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ABSTRACT OF THE DISSERTATION 

 

Through the looking glass: population dynamics through membrane potentials. 
 

by 

 

Krista Eva Perks 

 

Doctor of Philosophy in Neurosciences 

 

University of California, San Diego, 2016 

 

Professor Timothy Q. Gentner, Chair 

 

  Relating the collective activities of neural populations to external sensory stimuli 

or to motor output is essential to understanding how nervous systems support behavior. 

Equally important is examining these processes in the context of ethological signals, 

which are typically high-dimensional with a wide range of co-varying features at multiple 

timescales. The synaptic and network mechanisms for encoding these complex signals 



 

x 

are largely unknown, due in part to limitations inherent in experimental design practices 

leveraging dimensionality reduction rather than embracing the full suite of stimulus 

complexity. Additional limitations arise because most studies to date examine spiking 

statistics in randomly-selected populations without consideration for the functional 

relevance of sub-network groupings. We do not know how spiking responses of 

individual neurons are pooled, functionally, by downstream neurons – a mechanism that 

could significantly alter population coding. Stimulus and behavior likely modulate the 

functional selection of sub-populations, which then likely exhibit different spiking 

statistics than the population at large. 

 Using a combination of intracellular and extracellular electrophysiology 

techniques in the caudal mesopallium (CM) and the caudal nidopallium (NCM) of the 

common European Starling, I examine synaptic and spiking activity driven by 

previously-recorded conspecific vocalizations, maintaining the full ethologically-relevant 

complexity contained in each signal. Uniquely, I feature the synaptic response as an 

independent variable in the examination of population spiking activity. The main 

implication of the collective results presented in this study is that, rather than a model of 

hierarchical processing in which stimulus-specific information is restricted to parallel 

circuits within each region, information about even the most complex stimuli is likely 

massively redundant and shared among the population at large. This scaffolds a sensory 

processing model in which flexible network re-organization - on short timescales and in a 

stimulus-specific way - support the complexities of spiking output observed in sensory 

cortex in response to learning, adaptation, attention, and context to meet the demands of 

an ever-changing environment. 
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CHAPTER 1  

Introduction to the Dissertation 
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1.1 General scope and outline of the dissertation 

 A fundamental goal of neuroscience is to model how interactions with the 

environment guide animal behavior. Neurophysiological approaches to this include 

recording some aspect of neural activity (spike rate, spike timing, membrane potential, 

synaptic current, etc.) and accounting for its variance across specific dimensions of a 

stimulus input or a behavioral output (Werner & Mountcastle, 1963). It is very hard, 

however, to embrace the full suite of complexity inherent in ethological signals that drive 

adaptive animal behavior in unpredictable environments. Experimentalists often 

implement dimensionality reduction on the stimulus set or on the measured neural 

activity to make the problem more tractable, which then imposes inherent limitations on 

the generalization of results beyond experimental conditions.  

The experiments of this thesis were designed to examine functional pooling and 

population dynamics driven by high-dimensional temporally-evolving conspecific vocal 

communication signals. I use a combination of intracellular and extracellular 

electrophysiology techniques targeting cortical auditory regions (mainly region NCM – 

caudomedial nidopallium, but also CM - caudal mesopallium) in the common European 

Starling. The Starling is a model system well-suited for experiments that examine 

fundamental cognitive processes like those requisite for the aspects of language common 

to all vocal learning species. However it is also a system generally considered 

inaccessible to tools most often employed (imaging, genetic manipulation, optogenetics, 

etc.) in models such as the mouse or fruit fly for dissecting neural circuit architecture and 

synaptic mechanisms of stimulus encoding.  
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The physiological techniques and perspectives implemented here provide 

alternative approaches to ask mechanistic questions about signal processing in cortical 

sensory systems poised to support high-level communication behavior. As a result, I 

obtained results that suggest interesting modifications to contemporary models of 

hierarchical response tuning. What I find is that, although individual neurons in regions 

of sensory cortex are known to have very sparsely selective spiking output, the synaptic 

response of an individual neuron readily reflects apparently massively redundant 

information about the entire range of conspecific vocalizations encountered. I also find 

evidence for stimulus-driven functional reorganization of neurons within NCM into sub-

networks on short timescales suggesting that single downstream targets flexibly pool 

stimulus information within these cortical regions.  

At the single-cell level, the ability for individual neurons to tap into the diversity 

of a massively redundant set of spiking outputs may be a fundamental pooling strategy 

underlying characteristically non-linear and flexible spiking output. At the population 

level, the ability for downstream mechanisms to implement flexible pooling could 

modulate the structure of population-level spiking correlations in stimulus-specific ways 

and play a pivotal role in supporting adaptive animal behavior.  

 In Chapter 1, we differentiate two predictions about the stimulus specificity of 

the subthreshold response underlying sparsely selective spiking in single neurons of CM 

and NCM based on distinct synaptic pooling strategies. We find that, consistent with a 

distributed (rather than a sparse) pooling strategy, the net stimulus-evoked synaptic input 

is specific (i.e. unique for different stimuli), but non-selective (i.e. driven by all stimuli). 

Although the modulation of subthreshold activity is not always tied to the modulation of 
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spike output, it is always stimulus-specific, supporting the ability for each cell to be made 

to spike selectively (through a variety of mechanisms) to an extremely diverse range of 

relevant features in conspecific vocalizations. Stimulus specificity relies on response 

reliability across trials, and we find that because local inhibition is necessary for its 

maintenance in this circuit, it is also therefore poised to modulate it. This study was 

published in European Journal of Neuroscience (Perks & Gentner, 2015). 

 In Chapter 2, we address limitations inherent in contemporary models of sensory 

processing, which have been supported largely by results from studies that target 

randomly selected single neurons and pairs of neurons from larger populations to 

estimate properties of stimulus encoding in coordinated spiking output. Instead of 

examining stimulus-driven structure in the population response by comparing the spiking 

output of one set of neurons to another, we compare the spiking output of one set of 

neurons to the synaptic response of a single neuron - representing a spiking population 

pooled by a downstream neuron. The collective results of this study suggest that sensory 

integration and processing are supported by a system in which information about even the 

most complex stimuli is likely massively redundant and shared among the population at 

large. This study is currently being written up into manuscript form for submission to 

Journal of Neuroscience. 

 To introduce the main chapters of the thesis, I provide a review of phenomena 

motivating those experiments and the contemporary models of sensory processing that 

they address, including more detailed summaries of the main experiments and results 

presented in each chapter as appropriate.  
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1.2 Variance and Representation: Mapping the behavioral environment 

 Variability in neural activity is a feature of neurons and neural systems that allows 

for information coding. When some metric of neural activity co-varies with some metric 

of the environment or behavior, then we say that parameter of the neural activity “codes 

for” that parameter of the environment or behavior. This applies in both sensory and 

motor systems, but for simplicity here I will focus on sensory physiology.  

 In sensory systems, “tuning” or “sensitivity” is the relationship between a change 

in some aspect of neural activity and the stimulus. The visual system is “tuned to” 

changes in the number and frequency of photons, the auditory system is “tuned to” 

changes in air pressure. A neuron is “tuned to” or “sensitive to” a particular stimulus 

parameter if changes in that parameter modulates its synaptic input or its spike output. 

Within each sensory system, different neurons are sensitive to different features of 

stimuli in that modality. This is easiest to characterize at the periphery where spiking in 

single neurons can be driven by changes in single low-dimensional stimulus parameters 

(such as temporal or spatial frequency). For some neurons near the sensory periphery, 

linear models of spiking and synaptic receptive fields (the stimuli that modulate spiking 

output of or synaptic input to the neuron) yield excellent predictions for the responses of 

that neuron to novel stimuli. For example: orientation tuning in retinal ganglion cells 

through the thalamo-recipient layer/region of visual cortex; frequency tuning in cochlea 

through to the thalamic input layer/region of auditory cortex.  

 The tuning of neurons further along the processing pathway within each sensory 

system is much harder to characterize, particularly for the complex sensory signals that 

are essential to many natural behaviors. Linear receptive field estimation for natural 
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sounds requires additional considerations such as removing signal correlations and 

sampling sufficient degrees of freedom (Calabrese, Schumacher, Schneider, Paninski, & 

Woolley, 2011; Meyer, Diepenbrock, Happel, Ohl, & Anemuller, 2014; Meyer, 

Diepenbrock, Ohl, & Anemuller, 2014; Nelken, 2004; Smyth, Willmore, Baker, 

Thompson, & Tolhurst, 2003; Touryan & Dan, 2001). For these neurons, the hassle is 

necessary at the very least because an estimate of the linear receptive field using low 

dimensional stimuli does not match the receptive field estimated under natural stimulus 

conditions and generates a worse prediction of responses to novel stimuli (Laudanski, 

Edeline, & Huetz, 2012; Theunissen, Sen, & Doupe, 2000).  

 The STRF method – a linear characterization of the complex stimulus-response 

transformations seen in sensory neurons – is a common method employed to examine 

responses to temporally and often spectrally complex (high-dimensional) vocal 

communication signals in cortical neurons of the songbird auditory system well as the 

auditory midbrain of bats and frogs (Theunissen et al., 2001; Woolley, Gill, Fremouw, & 

Theunissen, 2009; Woolley, Gill, & Theunissen, 2006). Overall, attempts to create linear 

models of the spiking receptive field for high-order sensory neurons yield poor 

predictions of responses to novel stimuli compared to the performance of these models to 

predict more peripheral responses (Machens, Wehr, & Zador, 2004; Theunissen et al., 

2000). Several factors probably affect this. The parameterization of natural stimuli 

(particularly vocal communication signals) is not clear; these stimuli exist in a higher 

dimensional space and we do not have a clear model of the relevant dimensions nor their 

interactions to compare against the neural activity. Additionally, receptive fields of these 

neurons are likely non-stationary such that a single spike may mean different things in 
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different contexts. Neurons in Starling cortex exhibit flexible feature recombination at 

their synapses as well as composite receptive fields (Kozlov & Gentner, 2014, 2016). In 

A1, it is clear that choice of stimulus identity and context experiments lead to seemingly 

contradictory conclusions about stimulus-response relationships with the interplay of 

acoustic events across diverse timescales as a major culprit for causing misinterpretation 

(Nelken, 2004).  

 The temporal nature of the stimulus can be ignored as an attempt to better 

parameterize the stimulus-response relationship. This comes at the cost of not having 

control over meaningful variance in the neural activity. Baudot et al (2013) decompose 

the variance in both spiking output and in subthreshold input into signal and noise 

components(Baudot et al., 2013). After performing a frequency decomposition using 

wavelet analysis, they compare the spectral profile of signal and noise variance across 

categorically different stimulus conditions: drifting gratings, natural scenes, and dense 

noise. The results show that, in-vivo, trial-to-trial variability and temporal irregularity 

depend on stimulus statistics. Spiking and synaptic responses to the low-dimensional, 

temporally-static stimuli used to characterize receptive fields are highly unreliable with 

low temporal variance. This has lead to the observation of supra-Poisson spike count 

variability and the justification of only interpreting activity under “rate coding” 

(averaging across time) or “population coding” (averaging across many neurons) models. 

Time-varying stimuli with natural scene statistics maximize the coding capacity of 

synaptic and spiking activity in individual neurons by instead driving responses with 

simultaneously high variability over time and low variability across trials.  
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The mechanisms through which statistics naturally encountered in ethological 

contexts constrain network dynamics to increase coding efficiency are unknown. It is 

clear that the response profiles under low-dimensional stimulus conditions are 

categorically different than under natural conditions and using them to generate models 

of receptive fields and mechanisms of sensory processing is misleading. Additionally, 

further along the processing pathway, low dimensional, well-parameterized stimuli do not 

even do a sufficient job at eliciting spikes from single neurons. We therefore know very 

little about the mechanisms of response tuning and synaptic pooling strategies for time-

varying natural stimuli in high-order object-selective neurons.  

 

1.3 Pooling strategies for non-selective, stimulus-specific synaptic responses 

Responses to high-dimensional stimuli are sparse (population sparse and lifetime 

sparse) (Vinje & Gallant, 2002)Hierarchical models of sensory processing predict that 

cortical circuits perform increasingly complex and integrative computations as 

information flows from primary to secondary regions and beyond, which could imply that 

information available is restricted to more and more specialized neurons with sparsely-

selective input pools, all operating in parallel. However, behavior and context can quickly 

and drastically modulate what are already often non-linear spiking receptive fields (Fritz, 

David, Radtke-Schuller, Yin, & Shamma, 2010; Lee & Middlebrooks, 2011; Osmanski & 

Wang, 2015; Sharpee & Victor, 2009). Kozlov et al (2014,2016) demonstrate that the 

combination functions of inputs to single neurons can be flexible and comprise 

orthogonal features from the stimulus set (Kozlov & Gentner, 2014, 2016). Modulation 

of even more fundamental receptive field properties such as size (Pettet & Gilbert, 1992) 
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belie that neurons may have access to information about a much larger portion of the 

relevant global stimulus set than revealed by the spiking response. All of these 

phenomena seem to demand mechanisms of hierarchical processing that allow neurons to 

rapidly and drastically modulate sensory integration. By using intracellular techniques we 

can measure response properties of the synaptic input space directly and start to test 

assumptions of various synaptic pooling models.  

Chapter 1 begins with an examination of the pooling principles of individual 

neurons nestled deep along the auditory processing pathway in Starling cortex (in areas 

CM and NCM). I used whole-cell patch clamp techniques to measure subthreshold 

changes in the cross-membrane potential driven by stimulation with conspecific 

vocalizations over the course of seconds. Doing so revealed that the membrane is under 

continuous stimulus control with specificity at extremely high temporal resolution (sub-

motif at least if not sub-feature; on the order of 10s of milliseconds). Sparse spiking 

activity characteristic of these regions, although specific and reliable, does not belie the 

breadth of stimulus information potentially available to the output of individual neurons. 

Stimulus specificity depends on the entropy of the temporal response distribution but also 

on the reliability across trials given a particular stimulus. These results are consistent with 

results from primary auditory and visual cortex in the mouse (Baudot et al., 2013; 

Machens et al., 2004), which both demonstrate that sparse spike responses arise from 

irregular and highly reproducible membrane potential trajectories. Such pervasive 

stimulus specificity implies that the synaptic receptive field is extremely broad, pooling 

from diverse regions of the stimulus space not necessarily represented in the spiking 

output.  



10 
 

 
 

 Variance in the neural activity not accounted for by variance in the stimulus is 

most often referred to as “noise,” but a less biased term is “trial variance.” Previous 

studies show that sensory stimulation decreases trial variance in spiking output of 

individual neurons throughout cortex under a variety of stimulus and behavior conditions 

(Churchland et al., 2010). Again, this is consistent with the decrease in trial variance in 

the membrane potential that I observe. To examine local inhibition as a potential 

mechanisms driving this decrease in trial variance I revived a previously published 

dataset (Thompson, Jeanne, & Gentner, 2013) to compare the trial-to-trial variability in 

spiking output from neurons recorded in NCM when inhibition is intact versus when 

inhibition is blocked locally by GABA antagonists. Blocking local inhibition increased 

spiking variability as measured by the FANO factor. This reveals that trial variability is 

potentially under circuit control –the significance of which surfaces when we consider 

population-level stimulus encoding. 

 

1.4 Dissociable sources of spiking covariance modulate discriminability. 

 With regards to the task of the nervous system - neurons do not need to be “tuned 

to” a feature to contribute to its encoding - the presence of a stimulus often matters less 

for behavior than the ability to discriminate among a set of stimuli. The animal needs to 

know what to do in response to a stimulus, not what the stimulus identity is explicitly. 

We can think of the set of stimuli in the environment creating a map to guide behavior - 

stimulus discrimination increases the resolution of that map (whatever space/shape/form 

that map may take). Although a relationship between variance in a single-neuron 

response and some parameter of a stimulus set can often be defined, it is really the 
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coordinated activities of many individual neurons that drive behavior. Stimulus 

discrimination is not just a function of response strength, but of variation in the response 

and the coordinated variation in populations of neurons (because – with the exception of 

invertebrates –single neurons are rarely necessary and sufficient for supporting 

discrimination processes that drive behavioral output). Although individual neurons can 

be “tuned to” particular objects, the nervous system does not necessarily source these 

single-unit responses for stimulus discrimination. 

 If we are to understand how neural activity drives behavior, we must at some 

point model population dynamics. Population-level activity can be resolved by large-

array extracellular recording techniques as well as imaging techniques to examine 

coordinated neural activity within populations of various sizes. The most heavily studied 

population size in which coordinated activity has been studied thus far is populations of 

size n = 2 (pairs of neurons). Covariance in the magnitude of spiking output between 

pairs of neurons is often measured by calculating the correlation coefficient between 

activity vectors for the two neurons (Cohen & Kohn, 2011; Lyamzin, Garcia-Lazaro, & 

Lesica, 2012). The total variance in spiking output can be partitioned and attributed to 

different sources (Goris, Movshon, & Simoncelli, 2014). As already mentioned, one 

major source of variance is due to stimulus identity. Among populations of neurons this 

type of covariance is usually referred to as the “signal correlation.” “Noise correlations” 

(more aptly termed “trial correlations”) describe the trial-to-trial covariance in spiking 

output – the variance unaccounted for by changes in the stimulus.  

The relationship between these two major sources of variability is currently an 

area of intense research owing to how profoundly the structure of coordinated spiking 
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among neurons across stimuli and across time can affect stimulus discrimination from the 

population response. Orthogonal patterns of “signal” and “noise” correlation support 

stimulus “maps” with the highest resolution ideal for decision making processes 

dependent on stimulus discrimination) (Averbeck, Latham, & Pouget, 2006; Franke et al., 

2016; Hu, Zylberberg, & Shea-Brown, 2014; Salinas & Sejnowski, 2000). 

 

1.5 Flexible and stimulus-dependent spiking co-variability.  

 Even more critical than a specific pattern of spiking correlation is the ability to 

modulate these correlations and bias response discrimination in predictable ways. Jeanne 

et al (2013) found behavior-induced modulation in the joint statistics of signal and noise 

spiking correlations that benefits stimulus coding for pairwise populations in songbird 

auditory cortex (Jeanne, Sharpee, & Gentner, 2013). After subjects learned that only a 

certain subset of acoustic stimuli were informative for their reward-driven task, a linear 

classifier trained on stimulus-driven spike counts was able to better discriminate among 

those stimuli than among stimuli that were not informative for the task. Discrimination 

improved with increased population size. For populations of size 2, the authors calculated 

the pairwise signal and noise correlations and found that task-relevance increased the 

orthogonality of signal and noise correlation directions (positive/negative).   

 Mechanisms for controlling spiking covariance must exist and are likely to be 

accessible by top-down and bottom-up systems involved in cognitive processes such as 

learning and attention. Stimulus-driven decrease in trial variance seems to be a pervasive 

phenomenon (Churchland et al., 2010). In chapter 1 I show that in the Starling cortex, 

continuous acoustic stimulation is accompanied by a persistent decrease in trial variance 
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relative to the pre-stimulus period (silence) in both the spiking output of individual 

neurons as well the synaptic input to individual neurons - regardless of whether the 

stimulus drives spiking output or not. Blocking local inhibition, however, caused an 

increase in the Fano Factor of spiking output. Inhibition is therefore one circuit 

mechanism poised to modulate trial variance. Inhibitory circuits have been proposed as a 

mechanism for decorrelating spiking output among pairs of neurons (Bernacchia & Wang, 

2013; Tetzlaff, Helias, Einevoll, & Diesmann, 2012). Jaime de la Rocha et al (2007) also 

show that pairs of neurons with higher firing rates tend to have correlations higher than 

expected given the increase in spike count alone (de la Rocha, Doiron, Shea-Brown, Josic, 

& Reyes, 2007). Schultz et al (2015) measured the dependence of noise correlations on 

11 factors and found effects of firing rate and sensory tuning (including effects of 

distance between neurons, spike width, and spike isolation quality) (Schulz, Sahani, & 

Carandini, 2015). Mechanisms driving either of these physiological factors may provide 

points of control over variance in the system. 

 A change in trial-to-trial variance alone does not necessarily affect stimulus 

discrimination. The effect of noise correlations on stimulus encoding depends on the 

signal correlations in that population. Several studies have even shown that noise 

correlations are stimulus-dependent (Ponce-Alvarez, Thiele, Albright, Stoner, & Deco, 

2013; Zylberberg, Cafaro, Turner, Shea-Brown, & Rieke, 2016). Interestingly, 

discrepancy among studies measuring the strength of noise correlations arises in part due 

to reporting the average noise correlations over the stimulus set rather than reporting the 

stimulus-specific values. Results describing stimulus-specific noise correlations are 

consistent with stimulus-specific modulation of that relationship as shown now in several 



14 
 

 
 

studies (Downer, Niwa, & Sutter, 2015; Jeanne et al., 2013; Ruff & Cohen, 2014a, 

2014b). 

 Neural activity also shows higher-order statistical structure, meaning that the 

dynamics cannot be captured by the mean activity and pairwise statistics (the lower-order 

moments) alone. Since pairwise correlations do not uniquely define patterns of coactivity, 

we must consider higher-order correlations and what it means to have orthogonal signal 

and noise correlations in those higher dimensions. High-dimensional coordination among 

synaptic input also modulates diverse properties of spiking output in single neurons 

including spike timing and rate (A., 2002; Bohte, Spekreijse, & Roelfsema, 2000; 

Ohiorhenuan et al., 2010; Salinas & Sejnowski, 2000). Higher-order correlations are 

observed in neural populations from the periphery (like the retina) through to cortical 

areas. Higher-order correlations can modulate stimulus encoding (Ganmor, Segev, & 

Schneidman, 2011; Montani et al., 2009; Ohiorhenuan et al., 2010), an effect that can 

even depend on the stimulus-specificity of these correlations (Josic, Shea-Brown, Doiron, 

& de la Rocha, 2009). 

 Synchronous spiking in larger subgroups of cells can be infrequent, making 

higher-order correlations are difficult to detect because dataset size is often insufficient to 

capture a sufficient probability function for all event types. Because higher-order 

correlations can be explained geometrically as either positively or negatively skewing the 

distribution of the summed population activity in short time windows (Cayco-Gajic, 

Zylberberg, & Shea-Brown, 2015), methods have been resolved for inferring the 

probability distribution of higher order events from the lower order statistics of the 

response distribution. Staude et al (2010) leverage the first, second, and third order 
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cummulants of the distribution describing the population spiking response magnitude 

across time to estimate the probability of high-order synchoronous events (Staude, Rotter, 

& Grun, 2010).  

 Even if tools were perfected that reliably and efficiently enabled quantification of 

high-order covariance among population of spiking neurons, experimentors would still be 

faced with the issue of choosing the relevant population to study. The growth of high-

throughput technologies has resulted in exponential growth in datasets with respect to 

both dimensionality and sample size, but bigger datasets do not necessarily result in the 

ability to better capture statistics of coordinated spiking output that support behavior. Co-

active populations do not necessarily impact downstream neurons together (Okun et al., 

2015). The existence of correlations or a particular pattern of covariance does not 

guarantee that those statistics are seen by downstream neurons in the processing 

hierarchy. For example, a randomly-recorded population may exhibit the full distribution 

of signal and noise correlations and their interaction, while downstream neurons only 

sample from the subpopulation with orthogonal correlations. 

   

1.6 Identifying functionally-defined sub-populations. 

  Within a given sensory region, how do we identify “functional” sub-populations 

in order to examine issues of spiking covariance, like their effect on stimulus 

discrimination? The choice of a “relevant population” in part it depends on the question. 

Neurons can be subsampled based on a variety of factors including, but not limited to: 

cell type, anatomical location, and response tuning. Extracellular techniques such as 

imaging or dense electrode arrays enable the identification of sets of neurons from large-
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scale population recordings that are co-active or functionally grouped by their response 

properties (spatial and temporal variance of population spiking) or by their co-activity. In 

mammalian cortex anatomically and genetically defined subpopulations can be targeted 

in experiments examining the specificity of correlation structure among different 

components of a neural circuit (like inhibitory versus excitatory neurons). Another way to 

define functional networks is by their connectivity (specifically, by common synaptic 

targets). Although histological techniques allow the identification of networks of 

anatomically connected neurons we lack extracellular tools to target the spiking activity 

of a population of neurons defined by a common synaptic target.  

 In Chapter 2, I examine the selection of stimulus-specific functional networks 

among neurons in NCM of the Starling. I begin by determining the temporal and spatial 

organization of spiking variance throughout NCM and throughout conspecific 

vocalizations as this organization necessarily constrains mechanisms for stimulus-driven 

pooling of the spiking activity. Evidence for “tonotopy” and “feature-topy” in songbird 

auditory cortex comes from results of electrophysiology and IEG and ZENK expression 

experiments in zebra finch (Muller & Leppelsack, 1985; Terleph, Mello, & Vicario, 

2006). And STRF estimation has revealed spatial organization of receptive field profiles 

across regions of auditory cortex in zebra finch (Kim & Doupe, 2011; Nagel & Doupe, 

2008; Woolley et al., 2009). Neurons in sensory cortices are often topographically 

organized according to their response preferences. Again, this has mainly been examined 

using static, low-dimensional stimuli (visual system: oriented bars of light, moving bars 

of light; auditory cortex: frequency of a sound). There are very few studies on the spatial 

organization of tuning to high-order objects, which Chapter 2 of this thesis examines. The 
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experiments of Dahl et al (2009) reveal spatial organization of modality preferences in a 

higher association cortex, but they did not examine responses at the resolution of 

stimulus-specificity within a modality (Dahl, Logothetis, & Kayser, 2009). I show that in 

Starling NCM, near-neighbors tend to have higher signal correlations than distant units 

when driven with conspecific vocalizations. Spatial clustering of response similarity 

constrains mechanisms that can account for the synaptic input observed in individual 

neurons, which broadly representing the stimulus set.  

 Although spiking activity is spatially distributed such that the output of near-

neighbors is more highly correlated than distant units, we find that a remarkable amount 

of variance in the net (mean-field) NCM spiking response is reflected in the synaptic 

response of single neurons randomly selected from within the region. Insofar as a 

neuron’s synaptic input and/or membrane potential is a reflection of spiking activity in 

the pre-synaptic network then that neuron becomes an electrode through which we can 

examine the activity of a functionally relevant, spatially unrestricted population of 

neurons un-biased by things like spike sorting or extracellular sampling techniques.  

 I constrain the units contributing to the mean-field NCM response by 

implementing regularized linear regression models to those most able to predict temporal 

variance in the synaptic response of single neurons from within NCM. I find that these 

functionally targeted networks are more accurately/reliably identified at the time-scale of 

single motifs (the second-long elements comprising song) than at the timescale of whole 

vocalization sequences (20-seconds). Across different motif stimuli, the identity of the 

functionally-relevant subpopulation changes such that synaptic response tuning identified 

a temporally heterogeneous coordination of population spiking activity. Although pairs of 
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neurons in these functional networks tend to have more positively correlated stimulus-

driven responses than expected if they were sampled randomly from the population at 

large, the neurons comprising synaptically-defined populations are not spatially clustered 

but are flatly distributed throughout NCM.  

 Each functional network potentially contains highly correlated variables. I 

conclude the second chapter by quantifying the dimensionality reduction necessary to 

eliminate redundant information about the synaptic response from the identified 

functional networks, where the dimension of the network is defined by the number of 

units contributing spikes to the fit of the synaptic response. The degree of redundancy is 

inherently related to key aspects of population coding, where a key aspect of the problem 

is determining the correlations in spiking activity among the population and whether 

those correlations effect decoding of relevant information from population activity. The 

issue of whether correlations are important has been a subject of heated debate and is an 

area of future follow-up experiments. The mechanisms by which correlations effect 

decoding and the important types of correlations will take a long time to decipher, in part 

due to the many ways in which these phenomena are quantified (Latham & Nirenberg, 

2005). However, one good start is to focus on functionally relevant populations of 

neurons when asking the questions, which is the major contribution to the field provided 

by the results from Chapter 2.  

 I close the dissertation with a chapter dedicated to future directions and potential 

caveats of the studies published from this thesis and a discussion of relevant open 

questions in the field. 
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1.7 Summary and Broader Impacts 

 With respect to the approach of recording some aspect of neural activity (spike 

rate, spike timing, membrane potential, synaptic current, etc) and accounting for its 

variance across specific dimensions of a stimulus input or a behavioral output, the advent 

of larger-scale extracellular methods at higher temporal and spatial resolutions has 

allowed for an explosion in the number of units among which analyses of coordinated 

population activity can be applied. In some ways, larger datasets of more neurons are 

better in that we can get a larger sampling of the full distribution of response statistics. 

This can be particularly important for resolving higher order correlations, which can be 

extremely rare but also extremely influential in models of stimulus discrimination. 

However, researchers are often left faced with a dimensionality reduction problem in the 

dataset. There are many ways to reduce the dimensionality of a set of data in order to 

lower computational complexity, build models, and decrease the amount of storage and 

working memory required for data processing. These methods are often inherent in the 

analyses used to examine mechanisms of sensory processing.  

 One way that dimensionality reduction occurs is by designing experiments that 

allow researchers to decipher a “population code” – the set of elements or the dimensions 

of a stimulus that the coordinated spiking of large populations of neurons are “encoding.” 

This approach has traditionally been applied before the neural response is even acquired. 

Dimensionality reduction on the stimulus set – reducing the rich, transforms high-

dimensional structure of natural signals into an arbitrary set of lower-dimensional 

features that are more easily parameterized and amenable to application in generating 

models for linear receptive fields. We can categorize these approaches as forms of feature 
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extraction – mapping the original feature space (the spiking activity of individual neurons 

or the full statistics of natural stimuli) to a new feature space with lower dimensions 

(some parameter of a stimulus). One caveat of this approach is that the resulting set of 

dimensions lacks any direct interpretability in terms of the original physical meaning of 

those elements. Another caveat is that the features over which the transformations and 

mappings are being applied is not necessarily the features that such operations are pooled 

across by individual neurons.  

 Another way to reduce dimensionality is to select a subset of features from the 

original pool without any transformation. In the context of neural circuits, this method is 

akin to how downstream neurons restrict their pooling operation to sample from specific 

subsets of a population. This method offers more direct interpretability of the original 

physical meaning of individual elements (like cell identity). Functionally, if selection of 

functional networks is restricted in this way (by some classification based on the pooling 

operations of individual downstream neurons) then one is left with the opportunity to 

examine the spiking behavior of populations directly relevant to the integration functions 

directing behavior in ways that studying randomly selected networks does not allow. 

Identifying pre-synaptic networks to test models of synaptic pooling strategies and the 

effects of their coordinated spiking activity presents technical challenges currently 

unresolved by large-scale extracellular recording techniques alone. 

 The synaptic response of individual neurons of sensory cortex can be very 

temporally specific when driven with “natural” stimuli containing the set of statistics that 

the network has developed to represent, providing rich information about the stimulus. 

Regularization methods, such as the L1 norm (or “lasso”) are one tool for implementing 
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feature selection on a set of dependent variables in linear regression. By setting the 

independent variable in a linear regression model to the synaptic response of a single 

neuron, one would target subsets of the spiking units among the population able to model 

that pre-synaptic network. Although seemingly unbelievable given prior assumptions 

implicit in contemporary hierarchical models of restrictive, parallel sensory processing, I 

have demonstrated the effort as a viable approach to targeting subnetworks within a 

region based on the relationship between their spiking output and some downstream 

synaptic response.  

 In this dissertation I have approached the dimensionality reduction problem from 

a functional perspective, embracing the complexity of natural Starling vocalizations and 

the diversity of spiking output maintained throughout NCM. I have instead acted 

creatively on the perspective lens through which I have examined the resulting neural 

activity. What has benefited from this has been appreciation of the rich information 

available in the synaptic responses underlying neural representations traditionally 

regarded and modeled as sparse and independent. The results have scaffolded the field to 

support future directions of adapting analyses targeted at examining the structure of 

coordinated spiking output supporting behaviorally adaptive stimulus discrimination into 

a framework amenable to tracking that structure through time in synaptically-defined 

subnetworks of populations that have traditionally been sampled at random or 

categorized by cell type or anatomical location.  

The Starling is a prized model organism for the ethology of complex sequence 

processing and learning and is often used as a model for language acquisition through 

development and learned cognitive auditory phenomena in humans. Advances that push 
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the Starling forward as a model to study the neural mechanisms supporting these complex 

cognitive processes and downstream modulation of sensory cortical processing would 

yield great benefits beyond the lab in understanding these processes in healthy adults as 

well as developmental disorders. By combining intracellular and extracellular 

electrophysiological recording techniques in novel ways within this system I have 

contributed unique perspectives to our understanding of how cortical circuits process 

complex natural signals.  
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Abstract

Natural acoustic communication signals, such as speech, are typically high-dimensional with a wide range of co-varying spec-
tro-temporal features at multiple timescales. The synaptic and network mechanisms for encoding these complex signals are lar-
gely unknown. We are investigating these mechanisms in high-level sensory regions of the songbird auditory forebrain, where
single neurons show sparse, object-selective spiking responses to conspecific songs. Using whole-cell in vivo patch clamp tech-
niques in the caudal mesopallium and the caudal nidopallium of starlings, we examine song-driven subthreshold and spiking
activity. We find that both the subthreshold and the spiking activity are reliable (i.e. the same song drives a similar response
each time it is presented) and specific (i.e. responses to different songs are distinct). Surprisingly, however, the reliability and
specificity of the subthreshold response was uniformly high regardless of when the cell spiked, even for song stimuli that drove
no spikes. We conclude that despite a selective and sparse spiking response, high-level auditory cortical neurons are under
continuous, non-selective, stimulus-specific synaptic control. To investigate the role of local network inhibition in this synaptic
control, we then recorded extracellularly while pharmacologically blocking local GABAergic transmission. This manipulation mod-
ulated the strength and the reliability of stimulus-driven spiking, consistent with a role for local inhibition in regulating the reli-
ability of network activity and the stimulus specificity of the subthreshold response in single cells. We discuss these results in
the context of underlying computations that could generate sparse, stimulus-selective spiking responses, and models for hierar-
chical pooling.

Introduction

Stimulus encoding – the relationship between an external event and
the accompanying neural response – is the cornerstone of sensory
neurophysiology (Adrian, 1926). Yet, for the complex sensory sig-
nals that are essential to many natural behaviors, our understanding
of stimulus encoding is poor. In particular, we know very little
about the synaptic inputs evoked by natural signals, and the opera-
tions governing their integration and transformation into spiking
responses in single neurons.
Here we test specific predictions about the selectivity of stimu-

lus-specific synaptic drive underlying sparse, selective spiking in
the auditory cortex of European starlings, a species of songbird.
Songbirds, in particular starlings, are well suited for these studies.
Starling songs are acoustically complex and composed of very
diverse, brief segments (motifs) that are perceived as distinct audi-
tory objects (Gentner, 2008). Stimulus-driven spiking activity in the
higher-order cortical regions caudal mesopallium (CM) and caudo-
medial nidopallium (NCM) is sparse: only a small portion of all
possible motifs evoke robust spiking in single neurons (Gentner &

Margoliash, 2003; Meliza et al., 2010; Thompson et al., 2010;
Jeanne et al., 2011; Meliza & Margoliash, 2012) and each motif
evokes spiking from only a small number of neurons (Gentner &
Margoliash, 2003). Responses to song elements are dependent on
acoustic context (Jeanne et al., 2011; Kozlov & Gentner, 2014),
and (in zebra finches) combining song elements into longer bouts
increases the sparseness of spiking responses (Schneider & Wool-
ley, 2013).
Sparse spiking responses to natural signals appear to be a gen-

eral property of sensory cortex (Vinje & Gallant, 2000, 2002;
Olshausen & Field, 2004; Graham & Field, 2007b; Hromadka
et al., 2008; Sakata & Harris, 2009; Tolhurst et al., 2009). That
is, only a small proportion of all stimuli evoke spikes from any
given neuron (lifetime sparseness, which we refer to as selectiv-
ity), and only a small proportion of neurons spike at any point in
time (population sparseness). Sparse representations convey a
range of computational benefits to downstream neurons for the
classification and recognition of complex signals (Ganguli &
Sompolinsky, 2012; Babadi & Sompolinsky, 2014). Models for
object recognition and classification rely on feed-forward hierar-
chical pooling of the outputs from simpler feature detectors to
build sparse, selective spiking responses to increasingly complex
signals that carry behaviorally relevant information (Riesenhuber
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& Poggio, 1999). The synaptic and network mechanisms underly-
ing this pooling remain unclear.
We distinguish two potential synaptic pooling regimes: ‘sparse’

and ‘distributed’. Each regime makes different predictions about the
selectivity of the subthreshold response underlying selective spiking
in single neurons. In a sparse pooling regime, neurons with selective
spiking responses pool inputs that are necessarily less selective but
still biased towards the features in complex natural signals that ulti-
mately drive changes in spike rates. Sparse synaptic pooling predicts
that stimulus-specific subthreshold activity will be selective (i.e. dri-
ven only by a subset of the potential stimuli), and that the degree of
selectivity will vary only quantitatively from that of the spiking
response. Moreover, the timing of stimulus-specific subthreshold
responses should, on average, align with the stimulus-evoked
changes in spike rate. We contrast sparse pooling with distributed
pooling, in which neurons with selective spiking responses pool syn-
aptic inputs that are not biased towards the features in complex nat-
ural signals that drive changes in spike rates. Distributed pooling
predicts that the net stimulus-evoked synaptic input will be stimu-
lus-specific (i.e. unique for different stimuli), but non-selective (i.e.
driven by all stimuli). Because it is non-selective, the stimulus-spe-
cific subthreshold activity under distributed pooling will not neces-
sarily be tied to stimulus-evoked spike rate changes. So long as the
inputs are stimulus-specific, however, the cell could be made to
spike selectively (through a variety of mechanisms) to a potentially
wide range of relevant features.
The foregoing hypothetical pooling scenarios both predict that the

subthreshold membrane response of neurons whose stimulus-driven
spiking responses are selective will contain stimulus-specific activ-
ity. Only the sparse pooling hypothesis requires that the stimulus-
specific subthreshold activity is selective for subsets of stimuli. To
distinguish these two hypothetical pooling scenarios, we compare
properties of the subthreshold response to spiking. Direct measure-
ment of the subthreshold activity along with spiking was accom-
plished using whole-cell, in vivo recording techniques in NCM and
CM of starlings during presentation of natural conspecific vocaliza-
tions, i.e. songs. We characterized variability across time and across
trials for both subthreshold and spiking activity. In concert with the
observation of very selective (sparse) stimulus-driven spiking
responses, we find strong, remarkably persistent, stimulus specificity
in the subthreshold response to all songs regardless of spiking.
These results provide strong evidence against sparse synaptic pool-
ing and support instead a distributed synaptic pooling regime in
which, in sharp contrast to spiking output, net subthreshold
responses are stimulus-specific and non-selective.
In a distributed pooling regime, stimulus-specificity throughout

the subthreshold response depends on the trial-to-trial reliability of
the inputs. Inhibition is a widespread feature of cortical networks
(Wilent & Contreras, 2005; Ayaz & Chance, 2009; Isaacson &
Scanziani, 2011) and in Starling NCM, local inhibition modulates
the selectivity of spiking responses (Thompson et al., 2013). We test
whether inhibition is necessary for maintaining stimulus specificity
in the subthreshold response throughout stimulation. If inhibition
modulates the reliability (and by extension the specificity) of the
synaptic input to individual neurons then it would necessarily modu-
late the reliability of the network spiking response, and the subthres-
hold and spiking responses of individual neurons. We find that
transient local blockade of gamma-aminobutyric acid (GABA)
receptors decreases the reliability of stimulus-driven spiking
responses in NCM, consistent with a role of inhibition for support-
ing a non-selective, stimulus-specific distributed synaptic pooling
regime underlying selective spiking in NCM.

Methods

Animal preparation

Experiments used adult European starlings (Sturnus vulgaris), wild-
caught in southern California. We prepared the starlings for the
recording session by attaching a small pin stereotaxically to the sur-
face of the skull with dental cement (under isoflurane anesthesia).
For electrophysiological recordings, we anesthetized the starlings
with 20% urethane (7–8 mL/kg, in three to four intramuscular injec-
tions over ~2 h) prior to being placed in the recording chamber or
with a continuous infusion of 1.3% ketamine in 5% glucose saline
at 2 mL/kg/h throughout the recording. Starlings were placed in a
cloth jacket and secured via the attached pin to a stereotaxic appara-
tus inside a sound attenuation chamber. A small craniotomy was
made dorsal to the recording site (NCM: 0–300 rostral of Y sinus
and 500 lateral of midline; CM: 2500 caudal of Y sinus and 500–
1500 lateral of midline), the dura removed and electrodes advanced
into the brain.

Ethical standards

All procedures were conducted in accordance with approved IACUC
protocols and in accordance with the guidelines laid down by the
NIH in the US regarding the care and use of animals for experimen-
tal procedures.

Electrophysiology

Whole cell patch current clamp recordings (MultiClamp 700B
amplifier; Axon Instruments, Union City, CA, USA) of 5 to 60-min
duration were made using the blind patch technique (Margrie et al.,
2002). Whole-cell patch pipettes (3 to 6-MO tip resistance) were
fabricated from filament (0.25 mm) borosilicate glass (OD 2.0 mm,
ID 1.5 mm; Hilgenberg, Malsfeld, Germany). The standard K+-
based internal solution was: (in mM) potassium gluconate 135, NaCl
8, HEPES 10, Mg-ATP 4, Na-GTP 0.3, EGTA 0.3 (pH 7.4, 298
osm). Recordings were obtained by slowly advancing the electrode
through the region of interest (about 1500–2000 lm below the sur-
face) while monitoring its resistance with voltage steps. During the
initial descent through the hyperpallium, a large amount of positive
pressure (~300 mbar) was applied to keep the electrode tip free from
debris. After arriving at the depth of interest, the positive pressure
was reduced to 25–35 mbar, capacitance compensation was
adjusted, and the pipette was advanced in 2- to 3-lm steps until
direct contact with the cell membrane was detected as an increase in
resistance. Immediately upon contact, pressure was released and for-
mation of the giga-seal between the electrode tip and the cell mem-
brane occurred either spontaneously or after slight suction applied
by mouth. After the giga-seal stabilized (typically within a few min-
utes) suction was used to obtain whole cell access (access resis-
tances ranging from 5 to 90 MΩ; see ‘Intrinsic physiology’).

Extracellular recordings

To examine the role of local inhibition in controlling spiking reli-
ability in the network, we used data from extracellular recordings in
NCM collected as a part of previous experiments (Thompson et al.,
2013). Briefly, commercial multibarreled glass pipettes containing a
carbon fiber electrode (5 lm diameter; 400–1200 kΩ impedance)
and six attached barrels (~3 lm diameter) were used for drug
microiontophoresis (Kation Scientific, Minneapolis, MN, USA).
Gabazine (SR95531, 3 mM, pH 3.2; Sigma Aldrich, St Louis, MO,
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USA), or a gabazine/saclofen combination, was used to inhibit
GABA-mediated inhibition locally in NCM around the recording
site. The combined application of gabazine and saclofen (n = 12
sites) did not elicit responses different from those during application
of gabazine alone (Thompson et al., 2013). Following Thompson
et al. (2013) we considered drug delivery at a particular site to be
successful if the average song-driven firing rate during iontophoresis
was significantly different (either higher or lower) from the firing
rate prior to iontophoresis.

Auditory stimulation

All stimuli were extracted from previously recorded song repertoires
of adult European starlings. Single motifs (stereotyped multi-note
elements of natural Starling song) played two or three times in suc-
cession, or longer segments (5–10 s) of continuous song were
played to the anesthetized animal in an anechoic recording chamber.
Auditory stimuli were presented free field from a full-range speaker
mounted 30 cm from the center point of the subject’s head, where
the mean sound pressure level ranged from 40 to 80 dB SPL.

Data analysis

Electrical activity recorded in whole-cell configuration was low-pass
filtered (10 kHz), digitally sampled (44.1 kHz), and saved for offline
analysis (IGOR PRO2; WaveMetrics Software, Lake Oswego, OR,
USA). For further analysis, data were down-sampled to 10 kHz and
exported to a format used by custom-written MATLAB (Mathworks
Software) routines. Only stimulus–response pairs for which there
were at least five repeats were included in the analyses of the
whole-cell data.

Intrinsic physiology

We present data recorded in whole-cell configuration from 20 single
neurons in NCM and CM. As this is the first report using whole-cell
in vivo recordings in CM and NCM of the starling, we include here
a basic characterization of intrinsic properties for reference/compari-
son with other brain regions and species. To estimate the passive
input resistance (Rin) and time constant (T) of the membrane, we
applied a negative current pulse (!75 pA) through the recording
pipette and fit the voltage response with a double exponential func-
tion to isolate the electrode artifact from the membrane response. To
avoid contamination by slow, voltage-activated conductance in our
estimate of the passive membrane properties (Rin and T), we fit only
the first 100 ms of the voltage response. The median series resis-
tance (Rs) across all 20 neurons used in this study was 32 MΩ (CI:
5–64 MΩ), which allowed sufficient isolation of the membrane
response. The median Rin was 157 MΩ (CI: 56–309 MΩ) and the
median T was 14 ms (CI: 7 and 21 ms). Independence of estimates
for Rin and T from Rs was confirmed with a simple linear regression
model.
The negative current step also regularly induced slowly depolariz-

ing voltage sags. We estimated the time course and magnitude of
this effect by removing the passive components of the voltage
response (by subtracting the exponentials used to estimate Rin and
Rs), and then re-fitting the remaining voltage response with a single
exponential (Zhu et al., 1999). In all cases there was a significant
exponential fit with a median time constant of 184 ms (CI: 110–
364 ms) that was depolarizing in 19/20 cases (across which the
steady-state membrane voltages ranged from !96 to !64 mV). In a
subset of neurons recorded for another experiment, we measured the

dependence of the input resistance on the membrane potential and
found a positive correlation. This has not been well characterized,
but is consistent with hyperpolarization-induced activation of a con-
ductance.
In 14 of 20 neurons, the series resistance was sufficiently low

(< 50 MΩ) to analyse the temporal dynamics of spike shape. For
these neurons, the median width at half-height was 1.0 ms (CI: 0.5–
1.7 ms) and the median spike threshold was 25 mV above the rest-
ing membrane potential (CI: 19–30 mV). Rs did not correlate with
spike height.
We measured a limited number of properties but the data did not

suggest any clear distinction into cell types. The reported analyses
therefore pool across all recorded cells in two brain regions. Sam-
pling biases inherent in whole-cell patch techniques (relating to fac-
tors such as soma size, morphology and myelination) are probably
present in our dataset; other cell types not recorded could, of course,
show very different responses. Notwithstanding such issues, the con-
sistency of our main results of the study across a potentially diverse
set of cell types highlights the robustness of the effects.

Signal filtering

To detect spike times from intracellular records, the signal was
high-pass filtered at 200 Hz and thresholded. For extracellularly
recorded data using carbon-fiber electrodes, spike times were
detected as reported by Thompson et al. (2013). Measures of sub-
threshold activity were made after the voltage record was smoothed
using a one-dimensional, 18-ms median filter to suppress noise and
clip spikes near threshold.

Response epoch detection

One important component of our experiment is the use of natural
stimuli. As such, we did not want to arbitrarily tailor the duration of
our stimulus to a duration that was experimentally convenient to
analyse a ‘response’, as is common when using artificial stimuli.
Instead, under the assumption that the activity across the entire dura-
tion of a complex stimulus does not necessarily constitute a mean-
ingful response, we presented long bouts of song within which we
defined multiple shorter responses. To do this, we separately parsed
the ongoing spiking and subthreshold activity using a simple algo-
rithm that identified localized responses (relative to the pre-stimulus
trial-averaged activity), which we call ‘response epochs’. To detect
significant subthreshold response epochs we took the median-filtered
voltage response to a song stimulus and overlaid a sliding 200-sam-
ple (20 ms)-wide analysis window broken into 20 bins. At each
time-step the activity within that window was considered a response
if 85% of the bins had values that exceeded the confidence bounds
set by the trial-averaged pre-stimulus activity (Fig. 1A). We detected
significant spiking response epochs in the same way, except that we
first created a smoothed spiking probability function by converting
the vector of raw spike times to a binary string where ‘1’ indicated
a spike and ‘0’ no spike, convolving with a narrow Gaussian filter,
averaging across trials, and then normalizing to max = 1. To parse
spiking activity we used a 500-sample (50 ms)-wide analysis
window broken into 50 bins and 95% confidence intervals on the
pre-stimulus activity. To maximize the number of independent
responses and minimize the duration of responses, it was necessary
to use slightly different values for the window size and confidence
bounds in the analysis of spiking and subthreshold activity.
Although the statistics of the subthreshold activity vector necessi-
tated a smaller analysis window than for spiking, the minimum
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2.4 Results    

Figure 2-1: Examples of spiking and subthreshold activity recorded whole-cell 
configuration.ole-cell configuration 

response duration was smaller than the analysis window for both
spiking and subthreshold responses (62 and 22 ms, respectively)
indicating that the width of the analysis window did not set the
lower bound on distributions of response epoch durations in either
case and that comparisons can be made between the results obtained
in both activity regimes.

Stimulus specificity of subthreshold potential

We recorded the membrane potential throughout the presentation of
each song stimulus across multiple trials (5–10 trials) and used a
median filter to clip spikes. To assess the stimulus specificity of sub-
threshold activity (whether the variance in the membrane potential
within a given portion of song across trials is smaller than the vari-
ance between different portions) we used k-means clustering. Off-
line, we segmented the full song and the corresponding time-locked
subthreshold activity into evenly spaced bins of a given duration
(durations used for the analysis ranged from 0.09 ms to 0.9 s). We
refer to each binned song segment as a ‘stimulus’ for our analysis.
We applied k-means clustering to a random subset of five bins and
sorted all subthreshold activity (which we refer to as ‘response’ for
our analysis) within that set of bins based on similarity in (i) the
time-averaged membrane potential and (ii) the temporal pattern of
membrane voltages. To measure clustering accuracy we calculated
the proportion of correct response–stimulus assignments contained
in the k-means result for every possible bin–cluster permutation and
took the maximum proportion correct as the clustering accuracy. We
iterated this process 100 times and calculated the average clustering
accuracy for each cell–stimulus pair and each segment duration. The
noise floor for the clustering accuracy was calculated using the sub-
threshold activity recorded during silence before song onset.

Fano factor analysis

We adapted routines for analysing mean spike rate and Fano factor
on the extracellular data set from the ‘variance toolbox’ available
from the Churchland lab and used in a recent report (Churchland
et al., 2010). The mean-matched Fano factor was computed for all
stimulus conditions across the set of extracellular sites using a 50-
ms sliding analysis window (in 25-ms steps) to provide a time-vary-
ing estimate of the reliability of the spike rate throughout stimula-
tion. Mean matching equalizes the firing rate distributions across
time to control for the dependence of Fano factor on firing rate.

Statistical analysis

All data were tested for normality using the Kolmogorov–Smirnov
test evaluated at P < 0.05. When appropriate, central tendencies are
reported as median ! the 95% confidence interval calculated from
the cumulative distribution function unless otherwise stated. Non-
parametric tests were used when data were not normal.

Results

In this study we distinguish two hypothetical synaptic pooling strate-
gies that could both support hierarchical object selectivity, but that
make distinct predictions about the selectivity of stimulus-specific
subthreshold activity underlying selective spiking in single neurons
in high-level auditory cortex. To examine spiking and subthreshold
responses, we recorded neural activity using whole-cell patch clamp
techniques in 20 single neurons in regions NCM (n = 12) and CM
(n = 8) of anesthetized starlings presented with a range of conspe-
cific songs. These songs have a wide range of natural variation in
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Fig. 1. Examples of spiking and subthreshold activity recorded in whole-cell configuration. (A) Neural recording from an example neuron before, during and
after the presentation of two different 10-s starling song segments sampled from a longer bout. Top, spectrogram of the song. Middle, raster of spike times for
each of 10 trials in which the song sample above was presented. Bottom, isolated subthreshold membrane potential recordings (gray) for the same neuron on
the same 10 trials as above, overlaid with the trial-averaged voltage in black. Colored bars below spiking and subthreshold activity denote facilitatory (red) and
suppressive (blue) response epochs (see Methods); mean trial-averaged pre-stimulus voltage = "62 mV. Dotted lines mark the 98% confidence bounds on the
pre-stimulus range of trial-averaged subthreshold activity. (B,C) Example spiking and subthreshold activity recorded from two different neurons across trials
during which song segments sampled from longer bouts were played. Neural activity and song are displayed as described in (A).
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Figure 2-2: Stimulus-driven response reliability and specificity 

the distribution of spectro-temporal features across time. This time-
varying acoustic structure is reflected in the high temporal variability
of both the spike rate and the subthreshold activity (Fig. 1).
Although both the spiking and the subthreshold response vary con-
siderably across the duration of the stimulus, as shown in the exam-
ple neurons (Fig. 1), they are nonetheless quite reliable for each
repetition of the same stimulus. In characterizing both the within-
trial variability and the between-trial reliability over multiple time-
scales, we use the term ‘time-averaged’ to refer to the mean activity
averaged over the duration of a single stimulus presentation, and the
term ‘trial-averaged’ to refer to the time-varying activity averaged
across multiple presentations of the same stimulus.

Variability in spiking and subthreshold activity across time

We first quantified the within-trial variability of both the spiking
and the subthreshold activity in individual neurons. For spiking
activity, we isolated epochs during stimulation for which the trial-
averaged spike probability density function exceeded the trial-
averaged pre-stimulus range (see Methods). We sorted these epochs
into facilitating or suppressing responses depending on whether the
time-averaged spike rate increased or decreased relative to the pre-
stimulus period (Figs 1A and 2A; see Methods). The duration of
these spiking responses varied (median 217 ms, CI = 62–1122,
n = 174 facilitatory responses; median 386 ms, CI = 75–2854,
n = 116 suppressive responses) as did their time-averaged spike rate
(median 11.1 spikes/s, CI = 0.4–33.4, n = 174 facilitatory
responses; median 0 spikes/s, CI = 0–0, n = 116 suppressive
responses). On average, the facilitatory responses constituted 8% of
the total stimulus duration (CI = 0–55%; n = 116 stimuli), and sup-
pressive responses constituted 9% of the stimulus duration (CI = 0–
82%; n = 116 stimuli). We note that the low spontaneous spike
rates observed (median 1.0 spike/s, CI = 0.3–3.3, n = 20 neurons)
are common in these regions (Gentner & Margoliash, 2003; Keller &

Hahnloser, 2009; Schneider & Woolley, 2013) and can make sup-
pression of spiking difficult to measure. Thus, the actual number of
suppressive responses may be greater.
For subthreshold activity, we isolated response epochs during

song presentation in which the trial-averaged voltage exceeded the
trial-averaged pre-stimulus range (see Methods). We sorted these
epochs into facilitating or suppressive responses based on whether
the time-averaged voltage within each epoch was depolarized or hy-
perpolarized relative to the pre-stimulus mean (Fig. 1A; see Meth-
ods). These subthreshold responses varied in duration (median
83 ms, CI = 26–449, n = 638 facilitatory responses; median 61 ms,
CI = 22–302, n = 332 suppressive responses) and the time-averaged
polarization (relative to the minimum potential recorded during
silence; median +11 mV, CI = +7 to +19, n = 638 facilitatory
responses; median +2.8 mV, CI = +0.9 to +4.1, n = 332 suppres-
sive responses). In a few cases where we calculated the resting
membrane potential in voltage clamp (data not shown), we found
that the minimum membrane potential recorded during silence
approximated it. Across all neurons in our sample, the facilitatory
subthreshold responses constituted on average 30% of the total stim-
ulus duration (CI = 2–80%; n = 116 stimuli), which was a signifi-
cantly larger proportion than the 8% of the stimulus that contained
facilitatory spiking responses (see above; P < 0.0001 Kolmogorov–
Smirnov test, n = 116 stimuli).
Spiking always co-occurs with subthreshold depolarization (facili-

tatory response), and facilitatory spiking responses are by definition
a subset of facilitatory subthreshold responses. Therefore, to estimate
the amount of facilitatory subthreshold responses that did not co-
occur with spiking responses we take the difference between the
total proportion of the stimulus in which there is facilitatory sub-
threshold response (30%) and subtract the total proportion in which
there is a facilitatory spiking response (8%). Thus, approximately
22% of facilitatory subthreshold responses occur in the absence of
spiking. Based on membrane voltage alone, only a small fraction
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Fig. 2. Stimulus-driven response reliability and specificity. (A) Histograms of mean subthreshold activity level preceding each stimulus (black), the threshold
potential for all spikes recorded from all neurons (gray), and membrane potential values contained within all facilitative (red) and suppressive (blue) response
epochs. (B) The mean trial-averaged, filtered membrane potential (top) and the median trial-to-trial variance relative to pre-stimulus silence (bottom;
hash = median variance before stimulus onset) across all neurons and stimulus blocks. (C) The mean spike rate (top) and the mean-matched Fano factor relative
to pre-stimulus silence (bottom; hash = median Fano factor before stimulus onset) computed for all stimulus conditions across the set of extracellular sites using
a 50-ms sliding window. Data in (B) and (C) are aligned to stimulus onset and offset (stippled lines). (D) Mean accuracy (from k-means clustering) with which
any given segment of the membrane response can be correctly distinguished from any other segment of similar duration, for segments ranging from 0.09 ms to
0.9 s. Different colored points show the classification accuracy for the membrane voltage time series (magenta), the time-averaged membrane potential (green)
during stimulus presentations, along with the same measures made during the silent interval preceding stimulus onset (gray, mean; black, time-series) for each
duration of analysis time-widow.
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(~17%) of the membrane potential values contained within facilita-
tory subthreshold responses exceeded the minimum spike threshold
(16 mV above the pre-stimulus minimum voltage; Fig. 2A), and
thus had the potential to elicit a spike. The actual distribution of
spikes within this subset of voltages will be lower, as it depends on
the refractory period and the local voltage derivative. Regardless of
the exact spiking distribution, robust spiking responses are much
more selective than the facilitatory subthreshold activity.
Suppressive subthreshold responses were more rare than facilita-

tory subthreshold responses (2% stimulus duration, CI = 0–42%;
n = 116 stimuli), and more rare than suppressive spiking (9% stimu-
lus duration, CI = 0–82%; n = 116 stimuli). Of course, spiking
activity can be suppressed by subthreshold responses with a range
of mean voltages anywhere below spike threshold.

Reproducibility of spiking and subthreshold activity

The two synaptic pooling strategies we address in this study are
distinguished in part by the extent of stimulus control over the
synaptic activity. Across-trial variability in the subthreshold and
spiking activity is a reliable metric of stimulus control that we can
easily measure throughout stimulation. The foregoing analyses
(which showed that both spiking and subthreshold responses span
a range of magnitudes and durations; Figs 1 and 2A) imply that
the activity within response epochs was reproducible across trials.
Reliability is not necessarily constrained to those epochs and may
be measureable on a smaller timescale. We therefore measured reli-
ability of subthreshold and spiking activity throughout stimulation
by calculating the trial-to-trial variance for the subthreshold activity
(single sample resolution) and the Fano factor for spiking (25-ms
resolution) and characterized their temporal dynamics at stimulus
onset and offset.
We observed a significant decrease in the trial-to-trial variance of

the membrane potential during stimulation compared with the pre-
stimulus period (Fig. 2B, bottom; P < 0.0001 Kolmogorov–Smirnov
test; median decrease relative to baseline = 68%, CI = 84–25,
n = 115 cell–stimulus pairs). The time course for the onset of this
drop in the membrane potential variance was very rapid
(Tau = 41 ms), but the relaxation back to the pre-stimulus levels at
the offset of the stimulus was much slower (Tau = 262 ms)
(Fig. 2B, bottom). The suppressed variance relative to baseline per-
sisted throughout song stimulation, but for individual response
epochs the variance depended on the mean as follows. For facilitat-
ing responses (depolarized potentials relative to pre-stimulus mean)
the variance of the membrane potential decreased by 85% relative to
baseline (n = 20 cells). For suppressing responses (hyperpolarized
potentials relative to the pre-stimulus mean) the variance of the
membrane potential decreased by 99.8% relative to baseline (n = 20
cells). We note that this difference is likely to be influenced by sev-
eral factors, including voltage-dependent non-linearities that increase
the spiking probability for depolarized responses, and differences in
the number of synaptic events contributing to each response.
We quantified trial-to-trial variability in the spiking activity

before, during, and after stimulus presentation using the Fano factor
with mean-matching techniques to control for firing rate dependen-
cies (Fig. 2C; Churchland et al., 2010). This analysis is data-inten-
sive and requires more trials than were recorded under whole-cell
configuration and more neurons in order to correct for firing rate
biases. To measure the between-trial reproducibility of spiking activ-
ity, we used extracellular multi-unit activity recorded in NCM to
song stimuli (five adult starlings, 42 multi-unit sites; 336 site–stimu-
lus pairs; Thompson et al., 2013). At stimulus onset there was a

rapid, significant decrease in the Fano factor (Tau = ~119 ms; single
exponential fit), to 70% of baseline (CI = 68–81, P < 0.0001 Kol-
mogorov–Smirnov test, n = 336 stimuli). At stimulus offset, the
Fano factor estimate relaxed back toward the pre-stimulus level, but
with a much slower time course than the onset (Tau = ~412 ms;
Fig. 2C bottom).

Stimulus specificity of subthreshold fluctuations across
multiple timescales

The reproducibility of subthreshold responses suggests that neurons
are under continuous synaptic control throughout the stimulus, rather
than intermittently receiving input corresponding only to features
most relevant to changes in output spike rates. By itself, however,
trial-to-trial reliability does not confer stimulus specificity. Spiking
responses in CM and NCM are both selective (show lifetime sparse-
ness) and stimulus-specific (respond distinctly to different stimuli)
(Jeanne et al., 2011). Having demonstrated that the subthreshold
activity is reliable, we next determined whether it is also stimulus
specific throughout song presentation. Specifically, does the same
portion of a song produce a unique membrane voltage response
(temporal pattern or mean value) that is similar across stimulus repe-
titions?
To answer this question in our whole-cell data set, we applied k-

means analysis to calculate an average clustering accuracy across
response–stimulus pairs (see Methods: ‘Stimulus specificity of sub-
threshold potential’). We then took this accuracy as a measure of
subthreshold stimulus specificity for each cell–stimulus pair
(Fig. 2D). We measured stimulus specificity using a range of stimu-
lus durations, but always included data recorded during the entire
song bout in the analysis. The noise floor for the accuracy estimate
was calculated using the activity recorded during the silence before
the stimulus came on. Both the mean and temporal pattern of mem-
brane potential activity contained enough stimulus specificity to
allow for accurate clustering of response–stimulus pairs (compared
with the ‘noise’ floor) even at single-sample resolution. Beginning
at relatively short timescales (~40 ms), the temporal pattern of sub-
threshold activity could be clustered more accurately than the mean
(Fig. 2D). Thus, even very short, randomly-chosen portions of the
membrane activity carry stimulus-specific information. Increasing
the size of the analysis window substantially improved clustering
accuracy for temporal patterns, but not for the mean, demonstrating
that the time-varying membrane potential carries additional stimulus-
specific information.

Inhibition modulates across-trial reproducibility of spiking in
NCM

We reasoned that local inhibition might also mediate the robustness
of stimulus specificity in the subthreshold activity, which depends
on the reliability of spiking activity in the network from which its
inputs are pooled. To test this idea, we blocked GABA receptors
transiently around extracellular recording sites using iontophoretic
application of gabazine (see Methods).
Local inhibition modulates the magnitude of neuronal spiking in

NCM across song stimuli (Thompson et al., 2013), but its effect on
individuated response epochs was not previously tested. We parsed
spiking response epochs (as in Fig. 1A) using the activity recorded
in the gabazine condition and compared those response epochs with
the corresponding stimulus–response epochs in the intact condition.
Blocking local inhibition induced an increase in spiking activity dur-
ing silence (median = 1.5 spikes/s, CI = 0–15.0, intact condition;
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Figure 2-3: Effects of gabazine.

 
2.5 Discussion 

 

median = 3.2 spikes/s, CI = 0.2–24.8, gabazine condition; n = 296
stimuli) and a shift toward response epochs with higher spike rates
during auditory stimulation (median = 11.6 spikes/s, CI = 0–71.6,
intact condition; median = 21.5 spikes/s, CI = 1.8–162.2, gabazine
condition; n = 1815 responses) consistent with previously reported
effects (Thompson et al., 2013; Fig. 3A and B).
The extracellularly-recorded spiking activity (from single and

multi-unit sites) can serve as a reasonable proxy for estimating the
reliability of the local synaptic network driving a randomly chosen
cell within that network. To test whether local inhibition might con-
tribute to the reliability of the local network activity, we compared
the Fano factor computed across stimulus trials (see Methods) when
local inhibition was intact and when it was blocked by gabazine.
Indeed, the distribution of stimulus-driven Fano factor estimates
is shifted significantly to larger values when local inhibition is
blocked by gabazine than when inhibition is intact (median = 1.13
intact and 1.27 gabazine; P < 0.0001, Kolmogorov–Smirnov test;
Fig. 3C). Notably, the Fano factor distribution across sites during
the pre-stimulus period was not significantly altered by gabazine
(median = 1.52 intact and 1.53 gabazine; P = 0.7, Kolmogorov–
Smirnov test). Likewise, the time course of the change in vari-
ance at stimulus onset and offset appeared to be unaffected by
blocking local inhibition with the application of gabazine
(Tau_onset = 119 ms and Tau_offset = 412 ms with inhibition
intact; Tau_onset = 115 ms and Tau_offset = 358 ms with inhibi-
tion blocked; Fig. 3A, bottom). Together, these results show that
local inhibition mediates a stimulus-driven increase in reproducibil-
ity of spiking activity.

Discussion

We recorded the spiking and subthreshold activity of neurons in the
high-level auditory regions CM and NCM, in the starling forebrain,
in response to spectro-temporally diverse natural songs. We find that
song stimuli drive time-varying subthreshold membrane voltage
responses that are reliable across trials and stimulus-specific, but
non-selective. These results are inconsistent with a model in which
neurons with highly selective spiking responses pool over sets of
inputs that only drive synaptic activity in service of the selective
spiking response. This indicates that, at lease these and possibly
other high-level sensory neurons are sampling from a much more
rich and diverse stimulus space than is evinced by their output spik-
ing. When local inhibition is blocked, spiking variability across tri-
als increases in NCM, suggesting that inhibition plays a key role in
governing the stimulus specificity of the time-varying membrane
voltage activity generated in a distributed pooling regime.
Understanding how stimulus encoding supports the adaptive inter-

action between animals and their environment requires studying
how natural stimuli are represented in the spiking activity of individ-
ual neurons and their populations. The relationship between spiking
activity in single neurons and a sensory stimulus depends on both
the properties of a potential set of inputs and the pooling operation
across those inputs in the post-synaptic cell. In general, the com-
plexity of stimulus selectivity increases along the sensory processing
pathway with sparse-firing neurons in ‘higher’ regions selectively
spiking in response to progressively more complex features (Sen
et al., 2001; Hsu et al., 2004; Meliza et al., 2010; Marshel et al.,
2011; DiCarlo et al., 2012). This organization implies a functional
hierarchy and presumably confers benefits for the classification and
recognition of complex signals (Babadi & Sompolinsky, 2014). To
explain higher-order feature selectivity, classic models first devel-
oped for primary visual cortex (Hubel & Wiesel, 1962; Movshon
et al., 1978) relied on the combination of inputs selective for sim-
pler component features. This kind of feed-forward pooling forms
the basis for more contemporary models of object selectivity (Rie-
senhuber & Poggio, 1999; Rauschecker & Scott, 2009; Lien &
Scanziani, 2013), where selective convergence of inputs at each
level of a hierarchical network gives rise to narrowed stimulus tun-
ing and more complex receptive field structure. Functionally, these
models capture the transformation from dense low-level feature rep-
resentations to sparse encoding of high-dimensional objects, but the
synaptic and network mechanisms underlying this (or other hierar-
chical models) is not well understood – especially in high-order neu-
rons driven by continuous stimuli comprising diverse sets of
features over long periods of time.
Natural signals are ongoing, temporally variable and diverse. We

observe reliable spiking activity in response to natural song in
regions CM and NCM of the starling cortex, demonstrating that the
neurons are clearly auditory. In concert with the temporal variability
of the signal, however, spiking is not evenly distributed throughout
stimulation. In our own data, the distribution of the stimulus-evoked
spike rates averaged over an entire song stimulus is not much differ-
ent from the mean spontaneous spike rate (stimulus evoked: 1.0
spikes/s, CI = 0.4–5.9 spikes/s; spontaneous: 1.0 spikes/s, CI = 0.3–
3.3 spikes/s), demonstrating that the mean spike rate over the song
is indeed a poor measure of the cell’s temporally sparse response
(Fig. 1). This raises the interesting question of what inputs a cell
might receive during periods of the stimulus, when there is no stim-
ulus-specific spiking response. Drawing on the majority of physiol-
ogy experiments, in which the stimulus has been abstracted from the
world and arbitrarily tailored to the response, one might reason that
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Fig. 3. Effects of gabazine. (A) The spike rate (top) and the mean-matched
Fano factor (bottom) during the intact condition (black) and during gabazine
iontophoresis (red), computed for all stimulus conditions across the set of
extracellular sites using a 50-ms sliding analysis window (in 25-ms steps).
For visualization of the relative onset and offset time course, the Fano factor
trace in each condition is aligned to the median stimulus-evoked Fano factor
and normalized to the maximum Fano factor before stimulus onset. (B)
Cumulative distribution functions of the spike rate per response epoch (colors
as in A). Inset: boxplot of spike rates during the pre-stimulus period in each
condition (horizontal line shows the median; the box shows the 25th and
75th percentiles; the whiskers encompass all non-outlier data: ~99.3%). (C)
Histogram of Fano factor estimates for stimulus-driven activity (colors as in
A).
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the inputs revert to a spontaneous state. Indeed, statements in the lit-
erature that explicitly or implicitly assume sparsely spiking neurons
are not carrying out any computations for the majority of the time
are not hard to find (Abeles et al., 1990; Graham & Field, 2007a).
But these assumptions have not been tested.
Our results address two potential synaptic pooling regimes,

referred to as ‘sparse’ and ‘distributed’ pooling, that could underlie
sparse, object-selective spiking to natural stimuli. Both pooling
regimes can permit selective spiking output, but are distinguished by
the selectivity and stimulus-specificity of subthreshold activity
throughout long bouts of ongoing natural stimuli. Under sparse
pooling, neurons pool inputs that are biased towards the stimulus
features that ultimately drive changes in spike rates. For our analy-
ses, this predicts that stimulus-specific activity should be largely
restricted, on average, to the response epochs that inform spiking.
Conversely, the subthreshold activity that is uninformative of stimu-
lus-specific spiking responses – namely the subthreshold activity not
designated as response epochs – should not be stimulus-specific.
Our results do not support these predictions. Instead, we find that
subthreshold activity is remarkably reliable and stimulus-specific
throughout every song presented, regardless of whether there is a
stimulus-driven change in the probability of spiking (Figs 1 and 2).
This nearly continuous, stimulus-specific control over the subthresh-
old response rules out a sparse pooling regime.
Instead, the pattern of results favors a distributed pooling regime,

in which neurons with selective spiking responses pool synaptic
inputs that collectively produce a non-selective, but stimulus-spe-
cific, subthreshold response. Importantly, our results cannot address
whether the individual pre-synaptic neurons themselves are selec-
tively or non-selectively tuned, but two different scenarios seem
most plausible to account for the observed ongoing stimulus-driven
reliability and temporal specificity. One possibility is that individual
CM and NCM neurons pool inputs from neurons tuned to low-
dimensional features that have a relatively high probability of occur-
ring at many points throughout song. These inputs could come from
Field L, where some neurons are well-described as frequency-tuned.
Their spiking responses are correspondingly non-selective through-
out vocalizations and could provide continuous drive to a post-syn-
aptic neuron because power in a given frequency channel is
distributed broadly throughout the song. This scenario implies that
the populations over which a given neuron is pooling have low pop-
ulation sparseness. Although sparseness appears to be a common
feature of sensory encoding (Vinje & Gallant, 2000, 2002; Olshau-
sen & Field, 2004; Graham & Field, 2007b; Hromadka et al.,
2008), it may not be the only representational scheme in place (Sak-
ata & Harris, 2009; Tolhurst et al., 2009). A second possibility is
that individual NCM and CM neurons pool inputs from neurons
tuned to high-dimensional features that occur with relatively low
probability throughout the song. In this case inputs might come
from other neurons within CM, NCM and other auditory regions
that exhibit high population sparseness and whose neurons have
high lifetime sparseness. Dense recurrence among (or within) these
regions could allow for pooling over much larger numbers of these
selective inputs and provide continuous drive to a post-synaptic neu-
ron. In both scenarios, sparse post-synaptic spiking could emerge
through the covariance of a specific set of inputs regardless of their
tuning. Differentiating between these two possibilities requires a bet-
ter understanding of the diversity of features to which the inputs are
tuned and the combinatorial operations that govern their integration.
In either case, our data are consistent with a model in which sparse
spiking responses emerge through distributed pooling, which places
demands on post-synaptic computational mechanisms to generate

sparse spiking responses. These mechanisms, and their relationship
to non-linearities imposed by the spiking threshold, will be impor-
tant to investigate in future work.
Maintaining synaptic inputs for features that do not co-vary

directly with selective spiking output seems somewhat counterintui-
tive, but it may confer computational advantages for behavior. We
know that responses to elements of natural auditory signals are
highly dependent on the information conveyed about behavior by
particular acoustic material, so the stimulus–response relationship is
heavily modulated by behavioral experience (Blake et al., 2002,
2006; Gentner & Margoliash, 2003; Thompson et al., 2010, 2013;
Jeanne et al., 2011, 2013; Meliza & Margoliash, 2012). Distributed
pooling may confer individual neurons with flexible encoding across
a wide diversity of stimulus features, allowing behavioral feedback
to shape the pluripotency of the same inputs through synaptic plas-
ticity, adaptation or other mechanisms (Kozlov & Gentner, 2014).
Thus, a given neuron may ‘represent’ multiple objects based on the
dynamic functional organization of the system (Kozlov et al.,
2013).
The subthreshold activity of all neurons in our sample is consis-

tent with a distributed synaptic pooling architecture. This, in turn,
implies that most (if not all) the neurons in these regions are highly
interconnected, potentially causing correlations that could lead to
deleterious effects on the encoding/decoding of spiking responses
across cells (Cohen & Maunsell, 2009; Cohen & Kohn, 2011). The-
oretical work has shown, however, that recurrent connectivity in
cortical networks can actually decorrelate the activity patterns of
neurons with shared presynaptic input (Helias et al., 2014), specifi-
cally though inhibitory feedback (Tetzlaff et al., 2012; Bernacchia
& Wang, 2013). Correlated firing can also modulate the gain of
postsynaptic cells (Salinas & Sejnowski, 2000). We find a major
role for inhibition in shaping both the trial-to-trial reproducibility of
the post-synaptic response to ongoing natural stimuli, and the mag-
nitude of spike rates – effects that inhibition could manifest by
altering the correlation structure of the network. The gain of
responses could also be modulated directly by feed-forward inhibi-
tion (Mejias et al., 2014). Input–output mappings even in single
neurons are not static over time or behavioral conditions (Kozlov &
Gentner, 2014), and our results demonstrate that inhibition is poised
to provide flexible control over these response characteristics under
natural conditions. To understand how inhibition is modulating the
sensitivity of the input–output function in neurons of the Starling
auditory cortex it will be useful to develop more precise ways
to isolate and manipulate different sources of inhibition in the
network.
The results of the current study expand our understanding of the

synaptic and network mechanisms that underlie hierarchical selective
representations of complex natural communication signals in the
auditory system. The implications of specific types of synaptic con-
vergence on the computations performed by object-selective neurons
in sensory cortex have not been well established and they constrain
models for the sparse, selective encoding of natural stimuli.
Demands on synaptic plasticity to tune the output of individual neu-
rons from broadly selective synaptic input could provide a computa-
tional advantage for increasing the amount of information a sensory
signal conveys about behavior across different contexts, improving
both the flexibility and the efficiency of stimulus encoding. Network
organization and synaptic integration both shape the input–output
relationship between the stimulus and the neural response in single
cells. Knowing more about these operations in the context of natu-
rally occurring stimuli is a critical step to improving on current
models of how stimulus selectivity arises in neural networks.
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Natural signals drive fast modulation of stimulus-specific functional networks in 

cortex. 
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3.1 Abstract 

            Relating the collective activities of neural populations to external sensory stimuli 

or to motor output is essential to understanding how nervous systems support behavior. 

Equally important is examining the covariance among spiking outputs of many neurons. 

What we know about the mechanisms of these processes comes primarily from 

examining the spiking output of randomly selected neurons from within larger 

populations, and we do not know how those spiking responses are pooled, functionally, 

by downstream neurons – a mechanism that could significantly alter population coding. 

In the current study, we find that not only does the spiking activity across the “NCM” 

region of Starling auditory cortex exhibit temporal and spatial variance, but that a 

remarkable amount of variance in net spiking response is reflected in the synaptic 

response of single neurons within NCM. We further leverage the information in the 

continuous, time-varying synaptic response of individual neurons to refine the selection 

of functional networks within NCM identified by their ability to predict the synaptic 

response of a single neuron by implementing linear regression techniques. By examining 

the stimulus-driven properties of these identified functional networks we determine how 

spiking responses in NCM are pooled across time and across space to reflect synaptic 

representations of conspecific vocalizations. The main implication of the collective 

results presented in this study is that, rather than a model of hierarchical processing in 

which stimulus-specific information is restricted to parallel circuits within each region, 

sensory integration and processing are supported by a system in which information about 

even the most complex stimuli is likely massively redundant and shared among the 

population at large. 
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3.2 Introduction 

            Relating the collective activities of neural populations to external sensory stimuli 

or to motor output is essential to understanding how nervous systems support behavior. 

Equally important is examining the covariance among spiking outputs of many neurons. 

What we know about the mechanisms of these processes comes primarily from 

examining the spiking output of randomly selected neurons and pairs of neurons from 

within larger populations. We find that the modulation of spiking covariance can interact 

with stimulus tuning to bias response discriminability in predictable ways. Yet we do not 

know how those spiking responses are pooled, functionally, by downstream neurons – a 

mechanism that could significantly alter population coding if the spiking statistics of the 

pooled/integrated neurons differ from that of the population at large. In the current study, 

we aim to address the limitations inherent to examining spiking statistics of randomly 

selected neural populations by leveraging the synaptic response of an individual neuron 

embedded among that population to identify functional subsets of units whose co-activity 

reflects the pre-synaptic input of that single neuron. 

 Studies from the literature do establish that the synaptic response of individual 

neurons provides a continuous, time-varying signal containing a breadth of stimulus-

specific information (Baudot et al., 2013; Machens, Wehr, & Zador, 2004; Perks & 

Gentner, 2015). One possibility is that the synaptic input of a single neuron represents 

only a tiny fraction of the total population in any given region. Insofar as the spiking 

pattern among the pre-synaptic population for each neuron is unique and independent, 

predicting the synaptic response from the spiking pattern of a randomly-recorded sample 

of neurons from the total population would be difficult. In line with this, contemporary 
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models of sensory processing invoke hierarchical, progressively restrictive feature 

pooling like that observed in the retina, thalamus, and even V1 to shape progressively 

complex stimulus-specific receptive fields (Lien & Scanziani, 2013; Rauschecker & Scott, 

2009; Riesenhuber & Poggio, 1999). One might imagine that to predict the sub-threshold 

response of a given neuron, you need to record from a population of neurons in which the 

inputs to that cell are strongly represented.  

 On the other hand, if the synaptic responses of different neurons carry redundant 

information about the stimulus, and this shared information is reflected in the population, 

then the spiking activity of the total population may actually provide a very good 

predictor of the synaptic response in any randomly chosen neuron. We do know that, 

although spiking responses from individual neurons nestled deep within sensory cortex 

are sparsely stimulus selective, sensory processing must meet the demands of behavior in 

flexible environments. In order to support flexible spiking output, individual neurons may 

be driven by multiple subnetworks that are differently engaged by different stimuli and 

can be modulated independently.   

 The Starling auditory cortex offers an excellent model for examining these 

processes and is the target of the current study. Starling songs are composed of many 

acoustically complex and distinct sound patterns, called motifs, that are perceived as 

different auditory objects (Gentner, 2008). In higher-order regions of the auditory 

pathway (the caudal mesopallium, CM, and the caudomedial nidopallium, NCM, in 

particular) spiking responses are sparse - any given neuron is driven strongly by only a 

small portion of all possible motifs (Gentner & Margoliash, 2003; Jeanne, Thompson, 

Sharpee, & Gentner, 2011; Meliza, Chi, & Margoliash, 2010; Thompson, Jeanne, & 
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Gentner, 2010) and each motif evokes spiking from only a small number of neurons 

(Gentner & Margoliash, 2003). Pervasive stimulus specificity in the subthreshold 

membrane potential of individual neurons within NCM implies that the synaptic 

receptive field of these neurons are extremely broad, pooling from spiking responses 

corresponding to a diverse range of stimulus information not necessarily represented in 

the spiking output (Perks & Gentner, 2015). In this paper, we first quantify the stimulus-

driven temporal and spatial variance of spiking activity across NCM, which could 

support the prediction of highly temporally-specific synaptic responses recorded in 

individual neurons among that population. The population response vector summed 

across all spiking units was also temporally specific and consistent across trials much like 

the synaptic response of individual neurons within that region. We find that a remarkable 

amount of variance in the population activity is reflected in the synaptic response of a 

single randomly selected neuron from within the region.  

 We then constrain the population by identifying sets of units selected for their 

ability to sufficiently predict temporal variance in the synaptic response, and refer to this 

set as the “functional network.” The identity of a functional network was more 

accurately/reliably identified at the time-scale of single motifs (1 second) than at the 

timescale of whole vocalization sequences (2-20 seconds), and in response to changes in 

motif identity, the identity of units contained in the functional network changed - 

suggesting that synaptic responses may be tuned from a temporally heterogeneous 

coordination of population spiking activity. We also found that the units comprising each 

functional network were spatially arranged such that they carpet NCM flatly, yet 

maintain a bias toward more positive pairwise signal correlations than expected if the 
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population was sampled at random, suggesting significant stimulus-driven structure in the 

pooling strategies integrating covarying spiking responses. Each functional network 

potentially contains highly correlated variables and we conclude by quantifying the 

dimensionality reduction necessary on each functional network to eliminate redundant 

information about the synaptic response.  

 The degree of redundancy is inherently related to key aspects of population 

coding, such as determining spiking correlations among the population and whether those 

correlations effect information decoding - aspects that will require additional 

computational tools to decipher (Latham & Nirenberg, 2005). However, it will be 

important to examine functionally relevant populations of neurons when asking these 

questions, which the results of this study directly address. The main implication of the 

collective results presented in this study is that, rather than a model of hierarchical 

processing in which stimulus-specific information is restricted to parallel circuits within 

each region, sensory integration and processing are supported by a system in which 

information about even the most complex stimuli is likely massively redundant and 

shared among the population at large. 

 

3.3 Methods 

3.3.1 Animal Preparation 

 Experiments used adult European starlings (Sturnus vulgaris), wild-caught in 

southern California. We prepare the starlings for the recording session by attaching a 

small pin stereotaxically to the surface of the skull with dental cement (under isoflurane 
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anaesthesia). For electrophysiolgical recordings, we anesthetized the starlings with 20% 

urethane (7–8 ml/kg, in three to four intramuscular injections over ~2 h) prior to being 

placed in the recording chamber. Starlings were placed in a cloth jacket and secured via 

the attached pin to a stereotaxic apparatus inside of a sound attenuation chamber. A small 

craniotomy was made just dorsal to the recording site (NCM), the dura removed, and 

electrodes advanced into the brain. 

3.3.2 Electrophysiology 

 Recordings of the cross-membrane potential were obtained using standard 

intracellular sharp electrode techniques under current clamp configuration (MultiClamp 

700B amplifier, Axon Instruments). Sharp pipettes (70–100-MΩ tip resistance) were 

fabricated from filament (0.25 mm) borosilicate glass (OD 1 mm, ID 0.5 mm, 

Hilgenberg, Malsfeld, Germany). The standard electrode fill solution was 3M Potassium 

Acetate, pH 7.4). Recordings were obtained by slowly advancing the electrode in 2- to 3-

µm steps through the region of interest (starting around 1500-2000 µm below the surface) 

while monitoring its resistance with current steps. Once direct contact with cell 

membrane was detected as an increase in electrode tip resistance, electrical “buzz” was 

created with the amplifier’s Buzz and (+)Clear functions to break through the cell 

membrane. A large (~350pA) hyperpolarizing current was used initially to stabilize the 

recording but subsequently slowly released. In some cases a smaller hyperpolarizing 

current (<100pA) was used when a cell’s feverish spiking activity obscured recovery of 

reliable subthreshold potential from the recording. Intracellular quality was assessed by 

spike height and all intracellular data included in these analyses maintained >40mV 



46 
 

 
 

spikes throughout the recording. Electrical activity recorded in the intracellular 

configuration was low-pass filtered (10kHz), digitally sampled (44.1 kHz), and saved 

offline analysis (IgorPro2; WaveMetrics Software). For further analysis, data was down-

sampled to 10kHz and exported to a format used by custom-written MATLAB 

(Mathworks Software) routines.  

 To examine the relationship between synaptic input to single cells and spiking 

responses in larger local neuron populations, we used data from extracellular recordings 

in NCM. Briefly, commercial 32-channel NeuroNexus probes (32-channel Edge and 

Poly3) were used to obtain analog voltage signals that were then amplified (5,000 x gain; 

AM Systems), filtered (high pass, 300 Hz; low pass, 3–5 kHz), sampled (20 kHz) and 

digitized using Spike2 software and then stored for offline analysis.  Using custom 

routines, the data was then exported to Matlab-compatible files for further processing. 

For spike sorting, we used open-source automated routines from Klusta team 

(github.com/kwikteam) to isolate spiking events from the raw voltage waveforms on 

multiple neighboring channels, cluster these events, and the associate clusters (with 

varying degrees of certainty) to unique neuronal sources.  Manual sorting using the phy 

package and klustaviewer (phy.cluster.manual) followed the automated sorting process to 

omit noisy and non-neural event clusters.  

3.3.3 Auditory stimulation 

 All stimuli were extracted from previously recorded song repertoires of adult 

European starlings. Single motifs (stereotyped multi-note elements of natural starling 

song; selected at 1 second long each) were concatenated together into continuous 5-
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second pseudo-song sequences – with each sequence containing a unique set of motifs. 

These pseudo-songs were played to the anesthetized animal in an anechoic recording 

chamber. To target the analysis at “ongoing” auditory processing and avoid analyzing 

onset responses, the same 1-second-long “intro” motif was appended to the onset of every 

pseudo song. The response to this intro motif was excluded from all analyses since it was 

over-represented and identical across sequences. Auditory stimuli were presented free 

field from a full-range speaker mounted 30 cm from the center point of the subject’s 

head, where the sound pressure level ranged from 40 - 80 dB SPL. 

3.3.4 Data Analysis  

 Extracellular Spike waveforms: Single neurons isolated from extracellularly-

recorded dataset were classified as either “regular-spiking” or “fast-spiking” based on the 

temporal profile of the average spike waveform (aligned to the trough of the biphasic 

signal). Threshold for fast-spiking classification was <160µsec duration at half-height 

and <300µsec duration from trough to peak. For each subject, there were about 10 times 

as many regular spiking units designated than fast-spiking units. Some of the regular 

spiking units likely comprised more than one neuron (multi-unit activity).  

 Trial-averaged pseudo-synaptic activity: After spiking events were extracted 

and attributed to isolated units, they were filtered to create a continuous time series for all 

following analysis. First, each spike event was assigned an exponential kernel (tau = 

10msec). For each unit under a given stimulus condition, the pseudo-synaptic input was 

averaged across trials for use in the analyses of signal correlation and as input variables 

in each linear regression model.  
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 Regularized Least Squares Linear Regression Model: At each time point, we 

obtain an estimate (average across trials) of the membrane potential of a single neuron 

isolated using an intracellular sharp electrode, and an estimate (average across trials) of 

the pseudo-synaptic output from each isolated unit along the extracellular electrode array. 

For the set of temporal observations under each stimulus condition, we implemented least 

squares regression to determine the identity of independent variables (spiking output of 

neurons) that predicted the membrane potential response (dependent variable) of each 

single neuron. The identity of the unit associated with each independent spiking response 

variable was preserved throughout the analysis and linked a specific physical location 

along the recording penetration (relative to dorsal surface; obtained from the electrode 

geometry).  

We implemented two different regularization algorithms - lasso and ridge - that 

constrain the degrees of freedom in the least squares regression according to the L1 or 

squared L2 norm, respectively. By regularizing with the L1 norm of the coefficients for 

the set of predictors, the lasso algorithm identifies and removes redundant predictors 

from the regression regularized with the squared L2 norm of the coefficients. To toggle 

between these two regularization algorithms we use Matlab to implement an elastic net 

model: the lasso algorithm dominates when the alpha parameter is set to 1, while the 

ridge algorithm dominates when the alpha parameter set to 0.01. The number of non-zero 

coefficients depends on the gain of the regularization term - when the regularization gain 

is as small as possible, the model generates the best prediction possible (minimum MSE 

between the prediction and the trial-average membrane potential), but it also uses the 

maximum number of non-zero coefficients to do so. 
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 In pre-processing for the regression analysis, we maintain the relative response 

tuning across the stimulus set within each neuron by normalizing all trial-averaged 

responses for a neuron to its maximum trial-averaged response. This normalization 

creates a pre-training condition in which all predictors are equipotential. The trial-

averaged membrane potential response that the model is trained to predict is also 

normalized to the maximum response across stimuli.  

 As the gain on the regularization parameter is decreased, the reliability and 

accuracy of the prediction increases, but the number of non-zero coefficients also 

increases. For each regularization gain (lambda value) used in the regression model, a 

different set of coefficients is generated and the number of non-zero coefficients 

decreases as the regularization gain increases. To determine the model that would allow 

for a minimal set of non-zero coefficients while still sufficiently predicting the membrane 

potential, we implemented a physiologically relevant benchmark of sufficiency for the 

model’s prediction. We defined a “sufficiency threshold” for each model: [the mean 

squared error (MSE) between the membrane potential and the prediction produced by the 

model with the smallest regularization gain] + [a standard prediction error in the trial-

averaged membrane potential estimate] (Figure 3B). Where the Prediction Error = 

3*[MSE between pairs of trial-averaged membrane potential estimates from random 

subsamples of 75% of the trials] (n = 50 subsample estimates) (Figure 3A). All signals 

were z-scored before calculating the MSE between them. For each value of lambda a new 

model was generated and we calculated the Mean Squared Error between the model 

prediction and the trial averaged membrane potential (Figure 3B). Once the lambda value 

was low enough that the prediction of the model crossed this threshold, we considered it 
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sufficient and use that model for all further analyses as described in the main text (Figure 

3C).   

 Unless otherwise specified, results are reported as median value with the 95% 

confidence interval following in brackets.  

 

3.4 Results 

 Examining population statistics and the selection of functionally-relevant 

subpopulations driven by temporally evolving natural stimuli presents challenges that this 

study addresses. The work focuses in the auditory cortex of the Starling, a model system 

that enables experiments targeting the neural mechanisms underlying the fundamental 

cognitive processes like those requisite for language processes common to all vocal 

learning species. 

3.4.1 Temporal and Spatial Variance in Population Spiking 

 In the songbird cortex, NCM is a region - poised to support sensory-driven 

behavioral decisions – that demonstrates flexible high-dimensional structure in single 

neuron and population activity critical for adaptive spike-based stimulus classification. 

Presumably, downstream processes pool this activity into functional networks comprised 

of subpopulations within NCM, each with their own specific stimulus-response tuning 

function and unique co-variability structure that is modulated - potentially independently 

- to support downstream tasks. The spatial and temporal organization of spiking 

responses within regions that individual neurons pool from constrains the mechanisms 

that enable those neurons to achieve a breadth of stimulus-specific synaptic input. 
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 As a first step to determining how vocal communication signals organize 

functional spiking networks within NCM, we examine the structure of stimulus-driven 

spiking activity through space and time among large populations (200-300 units of 

varying isolation quality) randomly selected from within NCM while presenting the 

animals with long sequences of conspecific vocalizations (40-80seconds of acoustic 

material in 6second segments). Although many studies have contributed to our 

knowledge of how regions comprising the ascending auditory pathway in songbird cortex 

are grossly connected, the local circuit architecture within each region is unparsed (Saini 

& Leppelsack, 1977, 1981; Wang, Brzozowska-Prechtl, & Karten, 2010). Even for model 

systems where we know more about local neural architecture, little is known about the 

distribution of temporal and spatial response similarity to time-varying, complex natural 

stimuli (but see (Woolley, Gill, Fremouw, & Theunissen, 2009)).  

 In Figure 1, we have plotted, for each NCM unit in a single subject, the 

normalized trial-averaged spiking response to a 6-second sequence of Starling 

vocalizations. Each unit’s response is plotted spatially according to the electrode location 

at which it was recorded (along the dorsal-ventral axis in NCM). At any given moment in 

time, we observe variation across the population in the identity of active units, and the 

pattern of this activation across the population varies through time (stimuli). Additionally, 

it appears that near-neighbors tend to have more similar patterns of activation across time 

than units further from each other. To quantify these effects we measure the temporal and 

spatial correlations in the population spiking activity. 
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Figure 3-1: Spatial and temporal variance of spiking activity in NCM.  
(A) Example of the trial-averaged spiking response (spike events filtered with a synaptic 
kernel (tau = 10ms) of each unit recorded in a single subject before, during, and after a 6-
second vocalization sequence (spectrogram:top). Each trial-averaged response is plotted 
corresponding to the electrode location at which their spike events were isolated. (B) top: 
Example 2D image plot from a single subject of the correlation coefficient between the 
population activity vector at each pair of time points during the presentation of a 6-
second sequence of vocalizations (colorbar right). Image plot averaged across 6 
vocalization sequences for this subject. Bottom: average correlation for each temporal 
distance. (C) top: Example 2D image plot from the same subject shown in (B) of the 
correlation coefficient between the trial-averaged activity of pairs of unit (indexed by the 
electrode location at which their spike events were isolated) (colorbar left). Image plot 
averaged across 6 vocalization sequences for this subject. Bottom: average correlation for 
each temporal distance.  
  

 First, we calculate the correlation coefficient between the population activity 

vectors (spiking response strength across units) at two time points and compare that to 

their temporal separation (Figure 1B). We find that for time-points close to each other, 

the population spiking output is highly correlated (mean  = 0.68 [max 0.75, min 0.54]; n 

= 4 subjects), and across time (stimuli) the correlation decays such that the log of the 

correlation scales with the log of the temporal distance by a factor of -0.21 (mean across 
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Figure 1: (A) Example of the trial-averaged spiking response (spike events filtered with a synaptic kernel; tau 10ms) of each unit recorded 
in a single subject before, during, and after a 6-second vocalization sequence (spectrogram: top). Each trial-averaged response is plotted 
corresponding to the electrode location at which their spike events were isolateda. (B) top: Example 2D image plot from a single subject of 
the correlation coefficient between the population activity vector at each pair of time points during the presentation of a 6-second sequence 
of vocalizations (colorbar right). Image plot averaged across 6 vocalization sequences for this subject. bottom: average correlation for each 
temporal distance. (C) top: Example 2D image plot from the same subject shown in (B) of the correlation coefficient between the trial-
averaged activity of pairs of unit (indexed by the electrode location at which their spike events were isolated) (colorbar left). Image plot 
averaged across 6 vocalization sequences for this subject. bottom: average correlation for each temporal distance. 
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4 subjects, [-0.14 min, -0.28 max]). Spiking is highly reliable across trials (Churchland et 

al., 2010; Perks & Gentner, 2015), meaning that the observed temporal variance can 

provide rich stimulus-specific information. Instability in the population response across 

time could enable neurons pooling inputs from this region to achieve high temporal 

variability in their synaptic input simply by sampling consistently from one set of 

neurons. Alone, this would not fully constrain mechanisms of synaptic pooling that 

maintain stimulus-specificity. A combination of the spatial organization of spiking 

response tuning and the spatial organization of synaptic sampling across that spiking 

population also contributes to synaptic tuning.  

 In this dataset we can explicitly ask how the spiking response tuning is spatially 

organized in NCM - without needing to model the receptive fields of each neuron, which 

is otherwise a notoriously difficult solution (Kozlov & Gentner, 2014, 2016; Sharpee, 

2013; Theunissen, Sen, & Doupe, 2000). We quantify the spatial structure of stimulus 

tuning among spiking responses through NCM by calculating the correlation coefficient 

between trial-averaged spiking responses of isolated units – the signal correlation – and 

comparing that to the spatial distance between each pair of units (Figure 1C).  We find 

that near-neighbors tend to have higher signal correlation (median 0.21 [0.15min, 

0.25max] for units within 200microns; n = 4 subjects) and that along the dorsal-ventral 

axis in NCM, this correlation had a constant exponential decay rate (space constant) of 

0.0060 micrometer-1 [0.0035 min, 0.0074 max](n = 4 subjects).  

 For the representation of temporally-varying high-dimensional stimuli in sensory 

cortex, “object-topic” mapping like that shown in Figure 1 has not previously been parsed. 

The anatomical arrangement of feature selectivity has been heavily studied in the visual 
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cortex, but mainly limited to well-parameterized low-dimensional stimulus sets – for 

example, defining orientation columns in V1. Combinatorial explosion in stimulus set 

size combined with receptive field non-linearity makes any spatial characterization of 

object -selectivity challenging. Vocal communication signals used by species such as 

humans and songbirds provide a continuously time-varying sample of a high-dimensional 

diverse feature space that lends itself well to characterization of response relationships 

among sparsely selective neuron populations. Demonstrating the spatial organization of 

response similarity to temporally varying complex objects is non-trivial result that 

constrains mechanistic models of information processing through NCM.  Several 

mechanisms could account for such a result - including massive recurrent local pooling 

and/or spatially restricted shared input from upstream areas.   

 Presumably, the identity of sets of units comprising functional networks pooled 

by downstream neurons NCM ultimately determines the temporal and spatial variance 

among the synaptic population shaping stimulus-specific temporal variance in the 

synaptic input to individual neurons. Although our extracellular recordings demonstrate 

strong variations in the population response across space and time (Fig 1), the functional 

relationships between neurons (and sets of neurons) within this population remains 

obscure. 

3.4.2  Synaptic response reveals coordinated population dynamics. 

 While extracellular techniques such as imaging or dense electrode arrays enable 

the identification of neuron populations that are co-active or functionally grouped by their 

response properties, these co-active populations do not necessarily impact downstream 
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neurons together. Identifying the actual sub-networks within this large population that 

provide synaptic input to individual neurons and isolating their spiking activity presents 

technical challenges – we lack tools like molecular markers that target neurons flexibly 

recruited by synaptic processing in cortex. Insofar as a neuron’s synaptic input and/or 

membrane potential is a reflection of spiking activity in the pre-synaptic network, then 

that neuron becomes an electrode through which we can examine the activity of 

functionally-relevant, spatially-unrestricted populations of neurons unharried by common 

biases of spike sorting or extracellular signal sampling.  

 To probe the population in this way, we must measure synaptic activity from 

individual neurons whose synaptic input reflects the statistics of the population. The 

ability of the population spiking activity to predict the membrane potential of a single 

neuron would provide confirmation of this, but presents a potential problem - presumably 

the synaptic input of a single neuron represents only a tiny fraction of the total population 

in any given region. Insofar as the spiking pattern among the pre-synaptic population for 

each neuron is unique and independent, predicting the synaptic response from the spiking 

pattern of a randomly-recorded sample of neurons from the total population would be 

difficult. One might imagine that to predict the sub-threshold response of a given neuron, 

you need to record from a population of neurons in which the inputs to that cell are 

strongly represented. On the other hand, if the synaptic responses of different neurons 

carry redundant information about the stimulus, and this shared information is reflected 

in the population, then the spiking activity of the total population may provide a very 

good predictor of the synaptic response in any randomly chosen neuron.  
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 We know that individual NCM neurons receive highly structured non-specific 

synaptic input even when that neuron’s spiking response is very selective (Perks & 

Gentner, 2015). Here we use intracellular sharp electrodes to measure, in the same bird 

and within the same area of NCM where spiking responses were collected extracellularly, 

the synaptic response (mV) of individual neurons and examine how its temporal variance 

can be explained by the temporal and spatial variance in NCM population spiking activity. 

We first convolved each spike event with a synaptic kernel (tau = 10msec) to generate a 

pseudo-synaptic response for each unit. At each time point we then sum the pseudo-

synaptic response across all NCM units to generate a net pseudo-synaptic response vector 

through the entire stimulus set. We calculated the correlation coefficient between the 

trial-averaged synaptic response and the net pseudo-synaptic response using a sliding 

500msec window. To account for potential temporal offset in stimulus drive for these two 

signals we took the maximum cross-correlation value within each window (limited by a 

maximum lag of 50 msec – reflecting the onset of stimulus-driven activity generally 

observed in NCM). The median average correlation was 0.93 (Figure 2D; (n = 8 datasets 

from 4 subjects). As a comparison for the magnitude of this correlation, we calculated the 

mean correlation between the membrane potential response within each window to 10 

other randomly-selected (temporally mis-aligned) net pseudo-synaptic responses. The 

aligned condition had a significantly higher correlation than the mis-aligned conditions 

for each stimulus (Figure 2,E; p<0.001 for all datasets except one with p = 0.007; median 

average misaligned correlation = 0.91).   
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Figure 3-2: The synaptic response reflects net population spiking activity. 
(A) Example membrane potential of one neuron before, during, and after the presentation 
of a vocalization sequence (top and bottom panels correspond to two unique vocalization 
sequences). Gray: single trials; black: trial-averaged. Responses in top panel correspond 
to the vocalization sequence plotted as a spectrogram (top). (B) top: Amplitude waveform 
concatenated across all vocalization sequences presented to a single subject. Middle: 
Same vocalization sequence as in the top panel; plotted as a spectrogram. Bottom: Trial-
averaged membrane potential (black) recorded from a single neuron in NCM and trial-
averaged net pseudo-synaptic response (population spiking response) from 279 units 
isolated from the entire dorsal-ventral extent of NCM sampled in the same subject. Both 
signals normalized to max. (C) Probability distribution of the binned correlation 
coefficient between the membrane potential of one neuron and the population spiking 
response calculated within a 500 msec window stepped every 100msec through the 
response. black: temporal alignment between the membrane potential and the population 
response maintained, green: windows shuffled randomly without replacement before 
calculating correlation coefficients (corresponds to the data plotted in ‘B: bottom’). (D) 
Same as in C, Probability distribution of correlation coefficients between membrane 
potential and net pseudo-synaptic response across all single-neuron:population pairs (n = 
8) (E) Same data as in D, Probability distribution of difference between aligned and 
shuffled conditions (all response windows, all neuron:population pairs).  
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Figure 2: (A) Example membrane potential of one neuron before, during, and after the presentation of a vocalization sequnece (top and bottom panels correspond 
to two unique vocalization sequences). gray: single trials; black: trial-averaged. Responses in top panel correspond to the vocalization sequence plotted as a 
spectrogram (top). (B) top: Amplitude waveform concatenated across all vocalization sequences presented to a single subject. middle: Same vocalization sequence 
as in the top panel; plotted as a spectrogram. bottom: Trial-averaged membrane potential (black) recorded from a single neuron in NCM and trial-averaged net 
pseudo-synaptic response (population spiking response) from 279 units isolated from the entire dorsal-ventral extent of NCM sampled in the same subject. Both 
signals normalized to max. (C) Probability distribution of the binned correlation coefficient between the membrane potential of one neuron and the population 
spiking response calculated within a 500msec window stepped every 100msec through the response. black: temporal alignment between the membrane potential 
and the population response maintained, green: windows shuffled randomly without replacement before calculating correlation coefficients (corresponds to the data 
plotted in ‘B: bottom’). (D) Same as in C, Probability distribution of correlation coefficients between membrane potential and net pseudo-synaptic responses across 
all single-neuron:population pairs (n = 8) (E) Same data as in D, Probability distribution of difference between aligned and shuffled conditions (all response 
windows, all neuron:population pairs).
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Together, this demonstrates that temporal variance in the net population spiking response 

across NCM throughout the stimulus can explain a lot of the variance in the subthreshold 

membrane potential of individual neurons within NCM.  

 Spiking responses from some subset of the NCM population could provide more 

explanatory power than from other subsets of the population. As an initial test of the 

ability to identify smaller functional networks within NCM whose spiking optimally co-

varies with the synaptic representation of the stimulus (measured as the subthreshold 

membrane potential), we employ a simple multiple linear regression model in which the 

independent (predictor) variables are given by the trial-averaged pseudo-synaptic 

response of isolated spiking units, and the dependent variable is the trial-averaged 

synaptic membrane potential of a single neuron recorded in-vivo from the same 

population (Figure 3A,B; see Methods). We implemented an elastic net regularization 

parameter biased heavily toward the ridge algorithm (0.01 Lasso:Ridge). To restrict the 

regression model to the pseudo-synaptic responses that were most informative of the 

synaptic input (mV) of a single neuron, we chose the regularization gain that generated a 

model with the smallest number of non-zero coefficients able to generate a fit on the 

membrane potential exceeding the “sufficiency threshold” (Figure 3C-E; see Methods for 

more detail). We defined the “functional network” as the set of units whose spiking 

activity contributes to sufficient fits of the subthreshold membrane potential variance (the 

predictors with non-zero coefficients; Figure 3C-D, 4A).  
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Figure 3-3: Cross-validated linear regression performs best with shorter stimuli. 
(A) Each spike event is convoluted with an exponential kernel (tau=10ms) and weighted 
by a coefficient (Bi). (B) Pseudo-synaptic responses summed across all units. Pre-fitting 
(gray) and post-fitting (red) for the training set of 10/20 trials. (C) Unit ID is sorted in 
ascending order corresponding to the magnitude of its coefficient assigned by the linear 
regression (D) After fitting; Prediction (red; on 10/20 withheld trials) of the synaptic 
response (black). (E) For the example dataset depicted in B, left: (gray) 100 estimates of 
the trial-averaged membrane potential using 75% of recorded trials on each iteration and 
(black) the inclusive trial-averaged membrane potential for a sample of the response 
plotted in black in D. The average Mean Squared Error (MSE) has been calcualted for the 
entire response; right: (red) Sufficiency threhold for the model fit. (scatter) MSE between 
the membrane potential and the model fit for each regularization coefficient value. (F) 
For all datasets (n = 8) left: Histogram of adjusted-Rsquare values between model 
prediction and the membrane potential under three segment duration conditions (1s, 5s, 
20s). The distributions were significantly different for all of these conditions. right: For 
each segment duration condition, the median (+/- 95% confidence intervalse) on the 
distribution of degrees of freedom for each model generated by the ridge regularized 
regression fit. Significant comparisons denoted by red lines. 
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Figure 3: (A) Cartoon diagram depicting the preparation of pseudo-synaptic responses for linear regression. Each spike event is convoluted 
with an exponential kernel (tau=10ms) and weighted by a coefficient (Bi). (B) The pseudo-synaptic responses are summed across all units. 
(gray) pre-fitting all coefficients are equal, and (red) post-fitting the coefficients are adjusted by ridge regularization. For the training set, 10/20 
trials were selected at random before summing the net pseudo-synaptic response. (C) Scatter plot of unit ID sorted in ascending order 
corresponding to the magnitude of its coefficient assigned by the linear regression (D) After fitting, the 10/20 trials reserved for the testing set 
are used to generate a prediction (red) of the membrane potential (black) in which the pseudo-synaptic response of each unit is weighted by 
the corresponding regression coefficients generated during the fitting procedure. (E) For the example dataset depicted in B, left: (gray) 100 
estimates of the trial-averaged membrane potential using 75% of recorded trials on each iteration and (black) the inclusive trial-averaged 
membrane potential for a sample of the response plotted in black in D. The average Mean Squared Error (MSE) has been calcualted for the 
entire response; right: (red) Sufficiency threhold for the model fit. (scatter) MSE between the membrane potential and the model fit for each  
regularization coefficient value. (F) For all datasets (n = 8) left: Histogram of adjusted-Rsquare values between model prediction and the 
membrane potential under three segment duration conditions (1s, 5s, 20s). The distributions were significantly different for all of these 
conditions. right: For each segment duration condition, the median (+/- 95% confidence intervalse) on the distribution of degrees of freedom 
for each model generated by the ridge regularized regression fit. Significant comparisons denoted by red lines.  
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 To determine whether each model fit was a meaningful representation of the 

membrane potential with predictive power, we assessed model performance by 

calculating an estimate of the adjusted R-square value between the membrane potential 

and predictions of the membrane potential from the model. We built a cross-validation 

with 50% of the trials (randomly chosen) and testing with the other 50% to calculate the 

adjusted R-square value on each of 5 iterations and averaging across cross-validations. 

Although the synaptic input to individual neurons was highly correlated with the net 

population spiking response throughout the duration of the entire stimulus set (40-

80seconds), there is evidence from the literature for stimulus-specific control over the 

representation of these vocalization signals on smaller timescales of single motifs and 

features – on the order of seconds, and even tens of milliseconds – (Jeanne, Sharpee, & 

Gentner, 2013; Kozlov & Gentner, 2014).  

 Accordingly, we binned the responses by segment durations of 20, 10, 5, 2, or 1 

seconds, generated a model for each segment, and quantified model performance for each. 

To combine the results across datasets, for each stimulus we calculated the difference 

between the adjusted R-square value under normal conditions and spike shuffled 

conditions. Across subjects, the estimate (median) of this normalized adjusted R-square 

for 20-second segments was 0.38 [0,1.20], while for 1-second segments the median was 

1.06 [-0.22,2.31] indicating a trend for increased model performance with decreased 

stimulus duration (Figure 2F; 10s = median 0.51 [0,1.58]; 5s = median 0.80 [0,1.93]; 2s = 

median 1.01 [0,2.17]). We conducted a Kruskal–Wallis one-way analysis of variance to 

compare the effect of segment duration on model performance, which indicated a 

significant effect at the p<0.05 level for the five conditions [Chi2 (4, 5845) = 151.38, 
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p<0.001]. Post-hoc comparisons using the Tukey HSD test indicated that all comparisons 

were significant with p<0.001; except between the 5 and 2 second groups p = 0.003, 

between the 20 and 10 second groups p = 0.117, and between the 2 and 1 second groups p 

= 0.388. We then conducted a Kruskal-Wallis test to compare the effect of segment 

duration on the degree of freedom in each model (Figure 2F; 20s = median 91 [18,144]; 

10s = median 104 [22,169]; 5s = median 110 [34,166]; 2s = median 78 [26,117]; 1s = 

median 54 [12,92]). There was a significant effect at the p<0.05 level for the 5 conditions 

[Chi2(4, 2863) = 345.77, p<0.001). Post-hoc comparisons using the Tukey HSD test 

indicated a significant different between the 1-second group and all other groups (each 

comparison p<0.001) and, additionally, a significant difference between the 2-second 

group and the 10 and 5 second groups (p<0.001 for each). Overall, decreasing segment 

duration tended to decrease the degree of freedom for each models. Combined, these 

results imply that with decreased stimulus duration, the linear regression trained on a 

specific stimulus segment is able to hone in on a refined representation of the functional 

network associated with each synaptic representation of that stimulus. One significant 

interpretation of this result is that it could suggest mechanisms of stimulus-specific 

modulation in the covariance structure of the population.  

 For all following analyses, we segmented the response into bins corresponding to 

the 1-second long acoustic elements comprising the vocalization sequences – referred to 

as motifs. In addition to this being the group with the highest model performance 

requiring the fewest degrees of freedom (Figure 3F), this segment duration is consistent 

with ethologically-relevant segmentation of starling vocalizations (Gentner, 2008). 
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 The models’ performance could be a trivial result of over-fitting due to the large 

number of predictor variables (units isolated extracellularly). To address this, we created 

a noisy condition in which we permuted the population spike events to destroy any 

stimulus-specific structure in the pattern of activity across the population at any given 

point in time. In this condition each spike time was preserved, but its occurrence in a 

given neuron in response to a given stimulus on a given trial was randomly shuffled 

before performing the linear regression as before. We found that the functional networks 

identified by linear regression under each stimulus condition were able to predict the 

dependent neuron’s synaptic input (mV) under the normal condition better than under this 

shuffle condition (Figure 3F, distributions of the difference between R2 in the normal 

condition and R2 in the shuffle condition were all centered above zero). Additionally, the 

degree of freedom necessary for a sufficient fit was higher under the shuffle condition 

(for the 1-second segment group, median 57 [4,113] units under the normal condition and 

median 80 [11,165] units under spike shuffled condition) – a trend that was consistent 

and significant across all stimulus durations tested. Together, these results support the use 

of synaptic input recorded from single neurons (measured here as subthreshold 

membrane potential) to obtain a snapshot of the functional pooling of spiking activity 

across NCM, which we then capitalized on to examine the temporal and spatial structure 

of stimulus-specific functional networks in NCM. 

3.4.3 Heterogeneous pooling of spiking supports stimulus-specific synaptic responses.  

 Across datasets, we identified a trend for model performance to increase with 

decreasing response segment duration (Figure 3F and associated statistics), suggesting 
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that with smaller chunks of vocalizations we are better able to identify the units whose 

spiking are unique to each synaptic representation of that vocalization. To directly test the 

stimulus-specificity of each functional network, we compared the predictive ability of the 

functional network under each motif condition on all other motif conditions.  

 

 
Figure 3-4: Functional network specificity. 
(A) left: units sorted by magnitude of assigned post-fitting coefficient. Units assigned 
non-zero coefficients highlighted in green. right, top: The functional network is a 
binarized vector in which each unit with a non-zero coefficient is assigned a “1” and all 
other units are assigned a “0”. right, bottom: Hypotheses under a different stimulus 
condition. Two potential functional networks are depicted: one is the same as for stimulus 
#1 and the other is different. (B) For an example dataset (single-neuron:population pair), 
top: funcitonal network identified for each of 10 bootstrap iterations under the same 
stimulus condition. bottom: functional network identified for each of 40 motif stimuli 
under the same bootstrap iteration (C) Probability distribution of Matthews Correlation 
Coefficient (MCC) values calculated between functional networks under 3 conditions: 
(red) comparison across stimuli under the spikes shuffled condition, (blue) comparison 
across bootstrap iterations under the non-shuffled condition, (balck) comparison across 
stimului under the non-shuffled condition. Difference between distributions is significant 
for all comparisons. (D) Placeholder for balanced graphical design, but don’t have 
another graph that seems necessary to show here. Instead, some images from the thesis-
inspired tattoo. Pink Floyd’s “Another Brick in the Wall” synaptically filtered through 
the starling’s auditory system and depicted as a dendrite in the artistic tattoo neuron. 
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 After generating a linear regression model under each motif condition we 

constructed a binary population vector of 1’s and 0’s where each entry identifies whether 

a unit was assigned to the functional network or not, respectively (Figure 4A). We 

compare the functional network under each stimulus condition using the “Matthews 

Correlation Coefficient” (MCC), which is a measure of how well one binary vector 

predicts another. Sampling the spiking activity introduces inconsistency that might 

account for any observed differences between the functional networks identified for 

different motifs. To address this we implement a bootstrap: subsampling the extracellular 

dataset (10 out of 20 trials chosen randomly without replacement) and generating a model 

for each bootstrapped dataset under the same stimulus condition (n = 10 iterations). We 

obtained an estimate of the maximum MCC expected across stimuli if the functional 

network was consistent by calculating the MCC across bootstrapped datasets under each 

stimulus condition (median 0.54 [0.35, 0.66]). We obtained an estimate of the minimum 

MCC value expected given no constancy between functional networks representing 

different motifs by calculating the median MCC across stimuli for the spike-shuffled 

datasets used to test model performance originally, (median 0.03 [-0.08, 0.28]. Finally, 

we calculated the MCC between different stimuli in each (non-shuffled) bootstrapped 

dataset (median 0.10 [-0.02,0.29]) to compare amongst the distribution of MCC values in 

the maximum-overlap and maximum-noise conditions (bootstrap comparison and spike-

shuffled condition respectively). We conducted a Kruskal–Wallis one-way analysis of 

variance to compare the effect of group on the MCC, which indicated a significant effect 

at the p<0.05 level for the 3 conditions [Chi2 (2, 16639) = 3398.49, p=0]. Post-hoc 
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comparisons using the Tukey HSD test indicated that all comparisons were significant 

with p<0.001. Although there was some correlation in the functional network identified 

for each motif, motif identity modulated the identity of the functional network more than 

expected due to sampling differences (Figure 4C). Instead of the same subset of the 

population being sampled continuously throughout the stimulus set, we found that the 

functional networks were more likely to be closer to heterogeneous (non-overlapping 

across motifs). This result supports the possibility for significant reorganization of 

downstream pooling across stimuli that could allow for, among other changes in 

population dynamics, shifts in the correlation structure among neurons comprising 

functional subnetworks for different stimuli. 

3.4.4 Spatially flat distribution of functional networks. 

  In the first section (Figure 1) we examined the spatial structure of spiking 

response similarity among the units isolated throughout NCM.  The units comprising 

functional networks identified by linear regression correspond in some way to the 

structure of spiking response tuning of units identified anatomically. The functional 

network identified for each stimulus may be comprised of units clustered with similar 

responses or comprised of units distributed throughout the response space. We 

characterized the flatness of the spatial distribution of coefficients (corresponding to 

individual units linearly arranged throughout the dorsal-ventral extent of NCM) by 

creating a probability distribution of coefficients across recording locations (Figure 5A). 

For each functional network identified we generated probability distributions for a 

maximally-flat and a maximally-peaked model to compare the empirical data against. To 
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generate the flat model, the regression coefficients were randomly (without replacement) 

re-assigned to each unit before calculating the location probability distribution. To 

generate the maximally peaked model, the regression coefficients were sorted in 

descending order and re-assigned sequentially to each unit according to its ranked 

location (so the strongest weights are assigned to the units at location 1 and the weakest 

weights are assigned to the unit at location N, where locations 1 through N are linearly 

arranged from most dorsal to most ventral). We then calculated the KL divergence 

between these location probability distributions (Figure 5A,B). The median KL 

divergence between the extreme models (maximally-peaked and maximally-flat) was 

0.44 [0.01, 2.08]. The median KL divergence between the functional network and the 

maximally flat model was 0.03 [0, 0.15]. The median KL divergence between the 

functional network and the maximally peaked model was 0.36 [0.01, 1.96] (Figure 5B). 

The distribution of coefficients in the functional network were more like the flat model 

than the peaked model. We conducted a Kruskal–Wallis one-way analysis of variance to 

compare the effect of group on the KL divergence, which indicated a significant effect at 

the p<0.05 level for the 3 conditions [Chi2 (2, 1077) = 423.73, p<0.001]. Post-hoc 

comparisons using the Tukey HSD test indicated that the only comparison that was not 

significant at p<0.001 was the KL divergence between the two extreme models and the 

KL divergence between the functional network and the maximally peaked model (p = 

0.26) indicating that the functional network and the maximally-flat model were the same 

distance from the maximally-peaked model.  
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Figure 3-5: Functional network spatial distribution.  
(A) top: Example from one dataset of the relative weight assigned to each location on the 
recording electrode (quanitified as the probability) by linear regression under each model 
(“Maximally Peaked” and “Maximally Flat” as described in the text) and as calcualted 
from the unmanipulated data. bottom: Locations sorted by their relative assigned 
magnitudes. (B) Probability distribution of the KL divervence for each of three 
comparisons: between the data and the maximally peaked model, between the data and 
the maximally flat model, and between the two extreme models (flat and peaked) (n = 8 
datsets) (C) Probabilty distribution of the Spectral Entropy calculated on the coefficient 
probability distrubution for the unmanipulated data and under the two extreme models 
(peaked and flat) (n = 8 datasets). 
 
 
 One way to quantify the flatness of a distribution (in this case across physical 

space) is the Wiener entropy in which values approaching 1 indicate that each location 

has a similar amount of predictive power whereas values approaching 0 indicate that the 

predictive power is clustered around a single location. We found that the maximally 

peaked model distribution had the lowest entropy (0.46 [0.01, 0.65]), the maximally flat 

model distribution had the highest entropy (0.64 [0.26, 0.80]), and the functional network 

distribution had a median entropy of 0.62 [0.25, 0.78]. We conducted a Kruskal–Wallis 

one-way analysis of variance to compare the effect of group on the entropy, which 
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Figure 5. (A) top: Example from one dataset of the relative weight assigned 
to each location on the recording electrode (quanitified as the probability) by 
linear regression under each model (“Maximally Peaked” and “Maximally 
Flat” as described in the text) and as calcualted from the unmanipulated 
data. bottom: Locations sorted by their relative assigned magnitudes. (B) 
Probability distribution of the KL divervence for each of three comparisons: 
between the data and the maximally peaked model, between the data and 
the maximally flat model, and between the two extreme models (flat and 
peaked) (n = 8 datsets) (C) Probabilty distribution of the Spectral Entropy 
calculated on the coefficient probability  distrubution for the unmanipulated 
data and under the two extreme models (peaked and flat) (n = 8 datasets). 
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indicated a significant effect at the p<0.05 level for the 3 conditions [Chi2 (2, 822) = 

158.31, p<0.001]. Post-hoc comparisons using the Tukey HSD test indicated that the only 

comparison that was not significant was between the maximally-flat model and the 

functional network (p = 0.30) consistent with the results obtained from the analysis of KL 

divergence among the models.  (Figure 5C).  

We find that spiking activity in NCM, although spatially organized by stimulus-

driven response probabilities, can be pooled heterogeneously across space to support 

encoding of conspecific vocalizations. Given that the functional networks do not just 

sample units clustered together anatomically, and signal correlation decreases with 

physical distance in NCM, one might expect that the input space samples from neurons 

with diverse spike tuning. We examined this by comparing the distribution of pairwise 

signal correlations among each functional network to the distribution of pairwise signal 

correlations among all pairs recorded in NCM. We found that functional networks are 

actually biased to contain units with more positive mean pairwise signal correlations [re-

running quantification of median & ci]. (Figure 6A).  

3.4.5 Redundancy. 

Given that pairwise signal correlations among functional networks identified for 

each stimulus were higher than expected if sampling evenly from population distribution, 

we next examined redundancy of the information carried in spiking response of 

individual units more explicitly by implementing lasso regularization. Lasso emphasizes 

sparseness in the regression model and eliminates redundancy by penalizing the error 

minimization routine by the L1 norm of the coefficients. If there is a group of highly 
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correlated variables, then the lasso tends to select one variable from a group and ignore 

the others. Thus the Lasso regularizaton yields the sparsest possible input space that 

predicts the mV with a given degree of accuracy, while the Ridge regularization yields 

the largest/densest possible input space that predicts the membrane potential to the same 

level of accuracy, including all the units that carry redundant information. Accordingly, 

the population redundancy can be quantified directly as the as the ratio of the size of the 

input space defined by these two models (Severson et al 2015), where size is the number 

of units assigned non-zero coefficients (i.e., degrees of freedom).  We express this ratio 

as a Redundancy Index (RI; methods), where RI equal to 1 indicates full redundancy (all 

units perfectly correlated) and RI = 0 indicates no redundancy (all units are independent). 

The median RI across datasets was 0.64 [0.41, 0.85] (Figure 6).  

To quantify the constancy with which lasso and ridge regularization identified 

stimulus-specific functional networks we calculated the MCC between the functional 

networks generated by each model for a given stimulus in a given dataset (median 0.78 

[0.66, 0.86]; Figure 6D). As expected given that a functional network identified under 

ridge strongly predicts the functional network identified under lasso, we find that the 

sparse functional networks identified under lasso were also stimulus specific and 

distributed flatly across NCM.    
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Figure 3-6: Redundancy. 
(A) Probabiltiy distribution of pairwise signal correlations calcualted for (black) the 
entire population recorded extracellularly and (red) for units within identified functional 
networks. (n = 8 datasets). (B) Functional Network for the same motif stimulus under the 
same bootstrap iteration under Lasso (top) or Ridge (bottom) regularization. (C) Example 
membrane potential (black) recorded in a single neuron in response to a single motif 
stimulus overlaid with the model fit of that membrane potential from the population 
spiking response under Lasso (blue) or Ridge (red) regularization. All waveforms plotted 
as z-score to normalize. (D) Probability distribution of MCC values calculated between 
the Functional Network identified under Lasso and Ridge for the same motif stimulus 
under the same bootstrap iteration. (n = 8 datasets) (E) Probability distribution of the 
Redundancy Index comparing the Degrees of Freedom for the regression model under 
Lasso and under Ridge regularization for the same motif stimulus under the same 
bootstrap iteration. 
 
   

 To quantify the stimulus specificity we calculated the MCC between the 

functional networks across stimuli and across bootstrapped sub-samples, generated under 

both normal and shuffle conditions. As before, we implemented a bootstrap by 

subsampling the extracellular dataset (10 out of 20 trials chosen randomly without 

replacement) and generating a model for each bootstrapped dataset under the same 

stimulus condition (n = 10 iterations). We obtained an estimate of the maximum MCC 

expected across stimuli if the functional network was consistent by calculating the MCC 

across bootstrapped datasets under each stimulus condition (median 0.45 [0.28, 0.60]). 
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We obtained an estimate of the minimum MCC value expected given no constancy 

between functional networks representing different motifs by calculating the median 

MCC across stimuli for the spike-shuffled datasets used to test model performance 

originally, (median 0.02 [-0.08, 0.24]. Finally, we calculated the MCC between different 

stimuli in each (non-shuffled) bootstrapped dataset (median 0.07 [-0.02,0.24]) to compare 

amongst the distribution of MCC values in the maximum-overlap and maximum-noise 

conditions (bootstrap comparison and spike-shuffled condition respectively). We 

conducted a Kruskal–Wallis one-way analysis of variance to compare the effect of group 

on the MCC, which indicated a significant effect at the p<0.05 level for the 3 conditions 

[Chi2 (2, 16997) = 2501.31, p=0]. Post-hoc comparisons using the Tukey HSD test 

indicated that all comparisons were significant with p<0.001.  

 To quantify the spatial distribution of regularization coefficients, we generated a 

maximally flat and a maximally peaked model to compare against the functional 

networks using the entropy of the probability distirbutions and the KL divergence 

between them. The maximally peaked model distribution had the lowest entropy (0.37[0, 

0.56]), the maximally flat model distribution had the highest entropy (0.0.55 [0.19, 0.73]), 

and the functional network distribution had a median entropy of 0.54 [0.18, 0.72]. We 

conducted a Kruskal–Wallis one-way analysis of variance to compare the effect of group 

on the entropy, which indicated a significant effect at the p<0.05 level for the 3 

conditions [Chi2 (2, 831) = 189.8, p<0.001]. Post-hoc comparisons using the Tukey HSD 

test indicated that the only comparison that was not significant was between the 

maximally-flat model and the functional network (p = 0.60) consistent with the results 

obtained from the analysis of KL divergence among the models. 
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 The degree of redundancy is inherently related to key aspects of population 

coding, such as spiking correlations among the population, which we address in the 

discussion. Together, these results suggest that sensory integration and processing are 

supported by a system in which information about even the most complex stimuli is 

likely massively redundant and shared among the population at large.  

 
3.5 Discussion 

 For the complex sensory signals that guide many behaviors, our understanding of 

stimulus encoding is especially poor. Synaptic pooling strategies allowing individual 

neurons to flexibly integrate across diverse spiking responses are unknown, as most 

studies examining population coding utilize randomly-sampled spiking output from 

among anatomically-defined regions under low-dimension stimulus conditions. In the 

current study, we embrace the complexity of a rich stimulus set (the conspecific 

vocalizations of the Starling) and utilize the synaptic response of individual neurons to 

study the stimulus-driven dynamics of population spiking activity across space and time. 

What we find is that much of the temporal variability in the population spiking response 

(across a large spatial extent of tissue) is reflected in the synaptic response of individual 

neurons embedded anywhere in that region. The subset of the population that best 

describes the synaptic response is stimulus-specific on short timescales, and the 

population must be sampled heterogeneously through space and time to reflect the 

synaptic representation of the stimulus. These results bear directly on contemporary 

models of hierarchical sensory processing supporting flexible behavior in natural 

environments.   
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Songbirds, in particular starlings, are excellent models for examining neural 

mechanisms supporting cognitive processes such as those requisite for language and 

vocal communication in many species. In high-order auditory cortex of the Starling, 

spiking responses are very sparse and stimulus-specific (Jeanne et al., 2011) but not well-

described by linear receptive fields (Theunissen et al., 2000), with individual neurons 

demonstrating flexible input recombination functions driven by diverse sets of 

independent (orthogonal) features contained in conspecific vocalizations (Kozlov & 

Gentner, 2014, 2016). Additionally, these already complex spiking responses are 

modulated by task-relevant information, acoustic context, and attention (Jeanne et al., 

2011; Kozlov & Gentner, 2014)(Caporello & Gentner, unpublished). The ability for 

individual neurons and populations of neurons within high-order auditory cortex of the 

Starling (and other animals) to demonstrate complex and flexible spiking behavior is 

critical for successfully processing of incoming sensory information to guide behavior.  

At a population level, task-relevant stimulus information modulates the spiking 

covariance patterns among neurons in high-order sensory cortex, which improves 

stimulus discrimination for informative stimuli in neural populations poised to support 

sensory-driven behavioral decisions (Downer, Niwa, & Sutter, 2015; Gu et al., 2011; 

Jeanne et al., 2013). Modulation of spiking covariance among neural populations seems 

to be an important component for success in neural processing in general. Although 

beyond the scope of this study, experiments designed to examine the effects of spiking 

correlations on population coding - and subsequently behavior - will benefit from 

identifying the specific sets of neurons whose spiking output is integrated by downstream 

targets. Covariance may be distributed among these functionally-relevant populations 
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differently than the population at large. We find that pairs of neurons within synaptically-

identified functional networks have a higher probability of positive signal correlations 

than pairs of neurons randomly selected from the population. This suggests that the 

synaptic integration process is selective for sets of neurons with specific correlation 

structure. To examine this directly using the techniques implemented in the current study 

would require simultaneous recording of the single-neuron membrane potential and the 

population spiking to estimate the covariance structure on a single-trials. But the results 

would help resolve heated debates in the literature about the ways in which correlated 

spiking activity effects population coding.  

Most of previous studies examining the affect of correlations on population 

coding have focused on calculating pairwise correlations, which are easier to measure 

with limited amounts of data than higher-order correlations (Averbeck, Latham, & 

Pouget, 2006; Franke et al., 2016). This limitation could be addressed by using the 

synaptic response of single neurons to estimate the correlation structure of a population 

since the statistics of the subthreshold membrane potential offer a complete image of the 

statistics of the pre-synaptic network’s spiking ensemble. Mathematical tools to 

accomplish this are readily available in the literature (Benucci, Verschure, & Konig, 

2007; Bohte, Spekreijse, & Roelfsema, 2000; DeWeese & Zador, 2006; Kuhn, Aertsen, 

& Rotter, 2003; Levitan, Segundo, Moore, & Perkel, 1968; Renart et al., 2010; Rudolph 

& Destexhe, 2003; Tan, Chen, Scholl, Seidemann, & Priebe, 2014). Additionally, the 

results of the current study reveal the existence of stimulus-specific populations, each 

potentially exhibiting a unique correlation structure, which could be modulated 

independently by behavior, context, or attention. We are left with an open question as to 
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whether the correlations among the pre-synaptic network of each individual neuron 

reflect the correlations among its synaptically-identified functional networks. This could 

be directly addressed by obtaining simultaneous recordings of these signals combined 

with an estimation of the correlation structure in the pre-synaptic population and the 

randomly-sampled population. Implementing these techniques in future studies will 

enable us to resolve more mechanistic detail bearing on how representations of stimuli 

are modulated to meat the behavioral demands of ever-changing environments.  

 

3.6 Acknowledgements 

Chapter 3, in full, is in preparation for publication as: Perks, K. and Gentner, T. 

“Natural signals drive fast modulation of stimulus-specific functional networks in cortex.” 

The dissertation author was the primary investigator and author of this manuscript.  

 

3.7 References 

Averbeck, B. B., Latham, P. E., & Pouget, A. (2006). Neural correlations, population 
coding and computation. Nat Rev Neurosci, 7(5), 358-366. doi:10.1038/nrn1888 

 
Baudot, P., Levy, M., Marre, O., Monier, C., Pananceau, M., & Fregnac, Y. (2013). 

Animation of natural scene by virtual eye-movements evokes high precision and 
low noise in V1 neurons. Front Neural Circuits, 7, 206. 
doi:10.3389/fncir.2013.00206 

 
Benucci, A., Verschure, P. F., & Konig, P. (2007). Dynamical features of higher-order 

correlation events: impact on cortical cells. Cogn Neurodyn, 1(1), 53-69. 
doi:10.1007/s11571-006-9000-y 

 
Bohte, S. M., Spekreijse, H., & Roelfsema, P. R. (2000). The effects of pair-wise and 

higher order correlations on the firing rate of a post-synaptic neuron. Neural 
Comput, 12(1), 153-179.  

 



76 
 

 
 

Churchland, M. M., Yu, B. M., Cunningham, J. P., Sugrue, L. P., Cohen, M. R., Corrado, 
G. S., . . . Shenoy, K. V. (2010). Stimulus onset quenches neural variability: a 
widespread cortical phenomenon. Nat Neurosci, 13(3), 369-378.  

 
DeWeese, M. R., & Zador, A. M. (2006). Non-Gaussian membrane potential dynamics 

imply sparse, synchronous activity in auditory cortex. The Journal of 
neuroscience : the official journal of the Society for Neuroscience, 26(47), 12206-
12218. doi:10.1523/JNEUROSCI.2813-06.2006 

 
Downer, J. D., Niwa, M., & Sutter, M. L. (2015). Task engagement selectively modulates 

neural correlations in primary auditory cortex. The Journal of neuroscience : the 
official journal of the Society for Neuroscience, 35(19), 7565-7574. 
doi:10.1523/JNEUROSCI.4094-14.2015 

 
Franke, F., Fiscella, M., Sevelev, M., Roska, B., Hierlemann, A., & da Silveira, R. A. 

(2016). Structures of Neural Correlation and How They Favor Coding. Neuron, 
89(2), 409-422. doi:10.1016/j.neuron.2015.12.037 

 
Gentner, T. Q. (2008). Temporal scales of auditory objects underlying birdsong vocal 

recognition. J Acoust Soc Am, 124(2), 1350-1359.  
 
Gentner, T. Q., & Margoliash, D. (2003). Neuronal populations and single cells 

representing learned auditory objects. Nature, 424(6949), 669-674.  
 
Gu, Y., Liu, S., Fetsch, C. R., Yang, Y., Fok, S., Sunkara, A., . . . Angelaki, D. E. (2011). 

Perceptual learning reduces interneuronal correlations in macaque visual cortex. 
Neuron, 71(4), 750-761. doi:10.1016/j.neuron.2011.06.015 

 
Jeanne, J. M., Sharpee, T. O., & Gentner, T. Q. (2013). Associative learning enhances 

population coding by inverting interneuronal correlation patterns. Neuron, 78(2), 
352-363.  

 
Jeanne, J. M., Thompson, J. V., Sharpee, T. O., & Gentner, T. Q. (2011). Emergence of 

learned categorical representations within an auditory forebrain circuit. The 
Journal of neuroscience : the official journal of the Society for Neuroscience, 
31(7), 2595-2606.  

 
Kozlov, A. S., & Gentner, T. Q. (2014). Central auditory neurons display flexible feature 

recombination functions. J Neurophysiol, 111(6), 1183-1189.  
 
Kozlov, A. S., & Gentner, T. Q. (2016). Central auditory neurons have composite 

receptive fields. Proc Natl Acad Sci U S A, 113(5), 1441-1446. 
doi:10.1073/pnas.1506903113 

 



77 
 

 
 

Kuhn, A., Aertsen, A., & Rotter, S. (2003). Higher-order statistics of input ensembles and 
the response of simple model neurons. Neural Comput, 15(1), 67-101. 
doi:10.1162/089976603321043702 

 
Latham, P. E., & Nirenberg, S. (2005). Synergy, redundancy, and independence in 

population codes, revisited. The Journal of neuroscience : the official journal of 
the Society for Neuroscience, 25(21), 5195-5206. 
doi:10.1523/JNEUROSCI.5319-04.2005 

Levitan, H., Segundo, J. P., Moore, G. P., & Perkel, D. H. (1968). Statistical analysis of 
membrane potential fluctuations. Relation with presynaptic spike train. Biophys J, 
8(11), 1256-1274. doi:10.1016/S0006-3495(68)86554-3 

 
Lien, A. D., & Scanziani, M. (2013). Tuned thalamic excitation is amplified by visual 

cortical circuits. Nat Neurosci, 16(9), 1315-1323.  
 
Machens, C. K., Wehr, M. S., & Zador, A. M. (2004). Linearity of cortical receptive 

fields measured with natural sounds. The Journal of neuroscience : the official 
journal of the Society for Neuroscience, 24(5), 1089-1100. 
doi:10.1523/JNEUROSCI.4445-03.2004 

 
Meliza, C. D., Chi, Z., & Margoliash, D. (2010). Representations of conspecific song by 

starling secondary forebrain auditory neurons: toward a hierarchical framework. J 
Neurophysiol, 103(3), 1195-1208.  

 
Perks, K. E., & Gentner, T. Q. (2015). Subthreshold membrane responses underlying 

sparse spiking to natural vocal signals in auditory cortex. Eur J Neurosci, 41(5), 
725-733. doi:10.1111/ejn.12831 

 
Rauschecker, J. P., & Scott, S. K. (2009). Maps and streams in the auditory cortex: 

nonhuman primates illuminate human speech processing. Nat Neurosci, 12(6), 
718-724. doi:10.1038/nn.2331 

 
Renart, A., de la Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A., & Harris, K. 

D. (2010). The asynchronous state in cortical circuits. Science, 327(5965), 587-
590. doi:10.1126/science.1179850 

 
Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in 

cortex. Nat Neurosci, 2(11), 1019-1025.  
 
Rudolph, M., & Destexhe, A. (2003). Characterization of subthreshold voltage 

fluctuations in neuronal membranes. Neural Comput, 15(11), 2577-2618. 
doi:10.1162/089976603322385081 

 
Saini, K. D., & Leppelsack, H. J. (1977). Neuronal arrangement in the auditory field L of 

the neostriatum of the starling. Cell Tissue Res, 176(3), 309-316.  



78 
 

 
 

Saini, K. D., & Leppelsack, H. J. (1981). Cell types of the auditory caudomedial 
neostriatum of the starling (Sturnus vulgaris). J Comp Neurol, 198(2), 209-229. 
doi:10.1002/cne.901980203 

 
Sharpee, T. O. (2013). Computational identification of receptive fields. Annu Rev 

Neurosci, 36, 103-120. doi:10.1146/annurev-neuro-062012-170253 
 
Tan, A. Y., Chen, Y., Scholl, B., Seidemann, E., & Priebe, N. J. (2014). Sensory 

stimulation shifts visual cortex from synchronous to asynchronous states. Nature, 
509(7499), 226-229. doi:10.1038/nature13159 

 
Theunissen, F. E., Sen, K., & Doupe, A. J. (2000). Spectral-temporal receptive fields of 

nonlinear auditory neurons obtained using natural sounds. The Journal of 
neuroscience : the official journal of the Society for Neuroscience, 20(6), 2315-
2331.  

 
Thompson, J. V., Jeanne, J., & Gentner, T. Q. (2010). Local inhibition shapes the learned 

responses to song in NCM. Paper presented at the Soc. Neurosci Absracts. 
 
Wang, Y., Brzozowska-Prechtl, A., & Karten, H. J. (2010). Laminar and columnar 

auditory cortex in avian brain. Proc Natl Acad Sci U S A, 107(28), 12676-12681. 
doi:10.1073/pnas.1006645107 

 
Woolley, S. M., Gill, P. R., Fremouw, T., & Theunissen, F. E. (2009). Functional groups 

in the avian auditory system. The Journal of neuroscience : the official journal of 
the Society for Neuroscience, 29(9), 2780-2793. doi:10.1523/JNEUROSCI.2042-
08.2009 

 



 

79 

CHAPTER 4  

Discussion to the Dissertation 

 

  



80 
 

 
 

 Most studies to date that examine population spiking statistics do so without 

consideration for a selection process that would restrict the identity of neural populations 

in which spiking is measured. The experiments presented in this thesis address this 

limitation and lead to new perspectives on neural coding by featuring the synaptic 

response as a dependent variable in the examination of population spiking activity. Most 

generally, the implication that information about even the most complex stimuli is likely 

massively redundant and shared among the population at large scaffolds a sensory 

processing model in which flexible network re-organization - on short timescales and in a 

stimulus-specific way - support the complexities of spiking output observed in sensory 

cortex in response to learning, adaptation, attention, and context to meet the demands of 

an ever-changing environment. Accordingly, the results raise many more important 

questions. For example, although there is ample evidence in the literature that spiking 

correlations among randomly selected neurons affect stimulus discrimination, are these 

effects “seen by” downstream targets? Do mechanisms for flexible synaptic pooling exist 

that modulate the correlation structure of a neuron’s inputs in a task-specific manner by 

stimulus context, attention, or goal? These questions remain largely unexplored, but 

broader applications of the approach taken in the preceding experiments to the 

mechanistic study of sensory processing and population coding are discussed further.  

 

4.1 Correlation structures effecting population coding and behavior. 

 Measurements of covariance among spiking outputs seem to dominate much of 

the contemporary literature on population coding and sensory discrimination. Measured 

covariance is further dissociated and attributed to different sources: covariance occurring 
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over the stimulus set is calculated as “signal correlations”, while covariance unexplained 

by the stimulus is calculated as “noise correlations.” The distinction is germane because it 

is the relationship among different sources of co-variance –not covariance alone – that 

has been proposed to strongly influence population coding performance (Averbeck, 

Latham, & Pouget, 2006). Importantly, spiking correlations can be modulated by context 

(Kohn, Zandvakili, & Smith, 2009; Ruff & Cohen, 2014a, 2014b), attention (Cohen & 

Maunsell, 2009; Downer, Niwa, & Sutter, 2015; Mitchell, Sundberg, & Reynolds, 2009), 

learning (Gu et al., 2011; Jeanne, Sharpee, & Gentner, 2013) and adaptation (Adibi, 

McDonald, Clifford, & Arabzadeh, 2013; Gutnisky & Dragoi, 2008), effects that suggest 

a significant role in behavior. However the issue of whether correlations are actually 

behaviorally important for sensory discrimination has become a subject of heated debate 

– a debate that the approach taken in this thesis offers unique perspectives on (Averbeck 

et al., 2006; Averbeck & Lee, 2003; Dan, Alonso, Usrey, & Reid, 1998; deCharms & 

Merzenich, 1996; Eckhorn et al., 1988; Golledge et al., 2003; Gray, Konig, Engel, & 

Singer, 1989; Gray & Singer, 1989; Levine, 2004; Meister, Lagnado, & Baylor, 1995; 

Nirenberg, Carcieri, Jacobs, & Latham, 2001; Oram, Hatsopoulos, Richmond, & 

Donoghue, 2001; Panzeri, Pola, Petroni, Young, & Petersen, 2002; Petersen, Panzeri, & 

Diamond, 2001; Steinmetz et al., 2000; Vaadia et al., 1995). 

First, the effects of correlations on population coding have predominantly been 

studied through calculating pairwise correlations. The spiking output of single neurons 

and pairs of neurons offers only a low-resolution sample of the population’s activity 

space, whereas subthreshold changes in membrane potential offer a more complete image 

of a network’s spiking ensemble. Accordingly, resolving the covariance structure of a 
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pre-synaptic population based on the synaptic response would provide significant 

advances in our understanding of mechanisms of coordinated activity that support 

sensory processing and behavior.  

Second, spiking correlation alone is not a key indicator of connectivity among 

populations and does not imply a shared downstream target, yet models of stimulus 

encoding and discrimination processes are supported largely by results from studies 

examining the spiking of neurons randomly selected from large populations. Insofar as 

correlation structure effects stimulus discrimination it becomes even more relevant to 

study these relationships in neural populations whose spiking outputs are pooled by 

downstream targets.  

The results of this thesis demonstrate that it is tractable to design experiments that 

address limitations inherent to current studies and potentially resolve conflicting results 

in the literature. By experimentally utilizing the synaptic response of individual neurons 

to target sets of neurons whose spiking activity reflected the inputs actually being pooled 

by downstream processes (represented in the synaptic response of a single neuron), we 

were able to examine the stimulus-driven dynamics of functional networks driven by 

complex, natural auditory signals (Chapter 2). A major challenge of such experiments in 

the future would be dissociating independent components of the pre-synaptic population 

covariance structure (such as signal and noise correlations) from the continuous one-

dimensional synaptic response (either current or voltage over time).   
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4.2 Resolving correlation structure form the synaptic response 

Ideally, we could estimate the correlation structure of each neuron’s actual pre-

synaptic population from its synaptic response and determine whether the same 

correlation structure was reflected among spiking outputs within the functional networks 

identified using that synaptic response (Chapter 2). Such a result would provide empirical 

support for using the synaptic response to make more direct hypotheses about 

mechanisms of synaptic integration shaping the correlation structure of pooled neural 

populations to support adaptive sensory-driven behaviors. 

 The ability to infer the statistics of the pre-synaptic population’s coordinated 

spiking dynamics from a single neuron’s synaptic response is well-supported, but the 

development of tools to do so is still an active area of research. The idea of examining the 

statistics of the membrane potential is not a new one (Levitan, Segundo, Moore, & Perkel, 

1968; Rudolph & Destexhe, 2003). The spiking output (rate and timing) of a neuron is 

not just sensitive to the strength of its synaptic inputs but also to correlations among its 

inputs (Benucci, Verschure, & Konig, 2007; Bohte, Spekreijse, & Roelfsema, 2000; 

Kuhn, Aertsen, & Rotter, 2003) – evidence that input correlations modulate statistics of 

the synaptic response. Interaction among neurons in a pre-synaptic population affect the 

statistics of the membrane potential in predictable ways (Renart et al., 2010; Rudolph & 

Destexhe, 2003), and the application of mathematic techniques designed specifically to 

decipher spiking correlations from membrane potential signals have been implemented in 

several nervous systems (Tan and Priebe 2014, visual cortex; DeWeese and Zador 2006, 

auditory cortex; Renart et al 2010, cortical circuits) (DeWeese & Zador, 2006; Renart et 

al., 2010; Tan, Chen, Scholl, Seidemann, & Priebe, 2014).  
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 In order to examine the relationship between signal and noise correlations, 

however, they must be dissociated from single membrane potential measurements. The 

approach used by Baudot et al (Baudot et al., 2013) seems to provide some means to this 

end. The component of the membrane potential under stimulus (the “signal” component) 

can be measured as the trial-averaged activity, and the component of the membrane 

potential unaccounted for by stimulus identity (the “noise” component) can be measured 

as the trial residuals (the differences between the membrane potential on each trial and 

the trial-averaged estimate). Insofar as the statistics of the membrane potential reflect 

correlations in the pre-synaptic population, then the statistics of the signal and noise 

component of the membrane potential should then be dissociable. These methods have 

not been used/tested directly to model pre-synaptic correlation structure, but the 

application seems tractable.  

 So far we have focused on the discussion of pairwise statistics of spiking 

covariance. High-order correlations are likely at least as influential as pairwise 

correlations in mechanisms of stimulus discrimination, but they have been notoriously 

difficult to capture with limited amounts of spiking data. Since the synaptic response of a 

neuron necessarily represents a complete sample of the pre-synaptic population, it 

provides a great low-dimensional representation of that high-dimensional space to enable 

less data-intensive methods for estimating high-order spiking covariance statistics. 

Higher order correlations have a profound impact on the spiking output of post-synaptic 

neurons (Benucci et al., 2007; Bohte et al., 2000; Kuhn et al., 2003), which provides 

evidence that input correlations modulate statistics of the synaptic response and that the 

latter could be used to estimate the former. Reimer et al 2013 establish one method for 
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inferring higher-order spike correlations from the measurement of subthreshold 

membrane potential (Reimer, Staude, Boucsein, & Rotter, 2013). This method is an 

extension of previous work establishing a cummulant-based approach for inferring the 

high-order spike correlations from the probability distribution of the net population 

spiking response (Staude, Rotter, & Grun, 2010).  

 Established mathematical tools are readily available for estimating the magnitude 

of correlations from the synaptic response, and it even seems reasonably tractable to 

dissociate signal and noise components from this estimate. One major caveat of this 

approach is that not all correlations created equal when it comes to enhancing stimulus 

discrimination in a population spike code (Moreno-Bote et al., 2014). The effect of 

correlations on stimulus discrimination depends on the direction of correlations, not their 

magnitude alone. Hu et al (Hu, Zylberberg, & Shea-Brown, 2014) demonstrate that 

coding performance depends on whether signal and noise correlations are both positive, 

both negative, or have opposite signs. Zylberberg et al (Zylberberg, Cafaro, Turner, Shea-

Brown, & Rieke, 2016) demonstrate this principle in the retina where stimulus-specific 

noise correlations improve the decoding accuracy for oriented bars of light based on their 

relationship to the shape of the response space due to signal correlations. These findings 

have been extended to higher-order neural populations using more generalized language 

applicable beyond 2-dimensional stimulus space by establishing that stimulus decoding is 

enhanced specifically by noise correlations orthogonal to the surface of a stimulus space 

defined by the signal correlations (Franke et al., 2016). It is less clear how to estimate the 

“direction” of the noise correlations and the shape of the stimulus space from a synaptic 

response, but this ability to do so would drastically advance this field of study. 
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Performing experiments that provide empirical proof of some set of mathematical tools 

able to quantitatively capture that property of the correlations from the statistics of a 

synaptic response would be a useful project for someone to undertake. 

 

4.3 Resolving cell-type specific contributions to the synaptic response. 

 Dissociating different presynaptic cell types (EX: inhibition or excitation) from 

the synaptic response is currently more tractable than dissociating distinct components of 

the measured correlation (EX: signal or noise) or the orthogonality between those 

components. Inhibitory and excitatory pre-synaptic populations may have different 

correlation structures, and examining this would yield mechanistic inferences about the 

integration of information-limiting correlations in downstream targets. 

 Inhibitory and excitatory currents can be measured directly using whole-cell 

voltage clamp techniques, or indirectly by manipulating current clamp across subsequent 

trials (Wilent & Contreras, 2005). In-vitro, the pharmalogical isolation of specific 

synaptic currents yields great mechanistic insights, however these pharmacological 

techniques are less applicable to the in-vivo experiments required to examine how 

sensory processing supports behavior. Another way to dissociate specific subpopulations 

from a single synaptic response (such as the membrane potential) is to leverage the 

varying kinetics among those specific types of synaptic inputs (Yasar, Wright, & Wessel, 

2016). Both Kostuk et al (Kostuk, Toth, Meliza, Margoliash, & Abarbanel, 2012) and 

Meliza et al (Meliza et al., 2014) have demonstrated the feasibility of estimating 

numerous state variables and parameters of single neurons from their membrane potential 
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based on models under the Hudgkin-Huxley framework and with the injection of specific 

dynamical currents targeted at resolving these statistics. 

Once the component of the synaptic response associated with a specific sub-

population was isolated, one could estimate the correlation structure of that population 

from the statistics of the input using the same methods established to make these 

estimates from the probability distribution of the membrane potential (Berg & Ditlevsen, 

2013; Borg-Graham, Monier, & Fregnac, 1996; Rudolph & Destexhe, 2003; Tan et al., 

2014; Wilent & Contreras, 2005).  

 

4.4 Real-time intracellular and extracellular interactions. 

 In the literature, one finds that trial-to-trial fluctuations of synaptic inputs 

significantly affect population coding, especially when considering the covariance of 

spiking underlying these fluctuations are considered. In the experiments of Chapter 2 we 

calculated the trial-averaged activity of single neurons and populations and therefore 

were restricted to examining stimulus-driven population dynamics and network re-

organization. In order to resolve specificity in the fluctuation of functional networks 

across trials under the same stimulus conditions, one would need to simultaneously 

record population spiking and the single-neuron synaptic response. Single-trial analyses 

of trial correlations is mathematically tractable and would allow for experimental designs 

that leverage single-trial behavioral parameters (like attention or outcome choice) as 

independent variables in these analyses (Snyder, Morais, & Smith, 2013). 
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4.5 Population coding from the perspective of single spikes. 

Contemporary sensory and motor system physiology has seen the advent of 

diversity in the perspectives with which to understand neural representation and neural 

coding. Particularly attractive given the collective results of this thesis are models that 

account for the spiking of each neuron in relation to the spiking of each other neuron.   

 In the end, an organism’s decision to choose between one of several behavioral 

outcomes does not depend on the identity of a particular driving stimulus, per se, but 

rather on the specific emergent trajectory of coordinated population spiking activity 

relative to other possible trajectories. Several labs have made substantial progress in 

understanding the meaning of individual spikes relative to each other and the application 

of such models to the representation of a target stimulus (as opposed to the spike rate 

from each neuron reflecting some underlying probability distribution representing the 

target stimulus). In the model of Boerlin et al (Boerlin & Deneve, 2011; Boerlin, 

Machens, & Deneve, 2013) a spike may vary on a given trial relative to a specific 

external sensory stimulus or a specific behavioral output parameter, but instead of such 

variation being “noise,” it is simply a reflection of an underlying network process that 

maintains a constant representation of a target stimulus without regard for absolute spike 

timing from each component neuron. Specifically, the subthreshold potential is actually 

an error function between the network spiking output and the target representation such 

that when that error function reaches threshold, a spike is elicited in that neuron that 

reduces its own error function (membrane potential) and the error function represented in 

the membrane potential of all connected neurons. The theoretical studies of Romaine 

Brette (Brette, 2012) propose the concept of a synchrony receptive field, in which 
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stimulus features are extracted by synchronous population events rather than by spike 

rates of individual neurons or populations of neurons.  

 From these perspectives it is particularly interesting to think about how the results 

from Chapter2 would differ if a single-trial version of the analysis were implemented. 

Recall that when correlations between the average stimulus responses were calculated, 

synchronous activity seemed to dominate locally (in time and in space). On a smaller 

timescale of a single trial, does synchronous activity dominate or do neurons contribute 

“for each other” so that on single trials one would not observe synchrony like we 

observed among the trial-averaged responses? The redundancy observed among the 

identified functional networks in Chapter 2 could support these mechanisms. In the 

current dataset, I do observe that on each single trial, the net population response is 

similar to the trial-averaged population response, but this does not mean that the same 

cell is contributing on every trial. Additionally, one might imagine that when comparing 

the synaptic response with the mean-field population spiking response that one could 

look at the correlation between these signals (as in Chapter 2) and identify moments 

when the synaptic response deviates from the mean-field response. These may signify the 

moments when that cell is contributing a unique component to the representation of the 

stimulus, aspects of which could be resolved by examining the network behavior at those 

time points relative to all other time points when the two signals are redundant.  

 To examine the mechanisms governing the relationship among individual spikes 

in the population and the synaptic response of a single neuron would require additional 

effort to accomplish simultaneous recordings of these signals, but would yield results that 
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contribute significantly to our understanding of how neural circuits represent sensory 

stimuli in guiding behavioral outputs.  

 

4.6 Caveats 

 One of the main caveats of the current study, and many of the proposed future 

directions implementing the same methods, is error in estimates of redundancy and 

correlation due to the spike sorting process. This is a known limitation and not one 

specific to the current study (Schulz, Sahani, & Carandini, 2015). Reporting spike 

isolation quality metrics (such as ISI violations and measures of the shape of distributions 

generated by the spike sorting algorithm implemented) is one way to at least provide that 

information as reference for future studies able to resolve these issues with advancements 

in recording and/or spike isolation techniques. Another way to address this before 

publication of the manuscript from Chapter 2 would be to compare (on a trial by trial 

basis) the difference in correlation between silence and stimulus among simultaneously 

recorded units. 

 

4.7 Précis 

 A traditional approach in sensory physiology is to leverage the parameterization 

of stimulus sets amenable to dimension reduction, rather than embracing the full suite of 

complexity inherent to ethological signals supporting adaptive animal behavior. The 

limitations of this are apparent in the difference between the spiking and synaptic 

behavior under stimulus conditions with different statistics (Baudot et al., 2013; 

Theunissen, Sen, & Doupe, 2000). In this study, I have embraced the complexity of 
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natural Starling vocalizations and instead acted creatively on the perspective lens through 

which I have examined the resulting neural activity. What has benefited from this has 

been appreciation of the rich information available in the synaptic responses underlying 

neural representations traditionally regarded and modeled as sparse and independent, and 

the implementation of the synaptic response as a lens through which to examine 

population spiking dynamics. 
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