown in Fig. 8.1. We can see from this figure
that the MDI of noisy features, namely X1, X3, X4 and X5, drops significantly when the
minimum leaf size increases from 1 to 50. This observation supports our theoretical result in
Theorem 8.1.1. Besides the minimum leaf size, we also investigate the relationship between
MDI and the tree depth. As tree depth increases, the minimum leaf size generally decreases
exponentially. Therefore, we expect the MDI of noisy features to become larger for increasing
tree depth. We vary the maximum depth from 1 to 20 and record the MDI of every feature.
The results shown in Fig. 8.2 are consistent with our expectation. MDI importance of noisy
features increase when the tree depth increases from 1 to 20. Fig. 8.3 shows the MDI-oob
measure and it indeed reduces the bias of MDI in this simulation.

Noisy feature identification using the simulated data

In this experiment, we evaluate different feature importance measures in terms of their abilities
to identify noisy features in a simulated data set. We compare our method with the following
methods: MDA, cforest in the R package party, SHAP[57], default feature importance (MDI)
in scikit-learn, the impurity corrected Gini importance in the R package ranger, UFI in
[103], and naive-oob, which refers to the naive method that evaluates impurity decrease at
each node using out-of-bag samples directly. To evaluate feature importance measures, we
generate the following simulated data. Inspired by the experiment settings in Strobl et al.
[87], our setting involves discrete features with different number of distinct values, which poses
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Figure 8.1: MDI against
min leaf size.

Figure 8.2: MDI against
tree depth.

Figure 8.3: MDI-oob
against min leaf size.

a critical challenge for MDI. The data has 1000 samples with 50 features. All features are
discrete, with the jth feature containing j + 1 distinct values 0, 1, . . . , j. We randomly select
a set S of 5 features from the first ten as relevant features. The remaining features are noisy
features. Choosing active features with fewer categories represents the most challenging case
for MDI. All samples are i.i.d. and all features are independent. We generate the outcomes
using the following rules:

• Classification: P (Y = 1|X) = Logistic(2
5

∑
j∈S Xj/j − 1).

• Regression: Y = 1
5

∑
j∈S Xj/j + ε, where ε ∼ N (0, 100 · Var(1

5

∑
j∈S Xj/j)).

Treating the noisy features as label 0 and the relevant features as label 1, we can evaluate a
feature importance measure in terms of its area under the receiver operating characteristic
curve (AUC). Note that when a feature importance measure gives low importance to relevant
features, its AUC score measure can be smaller than 0.5 or even 0. We grow 100 trees with
the minimum leaf size set to either 100 (shallow tree case) or 1 (deep tree case). The number
of candidate features mtry is set to be 10. We repeat the whole process 40 times and report
the average AUC scores for each method in Table 8.1. The boxplots For this simulated
setting, MDI-oob achieves the best AUC score under all cases.

Noisy feature identification using a genomic ChIP dataset

To evaluate our method MDI-oob in a more realistic setting, we consider a ChIP-chip
and ChIP-seq dataset measuring the enrichment of 80 biomolecules at 3912 regions of the
Drosophila genome [17, 58]. These data have previously been used in conjunction with
RF-based methods, namely Iterative Random Forest (iRF) [10], to predict functional labels
associated with genomic regions. They provide a realistic representation of many issues
encountered in practice, such as heterogeneity and dependencies among features, which make
it especially challenging for feature selection problems. To evaluate feature selection in the
ChIP data, we scale each feature Xj to be between 0 and 1. Second, we randomly select a
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set S of 5 features as relevant features and include the rest as noisy features. We randomly
permute values of any noisy features to break their dependencies with relevant features. By
this means, we avoid the cases where RFs "think" some features are important not because
they themselves are important but because they are highly correlated with other relevant
features. Then we generate responses using the following rules:

• Classification:P (Y = 1|X) = Logistic(2
5

∑
j∈S Xj − 1).

• Regression: Y = 1
5

∑
j∈S Xj + ε, where ε ∼ N (0, 100 · Var(1

5

∑
j∈S Xj)).

All the other settings remain the same as the previous simulations. We report the average
AUC scores for each method in Table 8.1. The standard errors and the beeswarm plots of all
the methods are included in the 8.4. Naive-oob, namely, the method that directly computes
MDI using the out-of-bag samples is hardly any better than the original gini importance.
MDI-oob or UFI usually achieves the best AUC score in three out of four cases, except for
shallow regression trees, when all methods appear to be equally good with AUC scores close
to 1. Although UFI and MDI-oob use out-of-bag samples in different ways, their results
are generally comparable. We also note that increasing the minimum leaf size consistently
improves the AUC scores of all methods.

Another observation is that MDA behaves poorly in some simulations despite its use of a
validation set. This could be due to the low signal-to-noise ratio in the simulation setting.
After we train the RF model on the training set, we evaluated the model’s accuracy on a test
set. It turns out that the accuracy of the model is quite low. In that case, MDA struggles
because the accuracy difference between permuting a relevant feature and permuting a noisy
feature is small. We observe that the MDA gets better when we increase the signal-to-noise
ratio.

The computation time of different methods is hard to compare due to a few factors.
Because the packages including scikit-learn and ranger compute feature importance
when constructing the tree, it is hard to disentangle the time taken to construct the trees
and the time taken to get the feature importance. Furthermore, different packages are
implemented in different programming languages so it is not clear if the time difference is
because of the algorithm or because of the language. We implement MDI-oob in Python and
for our first simulated classification setting, MDI-oob takes ∼ 3.8 seconds for each run. To
compare, scikit-learn which uses Cython (A C extension for Python) takes ∼ 1.4 seconds
to construct the RFs for each run. Thus, MDI-oob runs in a reasonable time frame and we
expect it to be faster if it is implemented in C or C++.

8.4 Discussion and future directions
Mean Decrease Impurity (MDI) is widely used to assess feature importance and its bias
in feature selection is well known. Based on the original definition of MDI, we show that
its expected bias is upper bounded by an expression that is inversely proportional to the
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Table 8.1: Average AUC scores for noisy feature identification

Deep tree (min leaf size = 1) Shallow tree(min leaf size = 100)
Simulated ChIP Simulated ChIP
C R C R C R C R

MDI-oob 0.76 0.52 0.87 0.98 0.75 0.58 0.94 0.98
UFI 0.72 0.54 0.88 0.99 0.75 0.56 0.94 0.98
naive-oob 0.18 0.10 0.67 0.71 0.60 0.39 0.89 0.97
SHAP 0.55 0.33 0.82 0.96 0.68 0.46 0.91 0.97
ranger 0.56 0.50 0.73 0.97 0.55 0.49 0.76 0.99
MDA 0.49 0.51 0.54 0.97 0.50 0.58 0.50 0.99
cforest 0.65 0.50 0.79 0.93 0.70 0.49 0.90 0.98
MDI 0.12 0.09 0.60 0.71 0.63 0.40 0.88 0.97
"C" stands for classification, "R" stands for regression. The column maximum is bolded.

minimum leaf size under mild conditions, which means deep trees generally have a higher
feature selection bias than shallow trees. To reduce the bias, we derive a new analytical
expression for MDI and use the new expression to obtain MDI-oob. For the simulated data
and a genomic ChIP dataset, MDI-oob has exhibited the state-of-the-art feature selection
performance in terms of AUC scores.

Comparison to SHAP. SHAP originates from game theory and offers a novel perspective
to analyze the existing methods. While it is desirable to have ‘consistency, missingness and
local accuracy’, our analysis indicates that there are other theoretical properties that are also
worth taking into account. As shown in our simulation, the feature selection bias of SHAP
increases with the depth of the tree, and we believe SHAP can also use OOB samples to
improve feature selection performance.

Relationship to honest estimation. Honest estimation is an important technique built on
the core notion of sample splitting. It has been successfully used in causal inference and other
areas to mitigate the concern of over-fitting in complex learners due to usage of same data
in different stages of training. The proposed algorithm MDI-oob has important connections
with "honest sampling" or "honest estimation". For example, in Breiman’s 1984 book [13],
he proposed to use a separate validation set for pruning and uncertainty estimation. In [94],
each within-leaf prediction is estimated using a different sub-sample (such as OOB sample)
than the one used to decide split points. Theoretical results of these papers and Proposition
8.2.1 convey the same message, that finite sample bias is caused by using the same data for
growing trees and for estimation, and the bias can be reduced if we leverage OOB data. We
believe the theoretical contributions of those papers can also help us analyze the statistical
properties (such as variance) of the MDI-oob.

Future directions. Although the MDI-oob shows promising results for selecting relevant
features, it also raises many interesting questions to be considered in the future. First of all,
how can MDI-oob be extended to better accommodate correlated features? Going beyond
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feature selection, can importance measures also rank the relevant features in a reasonable
order? Finally, can we use the new analytical expression of MDI to give a tighter theoretical
bound for MDI’s feature selection bias? We are exploring these interesting questions in our
ongoing work.

Figure 8.4: Beeswarm plots for different simulation settings described in Section 8.3. The left
figures show AUC scores for different feature importance measures for classification problems.
The right figure show AUC scores for different feature importance measures for regression
problems. Both simulated data and ChiP data are considered for shallow and deep trees. In
general, MDI-oob has highest average AUC across those settings.
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Figure 8.5: MDI against inverse min leaf size. This is coherent with our theoretical analysis
as MDI is proportional to the inverse of minimum leaf size.
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Chapter 9

Provable high-order interaction recovery

Theoretical results are relevant to practice if they inform and guide practice. They can not
possibly be relevant if the theoretical data generation models do not capture reality in any
domain area. One of the most common assumptions made in previous theoretical analyses of
RF is a Lipschitz condition on the underlying mean regression function, see e.g., [11, 94], which,
to our best knowledge, has not been supported by empirical evidence in high-dimensions.
Moreover, many biological processes show thresholding or discontinuous interacting behavior
among biomolecules [98, 35], which strongly violates the Lipschitz assumption. Motivated
by this scientific observation, we propose the Local-Spiky Sparse (LSS) model: an additive
Boolean interaction model with bounded noise.1 LSS is inspired by genomics data problems
where RF have shown impressive prediction performance [40, 20, 92]. Since Boolean functions
are not continuous, the LSS model does not satisfy the Lipschitz assumption. However,
it not only makes the theoretical model more relevant for biologists, but also matches the
decision tree structure in RF analytically. Furthermore, the LSS model is able to capture
spatial inhomogeneity in addition to discontinuous thresholding behavior. We believe it is
suitable and useful as a new benchmark model under which to evaluate theoretically (and
computationally) interaction discovery performance of ML algorithms including RF. For
any tree ensembles, we define a new quantity called depth-weighted prevalence (DWP) on
decision paths of a set of features. We show that DWP of RF has a universal upper bound
that depends only on the size of the set. Furthermore, the upper bound is attained with high
probability as the sample size increases if and only if the signed features represent an union
of interactions in the LSS model. That implies that one can use RF to consistently recover
interaction components in the LSS model regardless of the model coefficients. Our theoretical
results show that feature subsampling of RF is essential to recover interactions. When too
few features are sampled at each node, the prevalence of true interactions can be too small;
When too many features are sampled, the prevalence of false interactions can be too high.
More precisely, our results indicate that one needs to sample a constant fraction of features
in order to learn higher-order interactions from tree paths. This also suggests that extremely

1The LSS model was first considered by authors of [10] (including one of us) and already used to evaluate
the performance of iRF/siRF in [45].
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randomized trees may not be ideal for interaction discovery as features used along the paths
are purely random.

9.1 Local-Spiky Sparse (LSS) model: Boolean
interactions

For an integer N ∈ N , let [N ] := {1, 2, . . . , N}. For a set S of finite elements, let |S| denote
its cardinality or the number of elements in S. For any event A, 1(A) denotes the indicator
function of A. We consider the following data generating model.

LSS model. Assume a data set D = {(x1, y1), . . . , (xn, yn)} of n samples. xi = (xi1, . . . , xin)
∈ Rp and yi ∈ R are i.i.d. samples from a distribution P (X, Y ) such that for some fixed
constants Cβ > 0, Cγ ∈ (0, 0.5), and fixed integer s ∈ N ,

1. (Uniformity) X is uniformly distributed on [0, 1]p;

2. (Bounded-response) Y is bounded, i.e. |Y | < 1;

3. (LSS-expectation) the regression function is

E(Y |X) = β0 +
J∑
j=1

βj
∏
k∈Sj

1(Xk R γk) (9.1)

where S1, . . . , SJ ⊂ [p] are disjoint sets called basic interactions, i.e.,

Sj1 ∩ Sj2 = ∅ for all j1 6= j2;

∪Jj=1Sj have at most s features, i.e.

J∑
j=1

|Sj| ≤ s;

coefficients βj are bounded from below or minJj=1 |βj| > Cβ > 0 and thresholds γj are
bounded away from 0 and 1, i.e., γj ∈ (Cγ, 1− Cγ), for j = 1, . . . , J and some Cγ > 0.

Here, R in (9.1) means either ≤ or ≥, potentially different for every k. This inequality
defines the sign of a feature in the interaction which will be defined more precisely in Definition
9.1.1. We associate ≤ in (9.1) with a negative sign (−1) and ≥ with a positive sign (+1),
such that a signed feature can be written as a tuple (k, bk) ∈ [p]× {−1,+1}. Also, although
we assume |Y | < 1, the constant 1 does not matter here as we can scale Y by any constant
and the conclusions in our main Theorem 9.4.1 below will still hold.

Remark 1: Because RF remains invariant under any strictly monotone transform of an
individual feature, our results still hold when the uniform distribution assumption of X in the
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LSS model is relaxed to the assumption that individual features Xj, j ∈ [p], are independent
with a distribution that has Lebesgue density.

Remark 2: The assumption in the LSS model that different interactions Sj1 , Sj2 with
j1 6= j2 are disjoint (see the (LSS-expectation) condition) is also probably not justified
in many real data applications. The general problem with overlapping interactions in
the LSS model is that such models can be non-identifiable, meaning that different forms
of (9.1) can imply the same regression function E(Y |X). For example, for the response
1(X1 < 0.5, X2 < 0.5) + 1(X1 > 0.5, X2 > 0.5), by the definition of signed interactions in
Definition 9.1.1, it has two basic signed interactions {(1,−1), (2,−1)} and {(1,+1), (2,+1)}.
However, we can also write it as 1− 1(X1 < 0.5, X2 > 0.5)− 1(X1 > 0.5, X2 < 0.5), which
has two different basic interactions {(1,−1), (2,+1)} and {(1,+1), (2,−1)}. This means, a
set of features which is an interaction in one of the representations is not an interaction in
the other. Due to this identifiability problem, overlapping features can lead to both false
positives and false negatives in term of interaction recovery with RF. One may try to define
interaction more broadly to avoid this identifiability problem. For the previous example
1(X1 < 0.5, X2 < 0.5)+1(X1 > 0.5, X2 > 0.5), although the basic interactions are not unique,
they always constitutes of both X1 and X2. Whether the coefficients {βj}Jj=0 are allowed
to have different signs also affects the identifiability. The previous example is identifiable
if we only allow positive coefficients. For a particular application, one should investigate
identifiability further, but as this depends on the precise application, we leave this for future
work. Our work provides the pathway to analyze this in detail.

The LSS model is trying to capture interactive thresholding behavior which has been
observed for various biological processes [98, 26, 52, 42, 51, 49]. For example, in gene
regulatory networks often a few different expression patterns are possible. Switching between
those patterns can be associated with individual components that interact via a threshold
effect [52, 42, 51]. Such a threshold behavior is also observed for other signal transduction
mechanisms in cells, e.g, protein kinase [26] and cell differentiation [98]. Another example
of a well studied threshold effect is gene expression regulation via small RNA (sRNA) [49].
Although for most biological processes the precise functional mechanisms between different
features and a response variable of interest are much more complicated than what the LSS
model can capture, theoretical investigations of a particular learning algorithm, such as RF,
are only feasible within a well defined and relatively simple mathematical model. Given the
empirically observed interactive threshold effects in many real biological systems, the LSS
model clearly provides an enrichment to the current state of affairs, since current theoretical
models do not capture the often observed interactive threshold behavior.

In the following we show that the RF algorithm can recover basic interactions S1, . . . , SJ
in the LSS model. Besides recovering Sj ⊂ [p], RF can also recover the signs of each feature
k ∈ ∪Jj=1Sj in the LSS model, which indicates whether the corresponding threshold behavior
in (9.1) is given by a ≤- or a ≥-inequality. Without loss of generality, in the rest of the thesis
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we assume that all inequalities are ≤ in (9.1), that is,

E(Y |X) = β0 +
J∑
j=1

βj
∏
k∈Sj

1(Xk ≤ γk). (9.2)

We stress, however, that all our results also hold for the general case (9.1). We call the unsigned
set of features S1, . . . , SJ ⊂ [p] the unsigned basic interactions of the LSS model and call the
signed set of features S−1 , . . . , S

−
J ⊂ [p]× {−1,+1} with S−j = {(k,−1) : k ∈ Sj} the signed

basic interactions of the LSS model. As our theoretical results will show, RF does not just
recover the unsigned interactions Sj ⊂ [p], but also signed interactions S−j ⊂ [p]× {−1,+1}.
In other words, RF not only recover which features interact with each other in a LSS model,
but also recover whether a particular feature in an interaction has to be larger or smaller
than some threshold for this interaction to be active. Besides the signed and unsigned basic
interactions we also define a union signed interaction as the union of individual basic signed
interaction, as made more precise in the following definition.

Definition 9.1.1. In the LSS model with basic signed interactions S−1 , . . . , S
−
J ⊂ [p] ×

{−1,+1} a (non-empty) set of signed features S± ⊂ [p]× {−1,+1} is called a union signed
interaction, if

S± =
⋃
j∈I

S−j
⋃

j∈Is,k∈Sj

{(k, bk) : bk ∈ {−1,+1}} (9.3)

for some (possibly empty) set of indices I ⊂ {j ∈ [J ] : |Sj| > 1}, Is ⊂ {j ∈ [J ] : |Sj| = 1}.

For interactions with only one feature k, due to the sign ambiguity in the LLS model, i.e.,
1(Xk ≤ a) = 1− 1(Xk > a), both, (k,−1) and (k,+1), will be counted as an interaction.

The theoretical results, that we present in Section 9.4 are asymptotic, in the sense that
they assume the sample size n to go to infinity. The number of signal features in the LSS
model is assumed to be bounded by s (independent of n and p). However, the overall
number of features p or the number of noisy features p− s can grow to infinity as n increases.
Mathematically, our theoretical results assume A1.

A1 (Sparsity). s = O(1) and log(p)
n
→ 0.

This means that, in contrast to many theoretical works [22, 83, 94], our results hold in a
high-dimensional setting, as long as the overall number of signal features s is bounded. See
also [11] for results that only depend on s and not p and thus, cover the high-dimensional
setting, too.

9.2 Technical assumptions and notations
RF is an ensemble of classification and regression trees, where each tree T defines a mapping
from the feature space to the response. Trees are constructed independently of one another
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on a bootstrapped or subsampled data set D(T ) of the original data D. Any node t in a tree
T represents a hyper-rectangle Rt in the feature space. A split of the node t is a pair (kt, γt)
which divides the hyper-rectangle Rt into two hyper-rectangles Rt,l(kt, γt) = Rt ∩ 1(Xkt ≤ γt)
and Rt,r(kt, γt) = Rt ∩ 1(Xkt > γt), corresponding to the left child tl and right child tr of
node t, respectively. For a node t in a tree T , Nn(t) = |{i ∈ D(T ) : xi ∈ Rt}| denotes the
number of samples falling into Rt.

Each tree T is grown using a recursive procedure which proceeds in two steps for each
node t. First, a subset Mtry ⊂ [p] of features is chosen uniformly at random. The size of
Mtry is mtry. Then the optimal split kt ∈Mtry, γt ∈ R is determined by maximizing impurity
decrease defined in (9.4):

∆n
I (t) := In(t)− Nn(tl)

Nn(t)
In(tl)−

Nn(tr)

Nn(t)
In(tr) (9.4)

where tl(tr) is the left(right) child of t and In(t) is an impurity measure. Here, In(t) is defined
as the variance of the response yi’s for all the samples in the region Rt. The procedure
terminates at a node t if two children contain too few samples, e.g., min{Nn(tl), Nn(tr)} ≤ 1
, or if all responses are identical. For any tree T and any leaf node tleaf ∈ T , denote p(tleaf) to
be a path to that leaf node and D(p(tleaf)) to be its depth. For any hyper-rectangle Rt, µ(Rt)
denotes its volume. We have the following assumptions on RF:

A2 (increasing depth). The minimum depth of any path in any tree goes to infinity, i.e.,
minT mintleaf∈T D(tleaf)

p→∞ as n→∞.

A3 (balanced split). Each split (kt, γt) is balanced: for any node t,

min

(
µ(Rt,l(kt, γt))

µ(Rt,r(kt, γt))
,
µ(Rt,r(kt, γt))

µ(Rt,l(kt, γt))

)
>

Cγ
1− Cγ

.

A4 (mtry). Cmp+ (1− Cm)s ≤ mtry ≤ (1− Cm)(p− s) where Cm ∈ (0, 1) is a constant.

A5 (No bootstrap). All the trees in RF are grown on the whole data set without bootstrapping,
i.e. D(T ) = D for any T .

A2 ensures that the length of any decision path in any tree tends to infinity. This
assumption is reasonable as tree depths in RF is usually of order O(log n) which tends to
infinity as n→∞. A3 ensures that each node split is balanced. Similar conditions are used
commonly in other papers [94]. A4 shows the important role of the parameter mtry. Roughly
speaking, mtry cannot be too small or too big. When mtry is too small, there will be too many
splits on irrelevant features which makes the tree noisy. When mtry is too big, there will be
too little variability in the tree structure. This motivation will be made rigorous in the proof.
A5 is a technical assumption to simplify our analysis. Since we study the asymptotic case,
bootstrap has little impact on the tree structure, which means it will not affect our result.
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9.3 Depth weighted prevalence (DWP)
Given a tree T in RF, we can randomly select a path P of T as follows: we start at the
root node of T and then, at every node, randomly go left or right until we reach a leaf
node. This is equivalent to selecting a path in T of depth D with probability 2−D. As
such, any path P in a decision tree can be associated with a sequence of signed features
(k1, bk1), . . . , (kD, bkD) ∈ [p]× {−1,+1}, where D is the depth of the path and for any node
t = [D] on the path the sign bkt indicates whether the path at node t followed the ≤ direction
(bkt = −1) or the > direction (bkt = +1) for the split on feature kt ∈ [p]. For the randomly
selected path P and any fixed constant ε > 0, we now define F̂ε(P ,D) to be the set of signed
features on P where the corresponding node in the RF had an impurity decrease of at least ε,
that is,

F̂ε(P ,D) :={(kt, bkt) | t is a node of P with ∆n
I (t) > ε and

kt appears first time on P}. (9.5)

We use F̂ε as a shorthand for F̂ε(P ,D) when the path P and the data D of interest are clear.
Note that if a feature appears more than once on the path P , its sign in F̂ε(P) is the sign when
the feature appears the first time with the impurity decrease above the threshold. Our main
theorems will be stated in terms of the prevalence of signed feature set S± ⊂ [p]× {−1,+1}
on the random path P within F̂ε(P), where P is a random path. To formally define the
prevalence of S±, we first need to identify the sources of randomness underlying the random
path P . There are three layers of randomness involved:

(D: Data randomness) the randomness involved in the data generation;
(T : Tree randomness) the randomness involved in growing an individual tree with

parameter mtry, given data D;
(P: Path randomness) the randomness involved in selecting a random path P of depth

d with probability 2−d, given the tree T .
In our following definition of the prevalence of signed feature sets, the probability is

conditioned on the data D, and taken only over the randomness of the tree T and the
randomness of selecting one of its path as in P .

Definition 9.3.1. (Depth-Weighted Prevalence (DWP)) For any signed feature set S± ⊂
[p]× {−1,+1}, conditioned on data D, we define the Depth-Weighted Prevalence (DWP) of
S± as the probability that S± appears on the random path P within the set F̂ε, that is,

DWP(S±) =P(P,T )(S
± ⊂ F̂ε(P) | D). (9.6)

While we only have a fixed sample size which means the data randomness is inevitable,
the tree randomness and path randomness are generated by the algorithm and thus can be
eliminated by sampling as many trees and paths as we like. Because the depth-weighted
prevalence in (9.6) is only conditioned on the data, for any given ε > 0 and set of signed
features S±, it can be computed with arbitrary precision.
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Figure 9.1: Illustration of RF trained using data from (9.7)

9.4 Main results
Before we state our main results in full detail, we want to illustrate it with a simple example.

Illustrative example: Assume that p = 2 and there are just two features X1 and X2.
Assume there is a single interaction J = 1 and the regression function is (9.7).

E(Y |X1, X2) = 1(X1 ≤ 0.5) · 1(X2 ≤ 0.5). (9.7)

The response surface of (9.7) is shown in Figure 9.1 in the top middle plot. We consider
the population case, where we have full access to the joint distribution P (X, Y ), that is, we
have access to an unlimited amount of data (n = ∞). When we apply the RF algorithm
as in Section 9.2, then for each individual tree in the forest the root node either splits on
feature X1 or on feature X2. Since X1 and X2 are completely symmetric in the distribution
P (X, Y ), thus, if the RF algorithm grows infinitely many trees, half of them will split on X1

at the root node and half of them split on X2 at the root node. Furthermore, as the split
threshold for every node in the tree maximizes impurity decrease, the split will be at 0.5
for any feature. This is illustrated in Figure 9.1, where the left bottom figure shows a tree
which splits on feature X1 at the root node and the right bottom figure shows a tree which
splits on feature X2 at the root node. As each tree in RF grows to purity, when the root
node splits at feature X1, then for the path of the tree which follows the (1,+1) direction,
the tree will stop growing, as the respective response surface is already constant. However,
for the path of the tree which follows the (1,−1) direction, the tree will further split on the
remaining feature X2. Thus, we conclude that the forest consists of exactly the two different
trees shown in Figure 9.1, each appearing equally often. For each node t in these trees, the
impurity decrease ∆n

I (t) ≥ 1/16. Thus, for any ε < 1/16, we can write the DWP of the basic



CHAPTER 9. PROVABLE HIGH-ORDER INTERACTION RECOVERY 65

signed interaction S− = {(1,−1), (2,−1)}:

DWP(S−) =

PT (T ’s root splits on feature 1)︸ ︷︷ ︸
=0.5

·2−2+

PT (T ’s root splits on feature 2)︸ ︷︷ ︸
=0.5

·2−2 = 2−2 = 2−|S
−|.

In Figure 9.1 the paths which contain the basic signed interaction S− = {(1,−1), (2,−1)} are
marked red. For all the other sets of signed features S± ⊂ [p]× {−1,+1}, it can be shown
that

DWP(S±) < 2−|S
±|.

For example,

DWP({(1,−1), (2,+1)}) = 2−3 < 2−2

and

DWP({(1,−1)}) = 2−2 + 2−3 < 2−1.

As we will formally state in the theorem below, the same reasoning holds true asymptotically
for any RF trained on the data from the LSS model, namely, the DWP of a set of signed
features S± ⊂ [p] × {−1,+1} is always upper bounded by 2−|S

±| and this upper bound is
attained if and only if S± is a union signed interaction.

Theorem 9.4.1. For any impurity threshold ε > 0, let

ε̃ :=
(
4ε/(C2

βC
2s−1
γ )

)C2s
m / log(1/Cγ)

.

For any set of signed features S± ⊂ [p]× {−1,+1}, conditioned on some input data D for
the RF algorithm from Section 9.2, it holds true that

1. (General upper bound)
DWP(S±) ≤ 2−|S

±|,

2. (Interaction lower bound) When S± is a union interaction as in Definition 9.1.1, then,

DWP(S±) ≥ 2−|S
±| − ε̃− rn(D, ε),

3. (Non-interaction upper bound) when S± is not a union interaction as in Definition
9.1.1, then,

DWP(S±) ≤ 0.5|S
±| (1− 0.5 Cs

m) + rn(D, ε).
Under the LSS model, for every fixed ε > 0 it holds that

rn(D, ε) p→ 0 as n→∞,

where p→ denotes convergence in probability.
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Proof Sketch: The detailed proof of Theorem 9.4.1 has two major parts: first, showing
the assertion for the idealized population case and second, extending the population case
to the finite sample case. The major difficulty of the first step is to define an adequate
population version of the set F̂ε. To this end, in the proof in the SI we define a set F , which
we denote desirable features, which correspond to all features of a path P which would result
in a decrease in impurity if the RF would get to see the full distribution P (X, Y ) (not just
a finite sample D) and thus, would split at the exact thresholds γ. The set of desirable
features, F , is an oracle, in the sense that its construction depends on the true underlying
LSS model. This is in contrast to the set F̂ε, which can be computed for any given RF.
Given this definition of desirable features, a sketch of the proof of the major assertions of
Theorem 9.4.1 is as follow: When a set of signed features S± appears on F , this implies that
every time a features (k, bk) ∈ S± appeared on the way from the root node to the leaf, the
correct splitting direction was selected for P , which gives rise to the general upper bound of
DWP(S±) ≤ 2−|S

±|. If S± is a union interaction, then (assuming all paths of the tree are
pure) a correct splitting direction for each of its features already implies that S± appears on
P and thus, DWP(S±) = 2−|S

±|. If S± is not a union interaction, then there will always be
the possibility that, although every split for an encountered feature which is an element of
S± was done in the correct direction, some of the features in S± were just never encountered
and therefore, a correct splitting direction does not imply that S± appears on P, hence
DWP(S±) < 2−|S

±|. In the second step of the proof, we show that the observed set F̂ε and
the oracle set F are the same with high probability. In order to prove that, we need to show
the trees grown using finite samples are close to the trees grown using the population in
terms of the splitting features and thresholds as long as the feature is desirable. The the
tricky part is that a tree grown using finite samples can deviate from a tree grown using the
population when a node splits on noisy features. Thus, we need to carefully analyze these
two cases separately. This part of the proof mainly rely on uniform convergence results.

Remark 3: This theorem relies on the assumption that Y is bounded. If we assume
a slightly stronger assumption on p and n than A1: (log n)1+δ log p/n → 0 for some δ > 0,
then the conclusions still hold when the noise Z := Y − E(Y |X) is independent of X and
1-subgaussian, that is,

E(exp(tZ)) ≤ exp(t2/2) for all t ∈ R.

See Proposition B.2.2 in the appendix for more detail.
Remark 4: Our theory shows that recovery of interactions becomes exponentially more

difficult as size of interaction increases – therefore one should only aim to recover small to
moderately sized interactions. An interaction of size s correspond to an region of size O(2−s),
which means the sample size must be much larger than 2s to have enough sample in that
region. Also, the DWP of a basic interaction of size s is 2−s. To have a consistent estimate,
the number of independent paths should be much larger than 2s. Thus, when one wants to
recover an interaction of size s, the number of samples and the number of trees must be much
larger than 2s. That shows the intrinsic difficulty of estimating high order interactions.

Recall that the parameter ε in Theorem 9.4.1 can, in principle, be chosen arbitrarily small,
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and thus, ε̃ in Theorem 9.4.1 can be made arbitrarily small. Hence, up to an arbitrarily high
precision, Theorem 9.4.1 implies that asymptotically union interactions are exactly those set
of signed features S± whose DWP, i.e., DWP(S±), attains the upper bound 2−|S

±|. Recall
that the DWP is computable from data. Hence, if one had access to (upper bounds for) the
constants Cβ, Cγ, and s (recall that Cm is known, as mtry is known), one could select ε small
enough such that

ε̃ < (Cm/2)s .

Then, if follows from Theorem 9.4.1, that the algorithm which classifies S± as a union
interaction if and only if DWP(S±) ≥ 2−|S

±| − (Cm/2)s is consistent (i.e., classifies correctly
as n→∞) under the LSS model. This shows that the RF algorithm via its DWP consistently
recovers union interactions, whenever ε is chosen sufficiently small.

Note that any algorithm which can consistently recover union signed interactions, can
also consistently recover the signed basic interactions of the LSS model, as those are just the
smallest unites within the set of all union interactions. The only exception is for a signed
basic interaction of size one, for which the sign is not identifiable from the LSS model.

Remark 5: One important assumption in our theorem is the sparsity of signal features.
If there are many "weak" signal features, it is very hard for RF to work well. For RF, at
each node of a tree, only one feature is used. That means the total number of features used
along each path is limited by the depth of the tree, which is usually of order O(log n). For
our assertions of Theorem 9.4.1 the hard threshold ε in the set F̂ε has the purpose to select
the signal features. Clearly, the choice of an appropriate value of ε is hard in practice, as
an optimal choice depends on the LSS model (recall the previous paragraph). The iterative
random forest fitting procedure in iRF [10] (which uses joint prevalence on decision paths
in RF to recover interactions, similar as suggested by Theorem 9.4.1) filters noisy features
not with a hard, but with a soft thresholding procedure: it grows several RF iteratively
and samples features at each node according to their feature importance from the previous
iteration. In that way, one does not need to chose a single hard threshold. We follow this
strategy for our simulation results.

One of the remarkable aspects of the results in Theorem 9.4.1 is that the DWP of a signed
interaction is asymptotically independent of any model coefficients. That is, it only depends
on its size |S±| and nothing else. In a sense, this shows that the tree structure of RF contains
the qualitative information of which features interact with each other, independently of the
quantitative information about what are the precise parameters in the LSS model.

Another interesting aspect about the results from Theorem 9.4.1 is that it sheds some
light on the influence of mtry on the the interaction recovery performance of RF. For the
third assertion in Theorem 9.4.1 we actually show that DWP(S±) ≤ rn(D, ε)+

0.5|S
±|
(

1− 0.5 min
k∈∪jSj

P (root node splits on feature k)

)
.

When mtry is too large,

min
k∈∪jSj

P (root node splits on feature k)
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can get very small, as particularly strong features (large initial impurity decrease) can mask
weaker features. As an extreme example, consider the situation where mtry = p and thus, the
root node gets to see all the features. In that case, the single feature which has the highest
impurity decrease, say X1, will always appear at the root node and hence, for S± = {(1,−1)}
or S± = {(1,+1)} one will get DWP(S±) = 2−|S

±| = 0.5, independent of whether S± is an
interaction or not. This shows that when mtry is too large, false interactions’ DWP can
attain the universal upper bound 2−|S

±|, which leads to false positives in terms of interaction
recovery. On the other hand, when mtry is too small, for a signal feature k ∈ ∪jSj it can
take a long time until it gets selected into the candidate feature set at a node. In particular,
for finite sample, it can happen that the tree reaches purity due to lack of samples without
having split on any of the signal features. Hence, the reasoning of Theorem (9.4.1), namely
that correct split direction + pure path implies that a union interaction appears on the path
does not hold anymore. This can lead to union interactions having significantly smaller DWP
than the universal upper bound 2−|S

±|, i.e., false negatives in terms of interaction recovery.
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Chapter 10

LSSrank and simulation results

10.1 LSSrank: a theoretically inspired ranking criterion
for boolean interactions

To conduct follow-up experiments, biologists need to know which interactions are most
promising candidates to follow up on in experiments, e.g., they want to know what are the
three most promising candidates and in which order. In the following, we build on the results
from Theorem 9.4.1 to propose a ranking criterion for candidate interactions: Under the LSS
model, for large sample size (n→∞) and ε sufficiently small, our theoretical results from
Section 9.4 show that for any set of signed features S± ⊂ [p]×{−1,+1} of size |S±| with RF
depth weighted prevalence DWP(S±), it holds true that

S± is a union interaction ⇐⇒ log2(DWP(S±))

|S±|
≈ −1,

S± is not a union interaction ⇐⇒ log2(DWP(S±))

|S±|
< −1.

Thus, for given sets of signed candidate interactions S±1 , . . . , S
±
M , our theoretically inspired

LSSrank criterion ranks the candidates in a decreasing order based on

ρ(S±) :=
log2(DWP(S±))

|S±|
,

that is, the interaction S± with largest ρ(S±) comes first in the ranking.
Remark 6: Recall that our main Theorem 9.4.1 only holds for the asymptotic case

(n→∞). As we noted in Remark 4, the number of samples needed to observe an interaction
of order s must grow exponentially with s. Moreover, as the DWP is upper bounded by
2−|S| is also follows that the number of paths (and trees) that need to be generated in order
calculate DWP with a sufficient precision also has to grow exponentially with s. Therefore,
we stress that applying LSSrank is only reasonable for interactions of moderate size.
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Illustrative example, Here we illustrate the idea of LSSrank via a simple example:
Y = 1(X1 ≤ 0.5, X2 ≤ 0.5)+1(X3 ≤ 0.5, X4 ≤ 0.5). We simulate 5000 samples. Then we use
RF with 200 trees. Here is the ρ-value for a few signed interactions: ρ({(1,−1), (2,−1)}) = −1,
ρ({(1,+1), (2,−1)}) = −1.3, ρ({(3,−1)}) = −1.27, ρ({(1,−1), (2,−1), (3,−1)}) = −1.1. As
can be seen, the basic interaction has the highest value.

There are many ways to obtain a list of candidate interactions from data. The
naive way is via brute force: computing all combinations of features. However, this is
not computationally feasible for a moderate number of features. Since we only care for the
interactions with high prevalence, we can use the FP-growth algorithm or Random Interaction
Trees (RIT) to obtain the interactions with prevalence higher than some threshold. While RIT
computes the candidate interactions faster, it is a probabilistic algorithm so some candidate
interactions with high prevalence might be missing. Thus, here we use FP-growth, which
runs in reasonable time and gives more robust results than RIT.

10.2 Simulated data from LSS models
We first simulate the data from an LSS model with different number of basic interactions and
interaction orders. Set p = 50 and n = 1, 000. Each feature Xj is generated from an uniform
distribution U([0, 1]), independent from one another. The number of basic interactions is
denoted as K; the order of each interaction by L; we consider the same threshold τ for all
features; and additive Gaussian noise with variance σ2, then the response is:

Y =
K∑
k=1

k·L∏
`=(k−1)·L+1

1(X` < τ) +N (0, σ2).

We consider a variety of values for K,L and σ2, namely, K = 2, . . . , 5, L = 2, . . . , 4, and
σ2s such that the signal-to-noise ratios (SNR) is given by 1, 20, 50 or 100. For a given K
and L, the threshold τ is chosen such that about 50 percent of samples fall into the union
of hyper-rectangles, that is, ∪Kk=1 ∩k·L`=(k−1)·L+1 {X` < τ}. This criterion roughly ensures that
the information about the basic interactions in X is comparable across different number of
interactions and interaction orders. The results are averaged across 40 independent Monte
Carlo runs. In order to apply LSSrank, we first need to grow a RF. Recall that our results
also assume an MDI threshold for the individual nodes of the tree. Here, we follow a soft
thresholdind strategy via iRF to implement this. We use 10 iterations and each time grow 300
trees. Given a basic interaction S∗ ⊂ [p] and an estimated interaction Ŝ ⊂ [p], we evaluate
their proximity based on their Jaccard distance:

score(S∗, Ŝ) =
|S∗ ∩ Ŝ|
|S∗ ∪ Ŝ|

.

Given the K true basic interactions S∗1 , . . . , S∗K from the respective LSS model and the top
M interactions from the estimated LSSrank ranking Ŝ1, . . . , ŜM , we define their proximity
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score to be

score({S∗j }Kj=1, {Ŝi}Mi=1) =
1

K

K∑
j=1

M
max
i=1

score(S∗j , Ŝi). (10.1)

In other words, for each basic interaction S∗j , we find the estimated interaction that has the
highest proximity, and then compute the average scores across all S∗j . Note that this score
will increase monotonically as M increases. We also note that, although our LSSrank score is
based on signed features, our evaluation criterion is based on the respective unsigned features.
We choose not to use the signed features because in certain simulations, one feature have
different signs in different basic interactions, which makes the meaning of the sign of a feature
ambiguous. The simulation results are shown in Fig. 10.1. For example, the plot in the 1st
row, 1st column shows that LSSrank’s top interaction (M = 1) corresponds to the basic
interaction in all Monte Carlo runs and among all the considered SNRs (proximity score = 1).
Similar, the plot in the 2nd row, 2nd column shows that the top two interactions (M = 2)
correspond to the two basic interactions in all the Monte Carlo runs when SNR = 100.
However, for weaker signals with SNR = 1 the proximity score is only around 0.75 and thus,
in some situations the top two interactions do not coincide with the two basic interactions.
In general, the performance gradually degrades when the number of basic interactions and
the order of interactions increases. Note that this is consistent with our theoretical results,
where constants in the o(1) terms depend on K and L, see Theorem 9.4.1. We also note that,
when SNR is higher than 10, the scores do not change much, which indicates that LSSrank is
robust to highly noisy responses.

10.3 Robustness to LSS model violations:
We investigate the stability of results of our method when the model assumptions are not
met. We consider two different settings, both with n = 1000 and p = 50. First, we consider
SNR = 50, with 3 order-3 interactions, analog as in Figure 10.1, 3rd row, 2nd column, green
line. Second, we consider SNR = 100, with 2 order-3 interactions, analog as in Figure 10.1,
2nd row, 2nd column, red line. We consider a variety of perturbations:

• Overlapping interactions: different basic interactions have overlapping features.
When overlap = k, the basic interactions are ((1,−1), (2,−1), (3,−1)), ((4− k,−1),
(5− k,−1), (6− k,−1)), and ((7− 2k,−1), (8− 2k,−1), (9− 2k,−1)) when K = L =
3 and ((1,−1), (2,−1), (3,−1)), ((4− k,−1), (5− k,−1), (6− k,−1)) when K = 2
and L = 3.

• Correlated features: different features are correlated instead of independent. When
corr = α, the correlation between feature j1 and j2 is α|j1−j2|.

• Heavy-tail noise: the noise follow Laplace or Cauchy distributions which has heavier
tails than (sub-)Gaussian distributions.
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Results are shown in Figure 10.2. For heavy tail noise (see bottom plot) we observe almost
no drop in performance compared to Figure 10.1. For the correlated case, one can see a
significant drop in performance, which matches well to our findings for the real data example
(see next section). Two (false) interaction that often appears on top of LSSrank’s list for the
correlated case, are the order-one interaction {(2,+1)}and {(2,−1)}. This may be explained
by the fact that the X2 feature is strongly correlated with both, the X1 and the X3 feature.
Thus, the signed interaction {(1,−1), (2,−1), (3,−1)} partially merges into the order-one
signed interaction {(2,−1)}). For the overlapping case, the situation is more complex. When
K = 2 and L = 3, one observes a slight drop in performance. However, when K = L = 3 the
performance even improves in the overlapping case. This can be explained by to competing
effects: One the one hand, for the overlapping case the overall number of signal features
decreases, which generally leads to an increase in performance. On the other hand, the model
violations in the overlapping case can lead to a decrease in performance.1

10.4 Real-data inspired simulations
We reconsider the enhancer data set that was already analyzed in [45, 10]. Following the
general setup as in [45], from the corresponding feature matrix we simulate binary responses
as follows:

• Single-component AND rule (AND)

P (Y = 1|X) =

0.8 · 1X1≥q1,1−α,X2≥q2,1−α,X3≥q3,1−α,X4≥q4,1−α .
(10.2)

• Multi-component AND rule (OR)

P (Y = 1|X) =

0.8 ·
[
1X1≤q1,α,X2≤q2,α,X3≥q3,1−α,X4≥q4,1−α

or 1X1≥q1,1−α,X2≥q1,1−α,X3≤q1,α,X4≤q1,α
]
.

(10.3)

• Additive AND rule (ADD)

P (Y = 1|X) =

0.4 ·
[
1X1≥q1,1−α,X2≥q2,1−α,X3≥q3,1−α

+ 1X4≥q4,1−α,X5≥q5,1−α,X6≥q6,1−α
]
.

(10.4)

1When K = 2 and L = 3, one false interaction which often appears on top of LSSrank’s list is the order-1
interaction {(2,+1)} (and {(2,−1)}, respectively). Partly, this can explained by the soft dimension reduction
of iRF, where in the last iteration effectively only a few features remain. When mtry is larger than the total
number of effective features, then the single overlapping feature X2, which has strictly higher MDI than
non-overlapping features, will consistently be split on at the root node and thus, appears on top of LSSrank,
as it will have DWP = 0.5.
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where α = 0.11/4 and qi,α refers to the left α-quantile of i-th feature. The choice of α is to
mimic the class imbalance as in the original enhancer response. Thereby, in each Monte Carlo
run the respective signal features X1, . . . , X6 were chosen uniformly at random and responses
Yi for different observations i ∈ [n] are independent conditioned on X. The results are shown
in Figure 10.3 (blue line):

• (AND rule) First, consider the AND rule in (10.2), see left plot in Figure 10.3. One
can check that here the SNR is roughly given by 1, so we can compare this with the 1st
row, 1st column of Figure 10.1. We observe quite some significant drop in performance,
although results are still much better than random guess.

• (ADD rule) Similar, for the ADD rule in (10.4), see right plot in Figure 10.3, we can
compare with the 2nd row, 2nd column of Figure 10.1, where also a significant drop in
performance is observed.

• (OR rule) The highest proximity score is observed for the OR rule in (10.3), see middle
plot in Figure 10.3. This setting cannot directly be compared with Figure 10.1. One
reason for the particularly high proximity score of the OR rule is it has effectively two
different signed interactions which coincide as un-signed interactions. As the proximity
score in (10.1) does not take the sign of the features into account, this results in a
particularly high proximity score.

In order to better understand this drop in performance for the real data, we investigate two
different sources of LSS model violations:

• (Correlation of enhancer features) The different features in the enhancer data set or
quite strongly correlated, see Figure 10.4. In order to investigate the effect of this, we
re-run the simulations, but with each of the features randomly permuted across samples.
Results are shown in Figure 10.3 (orange line). As can be seen, the results slightly
improve, although not much. Thus, we conclude that correlation is some, but not the
major reason for the drop in performance.

• (Marginal feature distribution) We notes that a lot of features in the enhance data
set have marginal distribution with a heavy point mass on zero (see, for example, the
histogram of the Kr feature in Fig. 10.5). In order to investigate this effect, we further
re-scaled the marginal distribution of each feature, such that it follows a Gaussian
distribution, without any point-masses. Results are shown in Figure 10.3 (green line).
As can be seen, removing the point mass on zero results in an almost perfect proximity
score for LSSrank for all three models.

We conclude that performance of the LSSrank ranking criterion can be impeded in real data
due to violations of the LSS model assumptions. For this particular enhancer data set, we
found that the major source for decrease in performance seems to come from the marginal
feature distributions which often has heavy point mass at zero.
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10.5 Enhancer data
We used LSSrank to select the interactions for the real enhancer data and the results are
similar to that of the original iRF paper. See Table 10.1 for a comparison between results
from LSSrank and the results from original iRF [10]. The top-2 interactions of LLSrank and
iRF are the same. Also, the top 20 interactions selected via LSSrank contains all the order-3
interactions and most order-2 interactions discovered by iRF.

Table 10.1: The top 20 interactions found by LSSrank and iRF. order-1 and order-2 interactions
that are contained in any higher-order interactions are removed following similar treatments
in Basu et al. [10]. An interaction is marked as blue if it appeared in both columns. An
interaction is marked as orange if it strictly contains or is contained in an interaction in the
other column. LSSrank discovered all the order-3 interactions that are discovered by iRF.

Top 20 interactions via LSSrank Top 20 interactions via iRF
Gt_Kr_Twi Zld_Gt_Twi
Zld_Gt_Twi Gt_Kr_Twi
Gt_Med_Twi Gt_Med
Zld_Gt_Kr Gt_Hb
Zld_Gt_Kr_Twi H3K36me3_Gt_Twi
H3k18ac_Gt_Twi Bcd_Gt
Zld_Kr_Twi Bcd_Twi
Gt_Kr_Med2_Twi Med_Twi
H3k18ac_Gt_Kr_Twi H3_Gt
Gt_Hb_Twi H3K27me3_Gt
Gt_Hb_Kr H3K27me3_Twi
H3k4me3_Gt_Twi Hb_Kr
Gt_Kr_Med H3K36me3_Zld
Bcd_Gt_Twi H3K4me3_Gt_Twi
H3k18ac_Gt_Kr H3K4me3_Kr
H3k9ac_Gt_Twi Zld_Gt_Kr
H3k36me3_Gt_Twi Hb_Twi
H3k27ac_Gt_Twi H3K18ac_Kr
Kr_Med_Twi Kr_Med
H3k4me1_Gt_Twi H3K9ac_Kr
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Figure 10.1: Simulation results for different number of basic interactions (#interactions),
interaction-orders, and SNRs. The y-axis shows the proximity score in (10.1) against different
values of M on the x-axis.
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Figure 10.2: Simulation results under LSS model violations: overlapping features (top);
correlated features (middle); heavy tailed noise (bottom), see details in the text. Left panel
for K = L = 3 and right panel for K = 2, L = 3.
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Figure 10.3: Proximity score as in (10.1) plotted against number M of top-M interactions
according to LSSrank ranking. Features matrix was taken as in enhancer data from [45] with
response as in (AND), (OR), (ADD), see equations (10.2), (10.3), (10.4). "standard" (blue)
refers to the case when we use the original feature values of enhancer; "permuted" (orange)
refers to the case when we permute each column of the original feature values; "gaussian"
(green) refers to the case when features are regenerated via standard Gaussian.
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Figure 10.4: Correlation matrix of en-
hancer features.

Figure 10.5: Histogram of Kr, one of the
features in the enhancer data set.
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Chapter 11

Discussion and future work

11.1 Discussion
It is important to study a model that is well scientifically motivated. LSS models provides
such a family of models that better reflect certain biological data structures. Also, analyzing
ML algorithms under different models can give insights into their empirical adaptivity.
Our results are the first to give a theoretical analysis that DWP of an interaction in RF
recovers higher order interactions via its decision paths under the LSS model. Moreover, the
universality of interaction’s DWP in LSS models, gives insights into the general difference
between quantitative (e.g. prediction accuracy) and qualitative (e.g. interaction recovery)
information extraction. In scientific problems often the latter is of higher interest. Thus, this
work narrows the gap between theory and practice and is therefore of general interest to the
community.

Our theoretical analysis also gives some insights of RF for practical improvements: In
particular, an optimal choice of mtry can be extracted from our upper bound, namely,
mtry = (p − 2)/(2 − s/p). For p � s this recovers one of the default choices in standard
RF implementations, namely, mtry ≈ p/2, which suggests that with the presence of many
noisy features, mtry/p should be relatively large. Moreover, our results on impurity decrease
thresholding for the set F̂ε, give theoretical indication why iterative re-weighting in iRF is
helpful (see Remark 5).

11.2 Future work
There are a few future works that we plan to do. First, LSSrank gives a possible way
to use prevalence to rank interactions. One question is that whether LSSrank can help
empirically when incorporated into the current iRF pipeline. Second, for LSSrank it would
be helpful to develop algorithms (e.g., similar to FP-growth) that can filter interactions by
prevalence depending on the size of the interaction. Third, we would like to extend to more
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general interactions models beyond boolean interactions. Finally, it is interesting to study
higher-structure recovery for other ML algorithms, e.g., DNN.



81

Appendix A

Proofs of Part I

A.1 Proof of Proposition 3.2.1
Proof. To prove both models satisfy Assumption I, we just need to prove |||·|||α is lower
bounded by |||·|||F in the linear subspace HK = {A ∈ RK×K |Ak,k = 0∀ k}. If we can prove
|||·|||α is a norm on HK , then we know it is equivalent to the Frobenious norm since HK is a
finite dimensional space.

In order to show that |||·|||α is a norm, we need to prove three properties:

• Sub-additivity: for any A,B ∈ HK , |||A+B|||α ≤ |||A|||α + |||B|||α.

• Absolutely homogeneity: for any A ∈ HK and λ > 0, |||λA|||α = λ|||A|||α.

• Positive definiteness: If |||A|||α = 0 and A ∈ HK , we know A = 0.

The first two properties are quite straightforward so we leave the details to readers. Here we
focus on proving the third property. Note that |||A|||α is a sum of K non-negative terms, if
|||A|||α = 0, then for any k ∈ {1, . . . , K}, each term should be zero, i.e. E|

∑
j Ak,jαj|1(αk =

0) = 0. If α is from Bernoulli-type models B(p1, . . . , pK ; f), then we could further decompose
E|
∑

j Ak,jαj|1(αk = 0) = 0 into:

E|
∑
j

Ak,jαj|1(αk = 0) = 0⇔ P (ηk = 0)E|
∑
j

Ak,jηjzj| = 0⇔ E|
∑
j

Ak,jηjzj| = 0.

The second “⇔" is because P (ηk = 0) = 1− pk > 0 and Ak,k = 0. Since E|
∑

j Ak,jηjzj| =
0 > P (η1 = . . . = ηK = 1)E|

∑
j Ak,jzj| ≥ 0 for p1, . . . , pK 6= 0, we know E|

∑
j Ak,jzj| = 0.

Define X =
∑

j Ak,jzj, since E|X| = 0, we know X = 0 almost surely. If Aj,k are not all
zeros, this means z1, . . . , zK are linearly dependent. In other words, z lies in a linear subspace
of RK almost surely. However, that contradicts the fact that z has a density probability
function in RK . So A must be zero. That completes the proof for Bernoulli-type models. For
exact sparse models, the approach is essentially the same.
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Now for sparse Gaussian and Bernoulli Gaussian distributions, we can obtained the
constant cα. We first derive the constant for the sparse Gaussian distribution. For X ∈ HK ,

|||X|||α =

√
2

π

K∑
k=1

(
K

s

)−1 ∑
S⊂{1,...,K}
k 6∈S,|S|=s

√∑
j∈S

X2
k,j

=
s(K − s)
K(K − 1)

√
2

π

K∑
k=1

(
K − 2

s− 1

)−1 ∑
S⊂{1,...,K}
k 6∈S,|S|=s

√∑
j∈S

X2
k,j

(Lemma 6.5 in [100]) ≥ s(K − s)
K(K − 1)

√
2

π

K∑
k=1

√√√√ K∑
j=1

X2
k,j

(‖x‖1 ≥ ‖x‖2) ≥ s(K − s)
K(K − 1)

√
2

π
|||X|||F .

Here, we need to use Lemma 6.5 in [100]. For the completeness of this thesis, we rewrite the
lemma below:

Lemma 6.5 in [100] Let z ∈ RK−1, then for 1 ≤ l ≤ m ≤ K − 1,(
K − 2

l − 1

)−1 ∑
S⊂{1,...,K−1}

|S|=l

√∑
j∈S

z2
j ≥

(
K − 2

m− 1

)−1 ∑
S⊂{1,...,K−1}
|S|=m

√∑
j∈S

z2
j .

Then the first inequality holds by setting l = s and m = K − 1. In summary, we have shown
that for X ∈ HK , |||X|||α ≥

s(K−s)
K(K−1)

√
2
π
|||X|||F , which means cα is at least s(K−s)

K(K−1)

√
2
π
.

Now, we will compute the constant cα for Bernoulli Gaussian distribution. For X ∈ HK ,
if we define s̃ = d(K − 2)p+ 1e,

|||X|||α =

√
2

π

K∑
k=1

K−1∑
s=0

∑
S⊂{1,...,K}
|S|=s,k 6∈S

ps(1− p)K−s
√∑

j∈S

X2
k,j

Lemma 6.6 in [100] ≥(1− p)
√

2

π

K∑
k=1

(
K − 1

s̃

)−1 ∑
S⊂{1,...,K}
k 6∈S,|S|=s̃

√∑
j∈S

X2
k,j

Lemma 6.5 in [100] ≥(1− p)d(K − 2)p+ 1e
K − 1

√
2

π
|||X|||F

≥p(1− p)
√

2

π
|||X|||F .

Here, we have used Lemma 6.6 in [100]. We rewrite that Lemma using the notations in our
thesis as follows:
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Lemma 6.6 in [100] Let p ∈ (0, 1) and s̃ = d(K − 2)p+ 1e. For any z ∈ RK−1,

K−1∑
s=0

∑
S⊂{1,...,K−1}

|S|=s

ps(1− p)K−1−s
√∑

j∈S

z2
j ≥

(
K − 1

s̃

)−1 ∑
S⊂{1,...,K−1}

|S|=s̃

√∑
j∈S

z2
j .

In summary, we have shown that for X ∈ HK , |||X|||α ≥ p(1− p)
√

2
π
|||X|||F , which means

cα is at least p(1− p)
√

2
π
.

A.2 Proof of Proposition 3.2.2
Proof. In order to prove Assumption II, we only need to show that for any c1, . . . , cK ,
P (
∑d

l=1 clαl = 0, and ∃ l, clαl 6= 0) = 0. Note that αj = ξjzj for j = 1, . . . , K,

P (
d∑
l=1

clαl = 0, and ∃ l, clαl 6= 0)

≤
∑

S⊂{1...,K}

P (ξl = 1 if l ∈ S and 0 if l 6∈ S) · P (
∑
l∈S

clzl = 0, and
∑
l∈S

c2
l > 0).

The inequality holds because αk = ηk · zk for k = 1, . . . , K and η and z are independent for
exact sparse models or Bernoulli-type models. Since z has a density function, z1, . . . , zK are
linearly independent, i.e., P (

∑
l∈S clzl = 0, and

∑
l∈S c

2
l > 0) = 0 for any S.

A.3 Proofs of Corollaries 4.1.1-4.1.4
Before proving the corollaries, we need the following lemma.

Lemma A.3.1. If X equals to c ·11T , and |||A|||α =
K∑
k=1

√
2
π
s
K

(
K−1
s−1

)−1 ∑
S⊂{1,...,K}
k 6∈S,|S|=s

√∑
j∈S A

2
k,j,

then |||X|||∗α = cK(K−1)√
s(K−s)

√
π
2
.

Proof of Lemma A.3.1. Essentially, we are trying to prove that

max
A 6=0,A∈HK

tr(ATX)

|||A|||α
= max

A 6=0,A∈HK

c
∑K

k=1

∑
j 6=k Ak,j∑K

k=1
s
K

(
K−1
s−1

)−1 ∑
S⊂{1,...,K}
k 6∈S,|S|=s

√∑
j∈S A

2
k,j

√
π

2

=
cK(K − 1)√
s(K − s)

√
π

2
.
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Note that this is equivalent to the fact that the following convex optimization problem attains
the minimum (K − s)

√
s :

min
K∑
k=1

s

K

(
K − 1

s− 1

)−1 ∑
S⊂{1,...,K}
k 6∈S,|S|=s

√∑
j∈S

A2
k,j

subject to
K∑
k=1

∑
j 6=k

Ak,j = K(K − 1).

First of all, note that the problem can be split into K sub-problems: For k = 1, . . . , K,

min
s

K

(
K − 1

s− 1

)−1 ∑
S⊂{1,...,K}
k 6∈S,|S|=s

√∑
j∈S

A2
k,j

subject to
∑
j 6=k

Ak,j = K − 1.

Furthermore, note that both the objective and the constraint are permutation symmetric:
if Ã is obtained by permuting off-diagonal elements from each row in A, then the objective
function remains the same. It is not hard to show for the optimal solution A∗ must satisfy
that for any k, j1 6= k, and j2 6= k, A∗k,j1 = A∗k,j2 . Therefore, A∗k,j = 1 and the objective
function is s

(
K−1
s−1

)−1(K−1
s

)√
s = (K − s)

√
s. That completes the proof.

Proof of Corollary 4.1.1. (local identifiability for constant collinearity reference dictionary
and sparse Gaussian coefficients) The coefficients are generated from sparse Gaussian distri-
bution SG(s). First, the collinearity matrix M∗ = (D∗)TD∗ = (1− µ)I + µ11T . Because α
is sparse Gaussian, we know Eαjsign(αk) = 0 for any j 6= k and E|αj| =

√
2
π
s
K
. The bias

matrix B is

(B(α,M∗))k,j =

{
−Mj,kE|αj| = −Mj,k

√
2
π
s
K

= −
√

2
π
µs
K

for j 6= k

E|αj| − E|αj| = 0 if j = k
.

That means B(α,M∗) is a constant matrix except for the diagonal elements. In the proof
of Proposition 3.2.1, we showed |||X|||α =

√
2
π

∑K
k=1

s
K

(
K−1
s−1

)−1∑
k 6∈S,|S|=s

√∑
j∈S X

2
k,j. In

general, |||·|||∗α does not have an explicit formula, but for constant matrices, there is a closed
form formula (see Lemma A.3.1). Using Lemma A.3.1, we know

|||B(α,M∗)|||∗α =
µ
√
s(K − 1)

K − s
.

Now we will calculate the sharpness constant and the region bound. First of all, |||D∗|||22 =

|||M∗|||2 = 1+µ(K−1). Second, |||B(α,M∗)|||∗α = µ
√
s(K−1)
K−s and cα ≥ s(K−s)

K(K−1)

√
2
π
. Combining
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those formulas, the sharpness is at least:

1√
π(1 + µ(K − 1))

s

K

(
K − s
K − 1

− µ
√
s

)
≈ s√

πµK2

(
1− µ

√
s
)
for large K.

For sparse Gaussian distributions, maxj E|αj| =
√

2
π
s
K
, the set S in Theorem 4.1.2 is

S =

{
D ∈ B(RK)

∣∣∣|||D|||2 ≤ 2|||D∗|||2, |||D −D
∗|||F ≤

(1− |||B(α,M∗)|||∗α) · cα
8
√

2|||D∗|||22 maxj E|αj|

}
=
{
D ∈ B(RK) | |||D|||2 ≤ 2

√
1 + µ(K − 1),

|||D −D∗|||F ≤
1

8
√

2(1 + µ(K − 1))

(
K − s
K − 1

− µ
√
s

)}
,

which completes the proof.

Proof of Corollary 4.1.2. Assume the reference dictionary is a constant collinearity dictionary
with coherence µ and the coefficients are generated from non-negative sparse Gaussian
distribution |SG(s)|. Since Eαksign(αj) = Eηkηjzk =

√
2
π

s(s−1)
K(K−1)

when j 6= k, it can be
shown that

(B(α,M∗))k,j =

{
−
√

2
π

(
µs
K
− s(s−1)

K(K−1)

)
for j 6= k.

0 if j = k.

This shows B(α,M∗) is still a constant matrix except the diagonal elements. However,
compared with standard sparse Gaussian coefficients, the constant here is

√
2
π

(
µs
K
− s(s−1)

K(K−1)

)
,

which is smaller than
√

2
π
µs
K

in Corollary 4.1.1. Recall the explanation of the matrix B

after Theorem 4.1.1, that is because for non-negative sparse Gaussian coefficients, the bias
matrix B1 introduced by the coefficient is of different signs compared to the bias matrix B2

introduced by the reference dictionary and they cancel with each other. In standard sparse
Gaussian case, B = 0 if µ = 0, which means the reference dictionary is orthogonal. For this
non-negative case, B = 0 if µ = s/K, which means the atoms in the reference dictionary
should have positive collinearity s/K. As will be shown next, this significantly relaxes the
local identifiability condition for non-negative coefficients.

We now compute the closed form formula for the dual semi-norm. By definition, for any
matrix X whose elements are all non-negative, |||X|||α =

∑K
k=1 E|

∑K
j=1Xk,jαj|1(αk = 0) =∑K

k=1

∑K
j=1Xk,jEαj1(αk = 0) =

√
2
π
s(K−s)
K(K−1)

∑K
k=1

∑K
j=1,j 6=kXj,k. Thus we have

|||B(α,M∗)|||∗α =

√
2
π
s
K
·
∣∣∣µ− s−1

K−1

∣∣∣√
2
π
s(K−s)
K(K−1)

=
K − 1

K − s
·
∣∣∣µ− s− 1

K − 1

∣∣∣.
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Proof of Corollary 4.1.3. First of all,

(B(α,M∗))k,j =

{
−Mj,kE|αj| = −Mj,k

√
2
π
p = −

√
2
π
µp for j 6= k.

0 if j = k.

Because all the elements in the matrix are constant except the diagonal ones, similar to
Lemma A.3.1, we can show the optimal A that attains the maximum of |||B(α,M∗)|||∗α =

max tr(ATB(α,M∗))
|||A|||α

is a constant matrix 11T . Thus, we have

|||B(α,M∗)|||∗α =
µp(K − 1)

(1− p)
∑K−1

s=0

(
K−1
s

)
ps(1− p)K−1−s√s

≤
µ
√
p(K − 1)

1− p
.

Here we are using the Jensen inequality that

K−1∑
s=0

(
K − 1

s

)
ps(1− p)K−1−s√s >

√√√√K−1∑
s=0

(
K − 1

s

)
ps(1− p)K−1−ss =

√
(K − 1)p.

Thus RHS < 1 when µ and p are small. The sharpness is at least
p√

π(1 + µ(K − 1))

(
1− p− µ

√
p(K − 1)

)
,

Because E|αj| = p
√

2
π
for any j, the set S in Theorem 4.1.2 is{

D ∈ B(RK)
∣∣∣|||D|||2 ≤ 2

√
1 + µ(K − 1),

|||D −D∗|||2F ≤
1

8
√

2(1 + µ(K − 1))

(
1− p− µ

√
p(K − 1)

)}
.

Proof of Corollary 4.1.4. We compute the local identifiability condition when the reference
dictionary is a constant collinearity dictionary with coherence µ and the coefficients are
generated from sparse Laplace distribution, i.e., for any j αj = ξjzj where zj is from a
standard Laplace distribution and ξ is a random 0-1 vector with s nonzeros. For standard
Laplace distributions, since E|αj| = s

K
, we have

(B(α,M∗))k,j =

{
−µ s

K for j 6= k.
0 if j = k.

Similar to Lemma A.3.1, we can show the optimal A that attains the maximum of
|||B(α,M∗)|||∗α is a constant matrix 11T .

|||B(α,M∗)|||∗α =
µs(K − 1)

(K − s)
∫∫∞

0
|y − x|(xy)s−1 exp(−(x+ y))Γ(s)−2dxdy

.

To derive this denominator, we need to give an explicit formula for a linear combination of
Laplace random variables. The formula can be found in a few papers, e.g., [63].
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A.4 Proofs of theorems 4.1.1-4.2.2
The following lemmas are useful for proving Theorem 4.1.1.

Lemma A.4.1. Given two dictionaries D and D′ ∈ B(RK), we have the decomposition:

D−1D′ = I + (D−1D′ − I− Λ(D,D′)) + Λ(D,D′).

where Λ(D,D′) is a diagonal matrix whose j-th element is −1
2
‖Dj −D′j‖2

2. Then we know

1. For any j = 1, . . . , K, M [j, ](D−1D′j − Ij − Λj(D,D
′)) = 0 where M = DTD.

2. |||Λ(D)|||F = Θ(|||D −D∗|||2F ):

1

2
√
K
|||D −D∗|||2F ≤ |||Λ(D)|||F ≤

1

2
|||D −D∗|||2F .

3. When
〈
Dj,D

′
j

〉
≥ 0 for any j = 1, . . . , K, |||D−1D′ − I − Λ(D,D′)|||F = Θ(|||D −

D∗|||F ):

|||D −D′|||F√
2|||D|||2

≤ |||D−1D′ − I− Λ(D,D′)|||F ≤ |||D
−1|||2 · |||D −D

′|||F

4. Let M ′ = (D′)TD′, for any A satisfying M ′[j, ]Aj = 0 for j = 1, . . . , K and |||A|||F
sufficiently small, there is a D ∈ B(RK) such that D−1D′ − I− Λ(D,D′) = A.

Proof of Lemma A.4.1. (1):

M [j, ](D−1D′j − Ij − Λj(D,D
′)) (A.1)

=
〈
Dj,D(D−1D′j − Ij − Λj(D,D

′))
〉

(A.2)

=
〈
Dj,D

′
j −Dj +

1

2
Dj‖Dj −D′j‖2

2

〉
(A.3)

=
〈
Dj,D

′
j −Dj

〉
+

1

2
‖Dj −D′j‖2

2 (A.4)

=
〈
Dj,D

′
j

〉
− 1 + 1−

〈
Dj,D

′
j

〉
= 0. (A.5)

(2): |||Λ(D,D∗)|||F = 1
2

√∑
j ‖Dj −D∗j‖4

2 ≤ 1
2
|||D −D∗|||2F . On the other hand, because of

the power inequality ‖x‖2 ≥ 1√
K
‖x‖1, we have

|||Λ(D,D∗)|||F =
1

2

√∑
j

‖Dj −D∗j‖4
2 ≥

1

2
√
K
|||D −D∗|||2F .
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(3): First, consider |||D′ −D −DΛ(D,D′)|||F , we have

|||D′ −D −DΛ(D,D′)|||2F =
K∑
j=1

‖D′j −Dj

〈
Dj,D

′
j

〉
‖2

2

=
K∑
j=1

1−
〈
Dj,D

′
j

〉2

=
K∑
j=1

min
tj∈R
‖D′j − tj ·Dj‖2

2.

Then by taking tj = 1 for all j = 1, . . . , K, we have

|||D′ −D −DΛ(D,D′)|||2F ≤ |||D
′ −D|||2F .

On the other hand, when
〈
Dj,D

′
j

〉
≥ 0.

K∑
j=1

1−
〈
Dj,D

′
j

〉2
=

K∑
j=1

(1−
〈
Dj,D

′
j

〉
)(1+

〈
Dj,D

′
j

〉
) ≥

K∑
j=1

(1−
〈
Dj,D

′
j

〉
) =

1

2
|||D−D′|||2F .

Then for (D−1D′ − I− Λ(D,D′)), using the above inequalities, we have:

|||D′ −D|||F ≤
√

2|||D′ −D −DΛ(D,D′)|||F (A.6)

≤
√

2|||D|||2|||D
−1D′ − I− Λ(D,D′)|||F , (A.7)

which proves the first inequality. The second inequality follows from

|||D−1D′ − I− Λ(D,D′)|||F (A.8)
≤|||D−1|||2|||D

′ −D −DΛ(D,D′)|||F (A.9)
≤|||D−1|||2|||D

′ −D|||F . (A.10)

(4): Consider a differentiable mapping F (D) = D−1D′ − I− Λ(D,D′) from B(RK) to a
linear manifold

H = {A ∈ RK×K
∣∣∣M ′[j, ]Aj = 0 for any j = 1, . . . , K.}

Since F (D′) = 0, if we can prove the differential of F at D′, namely dF , is bijective from the
tangent space TB(RK)

∣∣∣
D′

= {A ∈ RK×K
∣∣∣〈D′j, Aj〉 = 0 for any j = 1, . . . , K.} to the tangent

space TH
∣∣∣
0

= H, then by the inverse function theorem on the manifold, we have the conclusion.

To prove it is indeed bijective, we note that dF (∆)
∣∣∣
D′

is
∑

k,j(D
′)−1
j I[k, ]∆j,k = (D′)−1∆.
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Clearly dF is injective: (D′)−1∆ = 0 implies ∆ = 0. To show it is also surjective, first of all
for any ∆ ∈ TB(RK)

∣∣∣
D′
, its image under dF is in H:

M ′[j, ](D′)−1∆j =
〈
D′j,D

′((D′)−1∆j

〉
=
〈
D′j,∆j

〉
= 0.

Because these two linear manifolds have the same dimension, dF must be one-on-one. This
concludes the proof.

Lemma A.4.2. If |||·|||α is regular with constant cα, then we know for any D,D′ such that〈
Dj,D

′
j

〉
≥ 0 for any j = 1, . . . , K, |||(D)−1D′|||α ≥

cα√
2|||D|||22

|||D −D′|||F .

Proof. First of all, because for any A ∈ RK×K , by definition of |||·|||α, |||A|||α does not depend
on diagonal elements Aj,j for any j = 1, . . . , K. Thus, |||(D)−1D′|||α = |||(D)−1D′ − I −
Λ(D,D′)|||α, where Λ is defined in Lemma A.4.1. If we denote A as (D)−1D′− I−Λ(D,D′),
then Lemma A.4.1 shows M [j, ]Aj = 0. Since Mj,j = 1, Aj,j = −M [j,−j]A[−j, j]. Thus

‖Aj‖22 ≤ (M [j,−j]A[−j, j])2 + ‖A[−j, j]‖22 ≤ (‖M [j,−j]‖22 + 1)‖A[−j, j]‖22 = ‖M [j, ]‖22‖A[−j, j]‖22.

Summing over j, we have

|||A|||F ≤ max
j
‖M [j, ]‖2

√∑
j

‖A[−j, j]‖2
2.

Note that for any j, ‖M [j, ]‖2 = ‖DT
j D‖2 ≤ |||D|||2, thus we have:

|||A|||F ≤ |||D|||2
√∑

j

‖A[−j, j]‖2
2.

On the other hand, by Lemma A.4.1, we know |||A|||F ≥
1√

2|||D|||2
|||D −D′|||F . Combining

those together, we have

|||(D)−1D′|||α =|||(D)−1D′ − I− Λ(D,D′)|||α

(Because of Assumption I)) ≥cα
√∑

j

‖A[−j, j]‖2
2

≥cα
|||A|||F
|||D|||2

≥cα
|||D −D′|||F√

2|||D|||22
.
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Lemma A.4.3. For x, y ∈ R, y · sign(x) + |x|+ |y| · 1(x = 0) ≤ |y + x| ≤ y · sign(x) + |x|+
|y| · 1(x = 0) + 2|y| · 1(|y| > |x| > 0).

Proof. If x = 0, the above inequality definitely holds. So without loss of generality, let’s
assume x 6= 0. When |y| < |x|, sign(x + y) = sign(x), so |y + x| = sign(x)(x + y) =
|x| + sign(x)y. When |y| > |x|, sign(x + y) = sign(y), if sign(x) = sign(y), clearly we have
|x + y| = |x| + |y| = ysign(x) + |x|. If sign(x) 6= sign(y), |y + x| = |y| − |x| > |x| − |y| =
|x|+ ysign(x). So in summary, we prove the first inequality. The second inequality comes
from: |y + x| ≤ |y|+ |x| ≤ |x|+ 2|y|+ ysign(x), which completes the proof.

Lemma A.4.4. We have the upper and lower bound of the objective function:

E‖(D∗)−1x‖1 + |||D−1D∗|||α − tr(B(α,M)TD−1D∗) + o(|||D −D∗|||F )

≥ E‖D−1x‖1 ≥
E‖(D∗)−1x‖1 + |||D−1D∗|||α − tr(B(α,M)TD−1D∗)− E‖Λα‖1

Proof of Lemma A.4.4. By Lemma A.4.1, (D)−1D∗ can be decomposed into

D−1D∗ = I + ∆(D,D∗) + Λ(D,D∗),

where ∆(D,D∗) = D−1D∗ − I − Λ(D,D∗) and Λ(D,D∗) is defined in Lemma A.4.1. In
what follows, we use Λ,∆ without writing D,D∗ explicitly for notation ease.

Let ∆k,j be the element of ∆ at k-th row and j-th column. Then the objective function
can be lower bounded by:

E‖D−1x‖1 =E‖(D∗)−1x− (I−D−1D∗)(D∗)−1x‖1 (A.11)
=E‖α+ (∆ + Λ)α‖1 (A.12)

(a) ≥E‖α+ ∆α‖1 − E‖Λα‖1 (A.13)

(b) ≥E
K∑
k=1

|αk|+ 1(αk = 0)|
∑
j

∆k,jαj| − signαk
∑
j

∆k,jαj − E‖Λα‖1 (A.14)

≥E‖α‖1 + |||∆|||α − E
∑
k,j

∆k,jEαjsignαk − E‖Λα‖1. (A.15)

(a) holds because of the triangle inequality. (b) holds because of Lemma A.4.3 (let x = ∆[k, ]α
and y = αk). Note that by the definition of |||·|||α, the diagonal elements of ∆ do not matter,
so |||∆|||α = |||D−1D∗|||α.
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Recall Mj,k =
〈
Dj,Dk

〉
, by Lemma A.4.1, ∆k,j satisfies: M [j, ]∆j =

∑
k 6=jMj,k∆k,j +

∆j,j = 0 (Because Mj,j = 1) for any j. Thus we have

K∑
j,k=1

∆k,jEαjsignαk =
K∑
j=1

(∑
k 6=j

∆k,jEαjsignαk + ∆j,jE|αj|

)
(A.16)

=
K∑
j=1

∑
k 6=j

∆k,j (Eαjsignαk −Mj,kE|αj|) = tr(B(α,M)T∆). (A.17)

Because the diagonal elements of B(α,M) are all zeros, we know

tr(B(α,M)T∆) = tr(B(α,M)TD−1D∗).

In summary, we have shown that

E‖D−1x‖1 ≥E‖α‖1 + |||D−1D∗|||α − tr(B(α,M)TD−1D∗)− E‖Λα‖1. (A.18)

In order to have an upper bound, we have

E‖D−1x‖1 =E‖(D∗)−1x− (I−D−1D∗)(D∗)−1x‖1 (A.19)
=E‖α+ (∆ + Λ)α‖1 (A.20)
≤E‖α+ ∆α‖1 + E‖Λα‖1 (A.21)

(Lemma A.4.3) ≤E‖α‖1 + |||D−1D∗|||α − tr(B(α,M)TD−1D∗) (A.22)

+
∑
k

2E

∣∣∣∣∣∑
j

∆k,jαj

∣∣∣∣∣1
(∣∣∣∣∣∑

j

∆k,jαj

∣∣∣∣∣ > |αk| > 0

)
+ E‖Λα‖1. (A.23)

Note that by Lemma A.4.1, E‖Λα‖1 ≤ |||D −D∗|||2F maxj E|αj| = o(|||D −D∗|||F ). Further-
more,

E

∣∣∣∣∣∑
j

∆k,jαj

∣∣∣∣∣1
(∣∣∣∣∣∑

j

∆k,jαj

∣∣∣∣∣ > |αk| > 0

)
(A.24)

≤
K∑
k=1

max
j
|∆k,j| · E 1(αk 6= 0)1(|

∑
j

∆k,jαj| ≥ |αk|)‖α‖1. (A.25)

Because 1(αk 6= 0)1(|
∑

j ∆k,jαj| ≥ |αk|)‖α‖1 ≤ ‖α‖1, E‖α‖1 <∞, and

lim
∆k,j→0

1(αk 6= 0)1(|
∑
j

∆k,jαj| ≥ |αk|)‖α‖1 = 0 a.s.,
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by the dominant convergence theorem, we know

lim
∆→0

E1(αk 6= 0)1(|
∑
j

∆k,jαj| ≥ |αk|)‖α‖1

=E lim
∆→0

1(αk 6= 0)1(|
∑
j

∆k,jαj| ≥ |αk|)‖α‖1

=0.

This means (A.24) is o(|||D −D∗|||F ), which proves the upper bound.

Proof of Theorem 4.1.1. (i): We will first prove that if |||·|||α is regular with constant cα
and (4.2) holds, D∗ is a sharp local minimum. When (4.2) is satisfied and D → D∗,
|||B(α,M)|||∗α → |||B(α,M∗)|||∗α < 1 and

|||D−1D∗|||α − tr(B(α,M)TD−1D∗)

=|||D−1D∗|||α − tr(B(α,M∗)TD−1D∗) + o(|||D−1D∗|||α)

≥(1− |||B(α,M)|||∗α)|||D−1D∗|||α + o(|||D−1D∗|||α).

Because |||·|||α is regular and Lemma A.4.2, by appropriately choosing signs of each column
in D∗, we have

|||D−1D∗|||α ≥
cα√

2|||D|||22
|||D∗ −D|||F .

Combine those two inequalities, when |||D −D∗|||F is small enough,

E‖D−1x‖1 − E‖α‖1

≥(1− |||B(α,M∗)|||∗α)
cα√

2 · |||D∗|||22
|||D −D∗|||F + o(|||D −D∗|||F ).

By Definition 3.2.1, D∗ is a sharp local minimum with sharpness at least

(1− |||B(α,M∗)|||∗α)
cα√

2|||D∗|||22
.

(ii) When (4.2) does not hold or |||·|||α is not regular, D∗ is not a sharp local minimum.
If |||B(α,M∗)|||∗α ≥ 1, then there exists ∆′ such that |||∆′|||α − tr(B(α,M∗)T∆′) ≤ 0.

Note that the left hand side does not depend on diagonal elements of ∆′, so we can find a
matrix ∆ that is the same as ∆′ except the diagonal elements such that M∗[j, ]∆j = 0 for
any j and |||∆|||α − tr(B(α,M∗)T∆) ≤ 0. For any t > 0, by Lemma A.4.1 we can construct
a series of dictionaries D(t) for a sufficiently small t such that

(D(t))−1D∗ = I + ∆ + Λ(D(t),D∗).
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Then by Lemma A.4.4, we have the formula for the objective of D(t):

E‖D(t)−1x‖1 =E‖α‖1 +
(
|||∆|||α − tr(B(α,M∗)T∆)

)
+ o(‖D(t)−D∗‖F ). (A.26)

Because |||∆|||α − tr(B(α,M∗)T∆) ≤ 0, E‖D(t)−1x‖1 ≤ E‖α‖1 + o(‖D(t)−D∗‖F ). By
definition, D∗ is not a sharp local minimum. If |||·|||α is not regular, for any c > 0, there
exists ∆ such that M∗[j, ]∆j = 0 for any j and |||∆|||α < c‖∆‖F . Without loss of generality,
assume tr(B(α,M∗)T∆) ≥ 0, otherwise just take −∆. For sufficiently small t, there exists a
dictionary D(t) such that

(D(t))−1D∗ = I + ∆ + Λ(D(t),D∗).

Then by Lemma A.4.4, we have the formula for the objective of D(t):

E‖D(t)−1x‖1 =E‖α‖1 +
(
|||∆|||α − tr(B(α,M∗)T∆)

)
+ o(‖D(t)−D∗‖F ) (A.27)

≤E‖α‖1 + c|||∆|||F + o(‖D(t)−D∗‖F ) (A.28)
≤E‖α‖1 + c|||D(t)−1|||2 · |||D(t)−D∗|||F + o(‖D(t)−D∗‖F ) (A.29)

Because that holds for any c > 0, by definition, we have shown D∗ is not a sharp local
minimum.

(iii): When |||B(α,M∗)|||∗α > 1, D∗ is not a local minimum. This part is essentially the
same as (ii). The key is to construct a series of dictionaries D(t) using Lemma A.4.1 as in
(ii). Then by using the upper bound in Lemma A.4.4, we can find a small t > 0 and a small
c > 0 such that

E‖D−1
t x‖1 ≤ E‖α‖1 − c‖D(t)−D∗‖F + o(‖D(t)−D∗‖F ).

Thus by definition D∗ is not a local minimum.

Proof of Theorem 4.1.2. Note that by the definition of Λ(D,D∗) as in Lemma A.4.1, we
have

E‖Λ(D,D∗)α‖1 ≤max
j

E|αj||||D −D∗|||2F (A.30)

On the other hand, by Lemma A.4.4, we know

E‖D−1x‖1 − E‖α‖1 ≥|||D−1D∗|||α − tr(B(α,M)TD−1D∗)− E‖Λ(D,D∗)α‖1

Similar to the proof of Theorem 4.1.1, the right hand side is bounded by

|||D−1D∗|||α − tr(B(α,M)TD−1D∗)− E‖Λ(D,D∗)α‖1

≥(1− |||B(α,M)|||∗α)|||D−1D∗|||α − E‖Λ(D,D∗)α‖1

≥(1− |||B(α,M)|||∗α)|||D−1D∗|||α −max
j

E|αj| · |||D −D∗|||2F

≥(1− |||B(α,M)|||∗α)
cα√

2|||D|||22
|||D −D∗|||F −max

j
E|αj| · |||D −D∗|||2F (A.31)

≥(1− |||B(α,M)|||∗α)
cα

4
√

2|||D∗|||22
|||D −D∗|||F −max

j
E|αj| · |||D −D∗|||2F . (A.32)
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Because |||M−M∗|||F ≤ (|||D|||2+|||D∗|||2)·|||D−D∗|||F ≤ 3|||D∗|||2·|||D−D∗|||F and |||D−
D∗|||F ≤

cα(1−|||B(α,M∗)|||∗α)

8
√

2 maxj E|αj ||||D∗|||22
we know |||M −M∗|||F ≤

cα(1−|||B(α,M∗)|||∗α)

2 maxj E|αj ||||D∗|||2
≤ cα(1−|||B(α,M∗)|||∗α)

2 maxj E|αj | .
The last inequality is because |||D∗|||2 ≥ 1. Based on this chain of inequalities, we have:

1− |||B(α,M)|||∗α ≥1− |||B(α,M∗)|||∗α − ||||B(α,M)|||∗α − |||B(α,M∗)|||∗α|
≥1− |||B(α,M∗)|||∗α − |||B(α,M)−B(α,M∗)|||∗α

≥1− |||B(α,M∗)|||∗α −
1

cα
|||B(α,M)−B(α,M∗)|||F

≥1− |||B(α,M∗)|||∗α −
1

cα
max
j

E|αj| · |||M −M∗|||F

≥1

2
(1− |||B(α,M∗)|||∗α).

Based on this, (A.32) is bounded by:

1

2
(1− |||B(α,M∗)|||∗α)

cα

4
√

2|||D∗|||22
|||D −D∗|||F −max

j
E|αj| · |||D −D∗|||2F (A.33)

≥

(
cα(1− |||B(α,M∗)|||∗α)

8
√

2 maxj E|αj||||D∗|||22
− |||D −D∗|||F

)
|||D −D∗|||F max

j
E|αj| ≥ 0. (A.34)

This shows the LHS is positive when D 6= D∗ and we have completed the proof.

Proof of Theorem 4.2.1. In order to prove Theorem 4.2.1, it suffices to prove any dictionary
D in B(RK) other than D∗ will not be a sharp local minimum. Recall β(D) is the coefficient
of the samples under dictionary D, i.e., β(D) = D−1x. For notation ease, we omit D and
simply write β.

The following lemma provides a necessary condition for a dictionary to be a sharp local
minimum.

Lemma A.4.5. For any dictionary D, if D is a sharp local minimum of optimization form
(4.1), then for any k = 1, . . . , K, β ·1(βk = 0) does not lie in any linear subspace of dimension
K − 2.

Proof of Lemma A.4.5. If D is a sharp local minimum, by the proof of Theorem 4.1.1, it
should satisfy (A.35).∑

j,k

∆k,j(Eβjsign(βk)−Mj,kE|βj|) <
∑
k

E|
∑
j

∆k,jβj|1(βk = 0). (A.35)

For any ∆k,j, let ∆′k,j , −∆k,j, it should also satisfy (A.35). That makes

−
∑
j,k

∆k,j(Eβjsign(βk)−Mj,kE|βj|) <
∑
k

E|
∑
j

∆k,jβj|1(βk = 0).
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Thus we have

E|
K∑

j=1,j 6=k

∆k,jβj|1(βk = 0) > 0. (A.36)

If β1(βk = 0) lies in a linear subspace of dimension K − 2, because there are K − 1 free
parameters in ∆j,k for j 6= k, we can find a set of nonzero ∆j,k such that

∑K
j=1,j 6=k ∆k,jβj ·

1(βk = 0) = 0 a.s.. That contradicts (A.36). Therefore, β1(βk = 0) does not lie in any linear
subspace of dimension K − 2.

In order to show D 6= D∗ up to sign-permutation is not a sharp local minimum, by
Lemma A.4.5, it suffices to find a k such that the random vector β · 1(βk = 0) lies in a linear
manifold of dimension at most K − 2.

Note that β = D−1D∗α is linear transform of α. ForD 6= D∗ up to the sign-permutation
sense, D−1D∗ 6= I, which means there exists k such that βk 6= αk′ for any k′ = 1, . . . , K.
This means βk is the linear combination of at least two elements in α. Without loss of
generality, βk =

∑T
l=1 clαl such that c1, . . . , cT 6= 0 and T ≥ 2. Because of Assumption II,

βk = 0 implies α1 = . . . = αT = 0. Thus, β · 1(βk = 0) = D−1D∗α1(α1 = . . . = αT = 0),
we know β · 1(βk = 0) lies in a linear manifold of dimension K − T almost surely.

Proof of Theorem 4.2.2. The whole proof consists of two major steps. The first step is to
show that the finite population satisfies the Assumption I with high probability: for any
ε > 0,

P

(
sup

c1,...,cK

1

n

n∑
i=1

1(
∑
j

cjα
(i)
j = 0 and

K∑
j=1

(
cjα

(i)
j

)2

> 0) ≥ ε

)

≤4 exp

(
2K
(

ln
n

2K
+ 1
)
− n

(
ε− 1

n

)2
)
. (A.37)

In order to prove (A.37), define

fc(α) , 1(
K∑
j=1

cjαj = 0 and
K∑
j=1

(cjαj)
2 > 0),

F(α) , {fc(·)|c ∈ RK} and consider its VC dimension. We will prove the VC dimension of
F is no bigger than 2K, namely, for any α(1), . . . ,α(2K), define a set

F (2K)(α(1), . . . ,α(2K)) , {(fc(α(1)), . . . , fc(α
(2K)))|c ∈ RK},

The cardinality of F (2K) is not 22K . If (1, . . . , 1)︸ ︷︷ ︸
2K

is not in F (2K), then we are done. Otherwise,

there exists c s.t. fc(α(i)) = 1 for any i = 1, . . . , 2K. That means
∑

j cjα
(i)
j = 0 for any

i = 1, . . . , 2K. Therefore, the dimension of the linear space spanned by α(1), . . . ,α(2K) is
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at most K − 1. So we can find K − 1 coefficients such that all other coefficients are their
linear combinations. Without loss of generality, assume those coefficients are α(1), . . . ,α(K−1).
Define the support of a vector to be the entries where it is nonzero. For α(K), . . . ,α(2K), there
will be one coefficient whose support is contained in the union of all the other coefficients. If
this is not the case, each coefficient can be mapped to one entry which is only contained in
its own support but not any support of other coefficients. But there are K + 1 coefficient
and only K entries, which leads to a contradiction. Without loss of generality, assume that
coefficient is α(K). Now we will show that (1, . . . , 1︸ ︷︷ ︸

K

, 0, . . . , 0) 6∈ F (2K)(α(1), . . . ,α(2K)). Since

fc(α
(i)) = 1 for i = 1, . . . , K − 1, we have∑

j

cjα
(i)
j = 0 ∀ i = 1, . . . , K − 1.

Because α(K), . . . ,α(2K) are linear combinations of α(1), . . . ,α(K−1), we know∑
j

cjα
(i)
j = 0 ∀ i = K, . . . , 2K.

If fc(α(i)) = 0 for i = K + 1, . . . , 2K, it means∑
j

(
cjα

(i)
j

)2

= 0 ∀ i = K + 1, . . . , 2K,

which means the support of c does not overlap with the support of α(K+1), . . . ,α(2K). However,
the support of α(K) is contained in the union of the supports of α(K+1), . . . ,α(2K). That
means fc(α(K) = 0 not 1, a contradiction.

Then by the classic statistical learning theory, for example, see Theorem 4.1 in [93], we
know (A.37) holds true.

Now comes the second major step: we want to show that

A(ε, ρ1, ρ2)⇒ sup
c1,...,cK

1

n

n∑
i=1

fc(α
(i)) >

ρ3
1ε

2Lρ2
.

Then, using (A.37), we get the desired conclusion.
For any ε, ρ1, ρ2 > 0, ifD 6= D∗ is a local min with sharpness at least ε and eigenvalue(D)

∈ [ρ1, ρ2], then supc1,...,cK
1
n

∑n
i=1 fc(α

(i)) >
ρ31ε

Lρ2
. Since D 6= D∗ up to sign-permutation

ambiguity, at least one row of D−1D∗ contains two nonzero elements. Without loss of
generality, assume the k-th row of D−1D∗, denoted as c(k), has at least two nonzero entries.
We will prove that it satisfies the desired condition:

1

n

n∑
i=1

fc(k)(α
(i)) >

ρ3
1ε

2Lρ2

.



APPENDIX A. PROOFS OF PART I 97

Recall that β(i) = D−1x(i) for i = 1, . . . , n. Because |||D−1|||2 ≤ ρ−1
1 and ‖x(i)‖2 is bounded

by L, for any vector w such that ‖w‖2 = 1, we have |
∑

j wjβ
(i)
j | ≤ Lρ−1

1 by Cauchy inequality.
We have

1

n

n∑
i=1

fc(k)(α
(i)) ≥ρ1

L
max
i
{
∣∣∣∑

j

wjβ
(i)
j

∣∣∣} 1

n

∑
i

fc(k)(α
(i))

≥ρ1

L

1

n

∑
i

|
∑
j

wjβ
(i)
j |fc(k)(α(i))

=
ρ1

L

1

n

∑
i

|
∑
j

wjβ
(i)
j |1(β

(i)
k = 0,

∑
j

(c
(k)
j α

(i)
j )2 > 0). (A.38)

Note that this inequality holds for any w with unit norm. Recall that c(k)
j has at least two

non-zero entries. Thus, for all the i’s such that
∑

j(c
(k)
j α

(i)
j )2 = 0, α(i)

j must satisfy at least two
linear constraints, which implies the corresponding β(i)’s must lie in a linear subspace of di-
mensions at most K−2. Therefore, we can always select w such that wk = 0 and for any i such
that

∑
j(c

(k)
j α

(i)
j )2 = 0, we have

∑
j wjβ

(i)
j = 0. Then, by using this specific w (this w satisfies

‖w‖2 = 1, wk = 0, and for any i = 1, . . . , n,
∑

j wjβ
(i)
j 1

(
β

(i)
k = 0,

∑
j

(
c

(k)
j α

(i)
j

)2

= 0

)
= 0),

we have:

ρ1

L

1

n

∑
i

|
∑
j

wjβ
(i)
j |1(β

(i)
k = 0,

∑
j

(c
(k)
j α

(i)
j )2 > 0) =

ρ1

L

1

n

∑
i

|
∑
j

wjβ
(i)
j |1(β

(i)
k = 0).

(A.39)

Using the parametrization in Proposition 5.2.1, for t > 0 sufficiently small, t·w can map to aD′

in the neighborhood ofD such that |||D′−D|||F ≥ ρ2
1|||D′−1−D−1|||F ≥ ρ2

1·t·‖wTD−1‖2 ≥ ρ21t

ρ2
.

Because D is sharp local minimum with sharpness at least ε, we have

1

n

n∑
i=1

‖(D′)−1x(i)‖1 −
1

n

n∑
i=1

‖D−1x(i)‖1 ≥ ε|||D′ −D|||F + o(|||D′ −D|||F ).

By Lemma A.4.1, we know the left hand side of the above inequality is equivalent to

|||(D′)−1D|||β − tr(((D′)−1D)TB(β,DTD) ≥ ε|||D′ −D|||F + o(|||D′ −D|||F ).

Without loss of generality, we could select D′ (or −D′) such that

tr(((D′)−1D)TB(β,DTD) ≥ 0.

This means the above inequality can be further rewritten as

|||(D′)−1D|||β ≥
ρ2

1ε

ρ2

t+ o(t).
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Note that

|||(D′)−1D|||β =
1

n

n∑
i=1

∑
k′

∣∣∣β′(i)k′

∣∣∣ · 1(β
(i)
k′ = 0)

=t · 1

n

∑
i

|
∑
j

wjβ
(i)
j |1(β

(i)
k = 0).

That means that when t is small,

1

n

∑
i

|
∑
j

wjβ
(i)
j |1(β

(i)
k = 0) >

ρ2
1ε

2ρ2

. (A.40)

Combining (A.38), (A.39), and (A.40), we complete the proof.

Proof of Proposition 5.1.1. 1)↔ 2): First observe that 2) is equivalent to the property that
the directional derivative of the optimization (5.1) at Ik along any direction is always positive.
By Theorem 4.1.1, we know 1) is equivalent to

|||B(β,M)|||∗α < 1.

Because of the definition of |||·|||α, this condition is equivalent to for any k = 1, . . . , K, and
δk,j ∈ R for j = 1, . . . , K, j 6= k such that

∑
j 6=k δ

2
k,j > 0,∣∣∣∑

j

δk,jβj

∣∣∣1(βk = 0) +
∑
k,j

δk,jβjsign(βk)−Mk,jE|βk| > 0.

On the other hand, the left hand side is exactly the directional derivative of the optimization
(5.1) at Ij along direction (δ1, . . . , δK). Because every directional derivative is strictly positive,
Ik is a sharp local minimum of the optimization.

2)↔ 3). We have already shown that 2) is equivalent to∣∣∣∑
j

δk,jβj

∣∣∣1(βk = 0) +
∑
k,j

δk,jβjsign(βk) +Mk,jE|βk| > 0.

3) is equivalent to∣∣∣∑
j

δk,jβj

∣∣∣1(βk = 0) +
∑
k,j

δk,jβjsign(βk) + M̃k,jE|βk| ≥ 0.

for any |M̃k,h −Mk,h| ≤ ρ. These two are clearly equivalent for a sufficiently small ρ.

Proof of Proposition 5.2.1. Without loss of generality, we only need to show ‖Q−1
j ‖2 = 1 for

any j = 1, . . . , K when k = 1. We can write Q = ΓD−1, where the matrix Γ is equal to:

Γh,j =


wj if h = 1√

(wh −M1,h)2 + 1−m2
h if j = h 6= 1

0 otherwise
. (A.41)



APPENDIX A. PROOFS OF PART I 99

Note that Γ is upper triangle so we can obtain its inverse easily. Then Q−1 = DΓ−1 and

Γ−1
h,j =


1 h = 1, j = 1

−wj/(
√

(wh −M1,h)2 + 1−M2
1,h) h = 1, j > 1

1/(
√

(wh −M1,h)2 + 1−M2
1,h) h > 1, j = h

0 h > 1, j 6= h

Q−1’s first column has the form: ‖Q−1
1 ‖2

2 = ‖D1‖2
2 = 1. For any other column Q−1

j where
j > 1, ‖Q−1

j ‖2
2 = ‖wjD1 −Dj‖2

2/((wj −M1,j)
2 + 1−M2

1,j) = 1.

Proof of Proposition 5.2.2. Recall

f(D) =
n∑
i=1

K∑
j=1

min(|D−1[j, ]x(i)|, τ).

Denote β(i) = (D(t,j))−1x(i) and define a new function

f̃(D) =
K∑
j=1

n∑
i=1,|β(i)

j |≤τ

|D−1[j, ]x(i)|+
n∑

i=1,|β(i)
j |>τ

τ.

Note that for any D, f̃(D) is always no smaller than f(D), that is, f̃(D) ≥ f(D). Also,
f̃(D(t,j)) = f(D(t,j)). Because of Proposition 5.2.1, we know the iterate D(t,j+1) in Algorithm
2 is the optimal solution of the following optimization:

argminQ f̃(Q−1)

subject to Q is parameterized as in Proposition 5.2.1.

That means f̃(D(t,j+1)) ≤ f̃(D(t,j)). Combining the fact that f(D(t,j)) = f̃(D(t,j)) and
f(D(t,j+1)) ≤ f̃(D(t,j+1)), we have f(D(t,j+1)) ≤ f̃(D(t,j+1)) ≤ f̃(D(t,j)) = f(D(t,j)).
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Appendix B

Proof of Part II

B.1 Proof of Theorem 8.1.1
Proof. To state the proof of the theorem, we need to define more notations. For a generic
set A ⊂ [0, 1]p, with slight abuse of notations, let Nn(A) =

∑
i 1(xi ∈ A) be the number of

samples with input features in A, and

µn(A) =

∑
xi∈A yi

Nn(A)

be the average response of those samples. For any feature Xk and z ∈ (0, 1), let ∆I(A, (k, z))
be the impurity decrease when splitting A into A ∩ {Xk ≤ z} and A ∩ {z < Xk}, and
∆I(A, k) = sup0≤z≤1 ∆I(A, (k, z)).

The proof of the theorem proceeds in three parts. First, we prove a lemma which gives a
tail bound for ∆I(A, k). Second, we use the lemma and union bound to derive the upper
bound for the expectation of G0(T ). Finally, we use a separate argument based on Gaussian
comparison inequalities to obtain the lower bound.

Lemma B.1.1. For any axis-aligned hyper-rectangle A ⊂ [0, 1]p, k /∈ S and δ > 0, we have

PX,ε(∆I(A, k) ≥ δ
∣∣Nn(A)) ≤ 4Nn(A)e

− δNn(A)

4(M+1)2 .

Proof of Lemma B.1.1. We suppose without loss of generality that x1, . . . ,xNn(A) ∈ A. For
any z ∈ [0, 1], we let

Aleft = A ∩ {0 ≤ Xk ≤ z}, Aright = A ∩ {z < Xk ≤ 1},

and introduce the shorthands

pleft =
Nn(Aleft)

Nn(A)
, pright =

Nn(Aright)

Nn(A)
, µleft = µn(Aleft), µright = µn(Aright).
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Then

∆I(A, (k, z)) =
1

Nn(A)

∑
xi∈A

(yi − µn(A))2 − 1

Nn(A)

∑
xi∈A

(yi − µn(Aleft))2 1(xik ≤ z)

− 1

Nn(A)

∑
xi∈A

(yi − µn(Aright))2 1(xik > z)

=
1

Nn(A)

∑
xi∈A

y2
i − µn(A)2 − pleft(

1

Nn(A)pleft

∑
xi∈A

y2
i 1(xik ≤ z)− (µleft)2)

− pright(
1

Nn(A)pright

∑
xi∈A

y2
i 1(xik > z)− (µright)2)

= pleft(µleft)2 + pright(µright)2 − µn(A)2

= (pleft(µleft)2 + pright(µright)2)(pleft + pright)− (pleftµleft + prightµright)2

= pleftpright(µleft − µright)2

≤ 2pleftpright[(µleft − µ)2 + (µright − µ)2]

≤ 2pleft(µleft − µ)2 + 2pright(µright − µ)2,

where
µ = E[Y |X ∈ A] = E[φ(X)|X ∈ A].

Now suppose without loss of generality that x1k < x2k < · · · < xnk (otherwise we can reorder
the samples by Xk). Since k /∈ S, Xk is independent of XS and therefore independent of Y .
Thus the distribution of (y1, . . . , yn) does not change after the reordering, i.e.,

yi
i.i.d∼ (φ(X)|X ∈ A) + ε.

Note that

sup
z

pleft(µleft − µ)2 ≤ sup
1≤m≤Nn(A)

m

Nn(A)

(
1

m

m∑
i=1

yi − µ

)2

.

Note that Y is sub-Gaussian with parameter M + 1. Therefore, for each 1 ≤ m ≤ Nn(A), by
Hoeffding bound,

P

 m

Nn(A)

(
1

m

m∑
i=1

yi − µ

)2

≥ δ

∣∣∣∣Nn(A)

 ≤ 2e−(M+1)2δNn(A)2/m ≤ 2e
− δNn(A)

(M+1)2 .

Therefore
P
(

sup
z
pleft(µleft − µ)2 ≥ δ

∣∣∣∣Nn(A)

)
≤ 2Nn(A)e

− δNn(A)

(M+1)2 .
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By symmetry, the same bound holds for pright(µright − µ)2. Therefore

P(∆I(A, k) ≥ δ
∣∣Nn(A))

≤P
(

sup
z
pleft(µleft − µ)2 ≥ δ/2

∣∣Nn(A)

)
+ P

(
sup
z
pright(µright − µ)2 ≥ δ/2

∣∣Nn(A)

)
≤4Nn(A)e

− δNn(A)

4(M+1)2 ,

and the lemma is proved.

Proof of the upper bound in Theorem 8.1.1
Without loss of generality, assume that when we split on feature k, the cut is always

performed along the direction of k at some data point (and that data point falls into the
right sub-tree). Suppose that εi has unit variance for all i. Let C = 2 max{256, 16(M + 1)2}.
We also assume, without loss of generality, that mn ≥ 8dn. Otherwise, since G0(T ) is, by
definition, upper bounded by the sample variance of y, we have

EX,ε sup
T∈Tn(mn,dn)

G0(T ) ≤ Var(Y ) ≤M2 + 1 ≤ 16(M + 1)2dn log np

mn

.

To simplify notation, we define xn+1 = (0, . . . , 0) and xn+2 = (1, . . . , 1). For any V ⊂
[p],L,R ∈ [n+ 2]|V |, let

A(V,L,R) = {X = (X1, . . . , Xp) : xLi,Vi ≤ XVi < xRi,Vi , 1 ≤ i ≤ |V |, 0 ≤ Xk ≤ 1, k /∈ V }

be the random axis-aligned hyper-rectangle obtained by splitting on features in V , where the
left and right endpoints of the ith feature Vi are determined by xLi,Vi and xRi,Vi . Note that
in this definition, we treat xi as random variables rather than fixed, and A(V,L,R) can be
the empty set with non-zero probability. Let

A(V ) = {A(V,L,R)|L,R ∈ [n+ 2]|V |}

be all axis-aligned hyper-rectangles obtained by splitting on features in V . For any d ≤ dn,
let

Ad = ∪|V |=dA(V )

be the collection of all possible subsets of [0, 1]p obtained by splitting on d features.
Fix δ > 96M2dn

mn
. We will first show that

PX,ε
(
∃A ∈ Ad, k /∈ S : ∆I(A, k) ≥ mnδ

Nn(A)
and Nn(A) ≥ mn

)
≤ 5(np)d+1 exp

(
− δmn

max{256, 16(M + 1)2}

)
.

(B.1)
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Note that for any two events C1 and C2, the inequality P(C1 ∩ C2) ≤ P(C1|C2) always holds.
Therefore, for any hyper-rectangle A, we have

PX,ε
(

∆I(A, k) ≥ mnδ

Nn(A)
and Nn(A) ≥ mn

)
≤PX,ε

(
∆I(A, k) ≥ mnδ

Nn(A)

∣∣∣∣Nn(A) ≥ mn

) (B.2)

To simplify notation, we will drop the conditional event Nn(A) ≥ mn in the remainder of
the proof of the upper bound, unless stated otherwise.

Fix V ⊂ [p],L,R ∈ [n+ 2]|V |, and k /∈ S. Conditional on samples in L and R, we would
like to apply Lemma B.1.1 to A(V,L,R) and k. The only problem is that there are now
samples on the boundary of A(V,L,R), namely those in L and R. Let xL = {xi}i∈L and
xR = {xi}i∈R. Conditional on xL, xR and Nn(A(V,L,R)), and on the random variable
X ∈ A(V,L,R), X is uniformly distributed in A(V,L,R). For a set A, we let A◦ be the
interior of A and let Ā be the boundary of A. Since mn ≥ 8dn,

Nn(A◦(V,L,R))

Nn(A(V,L,R))
≥ mn − 2dn

mn

≥ 3

4
.

By Lemma B.1.1, we have

PX,ε
(

∆I(A
◦(V,L,R), k) ≥ mnδ

3Nn(A(V,L,R))

∣∣∣∣xL,xR, Nn(A(V,L,R))

)
≤ 4Nn(A◦(V,L,R)) exp

(
− δmnNn(A◦(V,L,R))

12(M + 1)2Nn(A(V,L,R))

)
≤ 4n exp

(
− δmn

16(M + 1)2

) (B.3)

for large n. Since the right hand side does not depend on xL,xR, Nn(A(V,L,R)), we can
take expectation with respect to them, and obtain

PX,ε
(

∆I(A
◦(V,L,R), k) ≥ mnδ

3Nn(A(V,L,R))

)
≤ 4n exp

(
− δmn

16(M + 1)2

)
(B.4)

On the other hand, we have the inequality

∆I(A(V,L,R), k) ≤ ∆I(A
◦(V,L,R), k) +

∑
i∈L,R(yi − µn(A(V,L,R)))2

Nn(A(V,L,R))

≤ ∆I(A
◦(V,L,R), k) +

∑
i∈L,R 2(y2

i + µn(A(V,L,R))2)

Nn(A(V,L,R))
.

(B.5)
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We have

PX,ε
( ∑

i∈L,R 2y2
i

Nn(A(V,L,R))
≥ mnδ

3Nn(A(V,L,R))

)
≤P
(∑

i∈L,R 4(f 2(xi) + ε2i )

Nn(A(V,L,R))
≥ mnδ

3Nn(A(V,L,R))

)
≤P
(∑

i∈L,R 4(f 2(xi) + ε2i )

mn

≥ δ

3

)
≤P
(∑

i∈L,R 4M2 + 4ε2i
mn

≥ δ

3

)
≤P
(∑2dn

i=1(ε2i − 1)

mn

≥ δ

16Nn(A◦(V,L,R)
)

)
≤ exp(−δmn

256
),

(B.6)

for large n, where the fourth inequality holds because δ ≥ 96M2dn/mn, and the last inequality
follows from the well-known tail bound

P
(∣∣∣∣1dχ2

d − 1

∣∣∣∣ ≥ δ0

)
≤ 2e−dδ

2
0/8

for χ2
d random variable and δ0 < 1. To upper bound µn(A(V,L,R)), note that

P

(∑
i∈L,R 2µn(A(V,L,R))2

Nn(A(V,L,R))
≥ mnδ

3Nn(A(V,L,R))

)

≤P

(
|µn(A(V,L,R))| ≥

√
δmn

6dn

)

≤P

∣∣∣∣∣∣ 1

Nn(A(V,L,R))

Nn(A(V,L,R))∑
i=1

εi

∣∣∣∣∣∣ ≥
√
δmn

6dn
−M


≤ 2 exp

(
−1

2
mn(

√
δmn

6dn
−M)2

)

≤ 2 exp

(
−δmn

4

)
,

(B.7)

where the last inequality follows from mn ≥ 8dn and δ ≥ 96M2dn/mn. Combining Equations
(B.4), (B.5), (B.7), we have

PX,ε
(

∆I(A(V,L,R), k) ≥ mnδ

3Nn(A(V,L,R))

)
≤ 5n exp

(
− δmn

max{16(M + 1)2, 256}

)
(B.8)

for any V ⊂ [p], |V | = d,L,R ∈ [n+ 2]|V |, and k /∈ S. Note that the set Ad has cardinality

|Ad| =
(
p

d

)
(2(n+ 2))d ≤

(pn
d

)d
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for large n. Therefore by union bound,

P
(
∃A ∈ Ad, k /∈ S : ∆I(A, k) ≥ mnδ

Nn(A)

)
≤ 5np|Ad| exp

(
− δmn

max{256, 16(M + 1)2}

)
≤ 5(np)d+1 exp

(
− δmn

max{256, 16(M + 1)2}

)
.

(B.9)
Suppose that ∆I(A, k) ≥ mnδ

Nn(A)
for all A ∈ ∪d≤dnAd and k /∈ S, then for any T ∈ Tn(mn, dn),

G0(T ) ≤
∑

t:v(t)/∈S

Nn(t)

n

mnδ

Nn(t)
≤ δ

mn|I(t)|
n

≤ δ,

where the last inequality follows since |I(t)|+ 1 is the total number of leaf nodes in T , and
each leaf node contains at least mn samples. Therefore

PX,ε

(
sup

T∈Tn(mn,dn)

G0(T ) ≥ δ

)
≤

dn∑
d=1

P
(
∃A ∈ Ad, k /∈ S : ∆I(A, k) ≥ mnδ

Nn(A)

)

≤
dn∑
d=1

5(np)d+1 exp

(
− δmn

max{256, 16(M + 1)2}

)
≤ 10(np)dn+1 exp

(
− δmn

max{256, 16(M + 1)2}

)
(B.10)

for any δ > 96M2dn
mn

. Recall that C = 2 max{256, 16(M + 1)2}. Note that Cdn log(np)
mn

≥ 96M2dn
mn

for large n. Integrating over δ, we have

EX,ε

[
sup

T∈Tn(mn,dn)

G0(T )

]

≤ 3dn log(np)

2mn

+ EX,ε

[
sup

T∈Tn(mn,dn)

G0(T )1(δ ≥ 3dn log(np)

2mn

)

]

≤ 3dn log(np)

2mn

+

∫ ∞
3dn log(np)

2mn

PX,ε

(
sup

T∈Tn(mn,dn)

G0(T ) ≥ δ

)
dδ

≤ Cdn log(np)

mn

.

(B.11)

This completes the proof of the upper bound.
Proof of the lower bound in Theorem 8.1.1
For the lower bound, let

dn = max{d : 2d+1mn < n}, (B.12)

and consider a balanced, binary decision tree T constructed in the following way:



APPENDIX B. PROOF OF PART II 106

1. At each node on the first dn − 1 levels of the tree, we split on feature X1, at the
mid-point of X1’s side of the rectangle corresponding to the node.

2. At each node on the dnth level, we look at the remaining p− 1 features, and split on
the feature that maximizes the decrease in impurity.

In the following proof, we will lower bound G0(T ) by the sum of impurity reduction on
the dnth level alone. For t = 1, . . . , 2dn−1, let

Rt =

{
t− 1

2dn−1
≤ X1 <

t

2dn−1

}
.

be the hyper-rectangle corresponding to the tth node on the dnth level. Applying Chernoff’s
inequality, we have

P
(∣∣∣∣Nn(Rt)

n
− 1

2dn−1

∣∣∣∣ ≥ 1

3 · 2dn−1

)
≤ 2 exp

(
− n

27 · 2dn−1

)
.

Let
B1 =

{∣∣∣∣Nn(Rt)

n
− 1

2dn−1

∣∣∣∣ ≤ 1

3 · 2dn−1
for all t

}
be the event that each node on the dnth level contains at least

2

3

n

2dn−1
, but no more than

4

3

n

2dn−1
samples. Then

P(Bc
1) ≤

2dn−1∑
t=1

P
(∣∣∣∣Nn(Rt)

n
− 1

2dn−1

∣∣∣∣ ≥ 1

3 · 2dn−1

)
≤ 2dn exp

(
− n

27 · 2dn−1

)
, (B.13)

and conditional on B1,

8

3
mn ≤

2

3

n

2dn−1
≤ Nn(Rt) ≤

4

3

n

2dn−1
≤ 32

3
mn. (B.14)

We define
Rl
t(k) = Rt ∩

{
0 ≤ Xk <

1

2

}
and

Rr
t (k) = Rt ∩

{
1

2
≤ Xk < 1

}
and use Rl

t, R
r
t as shorthand when k is fixed. For each t = 0, 1, . . . , 2d − 1, by Equation

∆I(Rt, k) ≥ ∆I(Rt, (k, 1/2)) =
Nn(Rl

t)

Nn(Rt)

Nn(Rr
t )

Nn(Rt)
(µn(Rl

t)− µn(Rr
t ))

2
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Let
ηk = µn(Rl

t)− µn(Rr
t )

Conditional on Nn(Rl
t) and Nn(Rr

t ), η = (η2, . . . , ηp) are jointly Gaussian with zero mean.
To lower bound the impurity decrease at the tth node on the dnth level, we use a Gaussian
comparison argument to obtain a lower bound for supk |ηk|, which requires us to calculate
the covariance matrix of η. For any 2 ≤ k1, k2 ≤ p, let us further define

Rll
t (k1, k2) = Rt ∩

{
0 ≤ Xk1 <

1

2

}
∩
{

0 ≤ Xk2 <
1

2

}
;

Rlr
t (k1, k2) = Rt ∩

{
0 ≤ Xk1 <

1

2

}
∩
{

1

2
≤ Xk2 < 1

}
;

Rrl
t (k1, k2) = Rt ∩

{
1

2
≤ Xk1 < 1

}
∩
{

0 ≤ Xk2 <
1

2

}
;

Rrr
t (k1, k2) = Rt ∩

{
1

2
≤ Xk1 < 1

}
∩
{

1

2
≤ Xk2 < 1

}
.

As before, we write Rll
t , R

lr
t , R

rl
t and Rrr

t as shorthand when k1, k2 are fixed. Conditional
on Nn(Rt), the samples falling into the hyper-rectangle Rt are uniformly distributed in Rt.
Therefore we know from Chernoff’s inequality that

P
(∣∣∣∣Nn(Rll

t )

Nn(Rt)
− 1

4

∣∣∣∣ ≥ 1

16

)
≤ 2 exp

(
− Nn(Rt)

48

)
for any k1 and k2, and that the same results hold for Rlr

t , R
rl
t and Rll

t as well. Let

B2 =

{
max

ω∈{ll,lr,rl,rr}

∣∣∣∣Nn(Rω
t (k1, k2))

Nn(Rt)
− 1

4

∣∣∣∣ ≤ 1

16
, for all 1 ≤ t ≤ 2dn−1, 2 ≤ k1 < k2 ≤ p

}
.

Then
P(Bc

2) ≤ 2dnp2 exp

(
− Nn(Rt)

48

)
, (B.15)

and

P(B1 ∩B2) ≥ 1− 2dn+1p2 exp

(
− Nn(Rt)

48

)
≥ 1− 2dn+1p2 exp

(
− mn

18

)
≥ 8

9
(B.16)

for n large enough (under the condition that mn ≥ 36 log p+ 18 log n). Conditional on the
event B2,

Nn(Rl
t) ≥ Nn(Rll

t ) +Nn(Rlr
t ) ≥ 3

16
Nn(Rt) +

3

16
Nn(Rt) ≥

3

8
Nn(Rt),
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for any 1 ≤ t ≤ 2dn−1 and 2 ≤ k ≤ p, and the same holds for Nn(Rr
t ). Therefore,

Var(ηk) =
1

Nn(Rl
t)

+
1

Nn(Rr
t )
≥ 3

4Nn(Rt)
(B.17)

Cov(ηk1 , ηk2) =
1

Nn(Rll
t )

+
1

Nn(Rrr
t )
− 1

Nn(Rlr
t )
− 1

Nn(Rrl
t )
≤ 1

4Nn(Rt)
. (B.18)

Consider η̃2, . . . , η̃p with

Eη̃k = 0,Var(η̃k) =
3

4Nn(Rt)

and
Cov(η̃k1 , η̃k2) =

1

4Nn(Rt)
.

Then conditional on B1 ∩B2, by Sudakov-Fernique lemma, we have

Eε[max
k
ηk|B1 ∩B2] ≥ Emax

k
η̃k ≥

√
log p

Nn(Rt)
≥
√

3 log p

32mn

,

and the lower bound
min{Nn(Rl

t), Nn(Rr
t )} ≥

3

8
Nn(Rt) ≥ mn,

for any k, t. where the last inequality follows from Equation (B.14). Therefore, conditional
on B1 ∩B2 the minimum leaf size is lower bounded by mn. Finally

EX,ε

[
sup

T∈Tn(mn)

G0(T )

]
≥ EX,ε

[
sup

T∈Tn(mn)

G0(T )1B1∩B2

]

≥ EX

[∑
t

Nn(Rt)

n
Eε
[
max
k

∆I(Rt, k)1B1∩B2

]]

≥ EX
∑
t

Nn(Rt)

n
(
3

8
)2(Eε max

k
η2
k1B1∩B2)

≥ 9

64

3 log p

32mn

P(B1 ∩B2)

≥ 1

80

log p

mn

(B.19)

when n is large enough, and the lower bound is proved. This concludes the whole proof.
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B.2 Proof of Theorem 9.4.1

Proof of the population case – desirable features

Recall from Section 9.2 that there are three different sources of randomness:

1. (D) the randomness of the data D,

2. (T ) the randomness of the tree T , given the data D,

3. (P) the randomness of the randomly selected path P , given the tree T .

Note that, although the random path P depends on all three sources of randomness (the data
randomness, the tree randomness, and the additional path randomness), when we condition
on the tree T , then the random path P is independent of the data D. In the first part
of the proof, we will only consider the last two sources of randomness, namely, from the
random tree and from the randomly selected path on the tree. Also, recall that we define
S−j , S

+
j ⊂ [p]× {−1,+1} as the features in Sj ⊂ [p] with − and + sign, respectively, that is

S−j = {(k,−1) : k ∈ Sj} ⊂ [p]× {−1,+1}, (B.20)
S+
j = {(k,+1) : k ∈ Sj} ⊂ [p]× {−1,+1}. (B.21)

For each node t in a tree T , define Ḟ±(t) to be the set of signed features used by the
parents of t in T and Ḟ(t) to be the corresponding (unsigned) features. For any feature j,
(j,−) and (j,+) can appear together in Ḟ±(t). Furthermore, let F±(t) be a subset of Ḟ±(t)
by only including the signed feature that corresponds to the first split of the feature if a
feature appeared multiple times in the path. As a result, for any feature j, at most one of
(j,+) and (j,−) can appear in Ḟ±(t). Define F(t) to be the set of (unsigned) features in
F±(t). Because Ḟ±(t) and F±(t) only differ in terms of feature signs, they correspond to the
same set of features, i.e., Ḟ(t) = F(t). Conditioned on a tree T , at every node t of T we now
define the set of desirable features with respect to the LSS model as follows.

Definition B.2.1 (Desirable features). Define the desirable feature set U(t) ⊂ [p] to be

U(t) ,
{
k ∈ [p]

∣∣∣ ∃ j ∈ [J ] s.t. k ∈ Sj, S+
j ∩ F(t) = ∅ and (k,−1) 6∈ F±(t)

}
. (B.22)

Note that the set of desirable features U(t) at a node t is only defined w.r.t. some
particular LSS model. In particular, it depends on the basic signed interactions S−1 , . . . , S

−
J .

Hence, for a given tree T with node t, U(t) is an oracle set, which cannot be computed from
data. The way to think about U(t) is that it corresponds exactly to those set of features which
would yield some impurity decrease if the tree was grown by seeing the full data distribution
P (X, Y ) and hence, making every split at the correct split point. Moreover, denote tleaf to be
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the leaf node of P and we define F to be the desirable signed features of F (tleaf). That is,
the signed features kt where for the node t on the path P we have kt ∈ U(t), i.e.,

F(P) , {(kt, bt) ∈ F (tleaf)
∣∣∣ kt ∈ U(t), tleaf is leaf node of P } ⊂ [p]× {−1,+1} (B.23)

For notation simplicity, we use F as the shorthand of F(P).
Further, we define the event Ω0 to be that the desirable features are exhausted at the leaf

node:

Ω0 , {U(tleaf) = ∅ for the leaf node tleaf of P}. (B.24)

With these definitions we get the following lemma.

Lemma B.2.1. For the event Ω0 in (B.24) it holds true that

Ω0 ⊂
⋂
j∈[J ]

{S−j ⊂ F} ∪ {S+
j ∩ F 6= ∅}, (B.25)

with {S−j ⊂ F} ∩ {S+
j ∩ F 6= ∅} = ∅.

Proof. For an arbitrary interaction j ∈ [J ], it follows from the definition of U(t) that Ω0

implies either S+
j ∩ F±(tleaf) 6= ∅ or S−j ⊂ F±(tleaf). First, consider S+

j ∩ F±(tleaf) 6= ∅. Let
(k,+1) ∈ S+

j ∩ F±(tleaf) be the signed feature in S+
j ∩ F±(tleaf) that appears first on the path.

Then, because F±(t) only considers the signed features when they first appear in a path, we
have that (k,+1) was desirable and thus, (k,+1) ∈ F , i.e., S+

j ∩ F 6= ∅. Second, consider
S−j ⊂ F±(tleaf). Then for any (k,−1) ∈ S−j , by definition of F (t) we have that no S+

j feature
appeared on the path before (k,−1) and hence, (k,+1) ∈ F , i.e., S−j ⊂ F . Finally, recall
that by definition of F both conditions in (B.25) can never happen at the same time.

Recall that F is defined in (B.23) and Ω0 ∈ σ (D,T,P) is defined in (B.24). Define

Croot(D) , min
k∈∪Jj=1Sj

PT (troot splits on feature k | D) . (B.26)

We state the population version of our main results below.

Theorem B.2.1. For all S̃± ⊂ [p]× {−1,+1} with s̃ = |S̃| we have that almost surely

PP

(
S̃± ⊂ F

∣∣∣ T,D) ≤ 0.5s̃ (B.27)

and if S̃± is a union interaction as in Definition 9.1.1 then almost surely

PP

(
S̃± ⊂ F

∣∣∣ T,D) ≥ 0.5s̃ − PP (Ωc
0 | T,D) . (B.28)

Moreover, if S̃± is not a union interaction then

P(P,T )

(
S̃± ⊂ F

∣∣∣ D) ≤ 0.5s̃(1− Croot(D)/2). (B.29)
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Proof of Theorem B.2.1. Proof of (B.27): Recall that the path P corresponding to F is
selected in such a way: one starts at the root node troot and then randomly follows the paths
in the tree either to the plus (B = +1) or to the minus (B = −1) direction with probability
0.5 according to the Bernoulli coin flips in B.

For any feature k ∈ [p], let Bk be the Bernoulli random variable we draw when k appears
for the first time on P. Note that when (k,−1) ∈ F , Bk = −1. Similar, when (k,+1) ∈ F ,
this implies that Bk = +1. Consequently, for any S̃± = {(k1, b1), . . . , (ks̃, bs̃)} ⊂ [p]×{−1,+1}
we have that

{S̃± ⊂ F} ⊂ {Bk1 = b1 ∩ . . . ∩Bks̃ = bs̃} (B.30)

and hence

P
(
S̃± ⊂ F

)
≤ P

(
Bk1 = b1 ∩ . . . ∩Bks̃ = bs̃

)
= 0.5s̃, (B.31)

That completes the proof.
Proof of (B.28): Consider any basic interaction Sj = {k1, . . . , ksj}, j ∈ [J ], then by

Lemma B.2.1 we have that

Ω0 ∩ {Bk1 = . . . = Bksj = −1} ⊂ {S−j ⊂ F}. (B.32)

Moreover, when sj = 1, we also have that

Ω0 ∩ {Bk1 = +1} ⊂ {S+
j ⊂ F}. (B.33)

Consequently, when S̃ is a union interaction as in Definition 9.1.1 it follows that

Ω0 ∩ {Bk1 = b1 ∩ . . . ∩Bks̃ = bs̃} ⊂ {S̃± ⊂ F}, (B.34)

which, shows (B.28).
Proof of (B.29): Assume that S̃± is not a union interaction. If any of the following is

true:

• S̃± contains any noisy signed feature (k, b) that’s not contained in ∪jS+
j ∪ S−j ;

• for some signal feature k ∈ ∪jSj we have that (k,+1), (k,−1) ∈ S̃±;

• |S̃± ∩ S+
j | > 1 for some j ∈ [J ];

Then by definition of U(t) in (B.23), P
(
S̃± ⊂ F

)
= 0 and thus, (B.29) holds.

Thus, we can assume that S̃± contains no noisy features and there exists some interaction
j ∈ [J ] with sj > 1 such that (S−j ∪ S+

j ) ∩ S̃± 6= ∅ and for some (k,−1) ∈ S−j we have that
(k,−1) 6∈ S̃±.
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First, assume that (k,+1) 6∈ S̃±. Then, whenever troot splits on feature k, we have that
{S̃± ⊂ F} implies1 Bk = −1 and thus,

P
(
S̃± ⊂ F|D

)
=
∑
k̃∈[p]

P
(
S̃± ⊂ F ∩ troot splits on k̃|D

)
≤
∑
k̃ 6=k

P
(
Bk1 = b1 ∩ . . . ∩Bks̃ = bs̃ ∩ troot splits on k̃|D

)
+ P

(
Bk1 = b1 ∩ . . . ∩Bks̃ = bs̃ ∩Bk = −1 ∩ troot splits on k|D

)
=
∑
k̃ 6=k

P
(
Bk1 = b1 ∩ . . . ∩Bks̃ = bs̃

)
P
(
troot splits on k̃|D

)
+ P

(
Bk1 = b1 ∩ . . . ∩Bks̃ = bs̃ ∩Bk = −1

)
P (troot splits on k|D)

= 0.5s̃(1− P (troot splits on k|D)) + 0.5s̃+1P (troot splits on k|D)

≤ 0.5s̃ − 0.5s̃+1P (troot splits on k|D) ≤ 0.5s̃(1− Croot/2),

where we made use of the fact that the tree T is independent of the Bernoulli random variables
B.

Second, assume that (k,+1) ∈ S̃±. If S̃± ∩ S−j 6= ∅, then {S̃± ⊂ F} implies2 troot does
not split on k and thus

P
(
S̃± ⊂ F

)
≤ P

(
Bk1 = b1 ∩ . . . ∩Bks̃ = bs̃

)
P (troot does not split on k)

= 0.5s̃P (troot does not split on k) ≤ 0.5s̃(1− Croot).

If S̃± ∩ S−j = ∅, let k? ∈ Sj and k? 6= k. Because (k,+1) ∈ S̃±, we can assume that

(k?,+1) 6∈ S̃±; otherwise |S̃± ∩ S+
j | > 1, which implies P

(
S̃± ⊂ F

)
= 0. When troot splits

on k?, {S̃± ⊂ F} implies3 Bk? = −1 and thus,

P
(
S̃± ⊂ F

)
=
∑
k̃∈[p]

P
(
S̃± ⊂ F ∩ troot splits on k̃

)
≤
∑
k̃ 6=k?

P
(
Bk1 = b1 ∩ . . . ∩Bks̃ = bs̃ ∩ troot splits on k̃

)
+P

(
Bk1 = b1 ∩ . . . ∩Bks̃ = bs̃ ∩Bk? = −1 ∩ troot splits on k?

)
≤ 0.5s̃(1− P (troot splits on k?)) + 0.5s̃+1P (troot splits on k?) ≤ 0.5s̃(1− Croot/2).

1Note that this requires the interactions to be disjoint, as otherwise the features in S̃± ∩ (S+
j ∪ S

−
j ) may

also appear in other interactions Sl with l 6= j and k 6∈ Sl and thus, even when Bk = +1 it is possible that
S̃± ∩ (S+

j ∪ S
−
j ) ⊂ F .

2Again, this requires the interactions to be disjoint, as otherwise the features in S̃± ∩ (S−
j ∪ S

+
j ) \ (k,+1)

may also appear in other interactions Sl with l 6= j and thus, even when troot splits on k with Bk = +1, it is
possible that S̃± ∩ (S−

j ∪ S
+
j ) \ (k,+1) ⊂ F .

3Again, this requires the interactions to be disjoint.
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Thus, we have shown (B.29).

Proof of the finite sample case

Filtering of desirable features and impurity

Recall that Rt,l = Rt ∩ {X|Xkt ≤ γt} and Rt,r = Rt ∩ {X|Xkt > γt} denote the region
corresponding to the left and right children for node t. In other words, node t divides the
region Rt into Rt,l and Rt,r. Recall that Nn(t) is the number of samples in the region Rt, i.e.,
Nn(t) =

∑n
i=1 1(xi ∈ Rt). We will use an equivalent formula for the impurity as in Lemma

B.2.2.

Lemma B.2.2. ∆n
I (Rt,l, Rt,r) defined in (9.4) in the main text is equivalent to (B.35):

∆n
I (Rt,l, Rt,r) =

Nn(tl)Nn(tr)

n(Nn(tl) +Nn(tr))

 1

Nn(tl)

∑
xi∈Rt,l

yi −
1

Nn(tr)

∑
xi∈Rt,r

yi

2

. (B.35)

Proof.

∆n
I (Rt,l, Rt,r) =

1

n

 ∑
xi∈Rt

(yi −
1

Nn(t)

∑
xi∈Rt

yi)
2 −

∑
xi∈Rt,l

(yi −
1

Nn(tl)

∑
xi∈Rt,l

yi)
2 −

∑
xi∈Rt,r

(yi −
1

Nn(tr)

∑
xi∈Rt,r

yi)
2


=

1

n

 ∑
xi∈Rt

y2i −
1

Nn(t)
(
∑

xi∈Rt

yi)
2 −

∑
xi∈Rt,l

y2i +
1

Nn(tl)
(
∑

xi∈Rt,l

yi)
2 −

∑
xi∈Rt,r

y2i +
1

Nn(tr)
(
∑

xi∈Rt,r

yi)
2


=

1

n

− 1

Nn(t)
(
∑

xi∈Rt

yi)
2 +

1

Nn(tl)
(
∑

xi∈Rt,l

yi)
2 +

1

Nn(tr)
(
∑

xi∈Rt,r

yi)
2

 .

If we denote A =
∑

xi∈Rt,l yi and B =
∑

xi∈Rt,r yi, the above formula is the same as :

1

n

(
−

1

Nn(t)
(A+B)2 +

1

Nn(tl)
A2 +

1

Nn(tr)
B2

)
=

1

n

(
Nn(tr)

Nn(tl)Nn(t)
A2 +

Nn(tl)

Nn(tr)Nn(t)
B2 −

2

Nn(t)
AB

)
=
Nn(tl)Nn(tr)

nNn(t)

(
1

Nn(tl)2
A2 +

1

Nn(tr)2
B2 −

2

Nn(tl)Nn(tr)
AB

)
=
Nn(tl)Nn(tr)

nNn(t)

(
1

Nn(tl)
A−

1

Nn(tr)
B

)2

.

Let R denote the set of axis-aligned hyper-rectangles obtained by splitting the unit
hyper-rectangle consecutively, where each split satisfies A3. We study R because it contains
all the possible rectangles that can represent region of a node in a tree. Let Rd be the set of
rectangles obtained by splitting the unit hyper-rectangle d times, where each split satisfies
assumption A3. Then R = ∪d≥1Rd, and for any R ∈ Rd, we have µ(R) ≤ (1 − Cγ)d. For
any region R, we denote NR to be the number of points in R.
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Lemma B.2.3. Suppose that A3 is satisfied. Then for any d ≥ 1,

max
R∈∪d1>dRd1

∣∣∣∣∣ 1n
n∑
i=1

yi1(xi ∈ R1)−E(Y ·1(X ∈ R))

∣∣∣∣∣ ≤ CY

(
max
R∈Rd

∣∣∣NR

n
− µ(R)

∣∣∣)+2CY (1−Cγ)d.

Proof of Lemma. For any R1 ∈ Rd1 , d1 > d, there exists R0 ∈ Rd such that R1 ⊂ R0.
Therefore NR1 < NR0 , and∣∣∣ 1

n

n∑
i=1

yi1(xi ∈ R1)
∣∣∣ ≤ NR1

n
CY <

NR0

n
CY

Since R0 ∈ Rd, we have

NR0

n
≤ max

R∈Rd

∣∣∣NR

n
− µ(R)

∣∣∣+ max
R∈Rd

µ(R) ≤ max
R∈Rd

∣∣∣NR

n
− µ(R)

∣∣∣+ (1− Cγ)d. (B.36)

Therefore ∣∣∣∣∣ 1n
n∑
i=1

yi1(xi ∈ R1)− E(Y · 1(X ∈ R))

∣∣∣∣∣
≤
∣∣∣ 1
n

n∑
i=1

yi1(xi ∈ R1)
∣∣∣+ |E(Y · 1(X ∈ R))|

≤ NR0

n
CY + CY (1− Cγ)d+1

≤ CY

(
max
R∈Rd

∣∣∣NR

n
− µ(R)

∣∣∣+ (1− Cγ)d
)

+ CY (1− Cγ)d+1

≤ CY

(
max
R∈Rd

∣∣∣NR

n
− µ(R)

∣∣∣)+ 2CY (1− Cγ)d.

Since R1 is arbitrary, we have

max
R∈∪d1>dRd1

∣∣∣∣∣ 1n
n∑
i=1

yi1(xi ∈ R1)−E(Y ·1(X ∈ R))

∣∣∣∣∣ ≤ CY

(
max
R∈Rd

∣∣∣NR

n
− µ(R)

∣∣∣)+2CY (1−Cγ)d.

(B.37)

Proposition B.2.1. Suppose that A1 and A3 hold true. Then

max
R∈R

∣∣∣NR

n
− µ(R)

∣∣∣ p→ 0,

and

max
R∈R

∣∣∣ 1
n

n∑
i=1

yi1(xi ∈ R)− E(Y · 1(X ∈ R))
∣∣∣ p→ 0.
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Proof. For any fixed d, let Gn(Rd) be the growth function for the set of rectangles Rd defined
in Chapter 5.2 of Vapnik [93], i.e.,

Gn(Rd) , max
xi∈Rp,yi∈R

log
∣∣∣{(1(y1 ≥ θ,x1 ∈ R), . . . ,1(yn ≥ θ,xn ∈ R))

∣∣∣R ∈ Rd, θ ∈ R
}∣∣∣ .

Here for any set A, |A| denotes the number of elements in A.
We claim that Gn(Rd) ≤ log(n(2np)d). This is because at each of d splits, we have at

most p directions and at most n split points to choose from. Therefore, splitting d times can
create no more than (2np)d different separations of the n data points. Furthermore, within
each rectangle, the indicator functions 1(yi ≥ θ), θ ∈ R can at most create n separations.

Thus,
Gn(∪d0≤dRd0) ≤ log(d exp(Gn(Rd))) ≤ log(nd(2np)d), (B.38)

and
Gn(∪d0≤dRd0)

n
≤ log(nd) + d log(2n)

n
+
d log p

n
→ 0.

Therefore, by Theorem 5.1 of [93]:
Theorem 5.1 in [93]: Let A ≤ Q(z, α) ≤ B, α ∈ Λ be a measurable set of bounded

real-valued functions. Let Gn be the growth function of the indicator functions induced by
Q, then we have the following inequality:

P

{
sup
α∈Λ

(∫
Q(z, α)dF (z)− 1

n

n∑
i=1

Q(zi, α)

)
> ε

}
≤ 4 exp

{(
G2n

n
− (ε− n−1)2

(B − A)2

)
n

}
.

we have

max
R∈∪d0≤dRd0

∣∣∣∣∣ 1n
n∑
i=1

yi1(xi ∈ R)− E(Y · 1(X ∈ R))

∣∣∣∣∣ p→ 0. (B.39)

Taking Y = 1 and we have

max
R∈∪d0≤dRd0

∣∣∣NR

n
− µ(R)

∣∣∣ p→ 0. (B.40)

By Lemma B.2.3 and the above equation, we have

max
R∈∪d1>dRd1

∣∣∣∣∣ 1n
n∑
i=1

yi1(xi ∈ R1)− E(f(X) · 1(X ∈ R1))

∣∣∣∣∣ (B.41)

≤CY
(

max
R∈Rd

∣∣∣NR

n
− µ(R)

∣∣∣)+ 2CY (1− Cγ)d
p

≤ 3CY (1− Cγ)d.

Since that holds for any fixed d > 0, we know the left hand side of (B.41) converges to zero
in probability. Combining (B.39) and (B.41), we have shown that:

max
R∈R

∣∣∣ 1
n

n∑
i=1

yi1(xi ∈ R)− E(Y · 1(X ∈ R))
∣∣∣ p→ 0.
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Since this holds for any bounded random variable Y , we can take Y = 1 and we have shown

max
R∈R

∣∣∣NR

n
− µ(R)

∣∣∣ p→ 0. (B.42)

That completes the proof.

Proposition B.2.2 (Subgaussian case). Suppose that A3 holds true and (log n)1+δ log p/n→
0 for some δ > 0. Suppose Y = E(Y |X) +Z where Z is independent of X and 1-subgaussian.
Then

max
R∈R

∣∣∣ 1
n

n∑
i=1

yi1(xi ∈ R)− E(Y · 1(X ∈ R))
∣∣∣ p→ 0.

Proof. Denote f(X) = E(Y |X) and CY =
∑J

j=0 |βj|. Then |f(X)| ≤ CY . Note that

max
R∈R

∣∣∣ 1
n

n∑
i=1

yi1(xi ∈ R)− E(Y · 1(X ∈ R))
∣∣∣

≤ max
R∈R

∣∣∣ 1
n

n∑
i=1

f(xi)1(xi ∈ R)− E(f(X) · 1(X ∈ R))
∣∣∣+ max

R∈R

∣∣∣ 1
n

n∑
i=1

zi1(xi ∈ R)
∣∣∣.

Here zi = yi − f(xi) represents the noise terms. Our proof proceeds in the following two
steps.

Step 1. Show that

max
R∈R

∣∣∣ 1
n

n∑
i=1

f(xi)1(xi ∈ R)− E(f(X) · 1(X ∈ R))
∣∣∣ p→ 0. (B.43)

Step 1 is similar to the proof of B.2.1 but the difference is that we need the convergence rate.
Let

δ0 =
δ

2δ + 4
,

and take

d =

(
n

log(np)

)δ0
→∞.

Let Gn(Rd) be the growth function for the set of rectangles Rd. By (B.38), we have

Gn(∪d0≤dRd0)

n
≤ log(nd) + d log(2n)

n
+
d log p

n
= O

(
d log(np)

n

)
= O

((
log(np)

n

)1−δ0
)
→ 0.

Therefore, by Theorem 5.1 of [93], we have

max
R∈∪d0≤dRd0

∣∣∣∣∣ 1n
n∑
i=1

f(xi)1(xi ∈ R1)− E(f(X) · 1(X ∈ R))

∣∣∣∣∣ = o

((
log(np)

n

)1/2−δ0
)

p→ 0.

(B.44)
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Since this holds for any bounded random variable Y , we can take Y = 1 and it follows that

max
R∈Rd

∣∣∣NR

n
− µ(R)

∣∣∣ ≤ max
R∈∪d0≤dRd0

∣∣∣NR

n
− µ(R)

∣∣∣ = o

((
log(np)

n

)1/2−δ0
)

p→ 0. (B.45)

Since d→∞, (1− Cγ)d → 0. Therefore, by Lemma B.2.3, we have

max
R∈∪d1>dRd1

∣∣∣∣∣ 1n
n∑
i=1

f(xi)1(xi ∈ R1)− E(f(X) · 1(X ∈ R))

∣∣∣∣∣ p→ 0. (B.46)

Combining (B.44) and (B.46), (B.43) is proved.
Step 2. Show that

max
R∈R

∣∣∣ 1
n

n∑
i=1

zi1(xi ∈ R)
∣∣∣ p→ 0 (B.47)

Note that

max
R∈R

∣∣∣ 1
n

n∑
i=1

zi1(xi ∈ R)
∣∣∣ = max

{
max

R∈∪d0≤dRd0

∣∣∣ 1
n

n∑
i=1

zi1(xi ∈ R)
∣∣∣, max
R∈R∈∪d1>dRd1

∣∣∣ 1
n

n∑
i=1

zi1(xi ∈ R)
∣∣∣} .

Therefore, it suffices to prove that both of the two terms on the right hand size converges to
0 in probability. We begin with the first term: maxR∈∪d0≤dRd0

∣∣∣ 1
n

∑n
i=1 zi1(xi ∈ R)

∣∣∣. Since X
and Z are independent and Z is 1-subgaussian, by Hoeffding inequality,

P

(∣∣∣ 1
n

n∑
i=1

zi1(xi ∈ R)
∣∣∣ ≥ ε/2

∣∣∣∣ X
)

= P

(∣∣∣ 1
n

NR∑
i=1

zi

∣∣∣ ≥ ε/2

)
≤ 2 exp

(
−n

2ε2

8NR

)
.

for any rectangle R. Therefore by union bound,

P

(
max

R∈∪d0≤dRd0

∣∣∣ 1
n

n∑
i=1

zi1(xi ∈ R)
∣∣∣ ≥ ε/2

∣∣∣∣ X
)

≤2 exp(Gn(∪d0≤dRd0)) exp

(
−nε

2

8

)
≤ 2 exp

(
log(nd(2np)d)− nε2

8

)
→ 0.

for any ε > 0. Since the above upper bound on the probability is independent of X, we
conclude that

max
R∈∪d0≤dRd0

∣∣∣ 1
n

n∑
i=1

zi1(xi ∈ R)
∣∣∣ p→ 0.

We now turn to the second term maxR∈R∈∪d1>dRd1

∣∣∣ 1
n

∑n
i=1 zi1(xi ∈ R)

∣∣∣. Let Rs0 be the set

of rectangles with at most s0 = n/(log n)1/2+δ0 samples, then log |Rs0| ≤ (s0 + 1) log n. By
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union bound,

P

(
max
R∈Rs0

∣∣∣ 1
n

n∑
i=1

zi1(xi ∈ R)
∣∣∣ ≥ ε/2

∣∣∣∣ X
)

≤2 exp(log |Rs0|) exp

(
−nε

2

8

)
≤ 2 exp

(
(s0 + 1) log n− n2ε2

8s0

)
→ 0.

Therefore,

max
R∈Rs0

∣∣∣ 1
n

n∑
i=1

zi1(xi ∈ R)
∣∣∣→ 0.

Hence, to prove (B.47), it suffices to show that ∪d1>dRd1 ⊂ Rs0 with probability tending to
1. Note that by definition of δ0, 1/2+δ0

1/2−δ0 = 1 + δ. Therefore

(
log(np)

n

) 1
2
−δ0

(logn)
1
2
+δ0 =

(
log(np)(logn)1+δ

n

) 1
2
−δ0

=

(
(logn)2+δ + log p(logn)1+δ

n

) 1
2
−δ0
→ 0.

By (B.36) and (B.45), we have

max
R∈∪d1>dRd1

NR ≤ max
R∈Rd

NR = o

(
n

(
log(np)

n

)1/2−δ0
)

= o(s0).

Therefore, maxR∈∪d1>dRd1 NR ≤ s0 with probability tending to 1. The proof is now complete.

Define population impurity decrease ∆I(t) at a node t to be

∆I(t) = Var(Y |Rt)−
µ(Rtl)

µ(Rt)
Var(Y |Rtl)−

µ(Rtr)

µ(Rt)
Var(Y |Rtr). (B.48)

Similar to Lemma B.2.2, we know it is equivalent to:

∆I(Rt,l(γ; k), Rt,r(γ; k)) =
µ(Rt,l(γ; k))µ(Rt,r(γ; k))

µ(Rt(γ; k))

[
E(Y |X ∈ Rt,l(γ; k))− E(Y |X ∈ Rt,r(γ; k))

]2
. (B.49)

The following proposition shows that the finite-sample impurity decrease converges to the
population impurity decrease uniformly.

Proposition B.2.3. With A1 and A3, we have the following two uniform convergence results:

a. maxR∈R

∣∣∣NRn − µ(R)
∣∣∣ p→ 0

b. sup
Rt,l,Rt,r∈R

∣∣∣∆n
I (Rt,l, Rt,r)−∆I(Rt,l, Rt,r)

∣∣∣ p→ 0.
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Proof. a. That’s the direct conclusion of Proposition B.2.1.
b. Let f(x1, x2, y1, y2) = x1x2

x1+x2
(y1− y2)2. Then f is a Lipschitz function on [0, 1]× [0, 1]×

[−CY − 1, CY + 1] × [−CY − 1, CY + 1]. Use the fact that maxR∈R

∣∣∣ 1
n

∑n
i=1 yi1(xi ∈ R) −

E(Y · 1(X ∈ R))
∣∣∣ p→ 0 in proposition B.2.1 and the fact maxR∈R

∣∣∣NRn − µ(R)
∣∣∣ p→ 0 in a), by

continuous mapping theorem, we have

sup
Rt,l,Rt,r∈R

∣∣∣∆n
I (Rt,l, Rt,r)−∆I(Rt,l, Rt,r)

∣∣∣ p→ 0.

Now we analyze the impurity decrease at each node of a tree. We consider three families
of trees:T0, T1 and T2:

T0 , {Any tree that satisfies A3}.

T1 , {Any CART tree that satisfies A3 and A5}.
T2 , {Any CART tree that satisfies A3, A5, and A4}.

T1 is the family of CART trees that satisfy our assumptions but mtry can be arbitrary. T1

is more restricted than T0 in the sense that the threshold γt of any node t of any tree in T1

must maximize the finite sample impurity decrease (9.4). Thus, T1 depends on the data. For
any T ∈ T0 and any t ∈ T such that Ů(t) 6= ∅, its region Rt is a rectangle:

Rt = {x ∈ Rp|∀` ∈ [p], clow,` < x` ≤ chigh,`}. (B.50)

where clow,`, chigh,` ∈ [0, 1].
By the definition of desirable feature set U(t), we have its equivalent formula:

U(t) , ∪j∈[J ]:S+
j ∩F±(t)=∅Sj/F(t).

Define the set of noisy features to be its complement: [p]/U(t). We can also define

Ů(t) , ∪j∈[J ]:S+
j ∩Ḟ±(t)=∅Sj/F(t).

Since F±(t) ⊂ Ḟ±(t), Ů(t) ⊂ U(t). For any γ, denote Rt,l(γ; k) = Rt ∩ {X|Xk ≤ γ} and
Rt,r(γ; k) = Rt ∩ {X|Xk > γ}. First, for any node t ∈ T and any k ∈ Ů(t), we have a
characterization for the impurity decrease:

Lemma B.2.4. For any T ∈ T0, t ∈ T , j ∈ [J ], k ∈ Sj ∩ U(t), and γ ∈ (0, 1),

∆I(Rt,l(γ; k), Rt,r(γ; k))

=µ(Rt) · β2
jP (∀ ` ∈ Sj/{k}, X` ≤ γ`|X ∈ Rt)

2·(
1(γ ≤ γk) ·

(1− γk)2γ

(1− γ)
+ 1(γ > γk) ·

γ2
k(1− γ)

γ

)
.
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Proof of Lemma B.2.4. Since k ∈ U(t), we know that k is not in F(t). That means any of
t’s parents do not split on k. In other words, Rt does not have any constraints for feature k,
i.e., clow,k = 0 and chigh,k = 1. Thus, we know that

µ(Rt,l(γ; k)) = µ(Rt) · γ (B.51)

and

µ(Rt,r(γ; k)) = µ(Rt) · (1− γ). (B.52)

Recall that ∆I in (B.48) has its equivalent formula (B.49):

∆I(Rt,l(γ; k), Rt,r(γ; k)) =

µ(Rt,l(γ; k))µ(Rt,r(γ; k))

µ(Rt(γ; k))

[
E(Y |X ∈ Rt,l(γ; k))− E(Y |X ∈ Rt,r(γ; k))

]2

where the conditional expectations are

E(Y |X ∈ Rt,l(γ; k)) =
J∑

j′=1

βj′P
(
∀` ∈ Sj′ , X` ≤ γ`

∣∣∣X ∈ Rt,l(γ; k)
)
, (B.53)

and

E(Y |X ∈ Rt,r(γ; k)) =
J∑

j′=1

βj′P
(
∀` ∈ Sj′ , X` ≤ γ`

∣∣∣X ∈ Rt,r(γ; k)
)
. (B.54)

Now we will analyze (B.53) and (B.54). To ease the notations, let’s define the following
three events:

Aj′ ={X` ≤ γ`, ∀` ∈ Sj′}, (B.55)
B ={X ∈ Rt}, (B.56)
Ck ={Xk ≤ γ}. (B.57)

Then (B.53) becomes
∑J

j′=1 βj′P (Aj′ |BCk). Because Rt has not constraints on k, B does not
involve feature k. When j′ 6= j (namely, k 6∈ Sj′), Aj′ also does not involve feature k. Thus, Ck
is independent of (Aj′ , B), which implies P (Aj′ |BCk) =

P (Aj′BCk)

P (BCk)
=

P (Aj′B)P (Ck)

P (B)P (Ck)
= P (Aj′|B).

Similarly this holds for (B.54). Therefore, when j′ 6= j:

P
(
∀` ∈ Sj′ , X` ≤ γ`

∣∣∣X ∈ Rt,l(γ; k)
)

= P
(
∀` ∈ Sj′ , X` ≤ γ`

∣∣∣X ∈ Rt,r(γ; k)
)
.
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When j′ = j,

P
(
∀` ∈ Sj, X` ≤ γ`

∣∣∣X ∈ Rt,l(γ; k)
)
− P

(
∀` ∈ Sj, X` ≤ γ`

∣∣∣X ∈ Rt,r(γ; k)
)

=P (∀ ` ∈ Sj/{k}, X` ≤ γ`|X ∈ Rt)·(
P (Xk ≤ γk|Xk ≤ γ)− P (Xk ≤ γk|Xk > γ)

)
=P (∀ ` ∈ Sj/{k}, X` ≤ γ`|X ∈ Rt)·(

1(γ ≤ γk) ·
1− γk
1− γ

+ 1(γ > γk) ·
γk
γ

)
.

Therefore, (B.49) becomes:

µ(Rt,l(γ; k))µ(Rt,r(γ; k))

µ(Rt)

(
E(Y |X ∈ Rt,l(γ; k))− E(Y |X ∈ Rt,r(γ; k))

)2

= µ(Rt)γ(1− γ) · β2
jP (∀ ` ∈ Sj/{k}, X` ≤ γ`|X ∈ Rt)

2·(
1(γ ≤ γk) ·

(1− γk)2

(1− γ)2
+ 1(γ > γk) ·

γ2
k

γ2

)
= µ(Rt) · β2

jP (∀ ` ∈ Sj/{k}, X` ≤ γ`|X ∈ Rt)
2·(

1(γ ≤ γk) ·
(1− γk)2γ

(1− γ)
+ 1(γ > γk) ·

γ2
k(1− γ)

γ

)
That completes the proof.

Lemma B.2.5. For T ∈ T0, t ∈ T , if there exists j ∈ [J ] and k ∈ Sj such that k ∈ Ů(t),
then

P (∀ ` ∈ Sj/{k}, X` ≤ γ`|X ∈ Rt) ≥ Csj−1
γ .

Proof of Lemma B.2.5. Because k ∈ Sj and k ∈ Ů(t), we know that S+
j ∩ Ḟ±(t) = ∅. That

means node t is not at the right branch of any node that splits on features in Sj. Thus,

clow,` =0 when ` ∈ Sj. (B.58)

Also, chigh,k = 1 and clow,k = 0 because k ∈ Ů(t). Then, P (∀ ` ∈ Sj/{k}, X` ≤ γ`|X ∈ Rt) is

P (∀` ∈ Sj/{k} X` ≤ γ`, X ∈ Rt)

µ(Rt)

(Due to (B.58)) =

∏
`∈[p]/Sj

(chigh,` − clow,`)
∏

`∈Sj/{k}min(chigh,`, γ`)

µ(Rt)

≥
∏

`∈[p]/Sj
(chigh,` − clow,`)

∏
`∈Sj/{k} chigh,` · γ`

µ(Rt)

=
µ(Rt) ·

∏
`∈Sj/{k} γ`

µ(Rt)

≥Csj−1
γ .
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That completes the proof.

Lemma B.2.6. Assume A1 holds. For any fixed ε > 0,

P

 inf
T∈T0

min
t ∈ T, µ(Rt) ≥ ε,

Ů(t) 6= ∅

min
k∈Ů(t)

sup
γ∈[Cγ ,1−Cγ ]

∆n
I (Rt,l(γ; k), Rt,r(γ; k)) >

ε

4
C2
βC

2 maxj sj−1
γ

→ 1.

(B.59)

Proof. First of all, we know from Proposition B.2.3 that supRt∈R |∆n
I (Rt) − ∆I(Rt)|

p→ 0.
Thus, in order to prove (B.59), we only need to show that

inf
T∈T0

min
t ∈ T, µ(Rt) ≥ ε,

Ů(t) 6= ∅

min
k∈Ů(t)

∆I(Rt,l(γk; k), Rt,r(γk; k)) >
ε

2
C2
βC

2 maxj sj−1
γ . (B.60)

Recall that γk is ground-truth threshold of feature k in the interaction. Here we can drop
maxγ∈[Cγ ,1−Cγ ] and use γk because that results in a lower bound of the previous equation.
Based on Lemma B.2.4, we know that

∆I(Rt,l(γk; k), Rt,r(γk; k))

=µ(Rt) · β2
jP (∀ ` ∈ Sj/{k}, X` ≤ γ`|X ∈ Rt)

2 · (1− γk)γk

≥1

2
CγC

2
βε · P (∀ ` ∈ Sj/{k}, X` ≤ γ`|X ∈ Rt)

2.

The second inequality is due to µ(Rt) ≥ ε, γk(1 − γk) ≥ Cγ(1 − Cγ) ≥ 1
2
Cγ and βj ≥ Cβ.

Then using Lemma B.2.5 leads to the conclusion.

For a node t, denote γ∗t,k = argmaxγ∈[Cγ ,1−Cγ ]∆
n
I (Rt,l(γ; k), Rt,r(γ; k)).

Lemma B.2.7. Suppose A1 holds true, we have

sup
T∈T0

max
t ∈ T, µ(Rt) ≥ ε,

Ů(t) 6= ∅

max
k∈Ů(t)

|γ∗t,k − γk|
p→ 0.

Proof. To simplify the notation in the proof, let us denote

an = ∆n
I (Rt,l(γ

∗
t,k; k), Rt,r(γ

∗
t,k; k)), a = ∆I(Rt,l(γ

∗
t,k; k), Rt,r(γ

∗
t,k; k)),

and
bn = ∆n

I (Rt,l(γk; k), Rt,r(γk; k)), b = ∆I(Rt,l(γk; k), Rt,r(γk; k)).
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Using Proposition B.2.3, we have

sup
T∈T0

max
t ∈ T, µ(Rt) ≥ ε,

Ů(t) 6= ∅

max
k∈Ů(t)

∣∣∣an − a∣∣∣ p→ 0. (B.61)

By Lemma B.2.6 (see (B.60)), we know the second term is bounded uniformly above zero:

inf
T∈T0

min
t ∈ T, µ(Rt) ≥ ε,

Ů(t) 6= ∅

min
k∈Ů(t)

a ≥ ε

2
C2
βC

2 maxj sj−1
γ .

Thus, the ratio converges to 1 in probability:

sup
T∈T0

max
t ∈ T, µ(Rt) ≥ ε,

Ů(t) 6= ∅

max
k∈Ů(t)

∣∣∣an
a
− 1
∣∣∣ p→ 0. (B.62)

Similarly, this applies to bn and b, too.

sup
T∈T0

max
t ∈ T, µ(Rt) ≥ ε,

Ů(t) 6= ∅

max
k∈Ů(t)

∣∣∣∣bnb − 1

∣∣∣∣ p→ 0. (B.63)

So by the continuous mapping theorem, we know that

sup
T∈T0

max
t ∈ T, µ(Rt) ≥ ε,

Ů(t) 6= ∅

max
k∈Ů(t)

∣∣∣∣ bnan ab − 1

∣∣∣∣ p→ 0

Because γ∗t,k maximizes ∆n
I and γk maximizes ∆I , an ≥ bn and a ≤ b. Thus bn

an
a
b
≤ a

b
≤ 1.

Therefore, we know
sup
T∈T0

max
t ∈ T, µ(Rt) ≥ ε,

Ů(t) 6= ∅

max
k∈Ů(t)

1− a

b

p→ 0.

By Lemma B.2.4, we know that

a =µ(Rt) · β2
jP (∀ ` ∈ Sj/{k}, X` ≤ γ`|X ∈ Rt)

2·(
1(γ∗t,k ≤ γk) ·

(1− γk)2γ∗t,k
(1− γ∗t,k)

+ 1(γ∗t,k > γk) ·
γ2
k(1− γ∗t,k)
γ∗t,k

)
,

b =µ(Rt) · β2
jP (∀ ` ∈ Sj/{k}, X` ≤ γ`|X ∈ Rt)

2 · γk(1− γk)
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Thus the ratio is

a

b
= 1(γ∗t,k ≤ γk) ·

(1− γk)γ∗t,k
γk(1− γ∗t,k)

+ 1(γ∗t,k > γk) ·
γk(1− γ∗t,k)
(1− γk)γ∗t,k

.

When γ∗t,k ≤ γk,

1− a

b
= 1−

(1− γk)γ∗t,k
γk(1− γ∗t,k)

=
γk − γ∗t,k
γk(1− γ∗t,k)

≥ γk − γ∗t,k.

Similarly, when γ∗t,k ≥ γk, 1− a
b
≥ γ∗t,k − γk. Thus, 1− a/b ≥ |γk − γ∗t,k| ≥ 0. Thus, by the

Squeeze theorem, we complete the proof.

Lemma B.2.8. With A1, the following statements are true:

i) For any fixed ε, δ > 0,

P

 inf
T∈T1(D)

min
t ∈ T, µ(Rt) ≥ ε

U(t) 6= ∅

min
j∈[J]

min
k∈Sj∩U(t)

P (∀ ` ∈ Sj/{k}, X` ≤ γ`|X ∈ Rt;D)− Csj−1
γ ≥ −δ

→ 1.

ii) for any fixed ε > 0,

P

 inf
T∈T1(D)

min
t ∈ T, µ(Rt) ≥ ε,

U(t) 6= ∅

min
k∈U(t)

sup
γ∈[Cγ ,1−Cγ ]

∆n
I (Rt,l(γ; k), Rt,r(γ; k)) >

ε

4
C2
βC

2maxj sj−1
γ

→ 1. (B.64)

iii)
sup

T∈T1(D)
max

t ∈ T, µ(Rt) ≥ ε,
U(t) 6= ∅

max
k∈U(t)

|γ∗t,k − γk|
p→ 0.

Proof. We use math induction to show that the above statements hold for any L ≥ 0:

i) For any fixed ε, δ > 0,

P

 inf
T∈T1(D)

min
t ∈ T, µ(Rt) ≥ ε, U(t) 6= ∅,∑J

j=1 |Ḟ±(t) ∩ S+
j | ≤ L

min
j∈[J]

min
k∈Sj∩U(t)

P (∀ ` ∈ Sj/{k}, X` ≤ γ`|X ∈ Rt;D)− Csj−1
γ ≥ −δ

→ 1.

ii) for any fixed ε > 0,

P

 inf
T∈T1(D)

min
t ∈ T, µ(Rt) ≥ ε, U(t) 6= ∅,∑J

j=1 |Ḟ±(t) ∩ S+
j | ≤ L

min
k∈U(t)

sup
γ∈[Cγ ,1−Cγ ]

∆n
I (Rt,l(γ; k), Rt,r(γ; k)) >

ε

4
C2
βC

2maxj sj−1
γ

→ 1.

(B.65)
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iii)
sup

T∈T1(D)
max

t ∈ T, µ(Rt) ≥ ε, U(t) 6= ∅,∑J
j=1 |Ḟ±(t) ∩ S+

j | ≤ L

max
k∈U(t)

|γ∗t,k − γk|
p→ 0.

If those statements are true, then our proof is complete because for any node t,
∑J

j=1 |Ḟ±(t)∩
S+
j | ≤

∑
j sj, which is a constant.

When L = 0, U(t) 6= ∅ and
∑

j |Ḟ±(t) ∩ S+
j | = 0 implies that U(t) = ∪Jj=1Sj/F (t) =

Ů(t) 6= ∅. Then the statement holds because of Lemmas B.2.5, B.2.6, and B.2.7.
Suppose the statement holds for L = L0, and let us consider the case L = L0 + 1:
i): For k ∈ Sj ∩ U(t), we know that S+

j ∩ F±(t) = ∅. Now consider S+
j ∩ Ḟ±(t): if it is

also empty, then k ∈ Ů(t), then i) holds because of Lemma B.2.5. Let’s consider the case
when S+

j ∩ Ḟ±(t) 6= ∅. For any ` ∈ S+
j ∩ Ḟ±(t), some parent nodes of t are split on feature `

and node t is at the left branch of the first parent node that is split on `. In other words,
this is the scenario where (`,−1) first appears in the path and then (`,+1) appears later.
Denote that first parent node that is split on ` to be tparent,`. Since none of tparent,`’s parent
nodes are split on `, ` ∈ S+

j ∩ Ḟ±(t) but not S+
j ∩ Ḟ±(tparent,`). Since Ḟ±(tparent,`) is a subset

of Ḟ±(t), we know that
∑J

j=1 |S
+
j ∩ Ḟ±(tparent,`)| ≤ L0. Also, because S+

j ∩ Ḟ±(tparent,`) = ∅
and ` 6∈ Ḟ (tparent,`), ` ∈ U(tparent,`). Then by the induction condition iii), we know that
γ∗tparent,`,`

p→ γ`. Because t is at the left branch of tparent,`, the upper bound in Rt for feature `,
i.e., chigh,`, is smaller or equal to γ∗tparent,`,`. In other words, for any fixed δ > 0, we know that

P

 sup
T∈T1(D)

max
t ∈ T, µ(Rt) ≥ ε, U(t) 6= ∅,∑J
j=1 |Ḟ±(t) ∩ S+

j | ≤ L0 + 1

max
j ∈ [J ]

S+
j ∩ F±(t) = ∅

max
(`,+1)∈S+

j ∩Ḟ
±(t)

chigh,` − γ` > δ

 p→ 0.

For any l such that ` ∈ Sj but (`,+1) 6∈ S+
j ∩ Ḟ±(t), clow,` = 0. Note that chigh,k = 1 and

clow,k = 0 because k ∈ U(t). Then, P (∀ ` ∈ Sj/{k}, X` ≤ γ`|X ∈ Rt;D) is

P (∀` ∈ Sj/{k} X` ≤ γ`, X ∈ Rt;D)

µ(Rt)

=

∏
`∈[p]/Sj (chigh,` − clow,`)

∏
`∈Sj/{k}max(min(chigh,`, γ`)− clow,`, 0)

µ(Rt)

=

∏
`∈[p]/Sj (chigh,` − clow,`)

∏
(`,+1)∈S+

j ∩Ḟ
±(t)

(chigh,` − clow,` + op(1))
∏
`∈Sj/{k},(`,+1)6∈S+

j ∩Ḟ
±(t)

min(chigh,`, γ`)

µ(Rt)

≥

∏
`∈[p]/Sj (chigh,` − clow,`)

∏
(`,+1)∈S+

j ∩Ḟ
±(t)

(chigh,` − clow,`)
∏
`∈Sj/{k},(`,+1)6∈S+

j ∩Ḟ
±(t)

chigh,` · γ`

µ(Rt)
+ op(1)

≥
µ(Rt) ·

∏
`∈Sj/{k},(`,+1)6∈S+

j ∩Ḟ
±(t)

γ`

µ(Rt)
+ op(1)

≥Csj−1
γ + op(1).

That completes the proof for i).
ii): Given i), ii) should be obvious following the same proof in Lemma B.2.6.
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iii) Given ii), iii) should follow the same proof in Lemma B.2.7.
Thus, we have finished the math induction and proved the statements.

Lemma B.2.9. For any tree T ∈ T1 and any node t ∈ T , the noisy features correspond to a
nearly zero impurity decrease, i.e.

sup
T∈T1

max
t∈T

max
k∈[p]/U(t)

sup
γ∈[0,1]

∆n
I (Rt,l(γ; k), Rt,r(γ; k))

p→ 0. (B.66)

Proof. By Proposition B.2.3, we only need to show that

sup
T∈T1

max
t∈T

max
k∈[p]/U(t)

sup
γ∈[0,1]

∆I(Rt,l(γ; k), Rt,r(γ; k))
p→ 0. (B.67)

For k ∈ [p]/U(t), either k ∈ [p]/
⋃J
j=1 Sj or k ∈

⋃J
j=1 Sj/U(t). We will analyze these two

cases separately.
a) When k ∈ [p]/

⋃J
j=1 Sj, for any j

′ ∈ [J ], k is not contained in Sj′ . Because different
features are independent, Xk is independent from X ∈ {X|∀ ` ∈ Sj′ , X` ≤ γ`}. Therefore,
for any j′ ∈ [J ], we have P (∀ ` ∈ Sj′ , X` ≤ γ`|X ∈ Rt,l(γ; k)) = P (∀ ` ∈ Sj′ , X` ≤ γ`|X ∈
Rt,r(γ; k)). That implies ∆I(Rt,l(γ; k), Rt,r(γ; k)) = 0.

b) When there exists j such that k ∈ Sj/U(t). For j′ 6= j, by a similar deduction as in a),
we know that P (∀ ` ∈ Sj′ , X` ≤ γ`|X ∈ Rt,l(γ; k)) = P (∀ ` ∈ Sj′ , X` ≤ γ`|X ∈ Rt,r(γ; k)).
The impurity decrease ∆I(Rt,l(γ; k), Rt,r(γ; k)) becomes

µ(Rt,l(γ; k))µ(Rt,r(γ; k))

µ(Rt)
β2
j · (B.68)(

P (∀ ` ∈ Sj, X` ≤ γ`|X ∈ Rt,l(γ; k))− P (∀ ` ∈ Sj, X` ≤ γ`|X ∈ Rt,r(γ; k))
)2

.

Here we still consider two cases: Because k 6∈ U(t), either (k,−1) ∈ F±(t) or S+
j ∩ F±(t) 6= ∅.

i) If S+
j ∩ F±(t) 6= ∅, suppose (k′,+1) is the first positive signed feature in S+

j that enters
F±(t). That means we can find a parent of t, denoted as tparent, that splits on feature k′ and
none of tparent’s parent splits on k′. That implies k′ 6∈ F(tparent) and S+

j ∩ F±(tparent) = ∅, in
other words, k′ ∈ U(tparent). Recall that γ∗tparent,k′ denotes the threshold at node tparent. By
Lemma B.2.8, we know that the threshold γ∗tparent,k′

p→ γk′ . Since t is on the right branch
of the node tparent, clow,k′(t) ≥ γ∗tparent,k′ . Thus, µ({X|∀ ` ∈ Sj, X` ≤ γ`} ∩ Rt)

p→ 0. Since

(B.68) is bounded by 2C2
β
µ(Rt,l(γ;k))µ(Rt,r(γ;k))

µ(Rt)

[
P (∀ ` ∈ Sj, X` ≤ γ`|X ∈ Rt,l(γ; k)) + P (∀ ` ∈

Sj, X` ≤ γ`|X ∈ Rt,r(γ; k))
]
≤ 2C2

βP (∀ ` ∈ Sj, X` ≤ γ`, X ∈ Rt), we know that (B.68)
converges to zero in probability.

ii) If S+
j ∩ F±(t) = ∅ but (k,−1) ∈ F±(t), it means there exists a parent of t, denoted

tparent, such that feature k is used to split that node and none of its parents splits on
k, in other words, k ∈ U(tparent). By Lemma B.2.8, we know that the corresponding
threshold γ∗tparent,k

p→ γk. Since S+
j ∩ F±(t) = ∅, t is on the left branch of tparent. Thus,
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chigh,k(t) ≤ γ∗tparent,k. For any fixed ε > 0, if µ(Rt,l(γ; k)) > ε and µ(Rt,r(γ; k)) > ε, then
P (∀ ` ∈ Sj, X` ≤ γ`,j|X ∈ Rt,l(γ; k)) − P (∀ ` ∈ Sj, X` ≤ γ`,j|X ∈ Rt,r(γ; k))

p→ 0, which
implies ∆I(Rt,l(γ; k), Rt,r(γ; k))

p→ 0. Otherwise, µ(Rt,l(γ; k)) ≤ ε or µ(Rt,r(γ; k)) ≤ ε, then
µ(Rt,l(γ;k))µ(Rt,r(γ;k))

µ(Rt)
≤ ε and ∆I(Rt,l(γ; k), Rt,r(γ; k)) ≤ 4ε. Since ε is chosen arbitrarily, this

implies ∆I(Rt,l(γ; k), Rt,r(γ; k))
p→ 0.

Combining a) and b), we complete the proof.

With the help of the previous lemmas, we have the following proposition:

Proposition B.2.4. Suppose tleaf is a leaf of P from a random tree T ∈ T2. Assume A1-A5
hold true. For any fixed constant ε > 0, the following facts hold true:

i)

P

(
max
t∈T

max
k∈[p]/U(t)

∆n
I (Rt,l(γ

∗
t,k; k), Rt,r(γ

∗
t,k; k)) <

ε

4
C2
βC

2 maxj sj−1
γ

)
→ 1.

ii)
P
(
U(tleaf) = ∅

∣∣∣D) p→ 1.

iii)

P

(
min

t∈p(tleaf)
min
k∈U(t)

∆n
I (Rt,l(γ

∗
t,k; k), Rt,r(γ

∗
t,k; k)) ≥ ε

4
C2
βC

2 maxj sj−1
γ

∣∣∣D) ≥ 1−εC̃−ηn(D, ε),

with constant C̃ = C2s
m / log(1/Cγ) and ηn(D, ε) p→ 0.

Proof. i) By Lemma B.2.9, we know with probability approaching 1,

max
t∈T

max
k∈[p]/U(t)

sup
γ∈[0,1]

∆n
I (Rt,l(γ; k), Rt,r(γ; k)) ≤ ε

4
C2
βC

2 maxj sj−1
γ . (B.69)

ii): For any fixed ε > 0, by Lemma B.2.6 and Lemma B.2.9, the following event Aε
happens with probability approaching 1,

Aε =
⋂
T∈T1

{
min

t∈T,µ(Rt)≥ε,U(t)6=∅
min
k∈U(t)

sup
γ∈[Cγ ,1−Cγ ]

∆n
I (Rt,l(γ; k)}, Rt,r(γ; k)) > (B.70)

max
t∈T

max
k∈[p]/U(t)

sup
γ∈[0,1]

∆n
I (Rt,l(γ; k), Rt,r(γ; k))

}
,

which implies that for any node with volume at least ε any desirable features has higher
impurity decrease than any non-desirable feature. For a random path P , denote its leaf node
tleaf and the depth of the path is D. Then for d ∈ [D], denote td to be the d-th node on the
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path P(tleaf). Recall that S = ∪Jj=1Sj denotes the set of all signal features and s = |S| their
total number. Based on (B.70), if at any node t, its candidate feature set Mtry(t) contains all
the signal features S, then it will split on a signal feature as long as U(tleaf) 6= ∅. If there are
more than s nodes along the path that has volume larger than ε and their candidate feature
set contains S, then the desirable features must have been exhausted at the leaf node, i.e.,{∣∣∣{d ∈ [D] : S ⊂Mtry(td) and µ(Rd) ≥ ε}

∣∣∣ ≥ s, Aε

}
⊂ {U(tleaf) = ∅, Aε}. (B.71)

Further, note that, because µ(Rtd) ≥ Cγµ(Rtd−1
) ≥ . . . ≥ Cd

γ , when d < log ε/ logCγ, it
always holds that µ(Rtd−1

) ≥ ε and therefore{∣∣∣{d ∈ [log ε/ logCγ] : S ⊂Mtry(td)}
∣∣∣ ≥ s, Aε, D ≥ log ε/ logCγ

}
(B.72)

⊂ {U(tleaf) = ∅, Aε, D ≥ log ε/ logCγ} . (B.73)

Since for any node t, its candidate feature set Mtry(t) has mtry features, we know

P (S ⊂Mtry(t)) =

(
p−s

mtry−s

)(
p

mtry

) =
mtry · (mtry − 1) · · · (mtry − s+ 1)

p · (p− 1) · · · (p− s+ 1)
≥
(
mtry − s+ 1

p− s+ 1

)s
≥ Cs

m.

(B.74)

Since Mtry(t) is independent of the path P , it follows that

P(P,T )

(∣∣∣{d ∈ [log ε/ logCγ] : S ⊂Mtry(td)}
∣∣∣ ≥ s

∣∣∣D ≥ log ε/ logCγ,D
)

(B.75)

≥P (B(log ε/ logCγ, C
s
m) ≥ s)− 1(D ∈ Aε) (B.76)

≥1− exp

(
−2 log ε/ logCγ

(
Cs
m −

s

log ε/ logCγ

)2
)
− 1(D ∈ Aε) (B.77)

where B(n, p) denotes a Binomial distribution with n trails and success probability p and
the last inequaility follows from Hoeffding’s inequality. Thus, for any 0 < ε < exp((1 −
1/
√

2)Cs
m/(s log(1/Cγ))), we have(

Cs
m −

s

log ε/ logCγ

)2

≥ 1

2
C2s
m .

Denote
C̃ = C2s

m / log(1/Cγ),

we have that for sufficiently large n

P(P,T )

(∣∣∣{d ∈ [log ε/ logCγ ] : S ⊂Mtry(td)}
∣∣∣ ≥ s∣∣∣D(P) ≥ log ε/ logCγ ,D

)
≥ 1− εC̃ − 1(D ∈ Aε) (B.78)
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and thus it follows from (B.72) that

P(P,T )

(
U(tleaf) = ∅

∣∣∣D ≥ log ε/ logCγ,D
)
≥ 1− εC̃ − 1(D ∈ Aε). (B.79)

Because P (D ≥ log ε/ logCγ)→ 1, by the Markov inequality, we know the random variable
P (D ≥ log ε/ logCγ

∣∣∣D)
p→ 1. Thus, we know

P(P,T )

(
U(tleaf) = ∅

∣∣∣D) ≥ 1− εC̃ + ηn(D, ε), (B.80)

where ηn(D, ε) is a random variable only depend on D and ηn(D, ε) p→ 0. Because that holds
for any ε, we have

P(P,T )

(
U(tleaf) = ∅

∣∣∣D) p→ 1.

iii) Denote ts to be the s-th node in a path P(tleaf) for s ≥ 1. Based on the proof of
ii), let d be an integer that (roughly) equals to log ε

logCγ
. Then µ(Rtd) ≥ ε and P (U(td) =

∅
∣∣∣D) ≥ 1− εC̃ + ηn(D, ε). When U(td) = ∅, U(ts) 6= ∅ implies s ≤ d and µ(Rts) ≥ ε. Thus,

P (∃t ∈ P(tleaf), such that U(t) 6= ∅ and µ(Rt) < ε|D) ≤ P (U(td) 6= ∅|D) ≤ εC̃ − ηn(D, ε).
Therefore, we have

P

(
min

t∈p(tleaf),U(t) 6=∅
min
k∈U(t)

∆n
I (Rt,l(γ

∗
t,k; k), Rt,r(γ

∗
t,k; k)) ≥ ε

4
C2
βC

2 maxj sj−1
γ

∣∣∣D)
≥P

(
min

t∈p(tleaf),µ(Rt)≥ε,U(t)6=∅
min
k∈U(t)

∆n
I (Rt,l(γ

∗
t,k; k), Rt,r(γ

∗
t,k; k)) ≥ ε

4
C2
βC

2 maxj sj−1
γ

∣∣∣D)
− εC̃ − ηn(D, ε),

thus, the proof follows from Lemma B.2.8.

Balanced root feature selection

Recall the definition of Croot in (B.26), which appears in Theorem B.2.1. Recall that for
any tree T from RF, there are two different sources of randomness: the randomness of the
data D = ((xi, yi))

n
i=1 and the randomness from the candidate feature selection. Denote

Mtry(t) ⊂ [p] to be the set of candidate features selected at node t and note that Mtry(t) and
the data D are independent.

Define the event A to be that, given data D, the maximum impurity decrease at the
split of root node for every signal feature k ∈ ∪jSj is larger than that of any noisy feature
k′ 6∈ ∪jSj, that is,

A = { min
k∈∪jSj

∆n
I

(
Rtroot,l(γ

?
k , k), Rtroot,r(γ

?
k , k)

)
> max
k′ 6∈∪jSj

∆n
I

(
Rtroot,l(γ

?
k′ , k

′), Rtroot,r(γ
?
k′ , k

′)
)
} ∈ σ(D). (B.81)

Here σ(D) is the sigma field induced by D. By definition A is independent of Mtry(troot).
Note that it follows from Proposition B.2.4 that

PD(A)→ 1 as n→∞.
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Theorem B.2.2. Assume that Cmp ≤ mtry ≤ (1 − Cm)(p − s + 1) + 1 for some constant
Cm ∈ (0, 1). Condition on D = ((xi, yi))

n
i=1, for any k ∈ ∪jSj, we have

PT (troot splits on feature k|D) ≥ Cs
m − 1Ac

and thus,

Croot(D) ≥ Cs
m − 1Ac

p→ Cs
m as n→∞.

Proof. For any k ∈ ∪jSj, define Bk to be the event that only signal feature k is selected in
Mtry(troot)

Bk , {Mtry(troot) ∩ ∪jSj = k and |Mtry(troot) \ ∪jSj| = mtry − 1}.

Bk only depends on Mtry(troot) but does not depend on D. Note that

A ∩Bk ⊂ {troot splits on feature k}.

Thus,

PT (troot splits on feature k|D) ≥ PT (Bk ∩ A|D) ≥ PT (Bk|D)− PT (Ac|D) = P (Bk)− 1Ac .

Moreover, we have that

P (Bk) =

(
p−s

mtry−1

)(
p

mtry

) =
mtry

p

(
p−s

mtry−1

)(
p−1

mtry−1

) =
mtry

p

(
p−mtry
s−1

)(
p−1
s−1

)
=

s−2∏
i=0

(
p−mtry − i
p− 1− i

)
mtry

p
≥
(
p−mtry − s+ 2

p− s+ 1

)s−1
mtry

p
≥ Cs

m

where the second equality follows from the identity where n = p − 1, h = s − 1, and
k = mtry − 1: (

n−h
k

)(
n
k

) =

(
n−k
h

)(
n
h

) .

Note that Theorem B.2.2 suggests that we want to chose mtry such that Cm is as large
as possible. From the constraint Cmp ≤ mtry ≤ (1 − Cm)(p − s + 1) + 1 we obtain that
Cm ≤ (p− s+ 2)/(2p− s+ 1), where equality corresponds to the choice

mtry =
1− s−2

p

2− s−1
p

p. (B.82)

When p� s, mtry ≈ p/2 and Cm ≈ 1/2.
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Combining results

Our major result in Theorem B.2.1 is formulated for the random (oracle) feature set F =
F(D, T,P). Note that this is an oracle feature set, as it depends on the true interactions Sj,
which are not known in practice. Further, note that given a tree T = T (D), we have that F
is independent of the data D, that is

F | T ⊥⊥ D. (B.83)

From the analysis in Section B.2 we know that we can obtain a consistent estimate of the
oracle feature set F by thresholding on MDI as in F̂ε. Recall that for a given ε the (random)
set F̂ε can easily be obtained without any knowledge of the true model. Also, note that the
property (B.83) does not hold for F̂ε. Based on Proposition B.2.4, we observe the following.

Recall that Ω0 is defined in (B.24), F is defined in (B.23), and F̂ε is defined in (9.5) in
the main text. We have the following theorem.

Theorem B.2.3. Under the assumption of Proposition B.2.4 it holds true that for any fixed
ε > 0,

P(P,T ) (Ωc
0 | D)

p→ 0; (B.84)

P(P,T )

(
F̂ε * F

∣∣∣ D) p→ 0 (B.85)

P(P,T )

(
F̂ε 6= F

∣∣∣ D) ≤ ( 4ε

C2
βC

2 maxj sj−1
γ

)C̃

+ ηn(D, ε) with ηn(D, ε) p→ 0; (B.86)

with C̃ as in Proposition B.2.4.

Proof. (B.84) follows directly from Proposition B.2.4 ii) and the definition of Ω0 in (B.24).
To prove (B.85), one observes from Proposition B.2.4 i) that for any ε > 0, taking

ε̃ = 4ε

C2
βC

2maxj sj−1
γ

, the following happens with probability converging to one (as n→∞)

max
t∈T

max
k∈[p]/U(t)

∆n
I (Rt,l(γ

∗
t,k; k), Rt,r(γ

∗
t,k; k)) <

ε̃

4
C2
βC

2 maxj sj−1
γ = ε,

which implies that F̂ε contains no irrelevant features. Thus,

lim inf
n→∞

P(D,T,P)

(
F̂ε ⊆ F

)
= 1.

Then by Markov inequality, we know P(P,T )

(
F̂ε * F

∣∣∣ D) p→ 0.
To prove (B.86), we further note that by Proposition B.2.4 iii),

P

(
min

t∈P(tleaf)
min
k∈U(t)

∆n
I (Rt,l(γ

∗
t,k; k), Rt,r(γ

∗
t,k; k)) ≥ ε

∣∣∣D) ≥ 1−

(
4ε

C2
βC

2 maxj sj−1
γ

)C̃

− ηn(D, ε).
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If
min

t∈p(tleaf)
min
k∈U(t)

∆n
I (Rt,l(γ

∗
t,k; k), Rt,r(γ

∗
t,k; k)) ≥ ε

and
max
t∈T

max
k∈[p]/U(t)

∆n
I (Rt,l(γ

∗
t,k; k), Rt,r(γ

∗
t,k; k)) < ε

, we know F̂ε = F . Thus, we have

P(T,P)

(
F̂ε = F

∣∣∣D) ≥ 1−

(
4ε

C2
βC

2 maxj sj−1
γ

)C̃

− ηn(D, ε). (B.87)

That completes the proof.

Finally, we can combine Theorem B.2.1, Theorem B.2.2, and Theorem B.2.3 to prove
Theorem 9.4.1 in the main text.

Proof of Theorem 9.4.1. Assume that |S±| = s̃ and S± = {(k1, b1), . . . , (ks̃, bs̃)})} and let

rn(D, ε) = max
(
P(P,T )(Ω

c
0|D) + ηn(D, ε), P(P,T )(F̂ε * F|D)

)
,

with ηn(D, ε) as in Theorem B.2.3. It follows from Theorem B.2.3 that rn(D, ε) p→ 0 as
n→∞.
Proof of 1.:
Analog as in Theorem B.2.1, for any feature k ∈ [p], let Bk be the Bernoulli random variable
we draw when k appears for the first time on P. Recall the definition of F̂ε, in particular,
that (k, bk) ∈ F̂ε only if Xk appears the first time on P. Thus, analog as for F (recall the
proof of Theorem B.2.1) we have that (k,−1) ∈ F implies Bk = −1 and (k,+1) ∈ F implies
Bk = +1. Thus,

{S± ∈ F̂ε} ⊂ {Bk1 = b1 ∩ . . . ∩Bks̃ = bs̃}

and hence,

DWP(S±) =P(P,T )(S
± ∈ F̂ε|D)

≤P(P,T )(B
k1 = b1 ∩ . . . ∩Bks̃ = bs̃|D)

=PP(Bk1 = b1 ∩ . . . Bks̃ = bs̃) = 2−s̃.
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Proof of 2.:
Assume that S± is a union interaction. Then we have that

DWP(S±) = P(P,T )(S
± ∈ F̂ε|D)

≥ P(P,T )(S
± ∈ F|D)− P(P,T )(F̂ε 6= F|D)

≥ P(P,T )(S
± ∈ F|D)−

(
4ε

C2
βC

2 maxj sj−1
γ

)C̃

− ηn(D, ε)

≥ 0.5s̃ − P(P,T )(Ω
c
0|D)−

(
4ε

C2
βC

2 maxj sj−1
γ

)C̃

− ηn(D, ε)

≥ 0.5s̃ −

(
4ε

C2
βC

2 maxj sj−1
γ

)C̃

− rn(D, ε),

where the second inequality follows from Corollary B.2.3 and the third inequality follows
from Theorem B.2.1.
Proof of 3.:
Assume that S± is not a union interaction. Then we have that

DWP(S±) = P(P,T )(S
± ∈ F̂ε|D)

≤ P(P,T )(S
± ∈ F|D) + P(P,T )(F̂ε * F|D)

≤ 0.5s̃(1− Croot(D)/2) + rn(D, ε),

where the second inequality follows from Theorem B.2.2.
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