
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Satune: Synthesizing Efficient SAT Encoders

Permalink
https://escholarship.org/uc/item/5131m4f5

Author
Gorjiara, Hamed

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5131m4f5
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Satune: Synthesizing Efficient SAT Encoders

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Computer Engineering

by

Hamed Gorjiara

Thesis Committee:
Professor Brian Demsky, Chair

Professor Harry Xu
Professor Nader Bagherzadeh

2019

c© 2019 Hamed Gorjiara

TABLE OF CONTENTS

Page

LIST OF FIGURES iv

LIST OF TABLES vi

ACKNOWLEDGMENTS vii

ABSTRACT OF THE THESIS viii

1 Introduction 1
1.1 Introduction to Satune . 1
1.2 Challenges . 3
1.3 State of The Art . 4
1.4 Satune . 4
1.5 Summary of Results . 6

2 Background in Boolean Satisfiability Problem 7
2.1 Constraint Satisfaction Problem (CSP) . 7
2.2 Boolean Satisfiability Problem . 8
2.3 Propositional Logic and CNF . 8
2.4 CNF Example . 9

3 Background in SAT Solver 11
3.1 Preliminary . 11
3.2 The DPLL Algorithm . 12
3.3 The CDCL Algorithm . 13
3.4 Heuristics . 13
3.5 Example: Solving a Sudoku problem . 14

4 Background in SAT Encoding 18
4.1 Integer Variable Encodings . 18
4.2 Order Encodings . 20

5 Motivation and Overview 22
5.1 Motivation . 22
5.2 Overview . 24

ii

6 Satune Domain Specific Language (DSL) 27
6.1 Example . 29

7 Satune’s Candidate Optimizations 30
7.1 Elimination of Single Polarity Boolean Variables 31
7.2 Optimization of Orders . 32
7.3 Order Conversion . 35
7.4 Integer Variable Domain Reduction . 35
7.5 Encoding . 35
7.6 Constraint Subgraph . 37
7.7 Encoding Graph . 37
7.8 Constructing Constraint Subgraphs . 39
7.9 Has Value Constraints . 39
7.10 Variable Ordering . 40
7.11 CNF Generation . 40
7.12 Incremental Solving . 41
7.13 Tuner Framework . 41

8 Evaluation 44
8.1 JMCR . 45
8.2 SyPet . 47
8.3 Dirk . 48
8.4 Hexiom . 50
8.5 Sudoku . 51
8.6 Killer Sudoku . 52
8.7 Parallel Satune . 53
8.8 Using Maple SAT Solver . 55

9 Related Work 58

10 Conclusion 60
10.1 Future Work . 60

Bibliography 62

iii

LIST OF FIGURES

Page

3.1 Process of solving a problem by using a SAT Solver. 14
3.2 4×4 Sudoku problem. Constraints for empty cells are encoded into CNF. . . 16

5.1 Satune Overview . 25

6.1 Satune Constraint Language Grammar . 28
6.2 Example Constraints in Satune DSL. 29

7.1 Order constraint decomposition example with ellipsis (...) indicating omitted
non-order constraints. 32

8.1 Satune’s test set results of four-fold cross validation are compared with the
execution time of Z3(the baseline), SMTRat, and MathSAT for each JMCR
problem . 46

8.2 Satune’s test set results of four-fold cross validation are compared with the
execution time of Z3, SMTRat, MathSAT, Alloy, and the baseline for each
SyPet problem . 47

8.3 Satune’s test set results of two-fold cross-validation are compared with the
execution time of Z3(the baseline), SMTRat, MathSAT for each Dirk problem 49

8.4 Satune’s test set results of three-fold cross validation are compared with the
execution time of Z3, SMTRat, MathSAT, Alloy, and the baseline for each
Hexiom problem . 50

8.5 Satune’s test set results of three-fold cross validation are compared with the
execution time of Z3, SMTRat, MathSAT, Alloy, and the baseline for each
Sudoku problem . 51

8.6 Satune’s test set results of three-fold cross-validation are compared with the
execution time of Z3, SMTRat, MathSAT, Alloy, and the baseline for each
Killer Sudoku problem . 52

8.7 Comparing the baseline encoding with Satune and Parallel Satune for Sudoku 54
8.8 Comparing the baseline encoding with Satune and Parallel Satune for Killer

Sudoku . 54
8.9 Comparing the baseline encoding with Satune and Parallel Satune for Hex-

iom . 55
8.10 Comparing the baseline encoding with Satune under two different solvers,

Maple and Glucose, for Hexiom . 56

iv

8.11 Comparing the baseline encoding with Satune under two different solvers,
Maple and Glucose, for Sudoku . 56

v

LIST OF TABLES

Page

1.1 Performance of different encodings of a randomly generated total order con-
straint. 2

8.1 Arithmetic means of SAT solving time for different partitions of the four-fold
cross-validation on JMCR . 46

8.2 Arithmetic means of SAT solving time for different partitions of the four-fold
cross-validation on SyPet . 48

8.3 Arithmetic means of SAT solving time for different partitions of the four-fold
cross-validation on Dirk . 49

8.4 Arithmetic means of SAT solving time for different partitions of the three-fold
cross-validation on Hexiom . 50

8.5 Arithmetic means of SAT solving time for different partitions of the three-fold
cross-validation on Sudoku . 52

8.6 Arithmetic means of SAT solving time for different partitions of the three-fold
cross-validation on Killer Sudoku . 53

vi

ACKNOWLEDGMENTS

I want to express my appreciation to my advisor, Brian Demsky, for his guidance, support,
and encouragement throughout my graduate journey. The completion of this dissertation
was not practical without his advice.

Also, I wanted to thank other members of my thesis committee, Harry Xu and Nader
Bagherzadeh for reading the draft of this dissertation and providing valuable feedback for
improving it.

Last, but not least, I would like to express my deepest gratitude and love to my family who
have encouraged me in my entire life to follow my dreams and supported me to reach my
professional goals.

This work is supported by NSF under the grants OAC-1740210, CNS-1703598, SHF-1217854,
and CCF-1319786.

vii

ABSTRACT OF THE THESIS

Satune: Synthesizing Efficient SAT Encoders

By

Hamed Gorjiara

Master of Science in Computer Engineering

University of California, Irvine, 2019

Professor Brian Demsky, Chair

Modern SAT solvers are extremely efficient at solving boolean satisfiability problems, en-

abling a wide spectrum of techniques for checking, verifying, and validating real-world pro-

grams. What remains challenging, though, is how to encode a domain problem (e.g., model

checking) into a SAT formula because the same problem can have multiple distinct encod-

ings, which can yield performance results that are orders-of-magnitude apart, regardless of

the underlying solvers used. We develop Satune, a tool that can automatically synthesize

SAT encoders for different problem domains. Satune employs a DSL that allows developers

to express domain problems at a high level and a search algorithm that can effectively find ef-

ficient solutions. The search process is guided by observations made over example encodings

and their performance for the domain and hence Satune can quickly synthesize a high-

performance encoder by incorporating patterns from examples that yield good performance.

A thorough evaluation with JMCR, SyPet, Dirk, Hexiom, Sudoku, and KillerSudoku demon-

strates that Satune can easily synthesize high-performance encoders for different domains

including model checking, synthesis, and games. These encodings generate constraint prob-

lems that are often several orders of magnitude faster to solve than the original encodings

used by the tools.

viii

Chapter 1

Introduction

1.1 Introduction to Satune

Modern software analysis — from path-sensitive analysis [77, 29, 63, 83], through symbolic

execution [39, 62, 17], to verification and model checking [28, 33, 42, 16, 27, 64] — relies

heavily on constraint solving. Analyses are formulated into constraint problems that are

subsequently fed to a constraint solver; a significant portion of the computation is done

by the solver that uses a search-based algorithm to determine the satisfiability of the input

constraints. The past decade has seen a variety of constraint solvers used in software analysis

techniques, including SAT, SMT, MaxSAT, or model counting, but under the hood of all of

the advanced solvers is the boolean satisfiability problem (SAT), which has been extensively

studied for about five decades.

A SAT constraint is often encoded into a conjunctive normal form (CNF), which is a con-

junction (and) of clauses and each clause is a disjunction (or) of literals. Each literal is

either a propositional variable (a) or the negation of a variable (!b). A SAT solver attempts

to assign true/false values to boolean variables in the constraint in a way so that the entire

1

formula can evaluate to true. Solving a constraint requires exploring a huge search space.

To improve efficiency, a great number of optimizations [51, 25, 24, 78, 50, 7, 8] have been

proposed and implemented in the past to effectively prune the search space.

While modern SAT solvers are often efficient, their performance is highly dependent on the

encoding of a constraint. There are often many different ways to encode a problem domain

into SAT, and not all of them yield good results. Often times choices that initially appear

to be a good turn out not to be the best choices. It is typically labor-intensive to explore all

of the different options for encoding. The best encoding choice can even be hard to predict

for people who are intimately familiar with the algorithms behind the SAT solvers. For

example, the best choice often depends on low-level details of how SAT solvers operate and

how these low-level details interact with the structure of the given constraint problem. In

many cases, the best encoding also depends on what parts of the constraint problem turn

out to be difficult, how the encodings interact with the constraints, etc.

The difficulty of finding good encodings is well-known. An article [12] that interviews several

SAT experts state “the common points picked up during the different interviews is that

the encoding does have a big impact on the efficiency of the SAT solver, that finding a

good encoding takes much effort, and that encoding quality does not depend much on easily

measured properties like size or number of variables. The interviewees usually suggest starting

with a simple encoding which is iteratively improved.”

Total Order Encoding Solving Time(s) Total Time (s)
Pairwise Encoding 1.17 1.46
Inequality Encoding using Binary 0.01 0.11
Inequality Encoding using One Hot 942.26 1038.75
Inequality Encoding using Unary 0.44 0.59

Table 1.1: Performance of different encodings of a randomly generated total order constraint.

To understand the potential impact of encoding choice, we evaluated the performance of

several different encodings for total orders on randomly generated order constraint problems.

Total orders are commonly used in constraint-based models for checking multi-threaded

2

programs—CheckFence [16], SATCheck [27], and MCR [42] which all encode total orders into

constraint problems. Two common strategies have been used for encoding order constraints:

a pairwise encoding that allocates a variable for each pair of items in the total order that

encodes their relative order, and a translation into inequality constraints over variables. The

latter requires SAT encoding of the values of these variables, for which three approaches

have been proposed: Binary, One Hot, and Unary. Details of these approaches are discussed

in Section 4. Table 1.1 summarizes the performance results of these encodings. As shown,

the choice of encoding is clearly important—the times between the best and worst choices

are four-order-of-magnitude apart.

1.2 Challenges

Determining the right encoding for a domain problem is challenging for the following two

major aspects. First, the relative efficiency of different encoding strategies changes when the

SAT formula grows. For example, although the pairwise encoding strategy, which is used

in CheckFence [16] and SATCheck [27], is thought to be more performant than inequality-

based encoding in general cases, our experiments show that inequality-based encoding of

total orders (generated by model checkers) outperforms their pairwise encoding by an order

of magnitude. Developers understanding of these different strategies are often based on

microbenchmarks. However, when small constraints are integrated into a large satisfiability

formula, the relative efficiency of these encodings can change dramatically.

Second, the relative efficiency of different encoding strategies changes across domains. There

are many factors that go into the efficiency of an encoding. For example, unit propagation

is known to be important to optimize for, but constraints are not always amenable to unit

propagation. For example, unit propagation is not very useful in the case of a not-equals

constraint on integer variables. For equals constraints on integer variables, there is a trade

3

off between optimizing for encoding size and for propagation. Understanding these encoding

trade offs is typically a tedious and labor-intensive process, requiring extensive experiments

with different encoding techniques and domain problems.

1.3 State of The Art

There exists a large body of work [67, 78, 59, 66] on optimizing performance for SAT solvers.

Most of these optimizations focus on low-level formula rewrites [45] or autotuning of a set

of candidate rewrites [78, 59], assuming that encoding of a domain problem into a formula

is done. However, as shown above, encoding can have a huge impact on performance and,

hence, opportunities are rather limited if a tool takes an encoded formula as a starting

point for optimization. Our major insight in this paper is that if we shift our focus from

tuning the process of solving an encoded formula to tuning the encoding process itself, massive

opportunities exist and large gains are possible!

1.4 Satune

Based on this insight, we developed Satune, a novel approach that can synthesize high-

performance, domain-specific SAT encoders. Satune focuses on encoding optimization,

which is independent of constraint solving — after a constraint is encoded, the developer

can use any backend solver to solve the constraint. Traditionally, developers of analysis

tools that incorporate SAT solvers would have to manually decide which encoding strategies

(based on prior knowledge and/or their experience) to use to translate their problem into

SAT and then manually write code to implement this encoding. This is a daunting task,

which is tedious, time-consuming, and labor-intensive, and often ends up with suboptimal

encodings and unsatisfactory performance.

4

Satune allows the developer to express a domain problem with a novel domain-specific lan-

guage (§6), which provides a means for the developer to specify domain-related constraints

while abstracting away low-level SAT-related details. Given a problem description provided

by the developer using the DSL, Satune runs a simulated annealing-based optimization

process to find the best encoding that respects the constraints specified in the DSL descrip-

tion.

Note that the problem information expressed in the DSL is critical for Satune to effectively

prune the search space. To further improve efficiency, Satune implements a range of so-

phisticated analyses (§7) for globally optimizing encoding strategies. For some problems,

these analyses are worthwhile as they expose unseen opportunities; in other cases, they do

not lead to additional efficiency. To determine when these analyses are beneficial, Satune

also employs a tuning framework to learn which analyses are worth performing for a given

problem domain.

While much effort has been made to improve the efficiency of the optimization process,

applying it on every single problem instance will still incur large overhead, defeating the

purpose of optimization. The good news is that we found the best encoding strategy often

holds across problem instances in a given domain (§5.2). As such, Satune applies this

optimization process on a small number of problems to learn a high-performance encoding

strategy that can be subsequently used, without incurring any overhead, to encode other

problems in the same domain. The domain constraints expressed in the DSL enable Satune

to generalize the encoding it learns from a set of examples to new problems. As such, the

optimization effort only has a one-time cost that can be effectively amortized across future

solving of similar problems in the same domain.

5

1.5 Summary of Results

We have evaluated Satune on a set of real-world software analysis and game applications.

Our results show that the Satune-synthesized encodings outperform those hand developed

by an overall geometric mean of 24× for our benchmarks.

6

Chapter 2

Background in Boolean Satisfiability

Problem

This chapter introduces the SAT problem which is known to decide the values for boolean

variables in ways that satisfy the propositional formula.

2.1 Constraint Satisfaction Problem (CSP)

A constraint satisfaction problem (CSP) P is characterized by a set of variables V where each

variable is defined on a di. Each domain variable di lists the possible distinct values for each

corresponding variable vi. A constraint C is defined on a subset of variables S where S={vi,

vi+1, ..., vj} shows the actual assignments to each variable. Each constraint CT defines a

subset of Cartesian product di × di+1 ×...× dj. P is satisfiable if and only if there is an

assignment to the variables that can satisfy all the constraints. [74]

7

V = {v1, v2, ..., vn}

D = {d1, d2, ..., dn}

2.2 Boolean Satisfiability Problem

Boolean Satisfaiability problem (SAT) is a special case of CSP where all the variables have

the same domain D={True, False}. A problem is SAT if there is at least one assignment to

the boolean variables Vi where all the constraints are satisfied and it is UNSAT if even one

solution cannot be found.

2.3 Propositional Logic and CNF

Propositional Logic is characterized as defining constraints on Boolean Variables V also

known as propositional atoms. Constraints are represented as standard logical operations

∨ (i.e. disjunction), ∧ (i.e. conjuction) and ¬ (i.e. negation). A literal l refers to an atom

or its negation (in other words, a boolean variable vi or ¬vi). A Clause C is defined as a

set of literals with disjunction operation between them ∨l⊆ Vl. A propositional formula φ is

characterized as a set of clauses representing boolean operations between them. The formula

φ in Conjunctive Normal Form (CNF) is identified as conjunctions of a set of clauses (i.e.

distjunction of a set of literals). A clause C is satisfiable if and only if it incorporates at least

one literal evaluated to True. The formula φ has a solution if and only if all of its clauses

are satisfiable [72, 41, 11].

In general, clauses can have different structures. 1-SAT structure is characterized as a

8

clause with only one literal. 2-SAT structure is identified when a clause only incorporates

two literals. The structure of clauses is being considered as one of the primary metrics for

measuring the complexity of a boolean formula. In the following chapter, we elaborate on

how these structures can impact on the formula’s solving time.

2.4 CNF Example

Consider the following example to clarify a CNF structure. There are three binary clauses

C1, C2, and C3 in the formula φ as the following:

C1 = x1 ∨ ¬x2

C2 = x2 ∨ ¬x3

C3 = x3 ∨ ¬x1

φ = C1 ∧ C2 ∧ C3

The formula φ is solvable under the following assignment the the variables:

x1 = True

x2 = True

x3 = True

9

However, adding the clause C4 to the original formula yields the problem to be UNSAT (i.e.

no assignment can be found for x1, x2, and x3 that can satisfy all the clauses.)

C4 = ¬x1 ∨ ¬x2 ∨ ¬x3

Adding clauses to the original problem and rechecking its satisfiablity under newly added

clauses is called Incremental Solving. This technique is very common in SAT-based problems

in both academia and industry and many real-world problems in various domains are solved

by employing this technique [49, 32, 43].

10

Chapter 3

Background in SAT Solver

This chapter introduces the SAT solvers and the primary search algorithms that they employ

to solve a SAT problem. The rest of the chapter focuses on some of the primary heuristics

used by modern solvers. Lastly, this chapter presents the process of encoding for a puzzle

into a CNF formula.

3.1 Preliminary

A boolean satisfiability (SAT) solver is a decision procedure which determines the solution for

a given boolean formula in CNF. During the past decades, SAT solvers remarkably evolved

and currently, they are capable of solving complex problems with hundreds of thousands

of literals and clauses. SAT is NP-complete and based on the definition, no polynomial

solution has been found yet to solve the SAT problem. Although SAT problems are solved in

exponential time in the worse case, however, in practice, the real-world problems from various

domains such as scheduling, model checking, software verification, dependency managing, AI

planning, theorem provers and etc. are solvable in polynomial time by cutting-edge solvers.

11

These solvers usually have a search algorithm as their backbone and employ various distinct

heuristics and machine learning techniques to systematically search the boolean space of the

given formula [82]

3.2 The DPLL Algorithm

DPLL is a recursive search algorithm that is used to find a solution for a boolean formula.

It starts the backtracking search by picking a literal (called decision variable) and assuming

a value. Then, it simplifies the formula and recursively repeats the algorithm until it either

discovers a solution or reaches a conflict. In the case of confronting a conflict, DPLL proposes

a simple conflict analysis method. The solver maintains a flag for each decision variable

showing that both polarities have been discovered. After reaching a conflict, it finds the

most recent decision variable where both polarities have not been explored and flips its

value and then recursively repeats the algorithm. The backtracking algorithm employs two

important characteristics to simplify the formula:

Unit Propagation: If a clause has a 1-SAT structure (only has one literal), that literal is

evaluated to have a truth value to satisfy the clause and the value of the literal is propagated

to the rest of the formula.

Pure Literal Elimination: If a literal appears with only one polarity in the formula is

called it is pure. Pure literals can be replaced with the truth value which satisfies all the

clauses where it appeared.

12

3.3 The CDCL Algorithm

The conflict-driven clause learning (CDCL) is one of the primary search algorithms that are

being used in many solvers [5, 31, 54]. In this technique, which is similar to DPLL, SAT

solver makes an assumption about a literal and it simplifies the formula until it reaches a

conflict. In contrary to DPLL, CDCL performs a sophisticated conflict analysis to fix the

wrong branches [65, 81]. The CDCL conflict analysis provides: 1) A learned clause that is

added to the formula to avoid searching the same boolean space later 2) The correct decision

level that Solver restarts searching from there.

The main difference between DPLL solvers and CDCL solvers is that the solver in the DPLL

algorithm exhaustively searches the entire search space. However, in the CDCL technique,

by learning a clause and enriching the original formula, it avoids searching the boolean

search space that doesn’t incorporate the solution. Consequently, CDCL is capable of doing

non-chronological jump in the backtracking search.

3.4 Heuristics

Each year, a lot of SAT solvers emerge in the annual SAT competition. The majority of them

employ the same backbone search algorithm and they differentiate based on the heuristics

that they use for cleaning up the learned clauses, restarting the search, analyzing the conflict,

etc.

Restart: Sometimes SAT solver may end up deeply exploring part of the search space that

does not contain the solution. By restarting, the solver keeps all the learned information

and starts solving the formula from the beginning. Keeping the learned clauses potentially

yields the solver to explore different parts of the search space.

13

Learned Clause Removal: Learned clauses help solvers to prune the boolean search space.

However, when SAT solvers cope with an enormous formula, a lot of clauses are learned that

cannot fit in the memory. Different solvers leverage different heuristics to identify and keep

useful clauses and remove redundant clauses from the formula [4, 6].

3.5 Example: Solving a Sudoku problem

As Figure 3.1 depicts, for solving a problem using a SAT solver, the constraints must be

encoded into a CNF formula. The solver takes the formula and either provides the variable

assignments to satisfy the formula or confirms no solution exists for the problem. In the case

of finding a solution, the assignments to the boolean variables need to be translated back to

the original domain to obtain the solution for the problem.

Figure 3.1: Process of solving a problem by using a SAT Solver.

This section elaborates on the process of encoding a popular puzzle, Sudoku, to a CNF

boolean formula. Sudoku is a well-known SAT problem and there are many encodings

available to convert Sudoku into a CNF. Originally in Sudoku, the user has to assign numbers

from 1 to 9 to each cell in the 9×9 table in order to fill out the table thoroughly with respect

to the following rules:

1. Only we can use numbers 1 to 9 for each cell.

14

2. Each number only appears once in each row.

3. Each number only appears once in each column.

4. Numbers should be identical in each block of 3×3.

Figure 3.2 depicts a 4×4 Sudoku problem. As an example, We encode the mentioned rules

for the first empty cell, cell A, and the same constraints for the rest of empty cells must be

added to the formula.

1. We assign four variables for each cell A, B, and C and each variable respectively

represents the value of the cell from 1 to 4.

A = {a1, a2, a3, a4}

B = {b1, b2, b3, b4}

C = {c1, c2, c3, c4}

P1 = a1 ∨ a2 ∨ a3 ∨ a4

P2 = b1 ∨ b2 ∨ b3 ∨ b4

P3 = c1 ∨ c2 ∨ c3 ∨ c4

for example if boolean variable b2 evaluates to True, it means cell B has a value 2.

2. Constraints for row one:

P4 = a2 == False, P5 = a3 == False, P6 = a4 == False

15

3. Constraints for column one

P7 = a2 == False

P8 = a1 ⇒ ¬b1, P9 = a2 ⇒ ¬b2, P10 = a3 ⇒ ¬b3, P11 = a4 ⇒ ¬b4

P12 = a1 ⇒ ¬c1, P13 = a2 ⇒ ¬c2, P14 = a3 ⇒ ¬c3, P15 = a4 ⇒ ¬c4

4. Constraints for the 2×2 block that contains cell A:

P16 = a2 == False, P17 = a3 == False, P18 = a4 == False

Figure 3.2: 4×4 Sudoku problem. Constraints for empty cells are encoded into CNF.

After adding all the constraints for each empty cell to the above constraints and provide the

CNF formula for the SAT solver, the following solution is found for boolean variables of cell

A, B, and C:

a1 = True, a2 = False, a3 = False, a4 = False

b1 = False, b2 = False, b3 = True, b4 = False

c1 = False, c2 = False, c3 = False, c4 = True

16

which means cell A, B, and C are respectively assigned to the value 1, 3, and 4.

17

Chapter 4

Background in SAT Encoding

This section provides a gentle introduction to commonly used encoding strategies for two

major categories of constraints: (1) constraints on integers drawn from discrete sets and (2)

orders on discrete sets. They are both used widely in software analysis tools.

4.1 Integer Variable Encodings

We first discuss several issues that arise in how these encodings interact. To illustrate how

integer variables are encoded, consider variable x taken from the set of values {0, 1, 3}. Such

encoding is used widely in SAT-based model checkers. Next, we discuss a few commonly

used encoding strategies for integer variables drawn from discrete sets. n denotes the size of

a set:

One Hot: The one-hot encoding uses a boolean variable bi to represent each value vi that the

integer variable may have. It then generates constraints to ensure the variable can only have

one value (∀i, j 6= i, bi ⇒ ¬bj) and that the variable must have some value (b0 ∨ b1 ∨ ..∨ bn).

18

For our example, the one-hot encoding allocates 3 variables: b0, b1, and b3, representing the

fact x = 0, x = 1, and x = 3, respectively. For example, if x turns out to have the value 3,

the corresponding variable b3 would be true. It then generates at-most-one-value constraints:

b0 ⇒ ¬b1, b0 ⇒ ¬b3, and b1 ⇒ ¬b3. Next, it generates the following constraint to ensure that

x has at least one value: b0 ∨ b1 ∨ b3. One advantage of this encoding is that it works well

with the propagation behavior of SAT solvers. For example, when a SAT solver branches

on a boolean variable used for one-hot encoding, if the solver has decided the value for the

integer variable, it may be able to propagate this decision to other variables. However, the

negatives of this encoding are: (1) as shown in the example, it requires a large number of

boolean variables, (2) it requires O(n2) constraints to ensure that the integer variable has

only one value, and (3) it requires a constraint to ensure that the integer variable has a value.

Solving these many constraints is time-consuming — equality constraints between variables

have a O(n) complexity while inequality constraints between integer variables have a O(n2)

complexity.

Unary: The unary encoding uses n− 1 boolean variables to encode the value of the integer

variable. The idea is that a boolean variable bi is true if the encoded value is larger than

the value vi from the discrete set. the transition from 1 to 0 encodes the value. For our

example, this encoding would generate the variables b0 and b1, as well as the clause b1 ⇒ b0.

The constraint x = 0 is encoded as ¬b0 ∧ ¬b1, x = 1 is encoded as b0 ∧ ¬b1, and x = 2 is

encoded as b0∧b1. The positives of this encoding are: (1) it requires only O(n) constraints to

implement, and (2) inequality constraints between integer variables have a O(n) complexity.

Its negatives are: (1) it may not work as well as one-hot with the propagation behavior of

SAT solvers and (2) it also requires a large number of boolean variables. Equality constraints

between integer variables have a O(n) complexity.

Binary Index: The binary index approach encodes, in the binary format, an index into the

set of discrete values. For our example, this encoding would generate the variables b0 and b1,

19

and the clause ¬(b0 ∧ b1) to ensure that index is in range. Under this encoding, x = 0 (00)

would be encoded as ¬b0 ∧ ¬b1, x = 1 (01) would be encoded as b0 ∧ ¬b1, and x = 2 (10)

would be encoded as ¬b0∧b1. The positives here are: (1) it requires only O(log(n)) variables,

(2) it does not require any clauses to ensure that the integer variable has only one value, and

(3) equality and inequality constraints can be encoded efficiently with O(log(n)) complexity.

The negative of this encoding is: (1) it may not work well with the propagation of SAT

solvers. It sometimes requires inequality constraints to ensure that the integer variable has

a value if the size of the discrete set is not a power of two. If the values are not dense, (i.e.,,

there are holes between), the binary index encoding can require additional constraints.

4.2 Order Encodings

Another major category of constraints is on partial and total orders over discrete sets. Sim-

ilarly, we use n to denote the size of the discrete set.

Pairwise Encoding: Both total and partial orders over sets can be encoded by using

boolean variables to represent the order of each pair of elements in the set. In the case of a

total order, a single boolean variable is used for each pair (vi, vj) — bij being true indicates

that vi is ordered first and bij being false indicates that vj is ordered first. To be consistent

with the notations for partial orders (discussed shortly), we use the shorthand bji to denote

a total order where j > i; it is simply the negation of variable bij. In the case of a partial

order, a pair of boolean variables is used. For each pair (vi, vj), bij being true indicates that

vi is ordered first and bji being true indicates that vj is ordered first. Partial orders must

then add the clause ¬bij ∨ ¬bji to ensure that the encoding cannot order both items first.

Both encodings use the following transitivity constraints: ∀i, j, k : bij ∧ bjk ⇒ bik. The

positive for the pairwise encoding is that it works well with the propagation behaviors of

20

SAT solvers because a single variable corresponds to a client-level predicate. The negatives

for this encoding are: (1) it requires O(n2) boolean variables and (2) O(n3) constraints.

Inequality-Based Encodings: Total orders can also be encoded as a system of inequalities.

Each item vi in the order is encoded as an integer variable xi in the range of [0, n−1]. We then

encode the constraint vi− >vj (i.e.,, -> denote ordered-before) with the inequality xi < xj.

The positives of this approach are (1) it requires only O(nlog(n)) boolean variables and (2)

transitivity constraints come for free. The negatives here are: (1) order constraints become

more complicated and (2) it may not work well with SAT solver propagation behaviors.

21

Chapter 5

Motivation and Overview

5.1 Motivation

To motivate the discussion, let’s consider sample constraints from two different domains:

Sudoku and a SAT-based model checker. In Sudoku, boxes are filled in with numbers from

one to nine and two boxes in the same row, column, or block cannot be assigned the same

number. As such, a common constraint in Sudoku is that variable x drawn from [1, 9] and

variable y drawn from the set [1, 9] are not equal, i.e.,, ¬(x == y). Some of these boxes have

been pre-filled, so certain numbers are not possible and additional constraints are needed

to rule out such possibilities. For example, if the number 2 is prefilled in a box, then we

need ¬x = 2 for the row containing the box. Since these are all not-equal constraints, it is

hard for the SAT solver to perform unit propagation (which is a simple technique that can

simplify a clause if the clause contains a single literal) if it guesses a SAT variable. As a

result, encoding x and y as binary indices can be a reasonable choice.

In the domain of concurrency model checking, for instance, model checkers may need a

constraint to represent the following assertion: if a load L reads from a store S, then the value

22

read by L should be the same as the value written by S, that is, S
rf−→ L ⇒ Lvalue = Svalue.

In this case, if the SAT solver decides a value for the boolean variable indicates that L reads

from the store S, and knows the values of the boolean variables that encode the value of

either L or S, it can propagate the value to the other operation (and potentially many more

through other constraints). Thus, optimizing for unit propagation is potentially beneficial.

We make two observations on the above examples. First, constraint characteristics differ

across domains. It is clear to see that while both domains generate equality constraints over

integers, the properties of constraints differ significantly. For example, variables in Sudoku

often have similar sets of possible values and thus encoding each variable as a binary index

into the same set is a reasonable choice. On the contrary, for model checkers [27, 16], program

variables may have very different sets of possible values. Encoding every program variable

using binary index can generate an excessive number of variables as well as constraints

that enforce each variable has a valid value. Clearly, there are many factors in choosing

an encoding and different factors may point to different encoding choices. Knowing the

relative performance impact of these factors is difficult and can typically only be achieved

by labor-intensive experimentation.

The second observation is that different problems in the same domain often require con-

straints of similar natures. For example, the not-equal property of Sudoku constraints holds

not only for Sudoku, but also for other board games. For program-analysis-related applica-

tions, they need constraints to model variable relationships and hence their constraints all

share similar properties to the model checking constraints stated above. This observation

indicates that the best encoding learned from small examples in a domain can often hold

universally in the domain.

23

5.2 Overview

Satune has two phases: an example-driven learning phase in which it synthesizes an encoder,

as well as a deployment phase where it uses the synthesized encoder to encode new problems.

To use Satune, the developer first needs to modify their application to generate constraints

in the Satune DSL. Since the Satune language is a superset of the languages accepted

by typical SAT solvers, this step is straightforward, requiring only minimum user effort.

Satune requires a set of examples to use to synthesize an encoder — in the case of the

Sudoku example, this would be a set of Sudoku puzzles.

Satune starts the synthesis process with a set of seed encoders. The process uses simulated

annealing to explore a space of possible encoders. In each round of simulated annealing, it

evaluates the fitness of the current encoders by measuring the time the solver takes to solve

the example with the given encoding. Satune then mutates these encoders and repeats.

For Sudoku, for instance, this process would naturally learn that the one-hot encoding does

not result in large performance benefits from unit propagation. This would bias the search

process away from the one-hot encoding. It would likely decide to encode constraints using

the binary index encoding to minimize both the size of the constraints and the number of

variables.

Note that in the model checking example, integer variables are used for two distinct pur-

poses — encoding the read-from relation and encoding variable values. These two different

purposes may not have shared the same optimal encoding. Satune supports labeling dif-

ferent use cases and synthesizes encoders that individually optimize the encodings for the

distinct use cases. For the example, the developer may label, with one type, the integer

variable that tracks which store the load L reads from, and, with another type, the integer

variables that contain values. As such, Satune can encode the read-from relation using the

one-hot encoding so that when a SAT solver guesses a value used by the one-hot relation,

24

unit propagation allows it to propagate values accessed by the load and store. However, if

the set of possible values is large, Satune may use the binary index encoding to minimize

the number of variables.

Client
Common Subexpression

Elimination &
Truth Propagation

Single
Polarity

Elimination

Order
Optimizations

Order
Conversion

Integer
Variable

Domain Reduction

Integer
Variable
Encoder

Base
Encoder

CNF
Conversion

SAT
Conversion

SAT
Solver

Tuner

SATTune

Result
Translator

Figure 5.1: Satune Overview

Figure 5.1 presents a detailed overview of Satune’s deployment architecture. The pipeline

begins with a set of constraints generated by a client which are specified using the Satune

constraint language. The Satune constraint language is designed around a set of commonly

used constructs for which several different encodings are known. The Satune language

raises the abstraction level the the client uses to specify constraint problems and thus allows

Satune to tune the generation of low-level SAT encoding of the problem. The interface

with Satune’s clients is via a library-based API for which we have developed bindings in

C, C++, and Python. The end of the pipeline encodes these constraints into CNF SAT and

then uses an off-the-shelf SAT solver to solve the constraints. Satune then translates the

SAT solution into a solution to the original client’s constraints.

We next discuss the passes in Satune’s pipeline. The first pass, common subexpression

elimination and truth propagation eliminates duplicate expressions and propagates truth

values. This pass is always used and is performed on the fly as the client generates constraints.

The passes shown in red target specific optimization and encoding opportunities. These

passes perform simplifications to the input that may allow better encodings, optimize order

25

constraints, convert order constraints into inequalities, and optimize the encoding of integer

variables globally. The time taken to run these passes is not justified for all clients and for

many clients it would be better to spend the time in the SAT solver. Thus, these passes are

under the control of Satune sythesizer.

The base encoder provides default encodings for variables that were not encoded by previous

passes. Finally, the abstractions are converted into boolean constraints in CNF form. The

optimization pass pipeline builds result translators for each variable in the original set of

constraints. The result translators translate the value assignment for the boolean variables

back to the original client constraints. In some cases, the optimization passes may partially

(or even completely) solve the problem. The result translators in those cases simply return

the solution that the optimization passes discovered.

26

Chapter 6

Satune Domain Specific Language

(DSL)

We begin by presenting the constraint language Satune takes as input. Figure 6.1 presents

the grammar for the language. A constraint problem is given by a prog term in the grammar.

While we present a textual grammar for purposes of exposition, Satune’s implementation

actually accepts constraints via a C, C++, or Python native interface.

The constraint DSL incorporates common abstractions for exploring different SAT encod-

ings. The DSL contains the following three state abstractions: variables drawn from discrete

sets of integers, orders (both total and partial) over discrete sets, and boolean variables. The

constructs in the language are also motivated by the fact that they are used across many

tools. For example, total and partial orders are extensively used by analyses of concurrent

executions including SATCheck [27], CheckFence [16], MemSAT [70], JMCR [42], RVPre-

dict [44], Dirk [49], CPPMem [9], Nitpick [13]. Variables drawn from discrete sets are used

by Alloy [47], Paradox [20], SATCheck [27], CPPMem [9], CheckFence [16], Nitpick [13],

Package Managers, etc.

27

intlist := int | intlist, int

setdecl := set sname type {intlist}
booldecl := boolean bname | boolean bname = bexpr

orderdecl := total oname setdecl | partial oname setdecl

vdecl := var vname in sname | var vname = vexpr

vexpr := vname | int | sname : vexpr + vexpr # bexpr |
sname : vexpr− vexpr # bexpr |
f(vexpr,∗vexpr) # bexpr

bexpr := vexpr comp vexpr | p(vexpr,∗vexpr) # bexpr |
oname : int− >int | bname |!bexpr |
bexpr boolop bexpr

boolop := | | & |⇒| ⊕ |=
comp := =|<|≤|>|≥
assert := assert(bexpr)

prog := setdecl∗ booldecl∗ orderdecl∗ vdecl∗ assert∗

Figure 6.1: Satune Constraint Language Grammar

The constraint language supports basic operations on integer expressions: addition, subtrac-

tion, and the application of table-defined functions. Both addition and subtraction define a

range set of the valid results. It is possible for addition or subtraction to overflow, and this

will set the corresponding boolean expression bexpr that follows the # to true1. Clients can

define functions using tables. Each such function declares its range set. While table-driven

functions do not overflow, they may accept inputs that do not match any entry in the table.

In this case, the corresponding boolean expression is set to true. The constraint language

supports two classes of predicates on integer expressions: standard comparison operators as

well as table-defined predicates.

The DSL also allows clients to write constraints on both total and partial orders over discrete

sets. Satune requires the elements of these sets to be integers for convenience of represen-

tation, but assigns no meaning to the integer elements. Clients can then use predicates on

the order of these elements in boolean expressions.

1The Satune implementation allows the client to select the directionality of the implication between
overflow occurring and the truth value of the overflow boolean expression as iff, ⇒, or ⇐.

28

The constraint language also provides clients with boolean variables and standard boolean

connectives (not, and, or, xor, iff, and implication) that can be used with any predicate.

set RF rfset {1, 2}

set VS1 valueset {100, 101, 102}

set VS2 valueset {100, 101, 102}

set VL valueset {101, 102, 103}

var loadrf in RF

var storeval1 in VS1

var storeval2 in VS2

var loadval in VL

assert((loadrf = 1) => (storeval1 = loadval))

assert((loadrf = 2) => (storeval2 = loadval))

Figure 6.2: Example Constraints in Satune DSL.

6.1 Example

Figure 6.2 presents an example reads-from constraint with two stores and a load that might

be used by a model checker. The keyword set declares a set. We declare the set RF to

contain the set of stores. We also declare sets VS1, VS2, and VL to contain the set of values

for two stores and a load. Each set has a type label that Satune uses to synthesize encoders

that generalize across different problem instances. For example, here we the label rfset

for the reads-from set and valueset for sets of load and store values, because these two

different types of sets are different use cases and thus may benefit from different encodings.

Satune can synthesize different encodings and optimizations for sets with different labels.

The keyword var declares variables. We declare the variable loadrf to be taken from the set

of values RF. This variable will be used to encode which store a load reads from. After the

variable declarations, we declare the constraints to be satisfied. The first assertion declares

the constraint that if the load reads from the first store, then the load must have the same

value as the first store.

29

Chapter 7

Satune’s Candidate Optimizations

Implementing sophisticated optimizations to enable better SAT encodings can sometimes

yield significant performance improvements. For some problem domains, specialized op-

timizations in Satune may enable it to simplify the problem before encoding and thus

generate simpler encodings. However, for other domains, the propagation built into the SAT

solver will outperform these specialized optimizations. Satune implements a wide range of

optimizations, many of which may not improve performance for a specific domain. Satune

uses a tuning framework that learns which set of optimizations to use for a specific domain.

For problem domains that do not benefit from the optimization, the tuner will simply disable

the optimization and avoid the associated overhead. This section discusses the candidate

optimizations available in Satune.

We begin by discussing Satune’s internal representation of the constraints. Satune repre-

sents a constraint as an And-Inverter-Graph (AIG) where nodes are represented as objects

and can either be a predicate, a boolean variable, or an AND boolean operation. Edges are

encoded as pointers and we steal the lowest bit to record whether the edge is a negation.

As clients use Satune’s API to specify constraints, Satune translates these constraints into

30

AIGs on Satune’s predicates and boolean variables and Satune uses hashing to detect and

eliminate redundant expressions. When an expression is asserted as a constraint, Satune

propagates its truth value to any expression that it appears in.

Satune does not currently attempt to encode the constraints on the fly as the client gener-

ates them. Several of Satune’s analysis require complete knowledge of the constraints and

thus cannot safely encode the constraints until the client has finished generating them and

called Satune’s solve procedure.

The polarity of a boolean expression is positive if the expression appears with an even number

of negations and negative if the expression appears with an odd number of negations. Polarity

is important because an expression e that appears in a given context with a positive polarity

can only contribute in that context to satisfying the overall set of constraints by being true.

Knowing the polarity of expressions is thus important for several of Satune’s analysis as

well as Satune’s SAT encoding procedures. Thus, Satune computes the polarity of all

nodes in its AIG as the first step in its solve procedure. All other transformations in its

pipeline maintain this polarity information in the AIG.

7.1 Elimination of Single Polarity Boolean Variables

Satune includes an optimization pass that simplifies constraints by eliminating boolean

variables that appear in a single polarity. If a boolean variable only appears in the positive

polarity it can be assigned the boolean value true, and if it only appears in the negative

polarity it can be assigned to false. This can potentially allow Satune to simplify constraints

enabling further optimizations and simplifications.

31

set baseset orderlabel {1, 2, 3, 4}

total exorder baseset

assert(exorder: 1->2 | ...)

assert(exorder: 2->1 | ...)

assert(exorder: 2->3 | ...)

assert(exorder: 3->4 | ...)

assert(exorder: 4->3 | ...)

Figure 7.1: Order constraint decomposition example with ellipsis (...) indicating omitted
non-order constraints.

7.2 Optimization of Orders

Consider for example, the potential use by a model checker of total orders to model the

execution of concurrent code. Such a client might create a set with an item for each step in

the execution. It would then enforce intra-thread order (program order) and thread creation

and joining by asserting the appropriate order constraints. This straightforward usage case

would result in the order being constructed on a larger set than is strictly necessary.

The complexity of encoding orders grows super-linearly with the size of an order. Thus, it can

be potentially useful to decompose and simplify constraints on an order into constraints on

one or more smaller orders. To illustrate the idea, consider the example shown in Figure 7.1 in

which non-order constraints are omitted. Without reasoning about the full set of constraints,

we cannot determine the relative ordering of items 1 and 2 or items 3 and 4. But we can

determine that item 2 can be safely ordered before item 3 because (1) a constraint on the

order of item 2 and 3 appears only in the positive polarity and (2) this selection does not

contradict any other order constraints.

We discuss the order optimizations in more detail for total orders. Satune also implements

a variation of these optimizations for partial orders; we omit details due to space constraints,

but they generally involve minor adaptations to the optimizations for total orders. Satune

constructs an order graph to reason about order constraints. An order graph corresponds to

a specific declared order. An order graph contains a vertex va for each item a in the order’s

32

set. There is an edge from a vertex va to a second vertex vb if an order predicate a− > b

appears with positive polarity or an order predicate b− > a appears with negative polarity.

If Satune determines that a specific order predicate must be true, the mustbetrue predicate

is true for the corresponding edge.

Transitive Must Be True Analysis: Satune includes an optional analysis that per-

forms a depth first traversal over the edges in the order graph that satisfy the mustbetrue

predicate. This traversal allows Satune to compute more precise information associated

with edges. For order constraints that are implied by transitivity, this analysis marks those

edges with the mustbetrue predicate. This analysis marks order constraints that would con-

tradict order constraints that must be true (i.e., the source of the edge is reachable from

the destination by following only edges with the mustbetrue predicate) with the mustbefalse

predicate.

Local Must Analysis: Satune includes an optional analysis that propagates the infor-

mation it learns about order predicates that must be true to the opposite order predicate.

For example, if Satune determines that a must be ordered before b, then the predicate

b− > a must be false.

Vertex Elimination: Consider a vertex in the order graph for which all incoming edges

must be true and all outgoing edges must be true. The corresponding item can be eliminated

and the constraints replaced with constraints on the order of the sources of the incoming

edges relative to the sources of the outgoing edges. Satune includes an optional optimization

that eliminates such vertices.

33

Must Edge Pruning: Consider an edge 〈va, vb〉 for which (1) the edge satisfies the must-

betrue predicate and (2) either va has no other outgoing edges or vb has no other incoming

edges. We can then safely merge the items va and vb without affecting order constraints on

other items. Satune includes an optional optimization that prunes such edges.

Order Decomposition: This optimization decomposes an order into two or more smaller

orders to optimize for the fact that the encoding cost of orders is superlinear. Satune runs

a strongly connected component analysis on the edges that may (or must) be true. The

result of this analysis is a DAG of strongly connected components. Edges between strongly

connected components can simply be made true and the corresponding constraints replaced

with the appropriate truth value. If a strongly connected component contains more than one

vertex, Satune generates a new order for the nodes in the strongly connected component.

Partial Orders: Satune implements similar optimizations for partial orders. One key

difference is that Satune can perform strength reduction on partial orders to replace them

with total orders. In general, encoding a partial order is more costly than encoding a total

order. There are fewer encoding choices and the choices require more boolean variables and

constraints. The only difference between a partial order and a total order is that a partial

order allows for both a− > b and b− > a to be false, while a total order requires one of

the two to be true. If a partial order only contains order constraints with positive polarity,

it can be converted into a total order. Satune implements this optimization in the order

decomposition stage of the partial order analysis.

34

7.3 Order Conversion

Recall from Section 4 that Satune support two different encodings for total orders. One

approach to encoding total orders is to create an integer variable for every item in the

underlying set. An order constraint then becomes an inequality constraint. For example,

the order constraint a− > b becomes the inequality xa < xb.

Satune optionally applies this conversion. The conversion is applied before the integer-

specific optimizations and encoding passes such that the converted order can leverage these

optimizations.

7.4 Integer Variable Domain Reduction

Clients can assert equalities or inequalities between integer variables and constants. These

assertions can be used to reason about potential values for integer variables and to reduce

the number of possible values that we must encode. Satune includes an optional analysis

that examines all equalities and inequalities that are asserted between integer variables

and constants and then updates the domain of the corresponding integer variable. This

optimization can reduce the number of values that must be encoded, resulting in simpler

encodings.

7.5 Encoding

This section discusses how Satune optimizes the implementation of specific encodings.

Optimizing encoding is not only a matter of selecting which encodings to use for individual

integer variables. It is also a matter optimizing how the encodings for different variables

35

affect the encoding of constraints between these variables.

With a naive encoding strategy for variables, comparisons between two different variables

over a set must be encoded as an enumeration of all cases. For example, if x is taken from

the set {0, 1} and y is taken from the set {0, 1, 2}, then x = y is typically encoded as

((x == 0)∧ (y == 0))∨ ((x == 1)∧ (y == 1)). If x and y were taken from the same set and

encoded using the binary index encoding in the same way, the constraint could be encoded

by a ”bitwise” comparison of the boolean variables that comprise the binary index. This

alternative circuit-based encoding grows as log of the size of the set.

This brings up the question of what are the necessary conditions for comparing two variable

encodings using a circuit-based encoding instead of an enumeration-based encoding. To

make this discussion precise, we introduce the following notation. For an integer variable

x drawn from the set {x1, x2, ..., xnx}, we define ex(xi) to be binary value that encodes the

integer xi.

It is safe to use circuit-based encodings of x = y, if the following conditions are satisfied:

1. The encodings for x and y must encode all shared values in the same way. ∀i, j.1 ≤

i ≤ nx, 1 ≤ j ≤ ny, xi = yj ⇒ ex(xi) = ey(yj).

2. The encodings for x and y must not use the same encoding for different values. ∀i, j.1 ≤

i ≤ nx, 1 ≤ j ≤ ny, xi 6= yj ⇒ ex(xi) 6= ey(yj).

It is also possible to use circuit-based encodings for comparisons such as x < y or x ≤ y.

The corresponding condition for x < y is:

1. ∀i, j.1 ≤ i ≤ nx, 1 ≤ j ≤ ny, xi < yj ⇔ ex(xi) < ey(yj).

36

7.6 Constraint Subgraph

We next define the constraint subgraph that Satune uses to track which comparison pred-

icates to encode as circuits. We represent the constraint subgraph as a set of vertices V cg,

a set of equality edges Ecg
equality, and a set of inequality edges Ecg

inequality. There is a vertex

vS ∈ Vcg in the graph that Satune uses to represent all integer variables drawn from the

same declared set S. If there is an equality predicate between a variable x represented by

vX and a variable y represented by vY that is to be encoded as a circuit, then there is an

edge 〈vX , vY 〉 ∈ Ecg
equality. If there is an inequality predicate between a variable x represented

by vX and a variable y represented by vY that is to be encoded as a circuit, then there is an

edge 〈vX , vY 〉 ∈ Ecg
inequality. Note that the constraint subgraph loses information—it does not

distinguish whether an inequality predicate is <,≤, >, or ≥.

7.7 Encoding Graph

Satune next converts the constraint subgraph into an encoding graph. There is a vertex in

the encoding graph for each integer value in each vertex of the constraint graph—the set of

vertices in the encoding graph is: V eg = {〈vX , x〉 | vX ∈ V cg, x ∈ X}. Equality constraints

on the encoding are modeled as equality edges; the equality edges are defined as follows:

Eeg
equality = {〈〈vX , x〉, 〈vY , y〉〉 | 〈vX , vY 〉 ∈ Ecg

equality, x ∈ vX , y ∈ vY }. Inequality constraints

on the encoding are modeled as inequality edges; the inequality edges are defined as follows:

Eeg
inequality = {〈〈vX , x〉, 〈vY , y〉〉 | 〈vX , vY 〉 ∈ Ecg

inequality ∨ 〈vY , vX〉 ∈ Ecg
inequality, x ∈ vX , y ∈

vY , x < y}. Note that the inequality edges in the encoding graph are directed towards the

larger value.

The encoding graph defines the constraints on valid encodings. Solving the constraints from

Section 7.5 on the encoding graph yields a valid encoding. In general, we suspect that

37

encodings that use a minimal number of variables are likely to be better. Thus, we wish to

find the solution to these constraints that requires the minimal number of boolean variables.

Note that the optimal encoding problem is NP-complete as solving problems that contain

just equality constraints is identical to graph coloring. We thus describe our approximate

solution algorithm.

The first pass identifies vertices that must have the same encoding and merges them. This

pass finds edges between two vertices that both have the same integer value. Such vertices

must share the same encoding to ensure that comparisons function correctly. Satune merges

these vertices together and the new merged vertex has all of the edges that the previous two

vertices contained (minus the self edge).

The remainder of the encoding process will be structured as two passes: a first pass assigns

encodings for vertices with inequalities and the second pass assigns encodings for vertices

that only have equalities. Since the first pass will assign encodings for all vertices that have

inequalities, we need to make sure that this initial assignment correctly accounts for equality

constraints. Thus, we strengthen an equality edge 〈〈vX , x〉, 〈vY , y〉〉 to an inequality edge

if both of the vertices 〈vX , x〉 and 〈vY , y〉 at the endpoints of an equality edge also have

inequality edges. Satune then topologically sorts the encoding graph considering only the

inequality edges. In topological order, it assigns encodings to vertices that have at least

one incoming or outgoing inequality edge. If a vertex has no incoming inequality edges but

it does have outgoing equality edges, it is assigned the encoding 0. Vertices with at least

one incoming inequality edge are assigned an encoding that is one larger than the largest

encoding value of the sources of the incoming inequality edges.

Finally, Satune assigns encodings for vertices that have no inequality edges. Satune’s

algorithm processes these vertices one by one. For each vertex, it first iterates over all of

the equality edges for the vertex and constructs the set of encodings that are used by the

vertices on the other side of the edge. It then selects the smallest non-negative integer that

38

is not already in use to encode the value corresponding to the vertex.

7.8 Constructing Constraint Subgraphs

We next discuss the heuristics we use for constructing constraint subgraphs. Comparisons

between variables in the same constraint subgraph use circuit-based encodings. We begin

by considering some factors in this decision. Our first consideration is the number of clauses

that are generated by the encoding. The size of an enumerative encoding for equality be-

comes large if the intersection of the two sets is large. A second consideration is the size

of the encodings. If we place variables over sets with little overlap into the same constraint

subgraph, we can potentially increase the size of the encoding. This incurs two costs: (1)

it increases the number of boolean variables used by the encoding and (2) it increases the

number of clauses that must be generated to ensure that variables have valid values.

Our constraint subgraph construction uses a greedy merging algorithm. It considers two

factors when merging nodes: (1) could this merge require allocating new boolean variables

in the encoding and (2) do the nodes have substantial overlap in their values.

7.9 Has Value Constraints

Both the one hot and the binary index encodings require constraints to ensure that a variable

has a value. The binary index encoding requires the constraint because there are often unused

encoding values and Satune must ensure that the variable has one of the used encoding

values.

For binary index encodings, a constraint is only needed if there are unused encoding values.

There are two ways to generate a constraint that ensures that the encoding has a value. The

39

first approach is to generate a constraint that is a disjunction (or) of all the valid values for

the encoding. The second approach is to generate a constraint that ensures that the encoding

does not have one of the unused values. This approach starts with a less than constraint

to ensure that encoding does not have a value larger than the largest used encoding. The

approach then generates a constraint for each unused encoding below this maximum value

that ensures that the encoding is not assigned the given unused value.

For each encoding instance, Satune computes an approximate ratio of the total clause size

generated by the first approach to the total clause size generated by the second approach.

The tuner selects a threshold and Satune uses the first approach is the ratio is smaller than

the threshold and the second approach if the ratio is larger than the threshold.

7.10 Variable Ordering

The order of variables can surprisingly strongly influence SAT solving time [46]. Satune

uses three strategies to order variables: (1) order variables in the order that they are used by

the client, (2) order variables in the order that the client creates them, or (3) order variables

in the reverse order that the client creates them. The tuner selects which strategy Satune

uses to order variables.

7.11 CNF Generation

Satune implements a variation of the NICE [56, 18] algorithm to generate CNF constraints.

The original implementation of NICE uses hashing to eliminate duplicate expressions. Most

of the potential benefit from detecting duplicate expressions is already obtained by Satune’s

detection of common subexpressions when constructing the intermediate representation. The

40

second modification is that in certain cases, the NICE CNF generation algorithm needs to

know the polarity of expressions. Since Satune already has computed the polarity of ex-

pressions in its intermediate representation, we can simply use those precomputed polarities.

These two modifications together allow us to implement a variation of the NICE algorithm

that does not require keeping the complete set of boolean constraints in memory. Satune

can thus immediately translate constraints into CNF and output them to the solver as it

encodes them. This significantly reduces the memory consumption and the time taken by

the CNF generation phase.

7.12 Incremental Solving

Satune supports incremental solving. It supports the addition of new constraints on integer

variables. While it is conceptually straightforward to support incremental solving on order

constraints, it would require disabling optimizations as not all of our order optimizations are

safe in the presence of new order constraints.

7.13 Tuner Framework

Recall from Section 1 that Satune can operate in two modes: a learning mode in which it

learns an encoding specifically for the given client and a deployment mode in which it uses

the learned encoding strategy. As it was presented in Section 7, Satune incorporates a wide

range of specialized optimizations and encoding strategies but not all of them are expected

to be beneficial for a given problem type. In the learning mode, Satune explores different

configurations of optimizations and encodings to find the best set of settings that provide the

best performance for a specific problem type. In addition to various optimizations, Satune

41

incorporates a wide range of general and optimization-specific heuristics that they can be

fully tuned for each problem type.

Satune implements a variation of Simulated Annealing (SA) algorithm for exploring the

search space and finding the best settings. In general, an SA algorithm is a probabilistic

technique for finding the approximate maximum and it works as follows. At each step, a

solution close to the current one is selected and evaluated. Based on the performance of

the solution, the SA algorithm decides whether to keep the setting. To avoid getting stuck

in a local maxima, it is necessary to sometime accept worse settings in order to find better

settings. A temperature is used to select how willing the SA algorithm is to accept a non-

optimal solution. In the beginning, the temperature is high and there is a higher chance of

accepting worse solutions. As the algorithm progresses, the temperature decreases and the

algorithm is less likely to accept bad solutions and explore new solutions spaces. Because of

this property, the algorithm can avoid getting caught at local maxima which are better than

any nearby solutions but are not globally optimal.

For some problem types, a single encoding strategy does not always yield the fast solution.

Given the availability of compute nodes, it can be reasonable to used different encoding

strategies in parallel to solve a given problem. Thus, Satune implements a variation of

the Simulated Annealing algorithm which finds a set of n complementary tuning strategies

for a specific client instead of only one found by the original algorithm. Satune uses a

score-based ranking system for evaluating the performance of each encoding strategy for

each client. The score-based system works as follows. At each round, a new random tuner

will be generated based on the best n encoding strategies from the previous round. Then,

the tuner scores the n best encoding strategies for each problem with higher weights given

for the best strategy. The weighted scoring mechanism causes the tuner to avoid finding

similar strategies that perform well on the same problems while not optimizing any encoding

strategy for other problems. At the end of the round, it only keeps n encoding strategies

42

with the highest scores to be explored in the next round. After synthesizing the n best

encoding strategies for a given client, Satune utilizes them for solving new problems from

that client in the deployment mode. The idea is to encode the problem using the n different

strategies and solve them in parallel, finishing when the fastest encoding returns a result.

For our evaluation, we used n = 1.

43

Chapter 8

Evaluation

We evaluate Satune on constraint problems generated by three real-world tools: JMCR [43],

a Java-based model checker; SyPet [32], a component-based synthesis tool for APIs; and

Dirk [49], a deadlock predictor. We also evaluate Satune on three puzzle games: Sudoku,

Hexiom, and Killer Sudoku. For each benchmark, we used the original implementation of the

benchmark and swapped the SMT/SAT Solver with Satune making minimal modifications

to add support for Satune.

The SAT solver used plays a key role in the performance of constraint solving. In order to

make the comparison fair, we modified all the SAT-based benchmark implementations to use

the same solver as Satune, Glucose [5]. Thus, the Satune implementation and the baseline

implementations only differ in the encodings they use. However, Dirk and JMCR encode

constraints in SMT and use Z3 to solve them. Thus, we could not replace the underlying

solver with Glucose for these benchmarks.

For each benchmark, we use a subset of the problems to learn the best encoding configuration.

We used approximately 70% of our data to train on and 30% as our test set. We report the

test results only.

44

Satune can translate problems to SMT LIB v2.0, the standard input language for SMT

solvers. Variables over discrete sets and total orders can be translated into the integer theory

in SMT LIB. Satune’s translator also supports Alloy [47]. We used Satune’s translator to

compare Satune against: Z3 [26], SMTRat [23], MathSAT [15], and Alloy.

All of our experiments were run on identical machines, each with a Xeon(R) CPU E3-1246

v3 3.5GHz processor and 32GB memory running Ubuntu Linux 18.04. Each machine ran

only one instance of Satune. We set time limits for each problem. Each test case for the

tool benchmarks consisted of many constraint problems: we set a per constraint problem

time limit for JMCR of 100 seconds, for SyPet of 100 seconds, and for Dirk of 1,000 seconds.

The game test cases consists of a single constraint problem: we set a time limit for Hexium

of 1,000 seconds, for Sudoku 2,000 seconds, and for KillerSudoku 2,000 seconds.

All of the tool benchmarks generate multiple constraint problems. The later problems depend

on the results from the previous problems. This is an issue for comparison because different

constraint solvers might find different answers to a problem, and these different answers

could lead to easier or harder problems to solve later. To make the problems comparable for

our evaluation, we modified these tools to serialize Satune problems to disk and recorded

the results from the original baseline solver. We then used the recorded problems for our

evaluation.

8.1 JMCR

JMCR [43] is a stateless model checker that implements the Maximal Causality Reduction

model checking algorithm. It constructs ordering constraints over executions to generate

new possible schedules and enforces that at least one load returns a different value in the

new schedule.

45

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

Account

Allocation

Derby
MergeSort

Ti
m

e
-

lo
g(

se
co

nd
s)

SATTune Z3/baseline SMTRat MathSAT

Figure 8.1: Satune’s test set results of four-fold cross validation are compared with the
execution time of Z3(the baseline), SMTRat, and MathSAT for each JMCR problem

The baseline encoding uses the integer theory of SMT to represent ordering constraints. We

encoded these constraints as total orders in Satune. In order to evaluate the performance

of Satune, we selected the four most difficult problems in JMCR’s original test suite.

Encoding Part. 1 Part. 2 Part. 3 Part. 4
Average SAT(s) SAT(s) SAT(s) SAT(s)
Satune All 0.256 0.250 0.260 0.135
Baseline All 21.998 21.998 21.998 21.998
Satune Test 4.071 0.046 0.001 0.049
Baseline Test 10.742 25.714 10.362 12.397

Table 8.1: Arithmetic means of SAT solving time for different partitions of the four-fold
cross-validation on JMCR

Table 8.1 shows the arithmetic mean of the SAT solving time for each partition in the four-

fold cross-validation learning. As it is depicted, the encoding that Satune learned yielded

speedups that were, on average, 150× greater for some partitions.

Figure 8.1 shows the SAT solving time for each test case. Lower is better. We use

logarithmic scales throughout this paper, and so Satune is significantly faster

than the baseline on most benchmarks. The encodings that Satune synthesized

outperform JMCR’s original encoding and other SMT solvers by several orders of magnitude

in most cases. SMT solvers are general purposed solvers and unlike Satune, they don’t

optimize the encoding for each client and are consequently slower than Satune.

46

As an example, Satune synthesized an encoding for the first partition that encodes orders

pairwise and runs Satune’s order optimizations.

8.2 SyPet

SyPet is a type-directed tool for component-based synthesis, which uses a compact Petri-net

representation to model relationships between methods in an API [32]. For a given target

method signature S, SyPet uses reachability analysis to determine the sequences of method

calls that could be used to synthesize an implementation of S. SyPet guarantees that the

synthesized components type-check and pass all test cases.

SyPet uses the one-hot encoding for the possible ways of completing holes in a program

sketch. There is a finite set of possible ways to fill the hole and we map the holes to variables

over discrete sets in Satune. SyPet uses incremental solving for the baseline encoding.

Although Satune supports incremental solving, our synthesis framework and translator

does not. However, the synthesized encoder could be used with SyPet in incremental mode.

In order for the results to not be skewed, we report (the faster) incremental results for the

baseline and non-incremental results for Satune and all other solvers.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

Math
Geometry

Joda
XML

Ti
m

e
-

lo
g(

se
co

nd
s)

SATTune
Z3

SMTRat
MathSAT

Alloy
Baseline

Figure 8.2: Satune’s test set results of four-fold cross validation are compared with the
execution time of Z3, SMTRat, MathSAT, Alloy, and the baseline for each SyPet problem

47

Encoding Part. 1 Part. 2 Part. 3 Part. 4
Average SAT(s) SAT(s) SAT(s) SAT(s)
Satune All 0.001 0.001 0.001 0.001
Baseline All 3.590 3.590 3.590 3.590
Satune Test 0.001 0.001 0.001 0.001
Baseline Test 3.113 3.916 3.969 3.027

Table 8.2: Arithmetic means of SAT solving time for different partitions of the four-fold
cross-validation on SyPet

Table 8.2 reports the arithmetic mean of SAT solving time for each partition in the four-fold

cross-validation learning. The encoding that Satune learned yields speedups that are, on

average, 300× greater for some partitions.

Figure 8.2 compares the solving time of SyPet with Satune. Satune improves the perfor-

mance of SyPet by several orders of magnitude on all test cases. We also compare Satune

to several SMT solvers and Satune is faster than these solvers for all test cases.

As an example, Satune synthesized an encoding for the first partition that uses the binary

index encoding. It also uses the integer variable domain reduction optimization together

with the encoding graph.

8.3 Dirk

Dirk [49] is a deadlock and data-race predictor for Java. It uses Z3 to model execution

constraints. Dirk uses ordering constraints to represent the happens-before relation for lock

release and acquire events. Dirk uses the integer theory of SMT to represent the happens

before relation in the program [49]. Dirk adds a non-standard constraint that two events

happen at the same time. This constraint cannot be directly represented as a total order.

While Satune could be modified to support this constraint, we do not believe that it is

commonly used. So instead, we preprocessed the constraints to eliminate this constraint.

Due to this translation process, it is not possible to support incremental solving for this

48

benchmark in Satune. We instead disable incremental solving in Dirk for the comparison.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

Account

Airline
Bbuffer

Bufwriter

Critical

Dependent

Mergesort

Montecarlo

Pingpong

Ti
m

e
-

lo
g(

se
co

nd
s)

SATTune Z3/
baseline

SMTRat MathSAT

Figure 8.3: Satune’s test set results of two-fold cross-validation are compared with the
execution time of Z3(the baseline), SMTRat, MathSAT for each Dirk problem

Encoding Part. 1 Part. 2
Average SAT(s) SAT(s)
Satune All 0.064 0.066
Baseline All 19.129 19.129
Satune Test 1.111 0.626
Baseline Test 10.682 22.990

Table 8.3: Arithmetic means of SAT solving time for different partitions of the four-fold
cross-validation on Dirk

Table 8.3 shows the arithmetic mean of SAT solving time for each partition in the four-fold

cross-validation learning. The encoding that Satune learned yielded speedups that were,

on average, 2000× greater for some partitions.

Figure 8.3 reports the SAT solving time for each test case. The encoding that Satune syn-

thesized is faster for every test case than the baseline encoding (Z3) for Dirk and sometimes

outperforms the baseline encoding by several orders of magnitude. Satune is also faster

than the other SMT solvers for all of the benchmarks.

Satune synthesized an encoding for the first partition that encodes orders using pairwise

encoding and then uses the order optimizations to simplify the order constraints.

49

8.4 Hexiom

Hexiom is a game in which a player moves numbered tiles on a hexagonal board until the

numbers on the tiles match the number of its neighbors. The baseline encoding uses the one

hot encoding to represent the tile number of each cell if it is occupied [40]. In the Satune

version of the puzzle, the tile number for each cell is a variable drawn from a discrete set.

Satune can generate the same encoding as the baseline, if it uses one hot encoding. The

Hexiom test cases were based on ones from the original online puzzle. But since most of

them were easy to solve for the SAT solver, we modified the test cases to generate more

difficult problems.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

36 38 41 42 43 44 45 46 47 48 49 50

Ti
m

e
-

lo
g(

se
co

nd
s)

SATTune
Z3

SMTRat
MathSAT

Alloy
Baseline

Figure 8.4: Satune’s test set results of three-fold cross validation are compared with the
execution time of Z3, SMTRat, MathSAT, Alloy, and the baseline for each Hexiom problem

Encoding Part. 1 Part. 2 Part. 3
Average SAT(s) SAT(s) SAT(s)
Satune All 43.558 96.962 104.504
Baseline All 119.480 119.480 119.480
Satune Test 24.225 246.923 139.748
Baseline Test 9.465 142.651 206.323

Table 8.4: Arithmetic means of SAT solving time for different partitions of the three-fold
cross-validation on Hexiom

Table 8.4shows the arithmetic mean of SAT solving time for each partition in the three-fold

cross-validation learning. The encoding that Satune learned yielded speedups that were,

on average, 8× greater for some partitions.

50

Figure 8.4 presents the solving time for Satune, the baseline solver, the SMT solvers, and

Alloy. Satune is better than the baseline encoding in most of the test cases.

Satune synthesized encodings for each partition used in cross validation. It encoded integers

as binary index (partition 2) or unary (partitions 1 and 3) and reverses the order of variable.

It does not use the graph encoding optimizations.

8.5 Sudoku

Sudoku is a popular puzzle which has both backtracking and constraint-based solvers, the

latter is faster and more scalable [73, 60]. The baseline solver uses the one hot encoding

and allocates a boolean variable for each possible value in each cell. We used a variation of

Sudoku generator [3] to generate test cases with large sizes which are more time-consuming

for the SAT Solver to solve.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

36x36-590

36x36-591

36x36-592

36x36-593

36x36-594

36x36-595

36x36-596

36x36-597

36x36-598

36x36-599

36x36-600

36x36-892

36x36-896

36x36-897

36x36-898

Ti
m

e
-

lo
g(

se
co

nd
s)

SATTune
Z3

SMTRat
MathSAT

Alloy
Baseline

Figure 8.5: Satune’s test set results of three-fold cross validation are compared with the
execution time of Z3, SMTRat, MathSAT, Alloy, and the baseline for each Sudoku problem

Table 8.5 shows the arithmetic mean of SAT solving time for each partition in the three-fold

cross-validation learning. The encoding that Satune learned yielded speedups that were,

on average, 2.1× greater for some partitions.

Figure 8.5 presents the solving time of each test case in the three-fold cross-validation com-

51

Encoding Part. 1 Part. 2 Part. 3
Average SAT(s) SAT(s) SAT(s)
Satune All 685.367 585.566 584.229
Baseline All 974.751 974.751 974.751
Satune Test 484.918 643.844 314.039
Baseline Test 752.638 1236.115 920.125

Table 8.5: Arithmetic means of SAT solving time for different partitions of the three-fold
cross-validation on Sudoku

pared with solving time of the baseline encoding and the other SMT solvers. For most of

the test cases, Satune’s synthesized encodings outperformed the baseline and other solvers.

Satune synthesized encodings for three partitions. These encodings use the one hot for

integer variables and order variables in the original order. They differ in the threshold they

use for creating proxy variables in CNF encoding.

8.6 Killer Sudoku

Killer Sudoku extends Sudoku with cages . The Killer Sudoku encoding extends the Sudoku

by enumerating the possible values for cells in each cage to implement the sum constraint.

The Killer Sudoku baseline performs some preprocessing to reduce the number of variables

by assigning common values to a new boolean variable in each cell [2].

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

2-25-4.killer

2-25-5.killer

2-25.killer

2-36-2.killer

2-36-3.killer

2-36-4.killer

2-36-5.killer

2-36.killer

4-16-2.killer

4-16-3.killer

4-16.killer

5-16.killer

6-16.killer

Ti
m

e
-

lo
g(

se
co

nd
s)

SATTune
Z3

SMTRat
MathSAT

Alloy
Baseline

Figure 8.6: Satune’s test set results of three-fold cross-validation are compared with the
execution time of Z3, SMTRat, MathSAT, Alloy, and the baseline for each Killer Sudoku
problem

52

Encoding Part. 1 Part. 2 Part. 3
Average SAT(s) SAT(s) SAT(s)
Satune All 7.355 116.736 7.196
Baseline All 7.190 7.190 7.190
Satune Test 15.160 368.056 3.214
Baseline Test 10.683 8.413 1.603

Table 8.6: Arithmetic means of SAT solving time for different partitions of the three-fold
cross-validation on Killer Sudoku

Table 8.6 shows the arithmetic mean of SAT solving time for each partition in the three-fold

cross-validation learning. The encoding that Satune learned yielded speedups that were,

on average, 1.5× greater for some partitions.

Figure 8.6 presents the solving time for each test case in the three-fold cross-validation

compared with solving time of the baseline and other solvers. For most of the test cases,

Satune’s synthesized encodings outperformed the baseline and other solvers.

Satune synthesized encoding strategies for three partitions. Each encoded integer variables

using binary index and kept the original variable ordering. For the two partitions with diffi-

cult problems, Satune encoded integer variables using the graph optimization and Satune

could outperform the baseline encoding. However, this optimization causes a minor slow-

down for relatively easy problems. In the other partition, that did not happen to include

difficult problems, Satune just enabled the integer domain reduction pass.

8.7 Parallel Satune

Nowadays, a lot of computing parallel resources are available such as servers or systems

with multi-core CPUs. Satune is capable of synthesizing more than one encoding for each

learning set. Having multiple Satune running with different encoding strategies yields

the utilization of parallel resources to get better performance. This technique is very useful

when Satune is learning on a partition incorporating both difficult and simple problems that

53

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

36x36-590

36x36-591

36x36-592

36x36-593

36x36-594

36x36-595

36x36-596

36x36-597

36x36-598

36x36-599

36x36-600

36x36-892

36x36-896

36x36-897

36x36-898

Ti
m

e
-

lo
g(

se
co

nd
s)

SATTune Baseline SATTuneParallel

Figure 8.7: Comparing the baseline encoding with Satune and Parallel Satune for Sudoku

demand thoroughly different encoding strategies for each of them. For the Sudoku, Hexiom

and Killer Sudoku, instead of one, two of the best encoding strategies are synthesized and

run in parallel to measure the performance improvement of Parallel Satune.

Figure 8.7 depicts the Satune’s solving time for each test case in the three-fold cross-

validation compared with the solving time of the baseline and Parallel Satune. The encod-

ing that Parallel Satune learned yields speedups that are, on average, 1.2× greater than

Satune for some partitions. For Sudoku, since the difficulty of problems in the learning

set is similar, two synthesized strategies are very similar to each other and using Parallel

Satune instead of Satune is not very efficient.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

2-25-4.killer

2-25-5.killer

2-25.killer

2-36-2.killer

2-36-3.killer

2-36-4.killer

2-36-5.killer

2-36.killer

4-16-2.killer

4-16-3.killer

4-16.killer

5-16.killer

6-16.killer

Ti
m

e
-

lo
g(

se
co

nd
s)

SATTune Baseline SATTuneParallel

Figure 8.8: Comparing the baseline encoding with Satune and Parallel Satune for Killer
Sudoku

Figure 8.8 depicts the Satune’s solving time for each test case in the three-fold cross-

54

validation compared with the solving time of the baseline and Parallel Satune. The encod-

ing that Parallel Satune learned yields speedups that are, on average, 1.6× greater than

Satune for some partitions. For Killer sudoku, since the difficulty of problems in the learn-

ing set is similar, two synthesized strategies are very similar to each other and using Parallel

Satune instead of Satune is not very efficient.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

36 38 41 42 43 44 45 46 47 48 49 50

Ti
m

e
-

lo
g(

se
co

nd
s)

SATTune Baseline SATTuneParallel

Figure 8.9: Comparing the baseline encoding with Satune and Parallel Satune for Hexiom

Figure 8.9 depicts the Satune’s solving time for each test case in the three-fold cross-

validation compared with the solving time of the baseline and Parallel Satune. The encoding

that Parallel Satune learned yields speedups that are, on average, 40× greater than Satune

for some partitions. For Hexiom, since the difficulty of problems in the learning set is

considerably different, two synthesized strategies are very different from each other. In this

case Parallel Satune is reasonable to be employed instead of normal Satune.

8.8 Using Maple SAT Solver

In general, the choice of SAT solver plays a pivotal role in the performance of solving a

SAT problem. The encoding that Satune synthesizes is customized for the SAT solver that

Satune uses. So, if one encoding strategy works well for Satune’s SAT solver, it does not

imply that encoding suits best for the other SAT solver. In order to assess the previous

55

statement, we replace Glucose [5] with Maple [54] in Satune and run the best synthesized

encoding for Sudoku and Hexiom with Maple solver instead. The Maple is a conflict-driven

clause-learning SAT solver which employs machine learning-based heuristics in branching

and restart policies [54].

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

36 38 41 42 43 44 45 46 47 48 49 50

Ti
m

e
-

lo
g(

se
co

nd
s)

Satune_Glucose
Baseline_Glucose

SATTune_Maple
Baseline_maple

Figure 8.10: Comparing the baseline encoding with Satune under two different solvers,
Maple and Glucose, for Hexiom

As Figure 8.10 depicts, the baseline encoding is faster for Glucose instead of Maple. Although

Maple uses machine learning heuristics, it does not work well for Hexiom. On average, using

Maple instead of Glucose causes more than 4.3× slowdown for Satune and more than 2.5×

slowdown for the baseline encoding.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

36x36-590

36x36-591

36x36-592

36x36-593

36x36-594

36x36-595

36x36-596

36x36-597

36x36-598

36x36-599

36x36-600

36x36-892

36x36-896

36x36-897

36x36-898

Ti
m

e
-

lo
g(

se
co

nd
s)

SATTune_Glucose
Baseline_Glucose

SATTune_Maple
Baseline_Maple

Figure 8.11: Comparing the baseline encoding with Satune under two different solvers,
Maple and Glucose, for Sudoku

As Figure 8.11 shows, the baseline encoding is faster for Maple instead of Glucose. On

average, Using Maple instead of Glucose causes more than 2× slowdown for Satune and

56

more than 1.2× speedup for the baseline encoding.

As we could see, using Maple for Sudoku can have performance improvement in comparison

with the baseline but it causes slowdowns for Hexiom. The encoding that Glucose-based

Satune synthesized is best for Glucose SAT Solver and not necessarily the most optimized

encoding for Maple solver. Satune needs to retrain on the benchmarks in order to learn

the best encoding strategy for Maple-based Satune. There are many solvers other than

MapleSAT and Glucose and choosing the best solver and the suitable encoding for each

solver on each benchmark is a difficult problem and can be considered as the future work for

Satune.

57

Chapter 9

Related Work

Alloy is a relational logic intended for software modeling [47]. The Alloy analyzer translates

Alloy into SAT to find finite models. Kodkod is the current model finding engine for Alloy and

translates Alloy constraints into SAT constraints [69]. The Satune language differs from

Alloy in that the Satune language is intended to have a closer mapping to abstractions

for which multiple good SAT encodings are known and the Satune language is in general

a lower-level language that is primarily targeted towards supporting client applications.

Kodkod uses sophisticated optimizations including auto-compacting circuits and symmetry

breaking to generate constraints that are more efficient to solve. Kodkod does not attempt

to tune its encoding strategy for specific problem types. Enfragmo [1] is specified for solving

combinatorial search problems contrary to Satune which is a general purpose framework.

Some frameworks provide high level language and perform some domain-specific optimization

[57] and some implement a collection of encodings and techniques without any tuning [36].

Much work has been done on developing encodings to SAT. Several different encodings are

known for variables drawn from discrete sets [12, 34, 52] and we have implemented the most

common ones. Satune could be extended to support more of these encodings.

58

Satisfiability modulo theories (SMT) solvers support constraints that overlap with Satune’s

constraint language [30, 26]. SMT generalizes boolean satisfiability by replacing boolean

variables with predicates over a variety of other theories. The predicates over these theories

are then solved by specialized solvers. Satune does not use specialized solvers, but rather

translates its constraint language directly into SAT. This approach has trade offs in the

translation approach can support very rich constraints but cannot leverage the performance

benefits of domain-specific solvers. Although some constraints in the Satune language

overlap with SMT theories, Satune is not intended to replace SMT solver but rather to

explore benefits of automatically tuning encodings. Eager SMT solvers take a similar solving

strategy to Satune and directly translate constraints from other theories into SAT [48, 14,

35]. Satune differs from this work in that it supports multiple encodings and is targeted

towards automatically tuning encodings rather than supporting other constraint theories.

Many constraint problems are solved by translation into SAT, including planning [61, 50],

circuit security [75, 79], SAT-based model checking [27, 16, 77, 68], scheduling [80, 38, 10],

and verification [71, 19]. Encodings mostly are hard-coded in SAT-based frameworks and

to best of our knowledge, no other framework automatically tunes encodings for clients. AI

and learning have been widely used in the SAT solving domain [76, 55, 37, 58] and there are

frameworks that can learn the best solver for each problem type [78, 53, 59].

59

Chapter 10

Conclusion

This paper presents Satune, a tool for automatically synthesizing the encodings of con-

straints into SAT. Traditionally discovering a good SAT encoding for a problem domain

required much effort to explore the many different options. Satune supports a range of en-

coding strategies and optimizations and automatically selects combinations that yield good

performances for a given problem domain. Our evaluation shows that Satune is able to

synthesize encodings that are significantly faster than the original encodings used by our

benchmarks.

10.1 Future Work

Satune can be extended in different ways:

1. Satune can add support for more sophisticated encoding for different types of con-

straints such as ExactlyOne, etc.

2. Satune synthesizer can leverage other AI search to identify the best encoding

60

3. Satune can used a portfolio solver and its synthesizer can find the best encoding and

best SAT solver for each problem

4. There are many other SAT problems that are potentially capable of using Satune

instead of normal SAT Solvers. As an example, Conda [22] is a package manager of

Anacando [21] that uses SAT solver to resolve dependency among packages. Packaging

constraints can be fully supported by Satune.

5. By adding more frameworks that use Satune and gathering more data, Satune syn-

thesizer can employ machine learning to identify the best encoding as well.

61

Bibliography

[1] A. Aavani, X. N. Wu, S. Tasharrofi, E. Ternovska, and D. Mitchell. Enfragmo: A system
for modelling and solving search problems with logic. In N. Bjørner and A. Voronkov,
editors, Logic for Programming, Artificial Intelligence, and Reasoning, pages 15–22,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[2] Airobert. SAT based Killer Sudoku, 2016.

[3] T. Ardi. SAT based sudoku solver in Python, 2015.

[4] G. Audemard, J.-M. Lagniez, B. Mazure, and L. Säıs. On freezing and reactivating
learnt clauses. In K. A. Sakallah and L. Simon, editors, Theory and Applications of
Satisfiability Testing - SAT 2011, pages 188–200, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg.

[5] G. Audemard and L. Simon. Predicting learnt clauses quality in modern sat solvers. In
Proceedings of the 21st International Joint Conference on Artifical Intelligence, pages
399–404. Morgan Kaufmann Publishers Inc., 2009.

[6] G. Audemard and L. Simon. Predicting learnt clauses quality in modern sat solvers.
In Proceedings of the 21st International Jont Conference on Artifical Intelligence, IJ-
CAI’09, pages 399–404, San Francisco, CA, USA, 2009. Morgan Kaufmann Publishers
Inc.

[7] G. Audemard and L. Simon. Lazy clause exchange policy for parallel sat solvers. In
Theory and Applications of Satisfiability Testing (SAT ’14), pages 197–205, 2014.

[8] G. Audemard and L. Simon. Glucose and syrup in the sat race 2015, 2015.

[9] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing C++ con-
currency. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 2011.

[10] R. Béjar and F. Manya. Solving the round robin problem using propositional logic. In
AAAI/IAAI, pages 262–266, 2000.

[11] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of Satisfiability:
Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam,
The Netherlands, The Netherlands, 2009.

62

[12] M. Björk. Successful SAT encoding techniques. Journal on Satisfiability, Boolean Mod-
eling, and Computation, 7:189–201, July 2009.

[13] J. C. Blanchette, T. Weber, M. Batty, S. Owens, and S. Sarkar. Nitpicking C++
concurrency. In Proceedings of the 13th International ACM SIGPLAN Symposium on
Principles and Practices of Declarative Programming, pages 113–124, 2011.

[14] R. Brummayer and A. Biere. Boolector: An efficient SMT solver for bit-vectors and
arrays. In TACAS, volume 5505 of Lecture Notes in Computer Science, pages 174–177.
Springer, 2009.

[15] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani. The mathsatÂ 4
smt solver. In A. Gupta and S. Malik, editors, Computer Aided Verification, pages 299–
303, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[16] S. Burckhardt, R. Alur, and M. M. Martin. CheckFence: Checking consistency of con-
current data types on relaxed memory models. In ACM SIGPLAN Notices, volume 42,
pages 12–21. ACM, 2007.

[17] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and automatic generation of
high-coverage tests for complex systems programs. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation, pages 209–224, 2008.

[18] B. Chambers, P. Manolios, and D. Vroon. Faster SAT solving with better CNF genera-
tion. In 2009 Design, Automation & Test in Europe Conference & Exhibition (DATE),
2009.

[19] I. Chung. A SAT-based method for basis path testing using KodKod. International
Journal of Applied Engineering Research, 12(18):7294–7305, 2017.

[20] K. Claessen and N. Sörensson. New techniques that improve MACE-style finite model
finding. In Proceedings of the CADE-19 Workshop: Model Computation - Principles,
Algorithms, Applications, 2003.

[21] A. Community. Anaconda an opensource framework for data science and machine
learning, 2019.

[22] C. Community. Conda a cross-platform, language-agnostic binary package manager,
2019.

[23] F. Corzilius, G. Kremer, S. Junges, S. Schupp, and E. Ábrahám. Smt-rat: An open
source c++ toolbox for strategic and parallel smt solving. In M. Heule and S. Weaver,
editors, Theory and Applications of Satisfiability Testing – SAT 2015, pages 360–368,
Cham, 2015. Springer International Publishing.

[24] M. Davis, G. Logemann, and D. W. Loveland. A machine program for theorem-proving.
Commun. ACM, 5(7):394–397, 1962.

63

[25] M. Davis and H. Putnam. A computing procedure for quantification theory. J. ACM,
7(3):201–215, 1960.

[26] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Tools and Algorithms for
the Construction and Analysis of Systems, 14th International Conference, TACAS 2008,
Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume 4963
of Lecture Notes in Computer Science, pages 337–340. Springer, 2008.

[27] B. Demsky and P. Lam. SATCheck: SAT-directed stateless model checking for SC and
TSO. In ACM SIGPLAN Notices, volume 50, pages 20–36. ACM, 2015.

[28] A. Desai, V. Gupta, E. Jackson, S. Qadeer, S. Rajamani, and D. Zufferey. P: Safe asyn-
chronous event-driven programming. In Proceedings of the 34th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, pages 321–332, 2013.

[29] I. Dillig, T. Dillig, and A. Aiken. Sound, complete and scalable path-sensitive analy-
sis. In Proceedings of the 29th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 270–280, 2008.

[30] B. Dutertre and L. de Moura. The Yices SMT solver. Technical report, SRI Interna-
tional, 2006.

[31] N. Eén and N. Sörensson. An extensible sat-solver. In E. Giunchiglia and A. Tac-
chella, editors, Theory and Applications of Satisfiability Testing, pages 502–518, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[32] Y. Feng, R. Martins, Y. Wang, I. Dillig, and T. W. Reps. Component-based synthesis
for complex apis. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages, POPL 2017, pages 599–612, New York, NY, USA, 2017.
ACM.

[33] C. Flanagan and S. Qadeer. Predicate abstraction for software verification. In Proceed-
ings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 191–202, 2002.

[34] A. M. Frisch and P. A. Giannaros. SAT encodings of the at-most-k constraint. some old,
some new, some fast, some slow. In Proceedings of the Tenth International Workshop
of Constraint Modelling and Reformulation, 2010.

[35] V. Ganesh and D. L. Dill. A decision procedure for bit-vectors and arrays. In Proceedings
of the 19th International Conference on Computer Aided Verification, pages 519–531,
2007.

[36] Gecode. Generic constraint development environment, 2016.

[37] I. Gent, L. Kotthoff, I. Miguel, and P. Nightingale. Machine learning for constraint solver
design–a case study for the alldifferent constraint. arXiv preprint arXiv:1008.4326, 2010.

64

[38] I. P. Gent and I. Lynce. A SAT encoding for the social golfer problem. Modelling and
Solving Problems with Constraints, 2, 2005.

[39] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed automated random testing. In
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 213–223, 2005.

[40] H. M. Gualandi. Using an industrial-strength SAT solver to solve the Hexiom puzzle,
2012.

[41] M. J. H. Heule, O. Kullmann, S. Wieringa, and A. Biere. Cube and conquer: Guiding
cdcl sat solvers by lookaheads. In K. Eder, J. Lourenço, and O. Shehory, editors,
Hardware and Software: Verification and Testing, pages 50–65, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[42] J. Huang. Stateless model checking concurrent programs with maximal causality reduc-
tion. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 165–174, 2015.

[43] J. Huang. Stateless model checking concurrent programs with maximal causality reduc-
tion. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’15, pages 165–174, New York, NY, USA, 2015.
ACM.

[44] J. Huang, P. O. Meredith, and G. Rosu. Maximal sound predictive race detection with
control flow abstraction. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 337–348, 2014.

[45] J. P. Inala, R. Singh, and A. Solar-Lezama. Synthesis of domain specific CNF encoders
for bit-vector solvers. In SAT, volume 9710 of Lecture Notes in Computer Science, pages
302–320. Springer, 2016.

[46] M. Iser, M. Taghdiri, and C. Sinz. Optimizing MiniSAT variable orderings for the
relational model finder Kodkod. In A. Cimatti and R. Sebastiani, editors, Theory and
Applications of Satisfiability Testing – SAT 2012, pages 483–484, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

[47] D. Jackson. Alloy: A lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology, 11(2):256–290, 2002.

[48] S. Jha, R. Limaye, and S. A. Seshia. Beaver: Engineering an efficient SMT solver
for bit-vector artithmetic. In Proc. 21st International Conference on Computer-Aided
verification (CAV), volume 5643 of Lecture Notes in Computer Science, pages 668–674,
June 2009.

[49] C. G. Kalhauge and J. Palsberg. Sound deadlock prediction. Proc. ACM Program.
Lang., 2(OOPSLA):146:1–146:29, Oct. 2018.

65

[50] H. Kautz and B. Selman. SATPLAN04: Planning as satisfiability. Working Notes on
the Fifth International Planning Competition (IPC-2006), pages 45–46, 2006.

[51] H. A. Kautz and B. Selman. Ten challenges redux: Recent progress in propositional
reasoning and search. In Principles and Practice of Constraint Programming - CP
2003, 9th International Conference, CP 2003, Kinsale, Ireland, September 29 - October
3, 2003, Proceedings, pages 1–18, 2003.

[52] W. Klieber and G. Kwon. Efficient CNF encoding for selecting 1 from N objects. In
Proceedings of the Fourth Workshop on Constraint in Formal Verification, 2007.

[53] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki. Learning rate based branching
heuristic for SAT solvers. In SAT, volume 9710 of Lecture Notes in Computer Science,
pages 123–140. Springer, 2016.

[54] J. H. Liang, C. Oh, M. Mathew, C. Thomas, C. Li, and V. Ganesh. Machine learning-
based restart policy for CDCL SAT solvers. In Theory and Applications of Satisfiability
Testing - SAT 2018 - 21st International Conference, SAT 2018, Held as Part of the
Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings, pages
94–110, 2018.

[55] J. H. Liang, C. Oh, M. Mathew, C. Thomas, C. Li, and V. Ganesh. Machine learning-
based restart policy for cdcl sat solvers. In International Conference on Theory and
Applications of Satisfiability Testing, pages 94–110. Springer, 2018.

[56] P. Manolios and D. Vroon. Efficient circuit to CNF conversion. In Proceedings of
the 10th International Conference on Theory and Applications of Satisfiability Testing
(SAT), 2007.

[57] A. Metodi and M. Codish. Compiling finite domain constraints to SAT with BEE.
Theory and Practice of Logic Programming, 12(4-5):465–483, 2012.

[58] N. Musliu. Applying machine learning for solver selection in scheduling: A case study.

[59] E. O’Mahony, E. Hebrard, A. Holland, C. Nugent, and B. O’Sullivan. Using case-
based reasoning in an algorithm portfolio for constraint solving. In Irish conference on
artificial intelligence and cognitive science, pages 210–216, 2008.

[60] U. Pfeiffer, T. Karnagel, and G. Scheffler. A Sudoku-solver for large puzzles using SAT.
In A. Voronkov, G. Sutcliffe, M. Baaz, and C. Ferm\”uller, editors, LPAR-17-short.
short papers for 17th International Conference on Logic for Programming, Artificial
intelligence, and Reasoning., volume 13 of EPiC Series in Computing, pages 52–57.
EasyChair, 2013.

[61] J. Rintanen. Madagascar: Scalable planning with SAT. Proceedings of the 8th Interna-
tional Planning Competition (IPC-2014), 21, 2014.

66

[62] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for c. In
Proceedings of the 10th European Software Engineering Conference Held Jointly with
13th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pages 263–272, 2005.

[63] Q. Shi, X. Xiao, R. Wu, J. Zhou, G. Fan, and C. Zhang. Pinpoint: Fast and precise
sparse value flow analysis for million lines of code. In Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages
693–706, 2018.

[64] H. Sigurbjarnarson, J. Bornholt, E. Torlak, and X. Wang. Push-button verification of
file systems via crash refinement. In 12th USENIX Symposium on Operating Systems
Design and Implementation, pages 1–16, 2016.

[65] J. Silva, I. Lynce, and S. Malik. Conflict-driven clause learning sat solvers. Frontiers in
Artificial Intelligence and Applications, 185, 01 2009.

[66] R. Singh, J. P. Near, V. Ganesh, and M. Rinard. AvatarSAT: An auto-tuning boolean
SAT solver. Technical Report MIT-CSAIL-TR-2009-039, Massachusetts Institute of
Technology, August 2009.

[67] R. Singh and A. Solar-Lezama. SWAPPER: A framework for automatic generation
of formula simplifiers based on conditional rewrite rules. In FMCAD, pages 185–192.
IEEE, 2016.

[68] N. Timm, S. Gruner, and P. Sibanda. Model checking of concurrent software systems via
heuristic-guided sat solving. In International Conference on Fundamentals of Software
Engineering, pages 244–259. Springer, 2017.

[69] E. Torlak and D. Jackson. Kodkod: A relational model finder. In Tools and Algo-
rithms for the Construction and Analysis of Systems, 13th International Conference,
TACAS 2007, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2007 Braga, Portugal, March 24 - April 1, 2007, Proceedings, pages
632–647, 2007.

[70] E. Torlak, M. Vaziri, and J. Dolby. MemSAT: Checking axiomatic specifications of
memory models. In Proceedings of the 2010 Conference on Programming Language
Design and Implementation, pages 341–350, 2010.

[71] F. Turkmen, J. den Hartog, S. Ranise, and N. Zannone. Analysis of XACML policies
with SMT. In International Conference on Principles of Security and Trust, pages
115–134. Springer, 2015.

[72] J. P. Wallner, G. Weissenbacher, and S. Woltran. Advanced sat techniques for abstract
argumentation. In Proceedings of the 14th International Workshop on Computational
Logic in Multi-Agent Systems - Volume 8143, CLIMA XIV, pages 138–154, Berlin,
Heidelberg, 2013. Springer-Verlag.

67

[73] T. Weber. A SAT-based Sudoku solver. In G. Sutcliffe and A. Voronkov, editors, LPAR-
12, The 12th International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning, Short Paper Proceedings, pages 11–15, Dec. 2005.

[74] R. Williams, C. P. Gomes, and B. Selman. Backdoors to typical case complexity. In Pro-
ceedings of the 18th International Joint Conference on Artificial Intelligence, IJCAI’03,
pages 1173–1178, San Francisco, CA, USA, 2003. Morgan Kaufmann Publishers Inc.

[75] T. WINOGRAD and H. MAHMOODI. Programmable gates using hybrid CMOS-STT
design to prevent ic reverse engineering. 2009.

[76] H. Wu. Improving sat-solving with machine learning. In Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education, SIGCSE ’17, pages
787–788, New York, NY, USA, 2017. ACM.

[77] Y. Xie and A. Aiken. Saturn: A SAT-based tool for bug detection. In International
Conference on Computer Aided Verification, pages 139–143. Springer, 2005.

[78] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Satzilla: portfolio-based algorithm
selection for sat. Journal of artificial intelligence research, 32:565–606, 2008.

[79] C. Yu, X. Zhang, D. Liu, M. Ciesielski, and D. Holcomb. Incremental SAT-based reverse
engineering of camouflaged logic circuits. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 36(10):1647–1659, 2017.

[80] H. Zhang, D. Li, and H. Shen. A SAT based scheduler for tournament schedules. In
SAT, 2004.

[81] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik. Efficient conflict driven
learning in a boolean satisfiability solver. In Proceedings of the 2001 IEEE/ACM Inter-
national Conference on Computer-aided Design, ICCAD ’01, pages 279–285, Piscataway,
NJ, USA, 2001. IEEE Press.

[82] L. Zhang and S. Malik. The quest for efficient boolean satisfiability solvers. In Proceed-
ings of the 14th International Conference on Computer Aided Verification, CAV ’02,
pages 17–36, London, UK, UK, 2002. Springer-Verlag.

[83] Z. Zuo, J. Thorpe, Y. Wang, Q. Pan, S. Lu, K. Wang, G. H. Xu, L. Wang, and X. Li.
Grapple: A graph system for static finite-state property checking of large-scale system
code. In Proceedings of European Computer System Conference, 2019.

68

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	ABSTRACT OF THE Thesis
	Introduction
	Introduction to Satune
	Challenges
	State of The Art
	Satune
	Summary of Results

	Background in Boolean Satisfiability Problem
	Constraint Satisfaction Problem (CSP)
	Boolean Satisfiability Problem
	Propositional Logic and CNF
	CNF Example

	Background in SAT Solver
	Preliminary
	The DPLL Algorithm
	The CDCL Algorithm
	Heuristics
	Example: Solving a Sudoku problem

	Background in SAT Encoding
	Integer Variable Encodings
	Order Encodings

	Motivation and Overview
	Motivation
	Overview

	Satune Domain Specific Language (DSL)
	Example

	Satune's Candidate Optimizations
	Elimination of Single Polarity Boolean Variables
	Optimization of Orders
	Order Conversion
	Integer Variable Domain Reduction
	Encoding
	Constraint Subgraph
	Encoding Graph
	Constructing Constraint Subgraphs
	Has Value Constraints
	Variable Ordering
	CNF Generation
	Incremental Solving
	Tuner Framework

	Evaluation
	JMCR
	SyPet
	Dirk
	Hexiom
	Sudoku
	Killer Sudoku
	Parallel Satune
	Using Maple SAT Solver

	Related Work
	Conclusion
	Future Work

	Bibliography

