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Abstract

The baroclinic-mode decomposition is a fixture of the tropical-dynamics 
literature because of its simplicity and apparent usefulness in understanding 
a wide range of atmospheric phenomena. However, its derivation relies on 
the assumption that the tropopause is a rigid lid that artificially restricts the 
vertical propagation of wave energy. This causes tropospheric buoyancy 
anomalies of a single vertical mode to remain coherent for all time in the 
absence of dissipation. Here, the authors derive the Green’s functions for 
these baroclinic modes in a two-dimensional troposphere (or, equivalently, a 
three-dimensional troposphere with one translational symmetry) that is 
overlain by a stratosphere. These Green’s functions quantify the propagation
and spreading of gravity waves generated by a horizontally localized 
heating, and they can be used to reconstruct the evolution of any 
tropospheric heating. For a first-baroclinic two-dimensional right-moving or 
left-moving gravity wave with a characteristic width of 100 km, its initial 
horizontal shape becomes unrecognizable after 4 h, at which point its initial 
amplitude has also been reduced by a factor of 1/π. After this time, the 
gravity wave assumes a universal shape that widens linearly in time. For 
gravity waves on a periodic domain the length of Earth’s circumference, it 
takes only 10 days for the gravity waves to spread their buoyancy 
throughout the entire domain.

Keywords: Convective adjustment; Gravity waves; Internal waves; Shallow-
water equations; Tropopause; Baroclinic models

1. Introduction

Much of the atmospheric tropical-dynamics literature has relied on spectrally 
discretized and truncated models that reduce the primitive equations to a 
set of shallow-water equations for the first one or two baroclinic modes 
(e.g., Matsuno 1966; Gill 1980; Neelin and Held 1987; Mapes 1993). This 
class of simple models is capable of replicating important aspects of the 
tropical atmospheric circulation. For example, some studies (e.g., Wheeler 
and Kiladis 1999; Hendon and Wheeler 2008) have documented features in 
the tropical spectra of outgoing longwave radiation that appear quite similar 
to the linear equatorial waves predicted by Matsuno (1966). Others (e.g., Gill 
1980; Neelin and Held 1987) have constructed simple models that capture 
many of the observed features of steady tropical circulations using only the 
first baroclinic mode.



The spectral discretization used by these simple models is only formally 
justified if the tropopause behaves like a rigid lid, and the spectral truncation
to the first one or two modes is valid only if the heating has a particularly 
simple structure. It has indeed been observed that the first one or two 
baroclinic modes dominate diabatic heating profiles in the tropical 
troposphere, at least around mesoscale convective systems (Mapes and 
Houze 1995). Past work often interprets first- and second-baroclinic-mode 
heating as corresponding to deep convective and stratiform clouds, 
respectively (e.g., Mapes 2000; Haertel and Kiladis 2004). However, the 
tropopause is far from being a rigid lid, and in a semi-infinite atmosphere, 
any heat source confined to the troposphere excites waves with a continuous
spectrum of vertical structures, even if the heating is dominated by a single 
baroclinic mode (Pandya et al. 1993; Mapes 1998; Lindzen 2003).

A further objection to this spectral discretization and truncation comes from 
considering the response to transient heating in a model with a rigid 
lid. Bretherton and Smolarkiewicz (1989) introduced the canonical 
description of gravity wave adjustment in a nonrotating fluid, in which wave 
fronts of compensating subsidence propagate away from the heat source at 
discrete gravity wave speeds corresponding to each baroclinic mode. This 
model has proved useful for understanding how convective clouds may 
initiate convection in their local environments (Mapes 1993) and for 
parameterizing the interaction of convection and large-scale circulations 
(e.g., Raymond and Zeng 2000; Cohen and Craig 2004; Edman and Romps 
2014). However, this picture of purely horizontal wave radiation is at best 
incomplete: it predicts that wave fronts produced by a pulse of heating will 
propagate forever unless there is some dissipation in the system. To prevent 
this pathological behavior, simple models based on one or two baroclinic 
modes often invoke strong damping in the form of Rayleigh friction and 
Newtonian cooling, with time scales of about 1–10 days (e.g., Matsuno 
1966; Chang 1977; Gill 1980; Wu et al. 2000; Sobel et al. 2001; Sugiyama 
2009; Chan and Shepherd 2014). Some have found this need for strong 
damping unsettling (e.g., Battisti et al. 1999), but recent work has suggested
that it could be produced by convective momentum transport (Lin et al. 
2008; Romps 2014).

As other studies have pointed out (e.g., Pandya et al. 1993), the upward 
radiation of wave energy modifies the rigid-lid picture, smoothing out sharp 
wave fronts that would otherwise propagate forever in the absence of any 
dissipative friction or radiation. This diffusion of sharp wave fronts occurs 
because the vertical component of the group velocity for hydrostatic gravity 
waves is proportional to the horizontal wavenumber. Therefore, the largest 
horizontal wavenumbers are the first to radiate out of the troposphere (Gill 
1982), rapidly smoothing out any sharp features in the tropospheric gravity 
wave. Eventually, all of the nonzero horizontal wavenumbers radiate into the



stratosphere, leaving the troposphere with a nonpropagating, horizontally 
uniform buoyancy anomaly.

Some studies have suggested that internal gravity waves radiate out of the 
troposphere on time scales relevant to dynamics. Mapes (1998) attempted to
parameterize the smoothing of wave fronts emanating from a mesoscale 
convective system using a Gaussian kernel. And, Yano and Emanuel 
(1991) found that upward radiation of wave energy suppresses the growth of
the wind-induced surface heat exchange (WISHE) instability for all but the 
longest equatorial modes.

In another study, Chumakova et al. (2013, hereafter CRT) found a set of 
exponentially decaying solutions to the linearized two-dimensional 
Boussinesq equations in a layer of fluid with constant buoyancy frequency   
(i.e., the troposphere) overlain by a layer of fluid with a buoyancy 
frequency   greater than   (i.e., the stratosphere). We will refer to these 
exponentially decaying solutions as CRT modes. A single CRT mode of 
buoyancy [from Eqs. (17) and (18) of CRT] can be written as1

where

is a complex vertical wavenumber, n is an integer, k is a horizontal 
wavenumber, H is the height of the tropopause, and   is a constant with 
dimensions of buoyancy. This buoyancy distribution can be generated at 
time   in an initially quiescent atmosphere by applying a heating 

of  , where δ is the Dirac delta function. The resulting 
pattern of buoyancy propagates horizontally with speed   and decays
exponentially with an e-folding time of  .

In principle, the CRT modes can be used to construct solutions to some 
initial-value problems, but there are a host of problems with this approach: 
the CRT modes do not have the same vertical structure as rigid-lid normal 
modes; the CRT modes are not orthogonal; the CRT modes are divergent in 
the   limit; the buoyancy in the initial state of each CRT mode is not 
confined to the troposphere; and the energy density of each CRT mode 
grows exponentially without bound as you move upward in the stratosphere. 
The unboundedness is essential to how the CRT modes work: the CRT modes



are constructed to decay exponentially in time, but to have an upward-
propagating pattern of gravity waves in the stratosphere that decays 
exponentially with time, the pattern must grow exponentially with height.

Another way in which the CRT modes are unphysical is that they fail to 
generate a steady state in response to a steady tropospheric heating. In a 
two-dimensional (2D) Boussinesq fluid at rest, the response to a steady 
heating is steady and finite within an ever-expanding region centered at the 
location of the heating. To see that the CRT modes do not achieve this state, 
first consider the heating

where m is defined as in Eq. (2) with integer n. Here and throughout, we will 
use a lowercase b to denote a buoyancy (m s−2), an uppercase B to denote a 
horizontally integrated buoyancy (m2 s−2), and Q to denote a heating or, in 
other words, a tendency of buoyancy (m s−3). Since the Fourier transform 
of   is  , this buoyancy evolves as

This solution has a left-moving pulse of buoyancy and a right-moving pulse 
of buoyancy that both smear out with time. As with the single-k solution in 
Eq. (1), this has an energy density that grows exponentially with height in 
the stratosphere. This behavior was baked in by the heating in Eq. (3), which 
had to be chosen that way in order to make use of the CRT modes. When 
integrated horizontally and temporally, that heating grows exponentially with
height in the stratosphere.

From this solution, we can find the solution to a heating that has the same 
spatial structure as Eq. (3) but has a Heaviside unit step function of 
time   instead of a   (i.e., the heating is switched on at   and held 

on). The solution to this is  , which is proportional 

to  , which grows logarithmically without bound. Since this 
behavior occurs for any m satisfying Eq. (2), the CRT modes do not admit 
any steady-state solutions to a steady heating.



The left panel of Fig. 1 illustrates this pathology for an n = 1 heating (closely 
approximating a first-baroclinic structure in the troposphere) of the form in 
Eq. (3) with   replaced with  . The values of H,  , and   are chosen to 
be representative of the tropical atmosphere. Based on Fig. 2, which shows 
the mean of 3-hourly soundings from the Department of Energy’s 
Atmospheric Radiation Measurement (ARM) site in Darwin, Australia, from 18
January to 3 February 2006, these values are set to H = 17 km,   
and   here and throughout the paper. For ease of reference, 
these values are printed in Table 1. In the left panel of Fig. 1, each colored 
line plots the time series of midtropospheric buoyancy at a specific distance 
from the origin. For example, the darkest blue curve is the buoyancy at x = 
10 km, which will feel the leading edge of the gravity wave pass over it at a 
normalized time of  . The darkest red curve is the buoyancy 
at x = 100 km, which will feel the leading edge of the gravity wave pass over
it at a normalized time of  . If these solutions behaved as 
expected from rigid-lid thinking, then the buoyancy at each of these 
locations would plateau at a value of   shortly after the wave 
front has passed. Instead, the buoyancy at all of these locations continues to 
rise logarithmically. This undesirable behavior is a consequence of the 
stratospheric heating that is baked into the CRT modes. As we will see 
in section 2d, steady heating that is confined to the troposphere generates a 
steady buoyancy field.



In this study, we take a different approach than CRT. Rather than seek a set 
of vertical modes for an atmosphere without a rigid lid at the tropopause, we
solve the initial-value problem directly. In section 2, we derive a Green’s 
function for a pulse of buoyancy in the troposphere with baroclinic vertical 
structure for the simplest atmosphere without a rigid lid at the tropopause: 
the two-dimensional, nonrotating Boussinesq equations with two layers of 
constant but differing stratification. In the subsequent sections, we explore 
how this simple change to a more realistic upper boundary condition results 
in buoyancy anomalies that quickly spread out as they propagate, in stark 
contrast to the rigid-lid case.

2. The leaky-lid Green’s function

The Boussinesq equations describing hydrostatic linear perturbations to a 
two-dimensional, nonrotating, stratified fluid at rest are



where u is the horizontal speed, w is the vertical speed,   is a constant 
density, p is the pressure perturbation, b is the buoyancy, and Q is the 
buoyancy source or, in other words, the heating. Let N be piecewise constant
in height such that

where H is the tropopause. When  , this is a simple analog for Earth’s 
atmosphere in which the troposphere is capped by the more stratified 
stratosphere. The derivation in section 2d, however, applies equally well to 
any value of   from zero to infinity.

In the following subsections, we will review the Green’s functions for a 
troposphere with a rigid lid   and a troposphere with no lid   
and then present the Green’s function for a troposphere with a leaky 
lid  , which, as we will see, connects the rigid-lid and no-lid limits. 
To derive any of these Green’s functions, we write the set of Boussinesq 
equations [Eqs. (5)] as a wave equation for b,

and we seek a solution for a baroclinic tropospheric heating of the form

where   is a constant, H is the depth of troposphere, and m is taken to be 
one of the baroclinic modes (i.e.,  , where n is an integer).

a. Green’s function for a rigid lid

To begin, we reproduce the well-known solution for an atmosphere with a 
rigid lid at the tropopause, which corresponds to  . The rigid lid 
requires   at  , so we can formally decompose the solutions to 
Eq. (7) into a set of vertical normal modes with discrete eigenvalues. This 
decomposition gives the traditional baroclinic modes, or rigid-lid modes, 
which are sines (for b and w) and cosines (for p and u) with nodal or 
antinodal points at the surface and tropopause (Gill 1982). Each baroclinic 
mode is governed by a set of shallow-water equations with wave speed  ,
where m is the eigenvalue corresponding to a particular baroclinic mode.

For a troposphere with a rigid lid, the Green’s function—that is, the solution 
to Eq. (7) for a baroclinic pulse specified by Eq. (8)—is



This describes two delta-function pulses of buoyancy propagating to the left 
and right with the same baroclinic vertical structure as the forcing. The 
nature of this solution follows directly from the discrete spectrum of vertical 
modes for a layer of fluid with a rigid lid. By design, the source specified by 
Eq. (8) excites exactly one of the normal modes of this system, which travels
with a constant horizontal wave speed  . In the absence of dissipation,
these pulses will propagate forever.
b. Green’s function for no lid

Next, consider a troposphere with no lid, which corresponds to  . In this
case, the Green’s function—that is, the solution to Eq. (7) for a baroclinic 
pulse specified by Eq. (8)—was found by Pandya et al. (1993) to be

Despite the appearance of singularities at  , the solution is smooth 
there; at those locations, the divergence from the   terms is 
canceled by the   term since m is an integer multiple of  . The 
two pulses of buoyancy propagate horizontally at the same speed as in the 
rigid-lid case, but they spread out into smooth blobs rather than retaining 
their delta-function shape.

Another notable difference from the rigid-lid solution is the complex vertical 
structure of the buoyancy field. Unlike the rigid-lid solution, which has the 
same vertical structure as the heating, the no-lid buoyancy field projects 
onto every baroclinic mode: the buoyancy is not all of the same baroclinicity 
as the heating. This reflects the fact that the baroclinic modes are not the 
vertical eigenfunctions of the system when the rigid lid is raised beyond the 
tropopause. In fact, when there is no lid at all, as in this case, the eigenvalue 
spectrum becomes continuous. The relationship between the continuous and
discrete spectra is precisely that of the continuous and discrete Fourier 
transforms. As the spatial domain increases in size, the discrete transform 
approaches the continuous one. Despite this, the linearized governing 
Eqs. (5) require that the horizontally integrated buoyancy maintains the 
same baroclinic structure as the source for all time, regardless of  . For 
example, in the case of a first-baroclinic source, the horizontally integrated 
buoyancy is first baroclinic for all time. This property can most easily be seen
by integrating Eq. (5c) over x and noting that the integral of w over x must 



be zero by continuity. Remarkably, it can be confirmed numerically that the 
horizontal integral of   equals  .

To get a quantitative sense of how the no-lid solution compares to the rigid-
lid solution, consider the buoyancy at  , which are the centers of 
the propagating pulses. Taking the limit of Eq. (10) as  , we find

Note that all of the buoyancy at   is contained in the same vertical 
mode m as the initial perturbation. Note, also, that the amplitude goes as 1/
t. Since the horizontally integrated buoyancy is constant and projects only 
onto the baroclinic mode of the source, this implies that the width of the left-
moving or right-moving pulse is proportional to t; more specifically, its width 
is approximately  .

In summary, the one-way-propagating buoyancy pulses can be described as 
propagating at a constant speed of   at their center and with edges 
that spread away from its center at a speed of  . We will 
see in section 2d how this is modified for  .

c. Simple model for the decay of amplitude

What causes the pulses of buoyancy to decay in amplitude and spread out? 
It is illuminating to think of the counterpropagating pulses of buoyancy as 
packets of internal gravity waves propagating away from the source. Without
a rigid lid at the tropopause, internal gravity waves can propagate out of the 
troposphere. The vertical group velocity for internal gravity waves is 
proportional to the horizontal wavenumber, which means that shorter waves 
radiate out of the troposphere faster than longer waves. It is this process 
that causes the dispersal of the initial delta functions noted above. After a 
sufficiently long time, all that remains is a nonpropagating, horizontally 
uniform buoyancy anomaly in the troposphere. Note that the net heating to 
the troposphere is the same whether or not there is a rigid lid at the 
tropopause: wave energy can propagate upward, but the buoyancy is still 
confined to the troposphere.

We can construct a simple model for the decay in amplitude at   by 
considering the upward radiation of gravity waves. From the dispersion 
relation for hydrostatic gravity waves defined by Eq. (7), we find 
that  , where k is the horizontal wavenumber, so the horizontal 
speed of a hydrostatic gravity wave is  , and the vertical group 
velocity of a hydrostatic gravity wave is  . A natural time scale   
for a gravity wave of horizontal wavenumber k to radiate up and out of the 



troposphere is the depth of the troposphere H divided by the vertical group 
velocity, or

Therefore, we posit that the amplitude of a plane wave of buoyancy in the 
troposphere decays like  .

For a buoyancy pulse that begins as a delta function in x, we can 
approximate the evolution of the resulting counterpropagating buoyancy 
pulses (or wave packets) by modifying the rigid-lid solution in Eq. (9) to 
include this exponential decay of gravity waves. Taking the Fourier transform
of Eq. (9) yields

We can approximate the decay of gravity waves that occurs in the no-lid 
atmosphere by multiplying this Fourier-transformed rigid-lid solution 
by  , that is,

Since   is proportional to  , this modification does not alter the 
horizontally integrated buoyancy, which is contained in the   mode. By 
performing an inverse Fourier transform evaluated at  , we get

which is the expression previously derived in Eq. (11). This confirms 
Eq. (12) as the approximate residence time scale for plane waves in the 
troposphere.
d. Green’s function for a leaky lid

Having explored the limiting cases of a rigid lid and no lid, we can turn to our
goal of deriving the Green’s function for the case of a troposphere with a 
leaky lid, which corresponds to  . For details of the derivation, see 
the appendix. The Green’s function—that is, the solution to Eq. (7) for a 
baroclinic pulse specified by Eq. (8)—is found to be



This solution is valid over the full range of  , from 0 to ∞, which means 
that it encompasses both the rigid-lid and no-lid solutions. When 
,   equals  ; that is, it gives the solution for constant N from Eq. (10). 
In the limit of  ,  ; that is, it gives the solution for a rigid-lid
tropopause from Eq. (9).

Figure 3 compares the no-lid solution   and the leaky-lid 
solution (  and  ) at t = 1 h in response to the 
tropospheric heating in Eq. (8) with H = 17 km, m = π/H, and B0 = 1 m2 s−2. 
Compared to the no-lid solution, the first-baroclinic gravity waves are more 
coherent in the troposphere (i.e., they are more compact in the horizontal 
and have higher peak buoyancies). At the tropopause, there is a 
discontinuity in buoyancy at the tropopause due to the discontinuity of N2 in 
Eq. (5c). In the stratosphere, the oscillations in buoyancy have a vertical 
wavelength that is shorter by the factor of N1/N2, and their amplitude is 
greater. As with the no-lid solution, it can be confirmed that the leaky-lid 
solution has the following properties:   satisfies Eq. (7) with   for 
all  ;   and   are continuous across the tropopause, 
guaranteeing continuity of u and w there; the horizontal integral of   
equals  ; and   is zero for all   at  .



Although t appears in several places in Eq. (13), the temporal evolution 
of   is surprisingly simple. Defining  , we can write   as

Writing   in this way makes clear that the shape of the buoyancy 
distribution is invariant in time: the buoyancy distribution simply stretches 
out linearly in time (i.e., position   in the distribution travels away from the 
origin at speed  ) as its overall amplitude decreases as 1/t. Therefore, 
one plot of   is sufficient to illustrate its evolution for all time.

Plots of   are shown in the top row of Fig. 4 for cases of, from left to right, 
no lid and first baroclinic (  and  ); no lid and second baroclinic
(  and  ); leaky lid and first baroclinic (  and 
); and leaky lid and second baroclinic (  and  ). For an 
apples-to-apples comparison, these are plotted on the same color scale at a 
time in their evolution when the pulses have reached a common distance 
from the origin (i.e., at a time for the second-baroclinic pulses that is twice 
the time for the first-baroclinic pulses). The abscissa ranges over plus and 
minus twice that distance. The ordinate ranges over the full depth of the 
troposphere.



At the center of each pulse,   evaluates to

Since the buoyancy pulses travel at a speed of  , their amplitude is 
proportional to  . For the same distance traveled (i.e., for the same value
of  ), the amplitude of the wave is proportional to the baroclinicity (i.e., 
proportional to m). Since the width of the buoyancy pulse is inversely 
proportional to the amplitude, this means that when a second-baroclinic 
pulse has traveled 100 km, it is twice as compact in the horizontal as the 
second-baroclinic pulse when it reaches 100 km. In summary, the nth-
baroclinic pulse spreads out at 1/n2 the rate per time, and 1/n the rate per 
distance, as compared to a first-baroclinic pulse.

Although the buoyancy pulse at   has the same baroclinicity as the 
initial heating, this is not generally true at other x. This is expected since any
initial vertical structure that is zero in the stratosphere is not a normal mode 
of the leaky-lid atmosphere. The eigenvalue spectrum is continuous for any 
atmosphere that is unbounded in the z direction, so any such initial vertical 
structure projects onto an infinite number of normal modes, all of which have
different phase speeds. These different components of the initial buoyancy 
distribution radiate away from the initial heat source at different speeds and 
thus begin decohering immediately, leading to the complicated horizontal 
and vertical structure of   for  , which is visible in the top row of Fig. 
4. Mathematically, this complexity stems from the tz/x argument in Eq. (13).



Given this complexity, how can we make contact with the standard rigid-lid 
paradigm? Is there some way that we can write   in terms of the rigid-lid 
modes even though the rigid-lid modes are not normal modes of the leaky-lid
atmosphere? The answer is yes: we could simply write   as a sum of rigid-
lid modes. But this approach is of little conceptual advantage if, say, a first-
baroclinic heating generates a buoyancy pulse that projects strongly onto 
higher-baroclinic modes.

We can quantify these contributions by projecting   onto the various 
baroclinic modes. The projection of   onto baroclinic mode  , which we 

will denote by  , is

For the four cases shown in the top row of Fig. 4, the projections onto the 
first and second baroclinic modes are shown in the bottom row of Fig. 4. 
These are plotted on common axes with the red curves representing the 
projection onto the first baroclinic mode and the blue curves representing 
the projection onto the second baroclinic mode. In the no-lid troposphere, a 
first-baroclinic heating generates a buoyancy pattern that projects strongly 
onto the second baroclinic mode; as seen in the bottom-left panel of Fig. 4, 
the maximum amplitude of the   projection is nearly as large as the 
maximum amplitude of the   projection. For the leaky lid with a 
realistic  , however, a first-baroclinic heating generates a buoyancy 
pattern that projects predominantly onto the first baroclinic mode.

Based on these findings, we conclude that, unlike in a no-lid atmosphere, the
projection of the buoyancy onto its original vertical structure is a good 
approximation in a leaky-lid atmosphere with a realistic stratification jump. 

This means, for example, that we can approximate   by  :



This approximation has the great advantage of having a rigid-lid vertical 
structure—that is, the  —while still retaining the horizontal 
decoherence generated by the leaky lid.

This approximation to   is plotted in the middle row of Fig. 4. For the no-
lid atmosphere, the approximation misses much of the structure of the 
buoyancy, especially for a first-baroclinic heating. For a leaky-lid 
atmosphere, however, the approximation is quite accurate.

Finally, let us return to Fig. 1. The right panel shows the response to a first-
baroclinic heating that is confined to the troposphere and is turned on at 
time t = 0. Unlike the CRT modes, which must be excited by heating the 
stratosphere as well, the atmosphere reaches a steady state in response to 
this steady tropospheric heating. Since any steady tropospheric heating can 
be constructed out of the   Green’s functions, this tells us that, for a 
leaky-lid atmosphere, any steady heating confined to the troposphere will 
generate a steady response.

e. Leaky-lid wave decay

The preceding analysis tells us about the evolution of buoyancy caused by a 
heating confined to x = 0 in the troposphere. But what about a heating that 
is sinusoidal in x? How does the leaky lid modify the tropospheric residence 
time for such waves?

In principle, we could use the Green’s function   to calculate the evolution
of a horizontally sinusoidal heating, but in practice, we were unable to find a 
way to perform this calculation analytically. Instead, we can make an 
educated guess based on what we have learned so far and then check that 
guess against a numerical calculation. In Eq. (11), we introduced a time scale
for waves in the no-lid troposphere, and a comparison of 
Eqs. (11) and (15) suggests a simple modification for the leaky-lid 
troposphere. Equations (11) and (15) are the amplitudes of the tropospheric 
buoyancy at   for the no-lid and leaky-lid cases, respectively. These
expressions differ only by an overall factor of  . Since amplitude and 
width of a buoyancy pulse are inversely related, this means that a one-way-
propagating buoyancy pulse widens   times slower in the presence of a 
leaky lid. Since the emission of waves from the troposphere is responsible for



widening the pulse, this implies that waves exit the troposphere   times 
slower in the leaky-lid case compared to the no-lid case and, therefore, 
reside in the troposphere   times longer. Therefore, Eq. (12) generalizes 
to

This time scale exhibits the behavior we expect from studying the Green’s 
function. Namely, the residence time is longer for longer waves (smaller |k|) 
and for more rigid lids (larger N2/N1).
f. Numerical validation of the wave time scale

To confirm that the time scale in Eq. (18) is a good approximation for a freely
propagating gravity wave in an atmosphere with two layers of differing N, we
performed a series of numerical simulations using Dedalus, a flexible, open-
source, Python-based framework for solving partial differential equations 
(www.dedalus-project.org). Dedalus is a spectral solver, and we decompose 
the domain using a Chebyshev basis in the z direction and Fourier modes in 
the horizontal. We solve the linearized Boussinesq system (5a)–(5d) on a 
periodic domain of width L = 3000 km, with rigid boundaries at the top and 
bottom of the domain. The tropopause is located at H = 17 km, and the rigid 
top is placed at 170 km, which is sufficiently high to prevent reflected waves 
from reentering the troposphere for the duration of the simulation.

To test Eq. (18), we initialize the system with a buoyancy perturbation 
confined to the troposphere, characterized by a single horizontal 
wavenumber k and vertical structure corresponding to a single baroclinic 
mode m. While we are ultimately interested in the amplitude of the 
buoyancy anomaly, diagnosing the wave energy, which is proportional to the
amplitude squared, provides a straightforward (and single signed) way of 
bookkeeping in this simple simulation setup. We compare the evolution of 
the wave energy in the troposphere to the time scale predicted by Eq. (18), 
bearing in mind that, because energy is proportional to amplitude squared, 
the decay time scale for energy is  . Each simulation is run for at least  , 
over which we expect the energy in the troposphere to undergo two e-
foldings. We run a total of 80 simulations, corresponding to all combinations 
of   and  ; N2/N1 = 1, 2, 3, 4, and 5; and   for integer 
values of n from 3 through 10, which correspond to horizontal wavelengths 
ranging from 300 to 1000 km. At each time step, the buoyancy is projected 
onto the baroclinic mode of the original heating and the tropospheric energy 
in that mode is calculated. The decay time scale is then estimated as −2 
times the inverse of the slope of the linear regression of the logarithm of 
tropospheric energy versus time. In Fig. 5   calculated from each simulation 
is plotted against the theoretical   from Eq. (18), along with a dashed one-
to-one line. Figure 5 shows very good agreement between the theory and 



simulation for most parameter values, confirming that the approximate time 
scale in Eq. (18) correctly characterizes the emission rate of internal gravity 
waves from an Earthlike troposphere.

3. Lifetime of a pulse of buoyancy

We are now prepared to investigate how a heating of finite width propagates
through a two-dimensional troposphere. In principle, we can use the Green’s 
function to calculate how any buoyancy distribution evolves to a horizontally 
uniform final state. For simplicity, we focus here on heatings that have a top-
hat distribution in the horizontal,

where a is the width of the heating. This generates a buoyancy distribution 
at   that is given by  .

To find out how this buoyancy evolves in time, we can convolve this initial 
buoyancy distribution with the Green’s function [i.e., with the   from 
Eq. (13)]. Before we do that, however, let us see if we can learn something 
about its behavior by considering the residence time scales for its Fourier 
components. The Fourier transform of   is



The Fourier transform of the same amount of horizontally integrated 
buoyancy concentrated at   [i.e.,   from Eq. (13) with  ]
is

Taylor expanding Eq. (20) in k, we find

For   satisfying   (i.e., for  ), the Fourier transform 

of   is practically indistinguishable from the Fourier transform of  .

Since waves emanate from the troposphere on a time scale proportional to 
their wavenumber, there will be a time   when wavenumbers   will 

have mostly left the troposphere. After that time,   is practically 

indistinguishable from  . We refer to   as the time scale for 
“melting” because this is the time by which the initial horizontal shape of the
buoyancy pulse has melted away. Based on the preceding argument, we can
define   as the time at which wavenumber 1/a has experienced an e-
folding of decay; that is, we define   as the   from Eq. (18) with  ,

By Eq. (15), the amplitude of   at   and   is  .

We can now summarize the evolution of the initial top-hat pulse. At 
time  , the top-hat buoyancy pulse of magnitude   and 
width a splits into two pulses, each with magnitude   and width a, one of 
which is right moving and the other left moving. At time  , each of the 
unidirectional pulses has melted down to a peak amplitude of   and is 
indistinguishable from an initial delta-function buoyancy pulse. For  , 
the buoyancy evolves as   with the amplitude at   equal 
to  .



Figure 6 compares the evolution of the initial top hat (solid red), as 
calculated numerically by convolution with the Green’s function, against the 
evolution of an initial delta-function source (dashed green) with the same 
horizontally integrated buoyancy for the case of  . Also shown is the
evolution of the top-hat pulse for a rigid lid (dashed black; i.e., for  ). 
The abscissa is a normalized distance in which unity is the distance traveled 
in an amount of time equal to  . As expected, the top-hat pulse has 
become indistinguishable from an initial delta-function pulse by the 
time  .





We can perform a further check of   by numerically convolving an initial 
top-hat distribution with the Green’s function   from Eq. (13) and 
diagnosing the time when the amplitude at   equals  . The top 
panel of Fig. 7 shows the amplitude of the right-moving half of a first-
baroclinic top hat at   for N2/N1 = 1, 2.5, 5, and 10. The x axis is 
normalized by   so that the curves are independent of the width of the 
initial top hat. The first-baroclinic Green’s function amplitude 
[i.e.,  ] is given by the dashed black line. As the right mover 
and left mover separate at small  , there are undulations in the buoyancy
distribution that cause the buoyancy to briefly exceed its initial value of  . 
By  , though, all the curves have converged to the Green’s function 
amplitude.



The bottom panel of Fig. 7 shows the approximate   from Eq. (22) plotted 
against the   diagnosed from the time it takes for the numerically 
integrated, right-moving, first-baroclinic, top-hat pulses to decrease their 
peak amplitude to  . The top hats are integrated for all combinations 
of a = 100, 500, 2000, 4000, and 8000 km, and N2/N1 = 1, 2.5, 5, and 10. 
These points all fall very close to the black dashed one-to-one line.

A few things are notable about the lifetimes of buoyancy anomalies implied 
by  . First, the time scale is proportional to   so that as 
,   too, which is what we expect for the rigid-lid limit. It is also 



proportional to the width of the pulse, so wider buoyancy anomalies retain 
their horizontal shape longer. Finally, it is quadratic in m, the baroclinic mode
of the initial anomaly. This has potentially significant implications for the 
wave spectrum of equatorial Kelvin waves: the second-baroclinic pulses 
retain their original shapes 4 times as long as first-baroclinic pulses.

In general, these decay time scales are quite fast. For a first-baroclinic 
buoyancy pulse   in an Earthlike atmosphere (N2/N1 = 2.5, N1 = 0.01 
s−1, and H = 17 km) with a width of 100 km, the original horizontal shape of 
the left-moving and right-moving buoyancy pulses melts away in only 4 h, 
which is how long it takes each pulse to travel about 800 km from their 
origin. By that time, each of the pulses has been reduced in amplitude by a 
factor of  . After this time, the amplitudes decrease as   so that, by 8 h, 
the peak amplitudes have been reduced by another factor of 2.

Although the melting time depends on the characteristic width of the initial 
pulse of heating, the time to homogenize that heating over a periodic 
domain is independent of the initial pulse width. To homogenize over a 
periodic domain of length L, we must wait a time equal to   from 
Eq. (18) with  . For a first-baroclinic pulse on a periodic domain of 
length L equal to Earth’s equatorial circumference of 40 000 km, this 
homogenization takes about 10 days. This is a remarkably short period of 
time: an isolated pulse of tropospheric heating generates left-moving and 
right-moving pulses that reduce to horizontal wavenumbers 1 and 2 by day 
2.5, to horizontal wavenumber 1 by day 5, and to an approximately uniform 
heating around the entire 40 000-km-long domain by day 10.

4. Conclusions

Assuming that the tropical tropopause is a rigid lid greatly simplifies tropical 
wave dynamics but is not physically justifiable and leads to a choice between
the spurious persistence of buoyancy anomalies in the troposphere or using 
unrealistically strong damping. In this study, we show that replacing the rigid
lid with an overlying layer of stratified fluid resolves this difficulty. We have 
derived Eq. (13), which is the Green’s function for a two-dimensional, 
nonrotating, Boussinesq fluid composed of two layers of constant but 
differing buoyancy frequencies, which are meant to represent the 
troposphere and stratosphere. This solution is valid for any ratio of the 
buoyancy frequencies in the two layers. It includes the rigid-lid solution (an 
infinitely stratified upper layer) and the no-lid solution (a stratosphere with 
the same stratification as the troposphere) as limiting cases. We have used 
this Green’s function to show that the dispersive nature of upward internal 
gravity wave propagation damps away buoyancy anomalies in Earth’s 
troposphere on time scales from hours to days, which are comparable to the 
linear-damping time scales used in simple models of the tropical 



atmosphere. This naturally leads to the speculation that simple models of the
atmosphere with rigid lids at the tropopause may require strong Rayleigh 
friction or Newtonian cooling in part because they lack this process.

Of course, the dispersion of vertically propagating internal gravity waves is 
not equivalent to a linear damping (e.g., Rayleigh friction or Newtonian 
cooling). While both processes smooth out buoyancy anomalies, linear 
damping also removes the horizontal mean buoyancy anomaly. On the other 
hand, vertically propagating gravity waves leave behind a steady, 
horizontally uniform buoyancy anomaly, and in a steady state, this must be 
removed by a domain-mean diabatic cooling.
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APPENDIX

Deriving the Green’s function

The path to our solution for an atmosphere with different N in the 
troposphere and stratosphere adheres closely to the derivations published 
by Lin and Smith (1986) and Pandya et al. (1993) for an atmosphere with 
constant N.

We begin by rewriting the two-dimensional, linearized Boussinesq equations 
[Eqs. (5)] as wave equations for w in each layer:



Then, we consider a buoyancy source of the form  . 
Taking the Laplace transform in time   and the Fourier transform 
in x   of Eqs. (A1), we find

where  , and  . The presence of   in the source 
term Q imposes a jump condition on   at  , which we can find by 
integrating Eq. (A2a) twice in z:

where   represents the difference across  .

We seek a solution subject to conditions at the surface (z = 0) and at the 
tropopause (z = H), as well as a radiation condition as  . At the surface, 
the rigid lower boundary requires  . At the tropopause (z = H), enforcing
continuity of pressure and vertical velocity requires   and  . 
Above z = H, we require that   as  .

If the buoyancy frequency is constant (i.e., if   everywhere), then the 
solution to the transformed Eqs. (A2) is

This solution applies throughout the whole atmosphere, so we have defined 
a new variable  , where the plus sign refers to the solution for   and 
minus sign refers to the solution for  .

Multiplying by 1/s in Laplace-transformed space is integration in time in real 
space, so we solve for the buoyancy by multiplying the   solutions by   
and inverting the Fourier and Laplace transforms. We find that the buoyancy 



due to a source term   in an atmosphere with 
constant N is

To find the solution for the source term with baroclinic structure in the 
troposphere given by Eq. (8), we integrate Eq. (A6) against   through 
the troposphere:

where m is one of the baroclinic modes. This is the Green’s function for the 
constant-N atmosphere, which is Eq. (10) in the main text.

Now, suppose  , where  . While we cannot integrate the 
modified version of Eq. (A5) directly for the case  , we can expand the 
modified version of Eq. (A5) in γ around   and integrate each term in the 
series. By integrating enough terms and determining what the series 
converges to, we find a solution valid for all   (i.e., for all  ).

After rewriting   in terms of γ, we find

and

We focus our attention on the solution in the troposphere, Eq. (A8), which 
can be expanded about   by noting that the denominator becomes



Recalling the constant-N solution  , where the plus sign refers to the 
solution for   and the minus sign refers to the solution for  , the first-
order expansion in γ can be written as

Finding the higher-order terms is straightforward, and the nth-order term is

As in the constant-N case, we solve for the buoyancy by multiplying by   
and inverting the Laplace and Fourier transforms. In this way, we calculate 
successively higher-order approximations to the buoyancy in the 
troposphere and eventually determine the series converges to

The solution for   is just the constant-N solution (A6) multiplied by a 
new factor. Note that this expression does not rely on the smallness of γ; it is
valid over the entire range of N2/N1 from 0 to ∞, which corresponds to   
to ∞.

Since the multiplicative factor that converts the constant-N solution (A6) to 
the differing-N solution (A13) is independent of z, the solution for the 
buoyancy source with baroclinic structure given by Eq. (8) follows easily from
Eq. (A7):

This solution is the same as the tropospheric part of Eq. (13). Following a 
similar set of steps reveals the stratospheric part of the solution.
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