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ABSTRACT OF THE DISSERTATION 
 

 
Exploring the roles of genetic regulation 

in human phenotypes 

 

 

by 

 

Malika Kumar Freund 

Doctor of Philosophy in Human Genetics 

University of California, Los Angeles, 2020 

Professor Bogdan Pasaniuc, Chair 

 

Human phenotypes are influenced to varying extents by inherited genetic variation, although 

specific mechanisms through which this variation affects the phenotypes are not completely 

understood. In this dissertation I explore different modes of genetic regulation in the context of 

human complex traits and rare disorders. First, I examine the degree of shared genetic basis 

between complex traits and rare monogenic disorders across a wide range of phenotypes. 

Second, I explore the regulatory landscape of ovarian surface epithelial cells to identify putative 

pathways involved in the development of epithelial ovarian cancer. This work provides a foray 

into understanding the different ways that genetic variation can drive downstream phenotypes 

through direct and epigenetic regulation of target genes. 
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Chapter 1: Introduction 

Human traits and diseases, or phenotypes, are broadly considered to result from a 

combination of genetic factors and non-genetic “environmental” factors, to varying degrees. A 

long-term goal of human medical genetic research has been to isolate and identify the genetic 

factors driving phenotypes, both towards the goals of better interpreting individuals’ risk of 

developing a trait or disease and better understanding the biological basis of these varied 

phenotypes. In many cases, understanding the biological basis of phenotypes can directly 

inform therapeutic approaches.  

The last few decades of medical genetic research have successfully identified myriad 

genetic factors influencing human phenotypes. Large scale family studies, and more recently 

exome sequencing studies, have identified single genes harboring rare genetic variation linked 

to a variety of rare genetic disorders1. In parallel, genome-wide association studies (GWAS) 

have identified common genetic variation associated with thousands of complex traits and 

diseases across many different ancestries and ethnicities2. However, there remains much to be 

understood about the way these genetic variants affect phenotypes. In particular,  how “rare 

disease” genes contribute to broader phenotypes is not well characterized, and common genetic 

variation identified by GWAS tends to fall in the non-coding genome where interpretation of 

variant consequences is significantly harder to determine3.  

One path through which genetic variation can be linked to human complex traits and rare 

disorders is through epigenetics and regulation of gene expression. Various strategies have 

been proposed to link common genetic variation to more interpretable target genes, through the 

hypothesis that common genetic variation is directly regulating expression of target genes, and 

recent studies have provided evidence that genetic variation associated with complex traits can 
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act through epigenetic regulation of target genes as well4. The goal of this thesis is to explore 

different modes of genetic regulation in the context of human complex traits and rare disorders, 

and explore mechanisms of how genetic variation ultimately affects human phenotypes. 

In Chapter 2, I quantify the shared genetic basis of complex traits and Mendelian 

disorders. This work establishes a systematic, phenotype-specific investigation of the overlap of 

Mendelian disease genes with GWAS risk genes for complex traits, specifically, to show (1) that 

GWAS risk genes show specific, significant overlap with phenotypically matched mendelian 

disorder genes; (2) that single nucleotide polymorphisms (SNPs) near phenotypically matched 

mendelian disorder genes show increased effect size on complex traits; and (3) there are 

examples of candidate causal variants for complex traits interacting with phenotypically matched 

Mendelian disorder genes. This work allows for comparison of the genetic architectures among 

complex traits, and also provides a baseline level of enrichment for relevant Mendelian genes at 

GWAS loci. My co-authors and I increase understanding of how SNPs identified by GWAS may 

be regulating phenotype-relevant known disease genes to contribute to complex trait 

phenotypes, and suggest candidate variants for functional follow-up studies. A version of 

Chapter 2 been published as: 

Freund MK, Burch KS, Shi H, Mancuso N, Kichaev G, Garske KM, Pan DZ, Miao Z, 

Mohlke KL, Laakso M, Pajukanta P, Pasaniuc B*, Arboleda VA*. Phenotype-Specific 

Enrichment of Mendelian Disorder Genes near GWAS Regions across 62 Complex Traits. Am J 

Hum Genet. 2018;103(4):535-552. 

In Chapter 3, I explore the regulatory landscape of ovarian surface epithelial cells 

(OSEC) to identify putative pathways involved in the development of epithelial ovarian cancer. 

This work characterizes the regulatory landscape of OSEC and explores the hypothesis that 

common variants in OSEC influence the development of ovarian cancer through epigenetic and 
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transcriptomic pathways. In particular, with support from collaborators named below, I (1) 

perform population-based profiling of active chromatin in ovarian surface epithelial cells, (2) 

construct global maps of gene regulation in ovarian surface epithelial cells, and (3) identify 

hQTLs and eQTLs in OSEC cell lines. Ultimately, this work aims to support identification of 

colocalized genetic drivers of H3K27ac peaks, gene expression, and GWAS risk for ovarian 

cancer. In addition to providing insight into the regulatory landscape of healthy ovarian surface 

epithelial cells and identifying putative tissue-specific ovarian cancer pathways, these results 

can be contrasted to similar QTL analyses in ovarian tumors to pinpoint the major changes in 

gene regulation and pathway activation that occur during neoplastic transformation. This work is 

a product of collaboration with Kate Lawrenson, Simon Gayther, Jasmine Plummer, Forough 

Abbasi, Brian Davis, Sasha Gusev, Paul Pharoah, Nicholas Mancuso, Tommer Schwarz, 

Claudia Giambartolomei, and Bogdan Pasaniuc. 

References: 

1. Katsanis, N. (2016). The continuum of causality in human genetic disorders. Genome 
Biol 17, 233. 

2. Schork, N.J., Murray, S.S., Frazer, K.A., and Topol, E.J. (2009). Common vs. rare allele 
hypotheses for complex diseases. Curr Opin Genet Dev 19, 212-219. 

3. Pasaniuc, B., and Price, A.L. (2017). Dissecting the genetics of complex traits using 
summary association statistics. Nat Rev Genet 18, 117-127. 

4. Gusev A, Lawrenson K, Lin X, et al. A transcriptome-wide association study of high-
grade serous epithelial ovarian cancer identifies new susceptibility genes and splice 
variants. Nat Genet. 2019;51(5):815-823. 
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Chapter 2: Phenotype-specific enrichment of Mendelian disorder 
genes near GWAS regions across 62 complex traits 

2.1 Introduction 

Genetic architectures of human traits have traditionally been classified into two major 

categories. Typically, complex traits demonstrate polygenic architectures arising from many low-

effect common variants, whereas rare traits tend to have high-effect monogenic determinants1. 

The underlying and practical distinction between these classes has historically been based on 

the presence of highly penetrant, rare, single-gene disruptive mutations causing recognizable 

clinical monogenic diseases (e.g., cystic fibrosis, [MIM: 219700]2), and the relative absence of 

such mutations in complex diseases such as diabetes and schizophrenia3. Evidence is 

accumulating that these two classes of phenotypes may not be as biologically distinct as 

previously thought4. Multiple exceptions to the “common disease, common variant” hypothesis1 

have been identified for complex traits5-7 and their molecular phenotypes8-11, and Mendelian 

disorders have also been found to be affected by multiple or common genetic variants12-15. This 

suggests that there exists a spectrum of genetic architectures rather than a dichotomous 

classification. Accordingly, the monogenic forms of complex traits (i.e., phenotypically-matched 

Mendelian disorders) are increasingly used as a starting point to identify genes relevant to 

complex traits for further study16-18. Furthermore, overlap has been identified between genes, 

common variants, and CNVs linked with Mendelian disorders and genetic determinants of 

complex traits and diseases such as Parkinson’s disease [MIM: 68600]19, obesity20 , height21, 

ototoxicity22, and others23. However, the overlap of each of these complex traits with Mendelian 

disorders has been examined individually, with different metrics of overlap. In a large study of 

patient medical records, Blair et al. identified systematic, significant comorbidities between 

Mendelian disorders and complex diseases, and that association signals from genome-wide 

association studies (GWAS) for complex diseases were enriched in genomic regions with 
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known roles in comorbid Mendelian disorders, suggesting a shared genetic basis24. However, 

the study focuses on Mendelian disorders comorbid with complex diseases in the same 

individual, rather than Mendelian disorders demonstrating similar phenotypes to complex traits. 

Furthermore, advances in sequencing technology have greatly expanded the phenotypic 

spectrum in known Mendelian syndromes, allowing for deconstruction of syndromic diseases 

into component medical phenotypes. As such, it is now possible to identify all the component-

phenotype consequences of genes linked to Mendelian disorders, allowing for greater resolution 

in identifying gene-phenotype relationships. However, to the best of our knowledge, no study 

has taken advantage of this to identify genes linked to any related component-phenotype 

regardless of the Mendelian disorder’s best-known or primary phenotype. Thus, a thorough 

quantification of the overlap between genes associated with complex traits and genes linked to 

Mendelian disorders in a phenotype-specific manner remains elusive. 

Given that the majority of genome-wide association studies for complex traits and 

diseases have identified significant associations in non-coding genomic regions25, we 

hypothesize that genes individually involved in Mendelian disease belong to the biological 

pathway(s) shared by both complex and Mendelian disease. Specifically, we hypothesize that 

large-effect coding variants disrupt individual genes, resulting in severe phenotypes (i.e., 

Mendelian disorders), while non-coding variants produce complex traits by collectively 

dysregulating expression of these same genes, allowing for nuanced or tissue-specific 

phenotypes. Based on this hypothesis, we expect to identify an enrichment of GWAS signal for 

a given complex trait near genes linked to Mendelian disorders demonstrating similar 

phenotypes, but no enrichment near genes linked to Mendelian disorders with phenotypes 

unrelated to the complex trait of interest. To test this hypothesis, we define “Mendelian disorder 

genes” as any genes linked to Mendelian disorders in the Online Mendelian Inheritance in Man 

(OMIM) database, and use the well-curated phenotypic breakdown of Mendelian disorders to 
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identify subsets of these genes linked to particular phenotypes (e.g., growth defects or immune 

dysregulation) expressed as part of any Mendelian disorder. We then examined publicly 

available GWAS across 62 complex traits (listed in Table 1, and detailed in Table S1) to identify 

risk genes (here called “GWAS gene sets”) for each complex trait, and quantified the overlap of 

each GWAS gene set with 20 other sets of Mendelian disorder genes for particular phenotypes 

(detailed in Table 1 and Table S1). We find a consistent, significant, and specific enrichment 

between GWAS gene sets for complex traits and Mendelian disorder genes for matched and 

related phenotypes (50/1,240 pairs; e.g., rheumatoid arthritis and immune dysregulation), 

supporting our hypothesis of a shared genetic basis between complex and Mendelian forms of 

disease. In addition, we observe instances of enrichments between GWAS gene sets for certain 

complex traits and Mendelian disorder genes for unrelated phenotypes (27/1,240 pairs; e.g., 

systemic lupus erythematosus and mature-onset diabetes of the young), suggestive of shared 

biological mechanisms yet to be examined. Furthermore, we find an increase in average effect 

size of GWAS variants near Mendelian disorder genes for matched phenotypes, and identify 

examples of associated SNPs found directly at the transcription start sites (TSSs) of these 

phenotypically-matched Mendelian disorder genes as candidates for functional follow-up. 

Finally, we report examples of significant body mass index (BMI)-associated variants directly 

interacting with phenotypically-related Mendelian disorder genes CREBBP [MIM: 180849] and 

CYP19A1 [MIM: 139300 and 613546], using human primary white adipocyte-specific Hi-C 

data26. Leveraging the growing body of well-curated phenotypic data from studies of Mendelian 

disorders, we provide a phenotype-driven approach to identifying genetic pathways shared by 

Mendelian diseases and complex traits. Last, please note that although there are 

supplementary tables (referenced here in the text by Table S*), the formatting guidelines for this 

thesis did not allow for the tables’ inclusion in this document. Please instead refer to the 

published version of this chapter, Freund et al., Am J Hum Genet 2018, to access these tables. 
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2.2 Material and Methods 

Gene coordinates and symbols 

We downloaded gene body coordinates (NCBI build 37/hg19, UCSC Genes track) from the 

UCSC Table Browser27 (see Web Resources) using the gene symbol from the knownGene 

table, transcription start and end sites for each gene from the knownCanonical table, and the 

longest transcript from the knownGene table for genes where no entry or multiple entries were 

listed in the knownCanonical table. We used these coordinates for all analyses in our study. 

Since many genes have been renamed over time, we standardized gene symbols across all 

analyses in our study by downloading a table of approved symbols, previous symbols, and locus 

group for each gene from HUGO Gene Nomenclature Committee at the European 

Bioinformatics Institute (HGNC) (see Web Resources) and renaming any genes identified by 

previous symbols with approved gene symbols. We restricted all analyses in our study to genes 

classified as protein-coding according to the HGNC locus group, from chromosomes 1-22. 

These processing steps resulted in a final single set of coordinates for 17,695 autosomal 

protein-coding genes (for data access, see Web Resources). 

 

Mendelian disorder genes and loss-of-function (LOF) intolerant genes 

To identify Mendelian disorder genes, we downloaded the Online Mendelian Inheritance in Man 

(OMIM) catalogue database and identified all genes linked to Mendelian disorders satisfying the 

following criteria: (1) disorder is Mendelian and fully penetrant, therefore excluding susceptibility 

phenotypes and (2) molecular basis of the Mendelian disorder is known (i.e., phenotype 

mapping key = 3). We defined loss-of-function (LOF) intolerant genes as any gene with greater 

than 90% probability of being loss-of-function intolerant, according to the pLI score (pLI > 0.9) 

from the Exome Aggregation Consortium (ExAC)28; this score is derived from the number of 

observed versus expected LOF variants in a given gene across approximately 60,000 healthy 
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exomes. Following the same restriction and gene symbol standardization criteria described 

above resulted in a final set of 3,446 Mendelian disorder genes and 2,978 LOF-intolerant genes. 

 

Phenotype-specific Mendelian disorder gene sets  

To identify subsets of Mendelian disorder genes linked to particular phenotypes, for each 

complex trait we curated a set of standardized clinical phenotype terms to describe the full 

range of relevant Mendelian phenotypes. We used these terms to search the OMIM database 

via API for all Mendelian disorders demonstrating these phenotypes, then extracted the gene(s) 

linked to each Mendelian disorder. We restricted gene-phenotype associations to those 

satisfying the same criteria (1) and (2) as described above, and with the following additional 

criteria: (3) gene-phenotype association description does not contain “genome-wide association 

study” or other GWAS synonyms unless: the description also contains any of the terms 

“missense”, “nonsense”, “nonsynonymous”, or “frameshift”; or the gene contains at least one 

pathogenic or likely pathogenic allele in the ClinVar database. We include a full list of 

phenotype-specific Mendelian disorder gene sets and clinical phenotype terms used in Table 

S2. 

A comparison of all phenotype-specific Mendelian disorder gene sets revealed a high 

degree of overlap among the gene sets for clinically-related Mendelian phenotypes (Figure S1). 

Accordingly, we clustered gene sets based on pairwise overlap, and intersected gene sets 

clustering together by visual inspection at a hierarchical clustering threshold to create a single 

gene set for the representative group of Mendelian disorders. Each complex trait was thus 

matched with the single Mendelian disorder category in which the original specific Mendelian 

disorder gene set clustered, which ultimately best exemplified the phenotype.  

Due to the systemic and pleiotropic nature of complex traits, some complex traits could 

conceivably be phenotypically-related to more than one Mendelian disorder gene set. For 
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example, we generated the Mendelian disorder gene set for Systemic Lupus Erythematosus 

(SLE, MIM: 152700) using clinical keywords for both the driving immunological event and the 

clinical manifestations associated with SLE autoimmunity across a large number of organ 

systems (kidney, brain, skin, pleura, joints, etc), such as “anemia”.  Although the substantial 

contribution of Mendelian disorder genes related to anemia resulted in SLE pairing with the 

Hematological Disorders group, the immunological component of SLE is central to the disease. 

Thus, we identified Immune Dysregulation as a “relevant phenotype” for SLE, and denoted it as 

such in Figure 2 and Table 2; the same occurred with other traits and also appear in Figure 2 

and Table 2. 

After combining similar gene sets, a total of 20 non-disjoint phenotype-specific 

Mendelian disorder gene sets remained with an average of 375 genes per set; we include a 

description of each cluster in Table S3. 

 

Complex trait gene sets 

We downloaded publicly available summary statistics (per-allele SNP effect sizes, or log-odds 

ratios for case–control traits, with standard errors29) for large-scale GWAS of 62 traits26 (Table 1 

and Table S1; average N=83,170, minimum N=10,610, maximum N=298,420; some GWAS 

were imputed using the 1000 Genomes Project as a reference panel by their respective 

consortia while others were not.)  For each trait, we identified a gene set by mapping each 

autosomal genome-wide significant SNP (p < 5x10-8) to the closest up- and downstream 

protein-coding genes as defined above, resulting in a total of 62 non-disjoint GWAS gene sets. 

As GWAS regions often contain multiple genome-wide significant SNPs, and the relevant gene 

may not lie adjacent to the lead SNP in a region30; 31, we defined GWAS gene sets by mapping 

genes with respect to every genome-wide significant SNP rather than only the index GWAS 

SNPs at each genomic risk region. 
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Quantifying overlap between complex trait and Mendelian disorder 

For each complex trait-Mendelian disorder pair, we compared the GWAS gene set and 

phenotype-specific Mendelian disorder gene set using a 2x2 contingency table (counting 

whether each gene was in the GWAS gene set or not, and in the Mendelian disorder gene set 

or not), with the set of autosomal protein-coding genes (n=17,695) representing the total 

sample. We used Fisher’s Exact Test32 to determine significance. Phenotype-specificity of 

overlap significance was assessed by comparing the GWAS gene sets for each complex trait 

(n=62) to all phenotype-specific Mendelian disorder gene sets (n=20), a total of 1,240 pairs. 

Significance was assessed at an FDR < 5% threshold (p < 0.00310).  

To assess the robustness and stability of our SNP-gene mapping approach for complex 

traits, we performed an overlap quantification with phenotype-specific Mendelian disorder genes 

using GWAS gene sets derived from three additional SNP-gene mapping methods: by mapping 

each genome-wide significant SNP to all genes within a 50Mb window, to all genes within a 

500Mb window, and by mapping all SNPs in the credible set to the closest two genes. 

Comparison of the odds ratios produced by Fisher’s Exact Test for the comparisons of GWAS 

gene sets (derived by each mapping method) and phenotype-specific Mendelian disorder gene 

sets demonstrates no major difference in outcomes from different mapping methods (Table S4) 

; thus, we find that even more conservative gene sets, such as the GWAS gene sets derived 

from the credible set for each complex trait, still demonstrate the pattern of trait-specific 

enrichment. 

 

Estimating enrichment of GWAS SNP association signal 

We created genomic annotations to capture the regions spanning 50kb upstream through 50kb 

downstream of gene bodies for four categories of genes: all protein-coding genes (N=17,695), 
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all Mendelian disorder genes (N=3,446), all LOF-intolerant genes (N=2,978), and the 

phenotype-specific Mendelian disorder gene sets (average N=609). For each complex trait-

gene category pair, we computed enrichment of GWAS signal within the category 𝑐 with respect 

to the set of all protein-coding genes as 

𝑎! =

1
𝑁!
∑ ∑ 𝑍"#

𝑀$
%!
"&'

("
$&'

1
𝑁)

∑ ∑ 𝑍"#
𝑀$

%!
"&'

(#
$&'

 

where 𝑁! is the number of genes in category 𝑐, 𝑀$ is the number of SNPs within 50kb of gene 𝑗, 

𝑍" = GWAS effect size of SNP 𝑖 divided by standard error, with total number of protein-coding 

genes 𝑁). Thus, 𝑎! is the enrichment in average SNP effect size (Z2) per gene in category 

(compared to average Z2 for any protein-coding gene). The percent increase in average SNP 

effect size per gene for category 𝑐, or (𝑎! − 1) ∗ 100, is shown in Figure 3. We performed 

similar comparisons for median SNP effect size per gene for category 𝑐, and maximum SNP 

effect size per gene for category 𝑐 (Table S5). 

To ensure that this signal was not driven by linkage disequilibrium (LD), minor allele 

frequency (MAF), or average gene length per category, we compared these three properties 

across the gene categories for each complex trait. We calculated LD scores33 reflecting the 

amount of LD tagged by each SNP in the HapMap 3 reference panel; then, for each gene 

category, we averaged the LD scores of SNPs falling within 50kb of each gene. Similar 

analyses were performed to examine average MAF per gene and average gene length per 

category across each complex trait (Table S6). For comparison, we additionally performed a 

permutation test by drawing 100 sets of random genes for each Mendelian disorder gene set, 

matched for number and length of genes, and computing the average effect size per gene for 

each phenotypically-matched complex trait across all 100 random sets. 
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Putative causal mechanisms at GWAS risk regions  

We performed statistical fine-mapping of the genome-wide significant regions (p < 5x10-8) for 

each GWAS using fgwas34 with no functional annotations and default parameter settings. For 

each GWAS, we constructed a 95% credible set (defined as the minimum set of SNPs where 

95% of the probability of causation at a region is accumulated) for each region of 500 SNPs 

containing a significant GWAS association. We achieved this by adding SNPs one at a time with 

a decreasing posterior probability of causation (posterior probability of association for the SNP, 

conditioned on there being an association in the region) until a cumulative 95% probability of 

causation is reached. 

 

Identification of candidate regulatory variants 

 We intersected credible sets for each complex trait with genomic regions 1kb upstream of each 

phenotypically-relevant Mendelian disorder gene to identify SNPs localizing at the TSS. To 

identify genes whose expression the GWAS SNPs may regulate, we queried the UCSC GTEx 

combined-eQTL table (version 2017-10-25) and joined on SNP rsID. This table describes all 

gene/tissue pairs where a SNP has evidence of regulatory function. We restricted results to 

phenotype-matched Mendelian genes whose promoter contained a genome-wide significant 

SNP in our GWAS fine-mapped results. To identify candidate regulatory variants interacting with 

promoters of phenotype-matched Mendelian disorder genes, we used interactions from 

promoter capture Hi-C in human primary white adipocytes 26 for each complex trait, and filtered 

interactions to pairs of interacting regions where at least one region contained a promoter of a 

phenotype-specific Mendelian disorder gene. We then intersected interaction pairs for each of 

these regions with credible sets for each complex trait to identify credible SNPs interacting with 

regions containing promoters of phenotype-specific Mendelian disorder genes. 
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Estimating the enrichment of SNP-heritability of complex traits within Mendelian disorder gene 

set annotations 

We used stratified LD score regression (s-LDSC)35 to estimate the enrichment of SNP-

heritability of 47 complex traits and diseases within each of 20 Mendelian disorder gene set 

annotations, corresponding to the regions spanning 50kb upstream through 50kb downstream 

of gene bodies for each Mendelian disorder gene set. The 47 complex traits and diseases are a 

subset of the 62 total GWAS traits analyzed in this study that meet the criteria for running s-

LDSC (i.e., the GWAS did not use custom genotyping arrays). The annotation value for SNP i 

and gene set k is defined as aik = 1 if SNP i is within 50kb upstream or 50kb downstream of any 

of the gene bodies in gene set k, and aik = 0 otherwise. For each of the 20 annotations, LD 

scores were computed within 1cM blocks using default parameters and LD estimated from the 

European individuals in the 1000 Genomes Phase 3 reference panel. For each 

GWAS/annotation pair, we ran s-LDSC using the recommended “baseline model”35 as 

covariates in the regression, for a total of 53 annotations per run (52 “baseline” annotations + 

the gene set annotation of interest). 

2.3 Results 

GWAS risk genes show specific, significant overlap with phenotypically-matched Mendelian 

disorder genes 

We first sought to examine the degree of overlap between phenotype-matched Mendelian 

disorder genes with risk genes for complex traits as identified through GWAS. For each complex 

trait, we identified corresponding Mendelian forms, often as familial forms or rare phenotypic 

extremes, and curated Mendelian disorder gene sets composed of Mendelian disorder genes 

linked to those specific phenotypes from the OMIM database (see Methods, and Figure 1). We 

combined similar Mendelian disorder gene sets to create one gene set for the representative 
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Mendelian disorder(s) (for a total of 20 Mendelian disorder gene sets). We separately 

ascertained GWAS gene sets for each complex trait by identifying the closest up- and 

downstream genes to each GWAS SNP meeting genome-wide significance (see Methods, and 

Figure 1). Overlap between each phenotype-specific Mendelian disorder gene set (n=20) and 

each GWAS gene set (n=62) was assessed using Fisher’s Exact Test, for a total of 1,240 

comparisons (Table 1 and Table S7). We hypothesized that GWAS gene sets would have a 

specific significant enrichment of Mendelian disorder genes for perfectly matched Mendelian 

disorders (as identified in Table 1; 62 of the 1,240 comparisons) or related Mendelian disorders 

(an additional 30 of the 1,240 comparisons; 92 of 1240 total), but no enrichment for unrelated 

Mendelian disorders (the remaining 1,148 of 1,240 comparisons). Among all 1,240 pairs of 

complex and Mendelian disorder gene sets assessed, we identified 77 pairs with significant 

overlap crossing an FDR < 5% cutoff at a p < 0.00310 (Figure 2). An examination of the log-

odds ratios for each overlap comparison revealed more extreme enrichments among 

phenotypically-matched pairs compared to phenotypically-unmatched pairs (Table 2), which is 

consistent with our hypothesis. 50 out of the 77 significantly overlapping pairs showed perfectly 

matching phenotypes (as defined in Table 1; see Methods) or reflected known shared biology  

(identified in dark blue within Figure 2). Specifically, in many of these pairs, monogenic forms of 

the complex trait have been well established in the genetics literature; examples include Age-

related Macular Degeneration (AMD) and cholesterol traits (high-density lipoprotein (HDL), low-

density lipoprotein (LDL), total cholesterol (TC), and triglycerides (TG))7; 36-39. We confirmed 

significant enrichment between many of these previously reported pairs such as the complex 

and monogenic forms of height40 (OR=1.39, p=1.43 x 10-3) and HDL and Mendelian forms of 

cardiovascular disease41  (OR=2.10, p=3.45 x 10-4). We also identified previously unreported 

enrichments; for example, we find a strong enrichment between inflammatory bowel disease 

(IBD) and Mendelian forms of immune dysregulation (OR=3.32, p=1.58 x 10-8) and between 
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hemoglobin (HB) and Mendelian hematologic disorders (OR=3.99, p=4.42 x10- 4). The 

remaining 27 pairs with significant overlap suggested shared biological mechanisms yet to be 

established between complex traits and Mendelian disorders (Table 3). For example, we 

observed an enrichment between height and renal disorders (OR=1.48, p=3.75 x 10-5), and 

enrichment between Crohn’s Disease and mature-onset diabetes of the young (OR=2.69, 

p=2.32 x 10-4).  Strikingly, a high proportion of phenotypically-matched or related pairs 

demonstrated significant overlap (n=50 of 92; 54%) compared to phenotypically-unmatched 

pairs (n=27 of 1,148; 2%), consistent with our hypothesis of a phenotype-specific enrichment 

pattern (Table S7 and Figure S2).  

To investigate whether proximal clustering within chromosomes of genes with similar 

functionality was confounding our results, we pruned our dataset of all protein-coding genes to 

include only one gene per 33.2 KB window across the genome (determined by the average 

distance to the next closest gene in our data set) and re-computed overlap odds ratios. We 

found highly similar results to our original approach (Pearson r=0.96). Moreover, we found the 

average distance to the next closest gene among the sets of genes shared by a phenotypically-

matched pair of complex trait and Mendelian disorder to be 21.1 MB (Table S8). 

 

SNPs near phenotypically-matched Mendelian disorder genes show increased effect size on 

complex traits 

Because Mendelian disorder genes are linked with severe biological effects when either one or 

both alleles are disrupted, dysregulation of the gene through changes in expression or other 

mechanisms might have a more significant effect than dysregulation of another protein coding 

gene not linked to any Mendelian disorders. We hypothesized that SNPs near these phenotype-

specific Mendelian disorder genes have further increased effects on complex traits due to the 

increased biological relevance of these gene categories. From the publicly available GWAS 
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summary statistics for each complex trait, we computed the average GWAS effect sizes of 

SNPs falling within each protein-coding gene, and compared the average effect sizes per gene 

across all Mendelian disorder genes and across phenotypically-relevant Mendelian disorder 

genes (see Methods). Across complex traits, we found an increased average effect size per 

gene for all Mendelian disorder genes and a further increased average effect size per gene for 

phenotypically-relevant Mendelian disorder genes (Figure 3 and Table S5). This suggests that 

the genomic regions containing the most biologically-relevant genes for each trait contribute 

most significantly to complex trait biology. We also confirmed that loss-of-function (LOF) 

intolerant genes (as defined by ExAC’s pLI score > 0.9, see Methods) demonstrate a higher 

average effect size across most complex traits examined28. Given the extreme intolerance of 

deleterious mutations in these genes, it is possible that LOF-intolerant genes are linked with 

embryonic lethal mutant phenotypes, and are thus undiscovered as Mendelian disorder genes 

at this time.  

We found no significant increase in linkage disequilibrium (LD) or decrease in average 

minor allele frequency (MAF) of the SNPs within each category compared to the SNPs within all 

protein-coding genes (Table S6), suggesting that the observed signal is not driven by any of 

these confounders. In particular, we found the average LD (95% confidence interval) tagged for 

all protein coding genes to be 24.38 (24.35, 24.42); for none of the other three gene classes did 

the confidence intervals fall above the upper bound, including the average across all Mendelian 

disease gene sets (24.10 (23.47, 24.72)). Similarly, we found the average MAF (95% 

confidence interval) for all protein-coding genes to be 0.238 (0.238, 0.238); for none of the other 

gene classes did the confidence intervals fall below the lower bound, including the average 

across all Mendelian disease gene sets (0.238 (0.237, 0.240)). Details for each gene set are 

included in Table S6. Of note, we did observe a respective increase in average gene length 

(95% confidence interval) between all protein-coding genes, particularly between all protein-
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coding genes (159.94 kb (0.91 kb)) and on average across all phenotype-specific Mendelian 

disorder gene sets (177.87 kb, (168.49 kb, 187.24 kb)) (Table S6). To ensure that our findings 

of enriched GWAS signal in these gene categories was not due to longer genes being more 

likely to tag causal variation, we performed a permutation test comparing the average effect size 

per gene for phenotype-matched Mendelian disorder genes to the same metric across 100 sets 

of random genes matched for number of genes and gene length (Table S6). We find no 

evidence of gene length confounding our results, as across 58/62 complex traits the average 

effect size per gene is higher for phenotype-matched Mendelian disorder genes than for random 

genes of the same length. Also of note, we did not find evidence of a pervasive phenotype-

specific enrichment of SNP heritability within 50kb of Mendelian disorder genes, (Table S9; see 

Methods). Thus we can conclude that the average GWAS effect size per gene for 

phenotypically-relevant Mendelian disorder genes is increased relative to all protein coding 

genes, all Mendelian disorder genes, and LOF-intolerant genes, but not necessarily for 

unrelated sets of Mendelian disorder genes. 

 

Examples of credible SNPs for GWAS regions near phenotypically-matched Mendelian disorder 

genes 

We next sought to identify common non-coding variants that may causally impact complex trait 

phenotypes by dysregulating phenotypically-relevant Mendelian disorder genes. For each 

complex trait, we performed statistical fine-mapping of significant GWAS regions to construct 

95% credible sets for each region (see Methods), and identified SNPs from the credible set 

located at the TSS of a gene from the phenotypically-relevant Mendelian disorder gene set. We 

found a total of 786 credible set SNPs (out of approximately 3.5 million) localizing at the TSS of 

a phenotypically-relevant Mendelian disorder gene (an average of 20 SNPs per trait, for 38 traits 

where at least one such SNP was found; Tables S10 and S11), and identified 25 promising 
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candidate SNPs (attaining genome-wide significance in GWAS) at TSSs that could be 

regulating the proximal Mendelian disorder gene (Table 4). We further examined the GTEx 

database to determine whether any of these SNPs were also eQTLs for the corresponding 

gene; we found 12 variants to be significant eQTLs for the corresponding gene in at least one 

tissue (Table 4). We highlight two examples: first, we found a significantly associated SNP from 

the credible set for coronary artery disease (CAD) (rs1332327, Z=6.798) at the promoter of 

LIPA [MIM: 278000], a Mendelian disorder gene linked to Wolman Disease and Cholesteryl 

Ester Storage Disease (both Lysosomal Acid Lipase Deficiencies, MIM: 278000) involving 

hypercholesterolemia and hypertriglyceridemia as part of cholesteryl ester- and triglyceride-filled 

macrophage infiltration syndromes (Figure 4A). Additional analyses identified rs1332327 (along 

with other SNPs in linkage disequilibrium with the variant), as a cis-eQTL for LIPA in the 

METSIM adipose RNA-sequencing dataset (Table S13); this finding is consistent with eQTL 

results reported in GTEx for these SNPs and LIPA. Second, from the credible set for red blood 

cell count (RBC), we found a significantly associated SNP (rs1010222, Z= -5.961) at the 

promoter of CALR [MIM: 109091], a Mendelian disorder gene linked to Myelofibrosis [MIM: 

254450] involving generalized bone marrow fibrosis, reduced hemopoiesis, no 

hemophagocytosis, and myeloproliferative disease (Figure 4B). In both cases, the putative 

causal SNP for the complex trait lies immediately upstream of the TSS of the phenotypically-

relevant Mendelian disorder gene, in addition to falling within regions containing by regulatory 

epigenetic marks.  

 

Putative causal SNPs for GWAS regions interacting with promoters of phenotypically-relevant 

Mendelian disorder genes 

Functional genomic datasets, such as chromatin interactions identified through Hi-C, can give 

us insight into the functional interpretation of GWAS variants and how they might regulate 
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Mendelian disorder genes. Examination of chromatin interactions in human primary white 

adipocytes26 revealed further candidate credible set SNPs for metabolic traits physically 

interacting with promoters of phenotypically-relevant Mendelian disorder genes (Table S12). 

Specifically, we report that a genome-wide significant SNP for BMI (rs758747, Z=6.081) 

physically interacts with the promoter of CREBBP, a gene linked to Rubinstein-Taybi Syndrome 

1 [MIM: 180849] in which obesity is one of the syndromic features (Figure 4C). These 

interactions can also identify the relevant isoforms of genes in disease. We identified a cluster of 

SNPs from the credible set of variants associated with BMI that physically interact with the 

promoter of a specific isoform of CYP19A1, a gene linked to Aromatase Excess Syndrome 

[MIM: 139300] involving short stature and excess fat storage in the chest (gynecomastia) 

(Figure 4D). Although longer isoforms of CYP19A1 are by default chosen to represent the 

gene, our data suggests that the shorter isoform is likely to be more relevant in obesity. Taken 

together, these results demonstrate examples of GWAS variants localizing in regulatory regions 

for phenotypically-relevant Mendelian disorder genes, consistent with the hypothesis that low-

effect common variants contribute to complex traits by regulating genes known to cause 

Mendelian disorders.  

2.4 Discussion 

In this work we used GWAS summary statistics from 62 complex traits and genes linked to 

specific phenotypes within 20 Mendelian broad disorders to quantify the shared genetic basis of 

complex traits and Mendelian disorders. We identified a specific enrichment of phenotypically-

matched and related Mendelian disorder genes in GWAS regions for complex traits; we also 

identified fewer pairs of complex traits and phenotypically-unmatched Mendelian disorders with 

similar significant enrichment. We further found that phenotypically-relevant Mendelian disorder 

genes are enriched for GWAS signal across complex traits, compared to all Mendelian disorder 
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genes and other protein-coding genes. Finally, we report examples of putative causal SNPs for 

GWAS regions in potentially regulating phenotypically-relevant Mendelian disorder genes. We 

conclude with four considerations about how our results contribute to understanding of genetic 

architectures and biological mechanisms across complex traits and Mendelian disorders.   

First, our finding of a specific enrichment of phenotypically-matched and related 

Mendelian disorder genes in GWAS regions for complex traits suggests that, across complex 

trait architectures, many complex traits share the genetic bases (and by extension, biological 

mechanisms) with their Mendelian forms. This supports our hypothesis that the shared genes 

contribute to both extreme and common genetic phenotypes, and suggests an important role of 

gene regulation by non-coding variants in complex traits. However, we note that our findings are 

limited by the power of each GWAS to detect significant associations. As GWAS become better-

powered, we anticipate being able to identify phenotype-specific enrichments of Mendelian 

disorder genes in GWAS regions for more complex traits.  

Second, the subset of complex trait-Mendelian disorder pairs with no known shared 

biology that still demonstrated significant enrichment of Mendelian disorder genes in GWAS 

regions can offer us insight into the biological mechanisms of complex traits and Mendelian 

disorders. A high degree of co-morbidity between complex traits and Mendelian disorders has 

been previously observed, regardless of phenotype-similarity24; these findings together suggest 

that many complex traits and Mendelian disorders may also be linked by the pleiotropic 

properties of the underlying genes, in addition to regulatory differences. These observations are 

also consistent with a multigenic or oligogenic architecture of human disease; the pervasive 

pleiotropic effects that are seen observed across complex traits are consistent with the wide-

spread prevalence of multi-system, syndromic phenotypes observed across a majority of 

Mendelian disorders. We also confirm that LOF-intolerant genes harbor an enrichment of 

GWAS signal28; because genes with pLI > 0.9 exhibit extreme intolerance of deleterious 



 21 

mutation, it is possible that these genes demonstrate embryonic lethal mutant phenotypes, and 

are thus undiscovered as Mendelian disorder genes at this time. Our findings provide further 

motivation to explore phenotypic consequences of mutations in LOF-intolerant genes 

(particularly those enriched for GWAS signal for a particular complex trait) for phenotypically-

relevant Mendelian disorders.  

Third, linking Mendelian disorder genes with complex traits can help with 

characterization of the genetic architecture of complex traits – specifically, with genes and 

pathways that can be functionally characterized to identify molecular mechanisms7. Identifying 

causal variants from large-scale GWAS studies is particularly challenging given that most 

GWAS loci lie in non-coding regions of the genome; though thousands of genomic loci have 

been significantly associated with specific diseases, few casual SNPs have been functionally 

verified42; 43. Although many approaches have been used to tie a particular variant to a relevant 

gene or genes44-46, including newer methods that directly link gene expression to a trait (e.g., 

TWAS30, PrediXcan47), we find that leveraging GWAS findings with functional data to identify 

candidate regulatory variants for Mendelian disorder genes can potentially lead to better 

interpretation of relevant genes and isoforms. Here, we demonstrate the heterogeneity of 

mechanisms potentially underlying causal variation, showing roles for TSS promoter regions of 

Mendelian disorder genes and long-range interactions involving significant GWAS regions. We 

expand on recent work showing that BMI-associated variants interact with genes in GWAS 

regions to demonstrate similar findings for Mendelian disorder genes26. With the appropriate 

functional data from relevant tissues and cell types, this phenotype-driven approach can identify 

relevant candidate regulatory variants and their targets. Further, from the perspective of 

monogenic diseases, identifying common variants that might modify the expressivity of 

phenotypes can provide insights into gene function in addition to putative drug targets. Many 

drugs approved by the FDA and developed by pharmaceutical companies are targeted towards 
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the treatment of complex traits and diseases; by identifying underlying links between Mendelian 

disorders and complex traits through their effects on the same biological genes and pathways, 

we can systematically and rationally target existing drugs for complex traits and diseases 

towards those with rare Mendelian disorders which largely do not have any rationally targeted 

treatments48-50. 

Last, we note that our approach of examining traits and disorders at the component-

phenotype level offers us valuable resolution into the specific pathways involved the overall trait 

or disorder. In clinical medicine, genome-wide sequencing has expanded the clinical phenotypic 

spectrum associated with a gene 51; 52 through identification of pleiotropic effects due to 

mutations in specific protein domains53; 54, detected a genetic predisposition for diseases 

previously considered to be due to environment13, uncovered variable penetrance for genetic 

mutations previously thought to be sufficient to cause disease, and has suggested that genetic 

background influences the phenotypic variability of monogenic diseases55; 56. The phenotypic 

characterizations of Mendelian syndromes are deconstructed by expert clinical geneticists into 

component phenotypes, labeled by standardized clinical terms that identify both the primary 

phenotypes and phenotypes that have variable penetrance and expressivity57. Recent work has 

demonstrated that incorporation of such dense phenotype information to rank putative disease-

causing genetic mutations improves diagnostic rates in clinical exome sequencing tests58; 59; 

using component Mendelian phenotypes to identify Mendelian disorders that may be 

phenotypically-relevant to a variety of complex traits can be similarly impactful in identifying 

biological pathways for complex traits. Ultimately, identification of GWAS-significant regions with 

biologically relevant genes and pathways will enable effective utilization of GWAS data in 

medical settings.  
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2.5 Figures 

Figure 2.1 GWAS gene sets and phenotype-specific Mendelian disorder gene sets. 
 
For each complex trait (e.g., height), we first identified matched Mendelian phenotypes (e.g., 
undergrowth, short stature; Table S10). Using publicly available GWAS data, we defined the 
“GWAS genes” for a given complex trait to be the closest upstream and closest downstream 
protein-coding gene for every genome-wide significant variant in the GWAS. We selected 
phenotype-matched Mendelian disorder genes by first identifying Mendelian disorders 
expressing any of the matched Mendelian phenotypes, and then identifying all genes linked to 
any of those disorders. 
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Figure 2.2 Overlap of GWAS genes with Mendelian disorder genes demonstrates trait-
specificity. 
 
Significant overlaps from phenotypically-matched pairs of complex traits and Mendelian 
disorders (blue) and pairs with unrelated phenotypes (grey) are shown. Phenotypically-matched 
pairs are subdivided into pairs with perfectly-matched phenotypes (light blue) and pairs with 
related phenotypes (dark blue). Complex traits and Mendelian disorders with no significant 
overlaps are excluded here; results from all traits are presented in Figure S2. Significance was 
assessed by controlling for FDR < 5% at p < 0.00310. 

 
 
 
Figure 2.3 Effect sizes for SNPs on complex traits from GWAS are increased for genes that are 
loss-of-function intolerant and for phenotypically-relevant Mendelian disorder genes. 
 
The increase in average SNP effect size per gene across gene categories. We averaged effect 
size (Z2) across all SNPs falling within 50kb of a gene to obtain an average SNP effect size per 
gene, and averaged across all genes in each category (all protein coding genes, all Mendelian 
disorder genes, all LOF-intolerant genes, and all phenotypically-relevant Mendelian disorder 
genes for each trait). We normalized these averages to the average SNP effect per gene for any 
protein coding genes. The box plots represent the distribution of increase in average effect size 
per gene across all traits, and notches designate the confidence intervals. From left to right, 
confidence intervals read: (0.07, 1.24), (1.47, 3.54), (5.88, 12.19). 
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Figure 2.4 Candidate regulatory SNPs fall at transcription start sites and long-range promoters 
of phenotypically-relevant Mendelian disorder genes 
 
A, B) Shown here are two examples of putative causal SNPs localizing at a TSS of a 
phenotypically-relevant Mendelian disorder gene. A) Putative causal SNP rs1332327, 
associated with coronary artery disease (Z = 6.796), lies at the TSS of LIPA. B) Putative causal 
SNP rs1010222, associated with red blood cell count with a Z-score of -5.961, lies at the TSS of 
CALR. C, D) Shown here are two representations of chromatin interactions in white adipose 
tissue. C) A cluster of SNPs from the credible set of variants associated with BMI (Z-score 
plotted in orange and blue) physically interacts with the promoter of a particular isoform of 
CYP19A1. D) A single SNP (rs758747) from the credible set, associated with BMI (Z = 6.081), 
physically interacts with the promoter of a distant gene CREBBP. 

 
 
 
Figure 2.5 Similarity of Mendelian disorder gene sets 
 
After generation of phenotype-specific Mendelian disorder gene sets, we performed pairwise 
comparisons of each gene set to determine proportions of genes shared. We performed 
Hierarchical clustering was performed, and gene sets sharing large proportions of genes 
(identified by visual clusters) were intersected to form a single representative Mendelian 
disorder gene set (see Supplementary Table 2 for these cluster descriptions). 
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Figure 2.6 Overlap of GWAS genes with Mendelian disorder genes demonstrates trait-
specificity 

 
After generation of phenotype-specific Mendelian disorder gene sets, we performed pairwise 
comparisons of each gene set to determine proportions of genes shared. We performed 
hierarchical clustering, and gene sets sharing large proportions of genes (identified by visual 
clusters based on a hierarchical clustering threshold, indicated in red boxes and red dashed line 
respectively) were intersected to form a single representative Mendelian disorder gene set (see 
Table S3 for these cluster descriptions).  
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2.6 Tables 

Table 2.1 Complex Traits and corresponding Mendelian disorders.  
 
This table lists the phenotypically-matched pairs of complex traits (N=62) and groups of 
Mendelian disorders (N=20) examined in our study. More details on these traits, including mean 
GWAS sample size, number of significant GWAS loci reported from original GWAS publications, 
and number of significant GWAS SNPs are included in Table S1. GWAS genes for each 
complex trait were identified using the mapping approach described in Methods. 
Complex Trait Abbrev. Number 

of 
GWAS 
Genes 

Matched Mendelian 
Disorder(s) 

Celiac Disease60 CEL 34 Immune Dysregulation 
Crohn's Disease61 CD 239 
Inflammatory Bowel Disease61  IBD 368 
Ulcerative Colitis67 UC 202 
Primary Biliary Cirrhosis62 PBC 149 
Rheumatoid Arthritis (European)63 RA 297 
Multiple Sclerosis64 MS 160 
Autism65 AUT 2 Monogenic Autism 
Hemoglobin66 HB 89 Hematologi   Hematologic 

Disorders Mean Cell Hemoglobin66 MCH 164 
Mean Cell Hemoglobin Concentration66 MCHC 12 
Mean Corpuscular Volume66 MCV 180 
Mean Platelet Volume67 MPV 102 
Red Blood Cell Count66 RBC 107 
Systemic Lupus Erythematosus68 SLE 286 
Birthweight69 BW 179 Growth Defects 
Height70 HGT 2361 
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Femoral Neck Bone Mineral Density71 FN 58 Bone and Uric Acid Disorders 
Forearm Bone Mineral Density71 FA 8 
Lumbar Spine Bone Mineral Density71 LS 67 
Serum Urate Concentration72 URT 161 

 

Packed Cell Volume66 PCV 53 Disorders of Platelet Function 
Platelet Count67 PLT 134 
Coronary Artery Disease73 CAD 132 Cardiovascular Disease 
High Density Lipoprotein74 HDL 464 
Low Density Lipoprotein74 LDL 370 
Total Cholesterol74 TC 500 
Triglycerides74 TG 354 
Hemoglobin A1C75 HBA 33 Monogenic Diabetes 
Type 2 Diabetes76 T2D 28 
Age-related Macular Degeneration77 AMD 215 Monogenic AMD 
Age at Menarche78 MNR 207 Female Reproductive 

Disorders Age at Menopause79 MNP 316 
Fasting Glucose80 FG 39 Insulin Disorders 
HOMA-B80 HMB 12 
HOMA-IR80 HMIR 0 
Micro-albuminuria81 MA 2 Microalbumin Disorders 
Fasting Insulin80 FI 23 Mature-onset Diabetes of the 

Young Two-hour Glucose82 2HG 2 
Type 1 Diabetes83 T1D 144 
Alzheimer's Disease84 ALZ 58 Neurologic Disease 
Anxiety Disorders (Case-control)85 ANXC 2 
Anxiety Disorders (Factor score)85 ANXF 3 
Major Depressive Disorder86 MDD 4 
Depressive Symptoms87 DS 10 
Neuroticism87 NRT 82 

 

Bipolar Disorder88 BIP 8 Psychiatric Disease 
Schizophrenia89 SCZ 479 
Chronic Kidney Disease90 CKD 16 Renal Disorders 
Glomerular Filtration Rate (CRN)90 EGFR 162 
Urine Albumin-to-Creatinine Ratio81 UACR 2 
Resting Heart Rate91 RHR 304 Arrythmias 
Age at First Birth92 AFB 45 Education and Development 

Disorders College93 COL 12 
Education Years94 EY 554 
Subjective Well-being87 SWB 9 Positive Mood Disorders 
Body Fat Percentage95 BFP 22 Body Mass Disorders 
Body Mass Index96 BMI 231 
Childhood BMI97 CBMI 49 
Leptin, adjusted for BMI98 LEPB 5 
Leptin, not adjusted for BMI98 LEP 0 
Waist-to-Hip Ratio99 WHR 74 
 

  
Table 2.2 Overlap of GWAS genes and phenotypically-matched Mendelian disorder genes. 
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For each pair of complex trait and Mendelian disorder, Fisher’s exact test was used to quantify 
the enrichment of shared genes with an odds ratio and p-value (see Methods).  Pairs with 
significant enrichment passed the cutoff of FDR < 5% at p < 0.00310. This table lists pairs of 
complex traits and phenotypically-matched or related Mendelian disorders with significant 
overlap. For comparison, the average odds ratio and 95% confidence interval for pairings of 
each complex trait with all unrelated Mendelian disorder gene sets is included. 
Complex 
Trait (# 
genes) 

Matched or 
Related 
Mendelian 
Disorder (# 
genes) 

Shared 
Genes 

Odds 
Ratio for 
Matched 
Pair (CI) 

Raw P-value Average Odds Ratio for 
Unmatched Pairs (CI) 

AMD (215) Monogenic 
AMD (104) 

9 7.99 
(3.50, 
16.11) 

4.94E-06 1.69 (1.21, 2.16) 

Immune 
Dysregulation 
(550) 

17 2.73 
(1.55, 
4.52) 

4.13E-04 

BFP (22) Body Mass 
Disorders 
(128) 

3 22.14 
(4.14, 
76.70) 

5.15E-04 2.63 (0.75, 4.51) 

Monogenic 
Diabetes (182) 

3 15.42 
(2.90, 
53.04) 

1.43E-03 

BW (179) Body Mass 
Disorders 
(128) 

6 4.94 
(1.76, 
11.29) 

1.93E-03 1.93 (1.48, 2.37) 

Monogenic 
Diabetes (182) 

7 4.03 
(1.57, 
8.66) 

2.56E-03 

CAD (132) Cardiovascular 
Disease (598) 

13 3.17 
(1.63, 
5.67) 

5.36E-04 2.13 (1.65, 2.61) 

Insulin 
Disorders 
(623) 

13 3.04 
(1.56, 
5.43) 

7.83E-04 

CBMI (49) Body Mass 
Disorders 
(128) 

5 16.18 
(4.92, 
41.63) 

2.71E-05 1.55 (1.13, 1.97) 

Insulin 
Disorders 
(623) 

7 4.61 
(1.74, 
10.41) 

1.54E-03 

CD (239) Immune 
Dysregulation 
(550) 

23 3.42 
(2.10, 
5.32) 

1.70E-06 2.09 (-0.39, 4.58) 

EY (554) Positive Mood 
Disorders (69) 

9 4.70 
(2.04, 
9.59) 

2.88E-04 0.94 (0.81, 1.07) 

Monogenic 
Autism (111) 

10 3.10 
(1.44, 

2.54E-03 
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5.98) 
Psychiatric 
Disease (264) 

19 2.45 
(1.44, 
3.95) 

8.96E-04 

FN (58) Bone and Uric 
Acid Disorders 
(220) 

5 7.64 
(2.36, 
19.24) 

7.61E-04 3.79 (2.36, 5.22) 

HB (89) Disorders of 
Platelet 
Function (443) 

12 6.21 
(3.05, 
11.59) 

2.17E-06 2.38 (1.68, 3.09) 

Hematologic 
Disorders 
(551) 

10 3.99 
(1.83, 
7.79) 

4.42E-04 

HDL (464) Body Mass 
Disorders 
(128) 

12 3.92 
(1.95, 
7.17) 

1.39E-04 1.18 (1.00, 1.37) 

Monogenic 
Diabetes (182) 

15 3.41 
(1.85, 
5.85) 

9.36E-05 

Cardiovascular 
Disease (598) 

31 2.10 
(1.40, 
3.06) 

3.45E-04 

HGT 
(2361) 

Female 
Reproductive 
Disorders 
(288) 

61 1.76 
(1.30, 
2.36) 

2.18E-04 1.31 (1.19, 1.42) 

Growth 
Defects (723) 

126 1.39 
(1.13, 
1.70) 

1.43E-03 

IBD (368) Immune 
Dysregulation 
(550) 

34 3.32 
(2.23, 
4.79) 

1.58E-08 1.38 (1.10, 1.66) 

LDL (370) Cardiovascular 
Disease (598) 

31 2.70 
(1.79, 
3.95) 

3.45E-06 1.66 (1.24, 2.08) 

Mature-onset 
Diabetes of 
the Young 
(561) 

24 2.17 
(1.36, 
3.32) 

8.54E-04 

LS (67) Bone and Uric 
Acid Disorders 
(220) 

6 8.00 
(2.80, 
18.72) 

1.83E-04 2.53 (1.98, 3.08) 

MCH 
(164) 

Hematologic 
Disorders 
(551) 

15 3.19 
(1.73, 
5.48) 

1.92E-04 1.64 (1.16, 2.11) 

MCV (180) Hematologic 
Disorders 
(551) 

20 4.00 
(2.36, 
6.44) 

8.90E-07 1.61 (1.18, 2.04) 

MNR Body Mass 7 5.02 7.76E-04 1.03 (0.78, 1.27) 
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(207) Disorders 
(128) 

(1.95, 
10.86) 

PBC (149) Immune 
Dysregulation 
(550) 

13 3.03 
(1.56, 
5.40) 

7.77E-04 1.07 (0.76, 1.38) 

PCV (53) Disorders of 
Platelet 
Function (443) 

10 9.24 
(4.11, 
18.83) 

6.50E-07 4.04 (2.22, 5.87) 

Arrythmias 
(275) 

5 6.70 
(2.07, 
16.94) 

1.36E-03 

Hematologic 
Disorders 
(551) 

8 5.60 
(2.27, 
12.08) 

2.17E-04 

Cardiovascular 
Disease (598) 

7 4.39 
(1.66, 
9.84) 

1.94E-03 

PLT (134) Disorders of 
Platelet 
Function (443) 

12 3.91 
(1.95, 
7.15) 

1.40E-04 1.42 (0.98, 1.87) 

RA (297) Immune 
Dysregulation 
(550) 

25 2.95 
(1.86, 
4.50) 

6.80E-06 0.83 (0.65, 1.01) 

RBC (107) Hematologic 
Disorders 
(551) 

14 4.78 
(2.50, 
8.50) 

5.82E-06 2.76 (2.20, 3.33) 

Cardiovascular 
Disease (598) 

13 4.02 
(2.05, 
7.26) 

6.49E-05 

RHR (304) Arrythmias 
(275) 

17 3.93 
(2.23, 
6.53) 

5.87E-06 1.29 (0.95, 1.64) 

Cardiovascular 
Disease (598) 

26 2.75 
(1.75, 
4.16) 

1.47E-05 

SCZ (479) Positive Mood 
Disorders (69) 

9 5.47 
(2.37, 
11.19) 

9.71E-05 1.11 (0.94, 1.28) 

SLE (286) Immune 
Dysregulation 
(550) 

24 2.94 
(1.83, 
4.52) 

1.09E-05 1.41 (1.10, 1.72) 

T2D (28) Body Mass 
Disorders 
(128) 

4 23.55 
(5.85, 
69.99) 

4.67E-05 2.43 (1.57, 3.30) 

Monogenic 
Diabetes (182) 

3 11.72 
(2.24, 
38.93) 

2.90E-03 

TC (500) Cardiovascular 
Disease (598) 

38 2.44 
(1.69, 

3.46E-06 1.40 (1.10, 1.70) 
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3.45) 
TG (354) Body Mass 

Disorders 
(128) 

9 3.77 
(1.67, 
7.49) 

1.10E-03 1.26 (1.01, 1.51) 

Monogenic 
Diabetes (182) 

12 3.54 
(1.78, 
6.43) 

3.10E-04 

Cardiovascular 
Disease (598) 

25 2.22 
(1.41, 
3.38) 

5.06E-04 

UC (202) Immune 
Dysregulation 
(550) 

21 3.72 
(2.23, 
5.92) 

1.39E-06 1.45 (1.12, 1.78) 

WHR (74) Insulin 
Disorders 
(623) 

9 3.83 
(1.67, 
7.78) 

1.13E-03 2.37 (1.71, 3.04) 

 
Table 2.3 Instances of significant overlap of GWAS genes and unrelated Mendelian disorder 
genes. 
 
As in Table 2, Fisher’s exact test was used to quantify the enrichment of shared genes between 
complex traits and Mendelian disorders with an odds ratio and p-value (see Methods). Pairs 
with significant enrichment passed the cutoff of FDR < 5% at p < 0.00310. This table lists pairs 
of complex traits and phenotypically-unrelated Mendelian disorders that demonstrated 
significant overlap. For comparison, the average odds ratio and confidence interval for pairings 
of each complex trait with all remaining unrelated Mendelian disorder gene sets is included. 

Complex 
Trait (# 
genes) 

Matched or Related 
Mendelian Disorder (# 
genes) 

Shared 
Genes 

Odds Ratio 
(CI) 

Raw 
P-
value 

Average Odds 
Ratio for 
Remaining 
Unrelated Pairs 
(CI) 

ALZ (58) Immune Dysregulation 
(550) 7 4.32 (1.65, 

9.62) 
2.06E-
03 

1.95 (1.36, 
2.53) 

AMD 
(215) 

Microalbumin Disorders 
(159) 8 4.43 (1.86, 

9.13) 
7.37E-
04 

1.59 (1.03, 
2.15) 

BW 
(179) 

Mature-onset Diabetes of 
the Young (561) 16 3.06 (1.69, 

5.16) 
1.91E-
04 

2.35 (1.94, 
2.75) 

Immune Dysregulation 
(550) 14 2.69 (1.43, 

4.68) 
1.44E-
03 

Cardiovascular Disease 
(598) 14 2.46 (1.31, 

4.28) 
3.10E-
03 

CAD 
(132) Neurologic Disease (222) 7 4.52 (1.76, 

9.75) 
1.39E-
03 

2.34 (1.83, 
2.86) 

CD 
(239) 

Bone and Uric Acid 
Disorders (220) 9 3.20 (1.42, 

6.29) 
3.10E-
03 

2.09 (-0.39, 
4.58) 

Mature-onset Diabetes of 
the Young (561) 19 2.69 (1.58, 

4.35) 
2.32E-
04 

Renal Disorders (838) 23 2.17 (1.34, 
3.37) 

1.13E-
03 
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CEL 
(34) 

Disorders of Platelet 
Function (443) 5 6.78 (2.04, 

17.83) 
1.47E-
03 

1.90 (1.28, 
2.52) 

FN (58) Positive Mood Disorders 
(69) 3 14.51 (2.83, 

46.53) 
1.50E-
03 

3.79 (2.36, 
5.22) 

HGT 
(2361) Renal Disorders (838) 153 1.48 (1.23, 

1.78) 
3.75E-
05 

1.31 (1.19, 
1.42) 

IBD 
(368) 

Mature-onset Diabetes of 
the Young (561) 30 2.81 (1.85, 

4.13) 
2.40E-
06 

1.38 (1.10, 
1.66) 

LDL 
(370) 

Hematologic Disorders 
(551) 25 2.31 (1.46, 

3.51) 
3.50E-
04 

1.66 (1.24, 
2.08) 

LEPB 
(5) 

Female Reproductive 
Disorders (288) 2 40.52 (3.37, 

353.67) 
2.56E-
03 

10.83 (3.75, 
17.91) 

MCH 
(164) 

Bone and Uric Acid 
Disorders (220) 8 4.19 (1.75, 

8.61) 
1.05E-
03 1.65 (1.15, 

2.16) Insulin Disorders (623) 15 2.80 (1.52, 
4.81) 

6.99E-
04 

MCV 
(180) 

Bone and Uric Acid 
Disorders (220) 8 3.80 (1.59, 

7.79) 
1.89E-
03 

1.74 (1.25, 
2.22) 

PCV 
(53) 

Positive Mood Disorders 
(69) 3 15.97 (3.11, 

51.37) 
1.16E-
03 

4.04 (2.22, 
5.87) 

PLT 
(134) 

Cardiovascular Disease 
(598) 12 2.85 (1.42, 

5.20) 
1.97E-
03 

1.42 (0.98, 
1.87) 

RBC 
(107) 

Disorders of Platelet 
Function (443) 12 5.03 (2.49, 

9.29) 
1.51E-
05 2.90 (2.13, 

3.67) Renal Disorders (838) 18 4.14 (2.33, 
6.96) 

2.60E-
06 

SLE 
(286) 

Mature-onset Diabetes of 
the Young (561) 22 2.61 (1.59, 

4.07) 
1.24E-
04 

1.59 (1.24, 
1.94) 

TC (500) 

Hematologic Disorders 
(551) 32 2.20 (1.47, 

3.18) 
1.18E-
04 1.35 (1.05, 

1.66) Disorders of Platelet 
Function (443) 25 2.11 (1.34, 

3.20) 
1.13E-
03 

UC 
(202) 

Mature-onset Diabetes of 
the Young (561) 19 3.25 (1.90, 

5.27) 
2.44E-
05 

1.41 (1.05, 
1.77) 

WHR 
(74) 

Disorders of Platelet 
Function (443) 7 4.12 (1.59, 

9.03) 
2.50E-
03 

2.38 (1.58, 
3.18) 

 
Table 2.4 Genome-wide significant SNPs localizing at TSS of phenotypically-relevant 
Mendelian disorder genes. 
 
GWAS SNPs from the credible set for each complex trait were intersected with transcription 
start site (TSS) regions 1kb upstream of phenotypically-matched Mendelian disorder genes. 
This table lists all genome-wide significant SNPs (p < 5x10-8 from GWAS, with chromosomal 
location) from all complex traits localizing at the TSS of a phenotypically-matched Mendelian 
disorder gene (italicized). 
 
Complex 
Trait SNP ID Chr: pos Z score Gene 

Max. 
eQTL 
Effect 

Max. -
log10 
P Tissues 

PBC rs13239597 chr7: 9.85309 TNPO3    
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128695982 

HGT rs8028537 
chr15: 
89345946 -9.333 ACAN    

HGT rs10853751 
chr19: 
41903219 8.71 BCKDHA    

CD rs59283234 
chr5: 
150225586 -8.454 IRGM -0.042 6.733 wholeBlood 

CD rs751627 
chr5: 
150225112 -8.451 IRGM -0.042 6.733 wholeBlood 

CD rs35707106 
chr5: 
150225376 -8.332 IRGM -0.041 6.412 wholeBlood 

HGT rs2298307 
chr6: 
80816295 8.276 BCKDHB    

HGT rs12386601 
chr7: 
92157885 8.2 PEX1    

BMI rs17066842 
chr18: 
58040623 -7.542 MC4R    

HGT rs12192268 
chr6: 
110011457 -7 FIG4    

CAD rs1332327 
chr10: 
91011680 6.798 LIPA 12.541 5.132 

adiposeSubcut, 
adiposeVisceral, 
adrenalGland, 
colonTransverse, 
lung, spleen, 
thyroid, 
wholeBlood 

RA rs13239597 
chr7: 
128695982 6.65672 TNPO3    

IBD rs59283234 
chr5: 
150225586 6.51 IRGM -0.042 6.733 wholeBlood 

IBD rs751627 
chr5: 
150225112 6.507 IRGM -0.042 6.733 wholeBlood 

HGT rs7592246 
chr2: 
219926220 6.452 IHH 0.056 6.199 brainCerebellum 

IBD rs34005003 
chr5: 
150225198 6.427 IRGM -0.043 6.637 wholeBlood 

IBD rs35707106 
chr5: 
150225376 6.326 IRGM -0.041 6.412 wholeBlood 

MNR rs3775971 
chr4: 
104641919 6.20413 TACR3 -0.019 8.588 lung 

IBD rs27741 
chr16: 
28504180 6.109 CLN3    

HGT rs4244808 
chr11: 
2163109 6.061 IGF2    

RBC rs1010222 
chr19: 
13048607 

-
5.96154 CALR 17.142 6.851 lung 

CD rs27741 
chr16: 
28504180 -5.866 CLN3    

HGT rs613924 
chr11: 
65769294 -5.862 BANF1    

AFB rs4845357 
chr1: 
153896211 -5.775 GATAD2B -0.108 4.443 skinNotExposed 

HGT rs6591226 
chr11: 
66675989 5.517 PC    
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Chapter 3: The regulatory landscape of ovarian surface epithelial cells 
in relation to gene expression and epithelial ovarian cancer risk 
 

3.1 Introduction 

Epithelial ovarian cancer (EOC) is a rare but highly lethal malignancy, expected to cause 

~14,000 deaths in the US in 20201. EOC is a heterogeneous disease with a major heritable 

component2. Apart from highly penetrant germline mutations in genes such as BRCA1, BRCA2, 

and mismatch repair genes, the remaining heritability of EOC has been estimated at 5.6%, 

ranging from 3.2% to 8.8% across EOC subtypes3. Genome wide association studies (GWAS), 

primarily in European populations, have established 39 independent genomic risk regions for 

EOC4, which account for approximately 40% of this heritability3. However, interpretation of these 

common risk variants remains challenging because they fall predominantly in the noncoding 

genome; this suggests a regulatory role toward target susceptibility genes, possibly through 

epigenomic and chromatin conformation mechanisms2. Though recent studies have provided 

insight into the mechanisms of EOC risk with respect to susceptibility genes4, the regulatory 

landscape in ovarian surface epithelial cells (OSEC), a primary EOC precursor cell type, 

remains largely unexplored. Previous studies show that both expression profiles and regulatory 

features such as histone-3-lysine-27-acetylation (H3K27ac) in OSEC are implicated in the 

cellular origins of EOC5,6; however, little is known about how allelic variation affects gene 

expression, the epigenomic landscape, and gene regulation in OSEC. Understanding the 

specific regulatory pathways in OSEC is crucial for interpreting mechanisms of EOC risk arising 

in this cell type.   

This chapter is the product of a collaboration between co-authors named in Chapter 1, 

and is a draft of a manuscript in preparation. In this work, we examine the largest ovarian 

cancer precursor cell dataset to date, comprising H3K27ac ChIP-sequencing, RNA-sequencing, 

and GWAS genotyping data in primary normal ovarian surface epithelial cells (OSEC) from 105 
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individuals. We characterize the enhancer landscape of OSEC, explore the genomic control of 

H3K27ac and gene expression in OSEC, and integrate EOC risk to identify putative tissue-

specific EOC pathways. We first identify 62,106 regions of active chromatin in OSEC; in 

aggregate, we find these regions to be enriched for epithelial ovarian cancer GWAS risk. 

Second, we identify 947 putative gene-enhancer pairs through correlation of gene expression 

and H3K27ac peak intensity across our population. Third, we identify 20,693 expression QTLs 

(eQTLs) for 580 eGenes and 143 H3K27ac QTLs (hQTLs) for 30 peaks. Of the 29 known risk 

regions for ovarian cancer, we find 10 containing eQTL associations for 13 eGenes; one of 

these, SLC12A7, was also linked to a putative enhancer in our earlier analysis. In addition to 

providing insight into the regulatory landscape of healthy ovarian surface epithelial cells and 

identifying putative tissue-specific EOC pathways, these results can be contrasted to the 

regulatory landscape of ovarian cancer to pinpoint the major changes in gene regulation and 

pathway activation that occur during neoplastic transformation. 

3.2 Results 

We obtained high-throughput RNA-sequencing and high-density genotyping in a set of primary 

normal ovarian surface epithelial cells (OSEC) from 121 individuals, and H3K27ac ChIP-

sequencing in a subset of these OSEC (54 individuals; Figure 1). After quality control, outlier 

filtering, normalization, variance filtering, and consensus peak region identification (see 

Methods), this dataset contained expression measurements of 19,923 genes and genotypes of 

approximately 6 million SNPs single nucleotide polymorphisms (SNPs) across 105 individuals, 

and H3K27ac peak calls in 62,106 regions across 52 of these individuals. The OSEC donors in 

our study were primarily of European descent. We explore the hypothesis that genetic variation 

drives changes in chromatin activity and gene expression, which ultimately affects ovarian 

cancer risk (Figure 2). 
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Population-based profiling of active chromatin in OSEC 
 
H3K27ac marks active enhancers and promoters7. We first examined the H3K27ac ChIP-

sequencing metrics to determine sequencing quality for population-level comparison. The 

H3K27ac ChIP-sequencing read depth per sample varied from approximately 70 million reads to 

157 million reads (Table 1); after outlier filtering, retained samples had a minimum of 

approximately 10 million uniquely mapped reads (Figure 3). To assess whether sequencing 

quality was driving peak discovery within our samples, we computed correlations between 

number of peaks called per sample and total read depth per sample, and between number of 

peaks called per sample and unique map rate per sample. Neither correlation was significant (r2 

= 0.06 and 0.01 respectively; Figure 4a and Figure 4b respectively.)  

To explore variation in the OSEC enhancer and promoter landscape, we then identified 

62,106 H3K27ac peak regions (“peaks”) across 52 individuals and compared peak calls within 

these regions across individuals. This was performed by taking the union of all peak boundaries 

across samples and merging any regions within 147 base pairs of each other (Figure 5; see 

Methods for more detail.) The median peak length was 3.4kb, ranging from 280bp to 571kb 

(Figure 6). Each peak was called in an average of 22 individuals (Figure 7); on average, Y 

peaks were called per individual. For each of the 62,106 peaks across each of the 52 

individuals, peak scores were constructed by dividing the average number of reads over only 

the covered bases within the peak boundaries by the total number of uniquely mapped reads for 

each individual. As expected, the variance of scores show that most peaks are common (with 

low variance) and a few peaks show dramatically increased variance in peak scores (Figure 8). 

The attrition in new peaks identified per sample (Figure 9) indicates that our peak calls 

comprehensively reflect the active chromatin landscape in OSEC. 
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Enrichment of ovarian cancer GWAS risk in H3K27ac peak regions 

To quantify the relevance of H3K27ac peak regions to ovarian cancer risk, we performed an 

enrichment analysis using a genomic annotation corresponding to all 62,106 H3K27ac 

consensus peak regions and the GWAS summary statistics from 6 subtypes of epithelial ovarian 

cancer (see Methods). We identified significant enrichment of GWAS signal in our peak regions 

for the high-grade serous subtype (2.59 fold enrichment, s.e. 0.35; p = 3.29 x 10-4), and for the 

meta-analysis of all non-mucinous histotypes (2.71 fold enrichment, s.e. 0.31; p = 4.62 x 10-5). 

These results are consistent with our hypothesis that H3K27ac in OSEC are relevant for the 

development of ovarian cancer risk. 

 

Global maps of gene regulation in ovarian surface epithelial cells 
 

Although many genes have been identified as important in the development of ovarian cancer, 

their regulatory landscape in OSEC remains unknown; specifically, the enhancers regulating 

each gene have not been clearly mapped. This is a critical step in understanding the pathway 

from genetic variation to the phenotype of ovarian cancer development. Here, we statistically 

linked enhancers and genes by computing a correlation between H3K27ac peak intensity and 

gene expression across the 52 individuals with both H3K27ac ChIP-seq and RNA-seq; we treat 

H3K27ac peaks as markers of enhancers in OSEC. With this sample size, and the total 

numbers of genes (19,923) and peaks (61,206), we are best powered to identify proximal 

enhancers (vs. distal enhancers), so we limited correlations to pairs of genes and H3K27ac 

peaks within 1 Mb of each other. Of 702,057 peak-gene pairs tested (see Methods), we 

identified 923 peak-gene pairs with significant correlation. This included 729 unique genes and 

907 unique peaks; on average, we identified 1 significantly correlated gene per peak, and 1-2 

significantly correlated peaks per gene (Figure 10a and Figure 10b). The average distance 

between peak and gene among significantly correlated pairs was 492 kb, with Pearson r less 
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than -0.4 and greater than 0.4 (Figure 11). For the genes in each of these pairs, we evaluated 

Gene Ontology (GO) enrichments, which revealed specific enrichment among cellular 

biosynthetic processes and detection of chemical stimuli, especially related to sensory smell 

perception (Table 2).  

As the 923 peak-gene pairs identified represent putative gene-enhancer pairs, 

intersecting this map of gene regulation with known ovarian cancer risk in the genome could 

prioritize genes and pathways relevant to the development of ovarian cancer. Across the 29 

identified ovarian cancer genomic risk regions, we identify 20 putative gene-enhancer pairs 

across 19 unique genes, 20 unique peaks, and 13 unique genomic risk regions (Table 3). We 

identify one gene, SLC12A7, in an ovarian cancer risk region on chromosome 5, to be 

correlated with 2 putative enhancers. To identify further evidence of any gene’s relevance to 

ovarian cancer, we compared this set of 19 genes to the 23 genes identified from a recent 

transcriptome-wide association study in ovarian cancer4. However, none of these genes had 

been specifically identified as associated with ovarian cancer in the TWAS or other reported 

literature as far as we can tell. 

 

Cis-eQTLs identified for 580 eGenes in OSEC 

An important step in understanding the regulatory landscape in a cell type is to identify the 

genetic drivers of gene expression and overall ovarian cancer risk. We start by identifying 

expression QTLs (eQTLs) across 105 individuals, for expression measurements of 13,334 

genes, and genotype measurements of close to 6 million single nucleotide polymorphisms 

(SNPs); these were selected based on outlier and variance filtering (see Methods); PEER 

factors and genotype PCs were regressed out to correct for covariates and ancestry 

confounding. Permutations were used to disrupt linkage disequilibrium (LD) between genotypes 

and phenotypes, and control for multiple testing using a 5% FDR.  
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 In total, we identified 20,693 significant eQTL SNP-gene pairs, corresponding to 580 

unique eGenes and 20,402 unique SNPs. As expected, nominal eQTL signal was enriched near 

the transcription start site of eGenes (Figure 12). To identify any biological processes or 

pathways enriched within these 580 genes, we performed another GO enrichment analysis 

(Table 4). This identified enrichment of protein targeting processes, as well as detection of 

chemical stimuli also particularly involved in sensory smell perception. In addition, one of the 

eGenes, STK11, has been linked to ovarian cancer through Peutz-Jaeger syndrome8. 

As before, intersecting the eQTL map with known ovarian cancer risk in the genome 

could prioritize genes and genetic variation relevant to the development of ovarian cancer. 

Across the 29 identified ovarian cancer genomic risk regions, we identify 362 significant eQTL 

SNP-eGene pairs representing 12 unique eGenes, 289 unique peaks, and 10 unique genomic 

risk regions (Table 5). To identify further evidence of any gene’s relevance to ovarian cancer, as 

before, we compared this set of 12 genes to the 23 genes identified from the recent ovarian 

cancer TWAS4; none of these genes were implicated. However, one of the 12 eGenes, 

SLC12A7, was also identified in our study to be correlated with 2 putative enhancers. These 

findings are consistent with previous studies of eQTLs in ovarian cancer tissue types4. 

 

Few cis-hQTLs identified in OSEC 

We next attempted to identify H3K27ac chromatin QTLs (hQTLs) in the 52 individuals with 

H3K27ac ChIP-seq and genotyping. We started with the peak intensities across all 62,106 

consensus peaks in each individual and the 6 million SNP genotypes; however, we only 

identified 101 hQTL SNP-peak pairs, corresponding to 20 unique peaks and 101 unique SNPs. 

There was no noticeable enrichment of hQTL signal near the center of peaks, even at reduced 

significance thresholds (Figure 13). Furthermore, we found no hQTL associations in any of the 
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29 ovarian cancer genomic risk regions. These results did not change significantly when using 

binarized peak phenotypes or with differing numbers of PEER factors corrected (see Methods). 

 

No statistical colocalization of eQTL and GWAS associations 

Last, we attempted to statistically quantify whether any eQTL signal in ovarian cancer risk 

regions was driven by the same variants associated with ovarian cancer through GWAS. In 

each of the 29 risk regions, we performed a colocalization test between each gene’s nominal 

eQTL associations and GWAS risk for each of the 6 subtypes of ovarian cancer. Using a PP4 

threshold of 0.8, signifying a posterior probability that both eQTL and GWAS associations are 

driven by the same variant, we did not identify any significant colocalization in any of the GWAS 

risk regions for any of the ovarian cancer subtypes. We could not perform this analysis between 

hQTL and GWAS associations, as no significant hQTL associations were identified in any 

ovarian cancer risk regions. 

3.3 Methods 

Generation of primary normal OSEC and selection of individuals for our study 

Obtention of primary normal OSEC was as previously described in 4 : “OSECs were 

collected from histologically normal ovaries and fallopian tubes removed from women diagnosed 

with ovarian, uterine or cervical cancer. Short-term cultures were established9,10. OSECs were 

collected using a Cytobrush and cultured in NOSE-CM media containing 15% fetal bovine 

serum (FBS; HyClone, Fisher Scientific), 34 μg ml−1 bovine pituitary extract, 10 ng ml−1 

epidermal growth factor (Thermo Fisher Scientific), 5 μg ml−1 insulin and 500 ng ml−1 

hydrocortisone (Sigma-Aldrich).” These samples were obtained as part of a larger study; for our 

analyses, we selected all individuals where matched IDs could be identified across genotype 
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data and RNA-sequencing data (described below). This resulted in a set of 121 individuals. All 

analyses described in our study relate to these individuals only. 

 

Genotyping and data processing 

High-density imputed genotypes of primary normal OSEC from approximately 272 

individuals were obtained were obtained from our collaborators Paul Pharoah, Simon Gayther, 

and Kate Lawrenson as part of a larger study. We restricted our analysis to the 121 individuals 

mentioned above, where genotype IDs could be matched to RNA-sequencing IDs (described 

below). Given the imputed genotypes (an output of the IMPUTE2 software) from our 

collaborators, we first converted imputed genotype probabilities into dosages in VCF format 

using custom scripts. We then restricted all analyses to biallelic SNPs with minor allele 

frequency (MAF) > 0.05, no missingness, and Hardy-Weinberg equilibrium > 0.0001. These 

restrictions resulted in measurements of 6 million SNPs across 121 individuals.  

  

RNA sequencing and data processing 

The RNA sequencing used in this study was previously described in 4 : “At approximately 

80% confluency, cells were lysed using the QIAzol lysis reagent and RNA extracted using the 

RNeasy Mini Kit (both QIAGEN). RNA-seq was performed by the University of Southern 

California Epigenome Core Facility using 50 bp single-end reads.” RNA-seq gene-level 

quantification, GC normalization, and batch correction were performed by our collaborators at 

Cedars-Sinai; we ultimately obtained TPM counts per gene per individual for 19,923 genes from 

these collaborators and restricted to the 121 individuals whose RNA-sequencing ID could be 

linked to a genotype ID. 

Using the TPM counts per gene per individual, we restricted our analysis to genes with 

>0.1 TPM in at least 20% of individuals (resulting N = 13,334 genes). We computed and 
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regressed out 15 PEER factors along with 3 principal components (PCs) computed from the 

corresponding sample genotypes to obtain residuals, and normalized the residuals across 

individuals using a rank inverse normal transformation. 

 

H3K27ac ChIP sequencing and data processing 

H3K27ac ChIP-sequencing was performed by our collaborators at Cedars-Sinai on a 

subset of the 121 individuals in our study; this included 54 individuals, plus 4 additional replicate 

individuals, for 58 experiments total. The libraries were then sent to the UCLA Sequencing Core 

(care of Giovanni Coppola and Yue Qin), who called narrow and broad H3K27ac peaks for each 

individual using HOMER. We then obtained the output peak calls and bigWig files from the 

UCLA Sequencing core. 

We first examined the sequencing statistics and removed outlier samples with coverage 

< X; this threshold was determined by preliminarily identifying population-level peak regions and 

performing a principal components analysis to visualize outliers. After outlier and replicate 

removal, we re-identified population-level peak regions by taking the union of peak regions 

across all remaining individuals and merging all peak regions within 147bp of another. This 

resulted in 62,106 peak regions across 52 individuals. All further analyses using H3K27ac ChIP-

sequencing were restricted to these 52 individuals. We then constructed 2 phenotype matrices 

of individuals vs. population-level peak regions: one with continuous values and one with 

binarized values. Each cell of the binarized phenotype matrix contained either 1 or 0 depending 

on whether any peak was originally called in that individual in that region; each cell of the 

continuous phenotype matrix contained, per individual per region, the average number of reads 

over only the covered bases in the region divided by the total number of uniquely mapped reads 

for each individual. Across both matrices, we computed and regressed out between 2 and 10 

PEER factors along with 3 genotype PCs and batch covariates to obtain residuals. Ultimately, 
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the binarized phenotype matrix with 2 PEER factors, 3 genotype PCs, and batch covariates 

regressed out was used for hQTL calling (see “Determining and troubleshooting parameters” 

section below). This data pre-processing follows the GTEx pipeline steps, modified for the 

different data type (ChIP-seq vs. RNA-seq) and for the reduced sample size. The inclusion of 3 

genotype PCs follows the process used by the GEUVADIS study and controls for genetic 

background and ancestry in our study. 

 

Obtention of genome-wide association summary statistics for epithelial ovarian cancer 

Summary statistics were obtained from our collaborators Paul Pharoah, Simon Gayther, 

and Kate Lawrenson from the latest, largest genome-wide association study of ovarian cancer 

(N > 61,000 individuals), published in 11. These summary statistics contained separate 

associations analyzed for 5 histotypes of epithelial ovarian cancer: endometrioid, clear cell, 

mucinous (“mucinous_all”), low-grade serious (“ser_lg_lmp”), and high-grade serous 

(“serous_hg_extra”). Additionally, a meta-analysis of associations for all non-mucinous 

histotypes was included (“all_non_mucinous”).  

 

Quantifying enrichment of SNP heritability 

We used stratified LD score regression (s-LDSC)12 to estimate the enrichment of SNP 

heritability of the 6 ovarian cancer subtypes within a single genomic annotation containing the 

62,106 H3K27ac population-level peak regions in OSEC defined above. The annotation value 

for SNP i is defined as ai = 1 if SNP i is within an H3K27ac peak region and ai = 0 otherwise. 

We computed LD scores within 1 cM blocks with default parameters and LD estimated from the 

European individuals in the 1000 Genomes Phase 3 reference panel. For each of the 6 ovarian 

cancer subtypes, we ran s-LDSC by using the recommended “baseline model”12 as covariates 
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in the regression for a total of 53 annotations per run (52 “baseline” annotations plus the OSEC 

H3K27ac annotation). 

 

Identifying putative gene-enhancer pairs 

 To identify putative gene-enhancer pairs, we computed correlations across the 52 

individuals with both H3K27ac ChIP-sequencing and RNA-sequencing. First, across all 19,923 

genes and 62,106 peaks, we identified all peak-gene pairs within 1 Mb of each other. This 

resulted in 702,057 pairs. For each pair, we computed a Pearson correlation of gene expression 

values as described above and continuous peak phenotype values as described above across 

the 52 individuals. Significance was assessed at a Bonferroni-corrected threshold per gene, 

correcting for the number of peak-gene pairs tested for each gene (mean = 54 tests per gene, 

resulting in a Bonferroni-corrected threshold of 0.05/54 corresponding to p < 0.0009).  

 

Genome-wide cis-QTL calling 

To identify cis-hQTLs, we used the pipeline previously described by the eQTLgen 

consortium as well. Before calling hQTLs, we filter genotypes by MAF > 5% to exclude rare 

variants, require 0% missingness to maintain sample size across each QTL test, and restrict to 

biallelic variants. We used the permutation setting to disrupt LD between genotypes and 

phenotypes, and control for multiple testing using a 10% FDR. All SNP-peak pairs were tested 

for association where the center position of the peak falls within 2 kb of the SNP. A false 

discovery rate (FDR) was determined based on 10 permutations of sample labels in either the 

genotype or expression dataset; cis-hQTLs with FDR > 0.10 were considered significant. These 

parameters follow 13.  

To identify cis-eQTLs, we similarly used the pipeline previously described by the 

eQTLgen consortium; briefly, all SNP-gene pairs were tested for association where the center 
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position of the gene falls within 250 kb of the SNP. A false discovery rate (FDR) was determined 

based on 10 permutations of sample labels in either the genotype or expression dataset; cis-

eQTLs with FDR > 0.05 were considered significant. These pre-processing and QTL-calling 

steps followed the GTEx and GEUVADIS pipelines. 

 

Determining and troubleshooting parameters for genome-wide cis-hQTL calling 

To determine the optimal number of PEER factors to correct for, we performed a cis-

hQTL run correcting one PEER factor at a time from 2 to 10 PEER factors, with 1 permutation 

per run. Maximal QTLs were identified correcting for 2 PEER factors, although results were 

similar across all PEER trials. Similarly, to determine whether to use continuous or binarized 

phenotypes, we performed cis-hQTL using both phenotype matrices; maximal QTLs were 

identified using binarized phenotypes, although results were similar across both trials. To 

determine the optimal QTL-calling pipeline, we additionally performed a cis-hQTL analysis using 

Matrix eQTL, restricting to SNPs within 2kb of each peak. 3 genotype PCs were included as 

covariates, along with age, batch, and 4 technical covariates. Cis-hQTL significance was 

assessed at FDR < 0.1. Equivalent results were obtained as compared to using the eQTLgen 

pipeline.  

 

Colocalization analysis between eQTL associations and GWAS associations 

 Colocalization analysis was performed using the Coloc R package14  using nominal 

eQTL association summary statistics and nominal GWAS summary statistics for each of the 6 

ovarian cancer subtypes. Colocalization tests were performed between GWAS signal and eQTL 

associations for eGenes in each of the 29 genomic risk regions identified by 11. A minimum of 2 

SNPs were required to be present in each dataset for each colocalization test; significance was 

assessed at a threshold of PP4 > 0.8.  
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3.4 Discussion 

In this study, we integrated gene expression,  H3K27ac ChIP-sequencing, and genotyping data 

in OSEC from a population of individuals with the largest GWAS dataset available for epithelial 

ovarian cancer to characterize the regulatory landscape of this important ovarian cancer 

precursor cell type. We were able to compare H3K27ac ChIP-sequencing across 52 individuals 

to identify common and variable active chromatin regions, demonstrated enrichment of multiple 

ovarian cancer subtype GWAS signal within the population-level active chromatin regions, 

identified pairs of genes and putative enhancers to understand the global gene regulation 

landscape in OSEC, and identified eQTLs for 580 eGenes in OSEC. We identtified SLC12A7, 

which has been previously linked to ovarian and cervical cancer cell invasion15, to have 2 

putative enhancers and a significant eQTL in OSEC, as well as localizing in an ovarian cancer 

risk region, suggesting its potential as a candidate gene for follow-up functional analyses. None 

of the genes identified by our analyses have previously been identified as specifically linked to 

ovarian cancer at the population level; thus, we offer a selection of novel genes for future 

studies. We also identified 102 hQTLs for 20 ePeaks, although we were unable to identify any 

evidence of colocalization of causal signal between GWAS associations for any subtype and 

eQTL associations or hQTL associations. Taken together, these findings indicate that the 

regulatory landscape of OSEC remains partially understood, and increased sample size may 

offer new insight into the specific pathways and mechanisms at play in ovarian cancer risk.  

We observed a striking overlap between the gene ontology enrichment findings for 

genes with putative enhancers and eGenes; in particular, detection of chemical stimuli and 

sensory perception of smell were biological processes found to be significantly enriched in both 

sets of genes. These findings suggest a potential benefit of further exploration into the links 

between OSEC and sensory perception, particularly in the case of smell. In addition, a majority 

of eGenes identified in OSEC that also fell within ovarian cancer risk regions have been 
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previously reported in the context of cancer. Specifically, FES has been identified as an 

oncogene in acute promyelocytic leukemia; GJC1 has been associated with promoter 

hypermethylation-driven silencing in colorectal cancer16; INA has been found to have high RNA 

expression in urothelial & testicular cancer; KCNAB1 is differentially expressed in ovarian 

cancer17 and has been associated with ovarian cancer survival18; NDUFS6 is a therapeutic 

target for HER2+ breast cancer19 and has been linked to cervical cancer20; NFE2L1 has been 

associated with cellular toxicity in breast cancer and showed similar effects as c-MYC 

overexpression21; PGLS is a driver gene in cervical non-keratinized squamous cell carcinoma22; 

TMEM38A is an unfavorable prognostic marker in ovarian cancer; and TRIAP1 is a microRNA 

target in inhibiting ovarian cancer growth23. 

It remains likely that our analyses missed an unquantifiable proportion of true 

associations and gene-enhancer pairs as our sample sizes were limited to 52 H3K27ac ChIP-

sequencing samples and 105 RNA-sequencing samples. It is possible for long-range enhancers 

to regulate genes, and our current approach will miss these. However, removing the distance 

limit between genes and H3K27ac peaks would likely result in the multiple testing correction 

being too stringent to observe signal at our sample size. Furthermore, it is possible that our 

sample size would be too small to observe any correlation signal even within a 1MB window. To 

address these limitations, future studies can restrict the number of genes tested to only those 

previously established to have relevance for ovarian cancer, such as those conferring hereditary 

risk like BRCA1 and BRCA2, or the susceptibility genes identified in the recent TWAS of ovarian 

cancer4. This would substantially reduce the multiple testing correction burden and allow for 

possible identification of enhancer-gene pairs. Second, we could instead compute the genetic 

covariance between the genetic variants associated with H3K27ac peaks and genes. Though 

this would not link pairs of genes and enhancers, it would provide genome-level evidence that 
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the genetic variants driving chromatin activity (as measured by H3K27ac peak intensity) 

similarly contribute to gene expression. 

Similar studies with slightly larger sample sizes identified significantly more QTL 

associations13,24, suggesting the value of larger sample sizes to identify hQTLs in particular. 

Furthermore, our samples demonstrated strong batch and covariate effects, making it difficult to 

correct for confounders while maximizing signal. It’s also possible our analyses were limited due 

to overinclusion of covariates with excess missing data. Furthermore, although histone 

modifications such as H3K27ac reflect genetic control, calling hQTLs with a sample size of 52 is 

challenging regardless. Future studies may benefit from an alternate approach to link genetic 

variation with H3K27ac, by identifying instances of allelic imbalance; this would require 

restricting to peaks with SNPs (specifically heterozygous genotypes) contained within peak 

boundaries, and measuring whether an imbalance of ChIP-sequencing reads carry one allele 

vs. the other. Recent studies have shown the benefit of this approach in cases of low sample 

size. 

Last, integration of more functional genomic data would provide significant value in this 

endeavor. In particular, Hi-C and H3K27ac HiChIP experiments which identify physical 

chromatin interactions would provide additional avenues to link genetic variation to enhancers, 

enhancers to genes, and genes to significant GWAS associations. In particular, identifying 

cases where GWAS associations interact with enhancers and/or gene promoters would provide 

direct evidence of molecular pathways which QTL analyses are not powered to detect. 

3.5 Figures 

Figure 3.1 Schematic of data and analyses to explore regulatory landscape of OSEC in relation 
to ovarian cancer risk. 
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Figure 3.2 Regulatory hypothesis linking genetic variation, chromatin activity, gene expression, 
and inherited ovarian cancer risk. 
 

 
 
 
Figure 3.3 Mapped vs. uniquely mapped reads for H3K27ac ChIP-sequencing alignment in 52 
retained samples. 
 
This plot shows counts of mapped reads (light pink) vs uniquely mapped reads (dark pink) for 
H3K27ac ChIP-sequencing alignment across 52 retained samples. Sample IDs are sorted along 
the X axis from lowest number of mapped reads to highest; read counts are reflected on the Y 
axis. 
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Figure 3.4 Read count and map rate are uncorrelated with number of peaks called per sample. 
 
Shown here are correlations between number of peaks called per sample and (left) total read 
count, and (right) unique map rate. Each dot represents one sample; black line represents line 
of best fit. 

 
 
Figure 3.5 Diagram of of consensus peak region identification across 52 H3K27ac ChIP-
sequencing samples. 
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Consensus peaks were identified by taking the union of peak regions across all remaining 
individuals and merging all peak regions within 147bp of another. 

 
Figure 3.6 Histogram of H3K27ac consensus peak sizes (lengths). 

 

 
 
Figure 3.7 Peak frequency across individuals. 

Shown here is the distribution of peaks across individuals; for each of the 62,106 consensus 
peak regions, we counted how many individuals had a peak originally called within that region. 
The median number of individuals identified with a particular peak was 22; the quartiles ranged 
from 0-3 individuals, 3-22 individuals, 22-51 individuals, and 51-52 individuals in order. 
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Figure 3.8 Variation of peak scores across individuals. 

For each of the 62,106 peaks across each of the 52 individuals, a peak score was constructed 
by dividing the average number of reads over only the covered bases in the region by the total 
number of uniquely mapped reads for each individual. Shown here is the log variance of peak 
scores. 

 
 
Figure 3.9 Attrition of new peaks discovered with each new individual considered. 
 
Shown here are the number of peaks discovered in each sample, out of the total consensus 
62,106 peaks. This was constructed by randomly selecting one individual at a time without 
replacement and identifiying how many of the 62,106 peak regions contained a peak originally 
called in that individual. With each new sample, only new consensus peak regions were 
considered. 
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Figure 3.10 Histograms of significantly correlated peaks per gene and genes per peak. 

Of the 923 significantly correlated pairs of peaks and genes, 729 unique genes and 907 unique 
peaks were identified. Shown here are the distributions of genes per peak (left) and peaks per 
gene (right) across the significant pairs. 

 
Figure 3.11 Comparison of Pearson r values across significant and non-significant peak-gene 
pairs tested. 

Of the 702,057 peak-gene pairs tested, 923 were significantly correlated. Shown here are the 
Pearson r values across the significant and non-significant pairs. 
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Figure 3.12 Enrichment of eQTL signal near transcription start site of eGenes. 

For the top eQTL across each of the 580 eGenes, we show the distance to the eGene’s 
transcription start site. 

 
Figure 3.13 No enrichment of hQTL signal near centers of peaks. 

For the top eQTL at various significance thresholds, we show the distance to the ePeaks’s 
center. 
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3.6 Tables 

Table 3.1 Sequencing and alignment statistics for 58 H3K27ac ChIP-sequencing samples.  
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Table 3.2 Gene ontology enrichments for genes with putative enhancers. 

Of the 923 signficantly-correlated peak gene pairs, 729 unique genes were identified; 726 of 
these were identifiable in the GO ontology enrichment dataset. Shown here are the enrichments 
in biological processes of those 726 genes.  
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Table 3.3 Putative gene-enhancer pairs in ovarian cancer risk regions. 

Of the 923 signficantly-correlated peak gene pairs, 20 pairs were identified across 13 ovarian 
cancer risk regions. Listed here are the genes, putative enhancers, and genomic risk regions.  

 
 
Table 3.4 Gene ontology enrichments for eGenes. 

Of the 13,334 genes tested in the eQTL analysis, 580 eGenes were identified; 565 of these 
were identifiable in the GO ontology enrichment dataset. Shown here are the enrichments in 
biological processes of those 565 genes.  



 67 

 
 
Table 3.5 Top eQTLs identified in ovarian cancer genomic risk regions. 

Shown here are the eQTL summary statistics for the top eQTLs for the 12 eGenes within 
ovarian cancer risk regions.  
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Chapter 4: Conclusion 
 

This thesis has explored different mechanisms of genetic regulation contributing to the 

development of complex human genetic traits; specifically, this work has provided a foray into 

understanding the different ways that genetic variation can drive downstream phenotypes 

through direct and epigenetic regulation of target genes. Chapter 2 explored the shared genetic 

basis between complex traits and Mendelian disorders, primarily from the perspective of 

leveraging phenotypic information from genes linked to Mendelian disorders to identify genetic 

regulatory mechanisms driving complex trait risk, and Chapter 3 examined the molecular 

genomic mechanisms related to epithelial ovarian cancer risk.  

In this final chapter, I suggest ways these findings can be applied toward the goals of 

isolating and identifying the genetic factors driving phenotypes, both towards the goals of better 

interpreting individuals’ risk of developing a trait or disease and better understanding the 

biological basis of these varied phenotypes. First, my co-authors and I show that genetic risk 

variants identified by GWAS have higher effects for complex traits when located near genes 

with any Mendelian phenotypes, and even higher effects when located next to genes where the 

phenotype is related to the complex trait. A significant contribution of this work is the resulting 

conclusion that these rare-disease-linked genes are broadly important for complex traits. Our 

findings complement recent work on the omnigenic model in complex trait genetics1, and further 

suggest that Mendelian genes may be the core genes underlying complex traits in the model. 

Future work focused on identifying core genes for various traits would benefit from examining 

and prioritizing evolutionary constrained genes, Mendelian genes, and specifically Mendelian 

genes with similar phenotypes as compared to the complex trait of interest. Furthermore, the 

findings of Chapter 2 have the potential to reveal differences in genetic architecture across 

populations with different ancestries. Although our study included GWAS from non-European 
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populations, the majority of genomic associations were derived from European populations, 

which are not necessarily representative of global genomic diversity. Based on the support for 

our hypothesis that Mendelian genes underlie complex traits, we can extend this hypothesis 

across populations. If future studies were to examine the shared genetic basis of complex traits 

and Mendelian disorders using GWAS from non-European populations, and/or genes identified 

to be linked to Mendelian disorders in global populations, we might develop a better 

understanding of the genetic architecture of complex traits, as well as gain insight into how well 

we have identified Mendelian genes and GWAS associations across populations. 

This work has important implications for rare diseases as well. Given the support we find 

for the genetic regulatory hypothesis outlined in Chapters 2 and 3, as well as the large body of 

work linking regulatory genetic variation to changes in gene expression, the findings presented 

in this thesis have the potential to lend insight into understanding the mechanisms of variable 

presentation and penetrance in Mendelian disorders. One such example, from recent work on 

the KAT6A group of disorders, highlights how individuals with the same genetic variant driving 

KAT6A Syndrome can have a wide range of phenotypic severity2, and the factors influencing 

this have yet to be pinpointed. Our work suggests that regulatory variation may underlie patterns 

like these, where common variation outside of Mendelian genes affect changes in epigenetic 

markers such as promoters or enhancers, or 3D chromatin conformation affecting physical 

interaction of different genomic regions, which together may affect disease gene expression 

leading to phenotypic differences unrelated to the “causal” rare variant for the syndrome. 

Importantly, the work presented in Chapter 3 indicates the importance of identifying the relevant 

tissue for each disease in which to study molecular mechanisms, and the importance of 

sufficiently powered population-level association studies to detect links from genetic to 

epigenetic to transcriptomic changes, and ultimately to phenotypes. 
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