
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Fast Tree Based Nearest Neighbor Search

A Thesis submitted in partial satisfaction of the requirements
for the degree Master of Science

in

Computer Science

by

Zhen Zhai

Committee in charge:

Professor Sanjoy Dasgupta, Chair
Professor Yoav Freund
Professor Ramamohan Paturi

2017

Copyright

Zhen Zhai, 2017

All rights reserved.

The Thesis of Zhen Zhai is approved and it is acceptable in

quality and form for publication on microfilm and electroni-

cally:

Chair

University of California, San Diego

2017

iii

DEDICATION

To my family

iv

EPIGRAPH

How long should you try? Until.

—Jim Rohn

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . viii

Acknowledgements . ix

Abstract of the Thesis . x

Chapter 1 Nearest Neighbor Search . 1
1.1 Introduction . 1
1.2 K-D Tree . 2
1.3 Defeatist Search . 6
1.4 Experiments . 7
1.5 Curse of Dimension . 12

Chapter 2 Randomized K-D Tree and PCA Tree 15
2.1 Randomized K-D Tree . 15

2.1.1 Data Structure . 15
2.1.2 Experiments . 18

2.2 Multiple R-K-D Trees . 19
2.3 PCA Tree . 21

2.3.1 Data Structure . 21
2.3.2 Experiments . 22

2.4 R-K-D Tree vs. PCA Tree 24

Chapter 3 Random Projection Tree . 27
3.1 Data Structure . 27
3.2 Experiments . 29
3.3 RP Tree with R-K-D Tree and PCA Tree 32

Chapter 4 Two-Vantage-Point Tree . 34
4.1 Data Structure . 34
4.2 Experiments . 35

vi

Chapter 5 Spillover in Search Trees . 39
5.1 Data Structure . 39
5.2 Experiments . 42
5.3 Virtual Spill Tree . 42
5.4 Randomized Trees vs. Spill Trees 45

Chapter 6 Perspective . 49

Bibliography . 50

vii

LIST OF FIGURES

Figure 1.1: K-d tree partition with leaf size equals to three. 6
Figure 1.2: Defeatist search in a k-d tree will not find the true NN in this graph. 8
Figure 1.3: These are ten small images from CIFAR. 9
Figure 1.4: Here are a few images from MNIST training set. Each image repre-

sents a hand written number. 10
Figure 1.5: These are the k-d tree accuracy for each of the datasets. 13
Figure 1.6: This is a demonstration of the curse of dimension. 14

Figure 2.1: We apply k-d trees and two r-k-d trees on all six datasets. 18
Figure 2.2: We apply two, four, and eight r-k-d trees on all six datasets. 20
Figure 2.3: We apply PCA trees and k-d trees on six different datasets. 23
Figure 2.4: We apply PCA trees, r-k-d trees, and k-d trees on all six datasets. . . 26

Figure 3.1: This is an RP tree partition with leaf size three. 28
Figure 3.2: We apply two RP trees and k-d tree on four different datasets. . . . 30
Figure 3.3: We apply two, four, and eight RP trees along with k-d tree on the

datasets. 31
Figure 3.4: We apply eight RP trees, eight r-k-d trees, k-d trees, and PCA trees

on the datasets. 33

Figure 4.1: We apply two, four, and eight V 2 trees along with RP trees and r-k-d
trees on the six datasets. 36

Figure 4.2: We apply eight V 2 trees, eight RP trees, eight r-k-d trees, k-d trees,
and PCA trees on all the six datasets. 38

Figure 5.1: This is a k-d spill tree partitioned of leaf size three. 40
Figure 5.2: The graph shows k-d spill trees with spill factor 0.05 and 0.1. . . . 43
Figure 5.3: We applied α = 0.1 and 0.05 on PCA trees. 44
Figure 5.4: We compare k-d spill trees with V 2 trees. 46
Figure 5.5: We compare PCA spill trees with V 2 trees. 48

viii

ACKNOWLEDGEMENTS

I would like to acknowledge Professor Sanjoy Dasgupta for his guidance and

advises, for being my very first mentor who taught me research and machine learning, and

for his patience over my past three years of research studies. Many thanks to Professor

Yoav Freund for teaching me how to do good research and how to present my work

clearly, and for giving me a wonderful space in his lab where many of my projects happen.

I would also like to thank Professor Ramamohan Paturi for supporting and encouraging

me to pursue my degree and my research projects. His words have made me stronger

and reminded me to never give up. I wouldn’t be who I am without any of my mentors’

support.

Chapter 4, in part, has been submitted for publication of the material as it may

appear in Nearest Neighbor Search Using Twin-Vantages Forests, Zhai, Zhen; Dasgupta,

Sanjoy, 2017. The thesis author was the primary investigator and author of this material.

ix

ABSTRACT OF THE THESIS

Fast Tree Based Nearest Neighbor Search

by

Zhen Zhai

Master of Science in Computer Science

University of California, San Diego, 2017

Professor Sanjoy Dasgupta, Chair

Nearest neighbor search is a basic primitive method used for machine learning

and information retrieval. We look at exact nearest neighbor search algorithms using

tree structures. The most basic tree structure used for fast nearest neighbor search is

k-d trees. This thesis will look at k-d tree’s shortcomings and explore various ways to

improve its performance. First, we look at PCA trees, which give good performance

but is time-expensive. We then study randomized trees, which are very efficient data

structures and are flexible in space complexity. Then we introduce a new randomized tree

structure, two-vantage-point tree, which outperforms all other tree structures including

PCA trees, r-k-d trees, and RP trees. At last, we look at spillover on trees, which can be

x

used to improve the performance of any tree structures. We then compare randomized

trees with spillover and show that spill trees only work well with very small spill factor.

If more space is allowed, two-vantage-point trees are preferred over spill trees.

xi

Chapter 1

Nearest Neighbor Search

1.1 Introduction

In a nearest neighbor(NN) search problem, we are given a dataset S of size n,

S = {x(1),x(2), ...,x(n)}, where x(i) are vectors in d dimensional space Rd . Then given a

query data q, NN search will output a data point x(i) for 1≤ i≤ n, that x(i) and q has the

shortest distance comparing to all other data points in S. The distance between query q

and data x(i) can be measured by different distance function. We used Euclidean distance

function D

D(q,x(i)) =
d

∑
k=0

(x(i)k −qk)
2

The NN search will be

NN(q,S) = argmin
x∈S

D(q,x)

NN search is used in many areas of study, including computer vision, machine

learning, and data mining. Although NN search can be broadly used across different

fields, it is computationally intensive due to the distance computation of n data points in

Rd where both n and d could be arbitrarily large. A linear search would take time O(nd)

1

2

for each query. Therefore, a significant amount of research devoting to speed up NN

search has been conducted in the past decades.

1.2 K-D Tree

One of the most popular structures used by NN search is k-dimensional(k-d) tree,

a multidimensional binary search tree[1] [6]. K-d trees do binary partition recursively.

It starts by selecting one feature direction to partition the data points from the root into

two subsets evenly. Then, it repeats the partition recursively until the size of the subset

reaches certain size limit. See Algorithm 1.

Algorithm 1 Building k-d tree
Input: dataset S, minimum leaf size m
Output: tree node

1: function BUILD TREE(S,m)
2: if |S|< m then
3: return lea f ← leaf node created with points in S
4: else
5: T ← tree node
6: T,SL,SR = KD PARTITION(T)← call a partition function
7: T.L← left subtree of T
8: T.R← right subtree of T
9: T.L = BUILD TREE(SL,T.split value)

10: T.R = BUILD TREE(SR,T.split value)
11: return T
12: end if
13: end function
14: function KD PARTITION(T)
15: T.split coord = c← select coordinate with max variance
16: T.split value = median{xc : xc ∈ S}
17: xc← value at split coordinate c of data x.
18: SL = {x ∈ S : xc ≤ T.split value}
19: SR = {x ∈ S : xc > T.split value}
20: return T,SL,SR
21: end function

K-d trees select partition directions by finding the feature coordinate with max-

3

imum variance. Then the data points are split at the median of the chosen direction.

It always split evenly so that the left subtree and the right subtree have the same size.

However, this can sometimes be hard to achieve in practice, because we could have

multiple data points with the same value as the median in the chosen direction. Therefore,

we need to deal with these data points separately.

Here, we introduce a tie-breaking method to make sure an even split at each tree

level. First, we collect all the data points that have the median value in the split direction,

then project all these data points to a random vector with normal distribution N (0,1).

The projection will map each data point to a value. We sort the projected value and find

the kth smallest pivot value, where k is the number of data points needed in left subtree.

The data points which has projected value smaller than the pivot will go to the left subtree,

and the rest will go to the right subtree. Therefore the size of both subtrees is equal. It is

guaranteed an even split at each tree level. See Algorithm 2.

Algorithm 2 Break Tie
1: function KD PARTITION(T)
2: T.split coord = c← coordinate with max variance
3: sc← value at coordinate c of data s.
4: T.split value = median{sc : sc ∈ S}
5: SL,SR = BREAK TIE PARTITION(S,T)
6: return T,SL,SR
7: end function
8: function BREAK TIE PARTITION(S,T)
9: SL = {x ∈ S : xc < T.split value}

10: SR = {x ∈ S : xc > T.split value}
11: P = {x ∈ S : xc = T.split value}
12: T.tie breaker = v← random vector from N (0,1)
13: T.tie pivot = pivot← the split value for projected data
14: SL = SL +{x ∈ P : v · x≤ pivot}
15: SR = SR +{x ∈ P : v · x > pivot}
16: return SL,SR
17: end function

After we build a k-d tree from the training set, we pass a query data q into a

4

search algorithm which will return the NN of query q. Searching starts from the root

down to the leaves. We compare query q with the split median of each tree node. The

query q will then go to either the left subtree or the right subtree depending on whether it

is smaller than or greater than the median. We repeat the above step until query q falls

into a leaf node l. Then we do a linear search with all the data points within the leaf to

find the nearest neighbor n.

n = NN(q, l) = argmin
s∈l

D(q,s)

One problem is that the query may end up falling into a leaf node that doesn’t

contain the true nearest neighbor n∗. To solve this, we need to search more than one leaf

node to find the true NN. We do the comprehensive search, where multiple leaves are

searched in a tree. The search algorithm decides whether to search more than one leaf

node by comparing the distance from query to the returned neighbor n0 with the distance

to the split boundary. If the distance to the split boundary is smaller than the distance

to the returned neighbor, it searches the leaf on the other side of the boundary as well.

After searching the other leaf node, another nearest neighbor n1 will be returned. Then

we compare the distance from query q to n0 and n1, then return the data with smaller

distance.

n = argmin
i∈{n0,n1}

D(q, i)

We apply this algorithm recursively until the distance from query to the returned neighbor

is smaller than the distance to the split boundary. This can guarantee we find the true NN

of q in the dataset. See Algorithm 3 and Figure 1.1.

Although the comprehensive search algorithm guarantees to find the true NN,

it could end up doing a linear search on the entire dataset S. Imagine the algorithm

compares distance D(q,n) with distance D(q,b), where b is the split border, we may

5

Algorithm 3 K-D Tree Comprehensive Search
Input: query q, k-d tree node T
Output: nearest neighbor

1: function K-D TREE SEARCH(q,T)
2: if T is leaf then
3: return argmins∈T D(q,s)
4: else
5: c = T.split coord
6: qc← value at coordinate c of query q.
7: if qc ≥ T.split value then
8: nnR = K-D TREE SEARCH(q,T.R)
9: dsplit ← distance between q and the split

10: dnn← distance between q and nnR
11: if dsplit ≤ dnn then
12: nnL = K-D TREE SEARCH(q,T.L)
13: return argmins∈{nnL,nnR}D(q,s)
14: else
15: return nnR
16: end if
17: else
18: nnL = K-D TREE SEARCH(q,T.L)
19: dsplit ← distance between q and the split
20: dnn← distance between q and nnL
21: if dsplit ≤ dnn then
22: nnR = K-D TREE SEARCH(q,T.R)
23: return argmins∈{nnL,nnR}D(q,s)
24: else
25: return nnL
26: end if
27: end if
28: end if
29: end function

6

Figure 1.1: K-d tree partition with leaf size equals to three. The red point is query q.
The first returned neighbor is point x. The comprehensive search algorithm measures
and compares the distance between q and the split boundary with the distance between
q and x. Because the distance from q to the split boundary is smaller, the leaf node on
the other side of the split will be searched as well. Then the true nearest neighbor y will
be returned after searching the other leaf.

have D(q,n)> D(q,b) all the time. In this case, it will apply linear search on all the tree

nodes, which is the same as doing a linear search on the entire dataset. Therefore, it

could take time O(n), where n is the size of the dataset S.

1.3 Defeatist Search

It could be very time consuming to find the true NN using comprehensive search.

Therefore, in practice, the defeatist search is used broadly. The defeatist search algorithm

only searches one leaf for each query. It will only take time O(log n) comparing to O(n)

in the comprehensive search. See Algorithm 4. However, defeatist search can’t guarantee

to find the true NN. Therefore, we have the trade-off between time complexity and the

accuracy rate.

The reason that defeatist search can’t guarantee to find the true NN is that the

query q may fall into a leaf node that doesn’t contain the true NN. See Figure 1.2. The

7

Algorithm 4 K-D tree Defeatist Search
Input: query q, k-d tree node T
Output: nearest neighbor

1: function DEFEATIST SEARCH(q,T)
2: if T is leaf then
3: return argmins∈T D(q,s)
4: else
5: c = T.split coord← Split direction
6: qc← value at coordinate c of query q.
7: if qc ≥ T.split value then
8: return DEFEATIST SEARCH(q,T.R)
9: else

10: return DEFEATIST SEARCH(q,T.L)
11: end if
12: end if
13: end function

defeatist search could end up searching the wrong node when the query point is very

close to the border of the split. If query q traces down to the node where its true NN

doesn’t belong, the true NN of q will not be returned from the algorithm. Therefore,

the true NN accuracy is essential in the defeatist search. There has been much research

devoting to find a way to improve the true NN accuracy in defeatist search; it is also what

we focus on in this paper. We will look at different variations of the k-d tree and compare

the NN accuracy.

1.4 Experiments

We evaluate the performance of k-d trees and other tree structures using training

set and test set. The training set is the set of points that are used to build the model. The

test set is the set containing queries. K-d trees, for example, first use training set to build

k-d trees, then use data points from the test set as queries and search for NN in the trees.

We find the accuracy of a data structure by comparing the returned NN with the

true NN. We first find the true NN of each query in the test set using linear search over

8

Figure 1.2: Defeatist search in a k-d tree will not find the true NN in this graph. The
graph shows a k-d tree partition with leaf size 3. The red point is query q. We see that
the true NN of q is not in the same leaf node as q. Therefore, defeatist search won’t find
the true NN.

all data in training set. Then we build models from the training set and use the models to

search for NN of query points. We compare the returned NN with the true NN and we

measure the number of queries that don’t have their true NN returned from the algorithm.

The error rate will then be the fraction of correct NN returned.

Fraction of correct NN =
number of true NN returned

number of queries

We use six different datasets to verify the performance. We have CIFAR, MNIST,

SIFT, BIG5, the Million Songs, and Word2Vec. We do pre-process on each dataset by

removing duplicate data. Having too many duplicates in the training set causes problems

when we try to split a set into two at the lower level of trees.

CIFAR

We first have CIFAR, a dataset of small images of ten different classes, collected

by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. CIFAR’s classes include airplane,

9

automobile, bird, cat, deer, dog, frog, horse, ship, and truck. See Figure 1.3. It has 50,000

color images of size 32 by 32 in the training set and 10,000 images in the test set.

Figure 1.3: These are ten small images from CIFAR. Each of them belongs to one of
the classes in CIFAR. The first row has classes airplane, automobile, bird, cat, and deer.
The second row has classes dog, frog, horse, ship, and truck.

Using the raw pixel data from CIFAR gives us poor true NN accuracy because we

use Euclidean distance as our distance function. Therefore, we use k-means clustering to

extract feature vectors that will better represent the images in CIFAR. We extract 1000

features from CIFAR using k-means clustering with the ”triangle” activation function

introduced by [3]. The extracted features are shown to yield good performance comparing

to other feature extraction methods in [3].

MNIST

We then have MNIST, a dataset containing small images of handwritten digits

of 0 to 9. See Figure 1.4. This dataset is collected from NIST by Yann LeCun, Corinna

Cortes, and Christopher J.C. Burges. The images are of size 28 by 28. The features are

simply the pixels of the images. Therefore, the dimension of the data is 784. There are

60,000 such gray-scaled images in the training set and 10,000 in the test set. Unlike

CIFAR, raw pixel data from MNIST yield good true NN performance in the NN search

algorithm. Therefore we simply use the raw pixel data in our experiments.

10

Figure 1.4: Here are a few images from MNIST training set. Each image represents a
hand written number.

SIFT

We also have SIFT dataset[9][8]. Scale-invariant feature transform(SIFT) is an

algorithm used to extract useful feature vectors from images. The training and test datasets

we use are SIFT vectors derived from INRIA Holidays images, a dataset containing

personal holiday photos[8]. The INRIA dataset also contains photos that are taken on

purpose with rotations and blurring used to test the robustness of algorithms. Therefore it

is a good idea to have SIFT vectors extracted and used those for our experiments.

There is a total of 1000,000 SIFT vectors with dimension 128 in the training set.

After we removed the duplicate data, we have around 985,000 left in the training set and

10,000 in the test set. The SIFT dataset is one of the largest dataset used to evaluate NN

search[9].

BIG5

BIG5, also known as Five Factor Model, is a model used to describe human

personality. The five factors include openness, conscientiousness, extroversion, agree-

ableness, and neuroticism. NEO-PI-R(NEO Personality Inventory, Revised) questionnaire

is a measure of these five factors; it’s the revised version of NEO Personality Inventory

by Paul Costa, Jr. and Robert McCrae[12]. The dataset we use here is the 100-item

IPIP(International Personality Item Pool) proxy of the NEO-PI-R [10]. In another word,

each data contains 100 questions with the answer of scale 1-5. We preprocess the data set

by filtering out the invalid responses, for example, the responses with ”Agree” selected

11

throughout all 100 questions[10].

The BIG5 dataset is of size one million. Each data point represents one human

response to the 100 questions. Therefore, each data point has a dimension of 100. After

we remove the duplicate data points, we randomly draw 10,000 as our test set and the

rest 996,171 data as our training set.

Million Songs

Furthermore, we have the Million Songs dataset, a dataset containing many

different features of a million different songs[2]. We extract the timbre feature of the

introduction section of each song, which includes the first 50 segments of a song and

each segment has 12 timbre values. The timbre data are all floats, therefore we have 600

floats value for each song. We randomly draw 990,000 data points from a million points

as training set and the test set has 10,000 data points. After removing the duplicates, we

have 951,593 in the training set.

Word2Vec

Finally, we have Word2Vec[14]. The Word2vec model is a group of two-layer

neural networks trained for word embedding. The Word2vec aims at giving semantically

related words similar embeddings. It is shown that vector of ”King” + ”Man” + ”Women”

is a vector closest to the vector of ”Queen”[15].

The model we use is pre-trained on a selection of the original Google News

dataset and produces 300-dimensional word embeddings. About 100 billion words from

the original Google News dataset are used to train the Word2vec dataset. The Word2vec

dataset has 3 million vectors each of dimension 300. Each vector represents a word or a

phase obtained from [14].

12

Figure 1.5 shows the plot of the fraction of correct NN with the number of distance

computation for the k-d tree. The number of distance computation is the number of points

we perform the linear search on for each query point. We control the size of distance

computation by limiting the depth of the tree each query can reach. The deeper the tree

the query goes, the smaller the tree node it will reach. Therefore, the number of distance

computation increases by a power of two along the curves in the graphs. We can see

from the graphs that as the number of distance computation increase, the accuracy of the

true NN search increase accordingly. In another word, the more data we use for linear

search, the higher the true NN accuracy. In later sections of the paper, we will use the

performance of k-d tree defeatist search as the baseline to validate the performance of

other data structures.

1.5 Curse of Dimension

In practice, datasets increasingly tend to have high dimension. The high dimen-

sional causes problems in many data structures that are used for the nearest neighbor

search. For example, k-d trees partition the data points in one direction at a time. In

another word, k-d trees use one feature for each split. However, one single feature will be

less and less informative as the dimension of the data increases. As a result, the accuracy

of NN search will decrease as the dimension increase. Such problem is referred as the

curse of dimensional[1].

In Figure 1.6, we generate 1000 training data and 200 test data from Gaussian

distribution with different dimensions d. We perform k-d tree on each of the datasets.

When the dataset is of dimension two and three, the true NN accuracy can be around

90%. However, increasing the dimension to five makes the accuracy drop to between

13

Figure 1.5: These are the k-d tree accuracy for each of the datasets. Both CIFAR and
MNIST have true NN accuracy around 50% using k-d trees. And SIFT has around 40%.
However, BIG5, the million songs, and Word2vec have very low true NN accuracy
using k-d trees, around 10%. We will use k-d tree true NN accuracy as our baseline for
our experiments on other tree structures.

60% and 70%. Increasing the dimension to 10 makes the accuracy drop to 30%-50%.

When we have dimension bigger than 100, the accuracy drops below 20%. As shown in

the Figure 1.6, the true NN accuracy drops very fast as we increase the dimension of the

14

dataset.

Figure 1.6: This is a demonstration of the curse of dimension. We generate 1000
training data with different dimensions from 2 to 2000. We then apply k-d tree NN
search for 200 queries. As shown in the plot, the true NN accuracy decreases rapidly as
we increase the dimension of the data.

Chapter 2

Randomized K-D Tree and PCA Tree

One of the important factors of tree structures is to choose split directions. K-d

trees select split directions by finding features with maximum variance. Other tree

structures choose split directions differently. Randomized k-d(r-k-d) trees select split

directions randomly from the first few features with maximum variance, and Principal

Component Analysis(PCA) trees select split directions through principal component

analysis[16][17].

2.1 Randomized K-D Tree

2.1.1 Data Structure

R-k-d trees are binary search trees with different split directions at each tree node.

While k-d tree splits at a direction with maximum feature variance, r-k-d trees select split

directions randomly from the first few maximum variance features. We use the first five

features with maximum variance in our experiment similar to [16].

R-k-d trees are built by first having all data points in the root. Then randomly

select one feature vector from the first five features with maximum variance as the split

15

16

direction. The data points are therefore divided into two subsets evenly at the median

along the selected feature axis. It recursively split the data points until the size of the tree

nodes reaches the leaf limit m. See Algorithm 5.

Algorithm 5 Building r-k-d tree
1: function RKD PARTITION(T)
2: V = {c1,c2,c3,c4,c5}← set of first five coordinates with max variance
3: T.split coord = c← randomly select one coordinate from V
4: sc← value at coordinate c of data s.
5: T.split value = median{sc : sc ∈ S}
6: SL,SR = BREAK TIE PARTITION(S,T)
7: return T,SL,SR
8: end function

The quality of a single r-k-d tree may not be as good as a k-d tree, because r-k-d

trees may not split a node along the feature direction with maximum variance. However,

if we collect more than one r-k-d tree, the performance will get boosted because of the

randomization of the trees. The tree randomness could solve the boundary problem in

defeatist search as described in Figure 1.2. If query q lies near the splitting boundary

in one of the r-k-d trees, it is not likely to lie near the boundary in another r-k-d tree.

Therefore, as we build more trees, the probability of the query lying near the boundary

become smaller. In other words, the more trees we build, the higher the probability of

finding the true NN.

R-k-d tree search is similar to the k-d tree search, where a query point q traverses

down the tree from the root and fall into one of the leaf nodes. We build r different r-k-d

trees from the training set and perform the query search in all trees. Each tree returns

one leaf node which we perform the linear search on. Therefore, we will have r leaf

nodes, and the linear search for each of the leaves will return one nearest neighbor. We

then select the nearest neighbor that has the closest distance to our query q from these r

returned NN. See Algorithm 6.

We start by building two r-k-d trees for each training set and search both trees.

17

Algorithm 6 Searching r-k-d trees
1: function SINGLE RKD SEARCH(q,T)
2: if T is leaf then
3: return argmins∈T D(q,s)
4: else
5: c = T.split coord← Split direction
6: qc← value at coordinate c of query q.
7: if qc ≥ T.split value then
8: SINGLE RKD SEARCH(q,T.R)
9: else

10: SINGLE RKD SEARCH(q,T.L)
11: end if
12: end if
13: end function
14: function MULTIPLE TREES SEARCH(q,T1,T2, ... ,Tr)
15: for i← [1,r] do
16: ni = SINGLE RKD SEARCH(q,Ti)
17: end for
18: n∗ = argminn∈{n1,n2,...,nr}D(q,n)
19: return n∗

20: end function

Our experiment shows that the NN accuracy of two r-k-d trees is higher than the k-d tree

in almost all of our datasets except BIG5. BIG5 has very low true NN accuracy using the

k-d tree, and two r-k-d trees yield similar results.

The accuracy can be further improved by using more than two trees but results

in increasing space complexity. There is also the increase of time complexity when

searching trees. Each tree returns one leaf node of size m. Therefore, r different r-k-d

trees will result in linear search of a total size of r ·m data points. One way to limit the

distance computation is to decrease the size of leaf node to m
r . This will increase the

depth of the r-k-d tree, which again increase the space complexity. The benefit of having

deeper trees is that we could do the linear search in a smaller subset of points. If the leaf

size is m
r and we have r trees, we will only need to do the linear search on a total of r · m

r

data points.

18

2.1.2 Experiments

Figure 2.1: We apply k-d trees and two r-k-d trees on all six datasets. Two r-k-d trees
give higher NN accuracy than the k-d tree in almost all datasets except BIG5. Both k-d
trees and r-k-d trees yield very low true NN accuracy in BIG5. We can’t tell whether
one is better than the other in BIG5, but all the other datasets show that two r-k-d trees
perform better than the k-d tree.

We apply r-k-d trees and k-d trees on all six datasets. Figure 2.1 shows that r-k-d

trees have a higher nearest neighbor accuracy than the k-d tree in almost all six datasets

19

except BIG5. We make sure that we have the same number of distance comparison

between k-d trees and r-k-d trees by having the leaf size of the r-k-d tree being half of

the leaf size of k-d trees. Therefore, both tree structures perform linear search in subsets

with the same size. Given almost the same time complexity, r-k-d trees boost the true

NN accuracy of the k-d tree by around 10% in MNIST, SIFT, the Million Songs, and the

Word2Vec dataset. Two r-k-d trees have around 3% higher accuracy than k-d trees in

CIFAR. However, we have very similar performance between the k-d tree and two r-k-d

trees in the BIG5 dataset.

2.2 Multiple R-K-D Trees

Our experiment in the previous sections shows that two r-k-d trees can boost up

the NN accuracy by as much as 20% in some datasets while having similar accuracy with

the k-d tree in the others. Our experiments show that the more trees we have, the higher

the chance we find the true NN.

The build function of r-k-d trees will return a different tree every time it’s called

because we randomly select our split directions at each split level in the tree. In Algorithm

5, we have five directions to choose from at every split. Therefore, we have 5s possible

different trees with s splits in each tree. The probability of two trees being the same is

as small as 0.2s. Therefore, it is unlikely that we have two same trees returned from the

build function.

The reason we want more trees in the algorithm is that we can decrease the failure

rate. If the probability of not finding the true NN in one tree is p, we will have a failure

rate of pr with r trees. The more trees we have, the more likely we find the true NN when

we run queries through the trees.

Figure 2.2 shows the experiment of the k-d tree with two, four, and eight r-k-d

20

Figure 2.2: We apply two, four, and eight r-k-d trees on all six datasets. The graphs
show a consistency ranking of the true NN accuracy. From highest accuracy we have
eight r-k-d trees, then four r-k-d trees, followed by two r-k-d trees. K-D trees yield a
true NN accuracy that is lower than any of the r-k-d trees.

trees. We can see from the graphs that the accuracy increases as the number of trees go

up. We found that the more r-k-d trees we have, the better the performance of finding

the true nearest neighbor. Also, two r-k-d trees can almost beat our baseline, k-d trees.

21

Having more trees will result in the increase of space complexity from building and

storing r-k-d trees as we mentioned in 2.1.1. Therefore, we have this trade-off between

true NN performance and space complexity. The higher the space complexity, the higher

the true NN performance.

2.3 PCA Tree

2.3.1 Data Structure

PCA trees are another kind of binary search trees that partition data at each level

using principal component analysis[18]. PCA is used to extract the dominant principal

component with the largest variance from the high-dimensional data matrix[7]. PCA

trees then use the extracted dominant principal component as the split direction at each

tree level. The algorithm first projects all the data points of dataset S into the selected

split direction. Then it splits the projected points at the median. See Algorithm 7. PCA

trees don’t have a space complexity as high as r-k-d trees. However, it suffers from the

increase of time complexity due to the PCA, which we need to apply at every split of the

tree.

Algorithm 7 Building PCA tree
1: Call BUILD TREE(S,m) with partition function PCA PARTITION(T)
2: function PCA PARTITION(T)
3: Apply PCA on all the data points in S.
4: T.v = v← first principal component with largest eigenvalue
5: T.split value = median{s · v : s ∈ S}
6: SL = {s ∈ S : s · v≤ center}
7: SR = {s ∈ S : s · v > center}
8: return T,SL,SR
9: end function

PCA trees always split the data evenly along the largest variance direction of the

dataset instead of selecting a feature vector. The limitation of selecting a feature vector

22

as split direction is that the split can only capture the variance along one feature axis.

Therefore the k-d tree will always have its splits being axis-aligned. PCA trees overcome

this limitation by applying the PCA and capture the largest variance direction of the

datasets. This direction can capture many feature information of the data.

The searching algorithm of PCA trees is similar to k-d trees. The only difference

is that PCA trees do a projection before comparing the query to the splitting median. The

search of PCA trees projects a query q along the split directory at each split. Then it

compares the projected query point with the split median to determine which branch of

the tree the query should go down to. See Algorithm 8.

Algorithm 8 Searching PCA tree
Input: query q, PCA tree node T
Output: nearest neighbor

1: function PCA SEARCH(q, T)
2: if T is leaf then
3: return argmins∈T D(q,s)
4: else
5: v = T.v
6: qc = q · v
7: if qc ≥ T.split value then
8: PCA SEARCH(q, T.R)
9: else

10: PCA SEARCH(q, T.L)
11: end if
12: end if
13: end function

2.3.2 Experiments

We apply PCA trees along with k-d trees on the datasets. We see from Figure 2.3

that PCA tree gives a higher value of true nearest neighbor accuracy comparing to k-d

tree across all six datasets.

The accuracy improvement varies by datasets. From Figure 2.3, we see that PCA

23

Figure 2.3: We apply PCA trees and k-d trees on six different datasets. We found that
PCA trees outperform k-d trees in all six datasets.

trees improve the true NN accuracy by 20-30% in BIG5 and the Million Songs while it

only increases by less than 5% in CIFAR. This is because PCA trees give a large boost in

the accuracy of the dataset where one feature vector can’t capture much information. If

the largest variance feature axis, which is used in the k-d tree as the split direction, is very

close to the dominant principal component captured by PCA, then PCA trees will not give

24

a large boost of NN accuracy comparing to k-d trees. However, if the largest variance

feature axis is not representative of the dataset comparing to the dominant principal

component, then PCA trees will have much higher quality comparing to k-d trees. In this

case, PCA trees will have a much higher true NN accuracy.

2.4 R-K-D Tree vs. PCA Tree

Our experiments indicate that both r-k-d trees and PCA trees give higher nearest

neighbor accuracy comparing to k-d trees. Therefore, we explore which of these two data

structure performs better than the other. Figure 2.4 shows the k-d tree, r-k-d trees, and

PCA trees all in one graph.

We see eight r-k-d trees perform better than PCA trees in CIFAR, MNIST, SIFT,

and Word2Vec. However, PCA trees perform better than the eight r-k-d trees in the

Million Songs dataset. Also, PCA trees have almost the same true NN accuracy as eight

r-k-d trees in the BIG5. The graphs show that no one tree structure dominates the other

in all six datasets.

The difference between PCA trees and r-k-d trees is the split direction. PCA

trees project all the data points onto a direction before split while r-k-d trees select one

feature vector as the split. Therefore, PCA trees capture the largest variance direction of

the dataset instead of focusing on certain feature vector, while r-k-d trees focus on one

feature vector. For datasets where many features have high variance, PCA can have a

projection that best captures many of these features. Some datasets, however, only have

a few features with high variance, r-k-d trees will focus on these features and will give

high true NN accuracy.

MNIST, for example, have pixel values from the images as feature vectors.

Handwritten digit images will only have a few pixels that change between different digits.

25

Also, many of the surrounding pixels remain unchanged throughout the dataset. These

pixels will be the white space around the digit in each image. R-k-d trees will ignore all

the white space because those are not pixels with big variance. Instead, r-k-d trees will

focus on the pixels that change the most often between different digits. Therefore, r-k-d

trees give higher true NN accuracy comparing to PCA trees in MNIST.

26

Figure 2.4: We apply PCA trees, r-k-d trees, and k-d trees on all six datasets. We see
that PCA trees outperform eight r-k-d trees in the Million Songs dataset. Also, PCA
trees have similar true NN accuracy in the BIG5 dataset. However, eight r-k-d trees
have better performance than PCA trees in CIFAR, MNIST, SIFT, and Word2Vec.

Chapter 3

Random Projection Tree

In the previous chapter, we looked at r-k-d trees and PCA trees. We found that

both these two structures give better accuracy than the k-d trees, however, one requires

large space capacity and one requires large time complexity. We now look at another

tree algorithm, random projection(RP) trees [4]. RP trees are similar to PCA trees that it

project all the data down to a split direction at each tree level. RP trees are also similar to

the r-k-d tree that it is randomized and therefore requires multiple trees to obtain high

performance. We will first look at the data structure of RP trees and then we will make a

comparison between PCA trees, r-k-d trees, and RP trees. We use the same number of

trees as r-k-d trees when we do the comparison. Therefore we will look at two, four, and

eight RP trees and compare with the data shown in Section 2.4.

3.1 Data Structure

RP trees are binary search trees similar to k-d trees that a tree splits a parent node

into a left child node and a right child node recursively. The only difference between RP

trees and k-d trees is again the split direction. RP trees select the split direction randomly.

See Figure 3.1 All the data points are projected down to the split direction before they

27

28

are divided into two subsets. For a dataset of dimension k, we have a random vector vk

of size k at each split where vi is selected uniformly at random from standard normal

distribution N (0,1). We then do a dot product for all the data points to project the data

to vk. Finally, we split the projected data at the median. See Algorithm 9.

Figure 3.1: This is an RP tree partition with leaf size three. The red star is query q. We
see that the true nearest neighbor of q is in the same leaf node as q. Therefore, it will
return the true nearest neighbor when the query traverse down the tree.

Algorithm 9 Building RP trees
1: Call BUILD TREE(S,m) with partition function RP PARTITION(T)
2: function RP PARTITION(T)
3: T.v← split direction of node T
4: T.v = v← random vector
5: T.split value = median{s · v : s ∈ S}
6: SL = {s ∈ S : s · v≤ center}
7: SR = {s ∈ S : s · v > center}
8: return T,SL,SR
9: end function

The benefit of taking a random projection is similar to PCA trees that we can

capture the values of more than one feature in the projection. Furthermore, choosing a

random direction is time efficient comparing to the PCA. It also introduces randomness

into the tree and allows to build multiple different trees from the dataset. The quality

29

of an RP tree is not as good as a PCA tree because PCA tree projects each split with a

direction with dominating variance instead of a random direction. We could, however,

have multiple RP trees to boost up the true NN accuracy.

The searching of RP trees is similar to r-k-d trees, where we build r different trees

and search all the trees to find the nearest neighbor. See Algorithm 10.

Algorithm 10 Searching RP tree
1: Call MULTIPLE TREES SEARCH(q,T1,T2, ... ,Tr)

with function SINGLE RP SEARCH(q, T)
2: function SINGLE RP SEARCH(q, T)
3: if T is leaf then
4: return argmins∈T D(q,s)
5: else
6: c = T.split coord← Split direction
7: qc← value at coordinate c of query q.
8: if qc ≥ T.split value then
9: SINGLE RP SEARCH(q, T.R)

10: else
11: SINGLE RP SEARCH(q, T.L)
12: end if
13: end if
14: end function

3.2 Experiments

We apply RP trees on all our datasets and compare it with our baseline, k-d trees.

Here we build two RP trees and search both of the trees to find the nearest neighbor. See

Figure 3.2.

We select r to be 2, 4, and 8, similar to r-k-d trees. We will compare the

performance of RP trees and r-k-d trees with similar space complexity. In other words,

we will compare RP trees and r-k-d trees given the same number of trees.

We found that two RP trees can’t outperform the true NN accuracy of the k-d

trees. In fact, k-d trees is a lot more accurate than two RP trees in CIFAR and MNIST

30

Figure 3.2: We apply two RP trees and k-d tree on four different datasets. We found
that two RP trees can’t outperform k-d trees in all datasets except the million songs.
Two RP trees have true NN accuracy barely lower than k-d trees in SIFT, BIG5, and the
Word2Vec.

datasets. K-d trees have true NN accuracy a little bit higher than two RP trees in SIFT,

BIG5, and Word2Vec. However, we do have two RP trees outperform k-d trees in the

Million Songs dataset. Therefore, we try to increase the number of RP trees we use. The

31

more RP trees we use, the better chance we have at finding the true nearest neighbor.

Figure 3.3 shows the performance of two, four, and eight RP trees along with our baseline

k-d trees.

Figure 3.3: We apply two, four, and eight RP trees along with k-d tree on the datasets.
We found that eight RP trees can outperform k-d tree in almost all the datasets.

From Figure 3.3 we see that eight RP trees outperform k-d trees in all six datasets.

In fact, four RP trees already have higher true NN accuracy than k-d trees in all datasets

32

except CIFAR. RP trees don’t seem to work too well in CIFAR. K-D trees in CIFAR give

better NN accuracy than four RP trees, and eight RP trees can barely beat it. From the

graph, we see that eight RP trees only give a higher accuracy in CIFAR when we increase

the number of distance computation to 2000. In other words, RP trees work better when

we allow a larger number of distance computations. This holds true in other datasets as

well. RP trees seem to work better and better as the number of distance computation

increase.

3.3 RP Tree with R-K-D Tree and PCA Tree

RP trees lower the dimension of the data at each split, which is similar to the

idea of PCA tree. It is less time consuming compared to PCA tree because the split

directory is generated randomly. And because of the randomness in the RP trees, we

can build multiple RP trees and search all the trees, which is very similar to r-k-d trees.

We compared r-k-d trees with PCA trees in section 2.4, we want to see how RP trees’

performance fit into the graph.

From Figure 3.3 and Figure 2.2, we see that the more randomized trees we use,

the higher the true NN accuracy. Therefore, we only show eight RP trees and eight r-k-d

trees in Figure 3.4.

We see that eight r-k-d trees outperform all other tree structures on some datasets

while R-K-D trees have leading performance on the others. However, RP trees have

second leading performance in almost all the datasets. RP trees perform better than PCA

trees in MNIST, SIFT, and Word2Vec. Also, RP trees have similar performance with

r-k-d trees in the Million Songs. Therefore, we aim to improve the performance of RP

trees with a new tree structure two-vantage-point trees.

33

Figure 3.4: We apply eight RP trees, eight r-k-d trees, k-d trees, and PCA trees on
the datasets. We found that eight r-k-d trees give the best NN accuracy on CIFAR,
MNIST, and SIFT, while PCA tree gives the best NN accuracy on the million songs
and Word2Vec. PCA trees and eight r-k-d trees share very similar true NN accuracy on
BIG5. RP trees always rank the second best performance in the graphs.

Chapter 4

Two-Vantage-Point Tree

After we examine PCA trees, RP trees, and r-k-d trees, we conclude that PCA

and randomization are two techniques that can boost up the accuracy of the NN search.

See Figure 3.4. PCA focuses on the structure of the dataset but requires very high time

complexity. Randomization is very useful that it allows multiple trees to boost up the true

NN accuracy. We here introduce a new tree structure that can capture the structure of the

dataset and also use randomization that allows multiple trees, Two-Vantage-Point(V 2)

tree or Twin Vantage trees.

4.1 Data Structure

V 2 trees are binary trees similar to RP trees that a parent node is split into left child

node and right child node recursively by projecting data onto a random split direction.

However, we select the random direction by first selecting two points from the dataset

randomly and then take the vector between the chosen points as our split direction. For

a dataset S of dimension k, we have a vector v = [v1v2...vi...vk] at each split. V 2 trees

randomly select two data points si,sj ∈ S and have v = si− sj. We then project the data

down to v before we split the tree node at each tree level. See Algorithm 11.

34

35

Algorithm 11 Building V 2 tree
1: Call BUILD TREE(S,m) with partition function V2 PARTITION(T)
2: function V2 PARTITION(T)
3: Randomly select si,s j ∈ S
4: T.v← split direction of node T
5: T.v = si− s j
6: T.split value = median{s · v : s ∈ S}
7: SL = {s ∈ S : s · v≤ center}
8: SR = {s ∈ S : s · v > center}
9: return T,SL,SR

10: end function

We select the split direction by taking the vector between two random data points

from the dataset to make sure that the projection direction lies in the same intrinsic

space as our dataset. We capture the space information of the dataset and also have

randomness in the trees. Therefore, we can again use multiple trees to increase the NN

search accuracy.

Searching of the trees is the same as the searching of RP trees. We stored the

projection direction in T.v and will then be used the same way as in RP tree search.

The query point q will be projected down to the split direction at every tree level when

traversing down the tree to search for NN. See Algorithm 10.

4.2 Experiments

Similar to RP trees, we use r trees to evaluate the performance. We again select r

to be two, four, and eight. We want to see whether V 2 trees can outperform RP trees or

r-k-d trees. See Figure 4.1.

From Figure 4.1 we see that V 2 trees always give high accuracy than RP trees

and r-k-d trees. Furthermore, with only two V 2 trees, we get a higher true NN accuracy

than eight RP trees and eight r-k-d trees in the Million Songs dataset. Two V 2 trees boost

36

Figure 4.1: We apply two, four, and eight V 2 trees along with RP trees and r-k-d trees
on the six datasets. We found that V 2 trees always have higher true NN accuracy than
RP trees and r-k-d trees for all different values of r. V 2 trees perform extremely well
in the Million Songs dataset that two V 2 trees can outperform eight RP trees and eight
r-k-d trees.

up the true NN accuracy by almost 20% in the Million Songs. This is because the data

points in the Million Songs all lie in a simple intrinsic dimension which is easy to capture

by taking a vector between two random data points. RP trees won’t be able to obtain this

37

information because the projection is completely random. R-k-d trees only look at one

feature vector at a time, so won’t be able to capture more than one feature at each split.

Therefore, V 2 trees perform a lot better than RP trees and r-k-d trees in the Million Songs

dataset.

Given that V 2 tree outperform RP trees and r-k-d trees, we want to see the

performance of the V 2 trees comparing to all other tree structures including the leading

PCA trees. See Figure 4.2.

We use eight trees in multiple trees structure and compare the performance of V 2

trees with RP trees, r-k-d trees, PCA trees and k-d trees. We found that eight V 2 trees

outperform all the other tree structures in Figure 4.2. We see that eight V 2 trees boost the

true NN accuracy of the second best tree structure by almost 20% in CIFAR, the Million

Songs, and Word2Vec datasets.

Chapter 4, in part, has been submitted for publication of the material as it may

appear in Nearest Neighbor Search Using Twin-Vantages Forests, Zhai, Zhen; Dasgupta,

Sanjoy, 2017. The thesis author was the primary investigator and author of this material.

38

Figure 4.2: We apply eight V 2 trees, eight RP trees, eight r-k-d trees, k-d trees, and
PCA trees on all the six datasets. We found that eight V 2 trees always have a leading
true NN accuracy comparing to all other trees.

Chapter 5

Spillover in Search Trees

Solving the boundary problem from Figure 1.2 is one of the important ways to

improve the performance of trees. Spillover is a technique that aims to solve the boundary

problem of trees.[11][13]. Spillover allows part of the data points near the splitting

boundary to be included in both of the left and right child nodes, see Figure 5.1. We can

apply spillover on all the tree structures. We apply spillover on k-d trees to get the k-d

spill trees; we also look at PCA spill trees. We will compare the performance of spill

trees and the original trees to see whether spillover increases the true nearest neighbor

accuracy.

5.1 Data Structure

The number of spilled data points are determined by the spill factor α ∈ {0,0.5},

which stands for the percentage of the data points that we included in the spill at each

tree level. At each level, we first split at the median to have half of the data points in the

left tree node and the other half in the right node. We then want to make sure that the

spillover area is very close to the boundary. Therefore we capture α∗ |Sp| many points

that are located to the left and right of the median, where Sp is the parent node and |Sp|

39

40

Figure 5.1: This is a k-d spill tree partitioned of leaf size three. The red star is query
q. We see that the true nearest neighbor of q is in the spill area. Therefore, the spilled
k-d tree will return the true nearest neighbor when the query traverses down the tree.
However, it won’t return the true NN if we don’t spill, because the true NN is in a
different node with the query.

is the size of the parent node. Then, we will have a spillover of size 2 ∗α ∗ |Sp|. The

spillover area will be included in both the left and right tree node. See Algorithm 12 and

Algorithm 13.

Algorithm 12 Building k-d spill tree
1: Call BUILD TREE(S,m) with partition function KD SPILL PARTITION(T)
2: function KD SPILL PARTITION(T)
3: T.split coord = c← coordinate with max variance
4: sc← value at coordinate c of data s.
5: T.bound left = (0.5−α) percentile {sc : sc ∈ S}
6: T.bound right = (0.5+α) percentile {sc : sc ∈ S}
7: T.split value = median{sc · v : sc ∈ S}
8: SL = {s ∈ S : sc ≤bound right}
9: SR = {s ∈ S : sc >bound left}

10: return T,SL,SR
11: end function

If we allow spillover with spill factor α, we then have the size of each child nodes

to be (0.5+α)∗ |Sp|. This will increase the space complexity because we are storing

duplicate data in each level of the tree. Given the size of the dataset is |S|; the leaf node

41

Algorithm 13 Building PCA spill tree
1: Call BUILD TREE(S,m) with partition function PCA SPILL PARTITION(T)
2: function PCA SPILL PARTITION(T)
3: T.v← split direction of node T
4: Apply PCA on all the data points in S.
5: T.v = v first principal component with largest eigenvalue
6: T.bound left = (0.5−α) percentile {s · v : s ∈ S}
7: T.bound right = (0.5+α) percentile {s · v : s ∈ S}
8: T.split value = median{s · v : sc ∈ S}
9: SL = {s ∈ S : s · v≤bound right}

10: SR = {s ∈ S : s · v >bound left}
11: return T,SL,SR
12: end function

of trees is of size m. Let β = 1/2+α. We will have spillover of size m(|S|m)lg(1+2α)[5].

The spillover size is large, comparing to linear space complexity of other trees.

Searching the spill trees is the same as searching the original tree. Notice that

Algorithm 12 line 7 and Algorithm 13 line 8 both store the median of the split in

T.split value. Although we are not using T.split value when we build trees, we will use

it when we perform searching. Algorithm 4 and Algorithm 8 both search left sub-tree

T.L if the query at coordinate c has a value that’s smaller than the median T.split value.

Otherwise, the right sub-tree T.R will be searched. In spill trees, the query will follow

the same path as in k-d trees and PCA trees. However, there are more data points in the

leaves of spill trees than the original trees.

The time complexity of searching will not increase a lot. If the minimum leaf

size m is greater than 2−i|S|, which is the leaf size of the tree with depth i. We will have

(1+α)2−i|S| many points for the linear search in spill trees.

42

5.2 Experiments

We apply different spill factors on k-d trees and also PCA trees to see whether

spilling can boost up the nearest neighbor accuracy. See Figure 5.3 and Figure 5.2. Our

experiments show that spillover will improve the NN accuracy of both k-d trees and PCA

trees. Figure 5.3 shows that the bigger the spill factor α in PCA spill trees, the better

the performance. However, when we look at k-d spill trees in Figure 5.2 we see that

bigger spill factor not necessary improve the true NN accuracy. K-d spill can improve the

performance of CIFAR, SIFT, BIG5, and Word2Vec similar to PCA spill trees. However,

different spill factors don’t seem to make many differences in the million songs dataset

and MNIST.

We also show the space blowup on both Figure 5.3 and 5.2. The space blowup

is the factor of space of the original tree. A space blowup of 3 in k-d spill trees means

it takes three times the space of a k-d tree. A space blowup of 10 in PCA spill trees

represents ten times the space of a PCA tree. The space blowup factor increases when

the spill factor increases. Also, the deeper the tree we reach, the bigger the space blowup

factor. In the figures, we see that the smaller the number of distance computation the

bigger the space blowup.

5.3 Virtual Spill Tree

We found that spilling is very useful on tree structures. However, spill trees

increase space complexity very fast. We want to limit the space complexity of the spill

trees and keep the good performance.

One idea is to directly use the k-d trees and the PCA trees, and search the trees

using the methodology of spilling, the virtual spill trees [5]. Virtual spill trees perform

the spilling when searching the trees, that if a query q falls into the spill area, both the

43

Figure 5.2: We used α = 0.1 and 0.05 on k-d trees. We see that spilling increases the
true NN accuracy of k-d trees. Spill factors don’t make much difference in MNIST and
the Million Songs. However, bigger spill factors yield better performance in CIFAR,
SIFT, BIG5, and Word2Vec. We also label each data point with the space blowup factor.
The bigger space blowup factor, the larger the space the tree takes.

left and right sub-trees will be searched. See Algorithm 14.

We do need to store T.bound left and T.bound right when building the trees. We

will not use the left and right bound when we build the trees, but we need to use it when

44

Figure 5.3: We applied α = 0.1 and 0.05 on PCA trees. We see that spill factor of 0.05
give higher NN accuracy than the PCA trees, and 0.1 spill factor gives an even higher
accuracy than spill factor of 0.05. We again label each data point with the space blowup
factor. Space blowup factor represents the multiples of the space of the original trees.
Space blowup 12 represents the PCA spill tree takes 12 times the space of the PCA tree.

searching. Therefore, we can build virtual spill trees similar to the original tree, but we

need to calculate and store the left and right bound of the spill area at each tree level.

Virtual spill trees will not increase the space complexity. However, we could

45

Algorithm 14 Searching virtual spill tree
1: function VIRTUAL SPILLTREE SEARCH(q, T)
2: if T is leaf then
3: return argmins∈T D(q,s)
4: else
5: c = T.split coord← Split direction qc← value at coordinate c of query q.
6: if qc < T.bound left then
7: return VIRTUAL SPILLTREE SEARCH(q, T.L)
8: else if qc > T.bound right then
9: return VIRTUAL SPILLTREE SEARCH(q, T.R)

10: else
11: NNle f t = VIRTUAL SPILLTREE SEARCH(q, T.L)
12: NNright = VIRTUAL SPILLTREE SEARCH(q, T.R)
13: n∗ = argminn ∈ {NNle f t ,NNright}D(q,n)
14: return n∗

15: end if
16: return T
17: end if
18: end function

potential search many tree nodes. If query q falls into the spill zone at every splits,

we could end up searching the entire tree. This will increase the time complexity

tremendously. Therefore, virtual spill tree is more like a comprehensive search than a

defeatist search.

5.4 Randomized Trees vs. Spill Trees

Both randomized trees and k-d spill trees take up more space than k-d trees. Our

goal is to see which of these two types of trees give better performance given similar

space blowup. We, therefore, compare the performance of k-d spill trees and V 2 trees,

both of which have low time complexity but high space complexity. See Figure 5.4.

Looking at spills tree in Figure 5.4, we see that 0.05 spill trees have space blowup

between 1 and 3, and 0.1 spill trees have space blowup rate higher than 3, some reach

12. If we look at the V 2 trees, the number of trees is the space blowup rate. Therefore,

46

Figure 5.4: We compare k-d spill trees with V 2 trees. We see that two V 2 trees can beat
the performance of spill trees in MNIST, SIFT, BIG5, Word2Vec, and Songs. Therefore,
given the space blowup rate of 2, it is better we do V 2 trees comparing to do spillover.
However, if we look at CIFAR, k-d spill trees with both 0.05 and 0.1 spill factors
outperform two V 2 trees. However, when more space is given, V 2 trees outperform the
k-d spill trees.

we want to look at 0.05-spill trees against 2 V 2 trees, and 0.1-spill trees against four and

eight V 2 trees.

47

Figure 5.4 shows us that two V 2 trees outperform 0.05-spill trees in most of the

datasets. V 2 trees work very well in the Million Songs that two V 2 trees boost up the true

NN performance of 0.05-spill trees by almost 20%. If we look at Big5, SIFT, Word2Vec,

and MNIST, two V 2 trees outperform 0.05-spill trees by around 5%. However, both

0.05-spill trees beat two V 2 trees in CIFAR. It is not clear which of the 0.05-spill trees

and the two V 2 trees are better.

If we look at 0.1-spill trees, we see that four V 2 trees outperform 0.1-spill tree

barely in CIFAR. Eight V 2 trees boost up the accuracy of 0.1-spill trees by almost 10%.

If we look at eight V 2 trees on all other datasets, we see it outperforms k-d spill trees by

almost 20% in MNIST, SIFT, BIG5, and Word2Vec. Looking at the Million Songs, eight

V 2 trees boost up the true NN accuracy by almost 50%. It is shown that eight V 2 trees

work better than 0.1-spill trees.

We do the same experiment on PCA spill trees. See Figure 5.5. PCA spill trees

with spill factor 0.1 have similar true NN accuracy with four V 2 trees in CIFAR, MNIST,

SIFT, Million Songs, and Word2Vec. Eight V 2 trees, however, outperform PCA spills in

these five datasets. Looking at BIG5, we see that eight V 2 trees have true NN accuracy

slightly lower than PCA spill with 0.1 spill factor. PCA spill trees with 0.1 spill factor

have space blowup range from 3 to 12. In this case, we think that having more than eight

V 2 trees can give higher accuracy than PCA spill trees. Notice that PCA trees and PCA

spill trees require very high time complexity due to PCA on every tree level.

We concluded in the previous chapter that randomized trees give good true NN

accuracy when we use more trees. Therefore, when more space blowup is allowed,

randomized trees work better than spillover. But when the space blowup rate is limited to

a small number, spillover may be a better choice. Therefore, when the space blowup rate

is low, spillover with small spill factor is a better option comparing to randomized trees.

48

Figure 5.5: We compare PCA spill trees with V 2 trees. Eight V 2 trees outperform PCA
spill trees in almost all dataset, except BIG5. PCA spill trees with spill factor 0.1 have
slightly higher true NN accuracy than eight V 2 trees. It has a space blowup rate range
from 3 to 12.

Chapter 6

Perspective

We looked at three categories of tree structures, PCA trees, randomized trees,

and spill trees. We showed that PCA trees are time-consuming but yield good true

NN accuracy. Randomized trees are flexible that one can scale up the performance by

introducing multiple trees. Spill trees boost up performance by allowing spillover and

work well with small spill factors.

We introduced a new randomized tree structure, V 2 trees. V 2 tree is a randomized

tree that can capture spatial information of the train data and has better true NN accuracy

than any other randomized trees. V 2 trees can also outperform PCA trees and only require

a small time complexity compared with PCA.

Furthermore, we examined V 2 trees with spill trees. Spillover is a technique that

can be applied to any tree structures. It expands the tree to include more data points in

each tree node and therefore also increases space complexity. We compare spill trees

with V 2 trees given similar space complexity. We conclude that V 2 trees work better

when large space blowup is allowed, and spillover works better when the space blowup

rate is limited.

49

Bibliography

[1] J. L. Bentley. Multidimensional binary search trees used for associative searching.
CACM, 18(9):509–517, 1975.

[2] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere. The million song
dataset. In Proceedings of the 12th International Conference on Music Information
Retrieval (ISMIR 2011), 2011.

[3] A. Coates, H. Lee, and A. Ng. An analysis of single-layer networks in unsupervised
feature learning. 15:215–223, 2011.

[4] S. Dasgupta and Y. Freund. Random projection trees and low dimensional manifolds.
In Proceedings of the fortieth annual ACM symposium on Theory of computing,
pages 537–546. ACM, 2008.

[5] S. Dasgupta and K. Sinha. Randomized partition trees for exact nearest neighbor
search. CoRR, abs/1302.1948, 2013.

[6] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best
matches in logarithmic expected time. ACM Trans. Math. Softw., 3(3):209–226,
1977.

[7] H. Hotelling. Analysis of a complex of statistical variables into principal compo-
nents. Journal of Educational Psychology, 24(6):417–441, 1933.

[8] H. Jegou, M. Douze, and C. Schmid. Hamming Embedding and Weak Geomet-
ric Consistency for Large Scale Image Search, pages 304–317. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

[9] H. Jégou, M. Douze, and C. Schmid. Product Quantization for Nearest Neigh-
bor Search. IEEE Transactions on Pattern Analysis and Machine Intelligence,
33(1):117–128, Jan. 2011.

[10] M. Kosinski, S. C. Matz, S. D. Gosling, V. Popov, and D. Stillwell. Facebook
as a research tool for the social sciences: Opportunities, challenges, ethical con-
siderations, and practical guidelines. American Psychologist, 70(6):543–556, 9
2015.

50

51

[11] T. Liu, A. W. Moore, K. Yang, and A. G. Gray. An investigation of practical
approximate nearest neighbor algorithms. pages 825–832, 2005.

[12] W. Lord. NEO PI-R - A Guide to Interpretation and Feedback in a Work Context.
Hogrefe Ltd, Oxford, 2007.

[13] S. Maneewongvatana and D. M. Mount. On the efficiency of nearest neighbor
searching with data clustered in lower dimensions. In Proceedings of the Interna-
tional Conference on Computational Sciences-Part I, ICCS ’01, pages 842–851,
London, UK, UK, 2001. Springer-Verlag.

[14] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed represen-
tations of words and phrases and their compositionality. CoRR, abs/1310.4546,
2013.

[15] T. Mikolov, S. W.-t. Yih, and G. Zweig. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies (NAACL-HLT-2013). Association for Computational Linguistics, May
2013.

[16] M. Muja and D. G. Lowe. Scalable nearest neighbor algorithms for high dimensional
data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(11):2227–
2240, Nov 2014.

[17] R. F. Sproull. Refinements to nearest-neighbor searching in k-dimensional trees.
Algorithmica, 6(1):579–589, 1991.

[18] N. Verma, S. Kpotufe, and S. Dasgupta. Which spatial partition trees are adaptive
to intrinsic dimension? In Proceedings of the twenty-fifth conference on uncertainty
in artificial intelligence, pages 565–574. AUAI Press, 2009.

