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Abstract

Modeling mixed conductivity in solid-state electrolytes

by
Nicole Carol Mei Lin Adelstein

Doctor of Philosophy in Engineering – Materials Science and Engineering
University of California, Berkeley

Professor Lutgard C. De Jonghe, Chair

The overarching goal of the first-principles computational studies presented in this disser-
tation is to better understand and predict charge carrier interactions in mixed conductors.
Rare-earth phosphates and hematite are chosen as example insulators which show reason-
ably high proton and polaron conductivity, respectively. Rare-earth phosphates are not yet
used commercially, but show promise as intermediate temperature fuel–cell electrolytes, so
a first-prinicples atomic-level understanding of transport in these materials will enable en-
gineering of their properties. Due to close collaborations with experimentalists working in
synthesis and characterization of rare-earth phosphates via impedance, X-ray photoemis-
sion, and NMR spectroscopy, the density functional theory (DFT) studies are compared
directly to experimental measurements.

Significant charge carrier concentrations are created in these materials by aliovalent dop-
ing, which can significantly increase the activation energy barrier for transport through
the material. In this thesis, the interaction of protons and Ba-dopants in LaPO4 is inves-
tigated and the X-ray photoemission spectrum of CePO4 is interpreted via its calculated
electronic structure, showing that hole small-polarons on Ce ions are stable defects. Fi-
nally, a new method for calculating small-polaron mobilities in crystals with DFT plus a
Hubbard-U term is presented and found to work well for electron small-polaron mobilities
in hematite.
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Chapter 1

Introduction

1.1 Motivation

The intersection of experiment, theory, and simulation is fertile ground for the development
of complex materials systems. While the focus of this dissertation is on simulating proton
and mixed conductivity in rare–earth phosphates, the results have wide–reaching impact in
the fields of modeling ionic and polaronic conductivity and rare–earth compounds. Rare–
earth phosphates, in particular LaPO4, have been researched since the early 1990s as
solid–state electrolyte membranes for intermediate temperature hydrogen fuel cells. The
crystalline electrolyte is doped in order to increase proton concentration, but does not
yet have high enough conductivity to compete with current energy production systems.
Thus, we are motivated to understand proton conductivity in LaPO4 and other rare–earth
phosphates in order to engineer higher conductivity, interpret experimental measurements,
and predict better materials.

In 2007 Congress approved millions of dollars for energy research under the Advanced Re-
search Programs Agency–Energy (ARPA–E)[1] to address our global need to find cheaper
and cleaner energy sources and storage. A significant effort has been made in developing
fuel cells to reduce our dependence on fossil fuels in internal combustion engines and coal
power plants; currently, fuel cells are found in buses and as stationary back–up power gen-
eration. The hydrogen fuel cells used in buses operate at relatively low temperatures (less
than 200◦C) due to the need to keep them hydrated. At the opposite temperature extreme,
stationary solid oxygen fuel cells operate most efficiently at around 800◦C. Since very few
proton conducting electrolyte membranes that operate at intermediate temperatures be-
tween these two extremes, called the Norby Gap[2], have been tested, they are the focus
of this research and many others. At the intermediate temperature range and above, fuel
cells benefit from using non–noble catalysis (noble catalysts like Pt are required for low
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temperature nafion based fuel cells[3]) and in–situ reforming of biofuels. But the drawback
of solid–oxide fuel cells (SOFC) that operate at such high temperatures as 700–1000◦C
is that they suffer from corrosion, require long start–up times, and can have mechanical
problems due to the mismatch of different components after thermal–expansion. Interme-
diate temperature proton–conducting electrolytes are desired to allow thermal cycling and
non–noble catalysts.

The electrolytes with the highest conductivities in the intermediate temperature range are
barium zirconate and barium cerate (BaZrO3 and BaCeO3)[4], both perovskites with con-
ductivities around 10−3 S/cm at 300◦C. However, both have highly resistive grain bound-
aries and growing single crystal electrolytes to remove the grain boundaries is too expensive,
so another alternative must be found. Investigation into rare–earth phosphates is inspired
by the high conductivity of phosphoric acid, of 0.45 S/cm at 100◦C[5]. Like the Nafion
used in automotive fuel cells, phosphoric acid electrolytes break down at temperatures over
200◦C [5], which limits the efficiency of phosphoric acid fuel cells and requires the use of
Pt catalysts. Phosphate–based materials with high melting temperatures, like monazite,
could increase grain boundary conductivity by incorporating extra phosphates into the
grain boundaries to create phosphoric acid like environments. The mineral monazite has
a melting temperature of 2057◦C and is an orthophosphate solid solution of Ce and La
with Th and Nd impurities[6][7]. Rare–earth orthophosphates are considered to be ionic
ceramics with the 3- charged phosphate anions charge balancing the 3+ rare–earth cations
(RE), as shown in Figure 1. These phosphate groups can link by sharing an oxygen to
create a pyrophosphate impurity and with smaller RE:P ratios give the metaphosphates
(REP3O9) and ultraphosphates (REP2O5) with phosphate chains.

Figure 1.1: The phosphate group, consisting of oxygen (red) tetrahedra around a phospho-
rus ion, has a nominal 3 minus charge. The cation, La or Ce (blue), charge compensates
with a 3 plus charge. An oxygen vacancy has a 2+ charge with is charge compensated by
the effective negative charge of the two SrRE (purple).
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The highest proton conductivity measured for Sr–doped LaPO4 is 1.55*10−5 S/cm at 800◦C
but a range of conductivities have been reported (Figure 2). For Sr–doped CePO4, the
conductivity at 800◦C is 1.63*10−3 S/cm [8], orders of magnitude higher than LaPO4, but is
generally accepted to be caused by hole–polaron conductivity. Such electronic conductivity
(hole) is possible in CePO4 compared to LaPO4 because Ce3+ has a lone ‘f’–electron which
can be ionized to create Ce4+, where as La3+ has a filled 5p shell and empty 4f shell.

Figure 1.2: Various proton conductivity measurements in LaPO4 have been reported. 0Sr
indicates no Sr–doping while 1Sr indicates 1% Sr–doping, etc. The blue data are from a
microstructure–study, where the grain sizes were varied. Data f) have 3µm grains and data
g) have 20 µm grains. The sample with 350 nm grains was not sintered to created larger
glassy grain boundaries. References are as follows a–d)[8] e)[9] f–h)[10] i) Personal data
from H.L. Ray.

The electronic conductivity in cerium orthophosphate initially ruled it out as a fuel cell
electrolyte since it will cause a partial short circuit and lower the open circuit voltage
(OCV), but our current research may indicate that some electrical conductivity can be
tolerated. Here, a brief summary of fuel cell thermodynamics will be illustrative. In a fuel
cell, electrical power is derived from the reaction of the fuel with oxygen and the change
in Gibbs free energy from that reaction (or free energy of formation). For example in a
hydrogen fuel cell:
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H2 + 1
2O2

exothermic−−−−−−−→ H2O. (1.1)

The hydrogen and oxygen gases are separated by the ionically–conducting electrolyte mem-
brane (so they do not combust directly), which should be insulating so that the H2 fuel
is oxidized and electrons are forced outside the electrolyte to do work. Protons are drive
across the electrolyte by a gradient in electochemical potential from the formation of water
upon combination with O2 at the cathode.

The open circuit voltage is proportional to the negative of the free energy of formation of
water from H2 and O2 and is 1.14 V at standard pressure and 200◦C for the gas reaction.
When no current is drawn, the open circuit voltage is 1.1 V in LaPO4, which is very close
to the theoretical value. Due to the partial short circuit, CePO4 has an open circuit voltage
of 0.3 V (both OCV measurements from private communication with H. L. Ray), which is
significantly less than the theoretical potential and that from LaPO4. Thus, it seems that
while there is significant electronic conductivity causing a partial short circuit in CePO4,
some protons are still transported through the electrolyte to create a small OCV.

Rare–earth phosphates hold much promise for applications that require high proton con-
ductivity, but fundamental parameters affecting the conductivity are still difficult to en-
gineer in part due to a lack of atomic scale understanding. In particular, conductivity
is controlled mainly by the activation energy barrier for proton transport and the proton
concentration. Most experimental measurements such as AC impedance spectroscopy can
only access bulk properties of these materials, so an in–depth understanding demands first–
principles calculations. In the next section, the parameters controlling ionic and polaronic
conductivity will be presented and the method for modeling transport at the atomic scale
will be discussed.

1.2 Background

1.2.1 Ionic and polaronic conductivity

Conductivity, σ, depends on the charge of the ion (z), the electric charge of an electron
(e), the number density (n) and the drift mobility (µ), such that

σ = z ∗ e ∗ n ∗ µ. (1.2)

Ionic transport often occurs in a series of rare events, where the ion mostly oscillates in
a global or local energy well with energy barriers greater than its thermal energy. Once
in a while the ion will hop to another energy minima. Thus, the mobility is temperature
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dependent and exponentially related to the activation energy barrier for transport, Ea, in
the Nernst–Einstein relationship

µ =
e

kT
D =

e

kT

a2Γ

2
(1.3)

where again, e is the carrier charge,
D is the self–diffusion coefficient, which assumes the correlation factor is unity,
a is the jump distance,
Γ is the jump rate (sometimes defined as τ),
k is Boltzmann’s constant,and
T is the temperature in Kelvin.

The jump rate depends on the attempt frequency, τ0, and the minimum activation energy
barrier for transport through the material, such that

Γ = τ0 ∗ d ∗ exp

(
−Ea
kT

)
(1.4)

where d is the number of nearest minima to which the ion can hop.

The parameters that determine conductivity can be investigated both experimentally and
with simulation. Let us start by looking at how to control the proton concentration ex-
perimentally. Protons are introduced into the rare–earth phosphates by aliovalent doping,
which can be understood through defect chemistry. While there are a number of methods
to synthesize these doped phosphates, one of the most straightforward is to mechanically
mix SrP2O7 and LaPO4 and then sinter at high temperature. In the Kröger–Vink notation
this is

2SrP2O7 + 2LaPO4
LaPO4−−−−→ 2Sr′LaPO4 + P2O7

••
2PO4

(1.5)

such that two aliovalent Sr dopants charge compensate for the effective double positive
charge of one pyrophosphate defect. This pyrophosphate defect is an oxygen vacancy where
two phosphate tetrahedra rotate in order to share an oxygen (Figure 1). The SrLa’ is often
thought of as a negative point defect that traps positive defects, such as pyrophosphates
[11] or protons, in a deep potential energy well. There is much debate over the extent of the
potential well created by the effective negative defect in the literature, which is explored
in Chapter 2.

The maximum concentration of protons in LaPO4 is determined by the solubility limit of
Sr and the balance between the pyrophosphate and proton concentrations. STEM–EDAX
measurements of element concentrations shows that other impurities are not found and
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a calculation on the similar material, LaNbO4, shows that La vacancies have a Frenkel
defect formation energy of 7.45 eV and are thus unlikely[12]. Thus in the bulk,it is ex-
pected that the dominant charged defects are pyrophosphates, protons, holes and aliovalent
dopants.

In CePO4, on the other hand, electronic conductivity with positive carriers has been
observed[8]. The authors in Ref. [8] assume that the carrier is a hole sitting on the
Ce ion to create Ce4+ in oxidizing conditions, as follows:

2Sr′Ce + 2CeCe + P2O7
••
2PO4

+ 1
2O2

CePO4−−−−→ 2Sr′Ce + 2Ce•Ce + 2PO4PO4
. (1.6)

The nature of the hole (if it is a small polaron localized on a Ce4+ ion) is the subject of
Chapter 3. The balance between protons and holes is important information for under-
standing mixed conductivity in CePO4 in fuel cell conditions, where there is a reducing
atmosphere on one side of the electrolyte and an oxidizing atmosphere on the other.

In wet reducing conditions, water can fill the pyrophosphate oxygen vacancy and introduce
protons

2Sr′Ce + P2O7
••
2PO4

+ H2O
CePO4−−−−→ 2Sr′Ce + 2HPO•4PO4

(1.7)

which charge compensate for the aliovalent dopant. This equation also describes how
protons are incorporated in LaPO4 (substitute all Ce cations with La) as in Figure 2.

First–principles thermodynamic calculations can compare the energy of formation of these
different defects and thus predict their concentrations at various environmental conditions
(such as oxygen pressure and temperature). These types of calculations are presented in
the work by Solomon et al. for LaPO4 [11]. In addition, first principles calculations can
determine the minimum energy path (MEP) and Ea for ionic transport using transition–
state theory (TST). The next subsection presents the bare–bones of density functional
theory, which is used in this work to calculate ionic conductivity parameters from first–
principles.

1.2.2 First Principles Calculations

Density function theory (DFT) calculations offer the optimal balance between computa-
tional expense and accuracy for calculating the properties of extended crystals and is the
powerhouse first–principles tool for materials science. While coupled cluster calculations
are more accurate, feasible calculations are limited to small molecules, and application
to systems with large nuclei such as the lathanides are difficult. Calculation of defects
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in crystals (with experimentally accessible concentrations) or grain boundaries and sur-
faces demand supercells with more atoms than can be handled with the coupled cluster
method. For example, to simulate 3% Sr–doped LaPO4 demands at 2x2x2 supercell with
196 atoms.

DFT is a variational method that finds zero temperature ground state energies and elec-
tronic structure for condensed matter. Finite–temperature calculations are possible using
harmonic vibrational theories for solids, or ab–initio molecular dynamics, although these
calculations are considerably more computationally demanding than a zero–temperature
energy calculation. Often empirical potentials are used for molecular dynamics calcula-
tions, such that 100,000s of atoms and long times scales reaching nanosecond lengths can
be simulated [13]. MD and kinetic Monte Carlo (KMC) calculations are ideal for calcu-
lating diffusivities of ions, but diffusivities can also be estimated from ground–state DFT
calculations using transition state theory (TST) as will be described below.

Density functional theory has been very well documented [14], and only a brief summary
will be provided here.

Hohenberg and Kohn showed that the total energy of a system and all other ground state
properties are functionals of and depend solely on the distribution of the system’s par-
ticle density[15]. Thus one can vary the electron charge density until the lowest energy
distribution is found and this is the ground state energy of the system. The energy of a
condensed matter system depends on the kinetic energy T [n] and interaction energy of the
electrons Eint[n], an external potential, Vext(r), and the Coulomb energy of the nuclei EII
as below:

E[n] = T [n] + Eint[n] +

∫
d3rVext(r)n(r) + EII . (1.8)

For a given external potential, there exists one ground state electron density, n0(r), which
gives the lowest energy solution, E[n0], to the full many-body Hamiltonian. Furthermore,
the Hohenberg-Kohn Theorem also states that the external potential in equation (1.8) is
determined uniquely by the ground state density, n0(r), within a constant. This rela-
tionship is fundamental in self–consistently solving for the ground–state solution to the
system’s Hamiltonian. But first let us tackle some of the vocabulary of DFT, where most
of the formalism presented here is inspired from Richard Martin’s comprehensive book,
Electronic Structure: Basic Theory and Practical Methods [14].

What is a density functional? A functional takes functions, for example the electronic
charge density (which is a function of position), as input and outputs a scalar number,
such as the energy. Unfortunately, the exact form of the functional that gives the energy
from the charge density is only known for the hydrogen atom and the barrier to the ex-
act solution is the many–body problem of interacting electrons. Thus, the exchange and
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correlation between electrons must be estimated and in the quasi–particle formalism de-
veloped by Kohn and Sham[16], these contributions give rise to an extra potential felt by
the electrons. It turns out that the exact solution for the exchange and correlation energy
of a homogeneous electron gas can be calculated by QMC, so this functional is used in the
local density approximation (LDA).

At each point in the computational cell, r, the exchange–correlation energy is taken from
that of a homogeneous electron gas with the same density as is found at that point, in the
LDA. Since the LDA was implemented, there have been many improvements to take into
account non–local effects, such as the generalized gradient approximation (GGA)[17]. In
GGA the gradient of the density factors into the energy functional, but there is no one way
to implement the gradient, leading to a multitude of GGA functionals.

The general scheme for minimizing the energy is an iterative process of solving the eigen–
equation for the energy and wavefunctions using the system’s Kohn–Sham Hamiltonian,
both given below

(Hσ − εσi )ψσi (r) = 0 (1.9)

Hσ(r) = −1
2∇

2 + Vext(r) + VHartree(r) + Vxc(r) (1.10)

where the Hartree energy would be EHartree[n] = 1
2

∫
d3rd3r′ n(r)n(r′)

|r−r′| and the exchange–

correlation potential, Vxc(r) is taken from either LDA or GGA functionals.

The initial charge density is guessed, often by superimposing the densities of free atoms,
or the initial wavefunctions are estimated. They are related by:

n(r) =
N∑
i=1

|ψi(r)|2 (1.11)

where the sum over wavefunctions in (1.11) does not explicitly take spin into account.

For a given external potential and initial electron charge density, the Hamiltonian can
be solved for the eigenvalues and vectors (energy and wavefunctions). Convergence to the
ground state is reached when the initial energy does not differ more than the given tolerance
from the final energy. If convergence is not reached, the new wavefunctions are created,
often by mixing the initial wavefunctions, and used to initialize the next self–consistent
step with n0(r).
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n0(r) → V (r) (1.12)

↑ ↓
ψ0(r) ← ψi(r)

This process has been widely successful in predicting the electronic structure of condensed
matter, but has also failed in many ways such as predicting a metallic NiO[18] due to
its inability to describe the ‘d’–electrons in Ni. Highly localized electrons or holes suffer
from a large self–interaction error which is not completely corrected by the local density
approximation or GGA.

For example, ‘d’– and ‘f’–electrons end up “seeing” themselves through the density at
their point in space and want to delocalize to decrease their potential energy. Significant
improvements to the exchange and correlation potential given by LDA and GGA come at
a high computational cost. For example, researchers can use hybrid functionals which add
a percentage, usually 25%, of Hartree–Fock exact–exchange into the Hamiltonian, but this
significantly increases the required computational time[19]. While this method has been
shown to be sufficient in many studies (for example in iron oxides and ceria [20, 21, 22]), the
percentage of exact exchange to use is not theoretically specified and it does not directly
address the need for an improved description of the correlation energy. A cheaper method,
DFT plus a correction based on a Hubbard-model term, has been utilized since the early
1990s [23], which creates a penalty on specific orbitals for partially occupation due to
delocalization from the self–interaction error.

Discussion of the Hubbard–U parameters in the context of CePO4 can be found in Chapter
2. The appropriateness of using the DFT+U approach to model polaron transport is
discussed in Chapter 3.

1.2.3 NEB and modeling polarons

As indicated above, transition state theory states there is a minimum energy path for a
reaction and this can be determined within DFT using the nudged elastic band (NEB)
method or the climbing image NEB[24]. This method has been successfully employed
to calculate the activation energy for proton transport through LaPO4 [9] and matches
experiment remarkably well.

Transition state theory applies to activated processes, where the reactants start in a po-
tential well and move over a saddle point to another potential energy well to become the
products. In order to use this method, global or local minima in the potential energy land-
scape must be known. If the reactant state is known, there are methods that can search for
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the product state[25], but for describing proton and polaron transport it is easy enough to
guess and then search for the energy minima. For example, in Yu and De Jonghe’s [9]work
on proton transport in LaPO4, a fine mesh was created in the unit cell and the protons
placed at the mesh’s lattice points were relaxed to find the minima.

Once the reactant (initial) and product (final) states are known, a series of images are cre-
ated along the reaction coordinate. The reaction coordinate is actually a multidimensional
coordinate that captures of all the ion and electron motion from the initial and final states.
The initial state is often set to 0 and the final state to 1, as in Figure 4.2.

Finding the saddle point is the major endeavor of NEB; since density functional theory
is designed to find energy minima, additional constraints must be employed to find the
saddle point and images along the path. The saddle point is defined as a point of positive
curvature in all directions but one. The negative curvature in one direction at the saddle
point can be confirmed by the imaginary mode in the DFT calculation of the phonon
spectrum (Chapter 4). While most of this thesis is not concerned with NEB calculations, I
will offer a brief explanation since calculating the activation energy from the saddle point
is a major component of predicting conductivity in Chapter 4.

In order to keep the saddle point or any of the images created along the reaction coordinate
from falling back into the minima, the images are attached by an elastic band (a spring),
such that the image is pushed away from its nearest neighbor images if it gets too close.
These images can also wander away from the minimum energy path, so the spring also
pulls the images together if they move too far apart.

In a standard minimization calculation, the force on each ion is calculated and the ion is
moved a pre–specified distance in the direction of the force. In the NEB method, the forces
on the ions are modified by a spring constant to 1) keep the images from relaxing into the
minima and 2) to keep the images along the path. The NEB method is well described in
the literature, but the main equations are provided here to help orient the reader. The
following equations show the modified forces:

Fi = −∇E(ri) (1.13)

F⊥i = Fi − (Fi • τ̂)τ̂ = 0 (1.14)

Fi,update = F⊥i + F
‖
i,spring (1.15)

Fi,spring = K(|ri+1 − ri| − |ri − ri−1|) (1.16)

F
‖
i,spring = (Fi,spring • τ̂)τ̂ . (1.17)

In these equations, Fi is the Hellmann–Feynman force on an ion in image i. τ̂ is the unit
vector that points between image i and image i + 1. The parallel component of the force
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projected along τ̂ would pull the image into the potential well, so only the perpendicular
component of the force is used to move the ions. The spring force keeps the images well
spaced. Only the parallel component projected on τ̂ that keeps the images closer to the
transition point rather than the minima is used to update the ion positions.

The NEB method works well for ionic transport, but has not been used to model polarons.
In particular, small polarons with a highly localized electron or hole and lattice distortion
smaller than the unit cell size should hop similarly to protons or other small ions. Thus,
the saddle point for hopping needs to be determined in order to find the activation energy.
The nudged elastic band method is not always necessary if the transition point is very
symmetric. Then using a force–based ion relaxation method rather than the conjugate
gradient method that finds minimum energy solutions, one can find the zero–force saddle
point. It is possible that the NEB can work for finding the MEP of polaron transport,
but the literature remains sparse. One cannot calculate a Hellmann–Feynman force on
the electron or hole–polaron and update its position. Instead only the polarization of the
lattice can be modified. Modeling polaron transport in condensed matter remains a rich
field of exploration.

The main body of this dissertation is organized as follows: first proton–dopant interactions
in LaPO4 are presented, second the electronic structure of CePO4 and potential for small
polaron formation on the Ce ions is discussed, and finally a new method for modeling small
polaron transport in solid state electrolytes is explained. Combining the knowledge of these
three chapters allows researchers to address mixed conductivity in rare–earth phosphates
– a course of future work.
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Chapter 2

Proton-Ba Interactions in Doped
LaPO4

1

The interactions between an aliovalent cation dopant, Ba, and protons in LaPO4 are stud-
ied with first-principles density functional theory. This work is motivated by the desire to
use doped LaPO4 as a proton conducting solid electrolyte or hydrogen separation mem-
brane. In this context, the strength and range of proton-dopant interactions are important
factors underlying proton mobilities. Using periodic supercells, we find that 3% Ba-doping
stabilizes a proton at a distance 2.7 Å from the dopant by up to 0.2 eV relative to posi-
tions far from the dopant. The Ba-dopant creates a narrow potential energy well and only
changes the proton’s potential energy surface by ±0.05 eV when the proton is farther than
2.7 Å from the dopant. Electrostatic interactions between the proton and dopant account
for the majority of the binding energy of proton sites and are associated with a complex
redistribution of the charge induced by the dopant on the neighboring oxygen ions. In con-
trast, the strain field created by the Ba-dopant gives rise to a relatively small contribution
to the interaction energy.

2.1 Introduction

Rare-earth phosphates are attractive candidates for electrolytes in intermediate-temperature
fuel cells, or in hydrogen separation membranes and sensors. The impact of aliovalent dop-
ing on proton conductivity in rare-earth phosphates has been explored experimentally in a

1This work was previously published in the Journal of Materials Chemistry as: N. Adelstein, J. B.
Neaton, M. Asta, and L. C. De Jonghe. First-principles studies of proton-Ba interactions in doped LaPO4

JMC. DOI: 10.1039/c2jm16214h (2012).
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number of recent studies[26, 27, 28, 29, 2]. In particular, lanthanum orthophosphate and
metaphosphate compounds doped with calcium, strontium, and barium have been shown
to be proton conductors that are relatively stable under humid conditions and up to high
temperatures. However, an order of magnitude increase in the conductivity of the protons
is still required in these compounds for technological applications. Aliovalent doping is
required for proton incorporation, but a strong attraction between the dopant and proton
can impede conduction. Here we focus on the binding energies between protons and aliova-
lent alkaline-earth cation dopants in LaPO4 and the dopant’s effect on proton conductivity
in this compound, as an important step towards understanding how this property can be
optimized.

When a divalent alkaline-earth (AE) ion substitutes for a trivalent rare-earth (RE) ion
in the RE-phosphates, the result is an effective negative charge, e.g., a Ba’La defect in
Kröger-Vink notation. This effective negative charge is expected to lead to an electrostatic
attraction for the positively charged protons, causing them to reside in the vicinity of
the AE dopant. Such an attractive interaction between protons and dopants in La-based
metaphosphate glasses doped with aliovalent AE elements was observed in recent vibra-
tional spectroscopy measurements by Harley et al. [30] and using 1H{137Ba} TRANsfer
of Populations in Double Resonance (TRAPDOR) NMR experiments[31]. Significant dif-
ferences in the conductivity of polycrystalline LaPO4 due to 1% doping with Mg, Ca, Sr,
and Ba, has been measured experimentally[27]. Ba2+ is the largest of the experimentally
tested dopants at 1.21 times larger than La3+ and shows a lower conductivity than samples
doped with Ca and Sr in the above study. The lower conductivity of the Ba doped sample
is explained by its lower solubility of 0.4% (compared to the 1.9% solubility of Sr), though
each sample is nominally 1% doped.

It has been debated in the literature whether aliovalent dopants trap protons due to electro-
static interactions and thus increase the activation energy barrier for transport [32, 12, 33].
While experimental evidence has been sought for trapping in rare-earth phosphates [30],
we are unaware of previous computational studies directly investigating the nature of
proton-dopant interactions in these systems. The magnitude and origins of the interac-
tions between protons and aliovalent dopants has been widely studied in proton conducting
perovskites (ABO3)[34, 35, 4]. For example, in a DFT study by Björketun, et al. on aliova-
lently doped BaZrO3, it was found that the proton is stabilized by more than 0.15 eV when
bound to the dopant’s nearest oxygen neighbors[36]. Similar results were also obtained in
the same system in a computational study employing classical interatomic potentials[33].
Experimentally, NMR (spin-echo) confirms that the proton preferentially sits near the
dopant in BaZrO3[37].

Previous first-principles calculations of protons in LaPO4 by Yu and De Jonghe[9] deter-
mined low energy binding sites and predicted the activation energy for proton transport
to be 0.8 eV; the effect of dopants was not considered in this study which made use of a
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Table 2.1: Example lattice parameters from site 8 (see Figure 1) for undoped (bulk) and
doped LaPO4 computed in the present work using a 2x2x2 supercell are compared with
experiment. The lattice vectors are given in Å while the angles are in degrees.

Lattice parameters Experiment Bulk calc. H+LaPO4 BaHLaPO4

a 6.8313 6.94 6.92 6.95

b 7.0705 7.15 7.14 6.95

c 6.5034 6.54 6.54 6.95

α 90 90 89.9 89.9

β 103.27 103.77 103.69 103.73

γ 90 90 90.3 90.3

homogeneous negative background charge to compensate the positive charge of the proton.
The presence of aliovalent dopants will cause a wider range of activation energy barriers
for proton hopping. Evidence for changes in activation barriers upon doping was obtained
from the recent AC impedance spectroscopy measurements of doped metaphosphate glasses
by Harley and De Jonghe[38]. The spread of activation energies due to the dopant was
concluded by Harley and De Jonghe to correlate with a decreased conductivity in the
metaphosphate glasses.

As in proton-conducting perovskites[39], the minima in the proton’s potential energy sur-
face corresponds to environments where the proton bonds to an oxygen, creating a hydroxyl
bond, and participates in hydrogen bonding with a neighboring oxygen ion[9]. In the cur-
rent study we compare twenty such binding sites in 2x2x2 supercells, eight of which are
isoenergetic in the undoped cell and significantly more stable than the other twelve sites.
We find that the interaction between the dopant and proton is attractive at very short
distances and varies non-monotonically with distance. We analyze the origins of this be-
havior by examining in detail the change in electronic structure and ion displacements
that determine the relative energetics of the different proton binding sites. A multistep
procedure, similar to that employed in Ref. [36] and an earlier study on CeO2[40], is used
to assess the relative importance of electrostatic versus strain effects, as will be described
in the next section.

2.2 Computational Methods

All DFT calculations are performed within the generalized gradient approximation (GGA)
of Perdew, Burke, and Ernzerhof (PBE)[17]. The VASP code[41, 42] and the projector
augmented-wave (PAW) method[43] are used for all calculations. The PAW potentials
use 11 valence electrons for La (5s25p66s25d1), 10 for Ba (5s25p66s2), 5 for P (3s23p3),
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and 6 for O (2s22p4). A plane-wave energy cutoff of 500 eV is used for the expansion
of the electronic wave functions. A Monkhorst-Pack[44] grid of 2x2x2 is employed in the
integrations over the Brillouin zone of the supercells (which are 2x2x2 periodic repetitions
of the basic unit cell in real space, see below). Total energies are converged to 10−6 eV
and Hellmann-Feynman forces on the ions are converged to 50 meV/Å.

Figure 2.1: The 2x2x2 doped LaPO4 supercell employed in the present calculations is
shown projected along a [101̄] direction. The Ba dopant is shown in purple and the La
cations in blue. The phosphate tetrahedra are made of four red oxygen ions covalently
bonded to a yellow phosphorus. The black proton’s eight degenerate global energy minima
in the bulk LaPO4 crystal are numbered 1-8 in order of their distance from the dopant.

At room temperature, crystalline LaPO4 has the monoclinic P21/n structure with 4 for-
mula units per primitive cell and all atoms sitting in 4e Wyckoff positions[7]. To model
doped systems, 192-atom supercells are constructed by doubling the primitive cell along
each of the lattice vectors. Our computed lattice parameters for a characteristic supercell
containing a proton and Ba cation dopant are given in Table 2.1. Our results for the un-
doped LaPO4 structure compare well with previous calculations by Yu and De Jonghe[9]
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and experiment. Upon addition of the proton using a uniform negative background charge,
the unit cell volume decreases less than 0.5% and upon addition of the Ba dopant, the unit
cell volume increases by on average 0.7% compared to the bulk.

Since the inhomogeneity of the potential energy surface can obscure the effect of the dopant
on the total energy of the cell, we will determine the nature of the interaction between Ba
dopants and protons by comparing energies as a function of distance for protons in sites
corresponding to the global energy minimum positions in the undoped supercell. These
sites were identified in previous calculations of the potential energy surface for protons in
LaPO4[9]. Local minima were also calculated and are about 0.4 eV higher in energy than
the global minima, as shown in Figure 2.2.

Figure 2.2: Then energy versus proton-dopant distance for the global and local minima
show that the global minima are about 0.4 eV lower in energy.

The proton’s binding site depends not only on which of the four distinct oxygen ions creates
the hydroxyl bond, but also which other oxygen ion is involved in hydrogen bonding with
the proton. Thus, the orientation of the hydroxyl bond also needs to be determined for
each of the proton binding sites. To illustrate the complexity of the energy surface, consider
the proton in a hydroxyl bond with oxygen 4 as labeled in 2.1. The proton could form
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a hydrogen bond with eight neighboring oxygen ions of the following types and distances
(in parenthesis) from the O4 hydroxyl oxygen: O1 (2.86, 2.87, 3.01 Å), O2 (2.85, 2.92,
3.37 Å), and O3 (2.92 Å). By placing the proton near O4 and optimizing its position with
DFT, we find the minimum energy hydrogen bond to be with the O1 (3.01 Å) oxygen,
where the oxygen-oxygen distances are taken from the undoped cell, as shown in Fig 2.1.
Upon addition of the proton, the O4-O1 oxygen distance decreases to 2.5 Å in order to
accomodate hydroxyl and hydrogen bond lengths of 1.0 and 1.5 Å, respectively. The O4 ion
differs from the other three oxygen-ions in having the shortest phosphorous-oxygen bond
length (1.53 Å compared to 1.57 Å for the other three oxygen-phosphorous bonds).

Substituting a single Ba dopant for a La cation necessarily breaks the symmetry of the
crystal and causes variations in the energy of the proton in sites that are isoenergetic in
the undoped cell. Figure 2.1 shows a projection of the 2x2x2 supercell used in the present
calculations and illustrates how the distance and orientation of the proton relative to the
Ba’La defect and neighboring oxygen ions differs for each of the eight sites considered in
this study (each of which corresponds to the global energy minima in the undoped LaPO4

crystal). To explore the impact of the proton’s proximity to the Ba dopant on the binding
energy we compare the differences in the total energy of supercells with the proton relaxed
at each of these eight sites. Amongst these sites, the largest distance between a proton and
the dopant is roughly 11 Å (labeled site ‘8’ in Figure 2.1). To ensure that the introduction
of the dopant does not lead to the formation of other low-energy sites for the proton, we
explored an additional 12 local-minimum geometries involving binding of the proton to
different oxygen ions, and found that on average they are 0.4 eV higher in energy than the
sites shown in Figure 2.1.

We use a 2x2x2 supercell with one La replaced by Ba. This gives a dopant concentration of
1/32, or approximately 3%. We note that this concentration is significantly larger than the
solubility limit of 0.4% reported experimentally for Ba in LaPO4[27]. However, the results
presented below show that the dominant interactions between the proton and dopant occur
at relatively short separation distances, below approximately 6 Å. Thus, the results indicate
that the 2x2x2 supercell employed in this work is large enough to avoid significant spurious
interactions between the proton and the periodic images of the dopant, and that the results
presented below correspond to dopant-proton interaction in the limit of the dilute dopant
concentrations relevant to the experimental measurements.

2.3 Results and Discussion

Figure 2.3 plots the total energy of the system as a function of the distance of the proton
from the Ba dopant (the proton sites are labeled 1-8 with increasing distance from the
Ba). In this plot, the energy reference corresponds to a proton at the site furthest from the
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dopant in the supercell (site 8) and negative energies correspond to attractive interactions
with the dopant relative to the reference, while positive values are repulsive.

The main results in Figure 2.3 can be summarized as follows. The most stable binding site
for the proton is found on the oxygen ion closest to the dopant. When the proton is at
this site, the energy of the system is 0.2 eV lower than when the proton is furthest away
from the dopant. As the distance of the proton from the dopant increases, the energy is
seen to vary non-monotonically and features the peak repulsive interaction energy with a
proton-Ba distance of 3.9 Å at site 2, i.e. the second closest site. In the following sections
we discuss the relative importance of the electrostatic and elastic interactions between
the proton and the dopant and how these interactions give rise to the distance dependent
binding energies plotted in Figure 2.3.

Figure 2.3: The stabilization energy of proton
sites compared to site 8, with the H-BaLa’
distance of 10.89 Å, is shown for eight proton
sites in the 2x2x2 supercell.

Figure 2.4: The stabilization energy from the
electronic relaxation effect closely matches
the total stabilization energy after complete
optimization.

2.3.1 Electronic Relaxation

The curve labeled “Electronic Relaxation” in Figure 2.4 corresponds to binding energies
calculated in the Ba-doped supercell with the ions fixed at their optimized positions in
the supercell with just the proton. Thus these binding energies arise solely from electronic
redistribution induced by adding the Ba dopant. For comparison, the grey points in Figure
2.4 are identical to the data in Figure 2.3, and correspond to energies derived allowing full
relaxation of the ion positions. It can be seen that the electronic relaxation results are
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very close in energy to those derived from calculations allowing full ionic relaxations. This
indicates that strain-induced interactions are relatively small, as will be discussed in more
detail in the next section.

When just considering the electronic relaxation effect, the second closest proton site, 3.8 Å
away from the dopant, is the only site with a (slightly) higher energy than the site furthest
from the dopant (i.e., site 8). The third through fifth closest sites show slightly lower
energies relative to site 8, with the fourth closest site showing some enhanced stabilization.
The energy variation with proton distance is negligible beyond site 5.

To understand the non-monotonic dependence of the energy on the proton-dopant separa-
tion, we examine the charge redistribution due to the dopant and compare the environment
around each proton. In particular, we will focus on sites 1, 2 and 4 as labeled in Figure
2.1. The charge redistribution plotted in Figure 2.5 is defined as the charge density dif-
ference for the two systems, one with and one without the dopant, holding all ions fixed.
La nominally donates 3 valence electrons to its surrounding 9-oxygen shell, while the alio-
valent Ba dopant and hydrogen atom together nominally donate 3 electrons, which would
create an effective negative charge near the Ba2+ dopant. By comparing the charge density
difference for each proton site 1-8, we find that the oxygen-shell around the dopant con-
tains essentially the same number of electrons independent of proton position, so we only
show the charge density difference for site 2 with proton positions 1 and 4 superimposed.
Moreover, we find that the Ba dopant induces areas of significant electron charge density
accumulation and electron charge density depletion around the nearest and next nearest
neighbor oxygen shell. Thus, it is unsurprising that the protons potential energy surface
near the Ba dopant does not exhibit a simple Coulombic potential well.

Figure 2.5 illustrates layers of charge depletion (green-blue) followed by charge accumula-
tion (yellow-red) around the dopant’s 9-oxygen coordination shell. Immediately surround-
ing the Ba dopant there is a sphere of charge depletion because in La the valence electrons
are closer to the core than in Ba. Further out near the 9-oxygen shell, the diffuse area of
charge depletion (green crescents) can be explained by the decreased attractiveness of the
Ba nucleus versus the La nucleus to the oxygen electrons.

From this analysis, we find that increased proton stability is correlated with the polarization
of the oxygen ions involved in the hydroxyl and hydrogen bonds with the proton, and
not simply the accumulation of electron density in the immediate vicinity of the proton.
While there is no increased charge density exactly at proton site 1, the polarization of the
two oxygen ions involved in hydroxyl and hydrogen bonding with the proton (bonds are
indicated in Fig 4 (b)) correlates with the 0.22 eV stabilization of the energy relative to site
8. These two oxygen ions are part of the 9-oxygen coordination shell around the dopant,
which all show polarization due to the Ba dopant (Fig 4 (b) and (d)).

Oxygen ions further out from the dopant also are polarized, which affects the stabilization
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Figure 2.5: The charge accumulation and depletion due to the dopant when the proton is
at site 2 is visualized by subtracting the charge density with the H and Ba doped LaPO4

(ρBa,H) from the charge density with just the proton (ρH+). Two volume slices of the
charge density difference in the supercell, (a) and (c), are shown face-on with only selected
atoms in (b) and (d). The color scheme for the ions is the same as Fig 2.1 and the Ba is
labeled for clarity. Proton sites are labeled in order of their proximity to the dopant and
positions 1, 2, and 4 are highlighted. The key in the top right hand corner shows that the
gray color indicates no difference in the charge density after the dopant is included. Green
and blue indicates charge depletion and yellow to red indicates charge accumulation. The
volume slice shown in (a) cuts through the oxygen involved in hydrogen and hydroxyl bonds
with protons 1 and 4 (which are superimposed on the site 2 charge density difference), while
the volume slice in (c) cuts through the oxygen bonding with proton 2.
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energy of other proton sites. For example, the proton in site 4 is stabilized by 0.03 eV due
to the polarization of the oxygen ions involved in a hydrogen bond with the proton, as
shown by the small arrows in Figure 4 (b). In contrast, the proton at site 2 is destabilized
0.03 eV relative to site 8. To illustrate, the volume slice in Fig 4 (c) that contains the
oxygen ions involved in hydrogen and hydroxyl bonds with the proton and the Ba dopant
in site 2 is shown in Fig 4 (d). The plot indicates that these oxygen ions are not significantly
polarized. The polarization of the oxygen involved in hydrogen bonding correlates with the
shortening of the hydrogen bond after allowing the ions to relax, such that the hydrogen
bond of protons in sites 1 and 4 are the shortest. The changes in bond lengths upon
ionic relaxation and the associated changes in binding energy will be discussed in the next
section.

2.3.2 Elastic Relaxation

Figure 5 shows the change in proton-dopant interaction energy upon relaxation of the ionic
positions. The interaction energy of the proton and dopant increases by at most 0.03 eV
(for site 3) (i.e. becomes less attractive) due to ionic relaxation. The data plotted in this
figure correspond to the differences between the grey diamonds in Figure 3, derived from
the energy of fully relaxed supercells, and the red circles, derived from calculations with
fixed ionic positions.

As discussed by Kreuer in his review of proton-conducting perovskites[4], the energy of a
proton in a given position can be understood to be governed by a competition between
two factors: the energy gain induced by shortening of the hydrogen bond, and an energy
penalty associated with shortening the oxygen-oxygen (O-O) neighbor distance, such that
these two distances are correlated (Fig 2.7 and Table 2.3). Kreuer’s analysis holds well for
proton sites 5-8, as shown in Fig 2.6 by the correlation of the hydrogen bond length (black
squares) and the strain-mediated interaction energy. We hypothesize there is little strain
field overlap between the proton and the dopant for these sites, so the elastic relaxation
just depends on the hydrogen bond length and O-O distance. On the other hand, when the
proton is closer than 6 Å from the dopant, elastic relaxations lead to a repulsive contribution
to the proton-dopant interaction energy independent of the lengthening or shortening of
the hydrogen-bond.

The repulsive elastic effect is likely due to additional ion displacements, which are caused by
the interaction of the proton and dopants strain fields. Since the Ba dopant is larger than
the host La cation, it pushes the oxygen ions in its 9-oxygen shell 0.1-0.2 Å away. Positive
displacements of the closest 10 ions to the Ba-dopant from site 8, as shown in Table 2.2,
columns 2 (type) and 3 (displacement from ion positions in the undoped supercell), indicate
that all the ions have moved away from the Ba. These oxygen ions in sites 5-8 are free to
move away from the dopant because they are not constrained by the proton’s strain field.
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Table 2.2: The displacement of the 10 closest ions around the
Ba-dopant (column 2) and proton (column 3) from their ideal
positions for site 8 is shown. The average Ba-O bond length
for the oxygen ions in the 9-oxygen shell around the dopant is
shown in the last column.

10 closest ions: from Ba from H Ave. Ba-O (Å)

1st O 0.177 O -0.312 site

2nd O 0.190 O -0.167 no Ba 2.600

3rd O 0.173 O 0.027 1 2.722

4th O 0.154 O 0.027 2 2.740

5th O 0.144 O 0.255 3 2.748

6th O 0.234 O -0.002 4 2.757

7th O 0.172 O -0.039 5 2.756

8th O 0.093 O -0.051 6 2.755

9th O 0.092 O 0.032 7 2.756

10th P 0.124 O 0.005 8 2.756

Columns 6 and 7 in Table 2 show that in undoped LaPO4, the average La-O distance of the
9 closest oxygen ions to the La is 2.600 Å, and while the average Ba-O distance increases
for all 8 sites, sites 1-3 show a smaller expansion.

Due to the anisotropic nature of the crystal structure, the resulting displacement field
around the proton is fairly complex, leading to both expansions (+) and contractions (-)
in the distances between the protons neighboring ions. The proton in site 8, where there
is minimal interaction with the dopants strain field, draws the two closest oxygen ions
significantly towards itself and pushes the closest La away, as shown in Table 2, columns 4
and 5, along with the displacements of the other 7 closest ions to the proton.

For sites 1-3, the interaction of the proton and dopants strain fields cause the average Ba-O
distance to slightly decrease, as shown in column 4, Table 2.2. The overlap of the proton and
dopants strain fields destroys the correlation between the hydrogen-bond length (and O-O
distance) and the elastic relaxation and causes the largest elastic relaxation effects.

2.4 Summary

Doping LaPO4 with about 3% barium causes the stabilization of the closest proton binding
site to the dopant by 0.2 eV. This binding energy between the proton and dopant is found
to be predominantly from an electrostatic interaction. In particular, protons are stable
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Figure 2.6: The correlation between the hy-
drogen bond length and the elastic effect is
apparent for sites 5-8.

Figure 2.7: The O-O bond length correlates
well with the hydrogen-bond length, except
for sit 1. The proton draws the two closest
oxygen towards itself, decreasing the hydro-
gen bond and the O-O distance.

when bonded to oxygen ions that are polarized due to the dopant. Much weaker, but
non-zero, interactions extend out to distances of approximately 6 Å due to electrostatic
and elastically-mediated interactions. While the effect of the dopant is non-local and can
be understood in terms of charge redistribution and interacting strain fields, the effective
negative charge of the dopant creates a signficant local potential energy well.

The mobility of the proton in the doped LaPO4 crystal will clearly be strongly influenced
by the 0.2 eV binding energy near the dopant. The detailed effect of the dopant-proton in-
teraction on mobility ultimately depends on the average energy barrier for hopping between
tetrahedra. The minimum energy barrier for the proton to get out of the potential well near
the dopant and over site 2 is 0.24 eV and the actual activation energy barrier for motion
is most likely significantly higher. Additional calculations of the potential energy surface
seen by the proton in different environments show that the energy surface is quite uneven,
which is expected to impede proton conduction. It will be beneficial to compare first-
principles calculations of Ca and Sr doping in LaPO4 to the experimental measurements,
which show higher activation energy barriers than Ba doped LaPO4[27]. Understanding
the effect of these different dopants is imperative to engineering better proton conducting
membranes.
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Table 2.3: The proton stabilization and environment, as described by the
hydroxyl and hydrogen bond lengths and the hydroxyl-oxygen hydrogen-
oxygen bond lengths (O-O), are given for each site. The effect of the
proton on the average Ba-O bond lengths is given in the last column.
The last row (0) gives bond lengths without the Ba-dopant and the
average La-O bonds.

H+ site ∆Energy (eV) Hydroxyl bond Hydrogen bond O-O bond

1 -0.202 1.035 1.558 2.553

2 0.049 1.025 1.630 2.576

3 0.003 1.027 1.604 2.567

4 -0.042 1.041 1.528 2.508

5 -0.016 1.034 1.564 2.533

6 0.015 1.030 1.577 2.542

7 -0.010 1.035 1.559 2.530

8 0 1.033 1.562 2.529

0 1.03 1.56 2.5
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Chapter 3

Structure and electronic properties
of cerium orthophosphate: theory
and experiment1

Using a combination of density functional theory (DFT) calculations and experiments, we
determine the structural and electronic properties of cerium orthophosphate (CePO4), a
promising proton-conducting electrolyte for fuel cell applications. To better account for
strongly-localized Ce 4f electrons, we use a DFT + U approach, where the exchange-
correlation functional is augmented with an adjustable effective Hubbard-like parameter
U. We find that the calculated structural properties are in good agreement with x-ray
diffraction measurements, largely independent of the value of U used. However, the elec-
tronic structure is much more sensitive to U, and values of U = 2.5-3 eV for Ce 4f states
provide excellent agreement between the calculated density of states and measured pho-
toemission spectra near the valence-band edge, validating the efficacy of a DFT + U-based
approach for this system. With a judicious choice of U determined from photoemission ex-
periments, this work provides a natural starting point for future studies of charge transport
and charged defect formation and migration in this important class of compounds.

1Most of this work was previously published in Physical Review B as: N. Adelstein, B.S. Mun, H.
L. Ray, P. N. Ross, J. B. Neaton, and L. C. De Jonghe. Structure and electronic properties of cerium
orthophosphate: theory and experiment. PRB. 83(20), (2011). Section 3.4.3 is new, as is Table 3.1 and
Figures 3.2 and 3.7.
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3.1 Introduction

New materials with high proton conductivities in the temperature range 300-500 ◦ C can
be of benefit as solid electrolytes in a variety of electrochemical devices, such as hydrogen
sensors, hydrogen separation membranes, and fuel cells. Incorporation of such a material
into a fuel cell would, for example, facilitate the in situ reforming of liquid biofuels and
reduce the need for noble catalysts. Rare-earth phosphates have been investigated for this
purpose because of their stability at high temperatures, and their ability to incorporate
protons when doped with aliovalent cations[2, 8, 45, 30].

Recent AC impedance spectroscopy for CePO4 (Ref. [8]) indicates a total conductivity in
air an order of magnitude higher than that of LaPO4, a well-known proton conductor. The
enhanced conductivity of CePO4 relative to its La-based counterpart has been attributed
to hole conduction, based on defect chemistry interpretations of the measured conductivity
in both wet versus dry conditions and reducing versus oxidizing environments[8]. First-
principles calculations using density functional theory (DFT) can potentially elucidate the
differences between CePO4 and LaPO4 conductivities. However, whereas ground-state elec-
tronic structure and proton conduction have already been studied with DFT for LaPO4[9]
the electronic structure of CePO4 is entirely unexplored. In CePO4, highly localized ‘f’
electrons can result in strong correlations that affect electronic structure and defect forma-
tion.

In this work, we show that the ground-state geometry and electronic structure of CePO4

can be obtained with good accuracy using DFT-based methods via direct comparison to
x-ray diffraction measurements and photoemission spectroscopy. We address the impact of
the strongly localized Ce 4f states with an adjustable effective Hubbard-like parameter U,
and use photoemission data to determine the U that best describes the electronic structure
of Ce for this system. A direct comparison between photoemission spectra and DFT-
based electronic structure has not been made for a phosphate material, and as CePO4 is
just one of many phosphates, such as FePO4[46], being investigated as ionic conductors
for technological applications, we expect our approach and these results will be of broad
interest for both f -electron and phosphate-based solid-state electrolyte materials.

Cerium cations in solid-state compounds can exist in both the 3+ and 4+ oxidation states.
The nominal charge on cerium in CePO4 is Ce3+, leaving one 4f electron on each cerium
atom. The highly localized nature of these 4f states demands special consideration for
the electronic structure of CePO4. For cerium oxides, many groups[22, 47, 48, 49] have
recently documented the failure of standard DFT within the local-density or generalized
gradient approximations (LDAs and GGAs) due to signicant self-interaction errors asso-
ciated with 4f electron states. For example, erroneous structural parameters have been
reported, as well as, in some cases, metallic behavior for Ce-based compounds known to
be insulators[50]. A common framework used to address these deficiencies is the DFT +
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U method[18]. In this approach, the strong Coulomb repulsion between localized 4f states
in Ce is treated by adding an effective Hubbard term to the Kohn-Sham Hamiltonian,
leading to an improved description of correlation effects in transition-metal oxides. DFT
+ U requires two parameters, the Hubbard parameter U and the exchange interaction J.
Since there is no unique way of including a Hubbard term within the DFT framework[18],
different approaches may be adopted. In what follows, we use the rotationally invariant
method of Dudarev et al.[51], a standard approach which is summarized in Ref. [51] and
elsewhere.

Appropriate values of U for Ce 4f electrons have been debated in the literature and
several ab initio and empirical values have been reported. Many prior studies use a
value around U = 6 eV based on Slater integral calculations of metallic Ce (Ref. [52])
and cerium compounds[53] or optical band gaps and defect formation energies of cerium
compounds[48, 54, 55]. However, signicantly smaller values of U have also been reported for
cerium oxides based on ab initio calculations[47], and comparison to lattice constants and
energies of formation. Fabris et al.[47], for example, used a linear response approach[56] for
CeO2 and Ce2O3 and found U = 3 eV (LDA) and 1.5 eV (GGA). All studies noted that both
the electronic structure and lattice parameters were somewhat sensitive to the value of U,
although in different ways for CeO2 and Ce2O3, indicating that the best choice for U may
depend on the environment of the cerium atom. Thus, it is prudent to determine an ap-
propriate value for U by comparison to experiment for cerium in a phosphate environment,
where Ce would be expected to behave differently than in cerium oxides or pure metal,
rather than adopting values found in the literature for other cerium compounds.

In the following sections, ground-state structure and electronic properties of CePO4 are
computed using DFT + U for several different values of U and compared with x-ray diffrac-
tion (XRD), x-ray photoemission spectrometry (XPS), and AC impedance spectroscopy
experiments on sintered, polycrystalline samples. We propose an optimal value of U that
results in calculated electronic structure in agreement with measured photoemission near
the valence-band edge. This approach to determining U has yet to be used in ab initio
studies of cerium compounds. We show that our value of U provides structural parameters
that agree well with XRD measurements, thus providing a necessary foundation for future
calculations of electron and proton conductivity, defect energetics, and redox reactions
associated with the electrolytic performance of CePO4.

3.2 Experimental Methods

Cerium orthophosphate powders, purchased from Alfa Aesar, are heat treated for 1 h at 800
◦C in order to convert from the hydrated rhabdophane to the monoclinic phase. Powders
are ground and sieved through 325 mesh, and then ball milled in isopropyl alcohol with 2
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wt% polyvinal butyral, dibutyl phthalate, Menhaden Fish Oil (from Aldrich, Mallinckrodt,
and Sigma, respectively) for 24 h. The powders are dried, ground, and sieved again, and
then uniaxially die pressed at 2000 psi into pellets. Pellets are heated at 600 ◦C for 1 h to
remove binders and then heated at 1200 ◦C for 5 h for sintering. XRD scans of powders
and pellets are performed on a Philips PW3040 XPert Pro diffractometer using the Cu
κα(λ = 1.5406 Å) source operated with a 45-keV x-ray tube voltage.

A Kratos AXIS-NOVA hemispherical electron analyzer is used for the measurement of
XPS. The monochromatic Al Kα (photon energy = 1486.6 eV) is used as the x-ray source,
and the total energy resolution is set to about 0.4 eV. The pass energy and dwell time
of photoemission spectra is set to 20 eV and 100 ms, respectively. Prior to the XPS
measurement, the sample surface is lightly sputtered with argon to remove any surface
contamination. Sputtering does not change the oxidation state, as was shown by Glorieux
in the CePO4 spectra of the 3d binding energies[57]. A small charging effect is present
during the measurement and a low-energy electron flood gun is utilized when necessary.
All elements in the sample are identied from a survey scan and the chemical state of each
element is also confirmed. In order to compare the DFT density of states (DOS) to the
photoemission spectra, the Shirley background is subtracted from measured valence-band
spectra to remove the effects of inelastic scattering[58].

3.3 Computational Methods

To compute the structure and electronic properties of CePO4, we use DFT + U with
both the local spin-density approximation (LSDA or, for short in this work, LDA) and
the spin-dependent GGA[17]. All results are obtained using the projector augmented-wave
(PAW) method[43] as implemented in the Vienna ab initio Simulation Package (VASP)[41,
42, 59]. For comparison with XPS, spin-orbit coupling and the Perdue-Burke-Ernzerhof
(PBE0) hybrid functional is also employed[60]. We treat explicitly 12 electrons for cerium
(5s25p66s25d14f1), five for phosphorus (2s22p5), and six for oxygen (2s22p6). Brillouin zone
integrations are performed with a Gaussian broadening of 0.1 eV during all calculations, a
6 x 6 x 6 Monkhorst-Pack k-point mesh with the original packing scheme[44], and a 600-eV
plane-wave cutoff, all of which result in good convergence of the ground-state properties
reported here. Energies are converged to 10−6 eV and Hellmann-Feynman forces on the
ions are converged to 10 meV/Å. The equilibrium cell volume and shape are determined by
optimizing all internal degrees of freedom with different functionals and values of U. The
bulk modulus is calculated two ways, first by relaxing the ion positions only and second by
relaxing the cell shape and ion positions. Both values are found to be consistent, and the
latter is reported. The range of volumes used for the bulk modulus calculations is within
4%-5% of the minimum volume.
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As described above, it is well known that standard approximations to DFT, with or without
gradient corrections, may incorrectly capture the electronic structure of materials with
localized d or f states. In this work, we use a standard DFT + U framework, described
in detail by Dudarev et al.[51], to correct for self-interaction errors associated with the Ce
4f states. In this approach, only an effective Hubbard parameter Ueff = U - J enters the
Hamiltonian. Here, we vary Ueff (which we simply refer to as U from here on) from 0 to 5
eV. (The standard DFT result corresponds to U = 0 eV.)

3.4 Results and Discussion

3.4.1 Structural properties

The monoclinic phase of CePO4 assumes a structure with P21/n symmetry (Figure 3.1)[61].
All atoms sit on sites that have the same symmetry and assume the 4e Wyckoff position,
with coordinates A (x, y, z), B ( -x, -y, -z), C (-x+1/2, y+1/2, -z+1/2), and D (x+1/2,
-y+1/2, z+1/2). There is a single unique cerium site, one phosphorous site, and four
oxygen sites. CePO4 is known to be antiferromagnetic (AFM) below a Néel temperature
of 77 K[62]. Since there are four cerium atoms in the unit cell, for AFM ordering two
must be spin up and two must be spin down (Figure 3.1). For U = 0, our calculations
of different spin congurations indicate the ground state is ferromagnetic; for U ≥ 1 eV,
however, our calculations predict the lowest-energy spin arrangement is indeed AFM, in
agreement with experiment, as shown in Table 3.1. A small but non-negligible amount of
hybridization between cerium 4f and oxygen 2p states suggests that the AFM ordering
found for finite values of U is mediated by superexchange. In the AFM ground state, each
cerium atom has six Ce nearest neighbors; two neighbors are spin aligned and four are
antialigned. For the remainder of the work, we assume the spin arrangement shown in
Figure 1 for all calculations. Using a simple Heisenberg model, it is difficult to explain the
high energy of AF type I compared to other magnetic orderings for all calculations except
PBE U = 0 eV. This is especially true because the difference the ferromagnet and AF type
III is very small for LDA+U = 3 eV and for this reason the data in Table 3.1 has not yet
been published.

As expected, we find that the DFT + U approach within LDA generally results in smaller
lattice parameters than the experiment for all values of U explored, leading to a 7% re-
duction in volume relative to room-temperature measurements. In contrast, GGA-PBE
predicts lattice parameters larger than experiments for all values of U, leading to an over-
estimation of the volume by at most 4%, as shown in Table 3.2. In general, a larger U
results in a larger predicted volume, although the change in volume for reasonable U is far
less than typical errors associated with the LDA and GGA. In all cases, computed Wyckoff
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positions are in very good agreement with experiment and independent of U, as can be
seen Table 3.3.

For LDA, the monoclinic angle β (Figure 3.1) is computed to be between 103.3◦ and 103.6◦

depending on U, which brackets the experimental value of 103.47◦. For GGA-PBE, the
range of computed β values is between 103.8◦ and 104.0◦. The experimental bulk modulus
has not been reported, but the calculated values for GGA-PBE range between 99 and 103
GPa and the LDA values range between 123 and 133 GPa (Table 3.2).

In summary, there is minimal variation in the structural parameters with U, aside from a
slight increase in volume and bulk modulus with increasing U. Since a detailed comparison
of calculated structural parameters to experiment does not point to a single “best” value
of U, in what follows we suggest an optimal U for Ce in CePO4 through comparison to
measured photoemission spectra.

Figure 3.1: The conventional CePO4 unit cell. The lattice vectors are a, b, and c, while the
angle between a and c is β. The cerium cations are shown in blue, and the tetrahedra are
made of orange oxygen atoms and yellow phosphorus atoms. An antiferromagnetic spin
ordering of the cerium atoms is indicated with up and down arrows.

3.4.2 Electronic and magnetic properties

In Figure 3.2, we plot the DOS for CePO4 for all the different values of U (in the PRB
publication we only showed a few). In contrast to the lattice parameters, the computed
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Table 3.1: The three possible antiferromagnetic structures and the ferromagnetic structures
show type III has the lowest energy. Using the labels in Figure 3.1, AF type I has Ce(A)
and Ce(B) coupled ferromagnetically. AF type II has Ce(A) and Ce(C) coupled and AF
type III has Ce(A) and Ce(D) coupled, which is used for all calculations and shown in
Figure 3.1.

∆E (eV) PBE U = 0 eV U = 3 eV LDA U = 0 eV U = 3 eV

ferromagnet minimum 0.4543 minimum 0.00004

AF type I 0.0144 0.82068 0.1519 0.7464

AF type II 0.1486 0.00001 0.0808 0.00022

AF type III 0.1521 minimum 0.0847 minimum

Table 3.2: The volume and lattice parameters for the measured and calculated CePO4 unit
cell are shown for all U (in eV). The experimental bulk modulus (B) has not been reported.

Functional Volume (Å3) a (Å) b (Å) c (Å) β◦ B (GPa)

Experiment 300.60 6.8004 7.0231 6.4717 103.460 NA
LDA U=0 287.37 6.6935 6.9266 6.3705 103.357 125

U=1 287.98 6.6999 6.9302 6.3740 103.331 132
U=2 298.46 6.7083 6.9465 6.3897 103.561 122
U=3 290.20 6.7141 6.9515 6.3934 103.464 129
U=4 290.99 6.7181 6.9597 6.3993 103.455 133
U=5 291.51 6.7204 6.9616 6.4040 130.351 133

PBE U=0 308.42 6.8956 7.0893 6.4980 103.849 99
U=1 309.20 6.8944 7.0981 6.5079 103.862 100
U=2 309.80 6.9263 7.0741 6.5166 104.010 99
U=3 310.84 6.9091 7.1084 6.5195 103.883 103
U=4 311.64 6.9138 7.1174 6.5245 103.908 102
U=5 312.38 6.9156 7.1235 6.5304 103.832 103
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Table 3.3: Atom positions (in reduced units of the lattice parameters) for U = 0 and 3 eV.

Experiment LDA U = 0 eV LDA U = 3 eV PBE U = 0 eV PBE U = 3eV

Ce X 0.2818 0.2800 0.2813 0.2852 0.2860
Y 0.1591 0.1587 0.1586 0.1583 0.1586
Z 0.1000 0.1032 0.1023 0.0992 0.0991

P X 0.3050 0.3039 0.3047 0.3039 0.3046
Y 0.1663 0.1642 0.1641 0.1621 0.1621
Z 0.6124 0.6144 0.6136 0.6116 0.6111

01 X 0.2494 0.2486 0.2494 0.2498 0.2505
Y 0.0059 0.0041 0.0047 0.0057 0.0061
Z 0.4439 0.4438 0.4433 0.4405 0.4405

02 X 0.3813 0.3817 0.3827 0.3813 0.3822
Y 0.3314 0.3343 0.3333 0.3311 0.3303
Z 0.4995 0.4964 0.4959 0.4987 0.4984

03 X 0.1061 0.4771 0.4770 0.4714 0.4714
Y 0.2163 0.1067 0.1084 0.1034 0.1035
Z 0.8040 0.8096 0.8089 0.8067 0.8061

04 X 0.1282 0.1243 0.1256 0.1273 0.1282
Y 0.2163 0.2158 0.2158 0.2124 0.2125
Z 0.7086 0.7152 0.7136 0.7099 0.7086
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electronic structure depends signicantly on the value of U, as expected. Notably, despite
the fact that CePO4 is known to be an antiferromagnetic insulator, CePO4 is computed as
metallic and ferromagnetic for U = 0, with the Fermi level positioned within the 4f states.
However, for U ≥ 1 eV, the partial self-interaction correction associated with U reduces
the occupied levels relative to the unoccupied states in the 4f manifold, opening an energy
gap, and CePO4 is correctly predicted to be insulating and antiferromagnetic. The band
gap is found to grow with increasing U, as shown in Figure 3.2. There is sharp peak at the
valence-band edge associated with a lone Ce 4f electron per atom, reflecting a 3+ oxidation
state for the Ce cation (conrmed via examination of the partial DOS).

U=0 

U=5 

U=4 

U=3 

U=2 

U=1 

 -12    -10       -8       -6        -4      -2         0         2         4         6        8   eV 

Ce 4f O 2p  Ce 4f & 5d 

Figure 3.2: The valence and conduction bands for U = 0-5 show the gap opening, where
the black is the LDA functional and the red is the GGA functional. The Fermi energy is
set to 0 eV and the orbital assignments at the top of the plot are from the partial DOS
(which is not shown).

Figure 3.2 also shows that the gap between this occupied Ce 4f band and the top of the
oxygen 2p band - which will be referred to as the valence gap - decreases with increasing U
(peaks labeled in Figs. 3.2 and 3.3). Although U reduces the spurious self-interaction for
4f electrons, lowering the average energy of the occupied 4f bands, it does not affect the
energetics of the O 2p band. In what follows, the valence gap is calculated as a function of
U as the difference between energy levels at the M point, which represents the location of
the direct valence gap between bands, as shown in Figure 3.3, where the full band structure
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is plotted.

Figure 3.3: The band structure for LDA U = 3 eV was calculated along lines between high
symmetry points in the rst Brillouin zone, which are given in the plot to the left-hand side.
High symmetry points provided in reduced coordinates of the primative reciprocal lattice
vectors are Γ (0,0,0), A(-0.60,0,0.41), B (0.40,0,0.41), C (-0.40,0,0.59), M (-0.5,0,0.5), R
(0.5,0.5,0.5), X (0.5,0,0.5), Y (0,0.5,0), and Z (0,0,0.5).

Figure 3.3 lends insight into the difference in conductivity between the lanthanum and
cerium orthophosphates. p-type doping would lead to a partially occupied 4f band at
the Fermi-level valence band, and extraordinarily heavy holes (about 1000me, where me

is the electron mass) within an effective mass picture, due to the flatness of the bands.
Interestingly, this would support hypotheses put forth in the literature that in oxidizing
conditions conductivity is due to electron-hole hopping rather than proton transport based
on the lack of H/D isotope effect[8] and the activated behavior of electronic conductivity
seen in CePO4.
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Figure 3.4: The energy difference between
the rst two valence bands, measured peak to
peak, is 2.5±0.2 eV.

Figure 3.5: The energy difference between
these two bands as measured by DFT + U
for U = 0-5 eV is plotted for LDA and GGA.

In Figure 3.4, we show the measured photoemission data taken on high-purity cerium
orthophosphate powders. From Figure 3.4, the measured valence energy gap is 2.5± 0.2 eV.
As photoemission measures ejected electrons, it provides a good measure of the occupied
DOS. The quasiparticle spectrum measured by photoemission can differ signicantly from
the Kohn-Sham DOS. Self-energy corrections to the Kohn- Sham energies, within the GW
approximation, for example, can account for these differences and lead to quantitative
agreement with experiments[63, 64]. In what follows, we adjust U, which can be viewed
as a model self-energy correction to the 4f states, until the valence gap agrees with the
photoemission measurement.

In Figure 3.5 we plot the computed valence gap as a function of U for both LDA and GGA.
As U partially corrects for the self-interaction associated with the 4f states, it will reduce
their average energy relative to the O 2p band, causing a decrease in the valence gap with
increasing U. The values of U that result in a valence gap closest to experiment are U = 3
eV for LDA and U = 2.5 eV for GGA. (We note that in determining these values, we have
used the fully optimized geometry for each of the two exchange-correlation functionals at a
given value of U.) Interestingly, the computed valence gap does not decrease linearly with
increasing U; it contains an inflection point for both LDA and GGA, as shown in Figure
3.5. This “crossover” separates values of U large enough so that unoccupied Ce 4f states
begin to overlap with the Ce 5d bands. Figure 3.5 indicates a leveling off of the valence
gap after U = 4 eV for LDA, which implies that this value of U is large enough to account
for a majority of the self-interaction of the 4f orbitals, and that larger values will not
signicantly change the electronic structure. This “leveling off” is not observed for GGA up
to 5 eV, though this may not be surprising since the inflection point in Figure 3.5 occurs
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for a larger value of U for GGA than for LDA.

Figure 3.6: The valence-band photoemission spectra is plotted along with the calculated
DOS with Gaussian smearing for the LDA + U (3 eV) plus spin-orbit (SO) coupling. The
inset in the upper right-hand side compares the LDA + U and PBE0 near-valence-band
edge spectra. The peaks are assigned via the calculated partial DOS, and are supported
by known XPS binding energies.

In Figure 3.6, we present a direct comparison of the measured photoemission spectrum
of CePO4 and our first-principles calculations over a broad energy range. As described
above, near the valence-band edge the spectrum is best fit with U = 3 eV for LDA. Peaks
in the photoemission are assigned using a site- and orbital-projected DOS (not shown).
Our assignments are very consistent with known literature values of the binding energies
of these semicore states (calibrated using the Ce 3d peaks)[65]. To better capture the
energetics of Ce states further below the valence-band edge, spin-orbit corrections are also
obtained with the VASP code, assuming noncollinear spins on the Ce ions[66, 67]. For U

36



= 3 and within the LDA, we compute a 3-eV splitting of the Ce 5p orbitals, similar in
magnitude to that predicted for CeF3[68]. (As expected, spin-orbit coupling has negligible
influence on the electronic structure near the valence-band edge.) We also compare our
U = 3 eV LDA calculations with those using a hybrid functional, PBE0 (Refs. [60] and
[69]), which contains 25% Fock exchange. Use of hybrid functionals is an alternative to
DFT + U, as they partially mitigate self-interaction errors for all states, not just the Ce
4f levels. We find small differences between the computed DOS for LDA U = 3 eV and
PBE0 for states further from the valence-band edge, as expected; but from the inset of
Figure 5, the PBE0 valence gap is in good agreement with LDA U = 3 eV, indicating that
even when self-interaction corrections are also applied to O 2p states, fitting the Ce 4f U
to the valence gap with a simpler DFT + U approach results in an acceptable electronic
structure for this compound.

Figure 3.7: The density of states near the top of the valence band (set to zero in each case)
is plotted for PBE and LDA+U=3eV for a unit cell with volume = 290 and 311 Å3.
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Finally, we examine the question of why the LDA and GGA-PBE lead to different values
of U, about 0.5 eV less for the GGA + U than LDA + U through comparison with
photoemission experiments. We find that this distinction is primarily a consequence of
the difference in the equilibrium volumes for the two functionals. We compute the DOS
with LDA + U = 3 eV with the volume artificially fixed at the GGA + U = 3 eV volume
(310.84 Å3) and compare the result directly with LDA + U = 3 eV DOS at its true
optimized volume (290.20 Å3). A similar “computational experiment” is performed using
GGA + U = 3 eV at both LDA + U and GGA + U volumes (290.20 and 310.84 Å3,
respectively). These DOS are shown in Figure 3.7.

For fixed volume and U, LDA + U and GGA + U yield very similar valence gaps (between
Ce 4f and O 2p). Interestingly, however, the band gap (between occupied and unoccupied
4f states) does depend somewhat more on the type of exchange-correlation functional. In
sum, these “computational experiments” show that while specifics of the functional play
a small role in the electronic structure, the valence gap (and value of U that best fits it)
is most sensitive to cell volume. We note here that since the LDA and GGA used here
bracket the experimental volume, our work demonstrates that for CePO4, U lies in the
range of 2.5-3 eV.

3.4.3 Modeling the Hole with Sr-doping

In order to model 3% Sr-doping and polaron conductivity in CePO4, a large 2x2x2 supercell
must be employed. Electronic convergence is very difficult to achieve and results are difficult
to reproduce, so the following data are somewhat preliminary and further work would be
warranted prior to publication. Nevertheless, the trends observed in the calculations are in
reasonable good agreement with initial XPS studies, and are included in this dissertation
for completeness. Either a proton or a hole can charge-compensate for the aliovalent Sr-
dopant and 2x2x2 supercells with Sr and proton dopants will converge. On the other hand,
a few cells with just a Sr-dopant will localize the hole into a polaron, while the majority of
others will not converge and show metallic-like charge sloshing, no matter what value of U
is chosen.

For the cells that did converge, the hole is localized on a Ce atom near the Sr dopant, as seen
in the inset of Figure 3.8. It seems to prefer a Ce with the same magnetic Wyckoff position
(A, B, C, or D) rather than the closest Ce to the dopant. In order to model conductivity,
the activation energy for polaron hopping from one Ce to a neighbor is necessary, but so
far has remained elusive since converging the polaron on different Ce atoms has proven
difficult. Still, the DFT DOS with 6% Sr-doping in a 2x2x1 supercell can capture features
seen in the XPS, such as the stronger binding of most of the electrons (shifting down of
the DOS) and extra peaks due to the 5p electrons of the Sr dopant.

38



Figure 3.8: The DOS from XPS and DFT for Sr doped CePO4 is compares well to the
undoped DOS. The shoulder near the Ce 5p peak in the Sr-doped XPS (black spectrum)
can be seen in the gray DFT DOS. Addition of Sr causes all peaks to shift towards lower
energies, which is also captured in the DFT calculation; the gray Sr-doped DOS looks
stretched compared to the pink undoped DOS. In the upper right hand corner, the iso-
surface of the energy associated with the hole in a 2x2x1 supercell shows that the hole is
localized on a Ce near the Sr-dopant.

3.5 Conclusions

The ground-state geometry and electronic structure of CePO4 was investigated with x-ray
diffraction and photoemission, and a DFT + U method for Hubbard-like effective U values
ranging from 0 to 5 eV. We found that structural properties, including lattice parameters
and bulk moduli, are not sensitive to U. In contrast, the electronic structure is strongly
sensitive to U near the band edges, as expected. By direct comparison with experiments,
we found that the U values for Ce 4f states in CePO4 that provide the best match for
experiments were between 2.5 and 3 eV. More specically, we computed that U = 3 eV for
the LDA functional and U = 2.5 eV for the GGA-PBE functional by comparing directly
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to the “valence gap”, defined here as the difference between the bottom of the occupied 4f
and the top of the occupied O 2p valence bands. The smaller value of U for GGA can be
primarily associated with its larger unit-cell volume. Using a DOS computed with LDA
+ U = 3 eV, all peaks in the photoemission spectrum could be assigned with confidence.
The use of the nonempircal PBE0 functional to calculate the DOS confirmed that even
when self-interaction errors are treated for all states, fitting the valence gap is acceptable
to fix the U for Ce 4f electrons. The calculations presented here show the importance of
using photoemission spectroscopy for validating U parameters. This work sets the stage
for further theoretical work on proton hopping in CePO4 and the electronic structure of
aliovalently doped and oxygen-decient CePO4, and will inevitably lend insight into the
nature of the mixed conduction of this proton-conducting material.
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Chapter 4

First–prinicples calculation of
small polaron mobility in
hematite

The mobility of electron small polarons in hematite, α–Fe2O3, is calculated with planewave
density functional theory methods and Hubbard–U corrections (DFT+U) in periodic su-
percells. The results compare well to previously published wavefunction–based calculations
on small clusters [70, 71]. By setting the effective Hubbard–U parameter to 4.3 eV, the
activation energy for nearest–neighbor transport is calculated to be 0.13 eV and the room–
temperature mobility is estimated as 0.02 S*cm2/s, which are very close to the experimental
values of 0.118(2) eV and 0.04 S*cm2/s [72].

4.1 Introduction

Charge transport in many insulating materials occurs by the conduction of localized elec-
trons or holes, known as small polarons. For applications including batteries[73], thermo-
electrics [74], photovoltaics[75, 76], and catalysts for water–splitting [77, 78], solid–oxide
fuel cells [79], and oxidation of organic compounds [80], the magnitude of the small polaron
mobility has a significant effect on the technology’s performance. The broad practical inter-
est in polaron mobilities has motivated a number of recent efforts aimed at the development
of methods for computing transport properties from electron–structure calculations[73, 81].
In the present work we explore the accuracy of approaches based on density functional the-
ory (DFT), focusing on computing small polaron mobilities in hematite, α–Fe2O3, a system
for which previous calculations based on wavefunction–based methods[70, 71] and exper-
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imental results [72] are available. Hematite is the subject of current research due to its
favorable properties for water splitting [82, 83].

Conduction of small polarons is an activated process, which can be experimentally observed
by the increase in conductivity with increasing temperature, in sharp contrast to band–like
conductivity in metals or some semiconductors. Small polarons are localized electrons or
holes that polarize the lattice around them, thus self–trapping in a potential energy well.
Small polarons are differentiated from large polarons in that they are more localized, so
their spatial extent is small and the area of the lattice distortion is confined to about a
lattice parameter. Small polaron hopping from an initial potential energy well to another
minima requires thermal oscillations to transfer the lattice polarization from site to site and
involves overcoming an activation energy barrier, which can be determined experimentally
and computationally.

The theory of electron transfer in solution was first presented by Marcus in 1956[84] and
has been successfully applied to small polaron hopping in solid–state materials. In limiting
cases where the transfer falls into the so–called “adiabatic” or “diabatic” regimes, the
transfer rate, τ can be expressed in the following form:

τ = A exp

(
−∆G‡

kT

)
. (4.1)

A is a pre–exponential factor and ∆G‡ denotes the activation energy barrier. The extent of
the coupling of the electrons to the thermal oscillations of the lattice determines whether the
transfer is in the adiabatic or diabatic regime. Specifically, following Ref [85], the nature of
the hopping mechanism can be ascertained based on the value of the adiabadicity criterion,
γ, defined as

γ =
1

hνeff

(
π

4∆GadkT

)1
2

V2
AB. (4.2)

In Eqtn. 4.2, VAB gives a measure of the strength of coupling between the electron and
the lattice at the transition state and is called the electronic coupling matrix element, kT
is the thermal energy, h is Planck’s constant, νeff is the effective frequency for motion along
the reaction coordinate, and ∆Gad is the adiabatic activation energy barrier.

The probability of charge transfer is 1–exp[-γ] and if γ is much less than 1, the transfer is
in the diabatic regime (non–adiabatic) and follows Fermi’s golden rule for charge transfer
rates. In this case, small coupling between the electron and lattice indicates that the Born–
Oppenheimer approximation does not hold because the electrons cannot quickly follow the
nuclei motion and instead remain localized on the initial ion during the timescale of phonon
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periods (hence the term non–adiabatic). On the other hand, if the electronic coupling is
large compared to the activation energy barrier, the transfer is adiabatic. In this case, the
adiabatic activation energy barrier, ∆Gad, decreases by VAB from the diabatic activation
energy barrier, ∆Gdia, such that ∆Gad = ∆Gdia−VAB. Thus, knowledge of VAB allows one
to determine the nature of the transfer process, since γ is small if VAB is small compared
to ∆Gad.

Calculation of the polaron transfer rate as described in the Marcus formalism has been
widely applied using wavefunction based methods for complex metal oxides[70, 71, 81, 86,
87, 88, 89, 90]. In many of these studies, the electronic coupling, VAB, is calculated using
a cluster that is excised from a relaxed periodic supercell (which was previously employed
to calculate ∆Gdia). An alternative approach, explored in the current work, is to use
DFT methods with planewave bases. DFT approaches offer the advantage of being able to
efficiently treat very large supercells, which can be used to model dilute or extended defects
such as surfaces[91]. The main drawback of these methods is the need to add corrections
beyond DFT to account for the self–interaction and correlation errors, which can hinder
the localization of polarons.

Unfortunately, the current literature on polaron transport does not offer a standardized
or well–tested method for computing polaron mobilities within DFT. There have been
relatively few calculations with constrained DFT[92, 93] or DFT plus the Hubbard–U
(DFT+U)[73, 94, 95, 96, 97]. In the present work, we employ an approach similar to that
proposed by Maxisch, Zhou, and Ceder[73] for computing adiabatic activation energies
for small polarons with DFT+U. We extend their approach by presenting a method for
estimating VAB at the relaxed transition state, i.e. the saddle point, and also by calculating
the prefactor for hopping rates.

As alluded to above, DFT within the local or semi–local approximations for the exchange–
correlation potential often fails to correctly describe highly localized electrons such as
polarons and ‘d’ electrons in transition metals or ‘f’ electrons in actinides due to the self–
interaction error and missing correlation. The addition of a Hubbard–U correction [51] is
an inexpensive and practical way to overcome these limitations and is determined either
empirically or self–consistently with linear response theory[56]. When a small polaron sits
on a metal ion, the Hubbard–U can help to localize the polaron in a ‘d’ or ‘f’ like orbital and
keep it from forming delocalized states. Thus, the electronic structure of doped hematite
and other iron oxide compounds has been accurately calculated with DFT+U[98, 99]. If
the polaron instead sits on an oxygen ion, like in TiO2, other methods of localizing the
charge are necessary[93].

In the present work we explore the use of DFT+U methods in the calculation of electron
small polarons in α–Fe2O3. Henceforth, ‘polaron’ will be used to specify ‘electron small
polaron’, unless otherwise specified. We focus on electron–polarons in this material because
it is a native n–type material, for which polaron mobilities have been measured experimen-
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tally and computed previously by wavefunction–based methods [70, 71, 72]. These previous
studies allow us to determine the relative accuracy of the DFT+U approach compared to
measurements and calculations performed with a completely independent methodology.
To the best of our knowledge no direct comparisons of DFT+U and wavefunction–based
methods have been performed to date for the same material.

4.2 Computational Methods

α–Fe2O3 has the corundum–type structure with a R3̄c space group (neglecting spin), in
which the oxygen ions are hexagonal close packed and form stacked octahedra, as in Figure
4.1. In the calculations with polarons, we employ 2x2x1 supercells of the hexagonal unit
cell. The hexagonal unit cell contains four formula units, while the primitive cell is rhom-
bohedral with two formula units, which we use to calculate the phonon spectrum provided
in the Appendix. The Néel temperature is 953 K[100], so hematite is antiferromagnetic at
room temperature and the Fe spins are coupled ferromagnetically in the basal planes above
the Morin temperature of 250 K. Polaron hopping is much faster between iron atoms with
the same spin, so conductivity in the basal plane is faster than along the c–axis at room
temperature [101].

In order to compare to room temperature mobility measurements, we use the antiferro-
magnetic structure above the Morin temperature, though this is not the zero–temperature
magnetic ground state, which has ferromagnetic coupling along the long c–axis.

For calculation of the mobility, the polaron transfer rate, τ from Eqtn. 4.1, must be
known. In particular we focus on transfer of an electron small polaron (Fe2+) to nearest
Fe3+ neighbors. Figures 4.1 (A) and (B) show the 120 atom supercell at the ground
and saddle point, respectively; the two Fe ions highlighted in Figure 4.1 (B) with the extra
electrons charge density are nearest neighbors. Determining the attempt frequency and the
activation energy barrier involves multiple calculations, so we attempt to clearly present
our methods below, starting with the activation energy barrier.

Our approach for calculating adiabatic activation energy barriers starts by determining the
ground state of the polaron. The ground–state configuration is determined by adding an
extra electron to a cell with a positive background charge and periodic boundary conditions
(PBC) and then allowing the ions and volume to relax (as described more fully in the
Structure and convergence section).

The resulting ground–state configuration is represented by the state labeled 0 in Figure
4.2. This figure also plots the energy as a function of reaction coordinate for transfer to a
neighboring equivalent site (labeled 1) for three different scenarios. The first is given by
the dashed grey lines, which represent a sketch of harmonic potential energy wells centered

44



Figure 4.1: (A) The 2x2x1 supercell of α–Fe2O3 at the initial ground state shows three
possible polaron trajectories to nearest neighbors Fe1, Fe2, or Fe3 (Fe ions in gold). The
polaron, whose extra electron charge density isosurface is shown in purple, has a slight
preference to hop to the nearest neighbor Fe1. The bond length between Fe0 and Fe1 is
slightly shorter and the Fe1 magnetic moment (shown below the ion label) is smaller than
the other two nearest neighbor Fe ions. The black lines give a sense of the a and b lattice
vectors and the red oxygen ions show hexagonal close packing. (B) The 120–atom 2x2x1
supercell at the saddle point shows the polaron is delocalized over the initial and final Fe
ions and a few oxygen ions. Extra oxygen ions are included to complete the Fe octahedra.
(C) A close–up of the initial (purple) and final (pink) polaron isosurfaces in the hexagonal
unit cell shows that the polaron has ‘d’–orbtial character. The lattice polarization around
the polaron can be seen, where the initial (purple) configuration is given by the grey bonds
and atoms. This image shows that the closest oxygen ions move away from the negatively
charged polaron.

on sites 0 and 1, and correspond to the change in energy as a function of the ionic positions
along the transition path for the case where the electron remains localized on a specific
site. The intersection of the harmonic potentials for the polaron localized on sites 0 and
1 gives the diabatic activation energy barrier (labeled ∆Gdia in Figure 4.2), as estimated
from our calculation of ∆Gad and VAB.

In the second scenario, the red lines represent a commonly–employed approximation to
the adiabatic activation energy (for example Ref. [73]) derived by linearly interpolating
the ionic positions between states 0 and 1 and computing the energies for self–consistent
charge densities on the Born–Oppenheimer surface corresponding to these different ionic
configurations. ∆G̃ad is the difference in energy between the points 0 and 0.5, the transition
state (TS), on the Born–Oppenheimer surface. We will call the approximation of the
activation energy barrier from the linear interpolation ˜∆Gad and the electronic coupling
ṼAB. In the present work we compute directly ˜∆Gad, ∆Gad and VAB for both nearest
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Figure 4.2: The electronic coupling, VAB, lowers the diabatic activation energy barrier,
∆Gdia. The diabats and ∆Gdia are estimated from our calculation of ∆Gad and VAB. The
images from the linear interpolation and the relaxed saddle point are calculated for the
30–atom unit cell with U=4.3 eV.

and next nearest neighbor (nnn) hops of the polaron, as described in more detail below.
In this approach, the electronic structure at the transition state and each image along the
reaction coordinate is calculated using same supercell size and convergence parameters as
the ground state.

Finally, the black solid circle at the transition state represents a refined estimate of the
adiabatic activation energy, derived in the present work by performing a force–based re-
laxation of the ions to the nearest extremum starting from the transition state geometry
approximated by linear interpolation. As indicated in Figure 4.2, the transition state ge-
ometry at point 0.5, as approximated by a linear interpolation of ionic positions, is found in
this work to give rise to a significant overestimation of the true adiabatic activation energy.
This is due to the fact that the residual forces on the ions for linearly–interpolated positions
are found to be on the order of 0.4 eV/Å and are thus significant. The relaxed geometry
is used in phonon calculations to verify that it is a true saddle–point (with one imaginary
vibrational frequency and all others real). In the unit cell at the saddle point, we obtain
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Table 4.1: Lattice parameters

Lattice Experiment Calculation: 2x2x1 supercell Calculation
parameter hexagonal[103] hexagonal with polaron rhombohedral

a 5.04 5.07 10.17 5.4805
b 5.04 5.07 10.17 5.4805
c 13.77 13.88 13.93 5.4805
α (deg) 90 90.0 90.1 55.1
β (deg) 90 90.0 90.0 55.1
γ (deg) 120 120.0 120.0 55.1
z (Fe) 12c 0.355 0.354 4c 0.1470
x (O) 18e 0.306 0.306 6e 0.0560

only one imaginary phonon frequency (14.64i THz) with a corresponding eigenvector that
involves displacements of the Fe and O ions along the reaction path.

4.2.1 Structure and convergence

We use DFT with the PBE functional[17] as implemented in the Vienna Ab–Initio Simula-
tion Package (VASP)[42, 59] for our calculations. The PBE–PAW potentials with 8 valence
electrons for Fe and 6 valence electrons for O are employed. The electronic wavefunctions
are expanded in a planewave basis set with a 650 eV energy cutoff. We use a 2x2x2 k–point
mesh for the 120 atom supercell and a 4x4x2 k–point mesh for the 30 atom hexagonal unit
cell. Both cells are converged with respect to k–points up to 10−4 eV and the supercell uses
Monkhorst–Pack[44] while the unit cell is centered at the Gamma point (also some DOS
calculations use the Gamma point). For total energy and relaxation calculations, gaussian
smearing of 0.03 eV is used, while density of state calculations employ the tetrahedron
method of k–point generation. Forces on the ions in the bulk unit cells are converged to
0.001 eV/Å and the forces in the polaron containing cells are converged to 0.01 eV/Å.
The criterion for convergence of the self–consistent charge density was a tolerance on the
energy change of at most 10−7 eV.

We perform collinear spin–polarized calculations with the Fe ions ferromagnetically cou-
pled in the basal planes and antiferromagnetically coupled along the c–axis (see Ref [100]
for a figure). The Fe ions are high–spin with a measured magnetic moment of 4.6 Bohr
magnetons[102]. The ionic positions obtained from a total relaxation of the bulk hexag-
onal unit cell is the starting structure for the calculations with the polaron. The lattice
parameters and Fe and O Wyckoff positions of the hexagonal unit cell and supercell with
the polaron in the ground state (both using U=4.3 eV, as justified in Choice of U section)
are given in Table 4.1 and compared to experiment[103].
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In order to converge to a state corresponding to a localized polaron on a specific Fe, it is
necessary to break the symmetry of the bulk crystal structure, which is done by manually
moving one oxygen ion on the order of 0.01 Å, away from its ‘nearest’ Fe atom. When the
cell is allowed to relax, the polaron formation is noted by the change in the magnetic mo-
ment on the nearest Fe atom and the change in bond lengths (see Figure 4.1 (A) and (C)).
The localization of the electron can also be seen by plotting the charge density associated
with the extra electron, and by analyzing the electronic density of states (DOS). Figure
4.3 shows the DOS obtained in such a calculation with an effective Hubbard–U parameter
value of 4.3 eV; the state corresponding to the extra localized electron corresponds to the
sharp peak nearest the Fermi energy.

For the most accurate saddle point calculations, we use 120 atom 2x2x1 supercells, where
the c–axis is not doubled. Calculation of ∆Gad in the 30 atom and 120 atom cell allow
us to estimate the effect of system size. A larger supercell than the 120 atom supercell is
deemed unnecessary since the activation energy from the saddle point obtained from this
supercell is at most only 0.02 eV smaller than in the 30 atom unit cell.

4.2.2 Transition states

All Fe atoms are related by symmetry in the bulk crystal, such that the initial and final
states of the polaron in the same basal plane are identical. Thus, once the ground–state
configuration (ionic positions) of the polaron is determined on the initial Fe, a symmetry
operation moves the polaron configuration from the initial to the final Fe.

There are only three nearest neighbor Fe3+ ions to the initial Fe2+ ion (the polaron con-
taining iron) in the same basal plane and these converge to different bond lengths from
the initial Fe ion (2.92, 2.98, and 2.99 Å) in the 120 atom supercell as shown in Figure
4.1 (A) and thus are no longer equivalent by symmetry after ionic relaxation. The average
Fe–Fe bond length in the basal plane around a Fe3+ ion far from the polaron is 2.99 Å,
with variations between 2.98 and 3.01 Å, so the Fe0–Fe2 and Fe0–Fe3 bond lengths do not
differ significantly from the average, while the Fe0–Fe1 bond is shorter. The closest oxygen
ions are significantly farther from the Fe2+ (all just over 2.0 Å) than the Fe3+ ions (all
just under 2.0 Å) and these oxygen ion displacements can be seen in Figure 4.1 (C). In
addition, the Fe2+ and the asymmetry of its nearest Fe neighbors is distinguished by cal-
culated magnetic moments, as shown in Figure 4.1 (A). Comparison of magnetic moments
from the literature can be found in the Results and Discussion.

Of the three nearest neighbor Fe3+ ions to the polaron on the Fe2+, the Fe1 has a signif-
icantly smaller magnetic moment, m, than the average magnetic moment of 4.17 µB and
the other nearest neighbor Fe3+ ions, indicating that there is some charge density from the
extra electron that is delocalized over this neighboring Fe. The polaron will hop to one of
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the nearest neighbor Fe3+ ions and we find, unexpectedly, a lower activation energy barrier
and a higher electronic coupling for transport from Fe0 to Fe1 than to Fe2 (Table 4.2). We
assume that the two Fe3+ that are 2.98 and 2.99 Å away from the Fe2+ will have similar
activation energies since the difference between their distance and magnetic moments are
insignificant, and only one such activation energy is explicitly calculated.

The asymmetry of the nearest neighbor Fe3+ ions is important to take into account when
finding polaron trajectories through the crystal and is discussed in the Results and dis-
cussion section. The polaron will oscillate between the initial Fe0 and final Fe1 ions more
easily than randomly diffusing in the basal plane. In the 30 atom hexagonal cell there are
only two Fe ions represented on each basal plane, so there is no need to test different hop
directions.

Once the linear interpolation between the initial and final polaron configurations is created,
each image along the reaction coordinate is relaxed electronically. The adiabatic activation
energy, ˜∆Gad, from the linear interpolation and then ∆Gad is derived from the refined
saddle point, which is verified by performing subsequent phonon calculations.

4.2.3 Choice of U

In all calculations we made use of the rotationally invariant form of the LDA+U approach
introduced by Dudarev et al.[51]. In this formalism, the Hubbard model parameters, U
and J, are not independent, and the energy depends only on the parameter Ueffective = U
– J. In the text above and below we refer to the value of Ueffective simply as U and set
J=1.

One practical difficulty with the DFT+U approach is the tendency for the system to
converge to different metastable states corresponding to different orbital occupancies[104].
To treat this problem in the current work we employ a “ramping” approach and also
perform calculations with different initial perturbations of the ionic positions, in order to
check that we are converging to the lowest–energy orbital configurations. In our “ramping”
approach, we start with converged ionic positions using a value of U=4.3 eV and increase
or decrease U in a step–wise manner, using the new converged ionic positions to restart
with each new U.

4.2.4 Electronic coupling

In previous applications of the DFT+U approach to calculating polaron activiation ener-
gies [73, 96, 97] it has been implicitly assumed that the hopping process is adiabatic. This
assumption has been shown to be valid for the case of nearest–neighbor polaron transfer in
α–Fe2O3 from previous wavefunction–based calculations[70, 71]. However, in cases where
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previous such calculations have not been performed it is useful to have a framework for
checking the validity of the assumption of adiabatic processes within the DFT+U formal-
ism. For this purpose we propose the following approach to computing the parameter VAB

required for the calculation of γ defined above.

We estimate the electronic coupling matrix element along the lines of the Mulliken–Hush
formalism within Marcus Theory, as described in this reference[105]. Strictly speaking, the
Mulliken–Hush formalism only applies when the TS wavefunction is a linear combination of
the initial and final wavefunctions, such that these polaron wavefunctions can be thought of
as atomic orbitals. The DOS (Figure 4.3) and charge density show that the extra electron is
a small polaron with ‘d’–orbital character in the ground state, as can been seen in Figs.4.1
(A) and (C). The highest occupied ‘orbital’ and lowest unoccupied ‘orbital’ at the TS
also have localized ‘d’–character, suggesting that they are the ‘bonding‘ and ‘antibonding’
linear combinations of the ground state orbitals (bonding orbital shown in Figure 4.1 (B)).
The character of these orbitals gives us confidence that we can use the Mulliken–Hush
formalism to estimate VAB from the TS electronic structure of hematite.

In the Mulliken–Hush formula, ∆E12 is the energy difference between the adiabatic bonding
and antibonding electronic states at the transition point, as given below:

VAB = 1
2∆E12. (4.3)

This energy difference will be estimated from the positions of the two defect states, above
and below the Fermi energy, in the DOS calculated in the transition state, as shown in the
Results and discussion section.

4.3 Results and discussion

This section starts by presenting the estimation of the mobility. Using U=4.3 eV, the
value of the mobility is only a factor of two smaller than experiment. We next discuss
our choice of U and describe the difference between using the relaxed saddle point versus
the TS from the linear interpolation. Finally our estimation of the electronic coupling is
presented.

4.3.1 Mobility

We validate the DFT+U method by comparison to the experimental mobility. The mobil-
ity, µ, as shown in Eqtn. 4.4, can be calculated from the rate of electron transfer, τ . Also
in Eqtn. 4.4 is the relation between mobility and the diffusion coefficient, D. We use kT=
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0.02499 eV as in the experimental measurement, and a is the electron transfer distance,
where we use our average calculated nearest Fe–Fe distance of 2.99 Å.

µ =
eD

kT
=

e

kT

a2τ

2
(4.4)

It is to be noted that in comparing the mobility to experiment, we will employ the value of
τ for nearest–neighbor hopping to Fe1 in Eqtn. 4.4. This is an approximation because the τ
is different for different neighbors, as described above, and is significantly lower for smaller
for hopping along the c–axis than within the basal plane. Thus, our calculated mobilities
should be viewed as an upper bound when compared to measurements on polycrystalline
samples, which average over hop directions.

In the adiabatic limit, the rate of electron transfer is related to the attempt frequency
– τ0, the frequency of the mode that transfers the polarization of the lattice around the
initial Fe to the final Fe and in Eqtn. 4.1, A = N ∗ τ0, where N is the number of nearest
neighbors. Since electron transfer in hematite is strongly in the adiabatic regime, we
determine the attempt frequency by calculating the phonon modes at the initial and saddle
configurations[106].

The classical attempt frequency is the ratio of the product of the vibrational modes at
the ground and transition states (where all modes are populated) and we calculate it to

be
∏3N−3

i=1 νGS
0∏3N−4

i=1 νTS
0

= 2.93 THz. The products do not include the three translational modes

and there is one fewer term in the denominator due to the additional unstable mode at
the TS. However, the classical attempt frequency should not be used since it assumes the
temperature is much higher than the Debye temperature of around 480K[107]. Since we
are interested in comparing to experimental measurements at room temperature, we em-
ploy instead a calculation of the attempt frequency using the full quantum–mechanical
expression for the vibrational free energy in the saddle and ground–state configurations,
accounting for the temperature–dependent occupations of the phonon modes. This proce-
dure, which is detailed in Ref. [108] and whose result is shown below, gives a much higher
attempt frequency at room temperature of 60.4 THz.

τ0 =
kT

h
exp

− ∑
Re[m]

ln [2 sinh (xTSm )]−
∑
Re[m]

ln [2 sinh (xGSm )]

 (4.5)

The phonon modes in the 30 atom unit cell are calculated for U=4.3 eV at the ground state
and saddle–point. At the relaxed saddle point there is an unstable mode of 14.64i THz
(488.33i cm−1). Calculation of the phonon modes of bulk hematite using VASP PAW–
potentials has not yet been published, so we give our results from the rhombohedral cell
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Table 4.2: Mobilities, activation energies, and the electronic coupling for polaron transport
across two different paths to Fe1 and Fe2 show significant differences between the saddle
point (center column) and linear interpolation (right column).

µ [cm2/(Vs)] ∆Gad [eV] VAB µ̃ ˜∆Gad ṼAB

experiment 0.04 0.118(2)
U=4.3 Fe1 0.018 0.13 0.41 0.004 0.17 0.29

Fe2 0.008 0.15 0.35 0.0002 0.24 0.23
U=3.8 Fe1 0.29 0.06 0.40 0.088 0.09 0.30

Fe2 0.29 0.06 0.40 0.002 0.18 0.22
cluster[70] 0.00056 0.19 0.190
cluster[71] 0.062 0.11 0.204

nnn 0.33 0.014 0.34 0.012

in the Appendix.

Our calculation of the adiabatic activation energy using the relaxed saddle point and U=4.3
eV gives a mobility of 0.018 cm2/(Vs), which compares favorably to the experimental value
of 0.04 cm2/(Vs)[72]. This calculated result is significantly higher than the value of 0.00056
cm2/(Vs) derived by Iordanova et al. [70] using wavefunction–based cluster calculations.
This discrepancy comes from the somewhat larger value for ∆G̃ad in their calculations,
which is comparable to what we compute by linear interpolation of the TS geometry, but
0.06 eV higher than that corresponding to the saddle point in our calculations. Addition-
ally, the “attempt frequency” derived in Ref. [70] is estimated to be 90 THz, which is 31
times larger than the value calculated in this study. This larger prefactor, A, in Eqtn. 4.1,

is estimated using
V2

AB
~

(
1

16π∆GdiakT

)1
2
, which is a bastardization of the Marcus Theory

formalism, since this prefactor is intended for non–adiabatic transfers that follow Fermi’s
golden rule.

4.3.2 Choice of U

An important question in the present DFT+U based approach to calculating polaron mo-
bilities is the choice of the value of the effective Hubbard–U parameter. In order to test
the dependence of our results on the value of U, we calculated the activation energy barrier
from linear interpolation (∆G̃ad) for transfer to Fe1 and Fe2 in the 120 atom supercell
with values of U from 3.1 to 6.3 eV, which cover the range of U values presented in litera-
ture for hematite[86, 99, 21], maghemite (γ–Fe2O3)[109], and magnetite[110, 111, 112, 113,
20, 114, 115, 116]. Since magnetite, Fe3O4, contains both Fe3+ and Fe2+ ions, the value
of U found to be useful for modeling this material, which is typically smaller than those
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used for hematite, might be viewed as more appropriate for modeling electron polarons in
α–F2O3.

Our results in Table 4.3 show there is a strong monotonic dependence of ∆G̃ad on the
chosen value of U. The values of ∆G̃ad for transfer to Fe1 using values of U less than or
equal to 3.8 eV are significantly smaller than those to Fe2, which can be understood because
the polaron is more delocalized with smaller values of U and preferentially delocalizes over
the Fe1 neighbor rather than over the other two nearest neighbors.

The appropriate value of U for a given system can be evaluated by comparing to ex-
periment or higher levels of theory, such as hybrid functionals. By comparison of their
calculated DOS to X-ray photoemission and inverse photoemission spectra, Rollmann et
al. suggest setting U=4 eV[99]. Two calculations of hematite with hybrid functionals have
been compared to DFT+U and suggest setting U to 4.3[86], a value which was calculated
using linear response theory and unrestricted Hartree–Fock[117], or 4 eV[]. For magnetite,
hybrid functionals calculation compared to DFT+U suggest U=3.8 eV[20].

Another measure of the soundness of a chosen U is the predicted magnetic moment of Fe.
Experiment measures 4.6 µB[102], and our calculated value of 4.18 µB (in the bulk with
U=4.3 eV) compares well to the HSE(with 12% exact exchange) calculation of 4.16 µB
[21]. A recent paper, which aims to predict band gaps, found similar magnetic moments
between hybrid functionals and DFT+U with U=4.3 eV[86] . Table 4.3 presents the average
magnetic moment on the Fe ions involved in the electron transfer (labeled Fe2+) and the
average magnetic moment of all other Fe3+ ions in the cell at the TS for transfer between
Fe0 and Fe1. Our results show that the for U=3.8, 4.0 and 4.3 eV, the magnetic moment on
the two Fe ions involved in the polaron transfer at the TS does change significantly.

As mentioned above, U values between 3.8 and 4.3 eV compare well to the wavefunction–
based methods using iron clusters. Setting U=4.3 eV, gives a ∆G̃ad for transfer to Fe1 of
0.17 eV, which compares very well to the more recent wavefuncton–based publication[70]
result of 0.19 eV, though the result from U=4 eV compares well to the older publication by
Rosso et al. [71]. Because our calculation of the relaxed saddle point activation energy of
0.13 eV using U=4.3 eV also compares well with experiment[72], we proceed with U=4.3
eV for estimating the mobility. In addition, we present results from the relaxed saddle
point using U=3.8 eV, to demonstrate how a smaller value of U can change the electronic
coupling due to increased delocalization of the polaron.

4.3.3 The saddle point and finite size effects

The linearly interpolated transition state is not the true saddle point, having forces up to
0.4 eV/Å on many of the ions in Fe2O3. Using the more refined saddle point structure
lowers the calculated activation energy barrier by up to 0.1 eV for different polaron tra-
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Table 4.3: The activation energy from the linear interpolation increases monotonically with
increasing choice of U for polaron transport to both Fe1 and Fe2. The average magnetic
moment at the TS, m̄ [102], is shown in order to compare to the experimental value of 4.6
µB, where the second to last column is the average of the magnetic moment on the initial
and final Fe ions involved in the polaron transfer to Fe1 and the final column is the average
of all the other Fe ions.

∆G̃ad [eV] m̄ [µB]
U (eV) Fe1 Fe2 Fe2+ Fe3+

3.1 0.01 0.13 3.85 4.07
3.3 0.03 0.15 3.86 4.08
3.8 0.09 0.18 3.91 4.13
4.0 0.12 0.20 3.93 4.15
4.3 0.17 0.24 3.95 4.18
5.3 0.32 0.35 4.02 4.26
6.3 0.47 0.51 4.09 4.35

jectories and values of U. Relaxing the TS brings the activation energy with U=4.3 eV
closer to the experimental value of 0.118 eV[72], from 0.17 to 0.13 eV. The experimental
adiabatic activation energy is measured in 3% Ti–doped Fe2O3, which our dilute limit
calculation can simulate with the positive background charge compensating for the extra
electron. Intentionally n–doping allows the experimental ∆Gad to just measure the barrier
to transport rather than including the formation energy of the charge carrier.

The above calculations with different values of U are calculated with a 120 atom supercell,
but we also use the 30 atom supercell in order to test the finite size effects. The ground–
state electronic structure differs significantly between the unit cell and supercell, as can be
seen in the DOS from Figure 4.3, and indicates that finite size effects are significant. In
the larger 120 atom supercell the initial and final Fe atoms are 7.8 Å across the periodic
boundary, while in the 30 atom cell, the distance between the initial and final Fe ions is
2.95 Å, but these atoms are also 3.05 Å from each other across the periodic boundary
(Figure 4.1 (C)). Thus we use calculation of the activation energy from the 120 supercell
to compare to experiment. Even though finite size effects are significant in the electronic
structure, the activation energy does not change much between the different sized cells,
as described below. Since calculations of phonons in the supercells are insurmountably
expensive, the unit cell is deemed adequate to estimate the attempt frequency.

The hexagonal unit cell of hematite predicts the same saddle point ∆Gad of 0.15 eV (U=4.3
eV) as the polaron transfer to Fe2 in the 120 atom cell. The average of the ∆G̃ad for polaron
transfer to Fe1 and Fe2 (0.17 and 0.24 eV) for the 120 atom supercells gives about the same
∆G̃ad as the 30 atom supercell, 0.20 eV, which seems reasonable. The similar activation
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Figure 4.3: (A) The DOS for the hexagonal
unit cell shows the narrow band due to the
polaron in the ground state near the Fermi
energy (Ef ) in green. At the saddle point,
the ‘bonding’ and ‘antibonding’ orbitals are
both in the spin–down channel and show
some broadening due to the periodic image
(in blue). (B) The peaks due to the polaron
sharpen in the 2x2x1 supercell compared to
the unit cell for both the linear interpolation
(light blue) and the saddle point (black). (C)
The next nearest neighbor DOS shows two
sharp peaks very close to the Ef , indicating
very little electronic coupling.
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energies between the 30 and 120 atom cells suggests that polarization of the lattice due to
the polaron is confined to about a lattice vector.

4.3.4 Electronic coupling

The electronic coupling, VAB, is well defined in the cluster–wavefunction based method
and is related to SAB, the overlap between the initial electronic wavefunction, ψA, and the
final electronic wavefunction, ψB, at the transition state coordinate.

VAB = |HAB−SAB(HAA+HBB)/2|
1−S2

AB

Hij = 〈ψi|H|ψj〉
SAB = 〈ψA|ψB〉

(4.6)

Rosso et al.[71] calculate ṼAB to be 0.204 eV for the nearest neighbor electron transfer
in the basal plane by calculating wavefunction overlap and Iordanova et al.[70] calculate
VAB to be 0.190 eV using the Mulliken–Hush formula (Eqtn. 4.3). These values compare
well to our estimation of the electronic coupling at the linear interpolated TS using the
Mulliken–Hush formalism and U=3.8 and 4.3 eV as shown in Table 4.2.

We determine ∆E12 from the DOS, for example in Figure 4.3 (B) for U=4.3 eV. Deter-
mining whether the Mulliken–Hush formula in Eqtn. 4.3 is appropriate in the DFT+U
calculation of the electronic structure is discussed in the Methods section.

As expected, at the saddle point, the electronic coupling of VAB=0.41 eV for Fe1 and
0.35 eV for Fe2 is stronger compared to the linear interpolated TS. Somewhat surprisingly,
setting U=3.8 eV does not significantly change the estimate of the electronic coupling for
transfer to Fe1 with U=4.3 eV (4.2). Furthermore, using the relaxed saddle point with
U=3.8 eV gives equivalent values of the activation energy and the electronic coupling for
transfer to Fe1 or Fe2, even though VAB differs with the linear interpolation. This is possi-
bly due to increased ability of the polaron to delocalize with U=3.8 eV upon relaxation of
the ionic positions. Unsurprisingly, all these calculations put the nearest neighbor electron
transfer in the basal plane of hematite strongly is in the adiabatic regime.

We wanted to test the ability of this method to calculate transfer near the diabatic limit,
so we looked at the next nearest neighbor (nnn) coupling. In Figure 4.1 (A), the next–
nearest neighbor hop corresponds to transfer from the Fe0 ion to the Fe ion near the b
lattice vector in the same basal plane, at a distance of approximately 5 Å. Using the nnn
electronic structure at the saddle point in Figure 4.3 (C), we find VAB=0.014 eV, which is
smaller that the value estimated by Rosso et al. of ṼAB=0.06 eV[71], but still on the cusp
of the adiabatic and diabatic regime. Thus, we conclude that DFT+U can also determine
the adiabaticity of polaron transfer.
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4.4 Summary

We show that calculating the mobility, adiabatic activation energy, and electronic coupling
for polarons on metal ions with DFT+U is a viable method since it compares favorably
with experiment and the cluster–wavefunction based method. The two wavefunction–based
calculations[70, 71], of ∆G̃ad in hematite employ a linear interpolation to determine the
transition state coordinates, but we show that using the relaxed saddle–point coordinates
gives a better description of electron–phonon coupling that is closer to the experimental
measurement of electron mobility in hematite. Using the value of U=4.3 eV is adequate
for predicting activation energy barriers and electronic coupling, especially since values of
U close to 4.3 eV do not change the electronic coupling or ∆Gad by much.

Finally, we find it is possible to predict the adiabatic versus diabatic regime of electron
transfer in hematite using the electronic structure (DOS) at the saddle point. The agree-
ment between the DFT+U and wavefunction–based calculations and experiment gives us
confidence that this method can be used to predict polaron transport properties in new
materials and help materials design for technological applications.

4.5 Appendix/Supplementary Material

4.5.1 Phonons in bulk hematite

We performed bulk phonon calculations on the rhombohedral primitive cell to help inform
our calculations of the 30 atom hexagonal cell with the extra localized electron. There
have been two publications of the phonon modes of hematite, the first by Chamritski et
al.[118] using interatomic Buckingham potentials and the second by Blanchard et al.[119]
using DFT+U as implemented in PWSCF. We chose to report our VASP results since they
differ slightly from the PWSCF calculation. We agree on all peak assignments except for
the two italicized lines in Table I of the Appendix. Blanchard et al. assigns the experimental
peak[120, 121, 122] at 297 cm−1 as a Eg mode, but we assign it as Eu (as did Chamritski)
by matching the VASP determined atom displacements with the theoretical phonon mode
displacements as calculated by SMODES and ISOTROPY (free online software by H. T.
Stokes and D. M. Hatch). While Blanchard et al. assign the peak at 243 cm−1 as the Eu

mode, we and Chamritski (using IR and Raman spectroscopy[123, 124]) find it to be of Eg

character.
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4.5.2 Phonons at the transition point

Phonon calculations in the 30 atom unit cell with U=4.3 eV are calculated at the ground
state (GS) and saddle point (TS) in order to calculate the attempt frequency, τ0. First the
GS is given and then the TS with the imaginary mode in italics.

GS phonon modes in meV:

75.361236, 74.488224, 73.647842, 73.595373, 73.180261, 68.374181, 67.381748, 66.473775,
65.202875, 65.115274, 64.726036, 64.569645, 64.406384, 63.294114, 60.908155, 60.439803,
60.301328, 59.425207. 59.012777, 58.899947, 56.701297, 56.679626, 55.099485, 55.006942,
50.141569, 48.431265, 48.113792, 47.844257, 47.576271, 47.189781, 46.839747, 46.331033,
45.668740, 45.575850, 44.717222, 44.566958, 44.523005, 44.145705, 43.914829, 43.808481,
43.170045, 40.401246, 37.992240, 37.644922, 37.412568, 37.011380, 35.950282, 35.835343,
35.495915, 34.965467, 34.746269, 34.637623, 34.537935, 34.282331, 33.958044, 33.923401,
33.374745, 33.136965, 33.015018, 32.813694, 32.641412, 32.124432, 32.092973, 31.505421,
31.046427, 30.722320, 30.230126, 27.545653, 26.464855, 25.800482, 25.653737, 25.197013,
23.951552, 23.212738, 20.331350, 19.934667, 19.857384, 19.727659, 19.433095, 19.253468,
18.830060, 18.688827, 18.231385, 10.935317, 10.769033, 10.521213, 9.846469, 0.165858,
0.192157, 0.243812

TS phonon modes in meV:

87.474920, 74.948556, 74.828633, 73.881718, 73.717062, 73.372077, 68.111364, 67.094035,
65.535375, 65.400860, 65.079523, 64.728271, 64.420090, 64.138102, 61.917920, 61.190364,
60.581678, 60.410040, 59.894597, 59.301826, 59.169759, 57.054449, 56.836459, 55.536715,
49.691357, 48.598462, 48.148659, 47.978682, 47.773351, 47.416614, 46.689696, 46.297717,
45.777230, 45.567671, 45.283289, 44.931335, 44.811107, 44.511628, 44.277000, 43.412135,
40.648553, 38.887241, 38.359402, 37.663771, 37.337848, 37.091440, 36.369950, 36.012624,
35.591272, 35.347844, 35.194832, 34.690229, 34.502296, 34.390444, 34.255382, 34.052806,
33.347499, 32.955512, 32.909120, 32.772699, 32.493596, 32.300570, 31.861741, 31.641705,
30.818153, 29.594393, 28.711370, 27.566440, 26.240321, 25.575396, 25.228488, 23.748146,
23.400776, 20.557989, 20.321415, 20.132345, 20.061547, 19.810094, 19.253439, 19.187090,
18.797337, 18.332946, 13.011216, 10.982415, 10.774474, 10.589071, 4.671390, 0.814117,
1.571635, 60.545218

4.5.3 Symmetry operations for final configuration

In section 4.2.2, a general function was given to transfer the initial ion coordinates to
the final ion coordinates. Here, I provide a short bash script that helps to streamline this
process for the 2x2x1 supercell nearest neighbor transfer. In order to run the script (which I
called awkscript16), a POSCAR file with only the coordinates is needed. After the VASP
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header with the lattice coordinates must be added back in. Usually I copy the CONTCAR
to the coordinates only file ‘cont’ and then run the script from the unix command line as
follows: awkscript16 cont

#!/bin/sh

awk ‘{print $0,NR >> "temp"}’ $1

awk ‘{
if (1/6 - $1 <= 0) $1 = 7/6-$1;

else $1 = 1/6 - $1;

if (-$2+5/6 <= 0) $2 = 11/6-$2;

else $2 = 5/6 - $2;

if (-$3+2/3 <= 0) $3 = 5/3-$3;

else $3 = 2/3 - $3;

printf ‘‘%1.16f %1.16f %1.16f %1.0f \n", $1, $2, $3, $4 >> "tempcont" }’ temp

paste numfile2 tempcont | sort -n > "tempcont2"

awk ’{printf "%1.16f %1.16f %1.16f \n", $2, $3, $4 >> "cont02" }’ tempcont2

rm temp∗
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Table 4.4: Phonon modes from the bulk rhombohedral primitive cell use U=4.3 eV. The
previous calculations of phonons in hematite assign their peaks using different experimental
IR and Raman measurements, so we report the experimental values from both in the
columns 3 and 4.

Calc. ν[cm−1] Symm. Ref[118] Exp[123, 124] Ref[119] Exp[120, 121, 122]

622.7 A2g

552.7 Eg 613 609
537 A1u

476.4 A2u

442.5 A1g 498 496
396.4 A2g

376.4 Eu 380–400 433–437
387.8 Eg 412 408
317.5 A1u

271.5 Eu 310–335 297
226 A2u 310–335 299–301

270.5 Eg 299 290
261 Eg 293 286–292

207.5 Eg 247 243
217.4 Eu 229 216–227
199.5 A1g 225 224
167.4 A2g
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Chapter 5

Conclusions and future work

The studies presented in this thesis, both computational and experimental, have greatly in-
creased our knowledge of proton and polaron conductivity in insulators. The main findings
from each chapter are as follows.

Chapter 2: We find that the binding energy of protons to Ba–dopants in LaPO4 is 0.2 eV
and is mainly due to electrostatic interactions. This binding energy can be used to explain
the increased activation energy for proton transport upon doping.

Chapter 3: The electronic structure of CePO4 is calculated with DFT+U and compares
well to X–ray spectroscopy when U is set to 3 eV with the LDA functional. The density
of states show that holes sitting on Ce cations are favorable since the lone Ce ‘4f’ electron
is the closest to the Fermi energy.

Chapter 4: We developed a DFT+U method for calculating small–polaron mobility in
hematite; our results compare favorably with experiment and wavefunction–based meth-
ods. Furthermore, we can estimate the electronic coupling matrix element from the DOS,
which puts the polaron transfer strongly in the adiabatic regime (as is also predicted by
cluster/wavefunction based methods).

Unpublished AC and DC impedance measurements of solid solutions of LaPO4 and CePO4

show that substituting Ce on La sites dramatically increases the power of CexLa1−xPO4

in a fuel cell set-up (manuscript in preparation by H. L. Ray and L. C. De Jonghe). Ce/La
orthophosphate solutions with increased power output could compete with current com-
mercial proton-conducting materials, so future computational and experimental work on
rare-earth phosphates should focus on understanding mixed conductivity in these materi-
als. The effect of CeLa seems to be a lower activation energy for proton transport, which
we have shown can be calculated with density functional theory in lanthanum orthophos-
phate.
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The work presented in this thesis provides a strong foundation to design computational
experiments to test the effect of Ce/La solutions on the carrier concentration, n, and
mobility, µ. Through investigation of LaPO4, we showed that Ba-dopants bind protons
by 0.2 eV in 2x2x2 supercells, primarily due to electrostatic interactions. Subsequent
investigations show that Sr-dopants bind protons by even more - 0.3 eV in 3x3x3 supercells.
One hypothesis for the increase in power of Ce/La solid solutions is that hole-polarons,
stable due to the Ce cations, can compete with the protons for ‘binding’ with the dopants,
thus decreasing the activation energy for proton transport through the material. Future
studies similar to those demonstrated above for the of the electronic structure of doped
and undoped CePO4 and polaron transport in hematite would be helpful to inform future
investigations into mixed hole/proton conductivity in Ce/La solid solutions.

The DFT+U CePO4 electronic structure shows a sharp peak at the Fermi energy with Ce
‘f’ character, which can be easily oxidized to Ce4+, potentially creating a small-polaron.
Unpublished work on Sr-doped CePO4 shows that the hole can indeed sit on the Ce ions,
as demonstrated in the last section of Chapter 3. While we would like to calculate the
activation energy for polaron hopping in CePO4, magnetic frustration and difficulty with
electronic convergence have led us to design some simpler calculations.

By moving the lone Ce3+ ‘4f’ electron into the core with the Ce3 pseudopotential available
with VASP, the Hubbard U is no longer needed to localize the electron and calculations
converge more easily. To start, we wanted to know how strongly the hole versus the proton
binds to Sr-dopants in CePO4. The hole is created by replacing on Ce3 pseudopotential
with a regular Ce pseudopotential and then the number of electrons near that rare-earth site
is reduced due to the Sr-dopant. Further work should involve creating Ce/La solid solutions
and determining the change in the proton’s activation energy barrier in the presence of
hole-polarons.

The mystery of why the concentration of protons is significantly smaller than the con-
centration of dopants still remains for rare-earth phosphates. Thermodynamic models of
defect concentrations may shed light on the number of carriers in LaPO4, CePO4 and their
solid solutions and whether substituting Ce for La increases the proton concentration in
these materials. Equations 1.7 and 1.6 are the basis for the thermodynamic models of
defect concentrations. The chemical potential of the reactants and products are equal, as
shown below and explained in Ref. [11]. The chemical potentials can be related to the
Helmholtz free energy that is calculated with DFT and the equilibrium constant can be
determined at different temperatures and gas pressures (since the chemical potential of
water, for example, depends strongly on T and P).

µP2O••7
+ µH2O = µ2HPO•4

(5.1)

Knowledge of defect concentrations at different oxygen and water partial pressures will
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help interpretation of AC and DC conductivity data, as presented in Figure 1.2.
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