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ABSTRACT

The Mergeomics web server is a flexible online tool
for multi-omics data integration to derive biologi-
cal pathways, networks, and key drivers important
to disease pathogenesis and is based on the open
source Mergeomics R package. The web server takes
summary statistics of multi-omics disease associa-
tion studies (GWAS, EWAS, TWAS, PWAS, etc.) as in-
put and features four functions: Marker Dependency
Filtering (MDF) to correct for known dependency be-
tween omics markers, Marker Set Enrichment Anal-
ysis (MSEA) to detect disease relevant biological
processes, Meta-MSEA to examine the consistency
of biological processes informed by various omics
datasets, and Key Driver Analysis (KDA) to identify
essential regulators of disease-associated pathways
and networks. The web server has been extensively
updated and streamlined in version 2.0 including an
overhauled user interface, improved tutorials and re-
sults interpretation for each analytical step, inclusion
of numerous disease GWAS, functional genomics
datasets, and molecular networks to allow for com-
prehensive omics integrations, increased functional-
ity to decrease user workload, and increased flexibil-
ity to cater to user-specific needs. Finally, we have
incorporated our newly developed drug reposition-
ing pipeline PharmOmics for prediction of potential
drugs targeting disease processes that were identi-

fied by Mergeomics. Mergeomics is freely accessi-
ble at http://mergeomics.research.idre.ucla.edu and
does not require login.

GRAPHICAL ABSTRACT

INTRODUCTION

The advent of omics technologies has made signifi-
cant strides in unveiling various disease-associated genetic
and epigenetic variants, genes, proteins and metabolites.
The ever-growing source of multi-omics datasets avail-
able including genomics, epigenomics, transcriptomics, pro-
teomics and metabolomics now presents a new challenge of
integrating these different data types for more meaningful
and holistic interpretation of complex diseases. To conduct
a comprehensive investigation of disease pathogenesis, we
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must consider multiple omics layers that contribute to bio-
logical complexity (1). The computational pipeline Merge-
omics was developed to meet the need for multi-omics inte-
gration and functional interpretation to obtain mechanistic
understanding. Mergeomics provides flexibility to incorpo-
rate the full spectrum of summary statistics (not just top
hits) of individual layers of omics or multi-omics data si-
multaneously along with diverse functional genomics data
across data types, studies and species. As such, genome-
wide association studies (GWAS) as well as epigenome-
(EWAS), transcriptome- (TWAS), proteome- (PWAS) and
metabolome-wide association studies (MWAS) can all be
accommodated.

The development of our Mergeomics tool follows the
philosophy of utilizing a systems biology approach to un-
ravel the complex interactions across molecular domains
as well as cell types, tissues and organ systems that oc-
cur in disease. In particular, we are guided by the omni-
genic disease model (2), which states that a large propor-
tion of the genome likely contributes to disease pathogene-
sis through molecular interactions both within and between
tissues. Utilizing this data-driven analysis considering the
interactions among different omics layers and tissue con-
texts will uncover global maps to identify critical targets in
disease pathogenesis, which can be followed by experimen-
tal approaches to investigate the detailed events that occur
through the predicted molecules or pathways.

With the abundance of omics data available, it is un-
surprising that various tools or methods have been devel-
oped to better integrate and interpret these datasets (3–5).
These tools can be broadly categorized into two applica-
tion categories: multi-omics biomarker predictions of dis-
eases or subtypes (i.e. uncovering correlative or predictive
but not necessarily disease-causing features) or mechanis-
tic understanding of disease pathogenesis (i.e. regulators,
molecular interactions and processes involved in disease
development). Mergeomics focuses on mechanistic model-
ing but not predictive modeling. In terms of approaches,
fusion (such as PFA (6), SNF (7), PSDF (8)), Bayesian
(e.g. iCluster (9), PSDF (8), BCC (10)), correlation, multi-
variate (e.g. MFA (11), IntegrOmics (12), MixOmics (13)),
pathway and network methods (PARADIGM (14), SNF
(7), iOmicsPASS (15), MiBiOmics (16), Lemon-Tree (17),
PaintOmics (18), NetICS (19), Metascape (20)) have been
implemented (3–5). Mergeomics falls within the network
method category that mainly focuses on understanding dis-
ease pathogenesis through uncovering multiple molecular
targets within biological processes important to disease.
The benefit of a network approach over other integrative
options is its ability to provide biological interpretability,
which is reliant not on the identification of latent struc-
tures through mathematical deconvolution but on the uti-
lization of prior information based on molecular interac-
tions, which can help provide clear targetable options (e.g.
genes) in disease. Compared to other tools, Mergeomics
not only accommodates diverse data types (GWAS, EWAS,
TWAS, PWAS, MWAS) from different sources, studies, or
species for a given disease, but also considers relationships
between omics layers through functional genomics such as
expression quantitative trait loci (eQTLs), molecular path-
ways, and tissue-specific gene regulatory networks to derive

disease networks and predict therapeutics. Mergeomics also
uses full summary statistics, not raw data or lists of top as-
sociations, as input, thereby reducing the need for raw data
processing and harmonization and for pre-determining a
specific cutoff to call for significant markers. Mergeomics
has the ability to conduct pathway analysis and model gene
regulatory networks, protein-protein interaction networks,
and transcription factor networks in order to predict and vi-
sualize network regulators of disease. These unique features
help maximize the utility of existing datasets and overcome
limitations of other tools which utilize a narrower range of
multi-omics data sources, do not provide mechanistic inter-
pretations, or require programming skills with no intuitive
web server for ease of use.

Since the release of the open source Mergeomics R
package (https://bioconductor.org/packages/release/bioc/
html/Mergeomics.html) (21) and web server in 2016 (22),
this tool has been used to model a diverse set of diseases
including cardiometabolic disorders such as non-alcoholic
fatty liver disease (23), cardiovascular disease (24–26) and
type 2 diabetes (27), autoimmunity including psoriasis
(28) and rheumatoid arthritis (29), alcohol dependence
(30), brain injury (31), Sjogren’s syndrome (32) and
environmental contributions to disease (33–35). Impor-
tantly, multiple validations of molecular predictions from
Mergeomics with in silico, in vitro and in vivo studies
highlight the validity and causal nature of the disease net-
work predictions (23,27–28,31,35–40). Due to increasing
demand for multi-omics integration and interpretation
from scientists with different areas of expertise, we have
implemented major revisions and improvements on the
Mergeomics web server. Specifically, we have redesigned
the user interface, simplified workflows, offered detailed
tutorials and case studies, and provided more datasets
and network models for utilization. The Mergeomics 2.0
web server offers the scientific community much-improved
accessibility to our pipeline, caters to each user’s spe-
cific goals in multi-omics studies, and addresses a broad
range of biological questions, particularly emphasizing a
mechanistic understanding of disease pathogenesis and
prediction of potential therapeutics based on mechanistic
understanding.

OVERVIEW AND UPDATES ON THE CORE FUNC-
TIONS OF MERGEOMICS

Overview of core functions

Mergeomics 2.0 features four core functions as previously
implemented in version 1.0 with an addition of a new func-
tion. First, we provide a preprocessing tool, Marker De-
pendency Filtering (MDF) to remove omics marker redun-
dancies such as linkage disequilibrium (LD) between sin-
gle nucleotide polymorphisms (SNPs). Second, Marker Set
Enrichment Analysis (MSEA) is used to identify omics-
informed disease processes through the integrations of
omics markers such as SNPs with functional genomics,
canonical pathways, or co-expression networks. Third,
Meta-MSEA runs MSEA on multiple datasets and con-
ducts pathway/network level meta-analysis to retrieve con-
sistent disease processes informed across datasets. Fourth,
Key Driver Analysis (KDA) pinpoints network regulators

https://bioconductor.org/packages/release/bioc/html/Mergeomics.html
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of disease processes based on the topology of biological net-
works. In Mergeomics 2.0, we added a new functional mod-
ule called PharmOmics, which takes as input multi-omics-
informed disease pathways or networks from Mergeomics
to match with drug signatures to predict potential thera-
peutic drugs.

Introduction of PharmOmics into Mergeomics 2.0

We have recently developed a novel species- and tissue-
specific network-based drug repositioning tool, Phar-
mOmics, which is based on in vivo molecular studies of
drugs (41). PharmOmics is a complementary drug repo-
sitioning tool to other existing tools, such as CMap (42)
and LINCS L1000 (43), which are mostly based on in vitro
cell line data. We provide two drug repositioning meth-
ods: network-based drug repositioning and gene overlap-
based drug repositioning. Network-based drug reposition-
ing ranks drugs based on the degree of connectivity of genes
influenced by drug treatments to disease gene signatures in
a given gene network model (44). Gene overlap-based drug
repositioning is based on the degree of direct overlap be-
tween drug genes and disease genes. Users can directly in-
put their disease pathway results from MSEA (genes from
disease pathways are used as input) or KDA (genes from the
disease network or significant key drivers (KDs) are used as
input). For both MSEA and KDA, specific gene sets can be
input into drug repositioning for a more refined analysis. As
PharmOmics is based on gene expression studies, inputs are
limited to genes or proteins. Users can also input their genes
of interest into PharmOmics for drug repositioning analysis
without running any other functions in Mergeomics.

Flexible workflows using the core functions

Each of the main functions of Mergeomics described above
can be utilized as a standalone analysis tool or can be com-
bined into a multi-step workflow with several different cases
as portrayed in Figure 1. There are four cases or starting
points that a user has the option to select. In case one, the
user has one GWAS dataset and is prompted first to run
MDF where they provide their association dataset, map-
ping data (e.g. SNP to gene), and marker dependency data
(LD in the case of GWAS) to retrieve corrected SNP as-
sociations and mapping files. The MDF step is optional
if the user does not wish to correct for LD, although we
highly recommend this correction to avoid statistical arte-
facts due to LD. These results along with a gene set are fed
into MSEA to uncover disease-associated pathways, which
can be further analyzed in KDA to identify key regulators
or PharmOmics for drug repositioning. In case two, the user
has EWAS, TWAS, PWAS or MWAS data, and they are led
to MSEA, where MDF and marker mapping are optional.
As in the GWAS path, results from MSEA can be carried
to KDA or PharmOmics. In case three, the user has multi-
ple omics datasets and utilizes Meta-MSEA, which will run
MSEA on each dataset and then conduct a meta-analysis
across datasets to retrieve consistent biological processes,
which can be input into PharmOmics or KDA. Finally, in
case four, the user has a gene set and network of interest and
can directly run KDA, which will provide KD genes and a

subnetwork visualization of the top KDs, and the KDs or
subnetwork can be input into PharmOmics to predict drugs.

Update on Marker Dependency Filtering (MDF)

MDF prepares input files for MSEA by correcting for de-
pendency between omics markers and is an optional func-
tion. This preprocessing step is most commonly used for
GWAS data to correct for LD between SNPs and filter out
redundant SNPs, which is critical for removing redundant
association signals that can result in statistical and biolog-
ical artefacts in downstream analysis. Another purpose of
MDF is to link the SNPs to potential downstream genes
based on functional evidence, such as tissue-specific eQTLs.
Correcting for dependency between other omics markers is
currently seldom used. However, this feature can be utilized
to correct for dependency between other types of markers
(methylation sites, transcripts, etc.), if desired. MDF uses as
input an association file which details markers (e.g. SNPs)
and their disease association strengths (e.g. −log10 P-values
or effect size, note that P-values are prohibited as MDF
ranks larger values as stronger association strength, which
is opposite of P-values), a mapping file used for marker to
gene mapping (e.g. SNPs are mapped to genes to be en-
riched for gene sets), and a marker dependency file indi-
cating the dependency between markers (e.g. LD between
SNPs, to remove redundant markers) (Figure 2). The result-
ing corrected association and mapping files are then used
as input to MSEA. MDF also allows for the selection of a
top percentage of markers (50% or 25% recommended) to
be considered in the analysis which reduces noise from low
signal markers.

Updates to MDF include an increased number of marker
to gene mapping options such as the addition of all available
tissue-specific Genotype-Tissue Expression project (GTEx)
(45) cis-eQTLs and splicing QTLs (cis-sQTLs) (Table 1), the
ability to combine up to five mapping options, and the inclu-
sion of LD files for all 26 populations from 1000 Genomes
(1000G) (46) and methylation disequilibrium from EWAS
software 2.0 (47). For analysis starting from GWAS data,
MDF is a default preprocessing step, but we have included
the option to skip MDF. For analytical paths starting from
other omics data, users have the option to add MDF if
needed.

Update on Marker Set Enrichment Analysis (MSEA)

In MSEA, full summary statistics of omics markers such
as SNPs from GWAS, epigenetic sites from EWAS, genes
from TWAS, proteins from PWAS, or metabolites from
MWAS and their disease association values are taken as in-
put and are integrated with functional genomics, canoni-
cal pathways, or co-expression networks to retrieve disease-
associated pathways and networks. MSEA calculates and
summarizes enrichment of disease/trait omics markers in
sets of functionally related genes, such as canonical path-
ways and co-expression networks, across a range of statisti-
cal cutoffs in the full summary statistics using a chi-square-
like statistic and then uses permutation to determine sta-
tistical P-values for the enrichment. We emphasize the im-
portance to provide the association strength of the given
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Figure 1. Workflow of Mergeomics. We provide four options on the web server to tailor to the user’s data type. Case One: Individual GWAS analysis. For
GWAS datasets we advise utilizing the MDF function; however, we also provide the ability to skip MDF and directly run MSEA and follow the workflow
to PharmOmics or KDA. Case Two: Individual EWAS, TWAS, PWAS or MWAS analysis. In this case, we directly start at MSEA without MDF; however,
we also provide the ability to utilize the MDF function if needed. From here the user can feed the MSEA results into PharmOmics or KDA. Case Three:
Multi-omics analysis. If the user has multiple omics of the same type (e.g. two GWAS) or different types (e.g. TWAS and EWAS), they can utilize the
Meta-MSEA function to derive disease-associated pathways and can input their results into PharmOmics or KDA. Case Four: A gene list(s) to run KDA.
The user in this case can upload their gene sets of interest and upload or select a network to derive KD genes and visualize top KD subnetworks. The
disease subnetwork or significant KDs can be fed into PharmOmics for drug repositioning.

marker wherein a larger number reflects greater associa-
tion such as −log10 P-values or effect size to avoid incorrect
downstream analysis and interpretability.

MSEA is able to analyze diverse data types, and each
has different considerations of inputs which was partly de-
scribed in the above MDF section (Figure 2). The output
from MSEA can be interpreted as omics-informed disease
pathways or networks. If GWAS is used, MSEA results can
imply causal disease processes since GWAS carries causal
inference. For other omics data, the MSEA results can only
be interpreted as disease-associated processes but may or
may not be causal. Considering GWAS along with other
omics data, in our opinion, is a useful way to identify causal
genes and processes. We also advise the user to take care in
their interpretation of the names or annotations of path-
ways deemed to be significant (FDR < 0.05) as some can
be misleading. Attention to the genes enriched in a given
pathway derived from the input dataset should be checked
in the gene details output file to confirm whether the path-
way name is indeed appropriate as the genes may be more
suitable or representative of another biological process. A
user can conclude the analysis with results from MSEA or
use the MSEA results as input to KDA with a user-defined

statistical cutoff to identify network KDs of the disease pro-
cesses based on molecular network topology.

In Mergeomics 2.0, we added the ability to use disease-
associated gene sets derived from MSEA as input to Phar-
mOmics for drug repositioning analysis, selecting either
specific gene sets or by false discovery rate (FDR) or P-
value threshold, to pinpoint drugs whose gene signatures
align with those of the disease-associated gene sets identi-
fied by MSEA.

Update on Meta-MSEA

Meta-MSEA allows for integration of multiple datasets of
the same omics type (e.g. two or more GWAS datasets) or
multiple omics types (e.g. GWAS, EWAS, TWAS) and runs
MSEA for each omics dataset followed by a meta-analysis.
This integration reveals consistencies and differences in bio-
logical perturbation across different omics types or different
studies of the same omics type.

In Mergeomics 2.0, we improved the guidance of running
Meta-MSEA in regard to the differences in preprocessing
of the different types of omics data. In addition, we have
increased the flexibility of this analysis to allow for spe-
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Marker associations Mapping 

GWAS
EWAS/TWAS
PWAS/MWAS

GENE MARKER

GENE1 SNP1

GENE2 SNP2

GENE3 SNP2

Required        Optional

MARKER VALUE

SNP1 1.6

SNP2 2.8

SNP3 0.7

MARKERa MARKERb WEIGHT

SNP1 SNP2 0.78

SNP1 SNP3 0.89

SNP2 SNP4 1.00

Marker dependency

Marker sets
MODULE GENE

Immune TLR6

Immune CCR2

Glycolysis GAPDH

GWAS
EWAS/TWAS
PWAS/MWAS

GWAS
EWAS/TWAS
PWAS/MWAS

Marker Set Enrichment Analysis (MSEA)

Marker Dependency Filtering (MDF)

GWAS Default Starting Point
EWAS/TWAS/PWAS/MWAS Optional Step

Corrected marker associations and mapping files

Marker associations
MARKER VALUE

MARKER1 1.6

MARKER2 2.8

MARKER3 0.7

EWAS/TWAS/PWAS/MWAS Default Starting Point
GWAS Optional Starting Point (skip MDF)

Mapping 
GENE MARKER

GENE1 MARKER1

GENE2 MARKER2

GENE3 MARKER3

All files required

Significantly associated disease marker sets

Key Driver Analysis (KDA)

Possible Starting Point

Marker sets
MODULE NODE

Immune TLR6

Immune CCR2

Glycolysis GAPDH

HEAD TAIL WEIGHT

HLA-A HLA-G 0.96

IL10RA CD2 0.93

CCR1 FYN 0.70

Network

All files required

Significant key drivers or disease subnetwork

Network-based or overlap-based drug repositioning

If multi-omics Meta-MSEA
If individual

d or overlap based drug

Figure 2. Mergeomics pipeline inputs. MDF is the default
starting point for GWAS analysis and is an optional step for
EWAS/TWAS/PWAS/MWAS. MDF requires marker-disease asso-
ciations, a marker-gene mapping file, and a marker dependency file. Users
with GWAS data can also skip MDF and run MSEA directly. MDF
produces corrected marker-disease associations and marker-gene map-
ping files containing independent markers that are used for MSEA. For
MSEA, required files for all datasets are the marker-disease associations
and marker sets (pathway/modules). The marker to gene mapping file
is required for GWAS and EWAS and optional for MWAS, TWAS and
PWAS. Disease-associated marker sets from MSEA can be fed into KDA,
which requires gene sets and a network. KDA can also be a starting
point of analysis. Disease-associated gene sets from MSEA or KDs and
disease subnetwork from KDA can be fed into PharmOmics for drug
repositioning.

cific inputs and parameters for each association data. After
each individual omics dataset is added, the user will be able
to review which datasets have been successfully uploaded
and their individual MSEA parameters with the option to
add additional datasets or delete certain datasets, provid-
ing an easy way to track all the different inputs. As in the
results generated from the individual MSEA, significantly
associated gene sets from Meta-MSEA can be used as in-
put to KDA or PharmOmics drug repositioning. We have

also implemented user-defined individual MSEA FDR cut-
offs to KDA in that the disease-associated pathways must
pass all individual MSEA FDR cutoffs as well as the meta-
FDR to be used in KDA, allowing the user to focus on
the most consistent and robust disease processes across dif-
ferent datasets. In addition, we now provide heterogeneity
statistics from Cochran’s Q test to indicate the variability
between datasets.

Update on Key Driver Analysis (KDA)

KDA identifies essential regulators of disease-associated
pathways and networks, which are then visualized in the
web browser using Cytoscape.js (Figure 3). KDA results can
also be downloaded as network files ready to be used on
Cytoscape Desktop for further customization of the net-
work visualization. A Chi-square-like statistic, χ = O−E√

E− κ
,

is used to identify genes (KDs) that are connected to a sig-
nificantly larger number of disease-associated genes than
what is expected by random chance. O and E represent
the observed and expected numbers of disease-associated
genes in a hub subnetwork, and E is estimated by Nk Np

N
where Np is the disease gene set size, Nk is the hub de-
gree, and N is the full network order. KDs represent pri-
oritized disease regulatory genes based on network topol-
ogy. In numerous recent applications of Mergeomics, top
KDs have been shown to be causal for diseases based on
experimental evidence (23,27,36), thereby supporting their
importance. KDA can be utilized as a follow up analy-
sis to MSEA or Meta-MSEA, and it can also be used as
an independent analysis using a gene list of interest and
a given network as inputs. For instance, the user can up-
load a list of curated disease genes and choose or upload
a relevant network to run KDA to identify how the dis-
ease genes interact in the network and whether there are
key hub nodes in the network that regulate the disease
genes.

In Mergeomics 2.0, we added the ability to visualize input
gene overlap with a given network, if any, in the case that no
KDs were found. The user can therefore be better informed
on the reason for the lack of KD hits based on the distri-
bution and connectivity of the input genes in the network.
If few input genes are in the network or the input genes are
widely dispersed in the network, KDs may not be identified.
We have additionally increased the number of sample tissue-
specific networks (Table 1). As we have done similarly with
MSEA and Meta-MSEA, disease subnetworks or signifi-
cant KDs from KDA can be used directly for PharmOmics
drug repositioning, and users can further customize which
processes in the subnetwork are used in drug repositioning
for a more focused analysis.

DATA AND SAMPLE INPUT UPDATES

We have significantly augmented the amount of
Mergeomics-ready sample files with commonly used
datasets and will continue to actively update sample files to
enrich data resources on a monthly basis.

In Mergeomics 2.0, we include over 20 GWAS datasets
from a broader range of diseases from metabolic syndrome
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Table 1. Sample resources on Mergeomics web server. Complete list in Supplementary Tables S1–S4

General data category Data type Specifics Citation

Association data GWAS Alzheimer’s disease (71)
Attention deficit hyperactivity disorder (72)
Alcohol dependence (73)
Body mass index (74)
Breast cancer (75)
Coronary artery disease (76)
Fasting glucose (77)
Heart failure (78)
High density lipoproteins (HDL) (79)
Low density lipoproteins (LDL) (79)
Major depressive disorder (80)
Parental lifespan (81)
Parkinson’s disease (82)
Psoriasis (83)
Severe illness in COVID-19 (84)
Schizophrenia (85)
Stroke (86)
Systemic lupus erythematosus (87)
Type 2 diabetes (88)
Total cholesterol (79)
Triglycerides (79)

EWAS Birth weight (89)
Maternal anxiety (90)
Social communication (91)
Psoriasis (62,63)

Marker mapping Chromosomal distance 10kb, 20kb, 50kb (46)
Regulome RegulomeDB (ENCODE) (92)
eQTL 49 tissue types (45)
sQTL 49 tissue types (45)

Marker dependency Linkage disequilibrium 26 populations at r2 > 0.5 and >0.7 (46)
Methylation disequilibrium r2 > 0.5 (47)

Marker sets Canonical (knowledge based) KEGG (50)
Reactome (51)
BioCarta (52)
MSigDB (49)
GO (53)
BioPlanet (55)
WikiPathways (54)

Data-driven (co-expression) 24 tissue specific modules
(WGCNA/MEGENA)

(45,56–57)

Networks Gene regulatory human and mouse
composite (Bayesian)

Adipose, blood, brain, kidney, liver, muscle (58,93–98)

Gene regulatory (GIANT) Adipose, blood, brain, kidney, liver, muscle (61)
Protein-protein interaction STRING (59)
Transcription factor-target (FANTOM5) Adipose, blood, brain, kidney, liver, muscle (60)

to psychiatric disorders (Table 1; detailed data sources and
links in Supplementary Table S1). For omics dependency
filtering options, we have added the full array of LD data
from 26 human populations studied in 1000G (46) with
LD above 0.5 and 0.7 for SNP filtering to remove redun-
dant SNPs in high LD and have also provided an example
methylation disequilibrium data file for correction of EWAS
data. For SNP to gene mapping options, we have added all
tissue-specific cis-eQTL and cis-sQTL mapping files from
the GTEx version 8 (q-value < 0.05) (45), which inform
on the SNPs associated with gene expression level changes
(eQTL) or differential splicing (sQTL). In addition, we offer
ENCODE regulatory gene mapping (48) and various chro-
mosomal location-based mapping options (Table 1; Supple-
mentary Table S2). Moreover, we have increased the num-
ber of curated pathways from version 1 to include all gene
sets from Molecular Signatures Database (MSigDB) (49)
such as KEGG (50), Reactome (51), Biocarta (52) canonical
pathways, chemical and genetic perturbation, microRNA

and transcription factor targets, and cell type marker sig-
natures, Gene Ontology (53), Wikipathways (54) and Bio-
planet (55), among others (Table 1; Supplementary Ta-
ble S3). To complement knowledge-based pathways, we in-
clude our data-driven tissue-specific co-expression network
modules utilizing GTEx transcriptome datasets and co-
expression network construction tools MEGENA (56) and
WGCNA (57) (Table 1; details of data sources, methods,
and parameters used to construct networks in Supplemen-
tary Table S3). Finally, we have constructed tissue-specific
Bayesian gene regulatory networks (58) and include them as
sample networks on the web server. We also provide human
protein-protein interaction networks (59), transcription fac-
tor networks (60) and GIANT networks (61) (Table 1; Sup-
plementary Table S4). Sample files are available to down-
load from our sample resources page (http://mergeomics.
research.idre.ucla.edu/samplefiles.php), and further clarifi-
cation on correct formatting of input data is detailed on the
web server and in Figure 2.

http://mergeomics.research.idre.ucla.edu/samplefiles.php
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Figure 3. Top KDs network visualization. Screenshot of the in-browser interactive network visualization (using Cytoscape.js) directed from the KDA
results page. The colors of the nodes represent member genes of a disease-associated pathway. The diamond shaped nodes represent KD genes, where the
border color represents the top pathway that is regulated by the KD. If a node has multiple colors, it is part of two or more disease-associated pathways,
and if a node is grey, it does not belong to the disease pathways (non-member genes) but is present in the input network.

GENERAL UPDATES

We have completely redesigned the user interface for a much
more intuitive guidance of the use of the pipeline for differ-
ent omics data types. To start the pipeline, users are pre-
sented with four workflow options in regard to their data:
(i) GWAS, (ii) EWAS, TWAS, PWAS or MWAS, (iii) mul-
tiple of the same or different types of omics data and (iv) a
gene set list (user can run KDA or PharmOmics). The sep-
aration of GWAS from other omics datasets is for the ad-
ditional need to correct for LD and link SNPs to candidate
genes through MDF, which is not required or is optional
for other omics datasets. For EWAS, a marker to gene map-
ping file is required if the user uploads epigenetic markers
such as CpG probes. For MWAS, a metabolite to gene map-
ping file is optional but not required if the user uses metabo-
lite sets as the marker sets to be tested. Marker mapping is
not needed for TWAS and PWAS as the markers (genes and
proteins) match the gene sets. This workflow design clearly
delineates what is needed for each specific data type, which
is more intuitive for the user. We have also improved the
fluidity and presentation of the pipeline workflow as each
collapsible step appears below the previous in a vertical for-
mat so that the user can revisit input files, parameters, and

results of previous steps in the pipeline and choose to rerun
a step at any point in the pipeline. A workflow map with
navigation links is also generated on the left sidebar to help
visualize the steps taken and downstream paths.

We have improved the system that allows users to return
to their session where results of analyses can be revisited
or continued onto the next step using a unique tracking
ID number that is valid for up to 48 hours after the start
of their session. The user can also choose to have their re-
sults emailed upon completion of the analysis, which is not
mandatory but is recommended because the tracking ID
allows the user to reload their session and retrieve com-
pleted jobs in case a crash occurs. Because later steps of
the pipeline, KDA and PharmOmics, can be run indepen-
dently, downloadable result files from MSEA and KDA can
be uploaded directly to the desired next step in the anal-
ysis (e.g. MSEA to KDA/PharmOmics or KDA to Phar-
mOmics).

In addition, we have improved case-specific responsive-
ness of the web server to better inform the user such as error-
checking of user uploaded files to ensure the file is format-
ted correctly and providing feedback on user results such as
whether the results are substantial enough to be used in the
next step of the analysis. Across all applications of Merge-
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Figure 4. Meta-MSEA use case study overview. To showcase the function and output of the web server, we utilized multiple human psoriasis GWAS and
EWAS data and ran the multiple omics data workflow (Case 3 in Figure 1, Meta-MSEA). Firstly, we uploaded the psoriasis GWAS data, mapped the
SNPs to genes using a combined skin and blood eQTL file, and filtered for LD > 0.7 to remove redundant SNPs in LD. Next, we uploaded our psoriasis
EWAS association datasets and mapped the CpG sites to genes based on a 5 kb distance. Finally, we uploaded KEGG pathways with a psoriasis control set.
Pathway enrichment results are produced, and each pathway’s top genes, markers, and corresponding association values are displayed. Psoriasis-associated
pathways are used as input into KDA as well as PharmOmics drug repositioning (using genes from significant pathways/modules). In the KDA, along with
the Meta-MSEA input, we chose the blood GIANT network option and ran the KDA providing KD results and visualization (Figure 3) and additionally
utilized the network genes as an input into PharmOmics. Finally, two sets of drug repositioning results were produced using gene overlap-based drug
repositioning in PharmOmics: one based on the genes of significant pathways from the Meta-MSEA results and the other based on the KDA subnetwork
genes.

omics 2.0 we have provided an improved review of analysis
inputs and parameters and new interactive tables with pag-
ination, sorting, and search features (Figure 5). We also im-
plemented real-time runtime analysis output and progress
updates, and this job log including any errors that occurred
is available for download at the conclusion of the analysis.
Finally, we have improved multi-device usage including on
tablets and phones such that it can be appropriately viewed
on different screen sizes. We further improved the tutorial
to explain input file preparation, parameter setting, and the
underlying methods of each computational function and
provide video tutorials to demonstrate the different pipeline
options.

USE CASE: IDENTIFYING PATHOGENIC PATHWAYS
AND NETWORKS FOR PSORIASIS BASED ON
MULTI-OMICS DATA

The use case described here utilizes publicly available
GWAS and EWAS data to perform Meta-MSEA and sub-
sequently KDA to find pathogenic pathways and regula-
tors of psoriasis (Figure 4). All data used in this example
are provided as sample data on the web server which can

be downloaded (http://mergeomics.research.idre.ucla.edu/
samplefiles.php). GWAS of psoriasis was obtained from
dbGAP database (www.ncbi.nlm.nih.gov/gap) with acces-
sion phs000019.v1.p1, and two EWAS of psoriasis were
obtained from GEO (GSE31835 and GSE63315) (62,63).
For preprocessing of the GWAS data, we use the top
50% of SNPs ranked by −log10 P-value and correct for
LD between SNPs using MDF with the psoriasis GWAS
summary statistics as the marker associations, combined
skin and blood eQTLs as the SNP to gene mapping,
and the 1000G CEU LD structure containing SNPs with
r2 > 0.7 as the marker dependency file. For the EWAS
data, CpG sites are mapped to adjacent genes within 5
kb. Next, we chose canonical pathways from the KEGG
database and a positive control gene set from the NHGRI-
EBI GWAS catalog (64) for psoriasis as the pathways or
marker sets to be examined. We ran Meta-MSEA across
the GWAS and two EWAS datasets. At the conclusion of
Meta-MSEA, a set of results files and a summary table
display are generated on the webpage detailing the path-
ways ranked by meta P-value and their top markers and
corresponding mapped genes (Figure 5A; Supplementary
Table S5).

http://mergeomics.research.idre.ucla.edu/samplefiles.php
http://www.ncbi.nlm.nih.gov/gap
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Figure 5. Output files from Meta-MSEA, KDA, and PharmOmics based on the case study of psoriasis outlined in Figure 4. Tables are interactive with
pagination, search, and sort functions. Result files are downloadable from links on the webpage above the output tables (not shown). (A) Example Meta-
MSEA output from the psoriasis use case. The table shown details the significance of association of each pathway/module and the top markers and
corresponding association strengths that contributed to the module association. There are two additional tables which can be displayed by clicking on
the tabs to the right of ‘Module Results’ at the top. The second table shows the significance and details of merged modules after merging redundant
pathways (termed ‘Supersets’), and these non-overlapping gene sets are used as input to KDA. The third table shows the individual significance values for
each omics dataset included in this Meta-MSEA of one GWAS and two EWAS of psoriasis. (B) Example KDA output from the psoriasis use case. The
table shown records the significance of KDs, the pathways/modules that they regulate based on network topology, and details of the local subnetwork
such as the number of KD subnetwork genes and number of pathway/module gene overlap with the KD subnetwork. Merged pathways/modules are
represented by the term ‘Superset’, which means they are comprised of multiple redundant (significant gene overlap) pathways. (C) Example PharmOmics
drug repositioning output using a gene overlap-based analysis between disease pathways and drug signatures. Gene overlap-based drug repositioning
queries all tissue- and species-specific meta-analyzed and dose/time segregated gene signatures of drugs in our PharmOmics database as well as all L1000
drug signatures. The table shown gives the dataset source of the drug signature, the method of differential gene expression analysis, details of the drug study
including species, tissue or cell line, whether the study was done in vitro or in vivo, the dose and time regimen, the Jaccard score, and statistical significance
of the gene overlap between the input psoriasis related genes from Meta-MSEA and the drug signatures.
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As shown in Figure 5A, ‘Cytokine cytokine receptor in-
teraction’, ‘Graft versus host disease’ and ‘Natural killer
cell mediated cytotoxicity’ were three of the top pathways
identified among others. Following Meta-MSEA, KDA was
run with default parameters using non-redundant supersets
(pathways that were merged due to significant overlap in
gene members) significantly associated with psoriasis from
Meta-MSEA and a blood GIANT Bayesian gene regula-
tory network (61) (chosen due to the relevance of the im-
mune system to psoriasis) to identify KDs of the disease
related gene sets. At the conclusion of the KDA, a table is
produced on the webpage listing the KDs and significance
of enrichment of psoriasis-associated gene sets in their net-
work neighborhood (Figure 5B; Supplementary Table S6).
For example, ICAM2 is identified as the KD for the viral
myocarditis/tight junction/autoimmune pathway, and CD2
is identified as a KD for the Autoimmune Disease Superset.
By default, the top five KDs and their local subnetworks
from each gene set is included in the interactive subnetwork
visualization in the browser (Figure 3).

With addition of the PharmOmics pipeline to the Merge-
omics web server, we ran two drug repositioning analyses:
one directly from the MSEA results and the other consid-
ering the whole subnetwork derived from the KDA (Figure
5C; Supplementary Table S7). In this case study, we do not
consider gene expression direction changes (upregulation
or downregulation) in psoriasis and therefore will simply
be utilizing genes involved in disease without considering if
they are protective or pathogenic; thus, our predicted drug
list will contain drugs that can induce as well as drugs that
can potentially treat psoriasis. In addition, PharmOmics
interrogates all drug signatures regardless of the tissue or
species, and the user can choose to focus on the relevant
drug studies for their given dataset. For example, we mainly
focused on drugs that were studied in integument tissue, due
to its relevance to psoriasis. In the top 10 repositioned drugs
derived from psoriasis associated gene sets from Meta-
MSEA, we find 8/10 to have prior association with a role
in psoriasis pathogenesis (Imiquimod (65)) or treatment
including broad options suggesting classes of drugs such
as anti-inflammatory, immunosuppressant, JAK inhibitors,
and anti-rheumatic drugs and more specific options such as
Baricitinib (66), Ingenol (67), and Etinostat (68) (Figure 5C;
Supplementary Table S7). Similarly, using the psoriasis sub-
network from the KDA highlights Imiquimod and Ingenol
within the top 10 drugs, and the remainder of the results are
broad categories such as JAK inhibitors, anti-inflammatory
drugs, and anti-rheumatic drugs (Supplementary Table S8),
each of which are actively being investigated in the treat-
ment of psoriasis (69,70). The predicted drugs can form new
hypotheses for experimental testing.

FUTURE DIRECTIONS

The web server will continue to actively incorporate the
most up-to-date public resources including multi-omics as-
sociation data, functional genomics data such as eQTLs or
protein QTLs (pQTLs), knowledge-based pathways, gene
co-expression networks, and gene regulatory networks on
a monthly basis. We will also include single cell networks

when available to understand the gene regulatory connec-
tions within a given cell type or between cell types rather
than across a whole tissue, which will offer higher resolution
molecular mechanisms of disease pathogenesis. Cell type
level association data derived from single cell omics studies
can be used in the current platform. We will also continue
incorporating additional analytical functions into the web
server such as different forms of meta-analysis that can be
conducted within the Meta-MSEA tool as well as adding
new features to better accommodate analysis of data types
that are currently not considered or well tested, such as gut
microbiome and spatial transcriptomics data.

CONCLUSION

Thanks to advancements in technologies, the number of
multi-omics data (GWAS, EWAS, TWAS, PWAS and
MWAS) increases exponentially. The systems biology ap-
proach to interrogate multi-tissue multi-omics data has be-
come a promising method to understand biology in a data-
driven way and sheds light on the hidden mechanisms. How-
ever, the computational knowledge and skills required to
perform such integrative analysis are often considered as a
hurdle to many biologists. Therefore, the Mergeomics web
server was developed to lower this barrier to enable fel-
low researchers to dive into multi-omics systems biology.
The current update, Mergeomics 2.0, is a versatile web-
based tool that provides multi-omics data integration us-
ing a pathway- and network-based approach. The improve-
ments we made support a wide range of pre-calculated net-
works and data for all steps of the pipeline to fulfill a variety
of needs and research purposes. In addition, the new user
interface presents a more intuitive and flexible environment
that greatly improves its ease of use. In addition to a de-
tailed tutorial, each step of the pipeline contains embedded
guidance to facilitate the user experience. We believe that
the Mergeomics 2.0 and systematics approach applied here
will accelerate our understanding of complex diseases and
guide therapeutics.
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Sample resources are available on our sample resources
page on the Mergeomics web server (http://mergeomics.
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packages/release/bioc/html/Mergeomics.html).
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70. Rendon,A. and Schäkel,K. (2019) Psoriasis pathogenesis and
treatment. Int. J. Mol. Sci., 20, 1475.

71. Marioni,R.E., Harris,S.E., Zhang,Q., McRae,A.F., Hagenaars,S.P.,
Hill,W.D., Davies,G., Ritchie,C.W., Gale,C.R., Starr,J.M. et al. (2018)
GWAS on family history of Alzheimer’s disease. Translational
Psychiatry, 8, 99.

72. Middeldorp,C.M., Hammerschlag,A.R., Ouwens,K.G.,
Groen-Blokhuis,M.M., Pourcain,B.S., Greven,C.U., Pappa,I.,
Tiesler,C.M.T., Ang,W., Nolte,I.M. et al. (2016) A genome-wide
association meta-analysis of attention-deficit/hyperactivity disorder
symptoms in population-based pediatric cohorts. J. Am. Acad. Child
Adolesc. Psychiatry, 55, 896–905.

73. Olfson,E. and Bierut,L.J. (2012) Convergence of genome-wide
association and candidate gene studies for alcoholism. Alcohol Clin.
Exp. Res., 36, 2086–2094.

74. Locke,A.E., Kahali,B., Berndt,S.I., Justice,A.E., Pers,T.H., Day,F.R.,
Powell,C., Vedantam,S., Buchkovich,M.L., Yang,J. et al. (2015)
Genetic studies of body mass index yield new insights for obesity
biology. Nature, 518, 197–206.

75. Rashkin,S.R., Graff,R.E., Kachuri,L., Thai,K.K., Alexeeff,S.E.,
Blatchins,M.A., Cavazos,T.B., Corley,D.A., Emami,N.C.,
Hoffman,J.D. et al. (2020) Pan-cancer study detects genetic risk

https://www.doi.org/10.1101/837773


Nucleic Acids Research, 2021, Vol. 49, Web Server issue W387

variants and shared genetic basis in two large cohorts. Nat. Commun.,
11, 4423.

76. Nikpay,M., Goel,A., Won,H.-H., Hall,L.M., Willenborg,C.,
Kanoni,S., Saleheen,D., Kyriakou,T., Nelson,C.P., Hopewell,J.C.
et al. (2015) A comprehensive 1000 Genomes–based genome-wide
association meta-analysis of coronary artery disease. Nature Genetics,
47, 1121–1130.

77. Manning,A.K., Hivert,M.F., Scott,R.A., Grimsby,J.L.,
Bouatia-Naji,N., Chen,H., Rybin,D., Liu,C.T., Bielak,L.F.,
Prokopenko,I. et al. (2012) A genome-wide approach accounting for
body mass index identifies genetic variants influencing fasting
glycemic traits and insulin resistance. Nat. Genet., 44, 659–669.

78. Shah,S., Henry,A., Roselli,C., Lin,H., Sveinbjörnsson,G.,
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