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Artificial intelligence techniques driven by deep learning have experienced significant

advancements in the past decade. The usage of deep learning methods has increased dramatically

in practical application domains such as autonomous driving, healthcare, and robotics, where the

utmost hardware resource efficiency, as well as strict hardware safety and reliability requirements,

are often imposed. The increasing computational cost of deep learning models has been tradition-

ally tackled through model compression and domain-specific accelerator design. As the cost of

conventional fault tolerance methods is often prohibitive in consumer electronics, the question of

functional safety and reliability for deep learning hardware is still in its infancy. This dissertation

outlines a novel approach to deliver dramatic boosts in hardware safety, reliability, and resource
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efficiency through a synergistic co-design paradigm. We first observe and make use of the

unique algorithmic characteristics of deep neural networks, including plasticity in the design

process, resiliency to small numerical perturbations, and their inherent redundancy, as well as

the unique micro-architectural properties of deep learning accelerators such as regularity. The

advocated approach is accomplished by reshaping deep neural networks, enhancing deep neural

network accelerators strategically, prioritizing the overall functional correctness, and minimizing

the associated costs through the statistical nature of deep neural networks. To illustrate, our

analysis demonstrates that deep neural networks equipped with the proposed techniques can

maintain accuracy gracefully, even at extreme rates of hardware errors. As a result, the described

methodology can embed strong safety and reliability characteristics in mission-critical deep

learning applications at a negligible cost. The proposed approach further offers a promising

avenue for handling the micro-architectural challenges of deep neural network accelerators and

boosting resource efficiency through the synergistic co-design of deep neural networks and

hardware micro-architectures.
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Chapter 1

Introduction

1.1 Background

Deep learning techniques have revolutionized application design by providing an alterna-

tive paradigm that eliminates the need for manual software development steps [12] and offering

capabilities for electronic systems that were almost unimaginable in the past decade.

The recent past has witnessed remarkable advancements in various deep learning tasks

such as computer vision [13, 14, 15], speech recognition [16, 17], and natural language processing

[18, 19]. Models such as ChatGPT [20] have demonstrated significant progress in text generation

tasks and engaging in high-quality dialogue with humans. DALL·E 2 [21] can generate realistic

images and art for the given text descriptions. Many driving assistance and FSD (full self-driving)

systems heavily rely on deep learning methods [22, 23]. Deep learning has numerous practical

application areas in healthcare, ranging from medical imaging to robotic-assisted surgery [24].

The outstanding success of deep learning techniques has resulted in a wide range of

applications in practical domains, including but not limited to autonomous driving, healthcare,

robotics, defense, and industrial automation, where intelligent systems have become an integral

part of our infrastructure. Meanwhile, the practical requirements for such systems are not limited

to mere algorithmic accuracy but also involve the satisfaction of strict hardware constraints such

as safety, reliability, and resource efficiency.
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1.2 Problem Definition

It is widely recognized that DNNs (deep neural networks) incur high computational

costs. Meanwhile, the continuing trend of increasing model sizes [25] is assumed to be a

significant contributor behind the success of modern deep learning architectures. Numerous

techniques, ranging from algorithmic model optimizations to hardware accelerator design, have

been investigated in an effort to increase the resource efficiency of deep learning methods [26].

On the algorithmic side, the increasing computational cost of deep neural networks has

been tackled mainly through the design of more efficient deep learning models [15, 27] and

model compression methods such as pruning [28, 29, 30] and quantization [31, 32, 33, 34].

The increasing computational cost of DNNs has ignited further efforts to design hardware

accelerators [26] that can deliver efficiency in the required operations. Spatial architectures such

as systolic arrays are commonly used in recent DNN accelerators in industry [35] and academia

[36, 37]. These architectures consist of regular tiles of PEs (processing elements) and perform

tensor operations in a distributed manner by transferring variables locally among the neighboring

units. The share of deep learning hardware accelerators is anticipated to grow noticeably in the

semiconductor domain [38], and these architectures are expected to power billions of embedded

artificial intelligence devices in the next decade.

Despite the significant efforts of the past decade, the computational cost of deep neural

networks remains an important design consideration. While isolated algorithmic and hardware

optimization is capable of delivering noticeable gains in terms of efficiency, more algorithm-

centric and synergistic design paradigms could offer tremendous potential for boosting resource

efficiency in deep learning hardware systems.

Both performance and energy efficiency constitute fundamental design considerations for

embedded deep learning applications; strict functional safety constraints are frequently imposed

furthermore in various practical application domains such as autonomous driving, healthcare

devices, robotics, and industrial control systems. While operating in the field, exposure to harsh
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environmental conditions (e.g., high-energy particles, high temperature) over long durations in-

creases the likelihood of hardware errors in these systems considerably. A hardware-caused error

can impact functionality with potentially catastrophic consequences; thus, additional electronics

safety mechanisms are an absolute requirement in these application domains. Moreover, the rise

of machine intelligence systems has coincided with the recent seismic shifts in semiconductor

manufacturing technology. The benefits delivered by Moore’s Law [39] are expected to come

to an end soon, and we have started to witness more pronounced variability between devices,

heightened reliability issues such as aging effects, and increased yield loss with every new

generation of semiconductor technology nodes [40, 41, 42, 43, 44].

In the context of exploring the safety of DNNs against naturally occurring [45] or

adversarial [46, 47] input perturbations, the design of a robust DNN algorithm constitutes but

a single aspect of a complex equation; the safety of the underlying hardware is of matching

importance in ensuring an entirely trustable system. The tolerance of DNNs to noise and small

numerical inaccuracies has been argued, but we are still quite a ways from figuring out the precise

extent of tolerance due to their non-linear nature [48]. Even under the presumption of robustness

to small numerical inaccuracies, hardware-level faults could pose a significant problem as they

might result in relatively large numerical deviations up to the order of a few magnitudes larger

than the original data if the significant bit positions are affected. Hardware-level faults can thus

diminish accuracy to unacceptable levels, and even single-bit error incidents might compromise

system safety by leading to unexpected network decisions.

We perform an experimental analysis on AlexNet [49] (trained on the GTSRB dataset

[50]) to demonstrate the issue by injecting bit errors into the activation values and the filter/weight

coefficients, then measuring the expected accuracy of the network as a function of the error rate

to determine the point where the DNN model experiences a noticeable accuracy drop. Figure 1.1

shows that the accuracy of the network exhibits a relatively sharp degradation at a specific error

rate, and error rates surpassing this threshold noticeably distort the network decisions.

Second, we conduct another series of experiments, inspired by [47], in which we inject a
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Figure 1.1. DNN accuracy drop under (a) activation (b) weight bit-errors.

single bit-error into the activation values and observe the cases where the neural network changes

its decision. The signs pictured in Figure 1.2 have been misinterpreted to the errant commands

noted on the caption above the traffic signs, clearly illustrating the havoc even single-bit errors

can wreak in deep neural network outputs. In other words, DNNs demonstrate only a limited

error-tolerant behavior as even a single-error occurrence may lead to unexpected decisions in

DNN applications. An error detection method is consequently needed to preclude unsafe system

decisions caused by possible misinterpretations stemming from such fault manifestations.

The safety-critical domains, such as the automotive industry, have been a challenging

market for electronics and software designers because of extreme safety requirements [51].

As an unforeseen development can threaten human lives, automotive electronics are enhanced

with strict safety features to withstand such eventualities. The state-of-the-art safety features in

automotive electronics are comprised of the widely used ECC (error correction codes) to prevent

SDCs (silent data corruptions) [52], and full redundancy (e.g., dual-core lockstep, or TMR (triple

modular redundancy)[53]) to safeguard the execution path. Circuit-level hardening methods

[54] do exist to detect and mitigate the effects of transient SEUs (single event upsets) or timing

errors, but their notable area, delay, and power overheads make them a less appealing solution

for consumer products.
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Figure 1.2. Misprediction examples caused by single-bit errors.

Hardware safety and reliability have been studied widely since the dawn of electronic

systems, and assurance of reliable operation has been an essential design consideration in

numerous mission-critical application domains [55]. Meanwhile, conventional fault tolerance

techniques in mission-critical electronics often interpret the correctness requirements in a rigid

and structural fashion that is necessary in the context of general-purpose computing, yet the

subsequent excessive costs and overheads restrict the wide-range applicability of these methods

in resource-intensive and cost-sensitive commercial deep learning hardware systems. The wide-

range adaptation of machine intelligence methods in consumer application domains with strict

cost constraints, such as autonomous driving, has thus forced the investigation of techniques that

can provide operational assurance in machine intelligence hardware at a negligible cost.

Moreover, significant efficiency and performance gains can be attained in artificial

intelligence hardware if the enhanced resilience characteristics of deep neural networks are

combined with aggressive hardware optimizations in CMOS (complementary metal-oxide-

semiconductor) hardware devices. The outlined approach could further facilitate the adaptation

of artificial intelligence devices constructed through emerging device technologies with the

potential to deliver efficiency levels up to a few magnitudes higher than conventional digital

computing, yet limited by the inherent imprecision and poor manufacturability problems. The

outlined hardware efficiency pursuit requires innovative avenues for handling unprecedented

error rates so that deep neural networks can operate accurately even under chaotic hardware

conditions.

Fault tolerance is a challenging problem in the context of general-purpose computing,
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as imposed safety mechanisms often remain agnostic to the possible resilience characteristics

of the application. As a result, a worst-case approach ascribes even a minute change in the

program variables to potential data corruption, necessitating the taking of further actions, such as

correction or program re-execution, to assure the correctness of system behavior.

What makes this investigation for novel fault tolerance promising is the inherent resilience

of neural networks to minor perturbations together with the learning flexibility of deep models

even when constricted by imposed constraints. This flexibility of neural networks affords the

construction of novel error identification mechanisms by shaping the inherent redundancy of

deep learning algorithms. Moreover, the resilience of neural networks to minor perturbations

opens up opportunities for approximate error mitigation without having to pay for perfect value

restoration.

Algorithm-centric and synergistic design paradigms in this dissertation can offer avenues

for interpreting the problem of hardware safety and reliability in a more functional manner,

incorporating unique algorithmic characteristics of deep neural networks into the picture, thus

enabling us to embed strong safety, reliability, and further efficiency characteristics into deep

learning hardware systems often at negligible costs and overheads.

1.3 Dissertation Contribution

An effective approach to the outlined hardware challenges necessitates a holistic con-

sideration of the hardware fabrics as well as the computational characteristics of deep learning

algorithms to glean insights that can be harnessed for innovative solutions. The dissertation

explores novel algorithm-centric and synergistic co-design techniques for converting unique

algorithmic characteristics of deep neural networks, including plasticity, resiliency, and redun-

dancy, as well as the hardware micro-architectural properties such as regularity, into significant

boosts in safety, reliability, and resource efficiency to address challenging problems of hardware

platforms used in artificial intelligence.
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1.4 Dissertation Organization

Chapter 2 presents a brief overview of related deep neural network concepts.

Chapter 3 provides a comprehensive review of relevant studies in the prior literature.

We aim to describe the current research progress in the corresponding domains and the outlined

studies contribute to the shared understanding in the literature.

Chapter 4 presents a high-level overview and motivates the unique perspectives that are

explored in this dissertation.

Chapter 5 outlines the explored research questions, introduces the unique characteristics

of deep neural networks and the proposed research approach, and finally summarizes our progress

within the scope of this dissertation.

The detailed technical discussion in this dissertation consists of Chapters 6-12:

Chapter 6 presents an algorithmic method for the detection of hardware datapath errors

in deep neural network accelerators through the use of the innate mathematical properties of

deep neural network layers such as linearity.

Chapter 7 demonstrates how the learning process can be harnessed to embed computa-

tional invariants into deep neural networks in training. Such invariants are utilized for detecting

hardware datapath errors in deep neural network accelerators, even across the non-linear stages

of the computations.

Chapter 8 presents an alternative methodology to integrate fine-grained computational

invariants into deep neural networks for highly precise hardware datapath error localization. The

proposed error detection approach is coupled with novel and cost-effective error rectification

techniques to allow algorithmic self-checking and correction of hardware errors in deep neural

network accelerators.

Chapter 9 observes the inherent resiliency of deep neural networks to small numerical

perturbations and utilizes such resiliency characteristics for boosting the reliability of deep

learning accelerators by restricting the numerical range in hardware and reshaping the numerical
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distribution of deep neural network layers during the training process.

Chapter 10 outlines a co-design methodology for enabling customized and cost-effective

adaptation against permanent hardware defects in deep neural network accelerators through the

synergistic design of the hardware platforms and decentralized deep neural network algorithms.

Chapter 11 examines the significant output correlations among computational units

within a deep neural network layer for quantitative redundancy characterization. We propose a

novel deep neural network layer reduction and reconstruction process to obtain more compact

and resource-efficient deep neural network architectures.

Chapter 12 focuses on a unique hardware/software co-design methodology for boosting

the synergy between sparsity patterns and hardware platforms. We demonstrate unique oppor-

tunities for performance and resource efficiency improvements in sparse deep neural network

inference without suffering the micro-architectural problems posed by the irregular nature of

unstructured sparsity.

Chapter 13 incorporates a concise summary of the technical chapters and a detailed

discussion about the significance of the technical results. Furthermore, we present our viewpoints

regarding the open questions and potential directions in this research domain.

Chapter 14 presents the conclusion statements of the dissertation.

1.5 Acknowledgements
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Chapter 2

An Overview of Relevant Deep Neural
Network Concepts

The central computation unit in a DNN (deep neural network) is called a neuron, whose

responsibility is taking a weighted sum of its inputs and processing the sum with a non-linear

activation function. The neurons are organized as a sequence of layers, with the network getting

deeper as the number of layers increases. Modern CNNs (convolutional neural networks) used in

computer vision tasks [13, 49, 56, 57] heavily rely on two layer types, namely, convolutional

and fully-connected, where the input is initially processed by a series of convolution layers to

extract the useful features, with the fully-connected layers subsequently performing the final

classification task. Moreover, deep neural networks frequently employ non-linear activation

functions and various other layer types, including pooling, batch normalization, Dropout, and

Dropconnect layers [26].

2.1 Common Layer Types in Deep Neural Networks

2.1.1 Fully Connected Layer

Fully connected layers carry out a vector-matrix multiplication operation. Layer inputs

could be considered as individual vectors. Fully connected layer weights are represented in the

form of a matrix where each matrix column is associated with an individual neuron. A single

element in the input vector is called an input feature. Fully connected layers multiply input
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Figure 2.1. Fully connected layer operation.

vectors with the weight matrix, include the bias vector, then process the result with the non-linear

activation function to generate the layer outputs, as demonstrated in Figure 2.1.

2.1.2 Convolutional Layer

Unlike the fully-connected layers, convolutional layer neurons are locally connected to

the previous layer, and the weight values are shared among different neurons. As a result, the

layer behavior could be visualized more naturally with a convolution operation. The input feature

map is convolved with several filters where each of them is responsible for producing a channel

of the output feature map, as in Figure 2.2. The convolutional layer operation further involves

the inclusion of the bias, and the final processing of the result by a non-linear activation function.

2.1.3 Non-linear Activation Functions

Non-linear activation functions are frequently used after fully connected and convolution

layers, and they are essential for the complex non-linear behavior of deep neural networks.

Typical choices for the non-linear activation functions include widely-used ReLU (rectified linear

unit), leaky ReLU, sigmoid, and tanh (hyperbolic tangent). Further information on non-linear

activation functions can be found in [26].
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Figure 2.2. Convolutional layer operation.

2.1.4 Pooling

Pooling is used in CNNs to reduce the dimensions of the feature maps. Pooling layers

perform a down-sampling operation by dividing the feature maps into small windows (e.g., 2×2

window) and reducing the window into a single entry. The typically used reduction operators

include selecting the maximum entry (i.e., max pooling) or computing the mean (i.e., mean

pooling) at each window.

2.1.5 Batch Normalization

Batch normalization [58] is commonly used in deep neural networks to reduce internal

covariate shift and accelerate model convergence in the training process. Batch normalization

adjusts the outputs of each neuron or convolution filter in training by normalizing the outputs

with their mini-batch statistics (µB, σ2
B), then scaling and shifting the normalized results with

two learned coefficients σL and µL, as in Equation (2.1). A small coefficient (ε) is used to assure

numerical stability.

x̂ =
x−µB√
σ2

B + ε

×σL +µL (2.1)
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A similar normalization step is performed at inference time; however, mini-batch statistics

are replaced by the static values of global mean and variance that are profiled in training.

2.1.6 Dropout and Dropconnect

Deep neural networks could overfit into training data and exhibit poor generalization

to test examples upon deployment. Dropout [59] and Dropconnect [60] have been previously

investigated, and their effectiveness has been established for mitigating the overfitting problem.

The presence of a neuron under Dropout is subject to a predetermined probability, with the

outputs of absent neurons being set to zero in a training iteration. All neurons are considered to be

present at test time, yet their output contribution is re-adjusted to match the training distribution

by scaling either the current layer’s outputs or the next layer’s weights. Dropconnect drops

individual weights instead of neuron outputs by subjecting the presence of each weight to the

given probability in the applied layer. The training distribution can be maintained at test time

through a sampling process that is similar to the training phase or utilizing a scaled version of

the weights with no dropping.

2.2 Loss Function and DNN Training Process

The training procedure involves a loss function, which measures the distance between

the expected and produced DNN outputs. To illustrate, a commonly used loss function for

single-label classification problems, categorical cross-entropy, can be expressed as follows for a

batch of training examples:

− 1
N

N

∑
i=1

C

∑
c=1

yi,c log(pi,c) (2.2)

In Equation (2.2), N and C denote the training batch size and the total number of classes.

The true binary label is represented as yi,c for the example i and class c. For single-label

classification, yi,c = 1 holds only for a single c for a particular example i. pi,c denotes the
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predicted output probability produced by the output layer (with Softmax activation) of the

network. Training is carried out by calculating the gradient of deep neural network weights

through the backpropagation algorithm and updating the weights of each layer to reduce the loss

at each step until a minimal point is found.

2.3 DNN Inference with Spatial Hardware Accelerators

The analysis in [26, 61] classifies deep learning accelerators into two primary categories.

The first group, temporal architectures, includes designs with vector-type instructions such as

CPUs (central processing units) and GPUs (graphics processing units). The second group, spatial

architectures, relies on distributed dataflow processing through a large number of processing

elements.

This section will focus on a typical example of spatial deep neural network accelerators,

such as systolic arrays, as they will be used for analysis in the later technical chapters. Systolic

arrays are widely adapted in practice to improve the inference performance and efficiency of deep

neural networks [35, 36]. A systolic array consists of a 2-dimensional grid of MAC (multiply-

accumulate) units as in Figure 2.3 where the weights of a single neuron or filter are mapped

into a single column. When an input activation vector is provided to a column, each MAC unit

acquires the accumulated sum from the neighboring MAC unit, multiplies the provided input

activation with the stored weight, updates the accumulated sum, and forwards the updated sum

to the next neighboring unit. The transfer of the sums allows a dot product to be computed at

each column, which translates into a vector-matrix multiplication in the entire grid.

The outlined design can be classified as a weight-stationary architecture that maximizes

weight reuse by pinning weights into processing elements during computation. Inputs and

outputs are transferred through broadcasting or local communication across units. Google’s TPU

[35] is a well-known example of a weight-stationary architecture.

Alternative DNN accelerator dataflows discussed in [26, 62, 63] differ from weight-
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Figure 2.3. Systolic array deep learning accelerator.

stationary designs based on the particularities of the data reuse type. To illustrate, input-stationary

dataflow maximizes input reuse by tiling and pinning layer inputs into the processing elements.

Layer weights and partial sums are transferred across processing elements, and the processing

element design is often identical to the one used for the weight-stationary dataflow. While

layer inputs and weights are transferred across processing elements in the output-stationary

dataflow, the partial sum belonging to an output location is pinned to and updated within the

same processing element.
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Chapter 3

Literature Review

This chapter provides a comprehensive overview of the relevant research literature. We

start with the summary of related studies in the domain of safety, reliability, and testing of deep

learning hardware. The second part of this chapter will discuss various techniques to improve

the hardware performance and efficiency of DNNs (deep neural networks). Finally, we overview

a list of studies that focus on deep learning inference in computational mediums with high fault

rates.

3.1 Safety, Reliability, and Testing of Deep Learning Hard-
ware

A significant amount of work has been presented in the recent literature regarding the

safety, reliability, and testing of deep learning hardware. We start by investigating the techniques

to evaluate the reliability of deep neural networks, and then examine methods to detect and

correct hardware errors in deep learning hardware. Furthermore, we look into various algorithmic

measures for boosting the error resilience of deep neural networks. Finally, we survey a list of

studies that consider hardware reliability during the resource scheduling process, and then we

explore innovative approaches for testing and yield improvement in deep learning accelerators.

The reader could refer to [64] for a detailed survey of the challenges and the current

trends in robust machine learning systems.
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3.1.1 Evaluating Reliability

Evaluating reliability is a crucial task for identifying hardware vulnerabilities and guiding

effective reliability improvement techniques for deep learning hardware. The previous studies

have explored several different avenues for this objective:

1. Graph-level and hardware-level simulation techniques have been proposed to measure the

impact of hardware errors on deep neural network accuracy.

2. High-energy beams are harnessed for injecting physical errors into semiconductor chips

running deep learning algorithms.

3. Various numerical analysis methods are utilized for estimating the vulnerable portions of

deep neural network computations.

Graph-level Fault Simulation

Graph-level error simulation techniques have become a commonly used approach for

deep neural network reliability analysis. Graph-level simulation frameworks avoid the high

runtime costs of hardware-level simulations by modeling hardware error effects on the compu-

tational graph of neural networks during the inference process. On the other hand, graph-level

error simulation methods require accurate modeling of the hardware error effects, which involves

identifying the impacted neural network variables and the numerical perturbation values associ-

ated with the hardware errors. As a result, this simulation technique could suffer from inaccurate

conclusions regarding reliability if the hardware error effects are not accurately reflected on the

computational graph of deep neural networks.

As a result of the outlined advantages, previous literature has witnessed a flurry of works

exploring the error resilience limits of deep neural networks through graph-level error simulation

[65, 66, 67, 68, 69, 70, 71, 72, 73, 74]. Various software frameworks have also been made

publicly available [75, 76, 77] for graph-level fault simulation in deep neural networks.
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Hardware-level Fault Simulation

Hardware-level fault simulation is considered an alternative approach to graph-level fault

simulation in various studies [78, 79, 80, 81]. Hardware-level fault simulation (e.g., register-

transfer-level or gate-level) offers higher precision in modeling the hardware architecture and the

fault effects when compared to graph-level fault simulation. On the other hand, hardware-level

fault simulation could incur excessive simulation runtime, as reported in [78]. Furthermore,

hardware-level simulation frameworks necessitate setting up a hardware model in addition to the

executed deep learning algorithm. The number of studies that utilize hardware-level simulation

is thus limited compared to those that employ graph-level simulation given the excessive runtime

and the complexity of setting up such frameworks. A limited number of studies, such as [82],

complement hardware fault simulation with machine learning-assisted techniques for quick

evaluation of structural fault criticality in deep neural network accelerators.

Physical Fault Injection

Physical fault injection experiments are rarely used to evaluate the reliability of deep

neural network hardware when compared to fault simulation techniques, primarily due to the

necessity of special equipment and the difficulty of setting up such experiments. A limited

number of studies in the literature, such as [83] and [84], carry out neutron beam experiments to

assess the reliability of deep learning algorithms on the GPU (graphics processing unit) devices.

Numerical Evaluation

The relative vulnerability of deep neural network variables can be estimated through

mathematical saliency models, including gradient-based sensitivity analysis [85], the LRP (layer-

wise relevance propagation) metric [86, 87], or other vulnerability analysis techniques [88]

discussed in the literature.

Although such measures enable the researchers to quickly identify relatively more

vulnerable portions of deep neural networks without necessitating an empirical evaluation of
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the faults, these methods could often prove insufficient for the task of accurately estimating the

overall resilience (e.g., classification accuracy) of the target deep neural network models.

3.1.2 Hardware Error Detection and Rectification

Hardware error detection and correction are widely-studied problems in fault-tolerant

systems. While the capabilities for error detection and correction are usually introduced through

a considerable amount of redundancy in conventional methods [55], the computational char-

acteristics of deep learning hardware enable researchers to identify novel and cost-effective

solutions.

Conventional Error Detection and Rectification Techniques

Error detection and correction is an extensively studied problem in general-purpose com-

puting. Parity and ECC (error correction codes) [52, 89] are frequently utilized in safety-critical

designs to detect and correct errors in memory units. Error correction codes are theoretically

optimal in terms of information redundancy, yet they can not be readily applied to the execution

path since the code invariants are not preserved through the arithmetic operations. Full redun-

dancy such as DMR (dual modular redundancy) or TMR (triple modular redundancy) [53, 90] is

employed in automotive designs to protect the execution units at the cost of a significant area

and power consumption. Arithmetic codes [55] offer a cheaper alternative than full redundancy

for error detection in the arithmetic units. The Razor flip-flop [91] is an efficient technique for

timing error detection, but with limited applicability to other hardware error types.

Symptom-Based Error Detection

Li et al. [66] and Schorn et al. [92] propose symptom-based error detectors for DNN

computations. Symptom-based detectors often rely on the expected distribution of neural network

variables to identify anomalies. Li et al. [66] utilize the expected range of activation magnitudes

to identify critical hardware errors with a large magnitude. Schorn et al. [92] make use of a
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smaller secondary neural network model to distinguish between critical and non-critical bit-errors

in the primary deep neural network.

Algorithm-Based Fault Tolerance

ABFT (Algorithm-Based Fault Tolerance) has been initially introduced for matrix mul-

tiplications in multi-processor systems [93, 94]. Algorithm-based fault tolerance techniques

[95, 96] utilize the linearity property of multiply-accumulate operations to construct error detec-

tion checksums in the fully connected and convolutional layer computations.

Error Detection with Learned Algorithmic Invariants

Novel recent studies [97, 98] demonstrate that algorithmic consistency checks can be

encoded in neural networks through the training process, and error detection can be achieved

through additional checker neurons.

Approximate Error Rectification

Various novel studies have been proposed to rectify error effects in deep neural net-

work computations. Promising hardware error rectification techniques include activation range

restriction [99, 100, 101, 102], and dropping the contribution of erroneous variables [103, 104].

3.1.3 Boosting Hardware Error Resilience of Deep Neural Networks

Resilient Neural Architecture Design

Prior experimental work [71, 105] has demonstrated that compressed models, particularly

binary neural networks, exhibit high error resilience characteristics. Fault-tolerant neural archi-

tecture search [106, 107] can be utilized to construct deep neural networks that are inherently

resilient to hardware errors.
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Fault-Aware Training

Fault-tolerant model training [108, 109] can boost the hardware error resilience of deep

neural networks. Dropout and Dropconnect are utilized for improving the inference reliability

and efficiency of SNNs (spiking neural networks) in [110, 111]. Similarly, a standard version of

the Dropout technique is employed in [112] for improving the resilience of an output-stationary

deep neural network accelerator.

3.1.4 Reliability-Aware Scheduling

Several studies [73, 85, 87] in the literature observe the asymmetric distribution of

vulnerability in deep neural networks (i.e., certain neurons/filters predominating in decision

criticality) and schedule the critical portions of deep neural network computations into more

reliable processing elements.

The asymmetric reliability difference could stem from various reasons on hardware.

Particular processing units are observed to operate faster than others due to process variations

in [85], thus being less likely to experience timing errors. Similarly, a designer could prefer

to harden a subset of processing units against single-event upsets (i.e., caused by high-energy

particles) to reduce the design costs [73, 87]. These techniques often use numerical estimation

measures such as in Section 3.1.1 to identify vulnerable deep neural network variables and

computations.

Overall, reliability-aware scheduling minimizes the computational effect of hardware

errors on deep neural network decisions by scheduling vulnerable portions of the computations

into more reliable processing units.

3.1.5 Hardware Testing and Yield Improvement

Hardware Testing

The primary investigation efforts in hardware testing have focused on the applicability

of structural and functional test techniques for deep learning hardware, and the use of deep
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neural network hardware characteristics for test cost reduction. The comparison of structural

vs. functional testing approaches for neuromorphic hardware is discussed in [113]. Various

functional testing techniques for deep learning accelerators are presented in [114, 115]. Com-

putational fabric particularities such as regularity are utilized to innovate the permanent defect

testing techniques for deep learning accelerators [116].

Hardware Yield Improvement

The yield of deep neural network accelerators can be boosted by making use of redundant

backup hardware units to replace defective ones, an approach similar to the conventional work on

fault-tolerant systolic arrays [94]. To illustrate, hardware redundancy and backup computational

units are utilized in [117] to carry out computations that map into the defective processing

elements in a spatial deep learning accelerator.

Alternatively, the computational plasticity of deep neural networks enables the researchers

to compensate for the impact of hardware loss through additional algorithmic measures. As a

result, hardware architectures can be reused even in a degraded form without requiring additional

hardware redundancy. The impact of permanent defects is tolerated in a weight-stationary

systolic array deep learning accelerator through bypassing the faulty processing elements and

compensating for the accuracy drop through device-specific model training (fine-tuning) in

[79, 80]. A similar bypass mechanism is complemented with saliency-driven weight remapping

and retraining in [118] to minimize accuracy loss due to permanent hardware defects. A detailed

fault impact analysis in deep neural network accelerators and a coarser-grained software-level

fault bypassing technique are presented in [119]. The proposed yield improvement techniques

often necessitate device-specific model training, which limits the applicability of these methods

in practice due to training costs that scale with the number of faulty devices.
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3.2 Improving Performance and Efficiency of Deep Learn-
ing Inference

3.2.1 Model Compression

The over-parameterized and redundant nature of deep neural networks has led to various

model compression techniques in the recent research literature. This section will focus on

three active research domains: reducing the precision of deep neural network variables, sparsity

introduction through model pruning, and tensor decomposition to re-construct deep neural

network layers.

Reducing Precision

Deep neural network inference often does not require high precision for the variables to

exhibit competitive accuracy. The cost of data movement and multiply-accumulate operations

can thus be reduced drastically by reducing the precision of deep neural network variables [120].

Uniform quantization schemes [34] that allocate a uniform set of distances between the

quantization points are relatively easier to implement on hardware, but they can suffer from

significant quantization errors at small bit-widths. Learned quantization [31] can identify the

optimal non-uniform allocation of quantization points that minimize the quantization error, yet

the irregularity of quantization point distances necessitates look-up tables for restoring data from

the quantized representation. An alternative log quantization scheme [121] can be achieved

by allocating quantization point distances at a logarithmic scale. Log quantization does not

require look-up tables and further eliminates the need for multiplication operations in deep neural

network inference.

The previous studies demonstrate that deep neural networks can have varying degrees

of toleration against aggressive levels of bit-width reduction [32]. Moreover, layers within a

neural network can be quantized into different bit-widths to construct mixed-precision deep

neural networks [122]. Precision-scalable multiply-accumulate unit architectures [123] are often
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necessary to obtain significant power and performance benefits from mixed-precision quantized

deep neural networks.

Model Pruning and Sparsity

Obtaining fast and efficient neural networks through model sparsity has been a decades-

old interest [124]. While the fundamental approach to neural network parameter pruning has

hardly changed over the recent decades, various weight pruning methods [28, 29, 125, 126,

127, 128, 129] with more accurate redundancy identification mechanisms have extended the

compression limits while minimizing the consequent accuracy loss. Unstructured parameter

pruning often delivers significant compression rates, yet it further necessitates sparse compressed

representations and sparse matrix algorithms to extract the potential benefits of unstructured

sparsity.

Structured pruning algorithms [29, 30, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139,

140, 141, 142, 143, 144, 145, 146, 147, 148, 149] aim to reduce the number of parameters and

operations without introducing additional sparsity in deep neural network models and pose a

valuable alternative to deliver practical speedups on commodity hardware.

Structured pruning techniques utilize a variety of significance measures to rank neurons

and filters, such as the properties of weight sets [30, 135, 145], or of layer outputs [131, 138].

Some of them utilize Taylor approximation [134, 143, 147] or other back-propagated metrics

[144] to estimate the neuron filter significance. He et al. [139] utilize LASSO regression to

sparsify feature map channels and perform pruning on the sparsified feature map channels

to minimize the accuracy impact. Zhuang et al. [141] consider construction error as well as

discriminative power in channel pruning. Xiao et al. [29] perform soft-pruning during the training

process through the introduced auxiliary gate parameters in deep neural networks. A limited

subset of the extant literature utilizes pairwise weight [146] and activation [132] correlations

to carry out computation unit elimination. Mariet et al. [133] pick a subset of diverse neurons

through Determinantal Point Processes [150], and perform weight adjustments in the next layer
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to retain the magnitude contribution of the eliminated units. However, the analysis in [133] is

limited to small models with fully connected layers only.

Liu et al. [151] demonstrate that training the reduced architectures from scratch can

outperform the pruned and fine-tuned models if a large number of training iterations can be

afforded.

Block-wise [152] and vector-wise [153] sparsity patterns are constructed at a finer

granularity than neuron/filter-level sparsity and exhibit a structure more hardware friendly

than unstructured sparsity, yet they often fail to deliver compression rates that match those

of unstructured sparsity without leading to significant accuracy loss, as discussed in [154].

Balanced sparsity [154] and density bound block sparsity [155, 156, 157] can attain competitive

compression rates through pruning, and facilitate efficient hardware utilization due to pre-

determined group-wise density. Similar sparsity patterns, including group and exclusive sparsity,

can be introduced through weight regularization [158].

Packing algorithms have been proposed in [159, 160] to map sparse neural network

layers into dense representations. Packing algorithms first perform pruning on parameter tensors

and then combine non-overlapping sparse tensor columns into a single dense representation to

facilitate efficient hardware processing on minimally enhanced systolic array architectures.

Tensor Decomposition

An alternative model compression technique, tensor decomposition [161, 162, 163],

allows low-rank approximation of a fully connected or convolutional layer weight tensor in the

form of multiple yet smaller weight tensors. As a result, a fully connected or convolutional

layer is effectively represented as a sequence of multiple smaller layers of the same type. Tensor

decomposition provides significant compression in the layer size by reducing the number of

parameters and multiply-accumulate operations through a static investigation of the weight set

properties; however, the expansion of the layer into a sequence of multiple layers might be

problematic in terms of inference latency in the commodity hardware platforms.
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3.2.2 Hardware Accelerator Design

The computational demands of deep neural networks have resulted in the development

of hardware accelerators. Hardware accelerators provide higher performance and resource

efficiency when compared to general-purpose architectures such as CPUs (central processing

units) since they can support a large amount of parallelism through dedicated computational

resources. Furthermore, these architectures often capitalize on various data-reuse opportunities

in deep neural network computations to minimize the amount of costly data transfers between

the computational fabric and memory.

The taxonomy in [26] classifies deep neural network accelerators into four categories

based on their dataflow patterns during the execution. Weight-stationary [35], input-stationary

[164], and output-stationary [165] architectures maximize reuse by pinning the corresponding

data type into processing elements during execution. An alternative row-stationary dataflow

[166, 167] aims to maximize reuse of all data types. The reuse patterns of the listed dataflows

offer unique advantages [26, 62], and certain deep neural network accelerator designs support

even multiple dataflow configurations simultaneously to maximize the data reuse benefits [36].

Finally, deep learning accelerators are often designed to accommodate compressed neural

networks obtained through the techniques outlined in Section 3.2.1. As deep neural network

inference in the reduced precision fixed-point data format has become the de-facto standard across

deep neural network inference accelerators in academia and industry [26], various accelerator

designs provide support for the optimized storage and accelerated processing of sparse deep

neural networks [164, 167, 168, 169].
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3.3 Deep Learning Inference in Computational Mediums
with High Fault Rates

3.3.1 Aggressive Hardware Optimizations in Digital CMOS Hardware

Aggressive hardware optimizations can significantly reduce the energy consumption of

CMOS (complementary metal-oxide-semiconductor) deep learning accelerators if the consequent

hardware errors (e.g., timing errors) can be gracefully tolerated by deep learning algorithms or

handled through active error rectification methods.

Voltage under-scaling reduces the operating voltage to cut down energy consumption

and thus improve the efficiency of deep learning accelerators. Zhang et al. [78] utilize Razor

flip-flops [91] to detect timing errors, coupled with an architectural bypassing to block the

propagation of bit-errors in voltage under-scaled deep neural network accelerators. Reagen et

al. [103] employ Razor register file design [170] and error masking strategies to handle SRAM

(static random-access memory) read errors in voltage-scaled deep neural network accelerator

buffers. A similar SRAM supply voltage scaling is coupled with selective voltage boosting

in [171] to maintain an acceptable level of accuracy in deep neural networks. The improved

resilience characteristics of deep neural networks can be coupled with hardware optimizations

such as reliability-aware adaptive voltage swing scaling in the chip communication circuitry

[172].

An alternative approach, over-clocking, boosts the performance of the accelerator at a

given operating voltage at the cost of additional timing errors. Pandey et al. [173] boost the

accelerator performance by utilizing an adaptive voltage boosting scheme that makes use of

Razor flip-flops [91] and an input sequence memorization technique to proactively prevent timing

errors in an over-clocked systolic array deep neural network accelerator.
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3.3.2 Alternative Computing Technologies

The homogeneity of deep neural network computations has forced researchers to re-

consider the fundamental operation, multiply-accumulate, to obtain significant computational

benefits in the inference process. Alternative computing technologies offer a promising avenue

for the efficient processing of deep neural networks. Unlike conventional CMOS accelerators

that transfer parameters between computational units and memory and utilize digital arithmetic

circuits for computation, these devices perform multiply-accumulate operations through unique

physical phenomena such as fundamental laws of electronics or photonics. Furthermore, these

devices eliminate the need for costly transfer of parameters from the memory to the computa-

tional units since the weights are often programmed into the computational fabric. This section

will look into two promising technologies for the efficient processing of deep neural networks.

ReRAM-based Computing

ReRAM (resistive random-access memory)-based deep learning accelerators perform

deep neural network computations in the analog domain with great efficiency [174, 175, 176].

Deep neural network weights are programmed as resistance values within a crossbar of connected

resistors, and multiply-accumulate operations are conducted through Kirchhoff’s Current Law in

these architectures.

Despite their immense benefits in theory, analog domain noise, device variations, and

manufacturing problems often preclude the applicability of ReRAM-based accelerators in practi-

cal systems. As a result, the reliability of ReRAM-based deep learning accelerators has been

widely investigated to improve the accuracy of deep neural networks under device manufacturing

defects, programming variations, and analog domain noise.

Arithmetic codes [177] have been proposed in the literature to enable online error

detection and correction, and enhance the resilience characteristics of the neural networks against

ReRAM inaccuracies. Liu et al. [178] propose an alternative technique to boost the inherent

self-correcting capability of DNN models through Error-Correcting Output Codes [179].
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A detailed summary of the ReRAM fault models, the testing approaches, and fault-

tolerant ReRAM hardware architectures are presented in [180]. Liu et al. [181] propose an

extended ABFT (X-ABFT) method for online testing the faults in ReRAM crossbars. The impact

of permanent manufacturing defects and resistance variations in ReRAM devices can be tackled

through adaptive training methods [182, 183]. When paired with differential ReRAM crossbar

mapping, neural network sparsity can be employed for muting the numerical impact of stuck-on

and stuck-off faults in ReRAM devices [184].

The resilience of deep learning algorithms against ReRAM noise and variations can be

enhanced by injecting noise perturbations in training and allowing deep neural networks to adapt

to the noise effects during the training process [185, 186, 187, 188, 189].

Furthermore, ReRAM variation effects could cause layer output statistics to deviate from

the batch normalization statistics profiled in training, and result in consequent accuracy loss

due to inaccurate normalization steps performed at inference time. The re-calibration of batch

normalization statistics on the ReRAM device could be particularly effective for improving the

inference accuracy of deep neural networks under ReRAM variations [190].

Photonics-based Computing

The recent studies in photonics-based deep neural network accelerators [191, 192, 193,

194] prove that photonics-based devices can perform deep neural network computations with

extreme efficiency. On the other hand, the existing hardware prototypes are often demonstrated

for small-scale deep neural networks only, and the non-idealities in photonics-based devices,

such as cross-talk issues and noise, need to be carefully considered to be able to build practical

photonics-based devices [195].
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Chapter 4

Dissertation Overview

The traditional approach to hardware safety and reliability has conventionally taken a

precise direction that prioritizes hardware correctness on the structural level. The conventional

tests and functional safety measures employed in semiconductor chips have often ensured the

structural correctness of the logic gates and interconnects. On the other hand, the unique

landscape of deep neural network hardware brings unique opportunities for approaching the old

problems of safety, reliability, and efficiency. This section aims to demonstrate an alternative

paradigm to reconsider these problems in the context of machine intelligence hardware and then

provide a roadmap for leveraging these observations as a starting point for this dissertation.

The inherent resiliency characteristics and the statistical nature of deep neural networks

could enable one to forgo strict correctness requirements at the hardware level and instead

prioritize design techniques that can cultivate proactive hardware error toleration characteristics

in deep neural network computations. Similar principles further spur non-perfect restoration

techniques, which aim to contain the numerical impact of hardware errors without attempting

the perfect restoration of the original value and deliver a more graceful accuracy degradation

curve in the face of hardware errors. Furthermore, the cultivated relationships across deep neural

network variables enable the possibility of embedding computational invariants that can be

used for the effective detection and localization of errors into deep neural network hardware.

The unique computational characteristics of deep neural networks, including plasticity and
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redundancy, fuel the integration of internal invariants throughout the use of the training process.

Overall, the novel perspective of looking into deep neural networks through relationships across

variables is a powerful strategy in various domains. Some examples in this dissertation include

the construction of novel sparsity patterns by harnessing the relationships across the neighboring

variables to attain high expressivity in sparse deep neural networks and regularity in sparse

hardware micro-architectures.

4.1 Reconsidering DNN Resilience Characteristics

Deep neural networks exhibit a resilient nature to minute perturbations in their variables.

A typical compression technique, model quantization, could be considered as a widespread

error introduction in the quantized deep neural network. On the other hand, the impact of a

proper quantization process on accuracy is often observed to be minute despite its widespread

application throughout the model. It is perhaps a non-surprising phenomenon when the inherent

resilience characteristics of deep neural networks are considered. The numeric contribution of

minor error effects can often be tolerated if they do not result in a significant numeric deviation

in the functional outputs of a deep neural network.

One could subsequently question the necessity of worrying about hardware errors in

deep neural network hardware. If deep neural networks are fully capable of tolerating hardware

errors, does it mean that one could forgo any additional measures in the applications that

necessitate strict hardware safety and reliability? Unfortunately, the answer to this question

requires reconsideration of the nature of hardware errors as well. Unlike the well-bounded

influence of quantization, the impact of hardware errors in modern computing systems is not

well-constrained. The binary number representation in modern computers leads to widely

diverse significance differences among the bit positions in the representation, in which the

most significant bit positions involve magnitudes of higher numeric importance when compared

to their least significant counterparts. The impact of high-magnitude errors in such hardware
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systems is bound to be significant; a few such errors are well capable of leading to drastic

changes in the functional neural network outputs.

It is further known that machine learning techniques, such as deep neural networks,

exhibit a statistical nature, and thus the answers obtained from these algorithms are not always

correct. As a result, a certain level of imprecision is accepted in machine intelligence applications

as long as the functional accuracy remains within the desired bounds. This outlined attribute is

helpful to our pursuit because it carves a path for a statistical approach to the problem of safety

and reliability, where the desired levels of functional accuracy can be maintained at a drastically

reduced cost if the statistical nature of such applications is taken into consideration.

In summary, the resilience of deep neural networks and their statistical nature are unlikely

to provide assurance about safety and reliability, yet they promote an effective way of thinking

and approaching these problems in the context of deep learning hardware. The outlined unique

nature of deep neural networks motivates a fundamental question about addressing the safety

and reliability problems even before the occurrence of hardware errors in the first place. Could

we design deep learning systems in a way that the occurrence of hardware errors of a critical

nature is less likely and the majority of hardware errors can be gracefully tolerated? The outlined

proactive strategy constitutes a practical first line of defense and enables us to attain the desired

safety and reliability objectives at a reasonable price tag.

4.2 Proactive Toleration of Hardware Errors

The unique nature of deep neural networks opens up possibilities for attenuating the

impact of hardware errors in a proactive manner through novel design methodologies that form

deep neural networks with boosted resilience characteristics. In this dissertation, we will explore

two particularly fruitful directions for boosting the proactive error toleration characteristics of

deep neural networks. First, we notice the close relationship between the numerical range and

error vulnerability in deep neural networks in our technical analysis. Second, incorporating
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proactive training strategies with the proper objectives could boost the level of decentralization

in deep neural networks and furnish resilience against the loss of hardware components. The

proactive shaping strategies aim to minimize the impact of hardware errors by ensuring that no

individual variable is excessively wrong or excessively important, and thus, an enhanced level of

immunity against hardware errors can be enjoyed by deep neural networks.

4.2.1 Vulnerability Reduction Through Range Manipulation

When the deep neural network variables under-utilize the numerical range offered by

the hardware number representation, high-magnitude hardware errors could significantly dwarf

the values represented in the distribution of deep neural network variables. As a result, an

under-utilized numerical range could become a source of vulnerability against hardware errors.

An effective solution to this problem involves utilizing a hardware number representation

that closely matches the distribution of variables and manipulating variable distributions further

to make high-magnitude error manifestations even less likely. One could entertain unique visions,

such as the proper constraint of specific design parameters to downsize the magnitude of these

problems and contribute to the overall goal of proactive error resilience in deep neural networks.

4.2.2 Boosting Algorithmic Decentralization in Training

Training deep neural networks with noise has been a widely-adapted practice for various

objectives, such as improving generalization or boosting the algorithmic resilience against noise

at the inputs. The intelligent use of such training methodologies is a valuable asset for promoting

proactive resilience in deep neural networks. Proper deep neural network training strategies could

minimize the saliency of individual variables and cultivate a highly decentralized computational

structure in deep neural networks when they are instructed through proper training objectives.

A particularly effective strategy in the technical part of this dissertation makes use of

methods such as Dropout [59] and Dropconnect [60] to boost decentralization in the training

process, reduce the saliency of individual variables, and facilitate graceful toleration for the

35



numerical loss of variables. The resilience benefits of decentralization could be promoted even

further when the micro-architectural hardware parameters are considered in the training process.

As a result of a training strategy that mimics the impact of hardware effects more precisely, the

information degradation due to the loss of hardware components can be minimized, and deep

neural networks can be empowered to operate accurately even on the computational hardware

fabrics with downsized resources.

4.3 Non-Perfect Restoration of Hardware Errors

Proactive toleration techniques such as range manipulation and decentralization shrink

the differences between neurons or convolution filters to form a decentralized computational

structure. On the other hand, a certain amount of saliency difference among the neurons or

convolution filters is needed to ensure overall expressivity. As a result, the impact of hardware

errors in critical locations should be identified and addressed explicitly to boost the hardware

error resilience of deep neural networks.

The conventional approach to safety and reliability often emphasizes the precise cor-

rection of hardware errors through various hardware or software measures, a pursuit that often

necessitates excessive information redundancy and extensive computational resources. Instead

of precisely correcting the impact of hardware errors, an alternative perspective we introduce in

this dissertation restores the erroneous variables to reasonable levels in a cost-effective manner

and consequently minimizes the numerical effect of hardware errors on the functional outputs.

The non-perfect restoration of hardware errors could be enacted by dropping erroneous

variables, clipping their magnitude within a reasonable numerical range, or passing the variables

through median filtering stages. Disproportionate hardware error effects can thus be tempered

before they propagate and influence the outputs of deep neural networks. Such novel and non-

perfect restoration techniques make use of the inherent resilience of deep neural networks into

small numerical perturbations and harness their graceful toleration of computational sparsity.
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In contrast to the sizeable numerical impact of critical hardware errors, the overall effect

of non-perfect restoration techniques is highly muted and oftentimes preferable in maintaining

deep neural network accuracy. The outlined strategy engenders a variety of powerful yet cost-

effective non-perfect restoration techniques and revolutionizes our perspective on safety and

reliability in the context of deep learning hardware.

4.4 Hardware Error Detection Through Invariants

Identifying hardware errors in fault-tolerant systems often necessitates considerable

additional information redundancy embedded into the design. Furthermore, the conventional

error detection methods are frequently constructed at the structural level, and they ensure the

correctness of individual bits and variables, regardless of the impact of the error on the functional

neural network outputs. An alternative perspective brought to the table by this dissertation relies

on the construction of relationships across neural network variables and it makes use of such

relationships for the detection and localization of hardware errors of critical nature.

The relationships across variables can be constructed at various granularities. The

relationships of coarser nature, such as group-wise relationships across variables, can be built

at a lower cost to identify the presence of hardware errors. On the other hand, finer-grained

associations, such as neighbor-wise relationships, could facilitate the precise localization of

hardware errors at a small additional cost.

Meanwhile, the construction of relationships can be carried out through various measures.

This dissertation will focus on two particular strategies that utilize the inherent mathematical

characteristics, such as linearity, to embed relationships externally, or harness the plasticity of

deep neural networks during the training process to embed computational relationships internally.

4.4.1 Hardware Error Detection Through External Invariants

A significant portion of deep neural networks consists of highly homogeneous multiply-

and-accumulate operations of a linear nature. The mathematical characterization of linear
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systems is rather straightforward as they retain the linear relationships of their inputs at the

system outputs. As a result, the maintained linear relationships could help identify abnormal

system behavior and construct hardware error detection measures. External invariants can often

be introduced at the cost of a small amount of input and layer extensions; the outputs can be

validated in real-time to ascertain whether the external invariants are preserved.

The effectiveness of external invariants has been previously demonstrated for matrix

operations [93]. The technical investigation in this dissertation explores the applicability of such

external invariants to deep neural network computations to provide rigorous error detection at

the cost of small overheads.

4.4.2 Hardware Error Detection Through Internal Invariants

The limited applicability of external invariants in the non-linear computational stages

encourages us to make use of the plasticity of deep neural networks in the learning process to

embed internal relationships across variables. The internal relationships can be formed at various

granularities for coarse-grained detection and fine-grained localization of hardware errors.

Coarse-grained invariants are embedded by partitioning the outputs of the deep neural

network layers into groups and encouraging the formation of relationships across groups in the

training process with additional penalty terms. The introduced penalty terms embed the desired

invariants into deep neural networks and allow the detection of hardware errors when a numerical

error distorts the established relationships within a layer.

Finer-grained relationships enable more precise localization of hardware errors by im-

posing local relationships among variables in the computational graphs. An example invariant

of this nature could be a numerical order relationship across the neighboring variables. Such

fine-grained invariants can be embedded into deep neural network layers by imposing graph

constraints in the target deep neural network and ensuring that it attains a competitive accuracy

within the confines of these rules. The violation of a fine-grained invariant due to a hardware error

would localize the erroneous variables with high precision in deep neural network computations.
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4.5 Usage of DNN Plasticity and Redundancy for Relation-
ship Construction

The embedding of internal relationships across variables necessitates re-shaping deep

neural networks for objectives that are not necessarily associated with the primary functional goal.

Implementing such supplementary objectives and constructing relationships across variables

naturally comes at an additional cost, yet such expenditures can be minimized through the

effective use of the computational characteristics of deep neural networks, including their

redundant and over-parametrized nature and their plasticity during the training process.

One can shape the neural networks and build relationships across variables through the

proper use of their plasticity in the architectural design and the training process. Proper penalty

terms in the loss function can encourage numerical relationships in training, and custom graph

constraints can guide deep neural networks to grow and form associations across variables. The

software development process requires no additional manual effort after the definition of such

relationships, where the optimization algorithm comes up with a parameter set that can operate

within the formed relationships and constraints.

The concept of redundancy in deep neural networks is an involved discussion and

necessitates further exploration to ensure the continued viability of redundancy utilization for

the outlined goals of this dissertation. Deep neural networks are observed to embed redundancy

in various computational dimensions, with certain redundancy types proving less amenable to

compression. Under-utilized data width, insignificant activations/parameters, and insignificant

neurons/filters are just a few well-known examples of such redundancy phenomena.

We observe a novel type of redundancy that stems from the correlations across the

outputs in a deep neural network layer. The outputs produced by the neural network layers

exhibit dimensionality significantly lower than the layer size; thus, the information content of the

layer outputs could be represented with fewer units than the actual layer dimensions. Unlike the

conventional approach that evaluates the numeric contribution to rank saliency and redundancy,
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the outlined perspective further considers functional correlations for the precise identification of

redundancy in deep neural networks.

In summary, the redundancy types that cannot be effectively extracted for computational

benefits can be used instead for constructing relationships in deep neural networks. Fully

functional deep neural networks can be formed within such constraints without incurring a

noticeable loss of expressivity or operational accuracy.

4.6 Harnessing Relationships for Hardware-Friendly
Sparsity Embedding

We have discussed the motivation underlying the construction of relationships for the

goals of safety and reliability. The idea of embedding relationships across variables is a powerful

strategy and has applications in various other domains, including hardware resource efficiency

improvement by encouraging strategic regularity in sparse deep neural network architectures.

A particular example in this section will concentrate on novel sparsity paradigms that

harness the relationships among a group of variables for cultivating structural regularity within

the sparsity patterns. The structural regularity within the sparsity patterns yields significant

hardware advantages, such as seamless compression of layers at theoretically optimal overheads

and precise predictability of the required hardware resources. Meanwhile, the amount of imposed

regularity often needs to be kept at reasonable levels to maintain the overall expressivity of the

sparsity patterns.

The novel approach in this dissertation relies on the construction of groups among

variables in which only a limited number of variables are allowed to be non-zero entries within

each group. As a result, the outlined technique reduces the number of parameters by enforcing

a regular sparsity structure that provides both flexibility and expressiveness in the selection of

non-zero parameter locations.

On the other hand, identifying the optimal configuration for the non-zero locations within
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a group is a challenging design space exploration problem. The described challenge can be

resolved in an innovative manner by constructing the rules for interaction and encouraging

competition among variables within the same group in training. As a result, the training process

could identify the most expressive non-zero entry locations without requiring additional steps.

Overall, embedding relationships across deep neural network variables is a powerful

practice in designing efficient deep neural network architectures. When properly defined and

evolved in the training process, such relationships could furnish hardware-friendly sparse deep

neural networks that exhibit high expressiveness and improved hardware regularity.
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Chapter 5

Research Vision

5.1 Explored Research Questions

This dissertation explores algorithm-centric and synergistic solutions for resolving the

challenges of emerging artificial intelligence hardware platforms. We first identify the unique

algorithmic characteristics of deep neural networks that allow this pursuit and describe how these

characteristics can be utilized to design reliable and highly efficient hardware processing systems.

We list several central questions that repeatedly appear throughout the technical chapters of the

dissertation:

• What are the unique characteristics of artificial intelligence algorithms and hardware

platforms when compared to general-purpose computing systems, and how could such

characteristics be utilized to create effective solutions to hardware challenges?

• How can we effectively reshape and train deep neural networks for additional hardware-

focused goals such as safety, reliability, and resource efficiency without impacting their

primary functionality?

• How can we enhance the micro-architecture of deep neural network accelerators strategi-

cally to contribute to the overall objective of improving safety, reliability, and resource

efficiency?
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• How does the identification and prioritization of proper objectives, such as the overall

functional correctness, influence our approach to safe, reliable, and efficient artificial

intelligence hardware system design?

• How can we harness the statistical nature of deep learning algorithms to reduce the

associated costs and overheads of the proposed techniques?

5.2 What is Unique for Deep Learning Processing Systems?

5.2.1 Unique Characteristics of Deep Neural Network Algorithms

Inherent Redundancy

Deep neural networks are known to embed redundancy in various dimensions of the

computation. Redundancy is observed to be helpful in obtaining more accurate deep neural

network architectures in the training process [196]. Numerous model compression techniques in

the literature, including quantization [34], parameter pruning [28], and tensor decomposition

[162], aim to construct more compact deep neural networks by minimizing model redundancy.

The model compression techniques enable us to improve the resource efficiency of deep

neural networks by reducing their inherent redundancy. On the other hand, the complete elimi-

nation of deep neural network redundancy is often impractical and may not lead to appreciable

computational efficiency benefits. As a result, the remaining amount of redundancy after model

compression, even in the case of highly compressed deep neural network architectures, could

suffice for reshaping software with custom-tailored goals and embedding useful properties within

deep neural networks without necessitating additional overheads or compromising their primary

functionality.

Plasticity in the Design Process

The conventional design flow for deep neural networks starts by identifying the deep

neural network architecture. The training process, through backpropagation and gradient descent,

then determines a set of parameters that work with the selected neural network architecture.
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An almost infinite number of choices exist in the architectural definition process (e.g.,

number of layers, number of units at each layer) that can deliver comparable accuracy in the

desired machine learning task. Similarly, the training process could result in a wildly divergent

set of parameters, even for the same neural network architecture and the training algorithm, as

a result of a slightly randomized computational step within the training process. Such model

plasticity allows the reshaping of deep neural networks through various innovative techniques and

enables the introduction of valuable properties into deep neural networks without compromising

their primary functionality.

Resiliency to Small Numerical Perturbations

Deep neural networks are known to exhibit robustness against small numerical perturba-

tions in the model parameters and activations. To illustrate, deep neural networks can gracefully

tolerate the minor errors introduced by the post-training quantization techniques [34], even

though error introduction during the quantization process is widespread throughout the model

parameters and activations. The resiliency of deep neural networks is a particularly valuable

property in the domain of hardware safety and reliability, as it provides deep neural networks

the ability to tolerate hardware errors and maintain the same functional accuracy as long as

the numerical impact of hardware errors is adequately contained within deep neural network

computations.

5.2.2 Unique Characteristics of Deep Neural Network Hardware

Micro-architectural Homogeneity and Regularity

Numerous hardware designs are proposed in the recent literature to improve the perfor-

mance and efficiency of deep neural network inference [26]. The micro-architecture of deep

neural network accelerators is often highly homogeneous and regular due to the parallelism

requirements of the underlying deep neural network computations.

The micro-architecture of deep neural network accelerators provides unique opportunities

44



for innovation while optimizing such designs for resource efficiency and hardware reliability. To

illustrate, the regular and fine-grained micro-architecture, when enhanced with strategic hardware

modifications, could facilitate the bypass of hardware defects at the cost of a minimal loss in

hardware capabilities. Similarly, a great level of dataflow flexibility can be attained at a low cost

through minor strategic enhancements made at the level of individual processing elements within

the hardware micro-architecture.

Reduced Criticality of Structural Correctness

Structural hardware correctness is a strict requirement for each manufactured gate or

memory cell in the conventional VLSI (Very Large-Scale Integration) flow since it is challenging

to anticipate the functional outcome of a hardware defect in general-purpose computing platforms.

As a result, the structural correctness of each manufactured device is ensured through various

VLSI test and fault tolerance methods developed over the past decades.

The inherent resilience characteristics of deep neural networks allow us to relax the

structural correctness requirements at the hardware level as long as the overall functional

behavior of the algorithm is not impacted. For example, a hardware defect that introduces a

minor numerical perturbation within a variable could be well tolerated if it does not significantly

affect the classification accuracy of a deep neural network.

The outlined phenomenon opens up avenues substantially different from the conservative

perspective followed in the design and manufacturing of general-purpose computing systems

by reducing the absolute necessity of structural correctness for each individual variable and

arithmetic operation in deep neural network hardware.

5.3 Proposed Approach

This dissertation aims to solve practical problems of deep learning hardware by making

use of unique algorithmic and hardware characteristics of deep neural networks. We identify

four fundamental avenues to achieve this goal:
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1. We reshape algorithms during the architectural definition and the training process to embed

useful algorithmic properties into deep neural networks.

2. We demonstrate the feasibility of obtaining significant computational benefits through

strategic enhancements in deep neural network accelerators when they are synergistically

combined with embedded algorithmic properties of deep neural networks.

3. The inherent algorithmic resilience of deep neural networks to small numerical perturba-

tions encourages us to prioritize functional correctness and align our solutions with the

overall functional objectives more closely.

4. The statistical nature of deep learning algorithms relieves us from the obligation of

meeting the strict correctness requirements for every produced output as long as the

overall accuracy objectives are satisfied, enabling us to innovate techniques that can attain

the desired characteristics under this softer constraint at negligible costs when compared

to conventional approaches.

5.3.1 Reshaping Deep Neural Networks

The typical deep learning software development flow starts with the definition of a deep

neural network architecture. The training process then identifies a set of parameters for this

architecture by minimizing a loss function. The former step in this process offers a certain degree

of freedom in the architectural definition process, where the algorithm designer can come up

with reasonably divergent architectures yet with comparable final accuracy.

The plasticity and redundancy of deep neural network algorithms empower us to reshape

software for additional objectives and utilize the training process to obtain architectures that

satisfy the custom-tailored hardware safety, hardware reliability, and resource efficiency goals.

We make use of a variety of distinct techniques to reshape software throughout the technical

chapters of this dissertation:

46



• We introduce additional objectives in the training process by making use of custom penalty

terms in the loss function. We then let the training process shape deep neural networks in

the desired direction as it optimizes the model parameters for the additional objectives in

addition to the original training goals.

• We train deep neural networks by modeling hardware error effects (e.g., noise, loss of

hardware components) accurately in the training process to obtain a set of parameters

tailored uniquely to adapt to the target hardware conditions.

• We constrain the forward propagation of deep neural network variables by introducing

custom propagation rules in deep neural network graphs. For instance, such rules are

observed to be particularly effective for the detection and rectification of the numerical

impact of hardware errors in deep neural network computations.

• We shape sparsity patterns with regularity constraints to form an effective contract between

hardware and software and obtain highly compact and accurate sparse deep neural network

architectures that can be accommodated efficiently on hardware.

These examples underline the opportunities to reshape deep neural networks and con-

tribute to hardware reliability and efficiency objectives through algorithm-centric design tech-

niques.

5.3.2 Strategic Hardware Enhancements

Hardware accelerator and micro-architecture design for deep neural networks have been

an active area of research in the past decade [26]. The scope of this dissertation is focused on

strategic enhancements in the existing hardware micro-architectures that can deliver extensive

computational benefits while keeping the design and verification costs at minimal levels. We

thus enhance deep neural network accelerators strategically throughout the technical chapters of

this dissertation for various objectives:
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• We co-design and embed dedicated hardware modules into deep neural network accelera-

tors to carry out custom-tailored hardware reliability tasks (e.g., filtering neural network

variables) in an efficient manner and without leading to any performance bottlenecks.

• We introduce extensive micro-architectural flexibility in the dataflow of deep neural

network accelerators by allowing a small degree of additional strategic reconfigurability

at the level of individual computational units. Such reconfigurability is coupled with

reshaped regularity within the neural network sparsity patterns to boost the efficiency of

sparse deep neural network inference.

Since the effectiveness of such hardware enhancements often relies on the degree of co-

operation between software and hardware, enhancing the synergy between deep neural networks

and deep learning hardware is a primary objective throughout this dissertation.

5.3.3 Functional Correctness Prioritization

The resilience characteristics of deep neural networks engender the possibility of relaxing

the rigid structural correctness requirements for the individual variables and computations on

the hardware as long as the final functional outputs of deep neural networks are not impacted.

Functional correctness prioritization provides us with novel opportunities to achieve hardware

safety and reliability goals while reducing the costs needed in conventional designs to ensure

structural hardware correctness. Moreover, our technical investigation reveals innovative avenues

for promoting the functional correctness of deep neural networks even further to ensure correct

algorithmic operation in the presence of structural hardware problems.

Approaching the problem of deep neural network correctness from the functional per-

spective brings various innovative avenues and opportunities to the table, yet it further creates

practical implementation and verification challenges. The verification of the structural hardware

correctness is a relatively straightforward task through conventional VLSI test and fault tolerance

methods. On the other hand, the assessment and certification of functional correctness is a more
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involved pursuit that involves comprehensive knowledge of the executed deep learning algorithm

as well as the underlying hardware architecture.

The reader will further note the overlap of functional correctness prioritization with

the concept of approximate computing investigated in various application domains [197] since

both techniques focus on the final functional outcome as the inaccuracies in the intermediate

computational stages are tolerated by the intrinsic resilient nature of the executed algorithms.

5.3.4 Harnessing the Statistical Nature of Deep Neural Networks

The statistical nature of deep neural networks could provide an additional degree of

freedom when combined with the outlined strategy of functional correctness prioritization. A

certain level of inaccuracy is expected during the regular functional operation of deep neural

networks. Such statistical characteristics allow us to forgo the correctness requirements on

an exceptional basis or transform the computations in a way that is not entirely functionally

equivalent to the baseline models yet with comparable functional accuracy.

The utilization of such statistical characteristics establishes a rich design space for

exploration. A minor loss in functional accuracy can be converted into significant gains in

terms of hardware performance or efficiency. Moreover, innovative hardware error resilience

techniques can maintain a deep neural network accuracy almost as good as the baseline, yet with

negligible costs and overheads compared to conventional hardware fault tolerance methods.

5.4 Research Challenges

5.4.1 How to Explore the Design Space?

The development flow of Software 2.0 [12] driven by deep neural networks is remarkably

different from the conventional software design. The exploration of functional deep neural

networks is often an intractable problem due to the extent of the design exploration space. The

Software 2.0 development flow tackles this challenge by defining reasonable deep neural archi-
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tectures and then evolving the trainable parameters of the architecture through backpropagation

and gradient descent to obtain accurate deep neural networks.

The task of constructing trainable deep neural network architectures could be considered

as the problem of constraining the architectures through the architectural hyperparameters so as

to deliver expressivity while keeping the computational complexity at reasonable levels. The

novel perspectives brought to the table by the dissertation could be considered a process of

constraining architectures further for the diverse goals of safety, reliability, and efficiency.

Obtaining fully functional deep neural networks with additional constraints requires

significant modifications in the design and training process. While the external enforcement of

such constraints is often impractical, imposing the desired objectives during the training process

is a feasible avenue to approach the outlined design space exploration problem.

We define the desired constraints and relationships in the architectural definition phase

and ensure that the imposed constraints and relationships can operate with the standard training

methodologies. As a result, we can use the conventional training algorithms, namely backpropa-

gation and gradient descent, to perform design space exploration and come up with functional

deep neural network models that meet the desired design objectives.

The outlined methodology is relatively straightforward, but the imposed additional

constraints could lead to several training challenges. Several examples of such challenges and

the corresponding solutions are discussed in the next section.

5.4.2 How to Resolve Training Challenges?

An issue that requires attention is that training deep neural networks with constraints can

give rise to challenges such as discontinuities and imperfectly aligned objectives, thus impacting

the efficacy of the standard training algorithms.
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Constructing Balanced Training Objectives

Deep neural networks can be shaped for the auxiliary objectives through modifications in

the loss function. To illustrate, the distance between two variables can be minimized by including

their absolute difference in the loss function as an additional penalty term and running the neural

network optimizer to minimize both the standard loss and the additional penalty terms. The

reader will note that the usage of such penalty terms is analogous to the common practice of

regularization in the machine learning domain.

On the other hand, the existence of multiple training objectives could lead to training

challenges if the significance of such goals is not judiciously balanced. For instance, the penalty

terms with disproportionate significance can hinder the original training objectives.

A conventional yet effective solution to this problem from the common practice of

regularization involves the usage of scaling coefficients for the additional penalty terms, where

such coefficients can be tuned in the hyper-parameter definition process to assign proper weights

to the additional training objectives.

Resolving Relationship Conflicts

This dissertation advocates for a novel perspective of constructing relationships across

deep neural network variables for the desired safety, reliability, and efficiency objectives. Such

relationships could then be utilized for identifying erroneous variables or embedding regularity

within the sparsity patterns for hardware efficiency.

Despite the potential benefits, the relationships across deep neural network variables

come with additional challenges. The relationships could impose conflicting constraints on the

subjected variables, necessitate competition for the same limited resources, and as a consequence,

lead to instability in the training process. For example, in a scenario where a variable controls

the propagation of its neighbor, e.g., in the form of a median filter, the variable is subject to

constraints regarding its own numeric contribution in the neural network graph as well as its

neighbor’s. If the necessary actions, e.g., gradient updates, for both objectives are not aligned,
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the training process may not be able to converge into a solution that satisfies both objectives.

It is feasible to minimize the number of such conflicts if the rules of the relationships,

including the nature of the interactions and the number of interacting variables, are appropriately

identified in the architectural definition process. The algorithmic redundancy and plasticity

of deep neural networks could then be harnessed in the training process to identify a set of

parameters that can operate functionally within the scope of such relationships and constraints.

Ensuring Efficient Gradient Propagation

The optimization process requires end-to-end differentiability in the deep neural network

graphs for effective gradient backpropagation. The requirement for full differentiability is not

always feasible, such as in the case of quantization-aware training, where simple straight-through

estimators such as identity functions are used to remedy differentiability problems [34].

On the other hand, the introduced constraints in this dissertation lead to a greater degree

of discontinuities that involve relationships across multiple variables. As a result, the usage

of simple straight-through estimators such as identity function is not expected to suffice to

address such relationships. The relationships across variables could be modeled through dis-

crete mathematical functions such as the Heaviside step function [198] that does not exhibit

smooth gradient propagation characteristics. The novel training approach to these problems

involves approximating such discrete functions with functionally similar, yet smoother and well-

differentiable counterparts such as Sigmoid in the backward training pass to facilitate effective

gradient communication.

Furthermore, embedding relationships across variables during training may result in

fierce competition across variables. A certain amount of competition is desirable and should be

encouraged to avoid locally optimal solutions, yet excessive competition often leads to instability

in training and precludes model convergence. The aforementioned challenge can be controlled

through the intelligent scaling and distribution of the gradients in the backward training phase to

ignite an appropriate level of competition while ensuring long-term training stability.
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5.5 Technical Progress

The technical discussion of the dissertation considers the outlined characteristics of deep

neural network algorithms and hardware architectures, and it adheres to the proposed approach

to tackle the challenging problems of artificial intelligence hardware. We believe that these

principles have vast application potential in various hardware-related domains, including but not

limited to functional safety, hardware reliability, hardware testing, performance/efficiency, and

hardware security.

The technical discussion of this dissertation will primarily focus on the problem of

functional safety and hardware reliability, as well as on improving deep neural network inference

performance and efficiency. We present the following studies as a part of our technical discussion:

• We present various algorithm-centric methods for embedding invariants into deep neural

network computations and demonstrate how these invariants can be utilized for detecting

hardware errors in deep neural network accelerators at a low computational cost and

without necessitating explicit information redundancy.

• We furthermore build upon this approach to enable fine-grained localization of hardware

errors and complement it with innovative error rectification methodologies to maintain

deep neural network accuracy. By snapping outsized error effects back to within the

realm of minor numerical inaccuracies, the proposed techniques block the propagation of

numerically significant error effects and boost the hardware error resilience of deep neural

network accelerators.

• The learned lessons regarding deep neural network characteristics open up possibilities for

novel algorithmic methods that can enhance the hardware error resilience of deep neural

networks by design. Through proper numeric range construction strategies, we enable

deep neural networks to operate accurately even under extreme hardware error rates and at

the cost of no additional overheads.
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• We boost the manufacturing yields and extend the operational lifetime of deep neural

network accelerators noticeably through customized and cost-effective adaptivity against

permanent hardware defects, which is attained through the synergistic design of adaptable

hardware platforms and decentralized deep neural network algorithms.

• We explore diverse types of redundancy in deep neural networks, such as the functional

correlation relationships between neuron and convolution filter outputs. We propose novel

layer reduction and reconstruction methods to eliminate such redundancy occurrences and

improve the inference performance and efficiency of deep neural networks as a result.

• We enhance the synergy between sparse deep neural networks and hardware platforms

through the imposition of pre-defined regularity constraints in sparsity patterns, resolve

critical micro-architectural challenges posed by unstructured sparsity, and obtain practical

performance and efficiency improvements in the inference of sparse deep neural networks

through minor enhancements in the hardware micro-architectures that are conventionally

tailored for dense arithmetic operations.

We demonstrate significant technical progress in the outlined areas in the scope of

this dissertation. Many other hardware domains, such as hardware testing and security, remain

promising candidates for applying the advocated principles of this dissertation in future research.
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Chapter 6

Hardware Error Detection in DNN Accel-
erators via External Invariants

The widespread adoption of DNNs (deep neural networks) in safety-critical systems

necessitates the examination of the safety issues raised by hardware errors. The consequent

interest in fault tolerance methods that are comprehensive yet low-cost to match the margin

requirements of consumer deep learning applications can be met through a rigorous exploration

of the mathematical properties of deep neural network computations. Our novel technique,

Sanity-Check, allows error detection in fully-connected and convolutional layers through the use

of external algorithmic invariants. The purely software-based implementation of Sanity-Check

facilitates the widespread adoption of our technique on a variety of off-the-shelf execution plat-

forms while requiring no hardware modification. We further propose a dedicated hardware unit

that seamlessly integrates with modern deep learning accelerators and eliminates the performance

overhead of the software-based implementation at the cost of a negligible area and power budget

in a deep neural network accelerator. The external invariants of Sanity-Check deliver perfect

critical error coverage in our error injection experiments and offer a promising alternative for

low-cost error detection in safety-critical deep neural network applications.
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6.1 Introduction

Multiply-and-accumulate operations constitute the backbone of modern deep neural

network computations. Multiply-accumulate operations exhibit a linear nature as they maintain

the linear relationships of their inputs at the system outputs. This chapter utilizes such linear

relationships in the form of external invariants to detect anomalous behavior and hardware error

effects. We demonstrate that such external invariants can be embedded into deep neural network

layers through a small amount of extensions in the input and weight tensors; meanwhile, the

outputs can be checked to determine if the external invariants are maintained at the outputs.

The deviation from an expected external invariant is then utilized to identify critical hardware

errors. Similar invariants have been previously proposed for various matrix operations [93]. This

chapter focuses on the usage of such external invariants in the domain of deep neural networks

and deep learning accelerators.

The overall research contributions of this chapter can be summed up as follows:

• We mathematically demonstrate how the linearity property of fully connected and con-

volutional layers could be utilized to embed external invariants in deep neural network

accelerators and deliver proven error detection properties at the cost of a single neuron/filter,

and a few additional multiply and accumulate operations at each layer.

• We demonstrably show that our detection rates match those of state-of-the-art error detec-

tion methods, yet incur a fraction of their overhead since the cost of additional computations

is amortized across the entire layer.

• We set clear guidelines for the purely-software Sanity-Check implementation and demon-

strate its applicability on off-the-shelf hardware platforms.

• Finally, we characterize a dedicated hardware design that can perform the required opera-

tions efficiently in a systolic array DNN accelerator.
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We mathematically define the proposed external invariants in Section 6.2 for both fully-

connected and convolutional layers. Section 6.2 discusses further the error detection properties of

the external invariants and the impact of numerical inaccuracies on the checksum computations.

Section 6.3 covers both the software implementation and the suggested hardware architecture.

In Section 6.4, we experimentally demonstrate that our technique attains a perfect error-caused

misprediction (i.e., critical error) coverage and analyze the area and power overheads of the

hardware implementation.

6.2 DNN Hardware Error Detection via Linear Checksums

While error detection through duplication is prohibitively expensive for DNN processing,

an alternative technique constructed through the fundamental invariants of the underlying compu-

tations can deliver even stronger error detection rates while expending much smaller overheads.

The majority of DNN computations are linear, and linearity is a useful property to employ in an

error detection scheme. Sanity-Check, a checksum-based error detection method for deep neural

networks, makes use of the linearity property of convolutional and fully-connected layers and

introduces low-overhead checksums in both the spatial and the temporal computation dimen-

sions to check the consistency of the performed operations. The spatial checksums introduced

through an extra neuron in the fully-connected and an extra filter in the convolutional layers

guarantee that the layer outputs produced for a single prediction always hold a linear invariant.

The temporal checksums necessitate an extra input processing step after a certain number of

inputs have been processed, guaranteeing the consecutive outputs of the same neuron or filter are

always linearly related. We introduce the spatial and temporal checksums in this section for both

fully-connected and convolutional layers, and proceed to explain how these checksums engender

superior error detection in DNN computations. The preponderance of the computational time in

CNNs (convolutional neural networks) devoted to multiply-accumulate operations in the fully

connected and convolutional layers, frequently surpassing even 90% [199], puts them center
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stage in the quest to attain significant error coverage in safety-critical DNN applications.

6.2.1 Checksums in Fully-Connected Layers

The fully-connected layer operation demonstrated in Figure 2.1 can be mathematically

formulated through Equation (6.1):

O[z][u] = B[u]+
C−1

∑
k=0

(I[z][k]∗W [k][u]), 0≤ z≤ N−1, 0≤ u≤M−1 (6.1)

In Equation (6.1), we use matrices I, O, W , and vector B to represent input activations (a

batch), layer output pre-activations (a batch), layer weights and layer bias values, respectively. N

denotes the number of inputs in the batch, and M the number of neurons. Finally, C corresponds

to the number of input connections for each neuron.

Our goal is to introduce unvarying properties, invariants, at the fully connected layer

outputs so that they could be utilized for error checking. As a first step, let us try to embed the

following error-checking invariant to the output matrix so that the summation of the output over

the spatial axis (u′) always yields zero:

M−1

∑
u′=0

O[z][u′] = 0, ∀z (6.2)

The described invariant indicates that each row will accumulate to zero in the output

matrix O. As each output column is generated by a single neuron, it could be alternatively

visualized as neuron outputs in Figure 6.1 summing to zero for a single prediction. If the

described invariant can be embedded into DNN layers to hold regardless of the provided input

activations, it could be utilized for error detection since an erroneous neuron output will result

in the violation of this invariant. To investigate whether the introduction of such a property is

feasible, let us sum the right-hand side of Equation (6.1) in a similar manner. By distributing the

accumulation operation over the addition, we can obtain the following intermediate expression:
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Figure 6.1. Spatial checksum in the fully-connected layers.

M−1

∑
u′=0

O[z][u′] =
M−1

∑
u′=0

B[u′]+
M−1

∑
u′=0

C−1

∑
k=0

(I[z][k]∗W [k][u′]) (6.3)

Let us further change the order of the two summation symbols in the second term of the

right-hand side in Equation (6.3) and extract the I[z][k] term outside of the inner summation since

it has no term with u′, and thus can be treated as constant in the inner summation:

M−1

∑
u′=0

O[z][u′] =
M−1

∑∑∑
u′=0

BBB[[[uuu′′′]]]+
C−1

∑
k=0

(I[z][k]
M−1

∑∑∑
u′=0

WWW [[[kkk]]][[[uuu′′′]]]) (6.4)

It could be clearly seen that if the highlighted weight and bias summations hold the value

of zero in this formulation, the right-hand side reduces to zero and causes the invariant introduced

in Equation (6.2) to be always satisfied. While the mathematical validity of this argument can

thus be ascertained, questions may linger as to why the described solution is particularly useful

for embedding an error-checking property. The reader will note that its usefulness stems from its

reliance solely on the assumptions on the weight and bias values, thus ensuring that the error-
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checking invariant holds at the output regardless of the particular input combination introduced

into the layer. Each row in the output matrix is guaranteed to accumulate to zero as indicated in

Equation (6.2) as long as the weight and bias values add up to zero when accumulated over u′:

M−1

∑
u′=0

B[u′] = 0 ∧
M−1

∑
u′=0

W [k][u′] = 0, ∀k (6.5)

Although the conditions in Equation (6.5) will not hold in a trained DNN layer directly,

they can be easily introduced by adding one more column to the weight matrix and setting the

additional column values to the additive inverse of the summation of all the values in the same

row. Similarly, one additional bias value is required to be set equal to the additive inverse of

the sum of all other bias values. Interestingly, these modifications are equivalent to adding one

more neuron in the fully-connected layer, which we will refer to as the sanity neuron. The sanity

neuron in Figure 6.1 guarantees that the layer outputs always sum to zero regardless of the layer

input activation values. An additional neuron in the next layer, which is termed as check neuron,

can perform the described check operation by summing the neuron outputs at each prediction.

If the invariant is embedded through the outlined modifications, the check neuron will always

accumulate to zero in the absence of errors. We refer to this checksum as the weight checksum as

it is introduced through the weight and bias modifications, and categorize it as a spatial checksum

since the layer outputs are checked through accumulations in the spatial output dimension as

indicated by the red axis line in Figure 6.1.

We can perform the analogous steps in the temporal axis (z′), which is equivalent to

accumulating each column individually in the output matrix:

N−1

∑
z′=0

O[z′][u] (6.6)

We sum the right side of Equation (6.1) analogously, and after similar steps, we obtain:
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N−1

∑
z′=0

O[z′][u] =
N−1

∑
z′=0

B[u]+
C−1

∑
k=0

(W [k][u]
N−1

∑∑∑
z′=0

III[[[zzz′′′]]][[[kkk]]]) (6.7)

In Equation (6.7), if the highlighted input summation is zero over the temporal dimension

(∑N−1
z′=0 I[z′][k] = 0, ∀k), the left-hand side reduces to:

N−1

∑
z′=0

O[z′][u] =
N−1

∑
z′=0

B[u] = N ·B[u], ∀u (6.8)

The output matrix summation over the temporal axis while not necessarily zero is

nonetheless constant and equals to the product of the bias with the temporal batch size N. As

a result, it can be used as an invariant for error detection. The described solution is unique,

similar to the introduced property in the weight and bias values, because it only relies on the

assumptions on inputs and holds regardless of the weight and bias values. Although input vectors

are not expected to yield zero when point-wise accumulated over time for a set of predictions,

the required condition can be implemented by keeping the accumulation of the input vectors

in a temporal batch on the fly and providing the additive inverse of the accumulation as an

additional input vector at the end of the batch. Similarly, the check operation can be actualized

by accumulating the layer outputs over time. We denote this checksum as an input activation

checksum and categorize it as a temporal checksum since the summation is over the temporal

dimension of the input and output matrices as indicated by red axis lines in Figure 6.2.

6.2.2 Checksums in Convolutional Layers

The linear checksums can be constructed in the convolutional layers as well. As the

convolutional layers are traversed in four dimensions instead of the two of fully connected, one

can entertain the possibility of introducing four analogous checksums. Let us formulate the

convolution layer operation demonstrated in Figure 2.2 with the notation introduced in [61]:
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Figure 6.2. Temporal checksum in the fully-connected layers.

O[z][u][x][y] = B[u]+
C−1

∑
k=0

S−1

∑
i=0

R−1

∑
j=0

(I[z][k][Ux+ i][Uy+ j]∗W [u][k][i][ j])

0≤ z≤ N−1, 0≤ u≤M−1 (6.9)

In Equation (6.9), I, W , and O refer to the 4-dimensional input, filter weight, and output

tensors respectively, and B indicates the bias vector. N denotes the batch size, M the number

of filters, and C the number of filter channels, each of dimensions S and R. Unlike the fully

connected layers, each element-wise multiplication is replaced by a 2-D convolution over the x

and y dimensions with U denoting the stride size.

Let us start by investigating the channel (u) and temporal dimension (z) of the output

tensor, analogous to the case for the fully connected layers. We want to introduce an invariant

in the output tensor O, where the summation over the channel dimension (u) always yields

zero so that it could be utilized for error checking. We can start by accumulating both sides

of Equation (6.9) over the spatial axis (u) to investigate the conditions which yield such an

error-checking property at the output. After algebraic simplifications, we obtain:
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Figure 6.3. Spatial checksum in the convolutional layers.

M−1

∑
u′=0

O[z][u′][x][y] =
M−1

∑∑∑
u′=0

BBB[[[uuu′′′]]] +

C−1

∑
k=0

S−1

∑
i=0

R−1

∑
j=0

(I[z][k][Ux+ i][Uy+ j]
M−1

∑∑∑
u′=0

WWW [[[uuu′′′]]][[[kkk]]][[[iii]]][[[ jjj]]]) (6.10)

The left-hand side will be zero in Equation (6.10) (∑M−1
u′=0 O[z][u′][x][y] = 0) for all x, y, z

if the highlighted weight and bias summations are zero:

M−1

∑
u′=0

B[u′] = 0 ∧
M−1

∑
u′=0

W [u′][k][i][ j] = 0 ∀ i, j,k (6.11)

The solution in Equation (6.11) indicates that if the filters and biases accumulate to zero

over u, then the summation of the output tensor over u will yield zero regardless of the inputs,

enabling its use as an error-checking invariant. We need to introduce an extra filter and bias value,

as shown in Figure 6.3, and the additional filter/bias values should be set accordingly to satisfy

Equation (6.11). We refer to this checksum as a filter checksum and categorize it as a spatial

checksum since the output summation is performed in the spatial dimension as demonstrated in

Figure 6.3.
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Figure 6.4. Temporal checksum in the convolutional layers.

The derivation of the temporal checksum over the dimension of z requires similar steps.

If the input tensor yields zero when accumulated over z as in Equation (6.12), we eventually

obtain a constant summation at the output when accumulated over the same dimension, as

shown in Equation (6.13). As in the case of the fully connected layers, the checksum can be

implemented through the point-wise accumulation of the inputs over the temporal batch and

feeding the additive inverse of the accumulated sum as an additional input. The outputs are

accumulated similarly and compared with the expected constants to enable error detection as

in Figure 6.4. We refer to this invariant as input feature map checksum and categorize it as a

temporal checksum.

N−1

∑
z′=0

I[z′][k][Ux+ i][Uy+ j] = 0 ∀ k,x,y, i, j (6.12)

N−1

∑
z′=0

O[z′][u][x][y] =
N−1

∑
z′=0

B[u] = N ·B[u] ∀ u,x,y (6.13)

The checksums in the remaining dimensions involve certain technical complications.

A constant checksum in the x(y) dimension of the output may require input feature maps to

satisfy up to S(R) different zero checksums. In particular, the input feature map columns(rows)

that are multiplied with the same filter channel column(row) should sum to the zero vector.

Implementing the last two checksums might require up to S(R) more padding columns(rows) in

each feature map and tracking S(R) different summations. We limit our study to the presented
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Table 6.1. Error detection guarantees of the Sanity-Check checksums.

Error/Checksum Spatial Temporal Spatial+Temporal

Input No Detection (L.1) 1 Error (L.2) 1 Error
Weight 1 Error (L.2) No Detection (L.1) 1 Error

Bias 1 Error (L.3) All Errors (L.4) All Errors
Output/Comp. 1 Error (L.5) 1 Error (L.5) 3 Errors (L.6)

first two checksums to avoid such overheads. The experimental results confirm that the first two

checksums suffice in attaining high error coverage.

6.2.3 Error Detection Guarantees of the Checksums

This section focuses on the delineation of the error detection properties of the presented

checksums. Table 6.1 maps these properties by the dimensions of the delivering checksums and

by error type; six lemmas are used to establish these error detection properties. The proofs of the

lemmas for fully-connected layers carry mutatis mutandis for the convolutional layers.

Lemma 1: Spatial checksums can not detect input errors. Similarly, temporal checksums

fail to detect weight errors. Proof: The spatial checksum invariant is satisfied as independent of

the layer inputs. Similarly, the temporal checksum is fulfilled regardless of the weight values.

Lemma 2: A single input error is guaranteed to be detected by the temporal checksums.

Similarly, a single error in the weight/filter coefficients is guaranteed to be detected by the spatial

checksums. Proof: A single error in the input value I[z = z′][k] can only impact the output entries

O[z = z′][u] due to the formulation of a fully-connected layer. As only a single error manifests at

each output column, the column-wise temporal checksum guarantees the detection of the error

deviation. The proof for the spatial checksum can be constructed similarly.

Lemma 3: A single bias error is guaranteed to be detected by the spatial checksums.

Proof: A single bias error B[u = u′] manifests itself in the output entries O[z][u = u′]. As only

a single error manifests at each output row, the deviation can always be detected by a row

summation.
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Lemma 4: Temporal checksums detect all possible bias errors. Proof: A single error in

the bias value B[u = u′] impacts the entire output column O[z][u = u′] by adding the same error

amount to each element in the corresponding output column. The temporal checksum multiplies

the error value by N as it accumulates the output tensor along the columns. Thus, any possible

bias error is guaranteed to be detected.

Lemma 5: Spatial checksums are guaranteed to detect a single output value error or

a single computation error. Temporal checksums deliver the same error detection guarantees.

Proof: An error with location O[z = z′][u = u′] deviates the checksum results in one row-wise

and one column-wise summation, thus guaranteeing detection in either dimension.

Lemma 6: Three or fewer output/computation errors are guaranteed to be detected by the

combination of the spatial and temporal checksums. Proof: An error at O[z = z′1][u = u′1] can be

masked by two errors O[z = z′1][u = u′2] and O[z = z′2][u = u′1] such that z1 ̸= z2 ∧ u1 ̸= u2.

A fourth error O[z = z′2][u = u′2] is required to mask the remaining dimensions of the second

and third error. It should be noted that the error magnitudes should align accordingly for this

scenario to happen. The combination of spatial and temporal checksums can also correct a single

output error as it deviates in only a single row and column summation. However, certain three

error checksum signatures may match those of single error cases; consequently, three error cases

may end up being miscorrected. We prioritize triple error detection over single error correction,

resulting in Sanity-Check forgoing error correction.

6.2.4 Impact of Numerical Inaccuracies on Checksum Calculations

Our previous discussion has delivered theoretical proofs of the outlined error detection

properties. Nevertheless, real-world considerations necessitate an examination of the impact

of finite-length computation on this certainty. Floating-point or scaled fixed-point operations

may need to fit their results in fixed-length representations, necessitating the invocation of

techniques such as truncation and rounding. The consequent minute error accumulation deviates

the sums from the expected values to be checked against. This issue has been a concern for ABFT
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(Algorithm-Based Fault Tolerance) [93] and the concurrent test methods for digital linear systems

[200]. Different number coding techniques [201] have been proposed in the prior literature

to tackle the inaccuracy problem, but the integration of such schemes into existing systems

involves significant challenges. This section investigates the numerical inaccuracy problem for

mainstream DNN hardware implementations with floating-point (i.e., GPU (graphics processing

unit)) and fixed-point (i.e., embedded DNN accelerator) data types and sets guidelines to deploy

Sanity-Check in these systems without experiencing significant numerical issue problems.

We identify two fundamental numerical inaccuracy sources that can lead to checksum

deviation even in the absence of hardware errors. First, layer outputs are generated through a

series of multiply-accumulate operations, and the checksum is derived through the summation of

these output values. If each multiplication and addition operation introduces round-off errors,

the final checksum value will be impacted by these deviations. For instance, assuming that

the round-off error introduced at an operation is bounded by εr, the maximum accumulated

error is proportional to CM|εr| for the spatial checksum calculation in the fully-connected

layers, where M and C denote the number of neurons and their input connections, respectively.

While the described bound is overly pessimistic, the expected checksum deviation range can

be approximated for a rounding scheme through a Gaussian distribution [200] centered at zero

(µ = 0), and standard deviation proportional to the round-off error of each operation, and the

square root of the operations performed (σ ∝
√

CM|εr|). Second, a more covert inaccuracy

source may stem from the invariant embedding process. For instance, each additional sanity

neuron weight in the fully connected layers might be off up to M|εr| due to round-off errors

since they are generated through the accumulation of M other weight values. This inaccuracy

will be amplified while generating the sanity neuron output, and it may consequently lead to

an additional deviation up to M|εr| × L1(⃗I) in the generated checksum value where the last

multiplicative term is the L1-norm of the input activation vector.

In floating-point data representations (i.e., IEEE 754 single-precision), we have observed

the impact of numerical inaccuracies, yet the final deviation on the checksum result is negligible
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Figure 6.5. The distribution of the measured checksum values.

for both spatial and temporal checksums in both large fully-connected and convolutional layers.

For instance, Figure 6.5 illustrates the difference in the distribution of the temporal and spatial

checksum values for the no error case (only numerical inaccuracy effects) and in the presence

of single bit-errors. The most important observation from Figure 6.5 is that there is at least

one checksum for each error type, which can clearly distinguish error-caused deviations from

numerical inaccuracies with a pre-defined threshold. As the numerical imprecision effect is
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sharply distinguishable from the error cases with high accuracy, we can achieve an outstanding

error coverage without leading to false alarms. We can check whether the generated checksum

exceeds a threshold rather than aiming to ascertain a strict match to a zero value, thus preventing

false alarms in our execution environment with the floating-point backend. To achieve this, the

target DNN model needs to be profiled after the checksum integration to measure the largest

deviation that can occur due to numerical inaccuracies, with the spatial and temporal checksum

thresholds subsequently being set for each layer accordingly.

The impact of round-off errors is less of a problem for fixed-point implementations with

full bit-width multiplication and accumulation. For instance, if the multiplication operation in

a DNN accelerator doubles the bit-width of its operands in the result, and accumulations are

performed with sufficient bit-width and no truncation, then the partial sums can be accumulated

without any round-off errors. Modern DNN accelerators perform MAC (multiply-accumulate)

operations in the described manner, and accumulated sums are truncated/scaled at the end of

the layer; thus, round-off errors can be avoided by utilizing full resolution accumulation results

in Sanity-Check calculations. The inaccuracy stemming from the sanity weights and inputs can

be avoided by deriving these quantities through the accumulation of the quantized versions of

the weights and activations. If the data representation range used for weights or activations is

not sufficient to represent the additional variables, Sanity-Check operations can be performed

in residue arithmetic [93] as discussed in Section 6.3.3, with such design decisions ensuring no

introduction of any round-off errors.

Even when the numerical inaccuracy effects exist in the system and they suppress

the impact of small bit error deviations, it rarely becomes a practical issue for Sanity-Check

deployment. It is observed that such small bit error effects are almost always benign for deep

neural networks; thus, the checksum thresholds can be set to relatively large values to avoid false

alarms while also tolerating the benign bit errors which do not lead to DNN misprediction. The

experimental validation of this claim is provided in Section 6.4.
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6.3 Experimental Method

We implemented Sanity-Check on AlexNet [49] to measure the coverage rates and the

performance impact on various hardware platforms. AlexNet has a reasonable size for practical

applications, and it allows us to demonstrate the Sanity-Check concept easily as it consists of

plain convolutional and fully-connected layers without residual connections. We used Keras

[202] with the Tensorflow [203] backend for the development, with all experiments conducted

on an NVIDIA GTX1060 GPU. Additional performance measurements are taken on an Intel

i5-8600K CPU (central processing unit). We trained the model on the German Traffic Sign

Recognition Benchmark (GTSRB) [50] and achieved 96.09% top-1 test set accuracy. Finally, we

have designed the Sanity-Check hardware and integrated it into an open-source DNN accelerator

[37]. We have characterized both area and power overheads through synthesis experiments.

6.3.1 Error Injection Method

We consider bit errors to model the impact of transient hardware-level errors in our

experiments by following [66, 68, 69]. We inject activation errors into layer inputs after checksum

encoding and into layer outputs before the outputs have been checked. In addition, we inject errors

into the weight and bias parameters of each layer. Any transient error during the computation

(during multiply-accumulate) only impacts one output entry, enabling us to model a single

computation error as a single output error. This property can be easily seen by picking a weight

and activation pair for multiplication in either the fully-connected or convolutional layers and

observing that the multiplication result can only source a single output.

ABFT evaluations are commonly conducted through fault models either at the module

level [93] or at the arithmetic operation level. However, the random bit-flip fault model is

more commonly employed in functional safety research because of its tight correlation with

the physical SEU (single event upset) effects, thus urging us to use it to model hardware faults

in mainstream architectures. We assume 16-bit fixed-point data types for both weights and
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Algorithm 6.1: Details of the bit error injection procedure
Input :Input Tensor, Error Rate
Output :Output Tensor

1 Calculate injected error count using error rate and input tensor size
2 Randomly determine fault locations
3 for each error injected data location do
4 Get the numerical value of the data (n)
5 Determine the random bit location (i)
6 if i is the sign bit position then
7 Invert the numerical sign of the data
8 else
9 Perform a pseudo-quantization on n to find the bit value at ith position

10 if ith bit value is zero then
11 Add (quantization scale f actor)×2i to the data value
12 else
13 Subtract (quantization scale f actor)×2i from the data value
14 end
15 end
16 end

activations while modeling the bit flips on the fixed-point format. After profiling the weight and

activation ranges on the AlexNet model, we allocate the integer and fraction bits to accommodate

the possible data range. Algorithm 6.1 outlines the error injection procedure.

Weight and Bias Errors

Weight and bias errors are injected through direct modifications on these values. We

first read the weights/biases of the target model, then apply the procedure outlined in Algorithm

6.1. Finally, we load the modified weights/biases into the model to perform predictions. The

faults on the weights/biases have a long-lasting impact as they influence all predictions until the

weights/biases are refreshed by the correct ones. This is a typical scenario for a DNN accelerator

if the weight/bias values are stored for reuse in an SRAM (static random-access memory) buffer

with no special safety features. The absence of such features may result in the persistence of the

weight errors throughout the entire device operation.
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Input and Output Errors

Layer input and output errors are injected dynamically. We create dedicated DNN layers

that receive the error count and input tensor, produce an error injected tensor, and forward it to the

next layer. We integrate these layers before and after the target fully-connected and convolutional

layers to simulate the input and output errors. Dedicated non-trainable parameters in these layers

control the number of injected errors, and error patterns are generated dynamically for each

prediction.

6.3.2 Sanity-Check Implementation on Software

The software implementation of the spatial checksums necessitates one more neuron/filter

in the fully-connected/convolutional layers. We need to calculate the required weight and

bias values of the additional neurons/filters statically as a one-time post-processing step after

training because modern DNN processing systems do not typically perform online learning after

deployment; thus, the weights remain constant during the inference. While the fully-connected

or convolutional layer outputs are being processed by the activation functions, we sum-reduce the

outputs concurrently, and the generated check values are forwarded to the DNN output together

with the predictions. If any of the check values significantly deviates from zero, we flag an error

signal.

Temporal checksums do not require extra parameters, but we retain the accumulation of

each input fiber (e.g., single-pixel location across different inputs) over the temporal batch which

the checksum is integrated into. After each input fiber is accumulated over the temporal batch,

we invert the sign of the accumulation and process it as an additional input. We accumulate the

output in a similar manner and forward the results to the DNN output. The results are compared

with the pre-calculated constants to detect errors.
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Figure 6.6. DNN accelerator with systolic array architecture.

6.3.3 Sanity-Check Implementation on Hardware

Sanity-Check requires additional computations; consequently, a pure software imple-

mentation may lead to a limited performance overhead under fixed-hardware resources as

quantitatively characterized through performance measurements in Section 6.4. However, it

is possible to eliminate the performance overhead with dedicated hardware extensions. We

demonstrate this concept on a systolic array DNN accelerator. A systolic array DNN accelerator

similar to Google’s TPU [35] is shown in Figure 6.6. The architecture is an SxS MAC grid that

can perform S2 MAC operations in parallel. The weight values are first pre-loaded into the MAC

units, and the input activations are shifted horizontally in the array. MAC units multiply the

activations and the weight values, then update the partial sums. The partial sums are shifted

vertically through the fabric to generate the final results.

We extend the MAC array with one extra column to balance the performance impact of

additional neurons/convolutional filters, as shown in Figure 6.7. Output vector elements appear

at the end of each column simultaneously or in the subsequent cycles based on the data-flow

structure of the systolic array. We organize an adder tree to accumulate them concurrently to
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Figure 6.7. Sanity-Check hardware on systolic array architecture.

perform the checks for the spatial checksums embedded. A detailed diagram of the spatial

checksum hardware is demonstrated in Figure 6.8. The proposed hardware synchronizes the

output vector elements if they appear in the subsequent cycles (if the output vector elements

are generated simultaneously, no synchronization step is needed), and the adder tree performs a

sum-reduce operation to convert the output vector into a single value. Finally, the magnitude of

the result is computed and compared with a small checksum threshold. If the calculated value

exceeds the threshold, it causes the system to generate an error signal. The spatial checksum

calculations do not result in throughput loss, but the latency has a negligible one cycle increase

(e.g., 0.8% for the 64×64 array) due to the additional systolic array column embedded.

The temporal checksum hardware is demonstrated in Figure 6.9. Temporal checksum

calculations are performed by accumulating input values and feeding the additive inverse of the

accumulated value as the final input after a group of input vectors. The sanity input generation

hardware (indicated with a blue background shade in Figure 6.9) keeps track of the number of

processed input vectors through a shared counter and accumulates the same input positions across

time through unique adders and registers. The module forwards the input activation vectors to
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Figure 6.8. Details of the spatial checksum hardware implementation.

the systolic array in the normal operation cycles. After an input batch is processed, the additive

inverse of the accumulation is provided to the systolic array as an additional input vector. If the

vector elements need to be synchronized before feeding into the systolic array, a synchronization

stage can be integrated before the systolic array connection. Check accumulators (indicated with

a yellow background shade in Figure 6.9) keep track of the output count through the same shared

counter, yet the control signals need to be delayed to accommodate systolic array latency. First,

the systolic array output vectors are synchronized if they appear in the subsequent cycles. The

same output positions are accumulated across time through unique adders and registers, and

compared with the pre-determined constants for the temporal checksums. If any of the temporal

check values deviate from the expected value by more than the specified threshold, an alarm

signal is raised. The proposed implementation requires one extra prediction in each temporal

batch, resulting in 1/(N +1) throughput reduction for input batch size N.

The checksum computations can be performed in residue arithmetic [93], obviating the

need for larger adders and register files. This approach may introduce in rare cases aliasing; if

these rare aliasing cases are not desired, larger bit-widths might be called for. Finally, assuming

a MAC unit has n times larger area than that of an adder/accumulator, the area overhead can be

approximated by the equation (n+3)/(nS), resulting in a 2.5% overhead for a 64×64 systolic

array for n = 5. The data width and the implementation type of arithmetic units will impact n,

which would need to be determined for the target architecture. Section 6.4 verifies the minimal

area and power overheads through hardware synthesis experiments.
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Figure 6.9. Details of the temporal checksum hardware implementation.

6.3.4 Baseline Methods for Comparison

We employ two spatially duplicated baseline methods to compare with Sanity-Check.

Duplicated P.E. (Prediction Equality) checks if the end predictions are equal (e.g., same traffic

sign) and indicates an error if they differ. Duplicated L.E. (Likelihood Equality) is stricter as it

considers the likelihood equality at the outputs of the last Softmax layer, with every likelihood

deviation notching up the error count. These methods offer an adequate resolution for detecting

errors yet fall short of error correction unless further redundancy is employed.

6.4 Experimental Results

Figure 6.10 shows the error and error-caused misprediction coverage rates for single and

multiple bit errors. We attain a perfect error-caused misprediction coverage with the combination

of both checksums, even exceeding the coverage of Duplicated L.E., the strictest duplicated error

detection method in our experiments. We also vary the checksum detection thresholds (from 2×

to 100× of the maximum deviation seen in the training set) to tolerate the small errors that do

76



Figure 6.10. Error coverage and error-caused misprediction coverage rates for single and
multiple bit-errors.

not result in misprediction; consequently, we reduce error coverage (as can be seen in the striped

regions of the bars) but always obtain perfect error-caused misprediction detection rates. Finally,

in the absence of an error, the outlined methods never lead to false alarms.

The misprediction coverage of our technique is particularly remarkable compared to

the previous work in the literature. For instance, Li et al. [66] propose a symptom-based error

detector where the activations are profiled after the training to determine the expected numerical

range at each layer with the errors subsequently marked at inference time upon the violation of

the expected range. Although their coverage for data types that incorporate a large numerical
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Table 6.2. Memory and performance overhead for Sanity-Check checksums.

Spatial Temporal Spatial+Temporal Duplicated

# Parameters 0.09 % 0.00 % 0.09 % 100.0 %
# MAC Ops. 0.09 % 1.56 % 1.64 % 100.0 %

Meas. Perf. (CPU) 11.0 % 15.6 % 18.2 % 96.5 %
Meas. Perf. (GPU) 11.5 % 9.7 % 18.4 % 53.7 %

span is elevated (i.e., > 95%), they state that coverage noticeably wanes on data types with

limited range, such as a 16-bit fixed-point format with 10 fraction bits. In contrast, Sanity-Check

attains perfect coverage on the same data type because of the precise checksums.

Duplicated P.E. correlates well with the actual mispredictions as no error is flagged until

one network produces a different prediction. Interestingly, this feature hurts coverage rates as it is

more likely for an error to escape detection by mutating into the same incorrect prediction rather

than ending up with the exact wrong likelihood vector. Although the likelihood of mapping to

the same wrong prediction at first glance promises to be rather low (e.g., 1/42≈ 0.024 for our 43

output network), our observations indicate that errors usually map to deviations from the correct

prediction into only a limited subset of wrong predictions which in all likelihood neighbor the

correct prediction in the decision space, thus reducing the detection rates of Duplicated P.E.

Table 6.2 reports the overhead of the suggested methods in terms of the number of

additional parameters and the MAC operations. In addition, we measure the performance

overhead of the pure software implementations on the CPU and GPU platforms. The proposed

checksums have remarkably low overhead in terms of the extra parameters and MAC operations

since Sanity-Check leads to an almost negligible 0.09% increase in parameters due to the extra

neurons and filters, and the number of MAC operations grows by only 1.56% which is 64×

smaller than the cost of duplication. The measured performance overhead of the pure software

implementation on a fixed hardware platform can still be 5.3× smaller than that of duplication.

As these platforms are not optimized for performing the required computations efficiently, a
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Table 6.3. Area and power overhead of the Sanity-Check hardware modules.

Accelerator Systolic Array Sanity-Check SC/SA SC/Acc

Area (mmmmmm222) 2.922 1.559 0.048 3.08 % 1.64 %
Power (mmmWWW ) 1170 238.3 13.1 5.50 % 1.12 %

Sanity-Check accelerator hardware design to attain perfect detection rates while shrinking the

performance cost is further motivated.

We design the proposed hardware components (in Section 6.3.3) in Verilog HDL, integrate

them into a systolic array-based DNN accelerator [37] and then perform hardware synthesis

to characterize the area and power overheads experimentally. We configure the architecture to

accommodate a 64×64 systolic array and 16-bit data types. The clock frequency is chosen as

1 GHz. We exclude on-chip data buffers (i.e., activation, weight) and perform synthesis with

the Synopsys Design Compiler tool, using the Silvaco Open-Cell (15nm) technology and the

Synopsys DesignWare libraries.

Table 6.3 demonstrates the area and power overheads of the proposed hardware mod-

ifications on the target accelerator. We report the area and power consumption values for the

entire accelerator, 64× 64 systolic array, and the Sanity-Check hardware. The Sanity-Check

hardware includes the additional systolic array column, the adder tree for the spatial checksums,

and the input and output accumulators for the temporal checksum calculations. In addition, we

present the area and power percentage of the Sanity-Check hardware compared to the systolic

array and the entire accelerator design. The synthesis results indicate an area footprint of 1.64%,

and a power footprint of 1.12% for the Sanity-Check hardware when compared to the entire

design. The area and power overheads are still quite minuscule when evaluated as a fraction

of the systolic array, at 3.08% and 5.50%, respectively. We note that the rough area estimate

of Section 6.3.3 is relatively accurate when compared to the synthesis results. The described

hardware architecture will keep the overall performance overhead at around 0.08% in latency for
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a 64×64 systolic array, and 1.5% in throughput for a batch size of N = 64. Overall, Sanity-Check

can be integrated into a DNN accelerator as a hardware extension to deliver extensive error

coverage at the cost of minimal area, power, and performance overheads.

6.5 Chapter Summary

The role of deep neural networks has expanded significantly in the safety-critical domains,

including autonomous driving, healthcare, and industrial applications. While DNNs can perform

accurately under minute numerical deviations, our analysis demonstrates that large numerical

errors caused by hardware bit errors can critically impact accuracy and lead to unexpected system

behavior. At the same time, the cost of traditional fault tolerance techniques is rarely palatable

for DNN processing systems. We utilize the fundamental properties of DNN computations to

enable real-time error detection in both fully-connected and convolutional layers through external

invariants. The perfect critical error coverage of Sanity-Check is complemented by carefully

designed hardware modules to minimize the area, power, and performance overheads of the

Sanity-Check operations.
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Chapter 7

Hardware Error Detection in DNN Accel-
erators via Internal Invariants

The abundant usage of DNNs (deep neural networks) in safety-critical domains such as

autonomous driving raises concerns regarding the impact of hardware-level faults on deep neural

network computations. As a failure can prove to be disastrous, low-cost safety mechanisms are

needed to check the integrity of the deep neural network computations. This chapter introduces

internal invariants in deep neural networks by introducing a custom regularization term in

network training. We partition the outputs of each network layer into two groups and guide the

network to balance the summation of these groups through an additional penalty term in the

cost function. The proposed approach delivers twin benefits. While the embedded invariants

deliver low-cost detection of computation errors upon violations of the trained equilibrium

during network inference, the regularization term enables the network to generalize better during

training by preventing overfitting, thus leading to significantly higher network accuracy.

7.1 Introduction

The external invariants proposed in the previous chapter are an effective solution to

detect hardware errors in the linear computational stages of deep neural networks. On the other

hand, the limited effectiveness of external invariants motivates us to use an alternative approach

to embed internal invariants, which can operate across both linear and non-linear operations.
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The learning process of deep neural networks facilitates the formation of internal invariants at

various granularities for the purpose of coarse-grained detection and fine-grained localization of

hardware errors. This chapter will primarily investigate coarse-grained internal invariants for the

objective of hardware error detection.

The primary contribution of this chapter involves the introduction of a simple penalty term

into the DNN loss function to train internal error-checking invariants and the utilization of these

invariants for error detection. We first partition the outputs of each deep neural network layer

into groups and form relationships across these groups by making use of additional penalty terms

in the training process. The trained internal invariants are then utilized at inference time to check

the anomalies and detect hardware errors since error incidents will result in the violation of the

embedded relationships. Furthermore, we implement a comprehensive error injection framework

and utilize it to compare and demonstrate the effectiveness of the checksums through exhaustive

error injection experiments. Finally, we draw attention to our observations that indicate that the

introduced penalty term delivers a rather useful and perhaps somewhat unexpected ancillary

effect. It acts as a regularizer during DNN training and noticeably improves test set accuracy by

reducing overfitting and improving generalization.

7.2 Error Checking with Computation Invariants

We aim to embed internal invariants into deep neural network computations and utilize

them at inference time to detect discrepancies in the computations. The errors could be caused

by various types of hardware-level faults, but independent of their provenance, these errors

are detected as long as they violate the introduced invariant. Let us start our discussion by

considering the following invariant for a particular DNN layer:

∥∥∥∥∥ Sl

∑
i=1

hl
i

∥∥∥∥∥
F

= 0 ,∀l (7.1)

In Equation (7.1), hl
i denotes the output of the i’th computation unit in the l’th layer

82



and Sl represents the total number of computation units in the l’th layer. In the simplest case,

Equation (7.1) can be considered to indicate that the outputs of a fully-connected layer always

sum up to zero. As the summation will be a matrix for the convolutional layers, we use the

Frobenius norm [204] to generalize Equation (7.1) for both fully-connected and convolutional

layers by reducing the left-hand side to a single number. This invariant is quite useful for error

checking since any single output error is always detected, or in general, any error pattern is

detected as long as the individual errors do not cancel each other’s footprint on the checksum by

accumulating to zero.

The presented invariant requires the outputs of the computation units to span both positive

and negative quantities so that they could potentially sum up to zero. While the computation units

with a hyperbolic tangent (tanh) activation function produce both positive and negative outputs,

the range of the very commonly used ReLU and Sigmoid activation functions is restricted to

only non-negative quantities, thus precluding the direct utilization of the presented invariant.

We introduce an alternative invariant which allows us to perform a similar check for a set

of non-negative quantities. Let us partition the computation units into two groups at each layer,

sum each group separately, and set the norm of their difference to zero as in Equation (7.2). We

refer to this invariant as the balance checksum. The balance checksum can detect all errors in a

single computation unit; errors in multiple computation units are guaranteed to be detected as

long as they violate the balance of the output partitions.

∥∥∥∥∥⌊Sl/2⌋

∑
i=1

hl
i−

Sl

∑
i=⌊Sl/2⌋+1

hl
i

∥∥∥∥∥
F

= 0 ,∀l (7.2)

Although the balance checksum is useful for detecting errors, the introduction of such a

mathematical property to neural network computations involves significant challenges. First, the

balance checksum forces the layer outputs to adhere to a linear invariant without considering

the norm operator. Linear invariants are straightforward to introduce in linear systems and are

the key component for the error detection methodology achieved through external invariants in
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Chapter 6. However, the scope of such an approach is strictly limited to the linear stages of the

computation with data being left unprotected in the non-linear stages. In addition, the linear

sessions are frequently interrupted by non-linear activation functions at the end of each layer. As

the checksum generation and check operations should be performed within the boundaries of

each linear stage, such an approach consequently incurs significant overhead. The mathematical

introduction of such an invariant involves substantial challenges for non-linear systems, prodding

us to follow a rather distinct approach to tackle this problem.

7.3 Training Balanced Output Partitions

Deep neural network training enables us to adjust the DNN parameters so that the network

learns to perform the desired task correctly. The cost function plays an integral role in the training

stage as parameter updates are continuously undertaken to minimize the cost function. One can

set various training goals for the network through simple modifications on the cost function.

An extra penalty term in the cost function is frequently used in the regularization methods to

simplify the classifier complexity by guiding small weight values to zero. A simpler model

obtained through regularization methods is less likely to suffer from overfitting to the training

data and should exhibit superior generalization to future test examples. In a similar fashion, we

integrate the balance checksum into our target DNN model by including it as a penalty term in

the DNN cost function and guiding the network to minimize the checksum error while learning

to identify the correct labels in the training data. Our overall cost function can be formulated as

follows for a single training example:

−
M

∑
c=1

yo,c log(po,c)+λ

L

∑
l=1

1
Nl

∥∥∥∥∥⌊Sl/2⌋

∑
i=1

hl
o,i−

Sl

∑
i=⌊Sl/2⌋+1
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o,i
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2

F

(7.3)

The first part in Equation (7.3) is the categorical cross-entropy for the correct output

labels. The second part is a mean square error for the group output differences. The function of

λ is analogous to the coefficient used in the regularization methods. We use the hyperparameter
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λ to control the impact of the penalty term on the cost function and prevent the penalty term

from hindering the main learning task. In Equation (7.3), L denotes the number of layers and

Nl the output size of each computation unit in layer l. hl
o,i corresponds to the output of the i’th

computation unit in the l’th layer for input example o after the activation function. An exception

needs to be taken for the outputs of the last layer, forcing us to extract hL
o,i before the application

of the Softmax activation function. The sum of the Softmax activation function outputs is always

normalized to 1 as shown in Equation (7.4) with the most likely class obtaining a rather elevated

probability; therefore, it is not straightforward to integrate the balance checksum to the last layer

after the Softmax function. We embed the balance checksum in the last fully-connected layer

before the Softmax function, and as the Softmax layer outputs sum to 1, we check this property

to protect data during the Softmax computation.

M

∑
c=1

po,c = 1 ,∀o (7.4)

Finally, we partition the layers according to neuron (filter) indices; however, any equiva-

lent partitioning scheme works as long as the trained scheme is used for error checking since the

neurons (filters) are interchangeable before the training.

7.4 Error Checking at Runtime

Network training minimizes the additional penalty term in the cost function and conse-

quently helps to balance the output partitions. As the network is required to satisfy the main

classification task, the differences between groups typically fail to match zero exactly, instead

slightly deviating from it. Our experimental observations indicate that as a result of training with

the additional penalty term, the maximum deviation between the groups reduces by two orders

of magnitude, thus providing us sufficient resolution to detect significant computation errors.

We introduce individual threshold values for each layer and check if the difference between the

groups deviates more than the determined threshold rather than focusing on a strict check of
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Figure 7.1. Checking the balance in fully-connected layers.

equality to zero. We learn the threshold values by profiling the training examples. We perform

a full run on the training set to determine the maximum balance deviation at each layer and

multiply these values with a small margin before setting them as the error thresholds.

To detect errors at runtime, we introduce some additional modifications in the DNN

model. The correctness of the computations at each layer is checked by an extra computation

unit in the next layer. For fully-connected layers, we employ an additional neuron in the next

layer (check neuron) as shown in Figure 7.1 to check if the balance is satisfied. While the check

neuron is connected to the outputs of all the computation units of the previous layer, we set

the weight values for the first group connections as 1, and -1 for the other group. The check

neuron accumulates both group outputs and calculates the difference at each prediction. We

introduce 1×1 convolution filters (check filters) after each convolutional layer to check if the

two group outputs are balanced. The channels of the check filter that convolve with the first

group outputs are set to 1; the remaining channels are set to -1. In this way, the check filter

group-wise accumulates the output channels of the previous convolutional layer and takes the

difference. As the generated checksum is a matrix rather than a single value for the convolutional

layers, we calculate the maximum value and use it for the threshold calculations and online error
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checking. The outputs of the check neurons and check filters are forwarded to DNN outputs

without being processed with the activation functions. The modified DNN produces a single

check value for each layer together with the predictions, and we compare the check values with

the thresholds to determine if an error has occurred.

7.5 Simulating Hardware-Level Faults on the DNN Graph

We design a comprehensive simulation tool to measure the effect of hardware-level faults

on the DNN computation graph. Our simulation tools afford us the ability to inject bit errors

into both activation values and weights during DNN execution. A bit error model is commonly

employed to model the transient errors caused by SEUs (single event upsets) and also useful

for simulating timing errors in sequential circuits. Our simulator injects activation errors via

dedicated error injection layers embedded into the target network. Error injection layers produce

error patterns dynamically for each prediction. We preprocess the weights to inject errors before

runtime. The error-injected weights may affect multiple predictions until the weight values are

refreshed by the correct ones. The simulator allows control of the error rate and the data width in

the fixed-point format. We utilize our simulation framework to measure the DNN accuracy at

different error rates and evaluate the performance of various error detection methods through

exhaustive error injection experiments.

7.6 Experimental Method

We utilize a DNN model similar to AlexNet [49] to implement error detection methods

and perform error injection experiments. Our target network model includes five convolutional

and three fully-connected layers with the network being trained with the SGD (stochastic

gradient descent) [205] optimizer (learning rate=10−2, decay=10−6, momentum=0.9, with

Nesterov momentum) on the German Traffic Sign Recognition Benchmark Dataset (GTSRB)

[50]. We up-sample GTSRB images, and adjust the output layer of the AlexNet network for
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Figure 7.2. Penalty coefficient vs. maximum checksum deviation and accuracy.

GTSRB classification. We develop the target network, simulation tools, and error detection

methods in Keras [202] and TensorFlow [203]. We use an NVIDIA GTX1060 GPU (graphics

processing unit) for the experiments and Intel i5-8600K CPU (central processing unit) for

additional performance measurements.

7.7 Experimental Results

We start by training the target model with a variety of penalty coefficients (λ ) and

observing the maximum difference between the layer output partitions. Figure 7.2 demonstrates

that the penalty term is highly effective in balancing the output partitions through the entire

network. The observed maximum deviation decreases by more than two orders of magnitude

and delivers us sufficient resolution to detect even the small imbalances caused by errors.

We observe during network training another remarkable phenomenon; Figure 7.2 indi-

cates that network accuracy tends to improve in line with an increase in the penalty coefficient

instead of the penalty term limiting the learning efficiency. A 3% accuracy increase in both
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Figure 7.3. The comparison of regularization methods.

validation and test data compared to the base case without the penalty term can be observed. As

we will explore shortly, the balance checksum acts as a network regularizer and helps to improve

network generalization by ameliorating the overfitting problem.

We compare the accuracy increase of our methods to the conventional regularization

methods used in practice. We train our model with L1/L2 weight and L1/L2 activation regular-

ization methods and report the highest accuracy that we could obtain through a parameter sweep.

We compare these results with the accuracy of the network under a balanced partitions constraint

with λ = 10−4, which delivers the best accuracy that we could obtain for our network. Figure 7.3

outlines the best accuracy values for training, validation, and test datasets. While almost all

regularization methods have a positive impact on network accuracy, training the network with

balanced output partitions delivers significantly higher accuracy than the standard regularization

methods. If the layer outputs are considered as vectors, the introduced balance penalty term

constrains the span of the generated output vectors by forcing them to be orthogonal to the vector

Vl = [1,1,1, ....,−1,−1,−1] that has a length of Sl and populated by a sequence of (⌊Sl/2⌋) 1’s

and (Sl −⌊Sl/2⌋) -1’s. As this constraint reduces the number of distinct features that can be

extracted by one, we can expect a degradation in accuracy at a first glance.

To address this concern, we first extract the intermediate activations after non-linear

functions at each layer for a randomly chosen set of 6400 test examples, then apply PCA [206]
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Figure 7.4. The percentage of utilized output dimensions at each layer.

(principal component analysis) to find the number of dimensions that account for 99% variance

of the activation values at each layer output. The results in Figure 7.4 indicate that most layers

are under-utilized as they extract much fewer features than the layer size (for instance, the first

convolutional layer with 96 filters only extracts 11 distinct features). As the output data has

much fewer useful features than the potential number of features that the layer can represent,

reducing the maximum number of features that can be extracted by 1 proves to have no negative

impact on accuracy.1 On the contrary, the approach we propose auspiciously improves accuracy

by reducing overfitting due to the following reasons. First, it restricts the activation range of

the computation units and prevents the units from generating large activation values similar

to Dropout [59] or activation regularizers since larger activation values will make it harder to

balance the layer partitions. Second, correlating the layer outputs reduces model complexity and

makes it harder to overfit to the training data.

We assess the error and error-caused misprediction detection capabilities of our approach

in Figure 7.5. We utilize 4 different evaluation metrics: error detection precision, error detection

1The last output layer constitutes an exception as it is fully-utilized; we employ an extra neuron specifically for
balancing the outputs and omit the additional neuron’s output in the network decisions.
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Figure 7.5. Error recall, error-caused misprediction precision, and error-caused misprediction
recall for activation and weight errors.

recall, (error-caused) misprediction precision and (error-caused) misprediction recall. Precision

and recall, commonly used measures of detector effectiveness, capture the accuracy of the

detector among the positively identified examples and the detector coverage on the actual

91



positive examples, respectively. For instance, while error precision indicates the percentile of the

cases the detector is correct among the identified error cases, error recall indicates the percentile

of the error cases being detected. A mathematical definition of precision and recall is provided

in Equation (7.5). TP, FP, and FN denote True Positive, False Positive, and False Negative

examples, respectively:

Precision =
T P

T P+FP
Recall =

T P
T P+FN

(7.5)

We implement three different error detection methods to compare with our approach. We

design two duplicated models and employ the replicated DNN graph to check the consistency

of the computations. The first method, Duplicated P.E. (prediction equality), checks if both

replicated networks predict the same class (e.g., the same traffic sign) and it reports an error if the

predictions differ. The second model, Duplicated L.E. (likelihood vector equality), checks the

probability vector produced by the last Softmax layer and indicates an error if they are not equal.

We also implement a symptom-based error detector (SED) outlined in [66] and compare it with

our approach. The symptom-based detector profiles the range of the typical activation values,

multiplies the range with a margin (e.g., 1.1 as reported), and detects the errors at runtime if an

error causes the activation values to lie outside of these thresholds. Similarly, we experimentally

observe that multiplying the differences with a margin (e.g., 1.4) before setting as error thresholds

prevents the false alarm cases.

We inject bit errors into both weights and activations separately and report the indicated

metrics for both activation and weight errors at a variety of error rates to comprehensively assess

the delivered safety of the presented error detection methods. We use 16-bit data types for error

modeling where 1 bit is the sign, and 11 and 8 bits are allocated to fraction bits in weight and

activation values, respectively. We do not plot error precision rates as all error detection methods

achieve perfect error precision (1.0) and never cause false alarms if no error is present.

The following points in Figure 7.5 merit further attention. First, our approach delivers
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Table 7.1. Memory and performance overhead comparison.

Duplicated SED Balanced Partition

Parameters 100.00% 0.00% 0.01%
Perf. (CPU) 100.00% 1.08% 1.00%
Perf. (GPU) 33.32% 2.95% 2.39%

consistently higher performance than a symptom-based detector in all metrics for all activation

error rates. We observe a more significant advantage in low-error rate regimes. Our method

almost always outperforms the symptom-based detector in weight error metrics as well. Dupli-

cated P.E. always delivers perfect error-caused misprediction precision rates since no error is

reported until at least one network experiences a misprediction; however, Duplicated P.E. has

limited recall rates for both weight and activation errors. Duplicated L.E. detects almost all error

cases due to its strict error detection criteria but consequently results in lower precision rates

for error-caused mispredictions. Although both Duplicated P.E. and Duplicated L.E. have their

advantages, the overhead of duplication restricts in practice its utilization as a safety solution

for resource-intensive applications. Finally, we observe that our method is sensitive to the input

distribution, as it also detects particular input errors.

We compare the memory footprint and performance overhead of the presented methods

under fixed hardware architectures in Table 7.1 to provide a comprehensive overview. We report

the overhead for Duplicated L.E. and Duplicated P.E. under a single heading as duplication

dominates their overall overhead. While duplicated models require doubling of the network

parameters, the symptom-based detector and our approach require almost zero memory footprint.

SED achieves 93x smaller performance overhead compared to the duplicated models while the

overhead of our approach can be 100x lower than the duplicated methods. Even on a GPU,

appreciable overhead reductions can be observed by noting that SED is 11x and our method 14x

smaller than that of duplication. The available hardware resources ameliorate the overhead of the

duplicated models on the GPU, but such opportunities are rarely available on resource-limited
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edge devices. As the experiments are performed on fixed hardware platforms, we do not report

hardware overheads, yet one could expect duplication methods to neutralize the performance

overhead at the cost of duplicated hardware resources. The small performance overhead of our

method could be further reduced with much smaller overheads than duplication.

7.8 Chapter Summary

This chapter has presented an algorithmic error detection method for deep neural net-

works through internal invariants. These invariants are embedded into deep neural network

computations by modifying the training process with an additional penalty term. The introduced

invariants help us attain detection rates commensurate with state-of-the-art methods at only a

fraction of their cost. Unlike the external counterparts presented in Chapter 6, internal invariants

can operate across both linear and non-linear computational stages. The additional penalty terms

are further observed to improve deep neural network accuracy by acting as a regularizer during

training. The proposed technique in this chapter exemplifies how the unique characteristics of

deep neural networks, such as redundancy and plasticity in the training process, allow us to

embed computational structures such as invariants for hardware safety and reliability objectives.
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Chapter 8

Cost-Effective Rectification of Hardware
Errors in DNN Accelerators

The cost of delivering safety and reliability through conventional fault-tolerance methods

is oftentimes prohibitive for the deep learning hardware, as the available resources are stretched

thin by the need to meet the computational requirements of modern deep learning algorithms.

Fortuitously, the rules that govern the error resilience problem in DNNs (deep neural networks)

deviate sharply from those in general-purpose computing. The inherent tolerance of deep neural

networks to minor perturbations brings forth the possibility of embedding unparalleled resilience

characteristics into deep learning hardware as long as the potential vulnerability caused by

large-magnitude hardware errors can be mitigated. The accurate identification of errors through

fine-grained internal invariants is complemented with approximate rectification techniques such

as filtering or dropping of variables to maintain deep neural network accuracy even at excessive

error rates. Unparalleled error resilience characteristics can thus be integrated into deep learning

hardware while incurring costs that are a tiny fraction of those billed in conventional fault-tolerant

designs.

8.1 Introduction

Innovative approaches for introspective error localization and approximate error ame-

lioration are essential to boost the resilience characteristics of deep neural networks. Instead of
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conventional and costly error detection techniques, deep neural networks can identify critical

hardware bit errors via internal invariants learned through the training process. In this chapter,

we demonstrate that error detection invariants can be crafted at finer granularities than the ones

in Chapter 7 to allow precise error localization in the deep learning hardware datapath while

necessitating no additional information redundancy.

In lieu of precise correction of the error perturbations, the impact of bit errors can be

largely contained through approximate restoration techniques, which are carried out by dropping,

clipping, or filtering variables that are contaminated with errors. The extreme effectiveness of

these methods in maintaining model accuracy is experimentally established even at high error

rates, while the implementation of the aforementioned techniques rarely incurs perceptible costs

nor necessitates any information redundancy to deliver such error rectification. By simply snap-

ping outsized error effects back to within the realm of minor numerical inaccuracies, procedures

such as dropping erroneous values squash the error impact effectively and improve the bit error

tolerance of deep learning algorithms by exploiting their inherent resilience characteristics to

limited magnitude perturbations and complementing their inherent sparsity.

The approximate and resilient nature of deep neural networks yields the possibility of

large-scale and efficient accuracy preservation by prioritizing the large magnitude bit errors and

effectively attenuating them through the outlined approach. Such a perspective foreshadows

fundamental breakthroughs for the error resilience problem in deep learning hardware and leads

to strong safety and reliability characteristics at almost negligible costs.

8.2 Overview of Relevant Neural Network Characteristics

This section presents a brief overview of deep neural network computational characteris-

tics that are of fundamental importance to the construction of novel error detection and mitigation

techniques in deep learning hardware.

The behavior of deep neural networks is determined by the parameter configuration
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learned through the training process. The flexibility of the training process in neural networks

spawns a diverse set of models of comparable accuracy levels, even including ones that satisfy

constraints of considerable strictness imposed on the computational graph. For instance, the

forward pass of the model can be modified to rein in the propagated variable magnitude if the

observed magnitude is unusually larger than the expected value. Neural networks can be trained

effectively under graph constraints as long as the necessary information can be represented in the

forward pass and the backward pass is able to be carried out efficiently. Invariants embedded into

neural networks through the imposed graph constraints can then be utilized for error identification

at inference.

A few other essential properties of deep neural networks can further introduce significant

innovations to the error correction problem in deep learning hardware. Consider for starters that

the final classification decision in a neural network is performed by finding the output position

with the highest value in the last Softmax layer; an error in the intermediate variables is deemed

therefore non-critical as long as the output position of the numerically largest value in the last

layer remains constant. Secondly, the distribution of neural network parameters is observed to be

clustered around zero, and to often span only a minute numerical range [28]. In a similar vein,

not only are the majority of the observed activations restricted to small values as well but they

exhibit high levels of sparsity furthermore.

The inherent resilience characteristics and the predictable numerical distribution of neural

network variables bolster the feasibility and effectiveness of frugal approximate error correction.

The value of an erroneous variable can be effectively estimated so as to minimize its impact on the

output and maintain accuracy without necessitating perfect value restoration, thus significantly

reducing the need for information redundancy for error correction operations.

The outlined properties of neural networks are fundamental to the context of our discus-

sion as they catalyze innovation in the neural network fault tolerance problem to deliver superior

resilience goals often with insignificant overheads.
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8.3 Fine-grained Internal Invariants for Error Localization
in Deep Neural Networks

The flexibility of the training process can be utilized to inject useful invariants in deep

neural networks, which facilitate highly cost-efficient error detection and localization even across

non-linearities. The embedding of such fine-grained invariant types is achieved by integrating

custom weight or activation propagation rules in the neural network graph.

Critical bit errors are often associated with anomalously large numerical deviations in

deep neural network variables. Large-magnitude spike errors are more likely to lead to a sizeable

numerical deviation in the neural network outputs and result in an incorrect outcome. Therefore,

a practical approach could interpret the anomalously large magnitude as a strong indicator of the

critical bit error presence in a neural network variable.

Large-magnitude spike errors can be identified through the established numerical thresh-

olds within a deep neural network. To illustrate, the expected numerical range of activations

could be measured to determine numerical thresholds at each layer, and these thresholds can

be utilized to locate erroneous variables as in [66]. Although the suggested technique requires

minimal information redundancy, its performance strictly depends on how the numerical range

of the data types is utilized at each layer. A single threshold per layer may not deliver sufficient

resolution to locate all critical errors if the range of activations varies significantly within the layer.

An alternative approach could be envisioned consisting of the utilization of unique threshold

values for each activation, yet its significant cost in the number of additional parameters in the

network dooms its practicality.

Our novel approach instead utilizes the numerical relationships among DNN activations

to pinpoint anomalous deviations. Relationships such as equivalence or strong correlation

could be contemplated, yet such relationships are hard to satisfy and further drastically reduce

the overall information content of the involved variables. On the other hand, numerical order

relationships among DNN activations could deliver a sound numerical bound while still retaining
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Figure 8.1. Anomaly detection with local magnitude comparison.

the flexibility to represent diverse information content. Such an approach resolves the problems

mentioned earlier. First, each DNN activation is constrained with a unique bound, which leaves

a smaller headroom for errors to escape detection compared to utilizing a global range for the

entire layer. Second, no additional parameters are required as each DNN activation value is

compared with another activation variable within the same layer.

The numerical order relationships facilitate a more precise localization of anomalous deep

neural network variables compared to layer-wise thresholds. Furthermore, such relationships

can be established within a neural network by imposing local variable propagation rules in the

computational graph. For instance, an example propagation rule could impose a simple numerical

order relationship across the neighboring variables where a weight or activation variable Ac is

declared anomalous if its magnitude unusually exceeds the neighboring value Ac+1 by a preset

relationship (Figure 8.1-a), otherwise deemed normal (Figure 8.1-b) and propagated in the neural

network graph with no modification.

Numerical order relationships can involve various design parametrizations and yield

diverse expressiveness and resilience trade-offs. For instance, the anomaly limit established by

the neighboring variable can be relaxed to boost the overall expressiveness yet at the cost of an

increased likelihood of critical error escape. Furthermore, the anomaly limit set for a neural
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network variable can be identified by multiple neighboring variables instead of one to provide

additional flexibility in the numerical patterns that can be expressed within a layer.

The violation of these embedded invariants due to a hardware error can localize the

erroneous variables at inference time with high precision. The fine-grained nature of such

invariants engenders precise error localization even in the presence of multiple errors. After

error localization, the novel error suppression methods to be detailed in the next section can be

employed to contain error effects and maintain neural network accuracy gracefully even while

suffering extreme bit error rates unimaginable in conventional fault-tolerant designs.

While the footprint of fine-grained invariants on the trained model is more noticeable than

the coarse-grained counterparts introduced in Chapter 7 due to the increased number of imposed

constraints, the inherent redundancy of modern deep learning models allows injection of such

invariants into the model without requiring any additional information redundancy or impacting

error-free model accuracy. Minor hardware extensions are necessary in the accelerator designs

to check the invariant conditions and perform the mitigation actions efficiently, as discussed later

in the next section. Fine-grained invariants can localize the errors with high precision, and when

paired with novel error suppression methods, deliver complete algorithmic resilience for even

extreme bit error rates of up to a few percent.

8.4 Maintaining Neural Network Accuracy with Approxi-
mate Rectification of Errors

We have illustrated that the problem of error detection could be resolved in an innovative

manner by integrating computational invariants into neural networks and employing them for

error detection in inference. The localization of the errors through the fine-grained invariants

can be followed up by the suppression of the numerical distortion prior to the execution of each

layer. Such suppression can be effected by dropping variables (setting to zero), clipping their

magnitude to lie within the usual range, or passing the variables through filtering operations.
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Figure 8.2. Bit-errors vs. drop errors on (a) activation and (b) weight variables.

Disproportionate error effects can thus be arrested at their tracks and reduced back to size before

they have had a chance to diffuse in the network.

8.4.1 Error Rectification Through Dropping or Clipping Variables

The impact of bit errors on deep neural networks is shown to be asymmetric, with errors

being mostly benign unless they lead to a significant numerical increase in variable magnitudes

[66, 68]. We investigate this phenomenon in Figure 8.2, where we compare the accuracy of the

identical DNN model (ResNet-18 [13] trained on CIFAR-10 [207]) by injecting bit-errors and

drop errors into DNN variables. While bit-errors could have a variable magnitude effect, drop

errors simply set the value of the impacted variable to zero. The reader will note that the DNN

model exhibits a much more graceful response when the erroneous variables are dropped rather

than when they suffer the effects of single-bit errors, with consequent resilience improvements

of up to 1000−10000×. Previous studies confirm the resilience boosts under the drop errors

[78, 103], while the relative sensitivity of DNNs to weight vs. activation errors shows variation

[68, 78, 103].

The phenomenon in Figure 8.2 could perhaps be better explained if the algorithmic

properties of DNNs are considered. First, previous studies [61] have established that the majority

of DNN variables tend to cluster around zero. Such a characteristic is often boosted by certain

design choices, including the common usage of Dropout [59], ReLU (rectified linear unit)

activation function, and regularization techniques. As a result, correcting a value by setting
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it to zero often introduces nothing but an inconsequential numerical discrepancy. Second,

computation units (i.e., neurons or filters) are rife with redundancy in DNN layers [3], where

the correlated units extract similar features. Thus, the drop of a particular variable rarely leads

to a complete information loss of an extracted feature. Setting a variable imputed to be faulty

to zero is consequently a safer option on average than allowing the bit-error to fester, although

the numerical perturbation of the bit-error might be occasionally smaller than the perturbation

introduced by the value drop.

The investigated phenomenon is extremely useful in practice. The erroneous values

could be set to zero, or their magnitude could be restrained (i.e., clipped) to maintain accuracy

even at high error rates without precise error correction, thus completely sidelining the use of

information redundancy and expensive operations.

As an example, we demonstrate the proposed approach by combining fine-grained

invariants with activation dropping in a simple suppression rule provided in Equation (8.1). We

consider a layer l with nl computation units (i.e., neuron or convolution filter). In Equation (8.1),

A(c,x,y) and Â(c,x,y) signify the c’th unit output after the activation function and its propagated

form through the suppression rule, respectively.2 U(i) is the step function where U(i) = 1 if

i > 0; otherwise U(i) = 0. γ denotes a threshold coefficient that can be shared per layer or

globally, with global sharing reducing the storage requirements commensurately. In simpler

terms, the proposed rule outlined in Equation (8.1) propagates an activation value if its magnitude

is smaller than the scaled version of its neighboring activation’s magnitude; otherwise, it is

dropped.3 As the individual thresholds for each activation are determined through the magnitude

of the neighboring activation, no additional value storage is necessitated.

2The x and y indices are utilized to indicate the spatial dimensions of the output feature maps in the convolution
layers and not utilized in the fully connected layers.

3Indices out of bound are rolled over to the other end of the array in Equation (8.1), i.e., the first unit (c = 0)
checks the last unit’s (c = nl−1) output.
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Â(c,x,y) = A(c,x,y)×U(γ|A(c+1,x,y)|− |A(c,x,y)|) 0≤ c < nl, ∀{x,y} (8.1)

The presented suppression rule in Equation (8.1) is rather stringent since activation is

immediately dropped after exceeding a single threshold, which is determined by the neighboring

activation’s value. This constraint could be relaxed further by introducing thresholds derived

from multiple neighboring activations’ values, and carrying out the dropping decision only

when the majority (or all) of the conditions are violated. For instance, the suppression rule in

Equation (8.2) is controlled by two gate conditions, and this rule allows a significant numerical

variation among two neighboring activations (e.g., an edge type variation), yet precludes the

propagation of single spikes when activation significantly exceeds both neighboring values.

Â(c,x,y) = A(c,x,y)×
[
1−U(|A(c,x,y)|− γ|A(c+1,x,y)|)×U(|A(c,x,y)|− γ|A(c−1,x,y)|)

]
0≤ c < nl, ∀{x,y} (8.2)

It could be seen that the suppression rules are applied in a channel-wise manner, as

indicated by the iteration variable c in Equation (8.1) and Equation (8.2). Such an application

order delivers a particular advantage against weight errors as well. An impacted weight value

in a neuron or convolutional filter propagates into the entire channel of activations.4 If the

threshold activations are chosen from the adjacent channels, even the entire channel of anomalous

activations in the output feature map could be easily filtered; thus, the weight error resilience of

the network could be boosted in both fully connected and convolutional layers.

The proposed rules inhibit error propagation of critical bit-errors with a large magnitude,

yet it is not guaranteed that non-erroneous activations in a pre-trained DNN model will escape

4A channel consists of a single neuron output in the fully connected layers.
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unscathed through Equation (8.1) or Equation (8.2). Values that stand out will be squashed

independent of whether they are erroneous or not; the consequent impact on non-erroneous

activations needs to be ameliorated by incorporating these rules into the DNN model in the design

phase. We follow the approach of integrating the suppression rules into DNN models through

training, together with the ability to accomplish the desired classification task accurately. The

unique characteristics of DNNs outlined in Section 5.2.1, including their inherent redundancy

and plasticity in the training process, facilitate the embedding of suppression rules and the

formation of alternative DNNs under such constraints without compromising their functionality.

8.4.2 Error Rectification Through Median Feature Selection

Noise mitigation is a well-investigated problem in the domain of image processing. An

image could be subject to external noise (i.e., Gaussian or salt-pepper noise) in various real-life

applications, yet even the most basic image filtering techniques perform remarkably well against

noise by reducing its effect and maximizing the SNR (signal-to-noise ratio) [208]. Digital image

filtering methods could be broadly categorized into linear and non-linear techniques. While

linear filters (e.g., arithmetic-mean filter, Gaussian filter) could be implemented as convolution

operations, they are commonly employed against noise models that have limited numerical

impact, such as Gaussian noise. Order-statistics filters [208] of a non-linear nature (e.g., median

filter) are demonstrated to exhibit a superior performance against large spike noise patterns,

such as salt noise. For instance, the median filter can effectively remove error spikes, as its

performance is impervious to a boost in error magnitude. Prior studies [66, 68, 69] indicate that

errors that result in a sizable numerical increase in the activation/weight magnitude frequently

prove critical. Such errors further exhibit a nature similar to the spike noise patterns in the image

processing domain. Therefore, a similar filtering process in neural networks could dramatically

inhibit critical bit-error propagation (as demonstrated in Figure 8.3) and translate into remarkable

improvements in bit-error resilience.

Although non-linear filtering techniques have the potential to improve bit-error resilience,
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Figure 8.3. Spike error removal from DNN activations with median filtering.

several challenges should be resolved prior to the use of these techniques in neural network

applications. First, image filtering techniques rely on the spectral difference between the image

and noise patterns. The image patterns are required to be smooth so that they can be separated

from noise, which inherently consists of high-frequency transitions. Unlike images, smoothness

is not an inherently guaranteed property in the activation tensors; therefore, the direct integration

of these filters into a previously trained model noticeably impacts accuracy by filtering out

essential information content. Second, order-statistics filters are generally computationally costly

(e.g., median filters require sorting operations), and they can not be merged with fully connected

and convolution layers, unlike linear filter kernels. As a result, a naive integration of these

functions is likely to lead to critical performance bottlenecks. In the remainder of this section,

we try to address the first challenge by guiding neural network models to accustom to median

filtering stages through adaptive training. Then we alleviate the performance bottlenecks of

median operations with minimal, yet efficient hardware implementations on DNN accelerators.

We provide a conceptual description of the median feature selection technique in this

section. It should be noted that the median filtering operations are performed prior to processing

each DNN layer, and that the technique is applicable to input tensors of both fully connected and

convolutional layers.
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Figure 8.4. Median feature selection in the fully connected layers.

Application to Fully Connected Layers

Fully connected layers receive the inputs as a single-dimensional vector for each pre-

diction. In fully connected layers, we apply the median feature selection operation as a sliding

window on the input vector, then forward the selected features into the subsequent layer, as

formulated in Equation (8.3) and visualized in Figure 8.4:

Îi = med(Ii−⌊w/2⌋, ..., Ii, ..., Ii+⌊w/2⌋) 0≤ i < nl−1 (8.3)

In Equation (8.3), I and Î are the original and selected input features of layer l. The

utilized median filter size is denoted by w and the output size of layer l−1 by nl−1. I is appended

with ⌊w/2⌋ zeros in the corners before filtering so that Î preserves the same length as I after

the operation. We opt for small filtering window sizes (w) as they provide a good trade-off

point between reliability improvement and resulting computational complexity of the median

operation. For instance, the computation of the median value for w = 3 can be effected through

three comparisons solely. Small window sizes further pose a minimal restriction on the layer

outputs, and consequently, help us to attain accuracy levels competitive with the original model
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wherein no error is present.5 The second design parameter is the stride size (s), which indicates

the amount of shift between consecutive median windows. For instance, when the stride size is

equal to the filtering window size (s = w), the receptive fields of the median filters do not overlap.

While the usage of non-overlapping windows has a positive impact on reliability by limiting the

number of median window outputs that an error can propagate to, it also aggressively reduces

the layer output size. We prefer to use single-element strides (s = 1) to preserve the output size.

The single-element strides result in overlapping receptive fields and thus minimize the additional

redundancy required for implementing the median filtering schemes by assigning more than

one objective to each involved deep neural network variable. Although an error has a chance to

propagate to multiple filter outputs due to overlapping receptive fields, a large error will still be

filtered in all windows by the median function.

A distinct subset of neuron outputs could be selected by the median filters in different

inference examples. This phenomenon ensures that each neuron can undertake a valuable role

in the overall functional behavior of the deep neural network; thus the redundancy needs for

implementing median filters are minimized.

Application to Convolution Layers

Convolutional layers receive inputs as a 3-dimensional tensor for each predicted example;

therefore, the outlined median feature selection technique needs to be reconsidered before its

application in the convolutional layers. Filtering could be performed in any dimension of the

input or even on the multi-dimensional patches of the input feature map. However, some of these

techniques may require different implementations than the case for the fully connected layers.

Convolutional layers are frequently carried out in the form of matrix multiplication in

modern processing platforms. Dense linear algebra libraries provide efficient implementations

for matrix multiplication (e.g., cuBLAS [209]), and certain data-flow architectures (i.e., systolic

array) [35, 37, 210] are specialized in matrix multiplication operations. As a result, it is possible
5This concept could be appreciated by picking relatively small (w = 1) and relatively large (w = nl−1) filter sizes,

and observing the information loss at the filter outputs.
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to attain a dramatic speed-up in the convolutional layers when they are processed as matrix

multiplication operations. However, such a transformation requires input feature maps and the

conversion of convolutional filters into suitable representations prior to the actual processing. The

input feature map is first allocated into small 3-dimensional patches (with the patches possibly

overlapping for small convolution stride sizes), flattened into single-dimensional vectors, and

row-wise concatenated to form the feature matrix. Meanwhile, convolutional filters are also

flattened into single-dimensional vectors and column-wise concatenated into a matrix. Finally,

the convolution operations are simulated as matrix multiplication, and the output feature map is

generated in the form of a matrix.

We apply median feature selection on the flattened version of the input patches before

feeding them into matrix multiplication. First, our decision simplifies the filtering technique as it

establishes an operational equivalence across fully connected and convolutional layers. As we

will describe shortly, it allows us to facilitate the same hardware architecture to perform median

filter selection operations in both fully connected and convolutional layer inputs. Second, it

provides us freedom in regards to the application direction of the feature selection operations.

Input patches and filter weights could be flattened in different orders of the dimensions by the

DNN mapper (compiler) as long as they are consistent; therefore, the feature selection dimension

could be easily changed on the software without necessitating any hardware modification.

We further observe that flattening the feature maps in a manner where the same pixels

from different channels end up in adjacent positions offers a particular advantage against convo-

lutional filter errors. A convolution layer filter is responsible for constructing a channel of the

output feature map. As a result, a critical error will likely impact all entries in the corresponding

output feature map channel, as demonstrated in Figure 8.5. Filtering in the spatial dimensions (x

or y) of a single channel may not be as effective against weight errors because of the potential

impact on all entries in the same channel. If the input feature map is flattened in a way that the

same pixels from different channels reside in adjacent positions, it is guaranteed that no more

than one element from a channel would be contained within a median window; therefore, the
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Figure 8.5. Median feature selection in the channel dimension of the convolutional layers.

impacted entries could be effectively filtered from the feature map. In the remainder of our

analysis, we consistently perform median filtering in the direction of the channel axis (z) in

convolutional layers due to the outlined advantage, as visualized in Figure 8.5. Fully connected

layers can only be filtered in the channel axis since the neuron output is a scalar, thus inherently

offering protection against the weight errors in neurons.

Moreover, performing filtering in the channel dimension (z) is not only preferable but

also frequently necessary to attain competitive error-free DNN accuracy. Median filtering in the

spatial dimensions is manageable when the spatial dimensions of each feature map channel are

sufficiently large, and the input tensor exhibits a smoothness property in nearby pixels. DNN

input (e.g., an image) and the output of the initial convolutional layers in a DNN do partake

of such properties, yet modern DNN architectures minimize the spatial dimensions of feature

maps quite aggressively throughout the network through the use of pooling techniques or strided

convolutions [61]. Thus, it is common to see relatively small feature map channels (i.e., 4×4)

in the later convolutional layer outputs. As a result, performing the median operation in such

small spatial dimensions dramatically reduces the information content of each output channel

in the later convolutional layers and prevents the DNN from attaining a competitive error-free
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accuracy. On the other hand, the number of channels usually increases in the later layers in

modern DNN architectures (e.g., ResNet [13]). A large number of channels in the later layers

engenders effective median filter operations in the channel axis with no significant limitations on

information capacity. For instance, when the median filters (w = 5) are placed in the channel

dimension of LeNet-5 [211], the model exhibits no error-free accuracy loss after training over the

case with no filters, yet the model trained with median filters in either of the spatial dimensions

experiences around 10% accuracy loss.

The proposed technique could also be utilized to filter neural network inputs without

any extra modification if the input images have sufficient resolution, thus protecting the system

against input errors that could stem from low-cost input devices (e.g., camera noise). Unlike the

intermediate feature maps, it is preferable to filter the input images in the spatial dimensions as

neighboring pixels exhibit smoothness and the number of channels in an image is limited (e.g.,

only three channels for an RGB image).

If the neural network outputs require protection, it could be attained with a small modifi-

cation in the network. As the output neurons are trained to be exclusive to attain a competitive

classification accuracy, the proposed technique (with s = 1 and no layer extension) will fail to

protect the output layer. The most straightforward solution involves the replication of output

neurons and employing larger stride sizes to assemble a complete modular redundancy (i.e., for

w = 3, each output neuron is replicated three times, and s = 3). This modification will introduce

only a negligible number of additional parameters and operations when the number of output

classes is small.

8.5 Deep Neural Network Training with Graph Constraints

Fine-grained invariants and error rectification rules can be embedded into neural network

layers by imposing custom propagation rules in both the forward and the backward pass of

training and ensuring that the deep learning model attains a competitive accuracy within the
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confines of these rules. Invariant integration incurring neither additional information redundancy

nor baseline accuracy degradation can be achieved through inherent model redundancy and

training process flexibility.

8.5.1 Training DNNs with Anomaly Detection and Suppression Rules

We perform DNN training with the anomaly detection and suppression rules integrated

after each convolutional and fully-connected layer to ensure a seamless adaptation to these

operations. However, training DNN models with these rules involves particular challenges. We

will describe some of these challenges and present various techniques to deal with the difficulty

of training in this section. It should be noted that the proposed rules alter the gradient flow in the

backward pass. A gradient on the output activation variable Â(c,x,y) needs to be back-propagated

to all variables that take a role in the generation of Â(c,x,y), namely both A(c,x,y) and A(c+1,x,y) in

the case of the rule specified in Equation (8.1).

The main difficulties in training stem from the flat regions and the discontinuities of

the step function. The issue can be clearly demonstrated through the derivation of the back-

propagation rules for Equation (8.1) (from Â(c,x,y) to A(c,x,y), and from Â(c,x,y) to A(c+1,x,y)).

Let us assume a single DNN output O, then utilize the chain rule to derive the corresponding

gradients. We make simplifications based on the fact that the derivative of the step function is

zero everywhere except for being undefined when the input is zero:

∂O
∂Ac

=
∂O
∂ Âc
× ∂ Âc

∂Ac

=
∂O
∂ Âc
× [U(γ|Ac+1|− |Ac|)+AcU ′(γ|Ac+1|− |Ac|)]

=
∂O
∂ Âc
×U(γ|Ac+1|− |Ac|)

(8.4)

The back-propagation rule in Equation (8.4) is intuitive, as the gradient in Â(c,x,y) is back-

propagated to A(c,x,y) as long as A(c,x,y) is not dropped; otherwise, the received gradient becomes

zero. The gradient can be derived for the gate activation variable similarly as in Equation (8.5):
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∂O
∂Ac+1

=
∂O
∂ Âc
× ∂ Âc

∂Ac+1

=
∂O
∂ Âc
× [Ac×U ′(γ×|Ac+1|− |Ac|)] = 0

(8.5)

Equation (8.4) and Equation (8.5) demonstrate that the gradient back-propagation imposes

certain challenges on both input (A(c,x,y)) and gate (A(c+1,x,y)) activation variables. First, A(c,x,y)

never gets updated if it always ends up being dropped. Second, A(c+1,x,y) receives no gradient

at all through the value it has controlled; therefore, it is independently optimized despite its

significant role in the generation of Â(c,x,y). The step function is desired in the forward pass

because it effectively eliminates the propagation of the anomalous activations, yet hinders the

gradient flow in the backward pass in its current form and precludes efficient training.

A similar problem has been previously tackled in previous work in BNNs (binary neural

networks) to deal with the gradient back-propagation problem of the sign function. The sign

function has zero gradients almost everywhere, except for the undefined gradient when the input

is zero, as does the step function just being discussed. Hubara et al. [212] utilize the sign function

in the forward pass, but they back-propagate the gradients from the sign function output to sign

function input by approximating it as an identity function in the backward pass (straight-through

estimator). In an analogous manner, we propose using a function that is structurally similar to

the step function, yet exhibits better differentiability characteristics in the backward pass. The

well-known sigmoid activation function fulfills the outlined criteria. While being structurally

similar to the step function, the sigmoid gradients diminish more gradually as the magnitude of

the input increases. As a result, gradients could back-propagate through the sigmoid if its input

is close to zero. We utilize the step function in the forward pass, yet derive a back-propagation

rule by replacing the step function with the sigmoid and enable a more efficient gradient flow.

We further observe that activation regularization usually has a positive effect on training.

An activation variable could be stuck at significantly large values and may fail to be updated

through gradients if it saturates the sigmoid inputs. Adding its magnitude as a penalty term in
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the cost function, e.g., L1 or L2 norm of the activations (before suppression), reduces the large

activation magnitudes back to the appropriate range, thus enabling their continuous updating

through output gradients.

The proposed techniques improve the gradient flow and make it possible to train DNN

models despite the presence of wide-spread discontinuities and plateaus that hinder the effective

flow of the gradients. However, more iterations might still be required to train deeper DNNs in

more challenging datasets when these rules are integrated. We further significantly speed up the

process by training more complex models in a two-stage process. In the first stage, we enforce

certain restrictions on DNN weights to allow seamless integration with the described suppression

rules, although the first stage of training is carried without explicitly embedding these rules. The

restricted model is faster to train, yet the imposed restrictions also limit its degrees of freedom.

As a result, the baseline accuracy of the constrained model suffers in comparison to the one

that can be attained through the unconstrained model. In the second stage, we first integrate the

feature suppression rules into the model, relax the enforced weight constraints, and fine-tune the

network until it fully recovers the baseline model accuracy.

Let us consider the two-gate rule provided in Equation (8.2). Each activation needs to

satisfy at least one of the criteria imposed by its neighbor activations to propagate its value into

the next layer. We allocate the neighboring neurons/filters into pairs at each layer and tie the

weight connections of each pair so that both neurons/filters become equivalent. As a result,

each neuron/filter pair produces the same output, and they further receive matching gradients

in the backward pass. Although the imposed constraint effectively reduces the information

content at each layer by half, it also ensures that the trained model will work seamlessly with

the suppression rule in Equation (8.2) at the end of the first stage. As each neuron/filter output

will be repeated by at least one of its neighbors, it is guaranteed that no information content will

be suppressed in Equation (8.2). In the second stage, we first integrate the feature suppression

rules after each layer, lift the equivalence restriction on the weights, and perform additional

fine-tuning to augment the information content and recover the remaining accuracy while the
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Figure 8.6. Training DNNs in a two-stage process.

initially equivalent neurons/filters are being differentiated. We observe that most of the accuracy

content of the model could be attained in the first stage, and the second stage could quickly

bridge the accuracy gap with a small number of fine-tuning iterations while assuring seamless

compatibility with the feature suppression rules.

The memory and computational requirements of the first stage could be further reduced

by 50% by merely training a model with half the desired size at each layer, then duplicating each

neuron/filter and scaling the outgoing connections by half. This approach guarantees that the

same outcome is attained at a smaller computational cost at the end of the first training stage.

The overall design flow is visually demonstrated in Figure 8.6.

Finally, the output layer needs to be tackled differently than the other layers since the

output layer is trained to produce results resembling a one-hot encoding format. We, therefore,

do not integrate these rules into the last layer in training. Instead, output units are duplicated

after training, and the suppression rules are applied at inference, which guarantees that specific

outputs will form a majority within the filtering window and pass through these rules unaffected,

and thus could be used to recover the classification result. This modification guarantees that the

output layer will be protected against weight and activation errors while requiring a minimal

increase in the parameters and operations.
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8.5.2 Training DNNs with Median Feature Selection Rules

The median operation will suppress single spiking neuron outputs; therefore, the layer

outputs should be locally smooth to work with median feature selection stages. The described

smoothness property could be introduced in the target model by incorporating the median

feature selection operation in the training phase. DNN libraries usually offer off-the-shelf

implementations for the median [213], or other fundamental operators (i.e., min and max) that

can be used to construct the median functionality [203]. The utilization of library functions

ensures seamless training of the target model with the existing library routines.

We implement the median feature selection operations on the abstraction of the utilized

deep learning framework [213], integrate it into target DNN architectures, then perform standard

DNN training by simulating the median filter behavior in both the forward and the backward

phases of the training. As a result of the introduced operators, only the median value in a window

is forwarded to the subsequent layer in the forward pass, and a gradient on the median operator

output is back-propagated only to the contributing input value.

The described median back-propagation update rule boosts correlations between layer

outputs because of a striking “chase phenomenon” between the neuron outputs. This point can

best be illustrated with a simple example on a median-3 window. When a median-3 output

needs to be increased to reduce the loss function at the neural network outputs, the median

input value of the filter (e.g., I1) is updated through back-propagated gradients until it exceeds

the maximum input value (i.e., I2). When I2 becomes the new median, it receives the output

gradients and gets updated until it regains its position as the maximum value. When I1 finally falls

behind I2, it continues to be updated, and so on. The reader will recognize that this process will

result in a mutually reinforcing increase between neuron outputs until the gradient is stabilized

at the filter output. As a result, neurons will learn to “fire together” and produce correlated

outputs that could propagate through the median operator. The correlation behavior could be

observed on the activation patterns of a fully connected layer in Figure 8.7 where distinct neuron
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Figure 8.7. The impact of median feature selection training.

outputs (a column represents the outputs of a neuron) seem independent without such training,

yet the median feature selection training leads to activated output bands that involve multiple

neighboring neurons to propagate the features through the median functions as can be seen on

the right-hand side of Figure 8.7.

Median models can be trained from scratch. In addition, we have observed that two

initialization techniques help to reduce the training times of the median models since median

filters might slow down the training process due to the additional operations. First, the median

model can be initialized with the weights of the baseline model (trained without filters) or a

median model with a smaller window size. As a result, the model can recover the required

accuracy with fewer iterations since the model behavior is embedded through initialization,

and only a fine-tuning step is required to adapt to the effect of median filters. Alternatively, a

smaller template model with fewer neurons/filters at each hidden layer could be trained without

filters, and its neurons/filters explicitly replicated to work with the median filters by forming a

majority within each window. The constructed model attains the accuracy of the small template

model, which is generally less than the baseline accuracy, yet a quick fine-tuning stage after filter

integration enables us to bridge this accuracy gap.

We observe that the error-free accuracy of the median models is similar to and even

sometimes may slightly exceed that of the baseline models, particularly if the baseline model

contains sufficient redundancy. It is conceivable that the higher accuracy values occur due to
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statistical variations in these scenarios, yet a more detailed experimental analysis is needed for

any conclusions of certainty. Overall, median feature selection reduces the information capacity

of the layers by encouraging neuron correlations; however, this constriction is rarely of practical

import in modern neural networks, thus lending credence to arguments in Section 5.2.1 regarding

the redundancy characteristics of deep neural networks. As a concrete example, an intriguing

observation in Chapter 7 indicates that modern DNNs extract a small number, rarely exceeding a

fraction of the layer size, of unique (orthogonal) features at each layer. Median feature selection

utilizes the redundancy of the layer output space to construct a redundancy scheme at no cost

while keeping all the essential information content.

After the desired accuracy is attained through training, the model is deployed on the

target accelerator where the median filtering operations are performed more efficiently with

dedicated hardware units.

8.6 Hardware Design for Efficient Error Detection and
Rectification

Introduced fine-grained invariants can be checked and hardware errors can be rectified

efficiently at inference time through dedicated hardware extensions in deep neural network

accelerators. These extensions can be implemented at minimal hardware cost with basic hardware

components such as comparators and multiplexers.

8.6.1 Hardware Design for Efficient Anomaly Detection and Suppression

We carry out anomaly detection and suppression operations entirely on hardware at

inference time, which allows us to implement these operations with minimal hardware resources

and with no consequent performance issues. First, we will look into the design of a hardware

unit that can efficiently carry out the anomaly detection and feature suppression operations with

minimal resources. We will then describe how these operation stages are positioned within the

data flow of a typical DNN accelerator to deliver extensive coverage against a variety of bit-error
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Figure 8.8. Hardware implementation of anomaly detection and suppression operations.

cases that occur in both the accelerator buffers (e.g., weight, activation) and the computational

fabric (e.g., systolic array).

The required hardware operations involve magnitude calculation, multiplication with

a scaling factor (γ), comparison, and a selection circuitry (multiplexers and AND gates) for

dropping or clipping the desired features. Within the basic components in the list, multiplication

operations particularly stand out in terms of expense; therefore, we reduce the need for explicit

multiplication operations by limiting the scaling factor (γ) into powers of two, obtainable

merely through arithmetic shifting. The vectorized hardware implementation is demonstrated

in Figure 8.8. The hardware unit first calculates the enforced thresholds on the fly by finding

the magnitude of each element, then scaling with γ through arithmetic shifting where the shift

amount is controlled by an external signal. The simplicity of the required operations makes the

threshold calculations extremely efficient. The calculated threshold vectors are aligned with

the activation magnitude vectors through element-wise shifting and numerically compared to

determine if the threshold is violated for each activation value. An external signal (Gate Count)

determines whether the suppression signal for each activation is generated by considering the

violation signals for either one or both of the thresholds calculated through the neighboring

activation values. If the activation values need to be dropped, they can be replaced directly

118



Activation 
Buffer

Weight Buffer

Accumulators

PE

Activation Function
Pooling/Normalization

Co
m

pu
ta

tio
na

l F
ab

ric

Anomaly 
Detection 

+ 
Feature 

Suppression

Memory/Host 
Interface

CPU

DRAM

PE: Processing Element

Figure 8.9. Anomaly detection and suppression unit integration into a DNN accelerator.

with zero. Clipping necessitates a slightly more complex maneuver in that it relies on the

identification of the largest threshold value violated while preserving the sign of input activations

in the suppressed values. Finally, the generated suppress signals determine if the original or

suppressed values are reflected to the module output.

The proposed hardware module could be integrated into the outputs of the activation

buffer, as in Figure 8.9. The demonstrated architecture6 loads weights into the computational

fabric (i.e., systolic array) through its weight buffer. The processing of each layer is performed by

fetching the layer inputs from the activation buffer, performing multiply-accumulate operations,

accumulating the results if necessary, and finally generating the layer output by passing the

results through the activation pipeline. We observe that positioning the proposed stage just before

processing each layer delivers advantages against errors occurring in various locations of the

accelerator. First, any bit-error in the activation buffer will be checked and suppressed before

getting involved in further computations. Second, any bit-error in the computational fabric or the

activation pipeline will be stored in the activation buffer and then checked prior to processing the

next layer. The output layer will be protected through the introduced small redundancy when the

6Architecture diagram is inspired from [35].

119



outputs are checked by the proposed hardware unit before transferring to the host device memory.

Third, the proposed channel-wise checking scheme is useful, as an error in the weight buffer

will impact a single neuron output or feature map channel, and it can be effectively checked and

suppressed by the additional hardware before processing each layer.

8.6.2 Hardware Design for Efficient Median Feature Selection

The median feature selection could be carried out efficiently on the hardware at inference

time with minimal effect on system performance. In this section, we first iteratively build

efficient median selection hardware, describe how these components could be integrated into an

embedded DNN accelerator, then finally suggest various optimizations to minimize the design

costs. Although we utilize a systolic-array architecture for demonstration, the proposed hardware

plug-in can be combined with any DNN accelerator in a modular fashion without involving

intrusive design modifications.

We refer to the earlier work in sorting networks [214] to construct efficient median filter

implementations that are demonstrated in detail in Figure 8.10. Sorting networks are made of

one simple building block whose functionality is merely sorting two numbers. A Sort-2 unit

(Figure 8.10-a) can be constructed with a comparator and two multiplexer blocks.

As a next step, we construct a Median-3 unit using previously designed Sort-2 blocks.

We first design a module that can fully sort 3-inputs by using three Sort-2 blocks, then prune

two multiplexer units whose outputs end up unused (dotted connections) to obtain an optimized

design for Median-3 calculation, as shown in Figure 8.10-b. A Median-5 unit (Figure 8.10-c)

could be constructed with four Sort-2 blocks and a previously designed Median-3 unit, then

pruning the multiplexers whose outputs are unused. The methodology for median calculation

relies on the fact that neither the largest nor the smallest number in a 4-element subset of the

5 numbers can be the median of these five numbers. Median-5 units first eliminate these two

extremal numbers with four comparisons, then search for the median among the remaining three

elements.
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Figure 8.10. Sort-2, Median-3, and Median-5 hardware units.

The designed units could be integrated into a systolic array with ease. A systolic array is

a two-dimensional grid of MAC (multiply-accumulate) units with each MAC unit receiving the

partial sum from the previous MAC unit in the same column, multiplying the provided inputs,

accumulating the result with the received sum, then forwarding the new partial sum to the next

MAC unit. The entire architecture is implemented as a pipeline so that an N×N grid performs

N2 MAC operations at each cycle. The inputs of the systolic array are provided as a vector,

and an input synchronization stage delays the input activations properly so that the partial sums

are updated with the correct multiplication results. We can integrate an array of median units

into the input connections (before the synchronization stage) to perform the designated median

operations among the neighboring input values, as demonstrated in Figure 8.11. Each median

window is processed in parallel by a distinct unit so that the filtering operation on the entire

vector is performed within a single clock cycle, and integrated as a pipeline stage to preclude any

performance bottlenecks. If the input is fetched partially due to bandwidth constraints in buffers,

median operations could be performed on each portion without needing the entire vector.

Finally, the area and power overheads could be further reduced by sharing the result

of overlapping computations. For instance, when two Median-3 units operate on consecutive
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Figure 8.11. Median unit integration into systolic array architecture.

three-element groups of {I0, I1, I2, I3}, {I1, I2} needs to be sorted in both median(I0, I1, I2) and

median(I1, I2, I3) operations. As a result, the corresponding Sort-2 unit can be overlapped.

However, only one Sort-2 unit can operate directly on the module inputs (i.e., a-b or b-c) in

Figure 8.10-b, limiting the optimization to the boundaries of a Median-3 pair and thus providing

a limited reduction from 6 to 5 Sort-2 units.

While the outlined techniques deliver significant implementation benefits, a Median-3

unit design could be attained that seamlessly integrates to the systolic pipeline nature of DNN

computations by providing a regularized sharing across overlapping windows. Each Median-3

window after the initial one could be implemented with only two comparisons by sharing the

overlapping comparison. The regularized sharing can be attained by decoupling the sequential

dependency and simplifying the Sort-2 units into the constituent comparators and multiplexers

while inducing a regular iterative execution of the median-3 operation. The consequent design

shown in Figure 8.12 reduces the number of comparators from 3 to 2 at each module by enabling

comparator sharing between modules iteratively, reduces the number of multiplexers from

4 (remaining multiplexers after pruning) to 2, minimizes the module latency by eliminating

the sequential dependency between the comparisons and lends itself to a regular, pipelined

implementation. These pipelined, hardware sharing architectures can be generalized through

induction to Median-5 units that can be implemented with only 4 comparators (after the first

122



Figure 8.12. Optimized Median-3 unit.

Median-5 operation) instead of 7; a minimal multiplexer structure can route the median value to

output by utilizing the ordering information.

8.7 Experimental Method

8.7.1 Anomaly Detection and Suppression Experiments

Anomaly Detection and Suppression Simulation in Software

We demonstrate the reliability improvements on three DNN models that are trained on

three different datasets: LeNet-5 on the MNIST dataset [211], SqueezeNet [215] on the GTSRB

dataset [50], and finally ResNet-18 [13] on the CIFAR-10 [207] dataset. The accuracies of the

baseline models are 99.31%, 94.57%, and 88.63%, respectively. All models and experiments

are implemented in PyTorch [213].

We design the proposed feature suppression rules as a custom DNN layer. The layer

supports the definition of the number of gate activation variables. Namely, we utilize a single

gate for each activation (Equation (8.1)) in LeNet-5 and two gates (Equation (8.2)) in SqueezeNet

and ResNet-18 models. We explore the options of both feature dropping and feature clipping

to suppress anomalous activations with various threshold coefficients (γ). An activation is

immediately dropped upon a violation in the first option. The latter option allows the magnitude

123



of the activation to be clipped to the violated threshold. When two gate variables are utilized,

the clipped magnitude is adjusted to the largest threshold violated. The models trained with the

suppression rules exhibit comparable accuracy values compared to baseline models, where the

test accuracy values are within 0.2−0.5%, 0.3−0.4%, and 1.3−2.4% for LeNet-5, ResNet-18,

and the highly irredundant SqueezeNet model, respectively. The LeNet-5 model can be trained

directly with the integrated suppression rules in 100 training epochs (identical to the baseline

model). The SqueezeNet and ResNet-18 models are trained in a two-stage process. We first

train half-sized models with the same number of iterations required for the baseline models (100

epochs for SqueezeNet, 200 epochs for ResNet-18). We perform layer modifications, integrate

the suppression rules, and perform further fine-tuning (100 epochs for SqueezeNet, 50 epochs for

ResNet-18) in the second stage. The highest reported accuracy values are attained by utilizing the

step function in the forward pass of the suppression layer and performing the backward pass with

the sigmoid approximation. Utilizing the step function or the straight-through estimator in the

backward pass often leads to instability in the training process. The straight-through estimator is

oblivious to the forward pass behavior of the suppression layer, while the step function does not

provide an efficient gradient flow.

Error Injection Method and Bit-Error Model

Error injection is commonly utilized in both academia and industry to verify the safety

claims of safety-critical designs. Error injection experiments need to be repeated exhaustively

to reach statistically significant conclusions. However, full hardware simulation of a system is

computationally expensive, and runtime constraints often limit the applicability of exhaustive

error injection experiments when practical designs are considered. We tackle this problem by

first generating hardware-specific bit-error models, expressing them on the abstraction of the

DNN graph, and performing exhaustive simulations through our error injection framework in

PyTorch, at the speed of DNN inference. The data-flow nature of DNNs reduces the potential

mismatch between hardware errors and bit-error model, thus boosting confidence in the analysis.
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Our simulation environment can inject errors into DNN weights and activations. The

data types are assumed to be quantized to the 2’s complement fixed-point format. We consider

both 8-bit (LeNet-5) and 16-bit (SqueezeNet, ResNet-18) data types for various DNN models.

The data range for each network is profiled to determine the required integer and fraction bits.

After the desired error rate is provided, the framework randomly determines the erroneous

variables, impacted bit positions, and performs inference to measure the accuracy with the

applied perturbations. The injection is performed before the prediction for the weight errors, and

during the prediction for the activation errors. The experiments are repeated at the desired error

rate until we obtain statistically consistent results.

Hardware Integration and Overhead Measurements

We design the hardware modules in Verilog HDL, integrate them into the DNNWeaver

v2.0 [37] open-source DNN accelerator design, and perform hardware synthesis with the Synop-

sys Design Compiler to measure the area, power, and timing overheads. On-chip buffers (i.e.,

input, weight, bias) are not included in the synthesized design. We utilize the Silvaco Open-Cell

(15nm) and the Synopsys DesignWare libraries in the synthesis process. The target frequency is

chosen as 1 GHz for both 8-bit and 16-bit designs.

8.7.2 Median Feature Selection Experiments

Median Feature Selection Simulation in Software

We first implement the proposed median feature selection method as a custom DNN layer

in PyTorch [213] for use in the training and error injection experiments. Median feature selection

layers are parameterized by the median window size (w), the stride size (s), and the systolic array

input size (N) to simulate the behavior of the outlined hardware filters. The systolic array size is

important for modeling the hardware behavior precisely because if the layer input size exceeds

the systolic array input size, the systolic array processes the input in smaller chunks; thus, each

chunk is individually zero-padded and filtered by the proposed hardware architecture.
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A custom convolution layer implementation enables us to precisely control the flattening

order of the input feature maps and the filter weights. We first flatten the input feature map

patches and convolution filters, then apply median feature selection, and finally process the

convolution layer by simulating it in the form of matrix multiplication. While we could perform

flattening in the various enumerations of the tensor dimensions, placing the same pixel locations

from neighboring channels into adjacent locations is essential for median feature selection, as

previously discussed in Section 8.4.2.

In addition, the off-the-shelf median function implementation in PyTorch creates a

significant performance bottleneck in the training and error injection experiments as it is not

optimized for fixed window sizes. We implement our fixed median-3 and median-5 routines

using minimum and maximum functions in PyTorch and speed up these operations more than

10× compared to the standard median implementation.

Error Injection Method and Bit-Error Model

The data-flow nature of the DNN computations and the considered error types allow us

to model the DNN error effects accurately through graph-level error injection. Conventionally, a

significant concern in high-level error injection techniques has been the accuracy of the analysis

[216, 217]. First, we are concerned with the transient errors in DNN variables (e.g., weights,

activations). Modern DNN frameworks provide complete access to weight and intermediate

activation tensors; thus, the potential error locations could be accurately sensitized. Second,

the data-flow nature of the computations guarantees that the manifestation and propagation of

variable errors could be modeled precisely with a mathematical formulation on the DNN graph.

For instance, any error in the data buffers will manifest itself as a numerical perturbation in the

variables. Similarly, a timing error in a MAC unit could be modeled as a numerical perturbation

in the accumulated sums. These errors could be propagated to DNN output by performing

inference with the introduced perturbations.

We focus on data-path errors solely in our analysis for two main reasons. First, voltage
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scaling techniques usually apply to the data path portion of the DNN accelerator (SRAM (static

random-access memory) weight/activation buffers, MAC units in the systolic array); therefore,

the bit errors that are caused by such techniques manifest and stay confined to the data path.

Second, while the SEUs (single-event upsets) may impact both the data path and the control

signals in a safety-critical design, the data-flow oriented nature of the DNN accelerators results

in only a minimal amount of control circuitry. For instance, Google’s TPU [35] allocates only

2% of the die area for control and essentially all the rest for the data path. As a result, protection

of the control circuitry through traditional techniques such as duplication could be palatable even

if the associated techniques may prove rather costly.

We utilize three different neural network models that are trained on three distinct datasets

for the error injection experiments: LeNet-5 on the MNIST dataset [211], SqueezeNet [215] on

the GTSRB dataset [50], and ResNet-18 [13] on the CIFAR-10 dataset [207]. We investigate

the impact of bit-errors on both network weights and activations. The weight errors are injected

statically before the neural network inference, while activation errors are injected dynamically

during the inference by the error injection layers in the target DNN models.

The bit-errors that are injected into DNN weights and activations accurately cover a wide

range of error effects that can occur in the memory, storage buffers, and other sequential elements

in the systolic array. First, the described bit-error scenario could occur due to single-event

upsets (i.e., caused by high-energy particles) in the buffer SRAM cells or systolic array flip-flops.

Second, a marginally low selection of the supply voltage could noticeably increase the bit-failure

rate in the buffer SRAM cells despite its advantage in power consumption reduction [171].

Finally, voltage under-scaling [78] or over-clocking [173] could deliver energy/performance

benefits in the systolic array, yet result in an increased rate of timing violations. Our simulation

environment could be utilized to investigate all of these scenarios with the main difference of the

error rates in the latter two scenarios being significantly higher than the first as a side effect of

aggressive hardware optimizations in the embedded DNN accelerators.

DNN accelerators utilize low-precision fixed-point data types for inference; therefore,
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we model bit-errors on the 2’s complement fixed-point data type while estimating the numerical

impact. The desired bit-width of the data types is provided as an external parameter to the

simulation, and the allocation of integer/fraction bits is performed according to the dynamic

range of the weights/activations. Specifically, we consider 16-bit data types for both weights and

activations (with 11 and 6 fraction bits, respectively) in the conducted error injection experiments.

Hardware Integration and Overhead Measurements

We design the median feature selection hardware in Verilog HDL and integrate it into

DnnWeaver v2.0 [37], which is a representative open-source design for an embedded DNN

accelerator. Hardware synthesis is performed with the Synopsys Design Compiler to characterize

the area and power overheads, and identify potential timing bottlenecks. We exclude the large

buffers (input, output, weight, bias) from the design before synthesis and utilize the Silvaco

Open-Cell (15nm) and the Synopsys DesignWare libraries in the synthesis process. The target

frequency is chosen as 200MHz. We report the area and power share of the median feature

selection hardware in 8-bit and 16-bit accelerator designs for overhead characterization.

8.8 Experimental Results

This section first demonstrates the error resilience improvements and compare the results

to other error tolerance methods. Second, we characterize the area and power footprint of the

hardware module that carries out the required operations when integrated into a DNN accelerator.

8.8.1 Error Resilience Improvements

Anomaly Detection and Suppression Experiments

Figure 8.13 demonstrates the accuracy of three distinct DNN models separately under

the weight and activation errors. We consider various versions of each model that are equipped

with different error tolerance techniques. Baseline represents the bit-error resilience of a model

with no additional safety features. TMR is the experimentally measured bit-error resilience of
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Figure 8.13. Resilience improvements delivered by anomaly detection and suppression.

a coarse-grained TMR (triple modular redundancy) scheme where three instances of the same

network are simultaneously executed, and the decision is made through majority voting. Oracle

ED + Drop signifies the result for the case where the erroneous weight and activations could

be precisely located through an oracle error detection technique and dropped by setting to zero.

The remaining methods utilize our AFD (anomalous feature detection) technique with the given

threshold coefficient (γ) and tackle the errors either by dropping or clipping to the enforced

threshold. In Figure 8.13, the relative criticalities of the weight and activation errors vary among

the models and depend on the numerical range allocated to each type in the quantization schemes.

The graphs are expected to show a higher accuracy drop if the incidence of errors were boosted

through the simultaneous presence of both weight and activation errors.
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The LeNet-5 model can tolerate up to 1000× more errors with the same accuracy loss if

all erroneous activations could be precisely located and dropped. Although precise detection of

errors requires additional information redundancy, the AFD technique provides error detection

for free, yet the comparable precision of our technique enables the model to tolerate up to 300×

more errors when it is coupled with suppression through feature dropping. The precision of

AFD is similar to oracle error detection in particular networks, especially at lower error rates.

AFD delivers resilience at up to 500× higher activation error rates with the same accuracy loss

compared to the baseline SqueezeNet model when combined with feature dropping. The error

rate where appreciable accuracy loss (e.g., ∼1% loss) commences could be delayed to almost

10000× larger error rates in ResNet-18 if the erroneous activations are to be precisely located

and dropped. The majority of errors could still be localized by AFD at no additional cost and

dropped; thus, the same accuracy drop point could be delayed to ∼ 2000× higher error rates

compared to the base model. The superiority of feature dropping over feature clipping in terms

of fault resilience for the same threshold coefficient, γ , values is moderated when feature clipping

utilizes a lower threshold coefficient; feature clipping with (γ = 1) delivers comparable results to

feature dropping (with γ = 2), while retaining comparable baseline accuracy.

In addition, the impact of weight errors could be significantly inhibited without requiring

precise error correction if the erroneous weights could be located with high accuracy, and

set to zero before the execution. This approach is observed to provide resilience at up to ∼

1000−3000×more errors with the same accuracy loss when compared to baseline in Figure 8.13.

Our technique does not directly operate on the weights but instead monitors and suppresses

the activations, yet delivers particular benefits against weight errors, mainly when applied in a

channel-wise manner as described in the previous sections. The anomalous feature detection

combined with suppression allows the network to operate with the same accuracy loss at 20×

larger error rates in the weights than the baseline model. The benefits could be improved further

by operating directly on the weights if the anomalous weights are monitored and suppressed in

the buffers or before loading into the computational fabric.
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Figure 8.14. Resilience improvements delivered by median feature selection.

Median Feature Selection Experiments

Figure 8.14 demonstrates the accuracy of various neural network models that are subject

to weight and activation errors under various error rate scenarios. We include a wide span of error

rates to observe the entire picture of the accuracy drop for the investigated models. Even though

certain error types such as SEUs caused by high-energy particles might occur rarely, aggressive

optimizations such as voltage scaling could result in relatively high error rates (e.g., 10−2)

[78, 103] when the design is aggressively scaled to reduce power consumption. Baseline results

indicate the neural network response against errors with no safety mechanism thus devoting all

allocated resources to accuracy boosting. For comparison, we have designed a coarse-grained

TMR system where three instances of the network are executed concurrently (with exclusive

resources and parameters), and the final decision is made through majority voting. As we
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perform error injection on the TMR system and report the accuracy results (Coarse-grained TMR

- Measured), we further mathematically estimate the TMR system accuracy (Coarse-grained

TMR - Expected) from Baseline accuracy values through Equation (8.6). In Equation (8.6),

aexp and abase refer to TMR-Expected and Baseline accuracies. ae f and nc signify the error-free

accuracy of the baseline model and the number of output classes, respectively. The normalization

with ae f allows us to convert the accuracy values into probabilities that can be used in the

reliability calculations. The three summed terms in Equation (8.6) refer to the conditions of all

three networks being correct, only one network mispredicting due to bit-error, and finally, only

the first network being correct with the other networks predicting different wrong decisions. The

last term is due to the fact that we accept the decision of the first network when all networks

disagree due to errors. The (nc−2)/(nc−1) term allows us to exclude the case where the second

and third networks end up with the same wrong prediction.

aexp

ae f
= (

abase

ae f
)3 +3(

abase

ae f
)2(1− abase

ae f
)+(

abase

ae f
)(1− abase

ae f
)2(

nc−2
nc−1

) (8.6)

In addition, we construct an additional fine-grained modular redundancy technique for

comparison (Fine-grained TMR) where each neuron and convolution filter is triplicated at every

layer, and one majority-voted output from each triplet is propagated to the next layer. The

voting is performed for each pixel location individually in the convolutional layers. Since each

layer incorporates three copies of the same neuron/filter, the memory requirements and the

computational cost of the DNN model are triplicated in the fine-grained TMR technique. An

alternative approach might start with a down-scaled network (i.e., 1/3 of baseline model at

each layer) to mitigate the overheads when a fine-grained TMR is constructed; yet down-scaled

models do not usually display a competitive accuracy when compared to the baseline designs.

For example, the test accuracy of the baseline SqueezeNet model drops from 94.52% to 82.91%

when each layer size is scaled by 1/3, making such an approach an unviable proposition. Finally,

we report the results for our proposed technique for two distinct median filter sizes (Median-3 and
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Median-5) to demonstrate the effectiveness of median feature selection against both weight and

activation errors. Both Median-3 and Median-5 feature selection utilize single step strides and

thus require no additional redundancy in the DNN layers while providing extensive resilience.

Figure 8.14 demonstrates that resilience tends to vary among DNN models considerably.

For instance, while LeNet-5 can tolerate activation error rates of up to 10−4 with negligible

accuracy drop (0.2%), the SqueezeNet model experiences a noticeable reduction (16.3%), and

ResNet-18 is severely impacted with almost 55.9% accuracy drop at this error rate.

Moreover, coarse-grained modular redundancy is helpful only at low error rates, and even

then, only as long as its tremendous overheads are deemed palatable since the coarse-grained

TMR system accuracy drops hand-in-hand with the baseline accuracy at high error rates.

It could be seen that median feature selection is extremely effective against activation

errors. Accuracy drop starts early when the error rate hovers around 10−4 for the baseline

LeNet-5 model, yet the Median-3 and Median-5 models experience the same levels of accuracy

loss quite late and not before the error rate exceeding 10−2 (resilient to 100× more errors). The

improvement is more dramatic for the ResNet-18 model, where the baseline model starts to lose

accuracy at error rates as low as 10−6, whereas the Median-3 and Median-5 models delay the

onset of accuracy loss to the much higher error rates of 10−3 and 10−2, offering resilience against

1000× and 10000× larger number of errors, respectively. The accuracy difference between the

median and baseline ResNet-18 is maximized at certain error rates (e.g., 10−3) when median

models suffer no accuracy loss, but baseline model decisions are reduced largely to randomness.

Median feature selection further provides a significant resilience improvement against

neuron/filter weight errors. The proposed channel-wise median feature selection technique

allows us to filter out the output of significantly impacted neurons/filters due to weight errors,

thus improving reliability. While the SqueezeNet Baseline starts to drop accuracy at weight error

rates starting at 10−5, median models exhibit the same accuracy drop when almost 10× more

errors are present (an error rate of 10−4). For ResNet-18, the Median-5 model exhibits the same

small accuracy drop (∼ 1%) as the Baseline but not until weight error rates are 20× larger.
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The Median-3 and Median-5 models usually deliver similar performance while the results

for Median-5 are frequently better at the higher error rates. We also inject activation and weight

errors simultaneously at the same error rate. Although the combined effect leads to a more rapid

accuracy drop, the results may look similar to either weight or activation error graphs depending

on the relative criticality of the error types.

Fine-grained TMR offers additional advantages over the Median-3 and Median-5 mod-

els since the variable replication guarantees that a single error within a TMR window will be

corrected precisely. However, it introduces the sizable cost of triplication in the number of

parameters and multiply-accumulate operations. For the activation errors, the reliability im-

provements offered by the median models and the fine-grained TMR technique are observed

to be comparable, with the fine-grained TMR bested even sometimes due to the large window

sizes of Median-5. The advantages of fine-grained TMR are more pronounced for weight errors;

however, the utility of these improvements is arguably still marginal, mainly when the additional

overheads are considered. On the other hand, Median-3 and Median-5 deliver bit-error resilience

similar to fine-grained TMR across the given models while incurring no additional redundancy.

8.8.2 Hardware Overhead Characterization

Anomaly Detection and Suppression Experiments

Table 8.1 demonstrates the area and power footprints of the entire accelerator together

with the share of the proposed hardware for 8-bit and 16-bit designs. The area footprint of the

proposed hardware module is around 0.2−0.3% of the entire design, a minuscule fraction of

the chip area budget. Likewise, the power overheads are bounded to within 0.1−0.15% of the

accelerator’s power consumption, paling in comparison to process variation driven chip power

deviations. The operations could be implemented as a pipeline stage, which seamlessly fits

into the design without incurring any throughput loss, but only an extra cycle in latency. The

synthesis experiments validate that the combinational delay of the proposed module fits into a

single clock cycle at 1 GHz frequency and does not create a timing bottleneck.
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Table 8.1. Hardware area and power footprint for anomaly detection and suppression.

8-bit Design
Accelerator AFD + Suppression %

Area (mmmmmm222) 1.744 0.004 0.23
Power (mmmWWW ) 955.5 0.9 0.09

16-bit Design
Accelerator AFD + Suppression %

Area (mmmmmm222) 2.907 0.009 0.31
Power (mmmWWW ) 1160.0 1.7 0.15

Median Feature Selection Experiments

We report the synthesis results for both 8-bit and 16-bit accelerator designs with an

array of integrated Median-3 and Median-5 unit options. Figure 8.15 demonstrates the area and

power consumption shares of the median unit array, systolic array, and the rest of the accelerator

(i.e., control circuitry, SIMD (single instruction, multiple data) core). The area and power

consumption costs of the Median-3 array constitute merely a 0.19−0.23% and 0.07−0.13% of

the entire design, respectively. The cost of the Median-5 array is similarly minuscule, ranging

between 0.39−0.48% for area and 0.13−0.19% for power consumption. The reader will note

that our estimation is somewhat pessimistic as the synthesis results do not consider on-chip

buffers, which consume a significant portion of the chip area and power budget. As a result, the

presented overheads are bound to wane further when the buffers are included in the analysis.

A coarse-grained TMR system requires the systolic array to be replicated with up to

64−108% area and 30−42% power overheads in the presented designs. If the bit-errors are a

concern in the buffers, additional safety measures are necessary, such as parameter replication or

ECC (error correction codes) presented in [72]. While the replication of the buffers is costly, a

more cost-effective solution, i.e., ECC, approximately requires 50% and 30% expansion in the

buffers for 8-bit and 16-bit data types, respectively. When the overheads of the standard safety

measures are taken into account, the insignificant cost of median feature selection turns it almost
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Figure 8.15. Area and power consumption of median feature selection.

into a free lunch for delivering safety in resource-constrained embedded DNN accelerators.

Finally, the performance overhead of the median feature selection is minimal. We opted

to allocate a single cycle and implemented it as a fully integrated pipeline stage with the optimal

hardware units presented. This approach increases the operation latency by one cycle, yet the

throughput of the system is not impacted. The batch latency of a systolic array is proportional

to 2N +M, where N is the systolic array dimension, and M is the batch size; therefore, an

extra cycle corresponds to 1/(2N +M)≈ 0.74% increase in latency when N = 64 and M = 8.

Alternatively, the minimal delay of the optimized units may allow combining them with the

existing logic without incurring an extra cycle, if there is slack in the timing.
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8.9 Discussion

Overall, the two outlined novel mechanisms of error localization and suppression can be

coupled to deliver highly resilient neural network processing systems. Potential error locations

are pinpointed through computational invariants injected through the learning process, and

anomalous variables are snapped back outright before they have had a chance to propagate and

influence the neural network decisions. In contrast to the outright effect of the large deviation bit

errors encountered, the impact of suppression, which accords with the inherent distribution of

neural network variables, on model accuracy is highly muted. The described approach is a potent

strategy to engender approximate error resilience methods, revolutionizing our perspectives on

functional safety for deep learning hardware. As a result, strict safety goals can be attained at

minimal additional cost in DNN applications.

The novel techniques we outline focus primarily on the data path and buffers where the

majority of hardware resources are allocated, and the cost of delivering functional safety through

conventional fault tolerance methods proves to be exceedingly high. While control path integrity

is just as important, the inordinate cost of traditional techniques can be easily borne for the small

footprint of control circuitry in DNN accelerators that may necessitate absolute resilience.

We attain strong error resilience and competitive accuracy through the inherent flexibility

and redundancy of neural networks. Neural networks embed redundancy in various dimensions,

and the redundancy types that cannot be effectively squeezed through model compression can

be utilized for boosting error resilience at no additional cost. Our preliminary investigation

indicates that model compression methods such as pruning can be applied to the proposed

models without impacting their outstanding error resilience characteristics. On the other hand,

introduced invariants can lead to dependencies across neighboring variables, which need to be

taken into consideration during the model compression process.

While the outlined analysis focuses on convolutional and fully connected layers, the

proposed techniques are expected to generalize to a wide range of DNNs, such as recurrent
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models and other emerging neural network architectures.

Overall, the computational characteristics of neural networks can enable significant

breakthroughs for the error resilience problem in deep learning hardware, delivering highly

effective solutions at imperceptible overheads.

8.10 Chapter Summary

The error resilience of deep neural networks can be boosted noticeably by restricting

and containing the numerical contribution of the errors without necessitating explicit error

correction steps. The proposed novel error detection and remediation techniques can complement

each other seamlessly to tackle errors with high precision while neither incurring additional

information redundancy nor having a noticeable impact on the error-free classification accuracy.

The proposed approach innovatively redefines the error resilience problem in the context of

deep neural networks thus unlocking effective opportunities for efficiently embedding functional

safety into the next generation of machine intelligence hardware.
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Chapter 9

Designing Error-Resilient Deep Neural
Networks

The inherent resilience characteristics of deep neural networks against small numerical

perturbations facilitate proactive avenues for improving the safety and reliability of embedded

deep learning applications. This chapter demonstrates the possibility of such exploitation

by juxtaposing the reduction of the vulnerability surface through the proper design of the

quantization schemes with shaping the parameter distributions at each layer through the guidance

offered by appropriate training methods, thus delivering deep neural networks of high resilience

essentially through algorithmic modifications. Unequaled error resilience characteristics can

be thus injected into safety-critical deep learning applications in a proactive manner to tolerate

bit error rates of up to 10% at absolutely zero hardware, energy, and performance costs while

improving the error-free model accuracy even further.

9.1 Introduction

The outlined resilience characteristics of deep neural networks in Section 5.2.1 promise

novel opportunities for tackling the functional safety problem in embedded deep learning

applications at no additional cost. As long as it does not lead to a misclassification at the

neural network outputs, an error in the neural network variables can be classified as non-critical.

Furthermore, neural networks are known to endure mild and bounded inaccuracies gracefully,
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including numerical errors introduced in the quantization process. Similarly, limited noise effects

are well tolerated despite the fact that nearly all neural network variables are impacted to a

certain degree by such perturbation patterns [186].

Unfortunately, the described resilience characteristics of neural networks fall short of

conclusively establishing the safety of deep learning applications. Previous studies [66, 68, 70]

have repeatedly demonstrated that models often start to lose accuracy even at low bit error rates

(i.e., 10−6). The impact of hardware errors is bound to be substantial if a numerically significant

bit position is impacted. Moreover, if the numerical range of variables in the executed model does

not fully utilize the allocated numerical range in the employed number representation scheme,

the numerical effect of the potential bit errors can easily exceed the expected scale of the original

neural network variables by a few orders of magnitude even. As a result, even a small quantity of

such large error patterns can substantially alter neural network outputs and thus critically impair

system accuracy.

The large numerical range in the number representations constitutes a significant source

of vulnerability against critical bit error effects in deep neural networks. First, we observe that the

outlined vulnerability can be alleviated proactively through layer-wise quantization techniques

by tightening the quantization margins to match the utilized range at each layer. Furthermore,

we notice that the numerical distribution of model parameters at each layer often contains outlier

values which can significantly exceed the rest of the distribution. The stretched quantization

range imposed by such outlier variables exposes the neural network model to large magnitude

errors, with deleterious consequences for model accuracy. We propose a novel regularization

method, outlier regularization, in the training process to tighten the numerical range and cluster

the parameter distributions, thus curbing the impact of potential bit errors more effectively.

As a result of the combined employment of layer-wise quantization and outlier regularization

techniques, deep neural networks can inherently tolerate extreme bit error rates (up to 10%) with

no reliance on additional error tolerance mechanisms and at essentially no additional cost.

Experimental analysis reveals yet another surprising phenomenon in our studies, as the
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models trained with the proposed outlier penalty terms consistently exhibit a noticeably higher

accuracy than the baseline models in both full-precision and quantized formats due to the model

regularization effect in training and improved quantization quality.

While our approach bears similarities to activation range restriction methods [99, 100], it

differs in that we embed such restrictions indirectly through the layer-wise quantization process

instead of employing explicit range limitations. As a result, the restrictions are implemented im-

plicitly without necessitating any additional operations. Moreover, we perform range restrictions

on the model parameters in a similar manner through layer-wise quantization, in addition to the

activations. The effectiveness of parameter range reductions is shown to be quite substantial

against model parameter (i.e., weight, bias) errors, which are the primary threat to system safety

due to their permanent impact on model accuracy. The remarkable benefit of this approach is

also validated through experimental comparison with [99]. Yet again, our approach differs in that

we actively shape the parameter distributions through dedicated regularization terms, attenuate

the scale of bit error effects, and boost the error resilience of the models remarkably further.

This manuscript starts off with an introductory overview of model quantization in Section

9.2. Section 9.3 discusses the design choices and our novel regularization technique to improve

the error resilience of deep neural networks. A detailed experimental analysis is provided in

Sections 9.4-9.5. Finally, we discuss the future implications and directions in Section 9.6 prior

to presenting our concluding remarks in Section 9.7.

9.2 Overview of Model Quantization

Deep learning inference rarely requires the high-precision offered by the floating-point

representations. Neural network variables can be represented in the fixed-point format and even

quantized to smaller bit widths (i.e., 8-bit and often less) with small or even imperceptible impact

on model accuracy. Quantized models offer a noticeable reduction in memory footprint and a

significant decrease in energy consumption due to reduced data movement. Furthermore, smaller
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fixed-point arithmetic units that are faster and more efficient than their floating-point counterparts

[26] cut down the processing cost and boost system performance further. Quantization is a

commonly employed technique in deep learning inference, including embedded neural network

accelerators, because of the outlined benefits.

The quantization process maps a given continuous distribution into a discrete range

through a linear projection of the variables and rounding the final result to the nearest quantization

point. A quantization scheme is termed symmetric if the representation is symmetric around

zero. Namely, a symmetric quantization scheme can be considered as a function which maps

a floating-point range into a fixed-point range (Equation (9.1)) merely through scaling and

rounding (Equation (9.2)):

[−m f loat ,m f loat)−→ [−m f ixed,m f ixed) (9.1)

x f ixed = round
(

m f ixed

m f loat
× x f loat

)
(9.2)

With knowledge of the scale factor (m f loat/m f ixed), the quantized variables can to a large

extent be restored to their original form. A simplistic fixed-point representation may consist of a

mantissa and utilize a single global scale factor. A scheme with a single global scale factor, while

straightforward, may significantly exceed the minimal quantization error, failing to display a

competitive model accuracy as deep neural network variables often span diverse dynamic ranges

at each layer. The diversity of the dynamic ranges can be observed in an example shown in

Figure 9.1 for the weight distributions of the ResNet-18 model [13] trained on the CIFAR10

dataset [207]. The global range may not be covered with a small quantization step size7; on the

other hand, employing a larger quantization step size might incur noticeable information loss

and degrade model accuracy.

7Quantization step size refers to the numerical distance between two adjacent quantization points. This distance
is constant between two adjacent points in uniform quantization schemes.
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Figure 9.1. Weight distribution across neural network layers.

A quantization scheme with unique scale factors for a group of variables [218, 219],

i.e., unique scale factors per layer, and distinct scale factors for weights and activations, can

express values from quite diverse distributions accurately, improve quantization quality, and

consequently allow model accuracy maintenance even at low bit-width representation.

Moreover, the weights and activations at each layer usually follow a distribution that

embeds outlier values of significantly higher magnitude than the rest. An illustrative distribution

pattern is shown in Figure 9.2 for the weights of the first convolutional layer in the same

ResNet-18 model trained on the CIFAR10 dataset.

Large-magnitude variables may necessitate an increase in the quantization step size to

accommodate the entire numerical range; otherwise, such values need to be clipped. Unfortu-

nately, both increases in quantization step size and clipping large values can each lead to a larger

quantization error and consequently reduce quantization quality. Solutions such as activation

clipping have been proposed [32, 33] to partially address this problem in the context of activation

quantization.8

8It should be noted that the usage of the term “activation clipping” in [32, 33] differs from the clipping concept
that is introduced as an approximate error rectification technique in Chapter 8.
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Figure 9.2. Sample weight distribution in a neural network layer.

9.3 Designing Error-Resilient Deep Neural Networks By
Tightening Numerical Range

This section focuses on the represented numerical range in neural network layers and

its significant impact on the error resilience of deep neural networks. For starters, we expound

the dependence of the numerical range at each layer on the characteristics of the employed

quantization methods and the dramatic improvements in system resilience that can be garnered

through proper design choices in the quantization schemes. We proceed to propose a practical

approach to shape the numerical distribution of the neural network parameters with proper

regularization methods so that the numerical impact of bit errors becomes less pronounced in the

quantized form of the obtained parameter distributions.

9.3.1 Tight Quantization Bounds with Layer-wise Quantization

Deep neural network layers span diverse numerical ranges at each layer; therefore, the

accuracy of the quantization scheme can be improved through layer-wise quantization, which

employs unique scale factors at each layer. Although this is a common practice for improving the

precision of model quantization, the error resilience and reliability implications for layer-wise

quantization have not been investigated in the literature. Our analysis demonstrates that the

use of unique scale factors at each layer not only yields benefits in terms of quantized model

accuracy but also boosts the bit error resilience of deep neural networks rather noticeably.
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While the number of allocated hardware bits is fixed on the hardware for a variable,

the same binary representation can span diverse numerical ranges at each layer in a layer-wise

quantization scheme because of the scale factors. The proper range adjustment with the layer-

wise scale factors can guarantee that the parameter distributions at each layer fully span the

provided binary representation on the hardware (e.g., from -128 to 127 for an 8-bit binary

representation). As a result, the numerical impact of the hardware bit errors is guaranteed to be

within the layer distribution and not significantly larger than the layer parameters.

The impact of quantization range on model resilience can be explained with an illustrative

example. The maximum weight magnitude in the last convolutional layer in Figure 9.1 is

observed to hover around 0.25, and the global maximum weight value comes in at slightly above

4. If the last convolutional layer is represented with a quantization scheme that covers the entire

global range, the numerical impact of bit errors becomes proportional to (4/2b−1)∗ (2i) where

b is the quantization bit-width, and i is the erroneous bit position. It can be seen that the error

magnitude could easily exceed the expected distribution of the weights in the last convolutional

layer, even for errors manifesting at the least significant bit positions. On the other hand, the

numerical error magnitude can not exceed (0.25/2b−1)∗ (2i) for the last convolutional layer if a

layer-wise quantization scheme is applied. The error magnitudes would often be smaller than the

original layer weights in the layer-wise quantization scheme, leading to such muted error effects

being tolerated better by deep learning models, which are known to exhibit resilience against

minor and limited-magnitude perturbations.

Alternatively, the effect of the layer-wise scaling factors can be considered as boosting

the signal-to-error ratio at each layer by guiding layer variables to span the provided fixed-point

representation range fully through the proper scaling factors. As a result, the numerical impact

of bit errors is diminished in comparison to the value of the original neural network variables.

The described scheme can be applied to both model weights and activations with dedi-

cated scale factors at each layer to improve the resilience of the model against the bit errors in

the weights and the activations.
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9.3.2 Squeezing Layer-wise Bounds with Outlier Regularization

Layer-wise quantization improves model resilience by precluding error effects that dwarf

the actual variable distribution at each layer. However, we observe that the distribution of the

variables at deep neural network layers frequently contains large magnitude variables, outliers,

that increase the numerical range, thus exposing the model to error effects that can dwarf a large

fraction of the distribution.

When the quantization step size is increased to accommodate such large magnitude

variables, the ratio of a non-outlier variable magnitude compared to the quantization step greatly

diminishes. We have previously concluded that the numerical impact of bit errors is proportional

to the quantization step size (2i× step size) for impacted bit position i; therefore, the bit error

effects can grow disproportionately when compared to the magnitude distribution of non-outlier

variables in the corresponding layer.

The described problem can be alleviated by constricting the quantization range. A

primitive solution could involve the setting of a smaller quantization range and the clipping of the

large magnitude variables after training. However, this approach might result in an increase in the

quantization error for the large magnitude variables and consequently impact model accuracy. An

alternative approach might involve clipping the range during training to preclude the formation

of a distribution with large magnitude variables; however, the optimal selection of the clipping

threshold is rather difficult to establish when performed manually at each layer.

We utilize the flexibility of the training process to form clustered variable distributions

at each layer and allow the target model to adjust the required numerical range at each layer

automatically by discouraging significantly large magnitude parameters. Such modifications

can be encouraged by designing additional goals for training and optimizing these goals in the

learning process.

An additional regularization term in the standard cross-entropy loss function described in

Equation (2.2) can penalize the outlier variables with large magnitude and shrink the numerical
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range of the distribution effectively at each layer. L1 or L2 norm regularization can be utilized

for this purpose, but such regularization schemes are not selective and penalize all weight values.

Such an approach can fail to yield the expected benefits as the resultant scale changes may

retain the large scale magnitude disparateness across the variable space. Instead, we introduce a

novel regularization term, outlier regularization, which focuses the penalty term on the large

magnitude parameters so as to penalize large magnitude variables while keeping the rest of the

distribution intact.

We consider two different regularization terms to encourage the desired behavior in

model training. The first alternative, max-magnitude regularization, computes the penalty term

by accumulating the maximum magnitude values from each parameter group as in Equation (9.3).

We treat the weight and bias values of a layer as separate groups in our implementation. In

Equation (9.3), L denotes the total number of layers, and Wl and Bl refer to the weights and

biases at layer l. The magnitude is computed element-wise, and the maximum function returns

the maximum entry at each computed magnitude tensor.

L

∑
l=1

(max(|Wl|)+max(|Bl|)) (9.3)

Max-squared regularization has a similar implementation except for the fact that we

accumulate the maximum square values from each parameter group as in Equation (9.4) to

construct the penalty term. The square function in Equation (9.4) is element-wise, similar to the

magnitude function in Equation (9.3).

L

∑
l=1

(
max(W 2

l )+max(B2
l )
)

(9.4)

We include the computed penalty term in the standard cross-entropy loss function in

Equation (2.2). The overall loss function is demonstrated for maximum magnitude regularization

in Equation (9.5):
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N

∑
i=1

C

∑
c=1

yi,c log(pi,c)+α

L

∑
l=1

(max(|Wl|)+max(|Bl|)) (9.5)

We further employ a regularization coefficient in the cost function (α) to exert precise

control over the penalty term. The proper selection of the regularization coefficient empowers

the deep learning model to penalize the largest magnitude parameter at each group sufficiently

while incurring no adverse effect on the learning process so that competitive model accuracy can

be attained. The parameter distributions are expected to show a stronger clustering as a result

of regularization; when such parameter distributions are quantized with a proper scale factor to

cover the squeezed bounds, the magnitude of the bit errors that can be suffered would diminish

vis-à-vis the value of the quantized parameters.

The reader will note that the described regularization scheme targets the model parameters

(i.e., weight, bias) in the given description. Model parameters are leaf nodes in the gradient

back-propagation tree for the convolutional and fully connected layers; thus, the maximum

magnitude entries can be penalized with the specified regularization methods with no impact

on the other weights, even those that lie within the same layer. The described independence

property across the weights underpins our technique as it enables the precise manipulation of the

desired parameters with no unintended consequences in the parameter distributions.

The application of regularization methods to the activations, while feasible, does introduce

far more complex interactions in model training. First, activations are derived through the

multiply-accumulate operations that involve the layer weights; thus, the gradients accumulated

on the activations eventually end up being back-propagated and used to update the weight entries.

Such indirect effects on the model weights might introduce interference in training, reduce

training efficacy in forming desired parameter distributions in the target model, and diminish

system reliability against weight errors. Furthermore, penalizing a particular activation at a layer

inevitably affects the other activations in the same layer in case of weight sharing across the units,

particularly for the convolutional layers where the filter weights are shared to construct an entire
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channel of the output feature map. As a result, the direct manipulation of the activations through

regularization necessitates a more profound theoretical analysis. As the immediate vulnerability

surface in neural networks mainly originates from the weight errors due to their repeated use in

the inference operations and their consequent long-term impact on the model accuracy, our work

puts particular emphasis on squeezing the error margins for model parameters.

9.4 Experimental Method

9.4.1 Experimental Setup

We implement the experimental setup in PyTorch [213]. The LeNet-5 model with the

MNIST dataset [211], the VGG-16 [56] and the ResNet-18 [13] models with the CIFAR10

dataset [207], and the SqueezeNet model [215] with the GTSRB dataset [50] are used for the

experiments. We utilize the following hyper-parameter configurations for training the target

models: the LeNet-5 model is trained for 100 epochs with the Adam optimizer starting at a

learning rate of 10−3, and reducing the learning rate tenfold at epochs 33 and 66. The VGG-

16 and the ResNet-18 models are trained for 200 epochs with the SGD (Stochastic Gradient

Descent) optimizer (momentum=0.9) starting at a learning rate of 10−2 and reducing the learning

rate tenfold at epoch 100. Finally, the SqueezeNet model is trained for 100 epochs with the

SGD optimizer starting at a learning rate of 10−2, and reducing the learning rate tenfold at

epoch 50. The baseline and regularized models are trained with the same hyper-parameter

configurations except for the usage of the regularization term. The value of proper regularization

coefficients (α) depends on the target model and the regularization type. The utilized values

are indicated in Table 9.1. The training outcome is not highly sensitive to minor changes in

the regularization coefficients, and proper selection of these coefficients can be accomplished

by starting with a relatively large value and reducing the value tenfold at every step until it is

possible to train the model with a competitive accuracy. It should be noted that the utilized

coefficient values for the proposed outlier regularization methods are noticeably larger than the
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standard regularization terms (e.g., L1 or L2) in Table 9.1 since only outliers are penalized with

the proposed regularization terms instead of all parameters.

We employ a 2’s complement fixed-point representation and a symmetric quantization

scheme in the experiments. We consider the widely-adopted 8-bit data types for the weights and

activations in the context of the error injection experiments and the presented reliability analysis.

More aggressive quantization schemes are employed in Section 9.5.4 to demonstrate the superior

accuracy retention of the regularized models in the post-training quantization experiments.

We utilize two machines for model training and error injection experiments, each with

2× Intel Xeon E5-2630 v4 CPUs (central processing units), NVIDIA GeForce GTX 1080Ti

GPU (graphics processing unit), and 16GB RAM.

9.4.2 Error Model

We design our in-house error injection framework to simulate the impact of bit errors

on neural network variables. Bit errors are injected into weight and activation tensors prior to

each convolutional and fully connected layer operation. Error injection is performed through

a dedicated PyTorch function that receives the input tensor (weight or activation), the error

probability, the data bit-width, and the maximum quantization magnitude as inputs. We indicate

the portion of the erroneous bits in the weight/activation tensors with the term bit error rate to

conform to the terminology used in previous studies [68]. The proposed framework is utilized to

measure and report the classification accuracy at different bit error rates.

The bit error generation process is outlined in detail in Algorithm 9.1. The error injection

function first generates the bit error mask through a Bernoulli distribution with the given

error probability. A pseudo-quantization scheme allows us to determine the total numerical

perturbation at each variable as a result of injected bit errors. Finally, the target tensor is perturbed

by adding the generated numerical errors to simulate the bit error effects on the variables. The

reader will note that the bit error rate in the perturbed tensors will approximately equal the

provided bit error probability after error injection.
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Algorithm 9.1: The methodology for error injection into DNN tensors
Input: Input tensor (I), error probability (p), data bit-width (b), maximum

quantization magnitude (m)
Output: Output tensor (O)

1 Generate bit error locations through a Bernoulli distribution with probability p
2 Perform pseudo-quantization on the input tensor (I) by using b and m
3 Identify the original bit values in the quantized representation
4 Compute the numerical perturbation value for each bit error location
5 Compute overall numerical perturbations for each variable by summing numerical

perturbations caused by individual bit errors
6 De-quantize overall numerical perturbation values that are computed for each

variable
7 Add de-quantized perturbation values to the input tensor (I) to generate output tensor

(O)

Our analysis and the resilience methods once again focus solely on the errors in the data

path. We particularly focus on the bit errors on the parameters due to their permanent effect on the

model behavior and the classification accuracy. Experimental analysis for the activation errors is

also provided. Protection of the control circuitry can be delivered economically with conventional

hardware fault-tolerance methods, as deep learning accelerators usually necessitate minimal

control circuitry due to the inherent regularity of the micro-architecture and neural network

computations. In addition, our analysis omits consideration of the errors in the quantization

scale factors. As the adopted layer-wise quantization schemes incur a negligible number of scale

factors when compared to the model parameters, i.e., at double the number of layers if distinct

scale factors are utilized for the weights and activations at each layer, their resilience can be

rendered by conventional hardware fault-tolerance methods at negligible overheads as well.

9.5 Experimental Results

We investigate the effectiveness of our approach by analyzing the impact of the proposed

regularization terms through the measurement of full-precision accuracy values and observing

the particularities of the parameter distributions at each layer. Moreover, bit error resilience

characteristics are evaluated by measuring the classification accuracy at various bit error rates.
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Table 9.1. The impact of regularization on the full-precision (non-quantized) model accuracy.

Regularization Coeff. Train Acc. Test Acc.
(ααα) (%) (%)

LeNet-5 Baseline - 99.71 99.24
LeNet-5 Regularized (L1) 10−4 99.86 99.27
LeNet-5 Regularized (L2) 10−4 100.00 99.41
LeNet-5 Regularized (Max-Magnitude) 1 99.31 99.07
LeNet-5 Regularized (Max-Squared) 1 99.97 99.30

VGG-16 Baseline - 99.71 91.55
VGG-16 Regularized (L1) 10−5 99.65 92.24
VGG-16 Regularized (L2) 10−5 99.80 91.93
VGG-16 Regularized (Max-Magnitude) 10−1 99.76 92.21
VGG-16 Regularized (Max-Squared) 10−1 99.90 91.89

ResNet-18 Baseline - 99.37 92.22
ResNet-18 Regularized (L1) 10−5 99.86 93.57
ResNet-18 Regularized (L2) 10−5 99.82 92.85
ResNet-18 Regularized (Max-Magnitude) 10−1 99.76 92.90
ResNet-18 Regularized (Max-Squared) 10−1 99.86 92.97

SqueezeNet Baseline - 99.83 94.36
SqueezeNet Regularized (L1) 5×10−4 99.20 94.20
SqueezeNet Regularized (L2) 10−3 99.83 93.94
SqueezeNet Regularized (Max-Magnitude) 5×10−1 99.79 94.47
SqueezeNet Regularized (Max-Squared) 1 99.82 94.42

Finally, we perform post-training quantization experiments at lower bit widths to demonstrate

the improvements in accuracy retention for the proposed regularization techniques as a result

of the obtained parameter distribution characteristics. We compare the proposed regularization

methods with the baseline case with no regularization and standard L1 and L2 regularization

methods in the experiments.

9.5.1 Impact of Regularization Terms on Training and Full-Precision
(Non-Quantized) Model Accuracy

The training efficacy and the model accuracy are essential considerations that need to be

addressed for the proposed regularization techniques. Table 9.1 summarizes the regularization

coefficients used for training (α) and the final accuracy values of the baseline and regularized
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models. We observe that the target deep neural network models can be trained effectively with

the outlier regularization techniques and outperform the baseline model accuracy values by a

clear margin, particularly in the test/validation examples. We hypothesize that the described

phenomenon in the test/validation examples occurs because of reduced over-fitting and improved

generalization. Table 9.1 demonstrates that the obtained accuracy values through the outlier

regularization methods are comparable and even sometimes superior to the standard L1/L2

weight regularizers that are widely used in practice to reduce over-fitting. The slight accuracy

improvement in the training examples is another interesting phenomenon, necessitating a more

comprehensive theoretical analysis for a more definitive answer.

9.5.2 Impact of Regularization Term on Parameter Distributions

The outlier regularization leads to a significant reduction in the dynamic range of the

parameters at each layer and to parameter distributions that display a stronger clustering. Fig-

ure 9.3 and Figure 9.4 demonstrate the impact of the regularization term on the model parameter

distributions at each layer for the LeNet-5 and ResNet-18 models. The colored portions of the

violin plots demonstrate the distribution density at a particular weight value (i.e., wider regions

indicate a higher density). The minimum and maximum values at each layer are indicated

through the horizontal lines attached to both ends of the distribution curves.

The influence of the proposed regularization terms (i.e., Max-Magnitude and Max-

Squared) on the parameter distributions is quite noticeable in both neural network models

demonstrated in Figure 9.3 and Figure 9.4. We observe that the large magnitude outliers seen in

the baseline models (No Regularization) disappear entirely as a result of the introduced regular-

ization terms, as clearly exemplified in Figure 9.4. As a result, the dynamic range of parameters

reduces significantly at each layer.9 The boundaries of the clustered parameter distributions

are learned automatically at each layer while attempting to squeeze the numerical range and

minimize the cross-entropy loss at the same time. Furthermore, zero-centered and Gaussian-like

9Please note the scale difference in Figure 9.3 and Figure 9.4 for baseline and various regularized distributions.
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Figure 9.3. Regularization effect on the numerical range of the LeNet-5 parameters.

shapes of non-regularized layer parameter distributions transform into well-clustered uniform

and even bimodal distributions that are concentrated around the limit values.

Our experimental results in Figure 9.3 and Figure 9.4 with the standard L1 and L2

regularizers indicate an interesting phenomenon. While L1 and L2 regularizers can reduce the

numerical range, the obtained distributions are quite distinct from those obtained through the

outlier regularization methods with the max-magnitude or max-squared terms. L1 and L2 terms

penalize all parameters instead of only outliers; thus, the large magnitude discrepancies between
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Figure 9.4. Regularization effect on the numerical range of the ResNet-18 parameters.

the layer parameters still remain in the final distributions. Moreover, L1 regularization can

even amplify such discrepancies by penalizing the small variables and inducing sparsity in the

model while failing to shrink outlier parameters that are significantly higher than the rest of the

distribution. In other words, standard regularizers do not deliver the desired outcome, or worse,

would result in the exact opposite of the desired effect in the layer parameter distributions.
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Figure 9.5. Weight error rate vs. LeNet-5 test set classification accuracy on MNIST.

The obtained parameter distributions attained through the proposed outlier regularization

methods offer two fundamental advantages over the baseline parameter distributions. First, we

expect the numerical impact of the bit errors to be relatively muted compared to an average

parameter value due to the well-clustered and better-utilized quantization range. Second, the

regularized models can be quantized more accurately because of the clustering behavior and the

reduction in the quantization step size. As a result, improvements in both bit error resilience and

quantization accuracy are anticipated in the experiments.

9.5.3 Bit Error Resilience Analysis

We investigate the bit error resilience of the target models in the quantized format by

injecting errors into model parameters and measuring the test set classification accuracy at

various bit error rates. The accuracy curves are shown in Figures 9.5, 9.6, 9.7, and 9.8.

We experiment with various numerical range allocation methods to demonstrate the

effectiveness of the proper quantization schemes in delivering high error resilience in neural

networks and show further resilience improvements obtained through the described regularization

techniques. We first consider a worst-case scenario where the utilized numerical representation
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Figure 9.6. Weight error rate vs. VGG-16 test set classification accuracy on CIFAR10.

can cover numbers that are 10 times greater than the numerical bounds necessary to cover the

maximum global magnitude of the model parameters (10 * Global). Such a scenario could occur

in general-purpose programmable hardware (i.e., large width integer formats in commodity CPU

architectures) where the offered range delivered through the number of bits and the number

representation fails to be utilized by the quantized model parameters. An improved quantization

scheme, Global, designates a numerical representation range just wide enough to cover the

maximum global magnitude of the model parameters, with a single scale factor to quantize

the neural network parameters. The layer-wise scheme employs unique scale factors at each

layer to improve the quantization precision further. The parameter distribution at each layer

is quantized individually in this scheme to obtain tighter quantization bounds. Finally, L1, L2,

Max-Magnitude, and Max-Squared schemes perform layer-wise quantization on the regularized

models that are obtained with the corresponding penalty terms.

We reach the following conclusions as a result of the weight error injection experiments

performed on the target models. First, the non-utilized numerical range in the number represen-

tations constitutes a significant safety vulnerability in the presence of bit errors. For instance, the

VGG-16 and the ResNet-18 models experience noticeable accuracy drops at bit error rates even
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Figure 9.7. Weight error rate vs. ResNet-18 test set classification accuracy on CIFAR10.

smaller than 10−6 in the parameters in the 10 * Global scenario. The described vulnerability

can be alleviated with a single scaling factor change when the variables are quantized to cover

solely the global parameter range (Global). Consequently, the bit error resilience of the models

can be improved to tolerate bit error rates up to two orders of magnitude larger. Furthermore,

if the dynamic range of parameters is different across the layers as in VGG-16 and ResNet-18,

the resilience characteristics can be boosted further by up to 1-2 orders of magnitude through

the Layer-wise quantization schemes and the use of unique scale factors at each layer. Finally,

the regularized models offer resilience to bit error rates an order of magnitude higher when

they are layer-wise quantized. The resilient deep neural network models obtained through the

combined usage of layer-wise quantization and outlier regularization methods (Max-Magnitude

and Max-Squared) can withstand extreme error rates, namely, bit error rates in the parameters

as high as 5% for LeNet-5 and 1% for the VGG-16, ResNet-18, and SqueezeNet models while

reining in the accuracy loss at around 1%. The LeNet-5 model can even tolerate parameter bit

error rates as high as 10% with classification accuracy losses confined to around 3%.

We observe that standard L2 regularization has at best marginal and often no positive

effect on error resilience over the non-regularized models when the parameter distributions are
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Figure 9.8. Weight error rate vs. SqueezeNet test set classification accuracy on GTSRB.

layer-wise quantized. Furthermore, L1 regularization degrades the bit error resilience of the

models noticeably in the quantized form, in accord with the observed large numerical disparity

across the layer parameters in Section 9.5.2. As a result, L1 regularized models with layer-wise

quantization often exhibit weaker error resilience than the non-regularized models with global

quantization. The experimental results clearly indicate that standard regularization techniques

are inefficient for our purposes, and the proposed outlier regularization terms are essential for

boosting parameter error resilience of deep neural networks.

We compare the parameter bit error resilience of the proposed regularized models (i.e.,

Max-Magnitude and Max-Squared) with the previously reported resilience values in prior litera-

ture in Table 9.2. Previous work includes neural network resilience methods such as FT-ClipAct

[99], Median Feature Selection [5], and Anomaly Suppression [6]. We further compare our

results with Binary Neural Networks [212], which are shown to be extremely resilient against bit

errors in the parameters [71].

A tolerated weight bit error rate comparison at the same accuracy loss points demonstrates

the noticeable superiority of our approach in enduring high bit error rates over the other active

error resilience techniques [5, 6, 99]. For instance, our method delivers resilient deep learning
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Table 9.2. Tolerated BER (bit error rate) for various deep neural network resilience methods.

Tolerated Weight BER

LeNet-5 (MNIST) Binary Neural Nets [71] 10−2

Median Feature Selection [5] 10−4

Anomaly Suppression [6] 10−3

This Work 555×××111000−2

VGG-16 (CIFAR10) Binary Neural Nets [71] 10−3

FT-ClipAct [99] 10−5

This Work 111000−2

ResNet-18 (CIFAR10) Median Feature Selection [5] 10−4

Anomaly Suppression [6] 10−4

This Work 111000−2

SqueezeNet (GTSRB) Median Feature Selection [5] 5×10−5

Anomaly Suppression [6] 10−4

This Work 111000−2

models that can tolerate 50, 1000, 100, and 100 times larger weight bit error rates for the LeNet-5,

VGG-16, ResNet-18, and SqueezeNet benchmarks, respectively, when compared to the highest

resilience limits achieved by the others for accuracy loss restrictions of no higher than 1%.

The compared active error resilience methods [5, 6, 99] mainly operate on the activations

and tackle the impact of parameter (weight) errors indirectly on the produced layer activations.

The effectiveness of our approach against parameter errors stems from the fact that we attenuate

the magnitude of the parameter bit errors directly by regularizing and restricting the parameter

quantization range, thus largely preventing error diffusion into the activations in the first place.

Regularization plays a particularly important role in muting the error effects through numerical

range utilization improvements and boosts in the magnitude ratio of parameters to errors, in a

manner analogous to improving the signal-to-noise ratio in communication systems. Moreover,

it is to be noted that our approach necessitates neither additional operations nor any hardware

extensions, unlike [5, 6]. As a result, our method can be deployed seamlessly in existing deep

neural network accelerators with no additional overheads.

The obtained models are observed in Table 9.2 to be even more resilient than Binary
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Figure 9.9. Activation error rate vs. LeNet-5 test set classification accuracy on MNIST.

Neural Networks [71], offering resilience for up to 5-10 times larger bit error rates in the

parameters. We conjecture that while aggressive quantization schemes such as binarization

deliver extensive error resilience by forestalling large error magnitudes (i.e., a parameter can

only alternate between +1 and -1), nevertheless, each error transition in a compact binary

representation changes the direction of information fully, thus exhibiting noticeably inferior

resilience compared to our approach.

We perform similar error injection experiments on the activations by utilizing the same

deep learning models. The results for activation error injection experiments are demonstrated

in Figures 9.9, 9.10, 9.11, and 9.12. The 10 * Global, Global, and Layer-wise activation

quantization schemes are analogous to the descriptions provided for the weight quantization

methods in the previous experiments. L1, L2, Max-Magnitude, and Max-Squared refer to the

layer-wise activation quantization performed on the weight regularized models. We forgo the

enforcement of any direct regularization on the activations due to the challenges outlined in

Section 9.3.2.

A large numerical range in the activations can lead to safety vulnerabilities, similar to

the neural network parameters. Squeezing the numerical range to the utilized global maximums
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Figure 9.10. Activation error rate vs. VGG-16 test set classification accuracy on CIFAR10.

and further to the unique layer-wise range at each layer can improve resilience noticeably (i.e.,

resilience up to 1000 times error rates for Layer-wise quantization when compared to a loose

numerical range in 10 * Global). We observe that the regularization effect on the parameters

can further improve the activation error resilience because regularized weights can indirectly

eliminate the large outliers in the activations, reduce the activation quantization range, and

consequently, mute the impact of large activation errors. The resilience to excessive activation

error rates is often not as critical of a concern as parameter errors because the activations are

generated from scratch at each forward inference pass with no long-term impact on model

accuracy and thus less likely to exhibit an accumulation effect. However, the additional resilience

properties obtained through proper quantization schemes are still desirable and provide additional

safety against large impact errors in the activations.

9.5.4 Impact of Regularization Term on Quantization Accuracy

While we demonstrate significant improvements in bit error resilience and non-quantized

model accuracy after training, the proposed outlier regularization techniques deliver additional

benefits for post-training quantization methods as well. The variable distributions obtained
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Figure 9.11. Activation error rate vs. ResNet-18 test set classification accuracy on CIFAR10.

through the proposed regularization methods are well clustered into a small dynamic range with

no outliers; therefore, such distributions can be quantized to smaller bit widths while maintaining

accuracy more gracefully than the non-regularized counterparts.

We conduct post-training quantization experiments on the model weights and activations

to demonstrate the outlined advantage of the regularized models. We employ a layer-wise

quantization scheme in these experiments by allocating a unique scaling factor for the weights

and activations at each layer. The accuracy results are generated by measuring the classification

accuracy of the post-training quantized models on the training and test datasets. We demonstrate

the quantized model accuracy results in Table 9.3.

Experimental results indicate that LeNet-5 models with outlier regularization can be

quantized into 2-bit weights and 4-bit activations directly, and accuracy losses confined to no

more than 1% with neither fine-tuning nor compensation steps employed. On the other hand, the

non-regularized LeNet-5 model results in around 60% accuracy loss when quantized directly

after training. LeNet-5 models with standard regularization techniques experience a noticeable

accuracy loss, which is even more severe than the non-regularized LeNet-5 model for the L1

regularization case. We observe similar trends in other neural network benchmarks. For instance,
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Figure 9.12. Activation error rate vs. SqueezeNet test set classification accuracy on GTSRB.

VGG-16 and ResNet-18 models with outlier regularization do not experience a noticeable loss,

and the accuracy is often slightly improved when quantized to 4-bit weights and 8-bit activations.

However, the non-regularized VGG-16 and ResNet-18 models incur 1.44% and 1.83% accuracy

loss due to quantization, respectively. The accuracy loss values for the L1 and L2 regularized

models are observed to be noticeably larger than the models with outlier regularization and even

inferior to the non-regularized models in the case of L1 regularization.

While improving the quantization process is not the primary focus of our work, and

various advanced techniques do exist to obtain accurate and compact quantized models [34],

the outlined observation aims solely to showcase the positive impact of regularization on the

quantized model accuracy under post-training scenarios with no fine-tuning.

9.5.5 Observed Differences Between Max-Magnitude and Max-Squared
Regularization Terms

The proposed max-magnitude and max-squared regularization terms penalize the outlier

parameters at each layer. We observe that both regularization terms can squeeze parameter

distributions effectively and deliver significant error resilience improvements. Max-magnitude

regularization usually incurs a slightly larger penalty value than the max-squared term at the
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Table 9.3. The impact of regularization on the quantized model accuracy.

Quantization Width Train Acc. Test Acc.
(Weight, Activation) (Change) (Change)

(%) (%)

LeNet-5 Baseline 39.38 (-60.33) 40.21 (-59.03)
LeNet-5 Regularized (L1) 24.21 (-75.65) 24.21 (-75.06)
LeNet-5 Regularized (L2) (2, 4) 82.99 (-17.01) 82.17 (-17.24)
LeNet-5 Regularized (Max-Magnitude) 98.65 (-0.66) 98.41 (-0.66)
LeNet-5 Regularized (Max-Squared) 99.16 (-0.81) 98.59 (-0.71)

VGG-16 Baseline 98.63 (-1.08) 90.11 (-1.44)
VGG-16 Regularized (L1) 97.64 (-2.01) 89.86 (-2.38)
VGG-16 Regularized (L2) (4, 8) 98.92 (-0.88) 90.42 (-1.51)
VGG-16 Regularized (Max-Magnitude) 99.71 (-0.05) 92.02 (-0.19)
VGG-16 Regularized (Max-Squared) 99.88 (-0.02) 91.93 (+0.04)

ResNet-18 Baseline 98.05 (-1.32) 90.39 (-1.83)
ResNet-18 Regularized (L1) 98.17 (-1.69) 91.36 (-2.21)
ResNet-18 Regularized (L2) (4, 8) 99.48 (-0.34) 91.97 (-0.88)
ResNet-18 Regularized (Max-Magnitude) 99.77 (+0.01) 92.89 (-0.01)
ResNet-18 Regularized (Max-Squared) 99.90 (+0.04) 92.81 (-0.16)

SqueezeNet Baseline 99.18 (-0.65) 93.01 (-1.35)
SqueezeNet Regularized (L1) 96.39 (-2.81) 90.43 (-3.77)
SqueezeNet Regularized (L2) (4, 8) 99.21 (-0.62) 92.20 (-1.74)
SqueezeNet Regularized (Max-Magnitude) 99.55 (-0.24) 93.84 (-0.63)
SqueezeNet Regularized (Max-Squared) 99.40 (-0.42) 93.57 (-0.85)

same regularization coefficient (α) since neural network parameters are often observed to be

small values between [-1, 1], where the variable magnitude is numerically larger than its squared

version. However, the difference between the obtained parameter distributions through these

regularization terms is observed to be minimal in practice.

9.6 Discussion

The resilience of deep neural networks is commonly observed in previous studies. Neural

networks can maintain accuracy gracefully, even under widespread noise and error conditions,

as long as the captured information in the model variables is not overwhelmed by noise and

error incidents. For instance, neural networks are known to maintain accuracy gracefully during
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quantization, which is a process of widespread error introduction. From this perspective, error

tolerance in neural networks bears significant similarities to the problem of improving the SNR

(signal-to-noise ratio) in digital signal processing and telecommunication systems.

While the outlined observations draw a hopeful conclusion regarding the resilience of a

neural network, bit error effects whose numerical impact stretches well beyond the described

noise levels remain its Achilles’ heel. The resilience properties of the neural networks can

begin to shatter rapidly under large magnitude error incidents. The proper design choices that

preclude such scenarios not only improve error resilience dramatically but may furthermore

boost the accuracy of the system noticeably under error-free conditions. For instance, the proper

utilization and the constriction of the numerical range in the quantization schemes improve both

the quantization quality and tighten the potential error margins effectively.

We further demonstrate how the distribution of the model parameters can be formed in

the desired manner through the proper training goals to obtain deep learning models that are

highly error-resilient in the quantized form. Surprisingly, such restricted models can be even

more accurate than their unrestricted counterparts in both full-precision and quantized formats.

In summary, we illustrate that deep learning hardware, when properly designed, can

tolerate excessive bit errors in the datapath at levels even up to 10%, offering resilience shields

unmatched by much costlier traditional fault-tolerant systems. Moreover, such resilient systems

are constructed at no additional cost enjoying several auxiliary benefits such as improved model

accuracy.

9.7 Chapter Summary

As the computational burden of deep neural networks challenges the delivery of functional

safety in embedded deep learning applications through traditional fault tolerance techniques,

we investigate an alternative path to embed unparalleled reliability characteristics into deep

neural networks by utilizing their inherent resilience. Our results in this chapter indicate that
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properly designed quantization schemes can reduce error margins and improve system resilience

noticeably against bit errors in the neural network variables. We propose a novel regularization

term to manipulate the parameter distributions at each layer and tighten error margins further.

Neural network models obtained through the described regularization process are shown to be

highly accurate after training, lend themselves to accurate quantization at low bit widths with

minimal accuracy loss, and exhibit extreme levels of resilience to hardware bit errors in the

quantized format. This chapter presents strong evidence that highly accurate and error-resilient

deep learning systems can be built proactively through algorithmic modifications and proper

design techniques while imposing essentially zero hardware, energy, and performance overheads.
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Chapter 10

Boosting DNN Hardware Yields via Cost-
Effective Defect Adaptation

The micro-architectural features of deep learning accelerators, when paired with the

algorithmic characteristics of DNNs (deep neural networks), unlock novel and proactive op-

portunities to tackle semiconductor reliability problems in embedded deep learning devices.

While the fine-grained bypassing of the faulty processing elements reins the computational

impact of hardware defects, a one-time training of deep neural networks with Hardware-Aware

Dropout/Dropconnect techniques proactively boosts model decentralization and facilitates accu-

rate neural network inference in the degraded computational fabrics. Furthermore, on-device

calibration methods can improve resilience even further without necessitating expensive defect

compensation methods such as device-specific training. This chapter investigates the potential

opportunities for improving the yield, reliability, and operational lifetime of embedded machine

intelligence devices through a practical co-design of deep neural networks and configurable

hardware architectures.

10.1 Introduction

The parallel computational resources and micro-architectural regularity of DNN acceler-

ators spawn effective opportunities for tackling hardware defects. A spatial DNN accelerator

is typically made up of hundreds, and often up to thousands, of small processing elements to
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carry out a large number of multiply-accumulate operations [26, 35, 36, 37]. Their regular

micro-architecture makes defective processing element isolation highly practical even at the

finest granularities with a negligible loss in the underlying hardware capabilities.

Deep neural networks are known to tolerate certain error types, particularly when the nu-

merical impact of the error is limited in the computations. The inherent resilience characteristics

of deep neural networks impart an opportunity to compensate for the computational effects of

defective hardware components through isolation, without necessitating hardware redundancy

or incurring performance overheads. Furthermore, it is often possible to enhance the inherent

resilience characteristics of deep neural networks with novel training techniques and maximize

the potential benefits through the boosted resilience of deep neural networks.

As its primary contribution, this chapter advocates for a co-design methodology to

tackle hardware defects in embedded deep learning accelerators by utilizing micro-architectural

hardware features and algorithmic characteristics of deep neural networks. The innovative

co-design aspect of this work stems from the fact that hardware and software enhancements

complement each other in a synergistic manner to improve overall reliability, and both hardware

and software parameters influence each other strongly in the design process.

As an initial step, we bypass the computational contribution of defective processing

elements in a DNN accelerator through a mechanism that is similar to [79]. The resulting pruning

effect is observed to be more palatable than leaving the hardware fault effects intact in neural

network computations.

Despite the benefits of fault isolation through bypassing, an aggressive pruning effect on

the variables due to bypassed hardware components could still lead to a noticeable accuracy loss

particularly when the salient variables are impacted in a standard neural network. This accuracy

deterioration limits the practical applicability of hardware bypassing, particularly at high defect

rates. Fortuitously, deep neural networks could minimize the saliency of individual variables and

cultivate a highly decentralized computational structure when they are motivated through proper

training goals. The specific training methods that are traditionally adopted to tackle the over-
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fitting problem, including Dropout [59] and Dropconnect [60], could embed such characteristics

into deep neural networks, and their effectiveness against realistic hardware failure scenarios

could be improved noticeably when the micro-architectural hardware parameters (e.g., dataflow

type, systolic array dimensions) and the hardware mapping strategy (e.g., matrix tiling process)

are taken into consideration in the training process. We demonstrate that deep neural networks

obtained through such training could tolerate significantly higher rates of bypassed processing

elements when compared to standard neural network models. Since neural network models

with a decentralized structure maintain information content much more gracefully, the necessity

for costly accuracy compensation techniques such as device-specific training [79, 80, 118] is

obviated.

We further demonstrate that practical on-device calibration techniques can seamlessly

complement the outlined design-time modifications, minimize accuracy loss due to fault effects

in these systems, and extend neural network resilience to even higher hardware bypass rates.

Namely, we propose two lightweight calibration techniques that can be carried out within the

resources of the faulty embedded device. First, we ameliorate the accuracy loss caused by

the mismatch of batch statistics in a faulty device through cost-effective calibration of the

batch normalization layer statistics. The outlined calibration step is performed by running

a small number of inference operations on the faulty device. Second, we observe that the

order of neural network computations can be permuted by rearranging neurons/filters to yield

computationally equivalent neural network structures, yet the pruning manifestation of the same

bypassed hardware component differs widely in these neural networks. We propose a practical

computational rearrangement mechanism that can be implemented on an embedded device at

minimal cost to effect a rearrangement that mutes the inescapable impact of pruning on accuracy.

This chapter starts with the problem definition in Section 10.2. We describe the proposed

approach in Section 10.3. The implementation details and the results of our experimental analysis

are presented in Sections 10.4-10.5. We conclude our discussion in Section 10.6.
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10.2 Problem Definition

Cutting-edge semiconductor technologies with ever-diminishing feature sizes have con-

tributed to the overall efficiency of semiconductors, including hardware architectures for deep

learning. While physical defects in the manufacturing process (e.g., open/short connections), tim-

ing failures caused by process variations, and aging effects [220] are more likely to manifest as

permanent hardware faults in the advanced semiconductor technology nodes [40, 41, 42, 43, 44],

the criticality of these issues has been exacerbated in DNN accelerators that consist of up to

thousands of processing cores.

When a permanent fault impacts the high-order bits in a processing element, the numerical

effect of a fault could be highly significant at the layer outputs. Furthermore, the computational

impact of a permanent fault is often aggravated due to the reuse of the same hardware component

in the subsequent stages of the computation. As a result, even a few faulty processing elements

are shown to impair deep neural network accuracy critically in the prior studies [79, 80].

While the design of a systolic array that is capable of tolerating permanent defects is a

decades-old interest in the research community [94, 221], conventional methods often discard the

faulty units in a coarse-grained manner. As a result, these methods either suffer from performance

overheads due to the reduced form of the systolic array, or require additional redundancy in the

computational fabric to avoid the performance impact.

The computational plasticity of DNNs is harnessed in recent studies to overcome the

rigid computational constraints of the defect tolerance problem in deep learning accelerators.

Novel techniques such as [79, 80, 118] compensate for the computational effect of the bypassed

processing elements by modeling the consequent pruning impact on the neural network, and

performing fine-tuning on the pruned model to recover accuracy. While this approach can

ameliorate accuracy loss and eliminate performance impact, its fundamental limitation stems

from the fact that it requires a dedicated fine-tuning process for each faulty device with a unique

defect pattern.
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Even more concerning is that strict cost budgets play a determinative role in terms of

industry adoption for low-cost embedded devices. Fault compensation techniques that require

device-specific training [79, 80, 118] necessitate dedicated computing resources (i.e., on the

cloud) to be allocated for each faulty device for a period of time and suffer the consequent highly

undesirable scaling cost model for each manufactured faulty device, thus greatly diminishing

their economic appeal. Furthermore, the outlined device-specific process needs to be repeated

for each deep learning model if multiple neural network models are planned for deployment in

the target device. Finally, device-specific training creates further practical challenges in the case

of faults that surface after device deployment, such as aging effects.

The practical applicability of defect tolerance methods can be improved significantly

for deep learning hardware if algorithmic innovations could help embed inherent resilience

characteristics into DNNs through a one-time training process. Furthermore, device-specific

aspects of the underlying defect patterns could be addressed within the capabilities of the faulty

embedded device through on-device calibration techniques. As a result, the practical benefits

of novel defect tolerance techniques can be assured in embedded deep learning hardware by

incorporating minimal additional hardware configurability and utilizing unique algorithmic

characteristics of DNNs.

10.3 Proposed Method

We outline a proactive co-design methodology for deploying deep neural networks in

defective hardware accelerators. The proposed design flow comprises four fundamental steps:

• We avoid the unpredictable error deviations induced by permanent hardware defects

through hardware configurability and bypassing of faulty hardware components.

• We train neural networks with Hardware-Aware Dropout/Dropconnect methods to boost

decentralization and minimize information degradation due to bypassing.
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Figure 10.1. Overall summary of the proposed design flow.

• We further improve the accuracy of deep neural networks with batch normalization layers

through the calibration of batch normalization statistics on the faulty device.

• We explore a slew of pruning manifestations for the bypassed hardware units through a

lightweight hardware mapping re-adjustment and minimize accuracy loss by identifying

the more benign pruning occurrences.

The outlined approach eliminates the need for hardware redundancy and costly fault

compensation methods such as device-specific training, and it facilitates high accuracy even

under extreme hardware defect rates in embedded deep learning accelerators. The proposed

design flow is outlined Figure 10.1.

10.3.1 Isolating Faults Through Hardware Configurability

While permanent hardware faults could impact the accuracy of neural networks critically

due to the possibility of large-magnitude error deviations, deep neural networks exhibit a more

graceful accuracy degradation under particular error manifestations, such as when the numerical

contribution of neural network variables is dropped from the computations by setting them to

zero, as discussed in Section 8.4.1. The outlined resilience characteristics thus enable innovative

techniques for handling permanent hardware defects in embedded DNN accelerators.

Spatial deep neural network accelerators such as systolic arrays consist of a highly-regular

grid of small processing elements to provide parallelism in the underlying tensor operations.

Moreover, their fine-grained and regular micro-architecture facilitates fault isolation opportunities
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in the defective devices with a minimal loss in hardware capabilities.

Fault isolation techniques identify the processing elements with hardware faults through

testing, and bypass the computational contribution of faulty processing elements. The outlined

approach herein is agnostic to the particularities of the test method being employed, as long as

the test process provides pass/fail information within the granularity of the processing elements

in the systolic array. For instance, the proposed approach could be paired with manufacturing

tests applied through scan chains to tackle manufacturing defects, or on-device testing techniques

such as BIST (built-in self-test) for continuous monitoring against aging-related faults [220].

The action of bypassing relies on a limited amount of additional configurability in the

hardware IP. We first summarize the bypass method introduced in [79] for the weight-stationary ar-

chitecture, then propose bypass mechanisms for input-stationary and output-stationary dataflows.

Fault Isolation in Weight-Stationary Dataflow

The bypass mechanism for a weight-stationary architecture is demonstrated in Fig-

ure 10.2-A. The introduced multiplexing logic at each processing element allows a faulty unit to

forward the received partial sum directly to the neighboring processing element. As a result of

bypassing, all the weight values that map into the bypassed processing element are effectively

pruned from neural network computations.

Fault Isolation in Input-Stationary Dataflow

The bypass logic for the input-stationary architecture resembles the one used in the

weight-stationary design. However, the computational impact of bypassing differs since it results

in the pruning of layer inputs that map into the bypassed processing element.

Fault Isolation in Output-Stationary Dataflow

The numerical impact of a hardware fault in the output-stationary architecture is confined

to the partial sum values that are produced in the faulty processing element; therefore, layer

outputs that are pinned into the faulty processing element should be masked by setting to zero.
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Figure 10.2. Bypass logic in (A) weight/input-stationary and (B) output-stationary processing
elements.

The bypass mechanism in the output-stationary dataflow is demonstrated in Figure 10.2-B, and it

can be implemented through a series of AND gates in lieu of the multiplexers used in the two

alternative dataflows. The bypass mechanism prunes the layer outputs that map into the faulty

processing elements in this architecture.

The proposed bypass mechanisms could isolate all permanent faults in a processing

element except specific points in the bypassing circuitry. While the likelihood of a permanent

defect occurring in the bypassing circuitry is small due to its minimal area compared to the

processing element (as demonstrated in Table 10.1), costlier bypass mechanisms [118] can be

utilized for mitigating faults in the additional logic as well.

10.3.2 Minimizing Information Loss with Decentralized DNNs

While the substitution of the unpredictable numerical impact of hardware faults through

the bypassing of faulty hardware components results in a more tolerable pruning effect on the

variables, it could still induce noticeable information loss in the standard neural networks even at

moderate bypass rates.

Weights and activations are known to be associated with varying levels of saliency in

neural network computations [85, 87]. While the pruning of a relatively critical weight or
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activation is bound to be more noticeable on the overall accuracy, the saliency imbalance among

the neural network variables can be alleviated through properly introduced training goals.

We propose a training approach with methods that are similar to Dropout or Dropconnect

to encourage decentralization in the training process and reduce the saliency of individual

neural network variables. In addition to alleviating co-adaptation and over-fitting problems,

Dropout/Dropconnect training downsizes the significance of individual activations/weights and

thus encourages decentralization in the applied neural network layers.10 The deep neural network

models obtained as a result of such training are expected to operate accurately through a subset

of variables and tolerate the numerical effect of the dropped variables gracefully.

The benefits of the described training approach can be further boosted by reflecting

the hardware characteristics accurately in this process. First, the impacted variable type (i.e.,

weight, layer input, layer output) is determined by the dataflow type of the DNN accelerator.

Input-stationary and output-stationary dataflows necessitate a process resembling Dropout at

the layer inputs and outputs, respectively. Meanwhile, a technique similar to Dropconnect is

required for bypassing effect characterization in the weight-stationary designs.

Moreover, the systolic array shape and the utilized neural network mapping scheme

influence the manifestation of hardware bypassing on deep neural network computations. We ex-

plore two unique versions of the training process with Dropout/Dropconnect. In Random

Dropout/Dropconnect, the drop events for each weight, input, or output variable are con-

trolled by unique independent random variables. While this approach resembles conventional

Dropout/Dropconnect, it may not accurately reflect the hardware reuse effect on computations.

The latter approach, Hardware-Aware Dropout/Dropconnect, takes the systolic array shape and

the mapping scheme into consideration in the process of dropping variables. Hardware-Aware

Dropout/Dropconnect mirrors the hardware bypassing behavior more accurately and improves

training effectiveness in building strong algorithmic resilience against the bypassed components.

10The term “decentralization” defines a DNN characteristic where the individual variable significance for the
correct output decision is moderated and the decision is generated through the collective contribution of variables.

176



Random Dropout/Dropconnect

This technique is applied at training time by dropping layer weights, inputs, or outputs,

depending on the targeted dataflow type. We first generate a random mask tensor at each layer

where the mask shape is equal to the shape of the target tensor to which the Dropout/Dropconnect

is applied. We sample each mask entry from an independent Bernoulli distribution where the

probabilities for values 1 and 0 are p and 1− p, respectively. We element-wise multiply the target

tensor (X) with the generated mask (M) and propagate the masked version of the tensor (X̂) in the

forward pass, as demonstrated in Equation (10.1). Similarly, gradients are back-propagated only

to the variables that are not dropped in the forward pass and set to 0 for the dropped variables, as

in Equation (10.2). We generate unique masks for each mini-batch to cover different variable

subsets in the training process.

X̂ ← M ⊙ X (10.1)

∂Loss/∂X ← M ⊙ ∂Loss/∂ X̂ (10.2)

Hardware-Aware Dropout/Dropconnect

Random Dropout/Dropconnect reduces the saliency of individual variables, yet it often

falls short in the accurate characterization of the hardware bypass behavior. DNN computations

are performed by mapping variables in groups into the same computational fabric in a sequential

manner. Therefore, the variables mapped into a processing element at different time steps

are all affected by the bypassing of that unit. A more precise training approach thus requires

modeling the bypass behavior through independent random variables generated for the hardware

components and propagating them to the variables for accurate bypass effect characterization.

The mapping of the neural network computations into a systolic array is determined

statically at compile-time, and thus knowledge of a few micro-architectural parameters and the

177



utilized mapping algorithm often suffices to pinpoint the variables impacted by the bypassing

operations. First of all, the variable type that is pinned to the processing elements is pruned

as a result of hardware bypassing. Furthermore, if the systolic array shape and the details of

the mapping scheme are known beforehand, the variables that are pruned due to the bypassed

processing element can be identified deterministically through modulo arithmetic and simple

indexing operations.

To illustrate, let us assume a symmetric systolic array shape N×N where N indicates

the number of columns and rows in the systolic array. In the scope of this work, we utilize

simple mapping schemes for weight-stationary, input-stationary, and output-stationary dataflows

that generalize well to both fully connected and convolutional layers. The weights of the fully

connected layer can be represented with a tensor of shape Co×Ci, where Co and Ci denote the

output and input dimension sizes. A tensor of shape Co×Ci× Sw× Sw is considered for the

convolution layer weights, where Co, Ci, and Sw are the output channel, input channel, and spatial

dimension size of the weight tensors, respectively. In the weight-stationary dataflow, each neuron

or convolution filter is mapped into a systolic array column by tiling the weight tensors in the

output and input dimensions. As a result, the column and row indices (in the given order) of the

mapped processing element (PE) for each weight could be identified through Equation (10.3)

where co and ci are the output and input dimension indices of the weight variable in the fully

connected and convolutional layers:

PE(co,ci) = (co%N, ci%N) (10.3)

The fully connected layer input is represented by a tensor of shape B×Ci, where B is the

batch size. Assuming the spatial dimension size of the input is Si in a convolutional layer, the

convolutional layer input is defined by a tensor of shape B×Ci×Si×Si. In the input-stationary

dataflow, each batch index can be mapped into a systolic array column by tiling the input tensor

in the batch and input dimensions. Assuming b and ci signify the batch and input dimension
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indices of an input variable, the column and row indices of the mapped processing element can

be determined through Equation (10.4) in the fully connected and convolutional layers:

PE(b,ci) = (b%N, ci%N) (10.4)

A similar formulation can be considered for the output-stationary dataflow with the

output tensors of shape B×Co and B×Co×So×So in the fully connected and convolutional

layers. So signifies the spatial dimension size of the convolutional layer output tensor. The

mapping process in the output-stationary dataflow can be performed by tiling the output tensor

in the output and batch dimensions and mapping neuron/filter outputs into unique systolic array

columns. If the output and batch dimension indices of an output variable are indicated by c0

and b, the column and row indices of the mapped processing element can be identified through

Equation (10.5) in the fully connected and convolutional layers:

PE(c0,b) = (c0%N, b%N) (10.5)

The process is visualized for a weight-stationary dataflow in Figure 10.3. Hardware-

Aware Dropout/Dropconnect first generates a hardware bypass mask of shape N×N consisting

of random variables sampled from a Bernoulli distribution. The bypassed unit is indicated with

the dashed lines in the example hardware mask in Figure 10.3-1. The hardware mask is then

utilized for the mask generation for DNN variables.

The weights of a fully connected layer can be represented in the form of a matrix, where

each column corresponds to the connections of a unique neuron. In Figure 10.3, we indicate

each neuron and its corresponding weight matrix column with a unique color. Each weight

entry is mapped to a single processing element in the weight-stationary dataflow, and when

the dimensions of the weight matrix are larger than the systolic array, the layer is processed

in multiple steps through the tiling of the weight matrix. For instance, the weight matrix in

Figure 10.3 needs to be divided into four tiles and processed subsequently. We replicate the

179



…

(1) PE Bypass 
Pattern Generation

(2) Bypass Effect 
Propagation

(3) Forward/Backward Pass

PE
PE PE

PE

…

We
igh

t M
atr

ix

Figure 10.3. Hardware-Aware Dropconnect in weight-stationary dataflow.

hardware bypass mask to mimic the tiling behavior in the DNN mapping process and obtain a

mask tensor with the same shape as the target DNN tensor. The mask tensor obtained through the

replication process may need to be cropped if the tiled dimensions of the target neural network

tensor are not an integer multiple of the corresponding systolic array dimension. As a result of

bypass effect propagation (Figure 10.3-2), the weight entries that are mapped to the bypassed

processing element at each tile are pruned. The pruned weight entries are indicated with the

dashed lines both on the weight matrix and the neuron connection diagram. The outlined mask

generation process results in perfectly correlated pruning behavior for neural network variables

that are mapped to the same processing element, and thus aligns with the actual hardware

behavior more accurately. After mask generation, the training process is carried out with the

dropped connections through steps similar to Random Dropout/Dropconnect in terms of the

forward and backward pass behavior.

10.3.3 Calibrating Statistical Properties of Faulty DNNs

Batch normalization is abundantly used in modern DNNs due to its benefit of accelerating

training convergence. Furthermore, batch normalization is shown to be essential for training
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deep architectures and particular DNN types such as BNNs (binary neural networks) [212].

Batch normalization improves the training process stability of deep neural networks

against input distribution shifts; however, it utilizes pre-profiled mean and variance values at

inference time instead of computing the batch statistics from the inference examples. As a

result, deep neural networks with batch normalization layers are not immune to distribution

shifts at inference time and are bound to suffer accuracy loss if the batch statistics differ from the

pre-profiled values.

A distribution shift is likely to occur in the case of bypassed hardware components

since dropping neural network variables will inevitably alter the layer output distribution. The

consequent deviation from the pre-profiled batch statistics could thus incur a significant accuracy

loss in the bypassed hardware fabrics if the pre-profiled statistics from training are used for

normalization in the inference phase. The outlined problem is particularly exacerbated in the

weight-stationary architectures since weight tensor alterations will impact all layer outputs in the

inference batch and distort batch statistics more drastically.

This problem can be remedied to a great extent by calibrating batch normalization

statistics on the embedded device with bypassed processing elements. The calibration process

can be accomplished by running inference on a small set of examples on the faulty accelerator,

extracting the mean and variance values for the outputs of each neuron or the convolution filter

through a cumulative moving average (Equations 10.6-10.7), and replacing the old pre-profiled

values with the newly obtained statistics. In Equations 10.6-10.7, µglobal and σ2
global indicate the

updated cumulative statistics in the calibration process, µB and σ2
B signify the statistics of the

current batch, and n corresponds to the current mini-batch index in the inference process.

µglobal = µB/(n+1)+(n ·µglobal)/(n+1) (10.6)

σ
2
global = σ

2
B/(n+1)+(n ·σ2

global)/(n+1) (10.7)
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While using more examples in the calibration process provides higher confidence in the

estimation of these statistics, we observe that a small number of examples (i.e., a few mini-

batches that consist of a few hundred examples in total) often suffice in boosting accuracy to the

highest possible level. The outlined process does not require costly device-specific training on

the cloud and is performed on the embedded device without necessitating hardware extension.

10.3.4 Searching for Benign Pruning Patterns

The wide variation between the saliency of deep neural network variables can be alleviated

through training with Dropout/Dropconnect, yet muted differences could still persist to a degree

in the obtained deep neural network models. As a result, the final accuracy of a neural network

could vary somewhat depending on which neural network variables are impacted as a result of

the hardware bypassing operations.

The computational regularity and the parallelism of deep neural networks afford compu-

tational rearrangement through their permutational invariants. The order of neurons in a fully

connected layer can be rearranged by permuting the output dimension of the weight matrix. This

modification requires rearrangement in the input connections of the subsequent layer to ensure

computational correctness, which can be achieved by applying the same rearrangement pattern

to the input dimension of the weight matrix in the next layer. A similar modification can be

applied in the convolutional layers by permuting the output channel dimension of convolutional

layer weights and implementing the same rearrangement to the input channel dimension of the

weights in the subsequent layer.

While the described neuron/filter permutations result in mathematically equivalent for-

mulations and deliver consequently the same accuracy under a fault-free scenario, they are bound

to yield diverse pruning effect manifestations and thus lead to divergent accuracy values on a

systolic array with fixed bypassed processing element locations.

The outlined property allows us to boost accuracy by searching among neuron/filter

permutations to pinpoint configurations where the effect of the systolic array bypass pattern is
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less damaging to accuracy. On the other hand, such a permutation space is often quite large in

practice, and measuring the accuracy of each candidate imposes a prohibitive cost. Alternatively,

accurate candidates can be identified by optimizing a proxy cost function, such as minimizing

the overall norm of the variables that map into the faulty processing elements [118], yet the

optimization of even such proxy functions may not be a trivial task within the resource constraints

of an embedded device. In addition, a flexible rearrangement mechanism that can instantiate all

feasible permutations could be costly to implement on an embedded accelerator.

In light of these, we propose a lightweight approach to enable an embedded DNN

accelerator to evaluate a small subset of such permutations, and boost system accuracy by

circumventing particularly detrimental pruning manifestations. The proposed method involves

shifting the weight tensors of each fully connected and convolutional layer diagonally in the input

(channel) and output (channel) dimensions. For a systolic array with shape N×N, this approach

provides N distinct permutations that yield unique pruning effect manifestations before starting

to repeat in modulo N for shift amounts larger than N. Figure 10.4 illustrates the diagonal shift

operation with two different pruning manifestations for a 2×2 weight-stationary systolic array.

The configuration with the highest accuracy could then be selected to improve overall accuracy.

The diagonal shift mechanism guarantees correct execution since the same permutation

pattern is applied to both the input and the output dimensions of the weight matrices at every layer.

Furthermore, this technique can be implemented through a shifted indexing mechanism while

fetching weight tensors from memory; it neither requires dedicated hardware nor introduces

irregularity in the memory accesses. Finally, shifting weight tensors diagonally leads to a similar

amount of shift in the single dimension of the layer input and output tensors and thus produces a

similar desired outcome in the input-stationary and output-stationary dataflows.

Overall, an embedded DNN accelerator can quickly test N shifted weight tensor permuta-

tions on a small set of labeled examples to identify the configuration with the highest accuracy.

The input examples used for calibrating batch normalization layers could again be employed to

measure the accuracy of each configuration without necessitating additional data.
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Figure 10.4. Diagonal shift operation in weight-stationary dataflow.

10.4 Experimental Method

Our analysis focuses on permanent faults in the processing elements. We model perma-

nent fault effects on the module level by following the practice of [79, 80, 93, 118]. The term

PE Bypass Rate indicates the percentage of processing elements with at least a single fault. We

generate PE fault (i.e., bypass) patterns as a set of Bernoulli random variables of shape N×N,

where the fault probability is independent for each PE and controlled by the PE bypass rate.

We assume that conventional manufacturing tests or built-in self-test capabilities are utilized

to identify faulty processing elements, and that their impact is mitigated through the bypass

mechanisms.

We utilize a variety of DNN models in our experimental analysis, including an MLP

(multilayer perceptron) model with 3 hidden layers on the MNIST dataset [211] (layer sizes are

set to 784-256-256-256-10 as in [79]), ResNet-32 model [13] on the CIFAR-10 dataset [207],

and ResNet-44 model [13] on the CIFAR-100 dataset [207]. We train 7 different neural network

versions for each listed benchmark: a baseline model with no Dropout/Dropconnect, a pair of
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models for the weight-stationary dataflow with Random and Hardware-Aware Dropconnect, a

pair of models for the input-stationary dataflow with Random and Hardware-Aware Dropout at

the layer inputs, and finally a pair of models for the output-stationary dataflow with Random and

Hardware-Aware Dropout at the layer outputs. We utilize the same number of training epochs

for all neural network versions on the same benchmark, namely, 100 epochs for the MLP and

200 epochs for the ResNet models.

The value representing the probability of being present in Dropout/Dropconnect, p, is set

to the same value for all 6 neural network versions trained with Dropout/Dropconnect on the

same benchmark. Namely, p is set to 0.5 for the MLP (MNIST), while being set to 0.9 for both

the ResNet-32 (CIFAR-10), and the ResNet-44 (CIFAR-100) benchmarks. We assume a typical

systolic array size of 16×16 and utilize the mapping schemes described in Section 10.3.2 while

modeling the Hardware-Aware Dropout/Dropconnect behavior.

We implement the previous state-of-the-art techniques, fault-aware pruning and fault-

aware pruning + training [79], by pruning neural network variables from the baseline model

to model the impact of hardware bypassing operations and fine-tuning the pruned model for

each underlying fault pattern for 10% of the epochs that are used in the initial training process.

The analysis in [79] is proposed only for the weight-stationary dataflow, yet the generalized

implementation of these methods to input-stationary and output-stationary dataflows is relatively

straightforward.

A small subset of 320 training images (i.e., 5 mini-batches of 64 examples) is utilized in

all benchmarks for calibrating batch normalization statistics and searching for benign pruning

patterns through the diagonal shifting of the weight tensors. The calibration of batch normal-

ization statistics is not necessary for the MLP model due to the absence of batch normalization

layers. In addition, we avoid batch normalization layer calibration in the input-stationary and

output-stationary dataflows because neural networks can accommodate a certain amount of

variation at the layer inputs and outputs gracefully; thus, the benefits of batch normalization layer

calibration are observed to be minimal.
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Finally, we provide a detailed hardware analysis by implementing the bypass logic in the

processing elements with different input (8-bit fixed-point, 32-bit floating-point) and dataflow

types. The hardware area, power, and delay impact are characterized through logic synthesis

experiments at the 1 GHz target frequency and with the 15 nm technology libraries.

10.5 Experimental Results

10.5.1 Resilience to Processing Element Bypassing

We evaluate the resilience of trained DNNs by measuring their accuracy under different

processing element bypassing rates. The results are presented in Figures 10.5-10.7 for the

weight-stationary, input-stationary, and output-stationary dataflows.

FP (Fault-Aware Pruning) [79] indicates the case where bypassing affects a baseline

model with standard training. FP+T (Fault-Aware Pruning + Training) [79] adds on a fine-tuning

process to the previous approach by individually training each pruned model (10% of the initial

training epochs) to recover accuracy. It bears noting that the training step in FP+T needs to be

performed for each faulty embedded accelerator device with a unique hardware defect pattern.

We present up to 4 distinct results to showcase the effectiveness of the proposed techniques. First,

a deep neural network model with RDT (Random Dropout/Dropconnect Training) is subjected to

the bypassing effect of the faulty processing elements. A similar experiment is also repeated

with HDT (Hardware-Aware Dropout/Dropconnect Training). In the case of DNNs with batch

normalization in the weight-stationary dataflow, we improve the result of HDT by calibrating

batch normalization layers and report the improved accuracy with the label HDT+BNC (Batch

Normalization Calibration). Finally, the results obtained both for HDT+BNC, and for HDT

in the absence of batch normalization calibration, are improved further by testing 16 different

diagonally shifted versions of the weight tensors (for 16× 16 systolic array) and identifying

the shift amount with the highest accuracy. The highest accuracy is reported with the label

HDT+(BNC)+DS (Diagonal Shift).
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Figure 10.5. Resilience to bypass operations in weight-stationary dataflow.

The height of the bar charts and the annotation labels in Figures 10.5-10.7 indicate the

mean accuracy values obtained through 10 independent trials with different hardware defect

patterns. The observed minimum/maximum values in these trials and the 95% confidence interval

for the mean are indicated with the black and red error bars, respectively.

Our results indicate that FP (Fault-Aware Pruning) implemented through bypassing

could retain competitive accuracy only at low bypass rates. FP could result in significantly

divergent accuracy values depending on the location of the impacted variables, particularly in

the case of weight-stationary dataflow. The observed significant accuracy differences across the

trials underscore the expected saliency variance among variables in the standard DNNs.

The training step in FP+T (Fault-Aware Pruning + Training) could be effective in

restoring competitive accuracy levels after bypassing in weight-stationary architectures. However,

the complete restoration of the original accuracy may not always be feasible since the pruning

impact on the weights could exceed the levels that can be remedied entirely in a limited number

of training iterations. The feasibility of this approach is further limited in practice since it

requires a unique training process for each device with a unique defect pattern. For example, the
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Figure 10.6. Resilience to bypass operations in input-stationary dataflow.

fine-tuning process with 10% of the initial training epochs for only 10 faulty accelerator devices

will incur a computational cost that matches the initial training. As a result, the cost model of

FP+T could quickly reach prohibitive levels in the case of cost-sensitive embedded devices.

The effectiveness of FP+T is limited in input-stationary and output-stationary architec-

tures, resulting in accuracy being unable to be sufficiently restored with the fine-tuning budgets

allocated for the weight-stationary designs. The difficulty of fine-tuning in input-stationary

and output-stationary dataflows stems from the particularities of the hardware bypassing effect

manifestation in these architectures. Training examples only with particular batch indices will be

affected from a bypassed processing element (as detailed in Equations 10.4-10.5), and thus the

number of effective fine-tuning epochs to compensate for the contribution of a bypassed unit

diminishes by a factor that equals the batch size. The outlined problem can be alleviated by

increasing the number of training epochs, yet this will exacerbate the training cost even further.

Training with RDT (Random Dropout/Dropconnect Training) improves model decen-

tralization and delivers consistent and significant accuracy improvements (up to 67.44%) in the

bypassed computational fabrics when compared to baseline models in FP. However, RDT could
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Figure 10.7. Resilience to bypass operations in output-stationary dataflow.

introduce a noticeable reduction in fault-free accuracy when the probability p of being present is

not set sufficiently high in more challenging benchmarks such as ResNet-44 (CIFAR-100).

HDT (Hardware-Aware Dropout/Dropconnect Training) requires minimal additional

information related to systolic array size and the utilized neural network mapping scheme, and it

offers two fundamental advantages compared to RDT. First, by modeling the hardware bypassing

effects more precisely in the training process, it provides a much more graceful accuracy degrada-

tion even when a large portion of the processing elements are bypassed due to hardware defects.

DNNs trained with HDT suffice in delivering competitive accuracy values in the bypassed

input-stationary and output-stationary fabrics without necessitating any additional measure.

Second, the impact of HDT on error-free model accuracy is observed to be less noticeable than

RDT. While dropping each variable independently in RDT minimizes co-adaptation [59], it

could further negatively influence the error-free accuracy when the neural network capacity

is limited in a given benchmark. The number of independent variables that control the drop

patterns is limited in the case of HDT (i.e., as many as the number of processing elements),

and the dropping behavior of the variables that map to the same processing element is perfectly
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correlated. The group-wise control of the variables in the dropping process is observed to provide

more expressiveness when compared to the case where the variables are individually controlled.

As a result, the impact of HDT on error-free accuracy is observed to be often positive due to

its regularization effect, and the accuracy loss does not exceed 0.92% even in the worst case.

The minimal negative impact on the error-free accuracy loss could be eliminated by training a

few neural networks with diverse values of p, and deploying the proper version of the model in

accordance with the defect rate of the individual device to maximize accuracy.

An interesting phenomenon related to batch normalization layers is observed in the

weight-stationary dataflow. In DNNs with batch normalization layers, the weight pruning as a

result of hardware bypassing could alter layer output statistics and result in noticeable accuracy

loss even for models with HDT. Nevertheless, the observed accuracy drop is often not caused by

a permanent information loss and thus can be ameliorated through the cost-effective calibration

of the batch normalization statistics. As a result, an accuracy improvement of up to 26.82%

is observed in HDT+BNC results when compared to HDT. The outlined problem is primarily

experienced for DNNs with batch normalization in the weight-stationary dataflow, and thus

HDT+BNC results are reported only in these cases.

The accuracy values of HDT, or whenever applicable HDT+BNC, could be further

improved (up to 3.66%) and the accuracy deviation between different fault manifestation patterns

can be reduced in HDT+(BNC)+DS results by evaluating 16 diagonally shifted versions of the

weight tensors and selecting the configuration with the highest accuracy.

Overall, a one-time training with Hardware-Aware Dropout/Dropconnect, coupled with

on-device calibration techniques, could assure consistently high accuracy even at extreme bypass

rates. The average accuracy loss does not exceed 0.61% in MLP (MNIST) at 50% bypass rate

(∼128 out of 256 PEs), 1.60% in ResNet-32 (CIFAR-10) at 10% bypass rate (∼26/256 PEs), and

2.13% in ResNet-44 (CIFAR-100) at 5% bypass rate (∼13/256 PEs). The proposed approach

consistently outperforms the expensive FP+T by a significant margin without necessitating

costly device-specific training.
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Table 10.1. Area and power overheads of the bypass logic.

Area Overhead Power Overhead
(%) (%)

Fixed-Point WS / IS 7.087 5.357

(8-bit) OS 4.003 2.273

Floating-Point WS / IS 0.788 0.495

(32-bit) OS 0.520 0.216

The resilience characteristics in Figures 10.5-10.7 could readily be translated into yield

improvements by salvaging a larger number of defective DNN accelerators for commercial

benefit, and when paired with periodic testing techniques, are expected to increase the operational

lifetime of DNN hardware against aging effects by allowing higher defect accumulation counts.

10.5.2 Hardware Overhead Analysis

Table 10.1 outlines the area and power overheads of the bypass mechanisms. We present

a single set of results for the input-stationary and weight-stationary architectures due to their

identical processing element and bypass mechanism designs.

The largest area and power overheads hover around 7.09% and 5.36% in the case of

8-bit fixed-point weight/input-stationary processing elements. The bypassing overheads in

output-stationary designs are up to 43.5% smaller in terms of area and 57.6% smaller in terms

of power when compared to the weight/input-stationary dataflows as they can be implemented

through AND gates instead of 2-to-1 multiplexers. The area and power overheads in the 32-bit

floating-point processing elements are observed to be up to 9.0× and 10.8× smaller respectively

when compared to the 8-bit fixed-point designs due to the larger footprint of floating-point units.

We further perform a timing analysis by measuring the longest path delay in the original

and modified processing elements at 1 GHz target frequency. Our experimental results indicate

that the bypass modifications have a negligible delay increase of up to 2.2% in the worst case.
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The minimal timing impact is consistent with the expectations since the bypass logic introduces

an additional 1-2 (2-input) gate delay due to the required 2-to-1 multiplexers in weight/input-

stationary or (2-input) AND gates in output-stationary architectures. In summary, the hardware

overhead results demonstrate that the bypass mechanisms can be embedded into the processing

elements at minimal cost in practical designs.

10.6 Chapter Summary

The joint consideration of hardware micro-architecture and neural network characteristics

unlocks novel opportunities to address reliability problems in deep learning accelerators. We

tackle hardware defects and maintain neural network accuracy by circumventing the impact of

faulty hardware components, boosting neural network decentralization proactively through one-

time training with Hardware-Aware Dropout/Dropconnect, and complementing such design-time

modifications with cost-effective on-device calibration and reconfiguration techniques. Overall,

this chapter presents effective strategies and a practical design flow for boosting the reliability

and operational lifetime of embedded deep learning accelerators in a proactive manner.
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Chapter 11

Searching for Information Redundancy in
DNNs

Taming the computational cost of DNNs (deep neural networks) has focused on first-

order techniques, such as eliminating numerically insignificant neurons/filters through numerical

contribution metric prioritizations, yielding passable improvements. Nevertheless, redundancy in

DNNs extends well beyond the limits of numerical insignificance. Modern DNN layers exhibit

a significant correlation among output activations; hence, the number of extracted orthogonal

features at each layer rarely exceeds a small fraction of the layer size. The exploitation of this

observation necessitates the quantification of information content at layer outputs. To this end,

we employ practical data analysis techniques coupled with a novel feature elimination algorithm

to identify a minimal set of computation units that capture the information content of the layer

and squash the rest. Linear transformations on the subsequent layer ensure accuracy retention

despite the removal of a significant portion of the computation units. The proposed approach in

this chapter, in addition to delivering results overwhelmingly superior to hitherto promulgated

heuristics, furthermore promises to spearhead the design of more compact deep learning models

through an improved understanding of DNN redundancy.
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11.1 Introduction

Structured pruning algorithms listed in Section 3.2.1 target all parameters in a neuron

or convolution filter. The removal of an entire neuron or filter does not exacerbate irregular

sparsity; therefore, the advantages can be reaped in any hardware platform with no demands

on further memory compression or specialized hardware to skip computations. Nevertheless,

structured pruning algorithms often lead to significant accuracy loss and necessitate onerous

fine-tuning (re-training) steps to retrieve baseline accuracy levels. The sub-optimal decisions

of a pruning algorithm can be minimized when it is applied iteratively with each timid pruning

step immediately followed by re-training, yet this approach could incur significant costs in

terms of time and computational resources. In contrast, a more comprehensive identification

of DNN redundancy would enable precise redundancy removal methods, reduce the need for

extensive fine-tuning steps, and thus facilitate the deployment of DNNs in resource-constrained

applications at a minimal cost.

Structured pruning techniques in Section 3.2.1 rank the neurons or filters through various

importance ranking heuristics and target the units with the smallest contribution to DNN decisions

to minimize the impact on model accuracy. As conventional structured pruning algorithms

analyze the importance of the computation units, their analysis is restricted to an individual unit

and fails to consider relationships among the units. A computation unit might seem essential

when it is independently evaluated (i.e., due to its output contribution), yet its role might prove

redundant when assessed within a group of computation units.

Let us clarify this argument with a somewhat simplistic yet motivational illustration. A

botanical researcher gathers various types of measurements (temperature, humidity, altitude, and

vegetation density) to determine an ideal location for a plant species. After observing that the

altitude data exhibits low variance, the researcher discards the altitude data since it hardly delivers

any useful information in the comparison. A careful investigation of the data furthermore reveals

that temperature readings are strongly correlated with vegetation density, with the possible
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Figure 11.1. Pairwise output correlation magnitudes in a convolutional layer.

explanation of another non-measured variable, say the level of sunlight, affecting both. Although

both variables are individually essential, the researcher ends up choosing only one of them

since neither of the measurements provides significant additional information over the other.

Analogously, if there are computation units with correlated outputs in a DNN layer, only a subset

of the units should suffice to maintain the information content. The remaining units could be

eliminated with minimal impact on accuracy if their magnitude contribution is properly expressed

by the subset.

11.2 Information Redundancy in DNN Activations

While one could envision investigating the pairwise correlations among convolution

filter outputs, as in Figure 11.1 for the first layer of VGG-16 [222] model trained on CIFAR-10

[207], relying solely on this approach fails to provide a complete picture of the redundancy since

linear relationships can involve multiple computation units. We can characterize information

redundancy more comprehensively by considering the computation unit output as a distinct

vector for a set of predictions, and then identifying a minimal set of orthogonal base vectors that

span the utilized layer output space.

Let us assume there are nl computation units in layer l. We refer to the term computation
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unit to signify a neuron in the fully connected layers or a filter in the convolutional layers. We

consider the outputs of a fully connected layer (after the non-linear activation function) as a

two-dimensional matrix Anl×m where m is the number of examples that the inference is performed

on. We restrict our analysis to fully connected layer outputs for simplicity; however, a similar

analysis also applies to convolutional layers if each output feature map channel is flattened along

the temporal dimension, forming a two-dimensional matrix where each row is allocated to the

outputs of a single channel. If there are linear dependencies between the rows of Anl×m, the

activation matrix could be reduced into a smaller matrix with n′l orthogonal rows through linear

transformations.

While n′l can be easily determined through the Gram-Schmidt orthogonalization [223]

process, a rigid elimination approach will deliver a minor reduction in the number of rows at best.

The process will discard the row only if it exactly equals a linear combination of the other rows,

yet such a condition is hard to satisfy for a matrix Anl×m when m≫ nl plagued by the presence

of small numerical deviations.

A well-known data analysis tool, PCA (Principal Component Analysis) [206], seamlessly

handles the effect of such inaccuracies. PCA expresses the input data with a smaller set of

orthogonal variables that are known as principal components, which are ranked by the variance

they explain in the data. As a preliminary analysis tool, we apply PCA to output activations and

determine the minimum number of principal components that explain a certain amount of the

output variance to assess the information redundancy in each layer.

Figure 11.2 presents the number of principal components that explain 95% of output

variance in the layers of two DNNs: the LeNet-5 model trained on the MNIST dataset [211],

and VGG-16 [222] trained on the CIFAR-10 dataset [207].11 We observe that the rate of utilized

output dimensions rarely exceeds 60% for LeNet-5 or 75% for VGG-16, excluding output

layers. Moreover, certain convolutional and almost all fully connected layers are heavily under-

11The following convention is used to indicate layer types in Figure 11.2: C - convolutional layer, F - fully
connected layer.
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Figure 11.2. Layer output utilization in (a) LeNet-5 (on MNIST) and (b) VGG-16 (on
CIFAR-10) architectures.

utilized. For instance, two hidden fully-connected layers in VGG-16 of 4096 neurons each end

up having 95% of their output variance approximated by a rather minuscule number of principal

components, namely 8 in one and 9 in the other. The utilization rates indicate an information

redundancy; thus, the proper layer transformations could drastically reduce the model size and

the inference costs with minimal impact on accuracy.

11.3 Squeezing DNN Correlations with Feature Elimination

11.3.1 Method Description

Principal component analysis extracts a set of useful features from a set of observed

variables. Nevertheless, the generated principal components are not directly useful for the

computation unit elimination problem since the principal components can not be directly affiliated

with a single computation unit. We design a novel algorithm to address this issue. We first

construct an approximated orthogonal base for the layer output space by following a procedure

closely related to Gram-Schmidt orthogonalization. Second, we utilize the orthogonal base to

determine a minimal subset of computation units that can span the utilized output space. We

conclude with the elimination of the remaining units and form a transformation matrix that will

properly update the weights of the subsequent layer so that the magnitude contribution of the

eliminated units can be retained.
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We have already designated the activations produced by layer l as a matrix Anl×m. We

denote a particular row of A as A⃗i where 1≤ i≤ nl . Let us define a few more quantities before

proceeding into the details of the algorithm. The variance of each row could be calculated as

follows:

σ
2
(A⃗i)

:=
1
m

m

∑
j=1

(Ai, j−µ(A⃗i)
)2 (11.1)

In (11.1), σ2 denotes the variance and µ represents the mean value of the row. The

average row variance of Anl×m can be calculated through (11.2):

σ
2

avg :=
1
nl

nl

∑
i=1

σ
2
(A⃗i)

(11.2)

We aim to find an approximated orthogonal base Un′l×m := [U⃗1,U⃗2, ...,U⃗n′l
] for Anl×m :=

[⃗A1, A⃗2, ..., A⃗nl ]. A modified version of the Gram-Schmidt orthogonalization can be utilized for

this purpose as detailed subsequently.

As a first step, we check to see if the first row of the original activation matrix contains

sufficient variance through the condition in (11.3) where δ is a non-negative experimental tuning

coefficient that controls the approximation level in the Gram-Schmidt orthogonalization process:

δ ·σ2
avg ≤ σ

2
(A⃗1)

(11.3)

If (11.3) is satisfied, we set A⃗1 as the first vector in the orthogonal base (11.4):

U⃗1 := A⃗1 (11.4)

In the second step, we need to extract the sub-component of A⃗2 that is orthogonal to

U⃗1. We first project A⃗2 onto U⃗1, then subtract the projection from A⃗2 to obtain the orthogonal

component R⃗:
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R⃗ := A⃗2− pro j(U⃗1)
(A⃗2) = A⃗2−

(A⃗2 ·U⃗1)

(U⃗1 ·U⃗1)
U⃗1 (11.5)

If R⃗ contains sufficient variance (11.6), we include it in the orthogonal base (11.7):

δ ·σ2
avg ≤ σ

2
R⃗ (11.6)

U⃗2 := R⃗ (11.7)

Similar steps could be carried with the remaining rows of A by calculating the sub-

component of the current row that is orthogonal to the base vectors obtained so far (11.8),

and finally including the remaining vector R⃗ in the orthogonal base (11.9) if it still meets the

constraints of sufficient variance expressed in Eqn. (11.6). In Eqn. (11.8), each projected

component can be subtracted from A⃗i independently since the projected components are also

orthogonal.

R⃗ := A⃗i−
size(U)

∑
k=1

pro j(U⃗k)
(A⃗i) = A⃗i−

size(U)

∑
k=1

(A⃗i ·U⃗k)

(U⃗k ·U⃗k)
U⃗k (11.8)

U⃗size(U)+1 := R⃗ (11.9)

It should be noted that the proposed algorithm behaves identically to standard Gram-

Schmidt orthogonalization when δ = 0, and the level of approximation increases with the

increasing values of δ .

Through the steps outlined, we construct an approximate orthogonal base Un′l×m :=

[U⃗1,U⃗2, ...,U⃗n′l
] where n′l ≤ nl . Since U is an approximate orthogonal base for A, a linear

transformation can construct the approximated version of A from U as in (11.10):
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Anl×m ≈Cnl×n′l
×Un′l×m (11.10)

We refer to matrix C as the composition matrix. The composition matrix can be calculated

by multiplying both sides of (11.10) with the right inverse of Un′l×m:

Anl×m× (Un′l×m)
−1 ≈Cnl×n′l

×Un′l×m× (Un′l×m)
−1 (11.11)

Cnl×n′l
:≈ Anl×m× (Un′l×m)

−1 (11.12)

Since the rows of Un′l×m are orthogonal, Un′l×m is easily right-invertible by merely taking

the transpose of Un′l×m and normalizing each column with the square of its magnitude. Un′l×m

and Cnl×n′l
share similarities with the Q and R matrices in QR factorization [223], yet the process

subtly differs in that the described factorization is approximate, and the base vectors in Un′l×m

are not normalized.

As a next step, we define another matrix Ãn′l×m that consists of the subset of the rows of

the original activation matrix Anl×m that deliver a distinct vector to Un′l×m after the projections

(i.e., the rows in which (11.6) holds). The reduced form of (11.10) holds for Ãn′l×m if the row

indices selected to construct Ãn′l×m are also chosen in the composition matrix to form the reduced

composition matrix C̃n′l×n′l
:

Ãn′l×m ≈ C̃n′l×n′l
×Un′l×m (11.13)

We extract Un′l×m by left-multiplying both sides with (C̃n′l×n′l
)−1:

(C̃n′l×n′l
)−1× Ãn′l×m ≈ (C̃n′l×n′l

)−1×C̃n′l×n′l
×Un′l×m (11.14)
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Figure 11.3. Relationships among the derived matrices.

Un′l×m ≈ (C̃n′l×n′l
)−1× Ãn′l×m (11.15)

Being a triangular matrix with no zero diagonal entries due to the orthogonalization

process, C̃n′l×n′l
is always invertible. We embed Un′l×m in (11.10) to obtain:

Anl×m ≈Cnl×n′l
× (C̃n′l×n′l

)−1× Ãn′l×m (11.16)

We refer to Tnl×n′l
:=Cnl×n′l

× (C̃n′l×n′l
)−1 as the transformation matrix, thus simplifying

(11.16) to (11.17):

Anl×m ≈ Tnl×n′l
× Ãn′l×m (11.17)

We have so far formulated multiple different matrices in our derivation. As a summary,

we have visualized the relationships among the derived matrices in Figure 11.3.

Tnl×n′l
captures an information essential to our algorithm. It enables us to produce Ãn′l×m

instead of Anl×m in the current layer by eliminating nl − n′l computation units. We can still

approximately construct Anl×m by multiplying with the transformation matrix Tnl×n′l
. Although it
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seems to create an additional computation stage at first glance, the matrix Tnl×n′l
can be seamlessly

merged with the subsequent layer thus further reducing the memory and computational costs

of the subsequent layer since multiplication with the transformation matrix and the subsequent

layer operations are essentially two subsequent matrix-multiplication steps. In detail, the next

layer has a weight matrix Wnl+1×nl and biases Bnl+1×1. It accumulates pre-activations through

(11.18) where the biases are broadcasted into rows:

Znl+1×m := (Wnl+1×nl ×Anl×m)+Bnl+1×1 (11.18)

We can embed (11.17) into (11.18) to obtain:

Znl+1×m ≈ (Wnl+1×nl ×Tnl×n′l
× Ãn′l×m)+Bnl+1×1 (11.19)

As a final step, we multiply Wnl+1×nl and Tnl×n′l
to obtain a reduced weight matrix W̃nl+1×n′l

that operates on the remaining computation unit outputs (11.20):

Znl+1×m ≈ W̃nl+1×n′l
× Ãn′l×m +Bnl+1×1 (11.20)

As a result of these design-time modifications, the subsequent layer accumulates approxi-

mately close partial sum values even though the majority of the computation units have been

eliminated in the current layer. It reduces the number of parameters and multiply-accumulate

operations by a factor of n′l/nl in both layers and translates into remarkable memory footprint

and performance improvements when this optimization is applied to all layers throughout the

network. As a summary, we visualize the weight matrix update process in Figure 11.4.

The process could be naturally extended to convolutional layers as well. First, the spatial

dimensions of the 4-dimensional output feature map (Anl×s×s×m) need to be flattened along

the temporal dimension to form a 2-dimensional input activation matrix (Anl×s·s·m) where each

row contains the outputs of a single channel, and s is the spatial dimension size of the feature
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Figure 11.4. Weight matrix update process in the subsequent layer.

map. The described steps could be carried out similarly to extract the transformation matrix

(T ). Finally, the modifications on the subsequent convolutional layer could be performed by

first flattening the 4-dimensional weight tensor into two dimensions (e.g., from Wnl+1×r×r×nl to

Wnl+1·r·r×nl where r is the spatial dimension size of the filter) so that all dimensions except the

input channel dimension are merged12, multiplying with the transformation matrix, and then

un-flattening the resulting weight matrix rows back into the original dimensions to form the

updated weight tensor (Wnl+1×r×r×nl′ ).

11.3.2 Practical Analysis of the Algorithmic Complexity

The initial stage of our algorithm consists of the Gram-Schmidt orthogonalization process,

which scales linearly with m and quadratically with the layer size (nl), thus incurring total

complexity of O(m×nl
2). The derivation of the composition matrix (Cnl×n′l

) through the iterative

matrix multiplication algorithm also requires O(m×nl
2) complexity since n′l is bounded by nl

in the worst case. The derivation of the inverse-reduced composition matrix (C̃n′l×n′l
)−1 (with

Gauss-Jordan elimination [223]) and the derivation of the transformation matrix (with iterative

matrix multiplication) both incur O(nl
3) complexity. Finally, the update of the next layer’s

12The entries of each r× r weight tensor slice are stored in the subsequent locations in the flattened format.
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weight matrix through the iterative matrix multiplication requires O(nl+1×nl
2) complexity. In

total, the run-time complexity scales in the order of O((m×nl
2)+nl

3 +(nl+1×nl
2)) in theory

and frequently dominated by the first term in practice as m could be significantly large in certain

scenarios. The number of columns in the profiled activation matrix (m) depends on both the

number of predictions (linearly), as well as on the spatial dimensions of the output feature maps

(quadratically) due to the flattening process. The feature map channels are flattened before the

Gram-Schmidt process; therefore, an s× s feature map channel incurs s2 columns for a single

prediction in the profiled activation matrix (Anl×m).

The memory requirements depend on the size of the intermediate matrices used in the

calculations and thus scale in proportion with O((m× nl)+ nl
2 +(nl+1× nl)). The memory

complexity is largely dominated by the first term due to the large size of m in the case of

convolutions.

11.3.3 Relationship with Low-Rank Tensor Decomposition

The fundamental operating principles of the algorithm share similarities with low-rank

tensor decomposition techniques [161, 162, 163]. Let us explain this relationship on the fully

connected layer whose pre-activations are accumulated through (11.21):13

Znl×m :=Wnl×nl−1×Anl−1×m +Bnl×1 (11.21)

Tensor decomposition expresses the layer weight matrix as a product of multiple lower-

rank matrices. Girshick [161] decomposes the fully connected layer operation into two sequential

matrix multiplications through SVD (singular value decomposition) [223] as follows:14

Znl×m =Unl×nl′′ × (Snl′′×nl′′ (Vnl−1×nl′′ )
T ×Anl−1×m)+Bnl×1 (11.22)

13The formulation in (11.21) for the current layer resembles (11.18) that is constructed for the subsequent layer.
14S and V T are statically multiplied to form weight matrix SV T .
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If the number of utilized singular values (nl′′) is relatively small, tensor decomposition re-

duces the parameters and multiply-accumulate operations by a factor of (nl′′×(nl +nl−1))/(nl×

nl−1) in the target layer. Neurons in a fully connected layer extract features from the input data,

yet the derived output features may overlap, resulting in feature correlation and consequent fair

amount of redundant computations. Tensor decomposition allows a fully connected layer to

extract only a small set of orthogonal features from the data (since SV T is row-orthogonal). Then,

each neuron forms its pre-activations by taking a linear mixture of the extracted features through

the second matrix multiplication. Despite the benefits, the technique may introduce additional

latency because a single matrix multiplication is converted into two sequential ones.

Although Znl×m is constructed through a pre-determined linear combination of nl′′ or-

thogonal features, such information can not be directly utilized for elimination of the linearly

dependent rows because Anl×m is generated by processing Znl×m with a non-linear function

in the following step. Non-linear activation functions (i.e., tanh or ReLU) interfere with the

dependencies among pre-activation rows, yet certain linear properties are still preserved due to

the local (e.g., tanh) or piece-wise (e.g., ReLU) linear nature of these functions.

Our approach differs from the low-rank tensor decomposition in the following aspects:

First, we analyze the rows of Anl×m rather than the layer weights to account for the effect of the

non-linearity. Second, we carry out a feature elimination procedure rather than feature extraction

to be able to prune the computation units directly. As the magnitude contribution of the original

layer still needs to be constructed, we avoid any depth expansion by embedding this operation

into the next layer through weight updates. The procedure on the convolutional layers shares the

outlined similarities and differences with the tensor decomposition method presented in [163].

11.4 Experimental Method

We utilize three different DNN models with three distinct datasets for the experiments:

LeNet-5 on the MNIST dataset [211], VGG-16 [222] on the CIFAR-10 dataset [207], and
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ResNet-50 [13] on the ImageNet dataset [224]. Keras [202] with the TensorFlow [203] backend

is used to design the experiments. We train the LeNet-5 and VGG-16 base models from scratch

and use the pre-trained weights for ResNet-50. LeNet-5 and VGG-16 training is performed

with the SGD (Stochastic Gradient Descent) optimizer at a learning rate of 10−3 for 100 epochs.

Model weights are initialized with the Glorot uniform initializer [225], and biases initialized to

zeros. We utilize SCALE-Sim [62] to characterize the performance gains on a DNN accelerator

model similar to Eyeriss [166] through cycle accurate simulations. We conduct our experiments

on a moderate power desktop system with Intel i5-8600K (6 core) CPU (central processing unit),

32GB of memory, and NVIDIA GTX1060 (6GB) GPU.

The algorithm is tested with various algorithmic coefficients (δ ) to measure the accuracy

drop after one-shot elimination. The increasing values of δ result in more aggressive pruning

levels. The algorithmic coefficient further allows us to match accuracy and footprint graphs in

Section 11.5. The same pruning coefficient (δ ) is used for all layers in LeNet-5 and VGG-16.

ResNet-50 has four convolution layer groups where each layer contains the same number of

filters in a group. Scaling the δ coefficients by a constant for each group (i.e., k⃗ = [1,1.5,2,2.5])

helps to eliminate more filters from the layers with a large number of filters and maintains the

accuracy better for less redundant networks. In addition, we omit the pruning of the ResNet-50

layers that merge with the residual connections to avoid any dimension mismatch. We note

that the number of profiled examples (m) could be kept much smaller than the training set size

with no adverse effect on precision. For instance, while the entire training set is profiled in the

LeNet-5 experiments, we have profiled only 1000 training examples for VGG-16 and 500 training

examples for ResNet-50 to overcome computational complexity and memory bottlenecks. We

have also tried to down-sample the feature maps prior to flattening, yet forwent its adoption due

to a noticeable accuracy loss.

To ensure a fair comparison, we prune the same number of computation units at each

layer by utilizing the previously suggested pruning heuristics in the literature, namely, ranking the

neurons and convolution filters with L1 and L2 norms (Li et al. [135]), output statistics such as
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APoZ15 (Hu et al. [131]) and the standard deviation of the activations (described in Molchanov

et al. [134]). We include the results of random pruning and the LeNet-5 and VGG-16 models

trained from scratch (reduced network, initialized with [225]) for comparison.16 We report the

accuracy under various scenarios. First, we measure the accuracy after one-shot elimination

without any fine-tuning. We believe this is the most transparent metric to analyze the precision of

an elimination algorithm since the insufficiency of the heuristic can be easily disguised through

extensive fine-tuning.17 Second, we fine-tune the network with minimal training for 5 epochs for

LeNet-5 and VGG-16, and 0.1 epoch for ResNet-50, and then measure the accuracy. Third, we

train the network more comprehensively until there is no improvement in validation accuracy for

LeNet-5 and VGG-16, and 1 epoch18 for ResNet-50 before reporting the accuracy. We repeat

the experiments 10 times for LeNet-5, 5 times for VGG-16, and 1 time for ResNet-50 due to

run-time constraints, and report the corresponding average values. We reduce the learning rate

down to 10−6 during fine-tuning if necessary.

Our method may require low learning rates in fine-tuning because of the effect of the

weight transformations on the gradients. We report the number of parameters, inference MAC

(multiply-accumulate) operations, and execution (clock) cycles spent on the accelerator.

11.5 Experimental Results

The experimental results validate that our approach can dramatically shrink the DNNs

with minimal impact on accuracy. Linear layer transformations allow accuracy retention even

under extreme pruning scenarios, resulting in an extreme accuracy gap between our method

and the other compared heuristics, particularly before any fine-tuning. Figure 11.5 and Fig-

15Evaluated only on VGG-16 and ResNet-50 with ReLU activation function.
16We have also tried a gradient-based method outlined in [134]. Although the local approximation obtained

through the gradients is helpful in iterative pruning, it fails to produce satisfactory results of note when a significant
portion of the units is pruned in one shot. We have, therefore, excluded the results for the gradient-based approach.

17Unfortunately, this metric is rarely reported in prior literature.
18It requires ∼ 15 hours of computation time for ResNet-50.
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Figure 11.5. LeNet-5 accuracy drop (a) after one-shot pruning (b) after pruning + fine-tuning (5
epochs) (c) after pruning + fine-tuning (until no improvement).

ure 11.7(a)19 demonstrate that we can eliminate 70.0% of the LeNet-5 parameters in one-shot,

speed up the network by 2.2× on Eyeriss, and cause only a 3.9% accuracy loss without any

fine-tuning. We further reduce the number of network parameters by 87.0% at around 9.7%

accuracy loss with no fine-tuning while executing the network 3.7× faster. The best among the

compared heuristics (Activation Std.) results in more than 42.0% accuracy loss at the same point.

The highest accuracy difference between our method and the best of the heuristics even jumps to

as large as 36.5% before any fine-tuning at certain pruning rates. The network pruned with our

algorithm largely eradicates the accuracy loss after only a few epochs of fine-tuning (from 9.7%

to 0.8%), and outperforms the competing heuristics in accuracy with only one fifth the amount

of training when the networks are fine-tuned until accuracy improvement stops.

Figure 11.6 and Figure 11.7(b) demonstrate the performance of our method on VGG-16.

We eliminate 79.7% of the parameters in one pruning step, delivering a 3.4× speedup with only

a 1.8% accuracy loss and no fine-tuning. The comparison heuristics impair VGG-16 entirely

even at lower pruning rates by causing the network to be stuck at a constant prediction while our

accuracy loss is as small as 0.6% at the same pruning rate with no fine-tuning (79.4% accuracy

gap). Fine-tuning delivers marginal benefits for all methods in VGG-16, and the networks pruned

19Figure 11.7 demonstrates remaining network parameters, required MAC operations to perform inference, and
execution (clock) cycles spent on the accelerator.
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Figure 11.6. VGG-16 accuracy drop (a) after one-shot pruning (b) after pruning + fine-tuning (5
epochs) (c) after pruning + fine-tuning (until no improvement).

Figure 11.7. LeNet-5 (a) and VGG16 (b) hardware footprint after elimination.

with some of the other techniques can not even be re-trained after they have been completely

destroyed in the pruning stage. We observe a 55.3% accuracy gap between our method and the

closest heuristic even after the comprehensive re-training stage in the most aggressive pruning

case, as we eliminate 86.7% of the parameters and make the network 4.9× faster.

Our method further performs remarkably well on ResNet-50, as seen on Figure 11.8 and

Figure 11.9 even though model inherent redundancy is quite a bit lower relative to the previous

examples. The relative absence of redundancy challenges the removal of computation units

and accuracy retention with no fine-tuning. Yet we can still prune 21.3% of the parameters

and reduce prediction times by 22.4% at the cost of only 2.9% top-5 accuracy loss with no
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Figure 11.8. ResNet-50 accuracy drop (a) after one-shot pruning (b) after pruning + fine-tuning
(0.1 epoch) (c) after pruning + fine-tuning (1 epoch).

fine-tuning. The closest method, with a top-5 accuracy comparable to the top-1 accuracy of

the model pruned with our technique, diminishes top-5 accuracy by more than 19.2% at the

same point. The top-5 accuracy difference between our technique and the closest heuristic

surpasses 58.8% when no fine-tuning is applied, clearly demonstrating the superiority of our

technique in accuracy retention. When complemented with fine-tuning our approach reduces the

number of ResNet-50 parameters by 59.5% and multiply-accumulate operations by 52.7%; thus

performance is boosted 2.14× with only 12.5%, 4.7%, and 2.3% top-5 accuracy drop after 0.1,

1, and 10 epoch(s) of fine-tuning, respectively. More fine-tuning epochs are expected to reduce

the difference between the original and the pruned network further.

While fine-tuning does not significantly improve VGG-16 accuracy, reduced ResNet-50

models notably benefit from fine-tuning. It is relatively challenging to fine-tune the plain networks

without residual connections (e.g., VGG-16) as pruning creates information bottlenecks in certain

layers. Residual connections in ResNet-50 facilitate fine-tuning by providing an efficient flow

for the gradients. As a result, despite their initial accuracy, the networks could reach similar

accuracy values after sufficient fine-tuning. A good elimination heuristic still provides a head

start and allows the network to converge to final accuracy values with fewer iterations.

The execution time of the proposed algorithm fades in practice. It needs to be applied
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Figure 11.9. ResNet-50 hardware footprint after elimination.

once, and takes ∼ 20 minutes for ResNet-50 in the most challenging case, which is a small

fraction of the time required by a single epoch of fine-tuning (i.e., ∼ 15 hours).

11.6 Chapter Summary

The number of extracted unique features rarely exceeds a tiny fraction of the layer size in

modern DNN models; therefore, the information content of the layer could be represented by

employing only a small number of computation units. This chapter presents a novel procedure

to carry out feature elimination and perform successive modifications on the target model

to compensate for the magnitude contribution of the eliminated units. We demonstrate the

effectiveness of our approach as a powerful neuron/filter pruning technique that delivers results

superior to the prior heuristics, yet requires only a minimal amount of fine-tuning. More

importantly, we offer a principled way to understand and measure the redundancy in DNN

computations, exposing an entirely new paradigm for the design of resource-efficient deep

learning models for edge applications.
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Chapter 12

Synergistic Co-design of Sparse DNNs and
Hardware Accelerators

We have outlined a novel approach in Chapter 11 for comprehensive redundancy iden-

tification and structured neuron/filter elimination in deep neural networks. Alternatively, the

redundancy extraction could be performed at a much finer-grained level in deep neural networks

by pruning individual parameters to form sparsity patterns of unstructured nature. Unstructured

sparsity patterns can deliver significantly higher model compression rates when compared to their

structured counterparts, yet the hardware challenges posed by the irregular nature of unstructured

sparsity are yet to be fully overcome in the existing hardware platforms. As algorithmic and

hardware innovations individually deliver limited benefits, a synergistic approach is necessary to

unleash the potential of sparse deep neural networks. This chapter presents a tightly-integrated de-

sign methodology for the sparsity patterns and hardware platforms to facilitate efficient hardware

processing of fine-grained sparsity in deep neural networks. We demonstrate herein that novel

complementary sparsity patterns can offer utmost expressiveness levels with inherent hardware

exploitable regularity. Our novel dynamic training method converts the expressiveness of such

sparsity configurations into highly accurate and compact sparse neural networks. Complementary

sparsity is represented in a dense format, and when synergistically coupled with minimal yet

strategic hardware engagements, can be processed in close concordance with the conventional

dataflow of the dense matrix operations. This chapter thus demonstrates that there is ample room
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for innovation beyond conventional techniques and immense practical potential for sparse neural

networks through the synergistic design of sparsity patterns and hardware architectures.

12.1 Introduction

Unstructured sparsity patterns outlined in Section 3.2.1 yield significant reductions in

the size and the computational complexity of deep neural networks; however, they fall short

of delivering the anticipated computational benefits in the absence of specialized hardware

support. Unstructured sparsity necessitates compressed storage formats to alleviate memory

footprint and specialized operations to skip ineffectual computations involving zero-valued

variables. Significant efforts thus have already been made in the recent past to construct hardware

accelerators for sparse DNN inference as some examples are demonstrated in Section 3.2.2.

The deployment of sparse neural networks is still hindered by various fundamental

challenges in practice. First, compressed storage formats such as run-length encoding or CSR

representation [26] incur overheads that get further accentuated when the sparsity rate is limited.

Second, sparse algorithms necessitate high sparsity rates (e.g., > 95%) to deliver appreciable

performance benefits over their dense alternatives [15, 130, 226, 227]. As a result, current sparse

algorithms and hardware architectures may only be able to deliver tangible benefits compared to

their highly-optimized dense counterparts if significantly elevated sparsity levels are reached.

These fundamental dilemmas regarding current sparse neural networks motivate us to

explore potential avenues beyond the conventional design flow that consists of neural network

pruning and sparse accelerator design. We argue that increasing the synergy between sparsity

patterns and hardware could furnish unique opportunities for improving the performance and

efficiency of sparse neural networks. Sparsity patterns can be formed under proper constraints to

establish a contract between the sparse neural network and hardware architecture. Hardware

architectures that are traditionally tailored for dense arithmetic can support such contracts through

strategic dataflow enhancements without compromising their dataflow efficiency.
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This chapter demonstrates the possibility and potential of architecting sparsity patterns

that exhibit high inherent regularity yet with expressiveness comparable to unstructured sparsity.

Furthermore, we present a novel training method to form highly accurate and compact sparse neu-

ral networks through the expressiveness and plasticity of such sparsity patterns during the training

process. Finally, we propose strategic hardware enhancements on a systolic array to process

the proposed sparsity patterns efficiently. While the enforced neural network constraints allow

optimal compression and computational predictability, the strategic hardware enhancements

enable sparse layer processing in the compressed format without suffering under-utilization or

decompression overheads.

In summary, we list the contributions of this chapter as follows:

• We present three complementary sparsity schemes by forming single and two-dimensional

groups in the layer parameters and enforcing exclusivity constraints at each group. The

outlined sparsity types are architected to facilitate layer processing in the compressed

format through operations that resemble the dense arithmetic dataflow.

• We construct a novel analytical model for assessing the expressiveness of various sparsity

types. The analytical model is utilized to characterize the shortcomings of the existing

sparsity patterns in the literature and showcase the outstanding expressiveness properties

of the complementary sparsity patterns.

• We present a novel training approach to shape the proposed sparsity patterns under regu-

larity constraints and utilize the plasticity nature of deep neural networks in the training

process to achieve compression rates that are competitive with unstructured sparsity.

• We outline the systolic array enhancements to implement the proposed sparsity schemes,

explore various hardware design points to outline hardware cost scaling characteristics,

and identify cost-effective hardware configurations.
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• Overall, this chapter advocates for a synergistic co-design paradigm for sparse neural

networks and hardware architectures, and uncovers a promising path for innovation in the

design of efficient deep learning processing systems.

The outlined approach shares conceptual similarities with prior work on the novel sparsity

paradigms and packed representations in Section 3.2.1, yet it distinguishes itself by architecting

sparsity patterns to minimize hardware complexity. The proposed sparsity patterns are evolved

under group-wise exclusivity constraints through a novel training approach instead of sub-

optimally pruning pre-trained models to enforce these constraints. As a result, state-of-the-art

compression rates on par with unstructured pruning can be delivered with a competitive accuracy

while the enforced sparsity constraints keep the complexity of strategic hardware enhancements

at levels substantially lower than unstructured sparsity.

12.2 Designing Complementary Sparsity Patterns

This section introduces three distinct formats to construct sparse neural network layers.

The first approach, neuron/filter superposition, attempts to pack multiple sparse neurons/filters

into a single dense neuron/filter. The second approach maps a group of weights in a neuron/filter

into a single entry, resulting in shortened neurons/filters. Finally, we demonstrate that these

two methods can be seamlessly coupled to construct two-dimensional complementary sparsity

patterns that offer further representation flexibility and hardware processing efficiency.

Let us start with the definition of a vector dot product as in Equation (12.1), which is a

fundamental operation in DNN computations. As each neuron in fully connected layers performs

a vector dot product, each step in the convolutional layers can be formulated as a dot product of

the flattened filter and the feature map tensor.

zm = I⃗ ·W⃗m (12.1)

In Equation (12.1), zm, I⃗, and W⃗m represent the computed pre-activation value, the input
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activation vector, and the weight set of the m’th neuron or convolution filter.

For a highly sparse weight vector W⃗m of a neuron or convolution filter, the non-compressed

version of W⃗m would incur unnecessary storage for zero entries with the majority of multiply-

accumulate steps making no tangible contribution to the final result in a naive dot product

implementation.

12.2.1 Packing Sparsity with Neuron/Filter Superposition

Neuron/filter superposition can be constructed through multiple weight sets. Let us

introduce an additional vector W⃗n of the same size as W⃗m, to denote the weights of another neuron

or convolution filter in the same layer. Let us assume the non-zero positions in W⃗m and W⃗n avoid

overlap as in Equation (12.2):

W⃗m[i] = 0 ∨ W⃗n[i] = 0 , ∀i (12.2)

As the non-zero entries in W⃗m and W⃗n are disjoint, the reader will note that W⃗m and W⃗n

can be stored as a single vector in a compressed format as in Equation (12.3) with a single-bit

extension in the weight variables sufficing to recover W⃗m and W⃗n from the compressed vector

W⃗{m,n}. In the generalized case, the weights of k disjoint neurons or filters in the same layer can

be compressed into a single vector at the cost of ⌈log2(k)⌉ additional bits at each weight.

W⃗{m,n} = W⃗m +W⃗n (12.3)

While the compression benefits are rather obvious, the described representation delivers

yet another fundamental advantage, one perhaps not so evident at first glance. It enables

computation of the pre-activations of the two packed neurons/filters simultaneously through a

single dot product as in Equation (12.4) by keeping track of the two partial sums and updating

only one of them at each multiply-accumulate step as weight vectors are disjoint.
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Figure 12.1. Neuron/filter superposition.

zm,zn = I⃗ ·W⃗{m,n} (12.4)

In the general case, pre-activations for the k disjoint neurons or convolution filters can be

generated through a single overlapped dot product by employing k partial sums and updating

only one of them at each multiply-accumulate step.

In summary, the visualized scheme in Figure 12.1 requires a non-zero weight entry at

each index position to be claimed only by a single neuron or filter in a group of k; thus, each

weight group can be stored as a single vector and processed with a single dense dot product.

We implement filter superposition in the convolutional layers by enforcing groups in the

output dimension of the weight tensor, which corresponds to distinct output channels.

12.2.2 Packing Sparsity with Shortened Neurons/Filters

An orthogonal scheme can be constructed within the boundaries of a single neuron or

filter. This approach requires us to partition each weight vector into groups of l weight entries.

Let us assume no more than one entry to be non-zero within each group as in Equation (12.5);

then l weight entries in this group can be stored as a single entry.
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non zero count(W⃗ [i× l : (i+1)× l])≤ 1 ∀i (12.5)

The proposed packing scheme effectuates the compression of each weight vector size by

l. Each weight entry needs to be extended by ⌈log2(l)⌉ bits to enable proper position restoration

within the group.

The described sparsity pattern translates to yet further computational benefits. Any dot

product that involves the compressed weight vectors can be performed efficiently in l times fewer

multiply-accumulate steps. As only one weight entry will be non-zero at each group, the proper

activation value from a group of activations should be selected at each multiply-accumulate step

according to the position information stored in the weight entries.

The visualized dot product scheme in Figure 12.2 bears similarities to the conventional

sparse dot product algorithms [168], yet our approach differs due to the usage of a local index

value within each group, thus requiring smaller bit-widths for indexing and minimizing hardware

communication overhead.

Shortened filters are constructed in the convolutional layers by enforcing exclusive groups

in the input dimension of the weight tensor, which differentiates the input channels.
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12.2.3 Complementary Sparsity Patterns in Two Dimensions

We have so far constructed the sparsity groups in a single dimension of the weight

matrices; yet, the complementary sparsity patterns can effectively generalize to two-dimensional

regions in the weight matrices. Moreover, two-dimensional configurations could offer unique

computational advantages compared to their single-dimensional counterparts, as they can con-

struct groups more effectively by breaking them down into two dimensions. This section provides

a conceptual discussion on the two-dimensional complementary sparsity patterns.

The neuron/filter superposition scheme constructs groups of shape 1× k in the weight

matrices where only one entry is allowed to be non-zero within a group. Similarly, the shortened

neurons/filters technique forms one-dimensional groups of shape l× 1. As demonstrated in

Figure 12.3, the natural extension to these two methods could be accomplished through two-

dimensional regions of shape l̂× k̂ in the weight matrices where only a single weight entry can

assume a non-zero value within the confines of a rectangular region.

Two-dimensional sparsity patterns provide competitive compression benefits compared

to their single-dimensional counterparts. An l̂× k̂ group can be effectively compressed into a

single weight to deliver reductions in both the input and the output dimensions of the weight

matrices. The position of the non-zero weight can be recovered by storing position indices for

220



both dimensions at the cost of ⌈log2(l̂)⌉+ ⌈log2(k̂)⌉ additional bits. The computational cost

of a two-dimensional group is confined to a single multiply-accumulate operation that can be

accomplished by selecting the proper activation and updating the correct partial sum at each step.

Two-dimensional sparsity patterns engender opportunities for hardware cost reduction by

decomposing the one-dimensional selection operation from large groups into two selection steps

with smaller group sizes (one at each dimension). Furthermore, the more balanced partial sum

and activation requirements of the two-dimensional groups result in more sustainable memory

bandwidth characteristics. A detailed discussion of these benefits can be found in Section 12.5.2.

Finally, higher dimensional sparsity groups can be constructed in weight tensors that

incorporate more than two dimensions. For instance, the construction of groups with up to four

dimensions is feasible in the convolutional layers. Nevertheless, the computational benefits for

cases that extend beyond the two dimensions are often limited due to current hardware dataflow

and memory layout constraints.

12.3 Evaluating Sparsity Type Expressiveness Through
Analytical Models

We have emphasized the expressiveness of complementary sparsity; nevertheless, the

source of such characteristics has so far remained unexplored. This section aims to provide

a theoretical discussion and an analytical model to illustrate the potential of complementary

sparsity patterns in representing unique sparse neural network architectures.

The expressiveness of a sparsity type correlates with its ability to represent unique sparsity

configurations. While a fixed sparsity configuration is unlikely to deliver state-of-the-art accuracy

upon training [196], it is possible to obtain highly-accurate sparse models if the underlying

sparsity type offers the ability to express a large number of sparsity configurations.

Let us start our discussion by exploring the characteristics of unstructured sparsity. The

most flexible sparsity format, unstructured sparsity, can represent all possible unique sparse
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network configurations in a neural network architecture at the given non-zero parameter budget

and thus constitutes the maximum theoretical limit. In a neural network architecture with p

parameter positions, unstructured sparsity can express the following quantity of distinct non-zero

parameter configurations when exactly r of such locations are non-zero:

(
p
r

)
(12.6)

Block-wise [152] and group-wise sparsity [153] allow non-zero configurations only in

the granularity of groups. Due to the coarse granularity of the representation, the possible number

of non-zero parameter configurations diminishes to the following quantity where g denotes the

group size:

(
p/g
r/g

)
(12.7)

The reader will note that this quantity can be significantly smaller than that of the

unstructured sparsity, even in the case of relatively small group sizes. This observation could

explain the observed accuracy gap between the unstructured and group-wise sparsity patterns

in practice since it is more likely to obtain a sparsity configuration with higher classification

accuracy in a much larger pool of candidates.

Let us now derive the number of possible non-zero parameter configurations that com-

plementary sparsity offers at the same non-zero parameter budget. Complementary sparsity

allows one weight value to be non-zero at each group; thus, the sparsity structure has to consist

of exactly r groups and the size of each group needs to be set to p/r. A non-zero entry can

be located at any one of the p/r distinct positions within a group, and thus the complementary

sparsity can represent the following amount of distinct configurations with r groups:

(p/r)r (12.8)
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Table 12.1. Sparsity types vs. non-zero parameter configurations.

ppp rrr Sparsity Type Configurations

104

102

Unstructured ∼ 6.52×10241

Complementary 1.00×10200

Group (g = 10) ∼ 2.63×1023

Group (g = 100) 1.00×102

103

Unstructured ∼ 8.73×101409

Complementary 1.00×101000

Group (g = 10) ∼ 6.39×10139

Group (g = 100) ∼ 1.73×1013

Interestingly, the expression in Equation (12.8) is known to be a lower bound for the

binomial coefficient in Equation (12.6) [228], and its accuracy tightens particularly when r≪ p

(i.e., at high sparsity rates). As a result, complementary sparsity is expected to deliver non-zero

configuration counts that are oftentimes close to unstructured sparsity.

Table 12.1 demonstrates what the derived equations correspond to for a set of p, r,

and g values. In the scope of this example, we assume p = 104 and investigate two different

sparsity rates where r = 102 (99% sparsity) and r = 103 (90% sparsity). We utilize two group

sizes (g = 10 and g = 100) to demonstrate the possible non-zero parameter configurations that

can be represented with group-wise sparsity patterns. The results in Table 12.1 showcase the

expressiveness of the complementary patterns clearly, where the number of configurations is

often astronomically higher than the group-wise sparsity patterns and follows more closely the

maximum theoretical limit that is set by unstructured sparsity. As a result, the complementary

sparsity patterns are more likely to provide a sparsity configuration with highly competitive

accuracy even at extreme sparsity rates.

In this section, we have provided a novel analytical approach to estimate the expres-

siveness of the sparsity types. We believe that the presented analytical method and the derived

metrics are extremely valuable in evaluating sparsity types. The guidance provided by such
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analytical models could effectively steer the design process to identify hardware-friendly sparsity

types that offer competitive accuracy levels.

12.4 Evolving Sparsity Patterns in Training

We have introduced a variety of complementary sparsity schemes, outlined their benefits,

and demonstrated their expressiveness in representing unique sparsity configurations. Searching

for a competitive sparse neural network model within a large pool of candidates remains a

formidable problem, nonetheless. Therefore, the formation and training of accurate sparse neural

networks necessitate further deliberation.

Dense model training coupled with unstructured weight pruning is a widely employed

approach to obtain highly-accurate sparse deep learning models [196]. However, this approach

may not be suitable for producing complementary sparsity patterns since the global or layer-wise

ranking heuristics need to be modified to accommodate group-wise exclusivity restrictions as

no more than a single non-zero weight entry can be accommodated within each group. Even

then, conducting group-wise pruning on a pre-trained model necessitates a significant amount of

model restructuring through pruning steps, timorous by necessity, and consequent fine-tuning

iterations.

We instead propose a novel integrated training approach to evolve sparsity patterns

dynamically by enforcing group-wise exclusivity restrictions through soft pruning20 at every

training iteration. We utilize custom propagation and update rules to facilitate effective sparsity

pattern re-arrangements in training and identify a competitive sparse architecture among the

large set of candidates offered by complementary sparsity.

20The term soft pruning defines a process where the pruning decision is not permanent in training and, if necessary,
revocable by the training algorithm.
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Figure 12.4. Sparsity generation and weight update in training.

12.4.1 Overview of the Sparse Training Process

We hold the layer weights in a dense format without any sparsity imposition. The

unrestricted weight matrices are sparsified prior to each forward pass through masking, and the

layer computations are carried out with the sparse version of the weight matrices. The forward

pass of the fully connected layers can be formulated as in Equation (12.9):

Ŵ ← Θ ⊙ W

z⃗ = I⃗ × Ŵ
(12.9)

The mask tensor (Θ) for each layer is generated in every forward pass by identifying the

maximum magnitude weight entry at each group (Figure 12.4 - Step 1). The mask entries are set

to 1 for the maximum magnitude weights at each group and 0 for the others. The sparse weights

(Ŵ ) are generated through the element-wise multiplication (⊙) of the unrestricted weights (W )

and the mask (Θ) (Figure 12.4 - Step 2). Finally, the output pre-activations (⃗z) are computed

through the multiplication of the input activations I⃗ and the sparse weights Ŵ .

The generated mask tensor in the forward pass plays an important role in the backward

pass as well (Figure 12.4 - Step 3). The gradients for the non-masked weight entries are directly

back-propagated from the sparse weights to dense trainable weights, and the gradient for the

masked entries is multiplied by a scaling factor as in Equation (12.10):
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∂

∂W
= Θ⊙ ∂

∂Ŵ
+(1−Θ)⊙ ∂

∂Ŵ
×β (12.10)

The training process is mildly sensitive to the described scaling factor (β ); we observe that

employing a small value (i.e., β = 0.1) often exhibits superior performance in practice compared

to the full propagation of the gradients to masked entries (β = 1) or to the complete masking of

their gradients (β = 0). While full gradient propagation might fuel increased competition and

instability, complete masking frequently congeals to a locally optimal result. It should be noted

that even when the scaling factor is set to zero, the masked entries still retain the possibility of

being updated whenever they assume the mantle of leadership in the group due to a diminution

in the magnitude of the group’s current leader. While a proper selection of the scaling factor (i.e.,

β = 0.1) delivers a highly competitive accuracy on a variety of benchmarks, the accuracy could

be improved marginally by repeating the training process with a few different scaling factors in a

search for the optimal value for the given benchmark.

12.4.2 Layer-wise Group Size Selection Steps

An important design consideration prior to training is the selection of the unique group

size, and therefore the sparsity ratio, at each layer. For instance, a group size of k = 8 implies

that 1/k = 1/8 = 12.5% of the weight entries will be non-zero in the enforced layer. To the best

of our knowledge, the determination of the optimal sparsity rates for each layer remains an open

problem [229]. Enforcing an identical sparsity rate at every layer usually leads to bottlenecks in

the layers that originally held a smaller number of parameters. For instance, Frankle et al. [229]

demonstrate that certain pruning heuristics [230, 231, 232] can outperform random pruning when

applied at initialization, as such heuristics can deliver a better selection of the sparsity rates at

each layer compared to random pruning, which induces the same sparsity rate at every layer.

While selecting the optimal sparsity rates at each layer is an open research problem

whose precise solution lies beyond the scope of this work, we recognize a set of practical rules
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through our experimental analysis and define a process for identifying a competitive set of group

sizes with minimal design space exploration. We employ the number of remaining parameters in

a sparse layer as a proxy for assessing the layers’ expressive power and experimentally observe

that balancing the number of parameters in the sparse layers can be an effective bottleneck

avoidance strategy. We carry out four fundamental steps to identify layer-wise group size values:

Step 1: We compute the number of parameters in the dense neural network and determine

a final parameter budget for the compressed model. The initial step is influenced by the resource

limitations in the inference device and the tolerable accuracy loss vis-à-vis the dense model. As

a result, distinct parameter budgets can be encountered, each defining a Pareto-optimal design

point at varying accuracy levels.

Step 2: We distribute the identified parameter budget equally to each layer. Layers

that had originally contained fewer parameters than the final allocated budget are kept in the

dense format with the remaining part of their share equally distributed to other layers. This

approach might prove insufficient in delivering reductions in the number of FLOP (floating-point

operation) or MAC (multiply-accumulate) operations since the initial layers in modern networks

(i.e., ResNets [13]) have a significantly higher FLOP/parameter ratio than the later layers. Thus,

the initial layers need to be targeted manually after the initial allocation to increase sparsity and

deliver further FLOP or MAC reductions.

Step 3: The group size is computed for each layer through the division of the initial layer

parameter count by the final budget allocated to the layer and rounding the result to the nearest

integer. The reader will note that the compression rates will slightly deviate from the target value

due to rounding effects, and thus the exact parameter and FLOP compression rates could then be

identified by using the computed group sizes at each layer.

Step 4: We carry out sparse model training with the identified group sizes, measure

the final accuracy, and compute the accuracy loss compared to the dense model. If the target

accuracy metric cannot be met within the given compressed parameter budget, we identify a less

aggressive compression target and repeat the outlined process starting from the initial step. If the
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accuracy goal is satisfied, it is still feasible to repeat the outlined steps with a more aggressive

compression target that meets the desired accuracy goal at a smaller resource budget.

As the outlined process provides a certain amount of leeway depending on the compres-

sion target, Table 12.2 provides the selected group sizes to facilitate reproducibility.

12.5 DNN Inference with Complementary Sparsity

Proposed sparsity patterns offer tremendous advantages in DNN inference, including op-

timal memory compression and seamless scalability to a variety of sparsity rates because of their

regularity. Moreover, layer parameters can be loaded into the computational fabric directly and

used in the compressed format. The additional weight bits in the proposed sparse representations

can be utilized to control the computational flow of non-sparse hardware architectures, enjoying

the advantages of the fully utilized dense matrix operations on the high-throughput hardware

platforms. We elaborate on the practical memory compression rates and present a case study on

a systolic array accelerator to outline the computational benefits.

12.5.1 Packing Sparse Layers for Efficient Compression

The fully connected and the convolutional layer parameters can be represented as a matrix

without loss of generality. The matrix shape is Ŵci×co for the fully connected layers, where ci

and co indicate the number of input and output neurons. Convolutional layers can be represented

as a flattened matrix Ŵcis2×co
where ci, co, and s denote the input channel, output channel, and

spatial dimensions in the original parameter tensor.

Neuron/filter superposition packs k columns into a single column, resulting in a k times

reduction compared to the naive representation of the weight matrix Ŵ . A group of k columns

necessitates ⌈log2(k)⌉ additional bits at each weight value to capture position information. As a

result, the weight size is extended by the ratio ⌈log2(k)⌉/b where b is the original bit width (e.g.,

b = 32 for single-precision floating point, b = 8 for 8-bit fixed point). The practical memory

compression rate is formulated in Equation (12.11) and depicted in Figure 12.5.
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Figure 12.5. Packed group size vs. layer compression rate.

CR(k,b) =
k

1+ ⌈log2(k)⌉
b

(12.11)

The compression rate can be formulated similarly for the remaining sparsity schemes,

with the only difference being of compression delivered by merging the matrix rows in the case

of shortened neurons/filters, and both matrix rows and columns for the two-dimensional patterns.

12.5.2 Processing Sparse Layers in the Dense Format

The commodity hardware platforms and DNN accelerators can deliver extensive through-

put in dense matrix operations. However, the processing of sparse models through dense

matrix operations results in an undesirable under-utilization, as the computations that involve

zero-valued parameters do not have a material impact on the final result.

Sparse inference has been a widely researched topic whose focal areas include innovations

in algorithms [233] and hardware boosts through accelerators [164, 167, 168, 169]. However,

sparse algorithms and hardware accelerators offer advantages over dense counterparts only at

high sparsity rates due to exacerbated control and communication overheads [15, 130, 226, 227].

Our hardware study involves highly regular, systolic array-based deep learning accelera-

tors such as the architecture demonstrated in Section 2.3. The efficiency and high throughput
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of systolic arrays in dense matrix operations stem from their rigid data flow, making them

highly unappealing for sparse DNN inference. We undertake the challenge of accelerating

sparse layers on the systolic array through minor hardware enhancements to boost hardware

utilization and inference performance significantly. The presented principles generalize to the

dense arithmetic operations in other platforms such as CPU (central processing unit) and GPU

(graphics processing unit), and can be implemented through small enhancements to the existing

control mechanisms that allow programmability.

The pre-activations of the superpositioned neurons/filters can be computed through a

single dot product by keeping track of multiple partial sums and updating only one of them at

each multiply-accumulate step. This operation can be achieved by mapping the superpositioned

weight matrix column into a systolic array column directly and passing k partial sums to each

systolic array column instead of one. We introduce multiplexing functionality at each MAC unit

in Figure 12.6-(a) to select and update only one partial sum from a group of k. Other partial

sums are forwarded to the next MAC unit directly. The correct partial sum is selected at each

MAC unit by checking the extension bits in the stored weight value.

Enhancements in Figure 12.6-(b) allow us to support the shortened neurons/filters. The

shortened neurons/filters scheme requires each weight entry to select exactly one activation input

according to its original position in the sparse format. This behavior can be attained by feeding a

group of l activation inputs into each MAC unit instead of one and introducing input multiplexing

functionality to enable each MAC unit to select exactly one activation from the group of l by

checking the extension bits in the stored weight value.

It is expected that the implemented flow control modifications in Figure 12.6-(b) to

be consistently more hardware efficient than the one in Figure 12.6-(a) because only a single

multiplexer is required for input selection in Figure 12.6-(b), and the multiplexer data widths at

the inputs (e.g., 8 bits) are often noticeably smaller compared to the partial sums (e.g., 16+ bits)

for the fixed-point MAC units.

Two-dimensional complementary sparsity patterns can be effectively supported by in-
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Figure 12.6. Flow-controlling multiply-accumulate units for sparse inference.

troducing multiplexing capability for both the partial sums and the input activations. The

demonstrated architecture in Figure 12.6-(c) multiplies the pre-loaded weight with the selected

value from a group of input activations and updates the selected partial sum with the multiplica-

tion result. The multiplexer configurations in this design can be controlled independently through

the dedicated fields of the weight extension bits.

The design in Figure 12.6-(c) has certain inherent inefficiencies since it requires hardware

for both input activation and partial sum selection, and it involves output multiplexing similar

to Figure 12.6-(a), which is expected to be particularly costlier than input multiplexing in

Figure 12.6-(b). On the other hand, the flow control mechanism in Figure 12.6-(c) can support

large group sizes efficiently by decomposing the selection steps into two dimensions. As a

consequence, while the hardware overhead of the multiplexers in the single-dimensional designs

grows linearly with respect to the group size (∝k for the given group size k), the multiplexer

hardware overhead in the two-dimensional configuration scales proportionally to the square

root of the group size (∝
√

k) when both dimensions are balanced. As a result, the flow control

configuration in Figure 12.6-(c) may exhibit overheads especially more significant than the one

in Figure 12.6-(b) for the small group sizes, yet it is expected to deliver more cost-effective

designs in the case of large group sizes due to more graceful scalability characteristics.

Furthermore, the two-dimensional configuration in Figure 12.6-(c) leads to a more
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balanced memory input/output bandwidth and further minimizes the overall memory bandwidth

requirements. To illustrate, a conventional systolic array of size s× s consumes s activation

values as input and produces s partial sums at each cycle, thus resulting in a bandwidth need that

is proportional to 2s. The neuron/filter superposition technique requires an output bandwidth

increment by a factor of k that results in an overall memory bandwidth of (1+ k)s. A similar

increase is observed in the shortened neurons/filters scheme due to the heightened need for more

input activations. In comparison, the two-dimensional configurations cause both the input and

the output bandwidth to increase by a factor of
√

k and result in an overall bandwidth of 2
√

ks.

In other words, two-dimensional configurations can cut down the linear bandwidth growth (∝k)

in the single-dimensional configurations to the square root of the group size (∝
√

k), and thus

alleviate the memory bandwidth problem for large group sizes effectively.

Different group sizes at each layer could be supported on the same hardware by de-

signing sufficiently large multiplexing units and utilizing for smaller group sizes a subset of

the multiplexer inputs. As the designs with the proposed flow-controlling multiply-accumulate

units operate essentially identically to the standard systolic array in the dense layers by utilizing

pre-determined multiplexer input positions, the sparse layer performance can be boosted dramat-

ically for large groups (e.g., 64× for k, l = 64) through the full use of all available multiplexer

inputs. In addition, standard systolic array scheduling and matrix tiling techniques can be applied

seamlessly in the enhanced designs due to the retained dataflow regularity.

The proposed designs enable inference with compressed weights. The dynamic nature

of activation sparsity makes it challenging to construct regularity constraints within a group of

activations and accommodate activation sparsity through the proposed enhancements in a systolic

array. On the other hand, the proposed techniques can be seamlessly coupled with the existing

memory bandwidth reduction techniques, such as specialized compressed representations for

sparse activations in order to match the efficiencies delivered by the compressed weights in terms

of memory bandwidth requirements.
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12.6 Experimental Method

12.6.1 Model Compression Experiments

We investigate parameter compression rates, and remaining FLOP percentages that can

be achieved through the proposed sparsity patterns on a variety of benchmarks, including LeNet-

300-100 and LeNet-5-Caffe models [28] on the MNIST dataset [211], VGG-like [135], VGG-19

[159], and ResNet-56 [13] models on the CIFAR-10 dataset [207], and ResNet-50 [13] model on

the ILSVRC’12 (ImageNet) [224] dataset. We utilize the reported results of the recent pruning

techniques as a basis for comparison.

The models with complementary sparsity patterns are trained from scratch, as in the

dense models. As a result, the lengthy and iterative fine-tuning steps of conventional model

pruning are avoided. When more than one data point is reported for a benchmark, we differentiate

them with unique letter suffixes (e.g., -A).

Table 12.2 indicates the group size enforced at each layer. The group sizes are initially

selected to balance the number of parameters at each layer within the given parameter budget. As

a second step, to reduce the computational complexity even further, we increase the group size

(e.g., up to 2−4×) in the earlier layers with a large number of FLOPs. The maximum enforced

group size at certain layers is limited by the original layer shape. Finally, we confine our analysis

of two-dimensional patterns to square-shaped groups only.

Experimental models are implemented in PyTorch [213]. We have used 2 machines for

model training, each with 4× Intel Xeon E5-2630 v4 CPUs, 2× NVIDIA GeForce GTX 1080Ti

GPUs, and 32GB RAM.

12.6.2 Inference Performance Simulations

The inference performance of the obtained models is estimated through cycle-accurate

simulations in SCALE-Sim [62]. SCALE-Sim delivers precise performance analysis of deep

learning accelerators by considering SRAM (static random-access memory) / DRAM (dynamic
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Table 12.2. Group sizes enforced at each layer.

LeNet-300-100 Superposition/Shortened-A
109-14-1
LeNet-300-100 Two-Dimensional-A
121-16-1
LeNet-300-100 Superposition/Shortened-B
235-30-1
LeNet-300-100 Two-Dimensional-B
361-49-1

LeNet-5-Caffe Superposition
4-50-500-10
LeNet-5-Caffe Shortened
1-20-500-10
LeNet-5-Caffe Two-Dimensional
1-64-784-16

VGG-like Superposition/Shortened-A
1-1-3-6-12-24-24-48-96-96-96-96-96-10-1
VGG-like Two-Dimensional-A
1-1-4-9-16-25-25-64-121-121-121-121-121-9-1
VGG-like Superposition/Shortened-B
1-6-6-12-24-48-48-96-128-128-128-128-128-32-1
VGG-like Two-Dimensional-B
1-4-9-16-25-49-49-100-196-196-196-196-196-25-1

VGG-19 Superposition/Shortened/Two-Dimensional
1-1-1-1-1-1-4-16-16-16-16-16-36-64-64-64-64-144-1

ResNet-56 Superposition/Shortened
1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-4-7-7-7-7-7-7-7-7-7-7-7-7-7-
7-7-7-7-14-29-29-29-29-29-29-29-29-29-29-29-29-29-29-29-29-29-1
Shortcuts: 1-1
ResNet-56 Two-Dimensional
1-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-
4-4-4-4-16-25-25-25-25-25-25-25-25-25-25-25-25-25-25-25-25-25-1
Shortcuts: 1-1

ResNet-50 Superposition/Shortened
1-1-4-2-2-4-2-2-4-2-4-4-2-2-4-2-2-4-2-2-4-2-4-8-4-4-8-4-4-8-4-4-
8-4-4-8-4-4-8-4-8-16-8-8-16-8-8-16-8-16 Shortcuts: 2-4-8-16
ResNet-50 Two-Dimensional
1-1-4-1-1-4-1-1-4-1-4-4-1-1-4-1-1-4-1-1-4-1-4-9-4-4-9-4-4-9-4-4-
9-4-4-9-4-4-9-4-9-16-9-9-16-9-9-16-9-16 Shortcuts: 1-4-9-16
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random-access memory) access and the computation latency. We utilize the default Eyeriss [166]

accelerator configuration provided within SCALE-Sim, which is a weight-stationary architecture

that consists of a 12×14 systolic array and 108KB SRAM buffers each for the input and output

features, and the weight coefficients.

We scale the input (for shortened neurons/filters) or output (for neuron/filter superpo-

sition) channel dimensions of each layer through division by the assigned group size (k, l) to

simulate the processing of the proposed sparse layers in the form of a smaller dense layer. In

the case of two-dimensional patterns, each layer dimension is divided by the corresponding

dimension size of the implemented sparsity group.

We utilize the compressed architectures of structured pruning methods in prior literature

for further performance comparisons by measuring their inference latency on a systolic array of

identical size. An accurate performance characterization is feasible only for the studies that report

layer-wise compression information (i.e., the remaining number of neurons or filters at each layer

or layer-wise group sizes in the case of [159]). The complexity of the sparse accelerator designs

[26] and the negligible performance benefit of the unstructured sparsity patterns on a systolic

array preclude direct performance comparisons with the unstructured pruning techniques.

12.6.3 Hardware Measurements for Flow-Controlling MAC Units

We construct fixed-point and floating-point MAC units and implement the proposed

flow control enhancements in Verilog for overhead characterization. Estimated area and power

overhead values are measured through hardware synthesis experiments with the Synopsys Design

Compiler. Synthesis experiments are performed with Silvaco Open-Cell (15 nm) and Synopsys

DesignWare libraries at 1GHz target frequency. We adjust MAC unit input switching activities

during power analysis to model a weight stationary architecture [26]. We employ the measured

overhead values to estimate the efficiency of the proposed hardware architectures through metrics

such as the number of effective MAC operations per unit area and power.
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Table 12.3. Classification error, parameter compression rate, and remaining FLOPs percentage
for LeNet-300-100 on MNIST.

Type Base Error Final Error CR FLOPs
(S/U) (%) (%) (×××) (%)

Louizos et al. [137] S 1.60 1.80 9.29 11
Louizos et al. [140] S 1.40 3.84 26

S 1.80 9.99 10
Xiao et al. [29] S 1.60 1.82 10.98 9

Han et al. [28] U 1.64 1.59 12.14 8
Guo et al. [125] U 2.28 1.99 56
Dong et al. [126] U 1.76 2.43 66.7
Ullrich et al. [127] U 1.89 1.94 64
Molchanov et al. [128] U 1.64 1.92 68
Li et al. [129] U 2.28 2.18 114
Xiao et al. [29] U 1.72 1.78 80

Shortened-A S* 1.75 2.11 50.22 1.99
Superposition-A S* 1.75 1.90 50.22 1.99
Two-Dimensional-A S* 1.75 1.80 55.24 1.81
Shortened-B S* 1.75 2.40 88.71 1.13
Superposition-B S* 1.75 2.08 88.71 1.13
Two-Dimensional-B S* 1.75 2.22 117.59 0.85

12.7 Experimental Results

12.7.1 Model Compression Results

Proposed sparsity patterns consistently achieve excellent parameter compression rates that

are competitive and even frequently surpass unstructured weight pruning on various benchmarks,

as demonstrated in Tables 12.3-12.8.21 Our results outperform structured pruning methods by a

large margin as their effectiveness is limited by the coarse granularity of the elimination process.

For instance, the ∼118× and ∼251× compression rates for LeNet-300-100 and LeNet-5-Caffe

models exhibit remarkable superiority over structured pruning and preponderantly elevated rates

21Unreported data points are left blank in Tables 12.3-12.8. We use the following indicators to mark the
pruning/sparsity types in the tables: S - structured sparsity, U - unstructured sparsity, S* - proposed sparsity patterns
with structured nature and seamless hardware regularity.
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Table 12.4. Classification error, parameter compression rate, and remaining FLOPs percentage
for LeNet-5-Caffe on MNIST.

Type Base Error Final Error CR FLOPs
(S/U) (%) (%) (×××) (%)

Wen et al. [130] S 1.00 1.06 22
Neklyudov et al. [136] S 0.80 0.86 5 9
Louizos et al. [137] S 0.90 1.00 156 7
Louizos et al. [140] S 0.90 11 49

S 1.00 70 17
Xiao et al. [29] S 0.78 0.80 43 7

Han et al. [28] U 0.80 0.77 11.97 16
Guo et al. [125] U 0.91 0.91 108
Dong et al. [126] U 1.27 2.04 111
Ullrich et al. [127] U 0.88 0.97 162
Molchanov et al. [128] U 0.80 0.75 280
Li et al. [129] U 0.91 0.91 298
Xiao et al. [29] U 0.78 0.80 260

U 0.91 0.91 310

Shortened S* 0.86 0.93 141.15 16.10
Superposition S* 0.86 0.98 223.63 4.59
Two-Dimensional S* 0.86 0.85 251.27 13.68

over the unstructured pruning methods. Similarly, the ∼99× reduction in the VGG-like model

noticeably surpasses all compared pruning techniques. We report in Tables 12.7-12.8 ∼12× and

∼8× parameter reductions in the challenging ResNet-56 and ResNet-50 benchmarks, whose

prior highest compression rates with an acceptable accuracy loss stand at ∼3.4× and 2.2×.

Despite the regularity of the complementary sparsity patterns, the proposed dynamic training

approach can frequently deliver higher sparsity rates than the prior unstructured pruning methods

since these techniques usually perform pruning post-training and complement it with fine-tuning.

The remaining FLOPs percentage can be used as a significant indicator of inference

complexity. Proposed sparse models induce FLOP percentages that are a small fraction of the

dense models. For instance, LeNet-300-100, LeNet-5-Caffe, and the VGG-like models require

only ∼0.9−2.0%, ∼4.6−16.1%, and ∼5.7−18.6% of the FLOPs respectively compared to
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Table 12.5. Classification error, parameter compression rate, and remaining FLOPs percentage
for VGG-like model on CIFAR-10.

Type Base Error Final Error CR FLOPs
(S/U) (%) (%) (×××) (%)

Li et al. [135] S 6.75 6.60 2.77 66
Neklyudov et al. [136] S 7.20 7.50 43

S 7.20 9.00 32
Zhuang et al. [141] S 6.01 5.43 15.58 34.90
Zhu et al. [142] S 6.42 6.69 8.50 31.25
Xiao et al. [29] S 7.60 8.50 23

Molchanov et al. [128] U 7.30 7.30 65
Xiao et al. [29] U 7.60 7.82 75

Shortened-A S* 7.15 7.29 43.98 18.62
Superposition-A S* 7.15 7.31 43.98 18.62
Two-Dimensional-A S* 7.15 7.70 51.75 17.17
Shortened-B S* 7.15 8.45 80.01 5.65
Superposition-B S* 7.15 7.81 80.01 5.65
Two-Dimensional-B S* 7.15 7.87 98.58 5.96

Table 12.6. Classification error, parameter compression rate, and remaining FLOPs percentage
for VGG-19 model on CIFAR-10.

Base Error Final Error CR FLOPs
(%) (%) (×××) (%)

Kung et al. [159] 5.30 6.25

Shortened 5.10 5.09 29.53 13.28
Superposition 5.10 5.04 29.53 13.28
Two-Dimensional 5.10 5.06 29.53 13.28

their dense counterparts. We obtain ResNet-56 and ResNet-50 models with∼18.6% and∼25.9%

of the original FLOPs. Such a reduction to roughly one quarter of the original FLOPs for the

ResNet models is at least 2× smaller than the bulk of the competition.

All proposed methods are capable of delivering Pareto-optimal design points in different

benchmarks, and they often result in similar classification accuracy values for identical layer-wise
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Table 12.7. Classification error, parameter compression rate, and remaining FLOPs percentage
for ResNet-56 on CIFAR-10.

Type Base Error Final Error CR FLOPs
(S/U) (%) (%) (×××) (%)

Li et al. [135] S 6.96 6.94 1.16 72.40
He et al. [139] S 7.20 8.20 ∼ 50
Zhuang et al. [141] S 6.20 6.19 3.37 52.91
Yu et al. [144] S 6.96 6.99 1.74 56.39
He et al. [145] S 6.41 6.11 85.30

S 6.41 6.53 71.60
S 6.41 6.22 58.90
S 6.41 6.65 47.40

He et al. [30] S 6.41 6.51 47.40
Kang & Han [148] S 6.31 6.77 1.94 48.50
Wang et al. [149] S 6.62 6.25 46.20

Shortened S* 6.41 6.91 12.02 23.40
Superposition S* 6.41 6.93 12.02 23.40
Two-Dimensional S* 6.41 6.92 10.57 18.55

group sizes. As a result, we conclude that group size is an important factor that impacts final

accuracy, with the role of group shape and orientation being relatively less consequential.

The structure of the shortened neurons/filters scheme shares similarities to the sparsity

patterns obtained through column combining in Kung et al. [159].22 Despite their structural

similarity, our work differs from [159] fundamentally since we evolve the sparsity patterns

through a novel dynamic training approach instead of sub-optimal pruning and manual column

combining steps. Our effective training approach thus enables significantly higher compression

rates than [159] without compromising accuracy.

We demonstrate the superiority of our approach by implementing the VGG-19 model on

CIFAR-10 through the architectural description in [159], applying the proposed sparsity schemes,

and comparing our final accuracy and the compression rates with the reported results in [159] in

22The shortened neurons/filters scheme is implemented by combining weight matrix rows in our study. A similar
scheme is accomplished through column combining in [159] because of the construction of the matrix multiplication
operation in the transposed format.
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Table 12.8. Classification accuracy, parameter compression rate, and remaining FLOPs
percentage for ResNet-50 on ILSVRC’12.

Type Top-1 Base Top-1 Final Top-5 Base Top-5 Final CR FLOPs
(S/U) Accuracy Accuracy Accuracy Accuracy (×××) (%)

(%) (%) (%) (%)

Luo et al. [138] S 72.88 72.04 (-0.84) 91.14 90.67 (-0.47) 1.51 63.21
S 72.88 71.01 (-1.87) 91.14 90.02 (-1.12) 2.06 44.17
S 72.88 68.42 (-4.46) 91.14 88.30 (-2.84) 2.95 28.5

He et al. [139] S 92.20 90.80 (-1.40) ∼50
Zhuang et al. [141] S 76.01 74.95 (-1.06) 92.93 92.32 (-0.61) 2.06 44.44
Lin et al. [143] S 75.13 72.61 (-2.52) 92.30 91.05 (-1.25) 58.03

S 75.13 71.89 (-3.24) 92.30 90.71 (-1.59) 48.70
S 75.13 70.93 (-4.20) 92.30 90.14 (-2.16) 40.67

Yu et al. [144] S 72.88 72.67 (-0.21) 1.37 72.69
S 72.88 71.99 (-0.89) 1.78 55.99

He et al. [145] S 76.15 74.61 (-1.54) 92.87 92.06 (-0.81) 58.20
He et al. [30] S 76.15 74.83 (-1.32) 92.87 92.32 (-0.55) 46.50
Xiao et al. [29] S 74.90 74.50 (-0.40) 2.20
Kang & Han [148] S 75.89 75.27 (-0.62) 92.98 92.30 (-0.68) 45.7
Wang et al. [149] S 76.13 75.76 (-0.37) 92.86 92.67 (-0.19) 55.9

S 76.13 75.11 (-1.02) 92.86 92.35 (-0.51) 44.9

Shortened S* 75.09 73.32 (-1.77) 92.23 91.48 (-0.75) 7.98 25.87
Superposition S* 75.09 73.34 (-1.75) 92.23 91.22 (-1.01) 7.98 25.87
Two-Dimensional S* 75.09 73.17 (-1.92) 92.23 91.52 (-0.71) 7.64 33.65

Table 12.6.23 The higher parameter compression rates (∼29.5× in comparison with ∼6.3× in

[159]) and the superior accuracy values clearly demonstrate the significance and the novelty of

the proposed training mechanism in forming highly accurate sparse models.

12.7.2 Inference Performance Results

The compact model design is a multi-parametric optimization problem where the accuracy

and footprint can be balanced according to application needs. Previous structured pruning studies

23The final accuracy and pruning ratio values for the VGG-19 model (with 3×3 convolution) are reported as 94.7%
and 84.0% in [159], respectively. The reader will note that the accuracy value of 94.7% is equivalent to 100.00%−
94.70% = 5.30% final classification error in Table 12.6. Similarly, the compressed model contains 100.0%−
84.0% = 16.0% of the original parameters, which corresponds to the 100.0% / 16.0% = 6.25× compression rate
shown in Table 12.6.
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Figure 12.7. Inference speed-up (×) comparison for the complementary sparsity patterns.

have emphasized accuracy, delivering no more than moderate compression rates and FLOP

reductions. While we prioritize a competitive accuracy, we aim at substantial parameter and

FLOP reductions as well, thus delivering outstanding performance improvements shown in

Figure 12.7. Inference performance can be boosted up to 81.6× for the fully connected and

30.0× for the convolutional neural networks, and even the challenging ResNet-50 benchmark

can be accelerated 4.1× when compared to the dense model.

The obtained practical speedup depends not only on the final FLOP count but also on the

compressed layer shapes. We often observe better hardware utilization and higher speedups in the

case of weight matrices with balanced dimensions. For instance, four-dimensional convolutional

layer weights are often mapped into the systolic array by first flattening into a two-dimensional

matrix. The input dimension may grow significantly larger than the output dimension in the

flattened matrix since the input dimension is constructed by merging two spatial dimensions and

the input channel dimension of the convolutional layer weights. The shortened neurons/filters
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scheme is observed to be consistently more effective than neuron/filter superposition in reducing

latency as it delivers compression in the large input dimension of the weight matrix and improves

hardware utilization when more balanced compressed weight matrices are tiled and mapped

into the systolic array. To illustrate, an interesting data point can be observed in the case of

the LeNet-5-Caffe benchmark, where the compressed model obtained through the shortened

neurons/filters contains ×3.51 more FLOPs, yet it exhibits ×1.65 higher performance compared

to neuron/filter superposition due to better hardware utilization.

It is to be noted that a reduction in a single dimension may not deliver balanced matrices

for the more aggressive compression cases or if the original weight matrix is already balanced

(e.g., fully connected layers). Under these circumstances, reducing both dimensions through two-

dimensional techniques results in balanced weight matrices and improves hardware utilization,

as exemplified by the highest practical speedups across various benchmarks in Figure 12.7.

The performance benefits of the proposed sparsity patterns are observed to be significantly

higher than the compressed models obtained in prior structured pruning studies consistent with

our superior parameter and FLOP compression rates. To illustrate, we deliver up to ∼8.1×

and ∼3.5× higher performance for the LeNet-300-100 and VGG-like models when compared

to the best previous result. Furthermore, the superior compression rate that is fueled by our

novel training approach leads to a ∼2.2× better performance in VGG-19 for the shortened

neurons/filters when compared to [159] despite the structural similarity of these sparsity patterns.

12.7.3 Overhead Results for Flow-Controlling MAC Units

Table 12.9 demonstrates the area and power overhead percentage of the flow control

enhancements (Figure 12.6) with group sizes of 8, 16, 64, and 256 for 8-bit fixed-point and

32-bit floating-point MAC units. We implement two-dimensional MAC unit configurations for

group sizes of 16, 64, and 256 by balancing the input and output dimension sizes.

The experimental results demonstrate overhead percentages that are muted for 32-bit

floating-point MAC units since the area and power consumptions of 32-bit floating-point units

242



Table 12.9. Area and power overheads (%) of the flow control enhancements.

8-bit Fixed Point 32-bit Floating Point

Area Power Area Power

Shortened-8 14.63 14.06 3.38 2.89
Superposition-8 111.68 95.85 10.89 5.42

Shortened-16 32.04 19.59 7.35 4.67
Superposition-16 229.68 192.63 21.80 10.61
Two-Dim-4x4 63.73 65.67 6.86 6.53

Shortened-64 125.36 36.87 28.81 8.68
Superposition-64 932.12 609.68 87.57 31.90
Two-Dim-8x8 126.30 111.75 14.27 9.42

Shortened-256 487.00 91.71 114.57 16.17
Superposition-256 3628.66 2694.93 349.60 133.90
Two-Dim-16x16 261.72 213.36 29.15 16.47

significantly exceed those of their 8-bit fixed-point counterparts. We observe that among the

single-dimensional configurations the shortened neurons/filters scheme is consistently more hard-

ware efficient than neuron/filter superposition because of the outlined reasons in Section 12.5.2.

A group size of 8 in the shortened neurons/filters scheme can support sparsity rates up to 87.5%,

while the multiplexing area and power overheads are contained to 14.63% and 14.06% for the

fixed-point, and to the rather minute levels of 3.38% and 2.89% for the floating-point MAC units.

The area and power overheads become noticeable for single-dimensional schemes as the group

size grows, particularly for the fixed-point case, yet some single-dimensional configurations

could still be preferable when throughput improvement is desired.

The power footprint often scales better than area for large group sizes since multiplexer

configurations that are controlled by additional weight bits become highly stable in a weight-

stationary architecture; thus, the additional circuitry triggers minimal switching activity while

transferring the correct operands to MAC units.

The neuron/filter superposition technique may suffer from additional storage overheads

due to the required accumulation registers between neighboring MAC units. On the other hand,
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the additional input register overheads in the shortened neurons/filters scheme can be amortized

for each systolic array row as activations can be broadcast to the entire row without requiring an

individual activation register at each MAC unit.

Two-dimensional MAC unit configurations require both input and relatively more ex-

pensive output multiplexing circuitry. However, the utilization of both dimensions delivers

improved scalability characteristics to large group sizes, consistent with the theoretical expecta-

tions outlined in Section 12.5.2. While the area overhead grows linearly with the group size in

the single-dimensional designs, the area overhead scaling in the two-dimensional configurations

is observed to be proportional to the square root of the group size increase. The two-dimensional

configurations are more expensive than the shortened neurons/filters in terms of power in the

listed group sizes due to the inefficiencies of output multiplexing. However, power overhead

growth is observed to be smaller than the single-dimensional designs as group size is increased.

We have evaluated the area and power overheads of the flow-controlling MAC units in

Table 12.9. The flow-controlling MAC unit can provide a throughput increase that matches the

supported group size (e.g., 16× throughput boost for the group size of 16). It is therefore helpful

to demonstrate the efficiency improvements of the flow-controlling MAC units as in Table 12.10

by evaluating the number of effective MAC operations per unit area and power when compared

to the baseline MAC unit in a dense DNN accelerator. These metrics are obtained by normalizing

the throughput improvement with the final area and power of the flow-controlling MAC unit.

As a dense neural network accelerator suffers from an inherent inefficiency due to its

inability to exploit sparsity, the computational efficiency of the flow-controlling MAC units

improves monotonically with increasing group size and sparsity rates. For instance, a floating-

point MAC unit for the shortened neurons/filters scheme with a group size of 16 misses the

16× ideal efficiency improvement goal by a tad, undershooting slightly at 14.90× for ops/area

and 15.29× for ops/power due to the overheads of the multiplexing logic. In other words, the

throughput boost in these designs is accompanied by a relatively smaller hardware overhead

growth, thus enabling us to squeeze a larger amount of effective computations into a unit of
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Table 12.10. Efficiency improvements (×) for the flow-controlling MAC units.

8-bit Fixed Point 32-bit Floating Point

Ops/Area Ops/Power Ops/Area Ops/Power

Shortened-8 6.98 7.01 7.74 7.78
Superposition-8 3.78 4.08 7.21 7.59

Shortened-16 12.12 13.38 14.90 15.29
Superposition-16 4.85 5.47 13.14 14.47
Two-Dim-4x4 9.77 9.66 14.97 15.02

Shortened-64 28.40 46.76 49.68 58.89
Superposition-64 6.20 9.02 34.12 48.52
Two-Dim-8x8 28.28 30.22 56.01 58.49

Shortened-256 43.61 133.54 119.31 220.36
Superposition-256 6.87 9.16 56.94 109.45
Two-Dim-16x16 70.77 81.69 198.22 219.80

hardware area or power, and improve accelerator efficiency in the sparse computations.

Simultaneous improvements in both performance and efficiency are feasible since the

proposed hardware enhancements enable the utilization of computational sparsity that the dense

accelerators cannot exploit. One could prefer to constrain the accelerator design by a power

budget; in that case, the designs with these enhancements would exhibit higher performance than

a dense accelerator in sparse computations. Alternatively, one could aim for a target performance

metric; then, the power consumption of the proposed designs will be much lower than their dense

counterparts due to their improved efficiency.

Finally, the trends between different sparsity schemes in Table 12.9 generalize to the

efficiency results in Table 12.10 as well, such as the superiority of the shortened neurons/filters

when compared to the neuron/filter superposition and the relatively more graceful scaling charac-

teristics of the two-dimensional configurations compared to the single-dimensional designs.
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12.8 Chapter Summary

Sparsity is regarded as a valuable tool to restrain the ever-escalating computational

complexity of deep neural networks, yet in practice, the delivered benefits often fall short

of expectations due to the hardware challenges induced by the irregular nature of sparsity.

We illustrate that the plasticity of neural networks facilitates the attainment of state-of-the-art

accuracy levels when expressiveness is carefully architected into the fabrics of regular sparsity

patterns and molded through novel training techniques. The regularity of such sparsity patterns

opens up avenues for synergistic hardware support through minor enhancements on the existing

architectures that specialize in dense matrix operations. The synergistic design paradigms offer

an inspiring direction towards enabling sparsity at a low cost in deep learning hardware.
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Chapter 13

Discussion

13.1 Summary of Technical Chapters

The technical chapters of this dissertation have focused on various practical applications

for the advocated algorithm-centric and synergistic design paradigms:

• We have outlined several innovative techniques for hardware error detection and localiza-

tion in deep neural network accelerators. Instead of precise yet expensive conventional

error detection methods, we have explored approaches to identify and locate critical hard-

ware errors with high precision via computational invariants embedded into deep neural

networks. Invariant embedding is performed during the architectural definition phase or

while guiding deep neural networks in the training process.

• We have presented novel error rectification methods through dropping, clipping, or filtering

deep neural network variables that are contaminated with error effects, and experimen-

tally demonstrate the effectiveness of these solutions in providing a graceful accuracy

degradation curve under hardware errors. The proposed techniques contain the error

impact effectively by harnessing the inherent resilience of deep neural networks to limited

magnitude perturbations and complementing their graceful toleration to sparsity.

• We have seamlessly coupled the outlined algorithmic techniques with minimal yet syner-

gistic hardware enhancements in deep neural network accelerators to carry out the required
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error localization and rectification tasks in an efficient manner.

• Our experimental observations have opened up future possibilities for novel algorithmic

design techniques capable of providing strong hardware error resilience characteristics in

deep neural networks. We have demonstrated that the resilience of deep neural networks

can be boosted significantly and at no additional cost through the proper containment of

the hardware range and strategic manipulations in the numerical distribution of deep neural

network variables.

• We have described a practical hardware/software co-design methodology for manufacturing

yield improvements in deep neural network accelerators by building upon a low-cost

hardware bypass mechanism powered through the micro-architectural regularity of deep

learning accelerators and boosting the decentralization of deep neural networks through

innovative training techniques. Moreover, we calibrate deep neural networks on the

deployed device through computational rearrangements and the adjustment of the batch

normalization layers to boost accuracy even further.

• We have investigated various data analysis measures to reveal functional unit correlations

and proposed a methodology to eliminate correlation-based redundancy in deep neural

networks. As a result, we have obtained compact deep neural network models that can be

run efficiently on commodity hardware platforms.

• We have demonstrated that the regularity constraints in the sparsity patterns coupled

with minimal micro-architectural enhancements to deep neural network accelerators can

establish an effective contract between hardware and software. As a result, we have fur-

ther increased the synergy between sparse deep neural networks and hardware platforms,

eliminated the hardware challenges of unstructured sparsity, and thus delivered practical

performance and efficiency boosts in sparse deep neural network inference.
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13.2 Significance of Dissertation Research

This dissertation advocates a holistic perspective that considers the characteristics of deep

learning algorithms and hardware architectures at the same time. The insights obtained from this

holistic approach are utilized for addressing the hardware challenges of machine intelligence

platforms. The algorithmic characteristics of deep neural networks, such as plasticity, resiliency,

and redundancy, and the hardware platform properties, such as micro-architectural regularity, are

translated into significant improvements in hardware safety, reliability, and resource efficiency

through a variety of novel design strategies.

One unique perspective brought to the table by this dissertation is the proactive design

strategies to deliver an increased level of immunity against hardware error effects. This perspec-

tive reduces the need for costly safety and reliability measures in practical hardware systems and

encourages the construction of innovative design principles.

Conventional measures necessitate excessive information redundancy and overheads in

hardware systems for identifying anomalous behavior. We construct relationships and invariants

across deep neural network variables and utilize them to detect hardware error effects in deep

neural network computations. The outlined approach not only reduces the overheads required for

error detection but also presents a unique perspective and further avenues in the research domain.

Similarly, addressing hardware errors through perfect restoration requires an even more

significant amount of information redundancy. Instead, we present a cost-effective solution to

minimize the numerical impact of hardware errors on overall functional accuracy. The success

of the proposed approach stems from the effective use of deep neural network resiliency to small

perturbations while addressing the numerical effect of hardware errors.

As another significant contribution, we employ embedded relationships for constructing

regularity within sparse neural networks and boost performance and hardware efficiency by

forming an effective contract between deep neural networks and hardware micro-architectures.

The result of our study demonstrates the potential of reshaping deep learning algorithms with
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alternative training objectives and motivates the synergistic design of deep learning processing

systems.

Embedding auxiliary objectives and relationships in deep neural networks incurs addi-

tional costs. An essential consideration in this dissertation involves the minimization of such

costs through the practical use of deep neural network characteristics, especially their redundancy

and plasticity in the training process, while forming computational structures associated with

auxiliary safety, reliability, and efficiency objectives.

The proposed methodology in this dissertation promotes strong safety and reliability

for deep learning hardware in the face of not only the rare occurrence of hardware errors but

even the highly elevated levels that are assumed to be unmanageable in conventional computing

systems. As a result, strong functional safety characteristics could be attained in mission-critical

domains without compromising the overall functional accuracy while minimizing the associated

costs and overheads through the relaxation of structural hardware correctness requirements.

The outlined research has the potential to improve the resource efficiency of deep learning

processing systems through effective redundancy extraction and synergistic hardware-software

co-design. As more comprehensive redundancy extraction techniques can obtain smaller yet

accurate deep neural networks, the sparsity patterns can be engineered with specific constraints

to exhibit both high expressiveness and seamless hardware predictability. Efficient deep neural

networks obtained through these techniques could position more powerful deep learning tech-

niques in resource-constrained application domains and consequently boost the pace of digital

transformation by powering novel machine intelligence applications.

The immediate outcomes of the dissertation will promote the deployment of deep learning

processing systems in mission-critical and resource-constrained application domains, including

but not limited to autonomous driving, healthcare devices, defense, and industrial systems. The

potential benefits could contribute to the lives of millions through safe, reliable, and efficient

artificial intelligence hardware systems.
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13.3 Open Questions and Future Directions

The technical chapters of the dissertation demonstrate tremendous potential for innovation

in challenging artificial intelligence hardware problems. Several research questions and practical

considerations remain unanswered, and we believe that the research domain could benefit from

further investigation in these areas to ensure the applicability of these concepts in practical

hardware systems.

13.3.1 Comprehensive Characterization of DNN Redundancy

A plethora of model compression techniques have been proposed in the recent literature

to eliminate redundancy in deep neural networks. While these studies target different types of

redundancy and exhibit varying levels of success in the elimination process, the current research

literature still lacks a comprehensive understanding of the functionally essential components and

the extent of the redundancy in deep neural networks.

Comprehensive methodologies for understanding the extent of redundancy in deep neural

networks have immense importance in constructing efficient deep neural network architectures

that can satisfy functional requirements at the cost of minimal resources. Furthermore, the pro-

posed approach of reshaping deep neural networks for hardware safety and reliability objectives

necessitates additional resources within the model that are not necessarily associated with the

primary functional goal. The advocated methodology of reshaping deep neural networks thus

can greatly benefit from novel approaches for evaluating the extent of the required additional

resources.

13.3.2 Addressing Training Challenges of Proposed DNN Constraints

Section 5.4.2 has previously discussed various training challenges for deep neural net-

works such as discontinuities and imperfectly aligned objectives when trained with additional

constraints. Constructing balanced training objectives, resolving relationship conflicts across
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variables, and ensuring efficient gradient propagation are observed to be essential to ensure the

viability of effective deep neural network training. We have proposed strategies for enhancing

the conventional training flows, such as custom gradient estimation techniques, to address these

challenges and obtain competitive functional accuracy in a variety of deep learning benchmarks.

On the other hand, standard training techniques that solely focus on loss function mini-

mization through parameter updates in the direction of gradients could result in locally optimal

steps in the presence of discontinuities and imperfectly aligned objectives across deep neural

network variables. As a result, further innovative training techniques that are cognizant of

discontinuities and relationships in the optimization process could greatly help the invariant

embedding process for the goals of safety, reliability, and efficiency, and thus ensure that compet-

itive functional accuracy is not sacrificed in challenging deep learning benchmarks due to the

outlined training complexities when deep neural networks are subject to additional constraints.

13.3.3 Exploring Interactions Between Proposed Techniques

We have presented various technical studies throughout this dissertation to address

hardware safety, reliability, and resource-efficiency challenges. Meanwhile, these techniques

make use of the same characteristics of deep neural networks, and they could result in further

interactions when they are deployed simultaneously in the same deep learning model.

To illustrate, the proposed safety and reliability measures could interfere with resource-

efficiency techniques, and the impact of such interaction could vary depending on the scenario.

For example, the introduced numerical order relationships across the activation variables in

Chapter 8 could incur dependencies and lead to difficulties for the structured neuron/filter pruning

in Chapter 11, yet we expect weight sparsity patterns in Chapter 12 not to be significantly affected

by the constructed relationships across the activations.

As the outcome of the interaction could differ depending on the involved techniques,

further research efforts are necessary to ensure the viability of the simultaneous application of

methods in practical deep learning processing systems.
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13.3.4 Harnessing DNN Resilience for Further Efficiency Improvements

The outline approach in this dissertation enables deep neural networks to endure severe

error conditions at a minimal cost. Such resilience characteristics are invaluable not only for

hardware safety and reliability but also open up a slew of opportunities for the next generation

of embedded designs in deep neural network processing. The relaxation in the rigidity of the

individual correctness requirements in the hardware can be exploited to reduce the resource

footprint through design optimizations or utilizing alternative manufacturing technologies that

suffer from inherent variability and may be prone to high defect rates.

The aggressive hardware optimizations can deliver remarkable energy efficiency improve-

ments in CMOS (complementary metal-oxide-semiconductor) devices when the consequently

elevated hardware error rates can be tolerated through the enhanced resilience characteristics of

deep neural networks. Such aggressive hardware optimizations include supply voltage scaling in

the on-chip SRAM (static random-access memory) buffers [103], computational fabric [78], or

the interconnect circuitry [172].

Furthermore, the error resilience of deep neural networks can facilitate novel compu-

tation paradigms [175], and novel communication fabrics through photonics, wireless, or 3D

interconnects [234] when the inherent inaccuracy and manufacturing issues for such emerging

technologies can be endured through the algorithmic resilience of deep neural networks.

More comprehensive hardware studies, as well as the implementation of automated

design tools, are necessary for the precise characterization of computational mediums with

high fault rates so that utmost performance and energy efficiency goals can be attained with

guaranteed operational accuracy.

13.3.5 Effective and Comprehensive Evaluation of DNN Reliability

The benefits of conventional fault tolerance methods have been relatively straightforward

to characterize and quantify due to their adherence to the strict structural correctness requirements.
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To illustrate, error correction codes such as Hamming codes [52, 89] offer guaranteed correction

and detection of errors within a given limit. The reliability of modular redundant systems [53, 90]

can be characterized analytically, as an example is provided in Section 8.8.1.

On the other hand, comprehensive evaluation of DNN reliability is a more involved

pursuit due to the inherent resiliency and the statistical nature of deep neural networks. A

variety of techniques in Section 3.1.1 have attempted to close this gap, often through empirical

methods such as fault simulation, yet the accuracy and scalability challenges of such tools

remain unresolved. The reader will note the similarity of the deep neural network hardware error

resilience problem to certain phenomena investigated in the digital signal processing domain, as

discussed in Chapter 9. The theoretical background of the digital signal processing domain could

be beneficial, yet significant research efforts are likely needed to bridge the gap and construct a

sound theoretical infrastructure for reliability evaluation in deep neural networks.

More effective and comprehensive reliability evaluation techniques are critical in the

near term to assure the practical applicability of the proposed hardware safety and reliability

techniques into mission-critical domains such as automotive electronics with strict safety require-

ments [51, 235]. The reliability evaluation techniques will not only help the system designers to

identify potential problems but also guide the researchers to explore more effective avenues for

boosting the safety and reliability of deep learning hardware.

13.3.6 Applicability to Future Algorithms and Hardware Technologies

An important consideration is the applicability of the proposed techniques to the evolving

algorithms in the fast-evolving domain of artificial intelligence. Furthermore, the actively

researched device technologies may drastically alter the landscape of machine intelligence

hardware in the next decade. It is therefore critical to question whether the proposed framework

in this dissertation could withstand the pressure of time, and if so, we further need to examine

the impact of the additional constraints that may emerge in the future.

Throughout the dissertation, we make use of the unique algorithmic characteristics of
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deep neural networks, including inherent redundancy, plasticity in the design process, and

resiliency to small numerical perturbations. On the other hand, the evolving landscape of

deep learning algorithms could impact the wide-scale availability of these characteristics. The

continuous evaluation of these characteristics is thus needed for the state-of-the-art deep neural

network architectures to be able to make the necessary revisions and reveal further research

opportunities.

The novel device technologies, such as in-memory or analog domain processing, may

lead to fundamental shifts in how we approach deep learning hardware problems. For instance,

the safety and reliability techniques could need to adapt to unique hardware fault models in

novel device technologies. The additional inaccuracy challenges may prove to be challenging

to address with conventional measures and thus accentuate the need for algorithm-centric and

synergistic design paradigms even further. Overall, the alternative strategy of considering deep

learning hardware from a statistical and functional perspective can furnish innovative answers to

existing hardware challenges and facilitate the seamless adaptation of future artificial intelligence

hardware technologies.

13.3.7 Promoting Synergistic Avenues in DNN Processing System Design

Defining clear abstraction levels between hardware and software has remained a highly

effective strategy in developing computing systems for over half a century. Conventional

processor micro-architectures have abstracted themselves from software development through

well-defined ISAs (instruction set architectures), as the necessary performance and efficiency

improvements are usually delivered by the advancements in semiconductor technology, with the

help of well-known phenomena such as Moore’s Law [39]. The stagnation in semiconductor

technology scaling has led to the inception of hardware accelerators and custom silicon as an

alternative solution in the past decade, capitalizing on the innate inefficiencies of the general-

purpose architectures to deliver performance and efficiency improvements over conventional

processor micro-architectures. However, the long-term effectiveness of this approach is yet
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in question due to the excessive scaling trends of large deep neural networks. The described

techniques fall short of considering the synergy that can arise when hardware and software are

simultaneously optimized, resulting in missed opportunities to maximize benefits.

Foreseeing the next technology wave that can enable the efficient and scalable processing

of deep neural networks is undoubtedly a challenging pursuit. The co-design techniques that

synergistically optimize software and hardware can play an essential role in the design of the

next generation of machine intelligence systems and offer feasible avenues for improving the

hardware safety, reliability, and resource efficiency of deep learning processing systems. Despite

the strong support for the synergistic co-design techniques in the scope of the dissertation, the

adoption of synergistic design principles is still in its infancy; further research, development, and

promotion efforts are necessary both in academia and industry to unlock the full potential of

synergistic hardware-software co-design techniques for deep learning hardware.
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Chapter 14

Conclusion

The past decade has witnessed remarkable progress in artificial intelligence. The recent

advancements have led to numerous practical use cases in various critical domains such as

autonomous driving, healthcare, and industrial automation. As the role of artificial intelligence

keeps expanding rapidly, our critical cyber infrastructure will heavily rely on intelligent systems

in the near future.

Deep learning hardware systems are hindered by various challenges in practice, including

the elevated computational cost of deep neural networks and the increasing concerns about

hardware safety and reliability in the mission-critical application domains. The computational

cost of deep neural networks has been traditionally addressed through isolated hardware and

software optimizations in the recent past. Meanwhile, conventional hardware safety and reliability

solutions developed for general-purpose electronics often lead to prohibitive area, power, or

performance overheads.

This dissertation advocates for algorithm-centric and synergistic co-design techniques

and it explores outside-of-the-box solutions to the demanding hardware challenges of deep

learning processing systems. The innovative approach of this dissertation stems from the

distinctive landscape of deep learning processing systems when compared to general-purpose

computing platforms. We investigate unique computational characteristics of deep neural

networks, including their redundancy, algorithmic plasticity, and resiliency to small numerical
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perturbations. At the hardware level, the unique micro-architectural characteristics of deep

learning accelerators, such as regularity, are considered.

The proposed approach in this dissertation relies on four fundamental foundations: re-

shaping deep neural networks in the training process for the desired goals, enhancing hardware

platforms minimally yet strategically at the cost of minimal resources, prioritizing the functional

correctness and the overall goal rather than the structural correctness of individual variables and

operations, and finally harnessing the statistical nature of deep learning algorithms to relax the

strict preciseness requirements and innovate cost-effective solutions.

We demonstrate various practical applications for the outlined principles throughout this

dissertation. On the hardware safety and reliability side, we first propose low-cost methods for

detecting hardware errors in deep neural network accelerators through the use of embedded

algorithmic invariants. Novel error rectification methodologies are presented for curbing the

impact of critical errors on deep neural networks. We further promote accurate deep neural

network operation even under extreme hardware error rates through proactive design and training

strategies. Finally, we tackle permanent hardware defects in deep neural network accelerators

through cost-effective adaptivity techniques. To address the hardware resource efficiency chal-

lenges, we demonstrate and systematically eliminate unique redundancy types that stem from

functional correlations in deep neural networks. Furthermore, we significantly boost the infer-

ence performance of sparse deep neural networks by defining regularity constraints in sparsity

patterns and strategically enhancing hardware platforms.

Overall, the outlined effective strategies share the common attribute of the holistic

consideration of hardware and software, which yields insights that translate into innovative

solutions. A variety of challenging hardware problems of deep learning processing systems can

thus be addressed effectively through the use of the proposed innovative design principles. The

outlined strategies in this dissertation open up promising avenues for building safe, reliable, and

resource-efficient hardware systems for machine intelligence.
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H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic
circuits,” Nature Photonics, vol. 11, no. 7, pp. 441–446, 2017.

[192] L. Bernstein, A. Sludds, R. Hamerly, V. Sze, J. Emer, and D. Englund, “Freely scalable
and reconfigurable optical hardware for deep learning,” Scientific Reports, vol. 11, no. 1,
pp. 1–12, 2021.

[193] B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. Pernice, H. Bhaskaran, C. D. Wright,
and P. R. Prucnal, “Photonics for artificial intelligence and neuromorphic computing,”
Nature Photonics, vol. 15, no. 2, pp. 102–114, 2021.

[194] F. Ashtiani, A. J. Geers, and F. Aflatouni, “An on-chip photonic deep neural network for
image classification,” Nature, pp. 1–6, 2022.

[195] F. P. Sunny, E. Taheri, M. Nikdast, and S. Pasricha, “A survey on silicon photonics for
deep learning,” ACM Journal of Emerging Technologies in Computing System, vol. 17,
no. 4, pp. 1–57, 2021.

[196] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse, trainable neural
networks,” in International Conference on Learning Representations, 2018.

[197] S. Mittal, “A survey of techniques for approximate computing,” ACM Computing Surveys
(CSUR), vol. 48, no. 4, pp. 1–33, 2016.

[198] “Heaviside step function.” https://mathworld.wolfram.com/HeavisideStepFunction.html.
Accessed: Apr-4-2023.

[199] J. Cong and B. Xiao, “Minimizing computation in convolutional neural networks,” in
Proceedings of the International Conference on Artificial Neural Networks, pp. 281–290,
Springer, 2014.

[200] I. Bayraktaroglu and A. Orailoglu, “Concurrent test for digital linear systems,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 20, no. 9,
pp. 1132–1142, 2001.

[201] V. Nair and J. A. Abraham, “Real-number codes for fault-tolerant matrix operations on
processor arrays,” IEEE Transactions on Computers, vol. 39, no. 4, pp. 426–435, 1990.

[202] F. Chollet, “Keras.” https://keras.io, 2015.

275

https://mathworld.wolfram.com/HeavisideStepFunction.html
https://keras.io


[203] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irv-
ing, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: A
system for large-scale machine learning,” in Proceedings of the 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16), pp. 265–283, 2016.

[204] W. Ford, Numerical linear algebra with applications: Using MATLAB. Academic Press,
2014.

[205] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in Proceedings
of the 19th International Conference on Computational Statistics (COMPSTAT), pp. 177–
186, Springer, 2010.

[206] J. Shlens, “A tutorial on principal component analysis,” arXiv preprint arXiv:1404.1100,
2014.

[207] A. Krizhevsky, Learning multiple layers of features from tiny images. CiteSeerX, 2009.

[208] R. C. Gonzalez and R. E. Woods, Digital Image Processing. USA: Addison-Wesley
Longman Publishing Co., Inc., 2nd ed., 2001.

[209] “cuBLAS: Dense linear algebra on GPUs.” https://developer.nvidia.com/cublas. Accessed:
Apr-4-2023.

[210] “NVIDIA deep learning accelerator.” http://nvdla.org/index.html. Accessed: Apr-4-2023.

[211] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[212] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized neural
networks,” Advances in Neural Information Processing Systems, vol. 29, 2016.

[213] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: an
imperative style, high-performance deep learning library,” Advances in Neural Information
Processing Systems, vol. 32, pp. 8026–8037, 2019.

[214] K. E. Batcher, “Sorting networks and their applications,” in Spring Joint Computer
Conference, p. 307–314, 1968.

[215] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,
“SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model
size,” arXiv preprint arXiv:1602.07360, 2016.

[216] H. Cho, S. Mirkhani, C.-Y. Cher, J. A. Abraham, and S. Mitra, “Quantitative evaluation
of soft error injection techniques for robust system design,” in Proceedings of the 50th
Annual Design Automation Conference, pp. 1–10, 2013.

276

https://developer.nvidia.com/cublas
http://nvdla.org/index.html


[217] H. Cho, E. Cheng, T. Shepherd, C.-Y. Cher, and S. Mitra, “System-level effects of soft
errors in uncore components,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 36, no. 9, pp. 1497–1510, 2017.

[218] D. Williamson, “Dynamically scaled fixed point arithmetic,” in IEEE Pacific Rim Con-
ference on Communications, Computers and Signal Processing Conference Proceedings,
pp. 315–318, 1991.

[219] M. Courbariaux, Y. Bengio, and J.-P. David, “Training deep neural networks with low
precision multiplications,” arXiv preprint arXiv:1412.7024, 2014.

[220] M. Bushnell and V. Agrawal, Essentials of Electronic Testing for Digital, Memory and
Mixed-Signal VLSI Circuits, vol. 17. Springer Science & Business Media, 2004.

[221] J. H. Kim and S. M. Reddy, “On the design of fault-tolerant two-dimensional systolic
arrays for yield enhancement,” IEEE Transactions on Computers, vol. 38, no. 4, pp. 515–
525, 1989.

[222] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” in International Conference on Learning Representations, 2015.

[223] D. C. Lay, S. R. Lay, and J. J. McDonald, Linear Algebra and Its Applications. USA:
Pearson Publishing Co., 5th ed., 2016.

[224] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet large scale visual
recognition challenge,” International Journal of Computer Vision, vol. 115, no. 3, pp. 211–
252, 2015.

[225] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural
networks,” in Proceedings of the 13th International Conference on Artificial Intelligence
and Statistics, pp. 249–256, 2010.

[226] C. Guo, B. Y. Hsueh, J. Leng, Y. Qiu, Y. Guan, Z. Wang, X. Jia, X. Li, M. Guo, and Y. Zhu,
“Accelerating sparse DNN models without hardware-support via tile-wise sparsity,” in
International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–15, 2020.

[227] Z. Wang, “SparseRT: Accelerating unstructured sparsity on GPUs for deep learning
inference,” in ACM International Conference on Parallel Architectures and Compilation
Techniques, pp. 31–42, 2020.

[228] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms.
MIT Press, 3 ed., 2009.

[229] J. Frankle, G. K. Dziugaite, D. M. Roy, and M. Carbin, “Pruning neural networks at
initialization: Why are we missing the mark?,” arXiv preprint arXiv:2009.08576, 2020.

277



[230] N. Lee, T. Ajanthan, and P. H. Torr, “SNIP: Single-shot network pruning based on
connection sensitivity,” in International Conference on Learning Representations, 2019.

[231] C. Wang, G. Zhang, and R. Grosse, “Picking winning tickets before training by preserving
gradient flow,” in International Conference on Learning Representations, 2020.

[232] H. Tanaka, D. Kunin, D. L. Yamins, and S. Ganguli, “Pruning neural networks without any
data by iteratively conserving synaptic flow,” Advances in Neural Information Processing
Systems, vol. 33, 2020.

[233] R. W. Vuduc, Automatic performance tuning of sparse matrix kernels. CiteSeerX, 2003.

[234] S. M. Nabavinejad, M. Baharloo, K.-C. Chen, M. Palesi, T. Kogel, and M. Ebrahimi,
“An overview of efficient interconnection networks for deep neural network accelerators,”
IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 10, no. 3,
pp. 268–282, 2020.

[235] “ISO 21448:2022 Road vehicles — Safety of the intended functionality.” https://www.iso.
org/obp/ui/#iso:std:iso:21448:ed-1:v1:en, 2022.

278

https://www.iso.org/obp/ui/#iso:std:iso:21448:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:21448:ed-1:v1:en

	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Background
	Problem Definition
	Dissertation Contribution
	Dissertation Organization
	Acknowledgements

	An Overview of Relevant Deep Neural Network Concepts
	Common Layer Types in Deep Neural Networks
	Fully Connected Layer
	Convolutional Layer
	Non-linear Activation Functions
	Pooling
	Batch Normalization
	Dropout and Dropconnect

	Loss Function and DNN Training Process
	DNN Inference with Spatial Hardware Accelerators
	Acknowledgements

	Literature Review
	Safety, Reliability, and Testing of Deep Learning Hardware
	Evaluating Reliability
	Hardware Error Detection and Rectification
	Boosting Hardware Error Resilience of Deep Neural Networks
	Reliability-Aware Scheduling
	Hardware Testing and Yield Improvement

	Improving Performance and Efficiency of Deep Learning Inference
	Model Compression
	Hardware Accelerator Design

	Deep Learning Inference in Computational Mediums with High Fault Rates
	Aggressive Hardware Optimizations in Digital CMOS Hardware
	Alternative Computing Technologies

	Acknowledgements

	Dissertation Overview
	Reconsidering DNN Resilience Characteristics
	Proactive Toleration of Hardware Errors
	Vulnerability Reduction Through Range Manipulation
	Boosting Algorithmic Decentralization in Training

	Non-Perfect Restoration of Hardware Errors
	Hardware Error Detection Through Invariants
	Hardware Error Detection Through External Invariants
	Hardware Error Detection Through Internal Invariants

	Usage of DNN Plasticity and Redundancy for Relationship Construction
	Harnessing Relationships for Hardware-Friendly Sparsity Embedding

	Research Vision
	Explored Research Questions
	What is Unique for Deep Learning Processing Systems?
	Unique Characteristics of Deep Neural Network Algorithms
	Unique Characteristics of Deep Neural Network Hardware

	Proposed Approach
	Reshaping Deep Neural Networks
	Strategic Hardware Enhancements
	Functional Correctness Prioritization
	Harnessing the Statistical Nature of Deep Neural Networks

	Research Challenges
	How to Explore the Design Space?
	How to Resolve Training Challenges?

	Technical Progress

	Hardware Error Detection in DNN Accelerators via External Invariants
	Introduction
	DNN Hardware Error Detection via Linear Checksums
	Checksums in Fully-Connected Layers
	Checksums in Convolutional Layers
	Error Detection Guarantees of the Checksums
	Impact of Numerical Inaccuracies on Checksum Calculations

	Experimental Method
	Error Injection Method
	Sanity-Check Implementation on Software
	Sanity-Check Implementation on Hardware
	Baseline Methods for Comparison

	Experimental Results
	Chapter Summary
	Acknowledgements

	Hardware Error Detection in DNN Accelerators via Internal Invariants
	Introduction
	Error Checking with Computation Invariants
	Training Balanced Output Partitions
	Error Checking at Runtime
	Simulating Hardware-Level Faults on the DNN Graph
	Experimental Method
	Experimental Results
	Chapter Summary
	Acknowledgements

	Cost-Effective Rectification of Hardware Errors in DNN Accelerators
	Introduction
	Overview of Relevant Neural Network Characteristics
	Fine-grained Internal Invariants for Error Localization in Deep Neural Networks
	Maintaining Neural Network Accuracy with Approximate Rectification of Errors
	Error Rectification Through Dropping or Clipping Variables
	Error Rectification Through Median Feature Selection

	Deep Neural Network Training with Graph Constraints
	Training DNNs with Anomaly Detection and Suppression Rules
	Training DNNs with Median Feature Selection Rules

	Hardware Design for Efficient Error Detection and Rectification
	Hardware Design for Efficient Anomaly Detection and Suppression
	Hardware Design for Efficient Median Feature Selection

	Experimental Method
	Anomaly Detection and Suppression Experiments
	Median Feature Selection Experiments

	Experimental Results
	Error Resilience Improvements
	Hardware Overhead Characterization

	Discussion
	Chapter Summary
	Acknowledgements

	Designing Error-Resilient Deep Neural Networks
	Introduction
	Overview of Model Quantization
	Designing Error-Resilient Deep Neural Networks By Tightening Numerical Range
	Tight Quantization Bounds with Layer-wise Quantization
	Squeezing Layer-wise Bounds with Outlier Regularization

	Experimental Method
	Experimental Setup
	Error Model

	Experimental Results
	Impact of Regularization Terms on Training and Full-Precision (Non-Quantized) Model Accuracy
	Impact of Regularization Term on Parameter Distributions
	Bit Error Resilience Analysis
	Impact of Regularization Term on Quantization Accuracy
	Observed Differences Between Max-Magnitude and Max-Squared Regularization Terms

	Discussion
	Chapter Summary
	Acknowledgements

	Boosting DNN Hardware Yields via Cost-Effective Defect Adaptation
	Introduction
	Problem Definition
	Proposed Method
	Isolating Faults Through Hardware Configurability
	Minimizing Information Loss with Decentralized DNNs
	Calibrating Statistical Properties of Faulty DNNs
	Searching for Benign Pruning Patterns

	Experimental Method
	Experimental Results
	Resilience to Processing Element Bypassing
	Hardware Overhead Analysis

	Chapter Summary
	Acknowledgements

	Searching for Information Redundancy in DNNs
	Introduction
	Information Redundancy in DNN Activations
	Squeezing DNN Correlations with Feature Elimination
	Method Description
	Practical Analysis of the Algorithmic Complexity
	Relationship with Low-Rank Tensor Decomposition

	Experimental Method
	Experimental Results
	Chapter Summary
	Acknowledgements

	Synergistic Co-design of Sparse DNNs and Hardware Accelerators
	Introduction
	Designing Complementary Sparsity Patterns
	Packing Sparsity with Neuron/Filter Superposition
	Packing Sparsity with Shortened Neurons/Filters
	Complementary Sparsity Patterns in Two Dimensions

	Evaluating Sparsity Type Expressiveness Through Analytical Models
	Evolving Sparsity Patterns in Training
	Overview of the Sparse Training Process
	Layer-wise Group Size Selection Steps

	DNN Inference with Complementary Sparsity
	Packing Sparse Layers for Efficient Compression
	Processing Sparse Layers in the Dense Format

	Experimental Method
	Model Compression Experiments
	Inference Performance Simulations
	Hardware Measurements for Flow-Controlling MAC Units

	Experimental Results
	Model Compression Results
	Inference Performance Results
	Overhead Results for Flow-Controlling MAC Units

	Chapter Summary
	Acknowledgements

	Discussion
	Summary of Technical Chapters
	Significance of Dissertation Research
	Open Questions and Future Directions
	Comprehensive Characterization of DNN Redundancy
	Addressing Training Challenges of Proposed DNN Constraints
	Exploring Interactions Between Proposed Techniques
	Harnessing DNN Resilience for Further Efficiency Improvements
	Effective and Comprehensive Evaluation of DNN Reliability
	Applicability to Future Algorithms and Hardware Technologies
	Promoting Synergistic Avenues in DNN Processing System Design

	Acknowledgements

	Conclusion
	Bibliography



