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Abstract

Design and Analysis of Hybrid and Hybrid-Inspired Control Systems in Stochastic and

Non-Stochastic Settings

by

Matina Baradaran Hosseini

This dissertation is divided into three parts. The first part presents three chapters on a class of

stochastic dynamical systems designed to solve non-convex optimization problems on smooth

manifolds. The first chapter develops the stochastic, hybrid optimization algorithm. In this

chapter, we show that the proposed dynamics combine continuous-time flows, characterized

by a differential equation, and discrete-time jumps, characterized by a stochastic difference in-

clusion in order to guarantee convergence with probability one to the set of global minimizers

of the cost function. By using the framework of stochastic hybrid inclusions, a detailed stability

characterization of the dynamics, as well as a simple extension to address learning problems

in games defined on manifolds is provided. In the second chapter, we cast a stochastic, hy-

brid algorithm for global optimization on the unit sphere using the framework of stochastic

hybrid inclusions. The algorithm includes hysteresis switching between two coordinate charts

in order to be able to fully explore the sphere by flowing without encountering singularities in

the flow vector field. It also combines gradient flow with jumps that aim to escape singular

points of the function to minimize, other than those singular points corresponding to global

minima. For this case, the algorithm is stochastic because the jumps involve random prob-

ing on the sphere. Solutions are not unique because the jumps are governed by a set-valued

mapping, i.e., an inclusion. Regarding the coordinate charts employed, we discuss both the

use of spherical coordinates as well as stereographic projection. By using the framework of

stochastic hybrid inclusions, we establish uniform global asymptotic stability in probability
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for the set of global minimizers for arbitrary continuously differentiable (C1) functions defined

on the sphere. Lastly in the third chapter, we develop a stochastic, hybrid optimization algo-

rithm for globally minimizing an arbitrary (C1) function on the unit sphere intersected with an

arbitrary half-space in R3. Hysteresis switching between coordinate charts is used to enable

the algorithm to fully explore the sphere by flowing. During flows, the optimization algorithm

uses (projected) gradient descent when near the boundary of the half-space. It may use an up-

date rule inspired by accelerated gradient methods away from the boundary of the half-space.

It uses hysteresis switching between the two continuous-time update methods. Periodically,

stochastic probing on the sphere is used to attempt to improve the value of the cost function. A

stability analysis of the algorithm is provided and the algorithm is demonstrated on a numerical

example.

The second part of this dissertation consists of two chapters. The first chapter character-

izes the asymptotic behavior that results from switching among asymptotically stable systems

with distinct equilibria when the switching frequency satisfies an average dwell-time constraint

with a small average rate. The asymptotic characterization is in terms of the Omega-limit set

of an associated ideal hybrid system containing an average dwell-time automaton with the rate

parameter set equal to zero. This set is globally asymptotically stable for the ideal system. The

actual switched system, including small disturbances, constitutes a small perturbation of this

ideal system, resulting in semi-global, practical asymptotic stability. In the second chapter, we

consider some of convex optimization engineering challenges, such as those involving multi-

agent systems and resource allocation, where the objective function can persistently switch

during the execution of an optimization algorithm. Motivated by such applications, in Chapter

6 we analyze the effect of persistently switching objectives in continuous-time optimization

algorithms. In particular, we take advantage of the robust stability results from Chapter 5

for switched systems with distinct equilibria and extend these results to systems described by

differential inclusions, making the results applicable to recent optimization algorithms that em-

x



ploy differential inclusions for improving efficiency and/or robustness. Within the framework

of hybrid systems theory, we provide an accurate characterization, in terms of Omega-limit sets,

of the set to which the optimization dynamics converge. Finally, by considering the switching

signal to be constrained in its average dwell time, we establish semi-global practical asymptotic

stability of these sets with respect to the dwell-time parameter.

In the third part of this dissertation, Input-to-state stability (ISS) is considered for a non-

linear “soft-reset” system with inputs. The latter is a system that approximates a hard-reset

system, which is modeled as a hybrid system with inputs. In contrast, a soft-reset system is

modeled as a differential inclusion with inputs. Lyapunov conditions on the hard-reset system

are given that guarantee ISS for the soft-reset system. In turn, it is shown when global asymp-

totic stability for the origin of the zero-input reset system guarantees ISS for nonzero inputs.

Examples are given to demonstrate the theory.
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Chapter 1

Introduction

Hybrid dynamical systems refer to a class of dynamical systems including both discrete and

continuous time dynamics interacting and governing a certain system’s evolution in time. Many

classic dynamical systems are either continuous or discrete, but the need for hybrid dynamical

systems arises when there is an interaction between digital discrete systems and continuous

physical processes. Due to the increasing interactions between time-driven continuous dynam-

ics and event-based discrete dynamics observed in many of today’s applications and the tight

interaction between them, one might not be able to study the discrete and continuous behavior

separately and ignore the coupling. Many of these couplings between the continuous and dis-

crete dynamics can be observed in advanced control systems, where multiple control laws are

combined in order to address broader scenarios and with better performance i.e., control switch

to avoid collision [1], control of multi-robot systems [2], control of legged robots [3] to name

a few. The importance of hybrid systems in practice has attracted attention from the control

system community during the past decades [4],[5], [6]. The multidisciplinary nature of hybrid

dynamical systems can be challenging to study and analyze especially when stochasticity and

randomness interplay with these systems. Stochastic hybrid systems are dynamical systems

that combine continuous change and instantaneous change and that include random effects.

1



Introduction Chapter 1

We can see such hybrid systems with stochasticity in many subclasses like Markov jump sys-

tems [7], stochastic switched systems [8], and stochastic hybrid inclusions [9]. Understanding

the design and modeling of hybrid and stochastic hybrid systems has become a necessity. The

model of a hybrid dynamical system can be represented in the following form using ordinary

differential and difference equations

ẋ = f (x), x+ = g(x). (1.1)

To extend the above hybrid system into a more general setting, we can use differential and

difference inclusions and have

ẋ ∈ F(x), x+ ∈ G(x), (1.2)

where F and G are set-valued mappings describing the continuous flow map and the discrete

jump map respectively. The hybrid system (1.1) can be now considered as a particular case of

(1.2). In the next step, we specify the space in which the continuous and discrete dynamics are

allowed to evolve, namely the flow set C and the jump set D:

x ∈ C, ẋ ∈ F(x),

x ∈ D, x+ ∈ G(x).

The precise mathematical characterization of the properties of this system, the definition of

solutions, stability notions, and generic robustness principles are given in [4]. This modeling

framework is the fundamental hybrid system model, which will be used throughout this dis-

sertation for stability analysis and modeling. We consider this fundamental model as the pillar

for various examples that we study in this dissertation. Depending on the problem addressed

in each chapter, there would be variations of this system with randomness or systems inspired

2



Introduction Chapter 1

by this model introduced. Due to the hybrid system’s theoretical and practical importance, it

is important to obtain a comprehensive view of this field by designing and modeling hybrid

and hybrid-inspired control systems and optimization algorithms implemented and tailored for

different scenarios and problem settings. The goal of this dissertation is to design and analyze

different systems in the framework of hybrid, stochastic hybrid, and hybrid-inspired systems

through various examples and applications.

3



Part I

A Stochastic hybrid systems approach for

global optimization on general manifolds
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Chapter 2

Stochastic hybrid inclusions applied to

global almost sure optimization on

manifolds

There has been a renewed interest in developing dynamical systems to solve optimization prob-

lems [10], [11], [12], [13], [14]. These developments have led to novel algorithms for power

systems [15], resource allocation [16], control of autonomous robots [17], stabilization of rigid

bodies evolving on manifolds [18], and adaptive control problems [19], for example.

Designing such dynamical systems whose solutions from every possible initial condition

converge to the solution of the optimization problem has been studied under convexity-like

assumptions. However, the development of efficient algorithms that guarantee the global con-

vergence property in non-convex settings is still an open research question. In fact, it is well-

known that standard gradient-based dynamical systems cannot escape local minima or saddle

points of the cost function [20, pp. 2]. Moreover, it is also well-known [21] that robust con-

vergence to the set of global minimizers of an optimization problem with saddles and local

minima cannot be achieved using a differential equation with a continuous right-hand side. On

5
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the other hand, it has been shown in [22], [18], and [14], that deterministic hybrid optimiza-

tion algorithms can overcome these limitations, provided the location of the critical points is

known a priori. This restrictive assumption has motivated the development of systematic ana-

lytical frameworks for the design of optimization algorithms with randomization. For instance,

random initialization and gradient descent is used in [23] to establish almost sure convergence

to the set of local minimizers of a cost function. Stochastic gradient descent is used in [24]

to escape saddles, under the assumption of having a Hessian matrix at the saddle point with a

strictly negative eigenvalue. A finite-time algorithm based on gradient descent with small ran-

dom perturbations is used in [20] to escape saddle points, and a similar stochastically perturbed

version of Nesterov’s accelerated gradient descent is studied in [25].

Motivated by this recent research line, we present in this chapter a family of optimization

algorithms modeled as dynamical systems, designed to solve non-convex optimization prob-

lems on general smooth manifolds. In contrast to the existing results, the proposed method

relies on asymptotic analytical tools for stochastic dynamical systems, such as Lyapunov func-

tions and invariance principles. This fact allows us to establish a uniform global asymptotic

stability in probability result for the system. Since the existence of degenerate saddle points

and local minima prevent the implementation of purely continuous-time gradient-based opti-

mization algorithms, we propose a class of optimization dynamics that implement continuous-

time and discrete-time updates of the optimization variable, injecting stochasticity during the

discrete-time updates of the system. Given that the dynamics of the algorithm are character-

ized by differential and difference inclusions rather than difference and differential equations,

the optimization dynamics are modeled as a stochastic hybrid inclusion (SHI), a class of sys-

tems recently studied in [9]. Using Lyapunov-based tools and invariance principles for SHI,

we characterize a class of non-convex optimization problems defined on general smooth man-

ifolds for which global asymptotic stability in probability (GASp) can be established for the

set of global minimizers of the cost function. Subsequently, we show that the hybrid stochastic

6
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optimization dynamics can be adapted to solve distributed optimization and learning problems

in a class of multi-agent systems (MAS) having a global potential function and modeled as a

weighted potential game. For this type of problem it is shown that, provided a global inter-

mittent communication protocol is implemented, GASp can be achieved for the set of global

minimizers of the potential function.

2.1 Notation

We denote by R (R≥0) the set of real numbers (resp. non-negative real numbers), and by

Z (Z≥ j) the set of integers (resp. set of all integers greater than or equal to j). A set-valued

mapping M : Rp ⇒ Rn is outer semicontinuous (OSC) if, for each (xi, yi) 7→ (x, y) ∈ Rp × Rn

satisfying yi ∈ M(xi) for all i ∈ Z≥0, we have y ∈ M(x). A mapping M is locally bounded (LB)

if, for each bounded set K ∈ Rp, M(K) := ∪x∈K M(x) is bounded. B(Rm) denotes the Borel

field, i.e., the subsets of Rm generated from open subsets of Rm through complements and finite

and countable unions. A set F ⊂ Rm is measurable if F ∈ B(Rm). A mapping M : Rp ⇒ Rn is

measurable if for each open O ⊂ Rn the set M−1(O) := {v ∈ Rp : M(v) ∩ O , ∅} is measurable.

The set B is defined as B := {x ∈ Rn : |x|∞ ≤ 1} where |x|∞ := maxi∈(1,..,n)|xi|.

7
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2.2 Stochastic hybrid inclusions

2.2.1 Models

We consider optimization algorithms modeled by stochastic hybrid inclusions [9], which

have the form

x ∈ C ẋ ∈ F(x) (2.1a)

x ∈ D x+ ∈ G(x, v+) v ∼ µ(·) (2.1b)

where x ∈ Rn is the state of the system and v+ is a placeholder for a sequence of i.i.d. random

variables {vi}
∞
i=1 defined on a probability space (Ω,F ,P). The distribution of each vi : Ω→ Rm

is given by µ(A) = P(ω ∈ Ω : vi(ω) ∈ A) for each i ∈ Z≥1 and each A ∈ B(Rm). A distin-

guishing feature of these models compared to most other stochastic hybrid systems models in

the literature (for a survey, see, [26]) is the allowance of non-unique solutions. Continuous

evolution of the state x is allowed in the flow set C ⊂ Rn, while jumps are allowed in the jump

set D ⊂ Rn. These sets may overlap. Flows are governed by the differential inclusion deter-

mined by the set-valued mapping F : Rn ⇒ Rn, called the flow map. Jumps are governed by

the difference inclusion determined by the set-valued G : Rn ×Rm ⇒ Rn. Set-valued mappings

may be appropriate to capture ensembles of solutions in a single model or may be the result

of a regularization required to ensure robustness or the validity of certain relaxed Lyapunov

conditions for recurrence or asymptotic stability in probability. Indeed, such conditions often

require the following stochastic hybrid basic conditions:

Assumption 1 The data (C, F,D,G) satisfies:

1. The sets C,D ⊂ Rn are closed.

2. The mapping F : Rn ⇒ Rn is locally bounded and outer semicontinuous (i.e., has a

8
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closed graph) and F(x) is nonempty and convex for each x ∈ C.

3. The mapping G : Rn × Rm ⇒ Rn is locally bounded and the graphical mapping v 7→

graph(G(·, v)) := {(x, y) ∈ Rn × Rn : y ∈ G(x, v)} is measurable with respect to B(R2n)

with closed values. ■

2.2.2 Solutions

The solution concept for (2.1) is adapted from the solution concept for non-stochastic

hybrid systems in [27]. Following this, a compact hybrid time domain is a set of the form⋃J
i=0 ([ti, ti+1] × {i}) where 0 = t0 ≤ t1 ≤ · · · tJ+1 < ∞. A hybrid time domain is a set

E ⊂ R≥0 × Z≥0 such that, for each each (T, J) ∈ E, the set E ∩ ([0,T ] × {0, . . . , J}) is a

compact hybrid time domain. A hybrid arc on Rn is a mapping ϕ : dom(ϕ) → Rn such that

dom(ϕ) is a hybrid time domain and, for each i ∈ Z≥0, ϕ(·, i) is locally absolutely continuous

on dom(ϕ)i := {t ∈ Rn : (t, i) ∈ dom(ϕ)}. The graph of a hybrid arc x is the set graph(x) :={
(t, j, z)∈Rn+2 : (t, j) ∈ dom(x), z = x(t, j)

}
.

Given an initial condition x ∈ C ∪ D, a solution x to the stochastic hybrid inclusion (2.1) is

a mapping x : Ω→
{
S : R2 ⇒ Rn : S osc, dom(S ) , ∅

}
such that:

1. almost every sample path is a hybrid arc satisfying the constraints imposed by the data,

i.e., for almost every ω ∈ Ω and defining ϕω := x(ω),

(a) ϕω(0, 0) = x.

(b) if (t1, j), (t2, j) ∈ dom(ϕω) with t1 < t2 then, for almost all t ∈ [t1, t2], ϕω(t, j) ∈ C

and d
dtϕω(t, j) ∈ F(ϕω(t, j)).

(c) if (t, j), (t, j + 1) ∈ dom(ϕ) then ϕω(t, j) ∈ D and ϕω(t, j + 1) ∈ G(ϕω(t, j), v j+1(ω)).

2. the set-valued mapping

ω 7→ graph(x(ω)) ∩ (R≥0 × {0, . . . , i} × Rn)
9
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is Fi-measurable for each i ∈ Z≥0 where {Fi}
∞
i=0 is the natural filtration associated with

{vi}
∞
i=1.

A solution is almost surely complete if almost every sample path has an unbounded time do-

main.

2.2.3 Stability concepts and sufficient conditions

We will use the classical concept of uniform global asymptotic stability in probability and

a sufficient condition for this property given in [28].

We start with definitions culminating in the definition of uniform global asymptotic stability

in probability.

A compact set A ⊂ Rn is Lyapunov stable in probability for (2.1) if, for each ε > 0 and

ρ > 0, ∃ δ > 0 such that, if x is a solution with initial condition inA + δB then

P
(
graph(x) ⊂

(
R2 × (A + εB)

))
≥ 1 − ρ. (2.2)

A compact setA ⊂ Rn is Lagrange stable in probability for (2.1) if, for each δ > 0 and ρ > 0,

∃ ε > 0 such that, if x is a solution with initial condition inA + δB then (2.2) holds.

A compact set A ⊂ Rn is globally stable in probability for (2.1) if it is Lyapunov stable in

probability and Lagrange stable in probability.

A compact set A ⊂ Rn is uniformly globally attractive in probability for (2.1) if, for each

ε > 0, ρ > 0 and R > 0 , ∃ τ ≥ 0 such that, if x is a solution with initial condition in A + RB

with the set of hybrid times (t, j) defined as Γ≥τ := {(t, j) ∈ R2 : t + j ≥ τ} then

P
(
graph(x) ∩ (Γ≥τ × Rn) ⊂

(
R2 × (A + εB)

))
≥ 1 − ρ.

A compact set A ⊂ Rn is uniformly globally asymptotically stable in probability for (2.1)

if it is globally stable in probability and uniformly globally attractive in probability.

10
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The result in [28, Theorem 8] provides Lyapunov function-based sufficient conditions for

UGASp.

A continuous function V : Rn → R≥0 is a Lyapunov function relative to the compact set

A ⊂ Rn for the system (C, F,D,G, µ) if V(x) = 0 if and only if x ∈ A, V is positive definite

with respect toA and radially unbounded, both relative to C ∪ D, and satisfies

V(ϕ(t)) ≤ V(x) ∀


x ∈ C

t ∈ dom(ϕ)

ϕ ∈ SF
C(x)

(2.3a)

∫
Rm

max
g∈G(x,v)

V(g)µ(dv) ≤ V(x) ∀x ∈ D, (2.3b)

where SF
C(x) denotes the solutions of x ∈ C, ẋ ∈ F(x) starting at the initial condition x.

Theorem 1 [28, Thm. 8] Let V be a Lyapunov function relative to the compact setA ⊂ Rn for

the system with the data (C, F,D,G, µ) from (2.1). ThenA is uniformly globally asymptotically

stable in probability if and only if there does not exist an almost surely complete solution that

remains in a non-zero level set of the Lyapunov function almost surely.

2.3 A stochastic hybrid optimization algorithm

In this section, we cast a stochastic hybrid optimization algorithm based on the framework

of stochastic hybrid inclusions. We are especially interested in optimization problems that

involve saddle points, local minima, and similar phenomena. Consequently, we will consider

optimization problems defined on manifolds. In this section, the algorithm is not necessarily a

distributed optimization algorithm. The latter is the topic of the next section.

11
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2.3.1 Manifold structure and exploratory dynamics

We start with our assumptions about the manifold.

Assumption 2 The closed setM ⊂ Rn, the countable set Q, the sets
{
Ĉq,Cq

}
q∈Q

, the integer

d ∈ {1, . . . , n}, the matrix-valued functions Bq : Cq ∩ M → Rn×d and the functions hq :(
Cq ∩M

)
× Rd →M, q ∈ Q, and the positive real number r are such that:

1. ∀ q ∈ Q, Ĉq ⊂ Cq ⊂ R
n, Ĉq is closed,Cq is open;

2. ∪q∈QĈq ∩M =M;

3. The collection of sets
{
Cq

}
q∈Q

is locally finite on M, i.e., for each z ∈ M there exists

an open set Uz containing z such that the cardinality of the set
{
q ∈ Q : Uz ∩Cq , ∅

}
is

finite.

4. For each q ∈ Q, the tangent space toM on Cq∩M is parametrized by the matrix-valued

function Bq that is continuous and full column rank on its domain;

5. For each q ∈ Q, for each z ∈ Cq ∩M and each open set U ⊂ Rn contained in a ball of

radius r around z there exists an open set O ⊂ rB ⊂ Rd such that hq(z,O) ⊆ U ∩M. ■

Continuous exploration

With Assumption 2 in place, we can create a hybrid dynamical control system with input

u ∈ Rd that is able to fully explore the manifoldM continuously. It has the form

z ∈ Cq ∩M ż ∈ Bq(z)u (2.4a)

z ∈ (Rn\Cq) ∩M q+ ∈
{
p ∈ Q : z ∈ Ĉp

}
(2.4b)

Let Gc denote the jump map in (2.4b), which is nonempty due to item 2 of Assumption 2. It

is outer semicontinuous since the collection
{
Ĉq

}
q∈Q

is subordinate to
{
Cq

}
q∈Q

, which is locally

12
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finite, and because Ĉq is closed for each q ∈ Q. Indeed, suppose that pi ∈ Gc(zi) and that

(pi, zi) is convergent to (p, z). By the local finiteness property, the sequence pi eventually takes

the value p, so that p ∈ Gc(zi), i.e., zi ∈ Ĉp. Since Ĉp is closed, it follows that z ∈ Ĉp, i.e.,

p ∈ Gc(z). The jumps defined in the continuous exploration dynamics (2.4) do not change the

value of the state z that evolves on the manifold M. Rather, those jumps change the vectors

that are used to parametrize the tangent space toM. For some manifolds, this step may not be

necessary, like for the unit circle. For other manifolds, like the 2-sphere, this step is important

to avoid singularities, in light of the so-called “hairy ball theorem”, which states that there is

no non-vanishing continuous tangent vector field on even-dimensional n-spheres.

Next, we consider jumps of the variable z, which may also be a useful way in which to

explore the manifoldM.

Exploration by jumps

Here we augment the dynamics in (2.4) with timed jumps that are governed by

(τ, z) ∈ [0,Tmax] ×
(
Cq ∩M

)
τ̇ = 1 (2.5a)

(τ, z) ∈ [Tmin,Tmax] ×
(
Cq ∩M

)


z+ = ωa

q+ = ωb

τ+ = 0

(2.5b)

where 0 < Tmin ≤ Tmax < ∞, ωa ∈ M, and ωb ∈ Q.

13
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Combined exploration

The combination of (2.4)-(2.5) creates a composite hybrid control system with state x :=

(zT , q, τ)T , controls (u, ω), where ω := (ωT
a , ω

T
b )T , and flow set and flow map

C := ∪q∈Q

(
(Cq ∩M) × {q}

)
× [0,Tmax] (2.6a)

H(x, u) :=


Bq(z)u

0

1

 . (2.6b)

The jump set is defined by

Dc := ∪q∈Q

(
(Rn\Cq) ∩M× {q}

)
× [0,Tmax] (2.7a)

Dd := ∪q∈Q

(
(Cq ∩M) × {q}

)
× [Tmin,Tmax] (2.7b)

D := Dc ∪ Dd. (2.7c)

14
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Finally, the jump map G is defined by

Ĝc(x, ω) :=


{z}

Gc(z)

{τ}

 ∀x ∈ Dc (2.8a)

Ĝd(x, ω) :=


{wa}

{wb}

{0}

 ∀x ∈ Dd (2.8b)

G(x, ω) :=



Ĝc(x, ω) ∀x ∈ Dc\Dd

Ĝd(x, ω) ∀x ∈ Dd\Dd

Ĝc(x, ω) ∪ Ĝd(x,w) ∀x ∈ Dc∩Dd.

(2.8c)

2.3.2 Using exploratory inputs to solve an optimization problem

The optimization will take place on the manifoldM and will be for a function f with the

following properties:

Assumption 3 The function f : Rn → R is continuously differentiable, and the restriction of

f toM is radially unbounded. Defining the set of global minimizers

A := {z∗ ∈ M : f (z∗) ≤ f (z), ∀z ∈ M} , (2.9)

for each z1 ∈ M\A there exists z2 ∈ M ∩ ({z1} + rB) such that f (z2) < f (z1), where r comes

from Assumption 2. ■

It is not difficult to relax the C1 assumption to a locally Lipschitz regular assumption. We

assume the former to make a clearer connection to the multi-agent case in the next section.

Since f is continuous and radially unbounded, the set A defined in Assumption 3 is compact.

15
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We define

Q0 :=
{
q ∈ Q : A∩Cq , ∅

}
. (2.10)

Due to Assumption 2, Q0 is finite, and thus compact. We use the following stochastic control

algorithm to drive x to the setA× Q0 × [0,Tmax]:

u = −ΛBT
q (z)∇ f (z) (2.11a)

ωa ∈ argmins∈{z,hq(z,v)} f (s) (2.11b)

ωb ∈
{
p ∈ Q : ωa ∈ Ĉp

}
. (2.11c)

We make the following assumption about Λ and v.

Assumption 4 The square matrix Λ ∈ Rd×d is diagonal and positive definite, and v is a place-

holder for an iid sequence of random variables that are uniformly distributed on the ball of

radius r in Rd. ■

Theorem 2 Suppose Assumptions 2-4 hold. For the hybrid control system (2.6)-(2.8), (2.11),

the compact setA× Q0 × [0,Tmax], withA and Q0 defined in (2.9) and (2.10), is UGASp.

Proof. We start by defining, for each γ ∈ R≥0,

Qγ :=
{
q ∈ Q : ζ ∈ Cq ∩M, f (ζ) − f (A) ≤ γ

}
. (2.12)

We note that, for each γ ∈ R≥0,Qγ is compact due to item 3 of Assumption 2 and the assumption

that f is radially unbounded with respect toM. Also note that, conveniently, Q0 coincides with

Q0 defined in (2.10). Now consider the Lyapunov function candidate

V(x) := f (z) − f (A) + |q|Q( f (z)− f (A)) + |τ|
2
[0,Tmax]. (2.13)
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This function is continuous, positive definite with respect to toA×Q0 × [0,Tmax] and radially

unbounded. Moreover, except perhaps before a first jump at time (0, 0), the state evolves in a

set where

|q|Q( f (z)− f (A)) + |τ|
2
[0,Tmax] = 0.

Indeed, τ never leaves the interval [0,Tmax], and, perhaps after a first jump at time (0, 0), the

variables z and q are always related by z ∈ Cq, which implies that q ∈ Q( f (z)− f (A)). Hence, the

evolution of the value V(x) is determined by the evolution of the value f (z).

We note that, with λi, i ∈ {1, . . . , d} denoting the diagonal entries of Λ, which are positive

by assumption,

⟨∇ f (z),−Bq(z)ΛBT
q (z)∇ f (z)⟩ =

−

d∑
i=1

λi|(BT
q (z)∇ f (z))i|

2 ≤ 0. (2.14)

Therefore, condition (2.3a) is satisfied.

Next, we consider

∫
Rm

max
g∈argmins∈{z,hq(z,v)} f (s)

f (g)µ(dv) =∫
Rm

min
{
f (z), f (hq(z, v))

}
µ(dv) ≤ f (z). (2.15)

Therefore, condition (2.3b) is satisfied.

Finally, suppose z ∈ M\A. Then, according to Assumption 3, there exists z2 ∈ M ∩

({z} + rB) such that f (z2) < f (z). It follows that there exists an open set U ⊂ ({z} + rB) and

ε > 0 such that f (ζ) ≤ f (z) − ε for all ζ ∈ U ∩M. Then, according to item 5 of Assumption 2,

17
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there exists an open set O ⊂ rB such that hq(z,O) = U ∩M. In that case,

∫
Rm

min
{
f (z), f (hq(z, v))

}
µ(dv) ≤

µ(O)( f (z) − ε) + µ(Rm\O) f (z) = f (z) − µ(O)ε. (2.16)

Since µ corresponds to a distribution uniformly distributed on a ball of radius r and O ⊂ rB,

it follows that µ(O) > 0. Finally, since every solution jumps at least every Tmax seconds, it

follows that there is no almost surely complete solution that remains in a non-zero level set of

the Lyapunov function almost surely. Hence, the claim of Theorem 2 follows from Theorem 1.

■

2.4 A partially distributed stochastic hybrid optimization al-

gorithm

We now show how the results of the previous section can be extended to partially ad-

dress distributed optimization problems in multi-agent systems (MAS) where the actions of

the agents are constrained to evolve on manifoldsM ⊂ Rn satisfying Assumption 2. In par-

ticular, we consider a MAS with N agents, where each agent has a state zi ∈ M, and a cost

function Ji : RnN → R, which also depends on the actions of the other agents. The overall state

of the system is defined as z := (z1, z2, · · · , zN), such that z ∈ MN , where

MN :=M× . . . ×M︸          ︷︷          ︸
N times

⊂ RnN . (2.17)

The manifoldMN playsM’s role from the previous section.

Lemma 1 If the manifoldM ⊂ Rn, the countable set Q, the sets
{
Ĉq,Cq

}
q∈Q

, the integer d ∈

18
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{1, . . . , n}, the matrix-valued functions Bq : Cq ∩M → R
n×d and the functions hq :

(
Cq ∩M

)
×

Rd → M, q ∈ Q, and the positive real number r satisfy Assumption 2 then the manifold

MN ⊂ RnM, the countable set

QN := Q × . . . × Q︸        ︷︷        ︸
N times

,

the sets

Ĉq =
{
Ĉq1 × · · · × ĈqN

}
(q1,...,qN )∈QN

(2.18)

Cq1 =
{
Cq1 × · · · ×CqN

}
(q1,...,qN )∈QN

(2.19)

the integer Nd, the matrix-valued functions

BN
q (z) := diag

(
Bq1(z1), · · · , BqN (zN)

)
q ∈ QN , (2.20)

and the functions

hN
q (z, v) :=


hq1(z1, v1)
...

hqN (zN , vN)

 q ∈ QN ,

and the positive real number r satisfy Assumption 2, where the balls of radius r have the form

rB × · · · × rB︸          ︷︷          ︸
N times

. ■

Proof. In order to prove lemma 1, we need to show that all Assumption 2 conditions are

satisfied for the cartesian product of multiple copies of the manifoldM, i.e.,

MN :=M× . . . ×M︸          ︷︷          ︸
N times

⊂ RnN . (2.21)
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1. Since Ĉq is a closed set, the cartesian product of multiple closed sets i.e. equation 2.18

is also a closed set. Moreover, since Cq is an open set, the cartesian product of multiple

open sets i.e. equation 2.19 is also an open set. So the first condition of Assumption 2

for multiple copies of the manifold is satisfied.

2. In this case we need to prove

∪q∈QNĈq1 × · · · × ĈqN ∩M
N =MN; (2.22)

and we already know that ∪q∈QĈq ∩M =M.

∪q∈QNĈq1 × · · · × ĈqN ∩M
N =

∪q∈QN (Ĉq1 ∩M) × (Ĉq2 ∩M) · · · × (ĈqN ∩M) =

M×M× · · · ×M︸                  ︷︷                  ︸
N times

=MN

3. We need to show that the set A, defined as followed for multiple copies of the manifold

has a finite cardinality.

A :=
{
q ∈ QN : (U1 × · · · × UN) ∩ (Cq1 × · · · ×CqN ) , ∅

}
;

which can be also written as

A :=
{
q ∈ QN : (U1 ∩Cq1) × · · · × (UN ∩CqN ) , ∅

}
;

For each element of q = (q1, ..., qN) ∈ A, there exists a corresponding set

qi ∈ Ai :=
{
qi ∈ Qi : (Ui ∩Cqi) , ∅

}
20
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with a finite cardinality according to the third condition of the Assumption 2. Since the

cartesian product of finite sets is also finite, the cardinality of

A :=
∏N

i=1

{
qi ∈ Qi : Ui ∩Cqi , ∅

}
is finite.

4. Fourth claim of the Assumption 2 asks for each q ∈ Q, the tangent space toM on Cq∩M

is parametrized by the matrix-valued function Bq that is continuous and full column rank

on its domain; Bq for one manifold is defined as Bq : Cq∩M → R
n×d which is continuous

and full rank and what we want to prove for multiple manifolds is that

BN
q (z) := diag

(
Bq1(z1), · · · , BqN (zN)

)
q ∈ QN

is also continuous and full rank on its domain. We know that n ≥ d, which means

each BN
q (z) according to the Assumption 2’s definitions is column linearly independant.

Stacking each BN
qi

(z) matrix diagonally will give us a continuous and column linearly

independant matrix belonging to RnN×dN .

5. Fifth claim of the assumption says for each q ∈ Q, for each z ∈ Cq ∩M and each open

set U ⊂ Rn contained in a ball of radius r around z there exists an open set O ⊂ rB ⊂ Rd

such that hq(z,O) = U ∩M. .

Firstly, we write this claim for multiple manifolds in the following way. For each q ∈ QN

meaning for each element of (q1, q2, · · · , qN) ∈ QN there will be

(z1, z2, · · · , zN) ∈
N∏

i=1

Cqi ∩M
i

and open sets
21
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(Uz1 × Uz2 × · · · × UzN ) containing (z1, z2, · · · , zN)

there exists an open set O ⊂ rB × · · · × rB︸          ︷︷          ︸
N times

such that

hq((z1, · · · , zN),O) = (Uz1 × · · · × UzN ) ∩MN .

Take an arbitrary qi and its corresponding Uzi containing zi. Then we have

∃Oi such that hqi(zi,Oi) = Uzi ∩M
i. The O is defined as O = O1 × O2 × · · · × ON and so

we have the new hN
q (z,O) given as following for multiple copies of the manifold.

hN
q (z,O) =

N∏
i=1

hN
qi

(zi,Oi) =
N∏

i=1

Ui ∩M = U ∩MN .

This will be the new projection in RnN . ■

Each agent controls only its own action zi ∈ M aiming to minimize its own cost function

Ji. Since for each agent i ∈ {1, 2, . . . ,N}, the cost function Ji also depends on the actions of

the other agents, the multi-agent optimization defines a non-cooperative game on the manifold

MN . The structure of the cost functions Ji is given by the following assumption.

Assumption 5 The non-cooperative game characterized by the continuously differentiable

cost functions Ji : RnN → R is a weighted potential game, i.e., there exists a continuously

differentiable function J : RnN → R and a vector w ∈ RN such that the following holds:

1. For each i ∈ {1, 2, . . . ,N} and each pair za, zb ∈ M
N satisfying za − zb = ei(za,i − zb,i) we

have that

J(za) − J(zb) = wi(Ji(za) − Ji(zb)), (2.23)

2. The partial derivatives are related as below for all i ∈ {1, 2, . . . ,N}.

∂J(z)
∂zi
= wi
∂Ji(z)
∂zi
, (2.24)

■
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In terms of the optimization problem of the previous section, J plays the role of f . Hence, we

also impose the following assumption:

Assumption 6 The potential function J of Assumption 5 satisfies Assumption 3. ■

In the control algorithm (2.11) of the previous section, now used to minimize the potential

function J, the continuous-time input u can be written as u := [u⊤1 , . . . , u
⊤
N]⊤ and, with the

definition (2.20), satisfies

ui = −ΛiBT
qi

(zi)
(
∂J(z)
∂zi

)T

(2.25)

where Λi is a diagonal, positive definite matrix. According to the second item of Assumption

5, it follows that

ui = −ΛiBT
qi

(zi)wi

(
∂Ji(z)
∂zi

)T

(2.26)

for some real number wi. Hence, during flows, if the ith agent implements (2.26), which is

distributed because it uses only the ith state zi and information about the derivative of the ith

cost function Ji, the effect will be to implement the centralized control (2.25).

Unfortunately, it is difficult to make the jumps of the optimization algorithm completely

distributed while guaranteeing convergence to the set of minimizers of the potential function.

Indeed, there may be points in the state space where it is possible to decrease the potential

function by changing the values of multiple agents but where it is impossible to decrease any of

the individual cost functions through changes in just the state of the corresponding individual.

We can add additional, distributed jumps that do not harm, and usually help, the algorithm.

But, for now, we are unable to remove the centralized jumps completely.
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The additional jumps that we include are governed by

τi ∈ [0,Tmax,i] τ̇i = 1

τi ∈ [Tmin,i,Tmax,i]



z+i ∈ argmin
s∈{zi,hqi (zi,vi)}

wiJi(s, z−i)

q+i ∈
{
p ∈ Q : z+i ∈ Ĉp

}
τ+i = 0

where z−i refers to the components of z other than zi.

These additional jumps do not increase the potential function since, by construction, wiJi(z+i , z−i) ≤

wiJi(zi, z−1) so that, using the first condition of Assumption 5,

J(z+i , z−i) − J(zi, z−i) = wi(Ji(z+i , z−i) − Ji(zi, z−i)) ≤ 0.

In the next section, we illustrate the efficacy of the proposed algorithm in the context of a

weighted potential game.

2.5 Numerical Example

In this section, we illustrate the previous algorithm in a numerical example in the context

of a location game, similar to the one considered in [29]. We consider two players, where

each player controls its own individual action, which is constrained to the unit circle S 1, i.e.,

M := S 1. Each player aims to selfishly minimize its own cost function Ji : M2 → R, where

M2 := S 1×S 1, and which also depends on the actions of the other player. In polar coordinates,
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the cost functions of the players are given by [29]

J1(θ1, θ2) = − cos θ1 + α1 cos(θ1 − θ2) (2.27)

J2(θ1, θ2) = − cos θ2 + α2 cos(θ2 − θ1), (2.28)

where α1, α2 ∈ R satisfy α1, α2 , 0. We considered α1 = α2 = 1. The above individual cost

functions are transformed to the cartesian coordinate system, obtaining

J1(z2, z2) = −ez1 + α1zT
1 z2 (2.29)

J2(z1, z2) = −ez2 + α2zT
1 z2, (2.30)

where e is defined as e :=
[
1 0

]
.

Level Sets

Trajectory

Global Nash

Figure 2.1: Evolution of the states θ from two different initial conditions, over the level sets
of the potential function.

It can be shown that this location game is a potential game with a potential function

J(θ1, θ2) = −
1
α1

cos(θ1) −
1
α2

cos(θ2) + cos(θ1 − θ2),

25



Stochastic hybrid inclusions applied to global almost sure optimization on manifolds Chapter 2

Figure 2.2: Evolution in the torus of the state z.

which in Cartesian coordinates is given by

J(z1, z2) = −
1
α1

ez1 −
1
α2

ez2 + zT
1 z2.

The critical points of the potential function are solutions to

∂J1(θ1, θ2)
∂θ1

=
∂J2(θ1, θ2)
∂θ2

=
∂J(θ1, θ2)
∂(θ1, θ2)

= 0.

Seven critical points are given as θ := [θ1, θ2]⊤ with their corresponding angles. The critical

points with angles θ1 := [0, 0]⊤, θ2 := [π, 0]⊤, θ3 := [0, π]⊤, θ4 := [π3 ,−
π
3 ]⊤ and θ5 := [−π3 ,

π
3 ]⊤

are all Nash equilibria [29] of the location game, however, not all these points are strict Nash

equilibria. The critical point θ1 := [0, 0]⊤ , with its corresponding value of J = −1, is a saddle

point of the potential function. The points θ2 := [π, 0]⊤ and θ3 := [0, π]⊤ are both local
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Figure 2.3: The cost function of player 1
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Figure 2.4: The cost function of player 2

minima, and only the two critical points θ4 := [π3 ,−
π
3 ]⊤ and θ5 := [−π3 ,

π
3 ]⊤ with both having

their corresponding value of J as J = −1.5, are strict Nash equilibria of the game. These

strict Nash equilibria are also global minimizers of the potential function. In polar coordinates,

we denote by A := {[π/3,−π/3]⊤} ∪ {[−π/3, π/3]⊤}, the set of strict Nash equilibria of the

game, i.e., the global minimizers of the potential function. In order to obtain convergence to

A the stochastic hybrid algorithm from Section 2.4 is implemented. In this case, we have that

Q := {1}, Ĉ1 = C1 = R
2, d = 1, B1(z) = [z2,−z1]⊤, h1(z, v) = R(εv)z, where R is a rotation

matrix with angle εv, ε is a tunable gain, and v is a random number that is uniformly selected
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Figure 2.5: The potential function of the location game

from the set [−π, π]. Figure 2.1 shows two trajectories of the states [θ1, θ2] converging to the

set of strict Nash equilibria of the game, which correspond to the global minimizer of the

potential function. The initial conditions are selected as the two local minima of the potential

function.The parameter ε is selected as 0.6. The stochastic jumps are used to escape these

minima in a finite time, after which the flows and jumps dominate the convergence of the states

towards the set of global minimizers of the potential function.

Figure 2.2 shows the evolution of the state θ along the torus. Figure 2.5 shows a 3D plot of

the potential function, and Figures 2.3 and 2.4 show 3D plots for the cost functions J1 and J2.

Figure 2.6 shows the evolution in time of the potential function. It can be observed in the inset

that at the beginning of the simulation, the states spend an initial amount of time in the local

minimum of the potential function, until a stochastic jump moves the state out of the minimum.

2.6 Concluding Remarks

By using the framework of stochastic hybrid inclusions, we presented a class of dynamical

systems that solve a class of non-convex optimization problems defined on manifolds. The

global asymptotic stability in probability for the set of global minimizers of the cost function
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Figure 2.6: Evolution in time of the potential function.

is established, and the results extended to the multi-agent setting. A numerical example in a

non-cooperative game defined on the torus was presented. Future research directions include

the study of the computational complexities and the implementation of control architectures

without centralized communication to solve distributed optimization problems in large-scale

multi-agent systems.
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Chapter 3

Global optimization on the sphere: A

stochastic hybrid systems approach

In this chapter, we capture the stochastic hybrid optimization algorithm for minimizing any C1

(continuously differentiable) function defined on the unit 2-sphere in the setting of stochastic

hybrid inclusions (SHIs) presented in [9]. The observation that stochastic hybrid optimization

algorithms fit into the SHI framework was already made in the previous chapter for general

smooth manifolds (Also see [30]). This chapter, in particular, studies the special case of opti-

mizing on the sphere as part of the general framework, which has been discussed in Chapter 2.

Nevertheless, optimizing on the sphere is especially interesting since it may involve functions

with saddle points, local minima, and similar phenomena among its critical points. Moreover,

it is a compact manifold requiring more than one chart, in contrast to unit circle or torus, which

is the setting of the example considered in Section 2.5 of Chapter 2.

In general, optimization problems defined on manifolds have been a developing paradigm

of nonlinear optimization. Such problems emerge in engineering applications including phase

synchronization of cyclic processes in [31] and tracking control of attitude dynamics of rigid

bodies on SO(3) manifolds in [32]. Using our algorithm, optimizing any C1 function on ellip-
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soids or toroids as some specific cases of our general framework from Chapter 2 is straightfor-

ward. Thus, our focus specifically in this chapter is on the optimization of functions defined

on the unit sphere, as it is a simple compact manifold that requires more than one but not more

than two charts to cover it, which leads to a simplified case relative to the general setting. The

general setting of such algorithms in the setting of SHI involves a combination of continuous

and stochastic discrete-time updates of the optimization variables. In [33] for example, a hy-

brid optimization technique is presented, where stochastic optimization techniques like genetic

algorithm (GA) and gradient-based local search algorithms are combined to overcome the local

optima. The hybrid combination including gradient-based flows and randomness helps us to es-

cape from local minima and saddle points of the function. It is a known fact that convergence to

a set of global minimizers of a function defined on smooth manifolds using a gradient-descent

method occurs only when the function possesses only one critical point, at which the deriva-

tive vanishes. Simple gradient-based methods for optimization in a non-convex setting like a

manifold have been studied by [34] and [35], for example. Also, Morse theory used in the

works of [36], [37] and [38], indicates that a continuous gradient-descent algorithm does not

achieve global convergence to a single critical point, while a function defined on a compact

manifold will have at least two critical points. Robustness guarantees with respect to arbitrary,

small measurement noise or calculation errors are also reasons why discontinuous control and

optimization are not good options. Encouraged by the mentioned research line, stochastic hy-

brid optimization algorithms as presented in the previous Chapter 2 are especially relevant for

overcoming the existence of local minima and saddle points of functions defined on compact

manifolds. An application of this algorithm would be minimization of any C1 function on the

sphere as mentioned. For this application on the sphere, we can observe an additional hybrid

dynamics for switching between coordinate charts which overcomes the topological obstruc-

tions of the sphere and enables probing all over the sphere and converging to the set of global

minimizers of the function. Using spherical coordinates or stereographic projection methods,
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we generate the coordinate functions. Lastly, using Lyapunov functions and the invariance

principle for SHIs, we establish global asymptotic stability in probability for the set of global

minimizers of any C1 function defined on the sphere. Finally, we demonstrate the results by

providing a numerical example of the unit 2-sphere.

3.1 Problem Statement

The general framework of stochastic hybrid dynamical systems was introduced in (2.1) of

Chapter 2, where the evolution of the state x ∈ Rn is a combination of continuous and discrete

time dynamics. In this chapter, the problem that we would like to solve is creating a hybrid

dynamical system of the form (2.1) to dynamically solve the following particular optimization

problem:

minz∈M f (z) (3.1)

where the function f is any arbitrary C1 function defined on a manifold. In other words, the

state x of the system (2.1) includes a component that evolves on the manifold and the idea is to

have this component converging to the optimal value of the function defined on the manifold

as the time goes to infinity. In particular, we are considering the function f to be defined on a

unit sphere and we create the stochastic hybrid optimization algorithm for this case. What we

mean by (unit) sphere is the set

S2 :=

z ∈ R3 :
3∑

i=1

z2
i = 1

 ⊂ R3. (3.2)

For creating the dynamics of the state evolving on the unit sphere, we need to create coordinate

charts. In the next section, we discuss the reasons and methods of creating these coordinate

charts.
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3.2 Preliminaries: Coordinate Charts on the Sphere

A global stochastic hybrid optimization algorithm on the sphere typically contains two

hybrid features. In this section, we discuss one of these hybrid features: jumps between the co-

ordinate charts of the manifold to overcome certain topological obstructions. In the case of the

sphere, such obstructions arise from the so-called “hairy ball theorem” which states that there

is no non-vanishing continuous tangent vector field on even-dimensional n-spheres. The impli-

cation is that the optimization algorithm requires multiple local charts that cover the sphere as

well as nonsingular vector fields on those charts and coordinate functions covering each chart.

The vector fields can be used to flow in any arbitrary direction on the coordinate chart, while

the coordinate functions are used for jumping to any arbitrary point on the corresponding chart.

Consequently, we create two coordinate charts and allow hysteresis switching between them.

One method for constructing charts involves using spherical coordinates; another method in-

volves using stereographic projection. Both methods are discussed below.

3.2.1 Spherical Coordinates

In this section, we use the standard trigonometric parametrization of S2 in terms of spherical

coordinates in order to create the coordinate functions. We can consider first the following

parametrization:

Ψ1(θ, ϕ) := (cos(θ) cos(ϕ), cos(θ) sin(ϕ), sin(θ))⊤. (3.3)

By interchanging the role of z2 and z3 axes, we get a second parametrization as follows:

Ψ2(θ, ϕ) := (cos(θ) cos(ϕ), sin(θ), cos(θ) sin(ϕ))⊤. (3.4)
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For each z ∈ S2 and each q ∈ {1, 2}, there exist (θ, ϕ) ∈ (−π2 ,
π
2 ) × (−π, π) such that

z = Ψq(θ, ϕ). (3.5)

The mapping Ψq, with angles restricted to their corresponding sets, is invertible. For q fixed,

we can derive the rate of change of z using the chain rule:

dz
dt
=

dΨq(θ, ϕ)
dθ

θ̇ +
dΨq(θ, ϕ)

dϕ
ϕ̇ (3.6a)

=

[
dΨq(θ,ϕ)

dθ
dΨq(θ,ϕ)

dϕ

] θ̇ϕ̇
 . (3.6b)

Changing the trigonometric parameterizations into Cartesian form, for q = 1 we have:

dΨ1(z)
dθ

=


− sin(θ) cos(ϕ)

− sin(θ) sin(ϕ)

cos(θ)

 =

−

z3z1√
1−z2

3

−
z3z2√
1−z2

3√
1 − z2

3


(3.7a)

dΨ1(z)
dϕ

=


− cos(θ) sin(ϕ)

cos(θ) cos(ϕ)

0

 =

−z2

z1

0

 . (3.7b)

The dynamics using the mapping Ψ1 can therefore be written as:


ż1

ż2

ż3

 =

−

z3z1√
1−z2

3

−z2

−
z3z2√
1−z2

3

z1√
1 − z2

3 0

︸             ︷︷             ︸
B1(z)

u, (3.8)
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where u :=
[
θ̇ ϕ̇

]⊤
is the input and B1(z) is the matrix-valued vector field. Following the exact

same procedure for q = 2 gives us:

dΨ2(z)
dθ

=


− sin(θ) cos(ϕ)

cos(θ)

− sin(θ) sin(ϕ)

 =

−

z2z1√
1−z2

2√
1 − z2

2

−
z3z2√
1−z2

2


(3.9a)

dΨ2(z)
dϕ

=


− cos(θ) sin(ϕ)

0

cos(θ) cos(ϕ)

 =

−z3

0

z1

 . (3.9b)

Accordingly, the dynamics are as below:


ż1

ż2

ż3

 =

−

z2z1√
1−z2

2

−z3√
1 − z2

2 0

−
z3z2√
1−z2

2

z1

︸             ︷︷             ︸
B2(z)

u. (3.10)

Each of these parametrizations covers the whole sphere except the singular points at (0, 0,±1)

and (0,±1, 0). In order to create the charts, for q ∈ {1, 2} and δ > 0 we define

Xq :=
(
−
π

2
+ δ,
π

2
− δ

)
× (−π, π) .

Each set Xq assures the full coverage of each chart excluding a tube around a semi-circle on an

orthodome of the sphere and the variable δ is relevant to this tube around the semi-circle. The

coordinate charts can be defined as

C1 := Ψ1(X1) C2 := Ψ2(X2). (3.11)
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Note that C1 ∪ C2 = S
2. We also define coordinate functions hq, which are the mappings from

a set that restricts angles into the charts and they cover the chart. These coordinate functions

can be written as

h1(v1) := Ψ1(v1) h2(v2) := Ψ2(v2) (3.12)

where v1 ∈ X1 and v2 ∈ X2.

3.2.2 Stereographic Projection

An alternative to the standard spherical coordinates can be achieved by using the so-called

stereographic projection. In this approach, we define a projection from all points on the sphere

except the poles onto a plane. Using basic linear algebra, we write the equations of each

projection onto the plane from north pole N := (0, 0, 1)⊤ and south pole S := (0, 0,−1)⊤.

The mapping that corresponds to the projection of points on the sphere (except north pole) by

projecting from the north pole Φ1 : S2 \ N → R2 can be written as:

Φ1




z1

z2

z3



 :=


z1

1−z3

z2
1−z3

 . (3.13)

The projection mapping from south pole to a plane Φ2 : S2 \ N → R2 is given as:

Φ2




z1

z2

z3



 :=


z1

1+z3

z2
1+z3

 . (3.14)

We use X ∈ R2 for the planar coordinate, while we have z ∈ S2. We can write X = Φq(z), for
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any q ∈ {1, 2}. Note thatΦq is a one-to-one projection and as a result, this mapping is invertible.

Since we are interested in the rate of change of z on the sphere, we write the derivative of the

above equation

Ẋ1 = u =
∂Φ1(z)
∂z

ż. (3.15)

We can further expand (3.15) to:

u1

u2

 =


1
1−z3

0 z1
(1−z3)2

0 1
1−z3

z2
(1−z3)2



ż1

ż2

ż3

 . (3.16)

Since we have the constraint of staying on the sphere, we observe that

zT ż = 0. (3.17)

Using (3.16) and (3.17), we solve for ż to get:


ż1

ż2

ż3

 =

−(z2

1 + z3 − 1) z1z2

z1z2 −(z2
2 + z3 − 1)

z1(1 − z3) z2(1 − z3)

︸                                   ︷︷                                   ︸
B1(z)

u. (3.18)

Similarly, using the equations for projection from south pole we can write:


ż1

ż2

ż3

 =

1 + z3 − z2

1 −z1z2

−z1z2 1 + z3 − z2
2

−z1(1 + z3) −z2(1 + z3)

︸                            ︷︷                            ︸
B2(z)

u. (3.19)
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Using stereographic projection, we cover the sphere with two subsets:

Xq :=
{
(z1, z2) ∈ R2 : zT z < r

}
,

where each subset covers the entire sphere except for a neighborhood of the north, respectively

south, pole. The radius r > 1 is relevant to the size of the neighborhood around each singular

point. The charts can be written as:

C1 := Φ−1
1 (X1) C2 := Φ−1

2 (X2). (3.20)

We have C1 ∪ C2 = S
2. Similar to the previous method, by using the new mappings we can

create the coordinate functions hq:

h1(v1) := Φ−1
1 (v1) h2(v2) := Φ−1

2 (v2) (3.21)

where v1 ∈ X1 and v2 ∈ X2.

3.3 Stochastic Hybrid Optimization Algorithm on the Unit

Sphere

3.3.1 Development

In this section, we detail our dynamic stochastic hybrid optimization algorithm for an arbi-

trary C1 function on the unit sphere. Using the data generated either by spherical coordinates

as in Section 3.1 or by stereographic projection as in Section 3.2, we specify the optimization

algorithm as follows:
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1. We take the two relatively open charts from the preliminary section

Ci ⊂ S
2, i ∈ {1, 2} (3.22)

where i is the number of coordinate charts.

Recall that we have the below property:

C1 ∪C2 = S
2. (3.23)

The tangent space to each coordinate chart is parametrized by a continuous and full rank

matrix-valued function Bi : Ci → R
3×2.

2. In this step, we build a dynamical control system with input u ∈ R2. We consider z ∈

S2 ⊂ R3 and two previously built coordinate charts, with each having a number assigned

to them indicated by q ∈ {1, 2}. The dynamical control system evolves fully on the sphere

using the continuous parameterizations Bq of the two charts as follows:

z ∈ S2, ż = Bq(z)u, (3.24)

The input u is related to the function f . The function f is any C1 function, that we would

like to minimize and is defined on the sphere. We choose

u: = −ΛBT
q (z)∇ f (z), (3.25)

where Λ is a diagonal positive definite matrix.
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3. Next, we build hysteresis switching dynamics between the coordinate charts. We define:

C: =
(
C1 × {1}

)
∪

(
C2 × {2}

)
D: =

((
S2 \C1

)
× {1}

)
∪

((
S2 \C2

)
× {2}

)
.

The flows on a chart and the jumps between charts are governed by:

(z, q) ∈ C


ż = Bq(z)u

q̇ = 0
(3.26)

(z, q) ∈ D


z+ = z

q+ = 3 − q.
(3.27)

4. As the last step, we inject stochastic jumps into the state and randomly probe the sphere

in order to fulfill the task of optimization and escape local minima and saddle points.

These stochastic jumps are triggered by a timer τ ∈ [0,T ] ⊂ R, which controls the time

expiration and resets to zero after each random jump. Here we have the variable T as a

constant; however, it is straightforward to have T dependent on the size of the gradient

in (3.25).

(z, q, τ) ∈ C × [0,T ]



ż = Bq(z)u

q̇ = 0

τ̇ = 1

(3.28)
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(z, q, τ) ∈ C × {T }



z+ = ωa

q+ = ωb

τ+ = 0

(3.29)

(z, q, τ) ∈ D × [0,T ]



z+ = z

q+ = 3 − q

τ+ = τ.

(3.30)

In equation (3.29), the variable ωa is given by:

ωa ∈ argmins∈{z,h1(v1),h2(v2)} f (s), (3.31)

where vi is the placeholder for an i.i.d. sequence of random variables. For simplicity, we

take the distribution of each vi to be uniform on Xi. Also in equation (3.29), the variable

ωb is written as

ωb ∈
{
q ∈ {1, 2} : ωa ∈ Cq

}
. (3.32)

3.3.2 Overall Algorithm

Finally considering the state as x := (z⊤, q, τ)⊤, controls as (u, ω), with ω := (ω⊤a , ω
⊤
b )⊤,

we can write the overall hybrid control algorithm:
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flow set C := C × [0,T ] (3.33a)

flow map F(x) :=


−Bq(z)ΛBT

q (z)∇ f (z)

0

1

 . (3.33b)

The jump set is defined as:

Dc := D× [0,T ] (3.34a)

Dd := D× {T } (3.34b)

D := Dc ∪ Dd. (3.34c)

Finally, the jump map G is defined as:

Ĝc(x) :=


z

3 − q

τ

 ∀x ∈ Dc (3.35a)

Ĝd(x, v) :=


wa(z, v)

wb(z, v)

{0}

 ∀x ∈ Dd (3.35b)

G(x, v) :=



Ĝc(x) ∀x ∈ Dc\Dd

Ĝd(x, v) ∀x ∈ Dd\Dc

Ĝc(x) ∪ Ĝd(x, v) ∀x ∈ Dc∩Dd.

(3.35c)

It can be verified that the data (C, F,D,G) satisfies the stochastic hybrid basic conditions of
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[28].

3.4 Algorithm Stability Result

Relying on [28, Theorem 8], we certify the behavior of the above minimization algorithm

by establishing uniform global asymptotic stability in probability (UGASp) of the set of the

function’s global minimizers.

Given a C1 function f : S2 → R, we define its set of global minimizers as

A :=
{
z ∈ S2 : f (z) = min

s∈S2
f (s)

}
. (3.36)

Theorem 3 Given any C1 function f : S2 → R, the proposed minimization algorithm in Sec-

tion 3.3 renders the set of global minimizers of f globally asymptotically stable in probability.

Proof. Let the function f : S2 → R be C1. Define the Lyapunov function candidate V :

S2 × {1, 2} × [0,T ]→ R ≥ 0 as

V(x) := V(zT , q, τ) = f (z) −min
s∈S2

f (s). (3.37)

This function is positive definite with respect toA and its sublevel sets are compact since it is

C1 and its domain is compact. We note that

⟨∇V(x), F(x)⟩ = −
2∑

i=1

λi|(BT
q (z)∇ f (z))i|

2 ≤ 0 (3.38)

where λi > 0, i ∈ {1, 2}, denote the diagonal entries of the positive definite matrixΛ. According

to (3.38), the Lyapunov function candidate does not increase during flows.

Next, we consider the effect of jumps on the Lyapunov function candidate V . First, we

observe that, due to the definition of G, for all (v1, v2) ∈ X1×X2 from (3.30) and all g ∈ G(x, v)
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from (3.29), we have V(g) ≤ V(x). It follows that

∫
X1×X2

max
g∈G(x,v)

V(g)µ(dv) ≤ V(x) (3.39)

regardless of the distribution µ. It follows that V is a Lypuanov function for A in the sense of

[28, Theorem 8].

It remains to establish that there does not exist an almost surely complete solution that

remains in a non-zero level set of the Lyapunov function almost surely. First, we note that there

is no sample path with a purely discrete-time domain. This fact follows from the observation

that, after at most two jumps, the sample path is no longer in the jump set. This is because if

z belongs to the relative boundary of Ci then it belongs to the relative interior of C j, j , i, by

virtue of the fact that C1 and C2 are relatively open and cover S2. Consequently, each sample

path is uniformly non-Zeno in the sense of [27, Proposition 6.35]. Hence each complete sample

path has a time domain that is unbounded in the ordinary time direction. Since jumps due to

Ĝd happen every T units of ordinary time, it is enough to show that those jumps result in a

decrease in the expected value of V from points outside the set of global minimizers. Let

z ∈ S2\A. Let z∗ ∈ A. Let i ∈ {1, 2} and v∗i ∈ Xi be such that z∗ = hi(v∗i ) ∈ Ci. In addition let

B := {x ∈ Rn : |x| ≤ 1}. By the continuity of hi, there exists ε > 0 such that
{
v∗i

}
+ εB ⊂ Xi and

f (hi(vi)) ≤ f (z) − ε for all vi ∈
{
v∗i

}
+ εB. Without loss of generality, assume that i = 1. Then

∫
X1×X2

max
g∈Ĝd(x,v)

V(g)µ(dv) ≤ V(x) (3.40)

−µ
(({

v∗i
}
+ εB

)
× X2

)
ε.

Since µ
(({

v∗i
}
+ εB

)
× X2

)
> 0, by virtue of the distribution being uniform overX1×X2 (though

any distribution for which each open set has positive measure would be sufficient), it follows

that there does not exist an almost surely complete solution that remains in a non-zero level set
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of the Lyapunov function almost surely. ■

3.5 Numerical Example

We illustrate the proposed algorithm in a numerical optimization example for a given func-

tion defined on a unit sphere with coordinate charts created by spherical coordinates. The

proposed function to minimize is given by:

f (z) := z2z3 + z3
1. (3.41)

The reason for this particular choice of function is the existence of both saddle points and local
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Figure 3.1: Trajectory on the Sphere

minima among its critical points while defined on the unit sphere. For the purpose of validating

this example, the critical points of the given function are calculated using Lagrange multipliers
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and are listed in Table 3.1.

Critical
points (x1, x2, x3) Value Status

1 (1, 0, 0) +1 Global Max
2 (−1, 0, 0) −1 Global Min
3 (0, 1/

√
2, 1/

√
2) 1/2 Local Max

4 (0,−1/
√

2,−1/
√

2) 1/2 Local Max
5 (1/3, 2/3, 2/3) 13/27 Saddle
6 (1/3,−2/3,−2/3) 13/27 Saddle
7 (0, 1/

√
2,−1/

√
2) −1/2 Local Min

8 (0,−1/
√

2, 1/
√

2) −1/2 Local Min
9 (−1/3, 2/3,−2/3) −13/27 Saddle

10 (−1/3,−2/3, 2/3) −13/27 Saddle

Table 3.1: Critical Points

We create the dynamics ż = Bq(z)u according to the second step of the optimization algorithm.

We require the function’s gradient to create the input u from (3.25):

∇ f (z) = (3z2
1, z3, z2)⊤. (3.42)

The parameter δ is selected to be 0.01. Figure 3.1 illustrates a sample path starting from

an initial point close to both a saddle point and a local maximum converging to the global

minimizer of the function. The stochastic jumps are able to escape local minima and saddle

points. Figure 3.2 and Figure 3.3 display the two coordinate charts of the sphere. The sample

path, starting from an initial point located on the initial chart in Figure 3.2, starts decreasing

the value of the function until it ends up converging to the global minimizer of f in the final

chart in Figure 3.3. We observe the hysteresis switches between charts, which facilitates the

convergence to a global minimizer of the function.
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Figure 3.2: Initial Chart

Figure 3.3: Final Chart

3.6 Concluding Remarks

We have captured a stochastic hybrid optimization algorithm in the framework of stochastic

hybrid inclusions to minimize a function defined on the sphere. The idea of casting stochastic
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hybrid optimization algorithms for general smooth manifolds was developed in [30], however

optimization on the sphere, as a specific case of the general framework, results in several

simplifications both in the algorithm and the stability analysis. In order to avoid singular points

on the unit sphere in light of the hairy ball theorem, we have employed two coordinate charts,

which are created using spherical coordinates or stereographic projection. Using the nature

of stochastic hybrid optimization algorithm, we have gradient flows combined with random

probing on the sphere which allows the escape from saddle points and local minima. We

presented the stability characterization of this algorithm particularly for the unit sphere. Lastly,

a numerical example was provided.
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Chapter 4

Global Optimization on the Sphere with

Half-space Constraints: A Stochastic

Hybrid Systems Approach

In Chapter 2, we showed how the framework of stochastic hybrid inclusions from [9] can be

applied to model hybrid stochastic algorithms for optimization on general manifolds. Hy-

brid algorithms have the advantage of being able to combine classical gradient descent, or

any similar gradient-based approach, which can be very effective near global minima, with

discrete-time stochastic probing, which is helpful for moving away from local minima, saddle

points, etc. In Chapter 3 we specialized the results of Chapter 2 to the unit sphere, where the

analysis simplifies somewhat (See [39]). However, the setting of manifolds without boundary

limits the scope of applications since many engineering problems require a restriction on the

feasible set, often appearing in the form of inequality constraints. For instance, optimization

with inequality constraints on Riemannian manifolds appears in power systems [40]. We also

encounter constraints on manifolds for applications involving integration [41].

In this chapter, we extend the stochastic, hybrid algorithm for global optimization of any
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continuously differentiable function defined on the unit sphere [39] to the case where the opti-

mization problem is subject to a half-space constraint. The main technicality involves dealing

with the projection of a gradient descent law onto the tangent cone of the intersection of the

sphere and the half space. The projection can induce additional singularity points of the gradi-

ent flow field but, like for other singular points that do not correspond to global minima, these

singularities are overcome via periodic, stochastic probing.

As an additional feature, we allow the continuous-time flows to employ, at least away

from the boundary of the constraint set, a minimization algorithm that is inspired by recent

results in continuous-time accelerated gradient descent, as in [42], [43] and [44]. Near the

boundary of the constraint set, we insist on using simple gradient descent, to minimize the

number of induced weak equilibria, and we use hysteresis switching to switch between the two

continuous-time algorithms.

There has been substantial interest in the study of Nesterov’s accelerated gradient descent

(AGD) [45] during the past years [46], [47] and [48]. The AGD provides a type of foresight

via the momentum terms in the dynamics [49]. In specific settings, this feature helps better

peeking of the actual objective values in the candidate search direction, which results in an

improved Recurrent Neural Network (RNN) performance on a number of tasks [50]. In [51],

[52] and [53], it was shown how the worst case convergence rate of conjugate gradient on a

quadratic is the same as AGD’s convergence rate. The efficacy of AGD-type algorithms in the

non-convex case, like on manifolds, is still being investigated [54]. We illustrate one particular

version here.

4.1 Algorithm

In this section, we develop a stochastic hybrid optimization algorithm for an arbitrary C1

function on the unit sphere S2 ⊂ R3 subject to a half-space constraint. The algorithm will
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make use of simple gradient descent, especially near the boundary of the constraint set, and

also updates inspired by accelerated gradient descent [55, 48] away from the boundary of the

constraint set.

We employ coordinate charts on the unit sphere in order to be able to fully explore and

flow on the sphere. In Chapter 3, we described a hysteresis switching mechanism for switching

between coordinate charts created using either spherical coordinates or stereographic projec-

tion. We take advantage of these coordinate charts and develop our algorithm for the half-space

constrained sphere. In case the feasible set contained a part of both coordinate charts, switch-

ing between these two coordinate charts enables the full exploration on the feasible half-space

subset of the sphere.

1. State variables:

The algorithm employs state variables

x := (z, ζ, q, α, τ) (4.1)

∈ (S2 ∩H) × R2 × {1, 2} × {0, 1} × [0,T ] ⊂ R8

where T > 0 and H is a half-space in R3 defined subsequently. The variable z makes

progress on the sphere and half-space toward a value that achieves the minimum of the

cost function. The variable ζ is an auxiliary variable that plays a role in the accelerated

gradient optimization algorithm. The variable q enables hysteresis switching between

coordinate charts on the sphere. The variable α enables hysteresis switching between

simple gradient descent and accelerated gradient decent. The variable τ is a timer that

orchestrates periodic random jumps of the variable z to avoid getting stuck at a singular

point of the gradient of the cost function.

2. Coordinate charts on the sphere:
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The first step is adapted from Chapter 3, where we construct, for i ∈ {1, 2}, sets Ci ⊂ S
2,

vector fields Bi : Ci → R
3×2, sets Xi ⊂ R

2, and coordinate functions hi : Xi → S
2 such

that the following properties hold:

(a) C1 and C2 are open relative to S2;

(b) C1 ∪C2 = S
2;

(c) Bi(z) has full column rank for each z ∈ Ci;

(d) hi(Xi) = Ci.

These objects can be created using the stereographic projection method or the spherical

coordinates method as described in the previous Chapter 3. Note that the vector fields Bi

and coordinate functions hi are continuously differentiable.

3. Half-Space Constraint:

The half space over which we optimize our cost function is expressed in terms of a

normal vector n ∈ R3 and a point z0 ∈ R
3 and is given by

H := {z ∈ R3 : nT (z − z0) ≥ 0}. (4.2)

The boundary of this half space is

∂H := {z ∈ R3 : nT (z − z0) = 0} (4.3)

and the interior of the half space is

IntH := {z ∈ R3 : nT (z − z0) > 0}. (4.4)

4. Flow dynamics:
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i. Input projection: We build a dynamical control system with input u ∈ R2 that is able

to fully explore the sphere by flowing while forever remaining in the prescribed half

space. The dynamics on Cq ∩H are given by

z ∈ Cq ∩H


ż ∈ Bq(z)co(cl(pq(z, u)))

q̇ = 0
(4.5)

where

Tq(z) :=
R2 z ∈ IntH{
u ∈ R2 : nT Bq(z)u ≥ 0

}
z ∈ ∂H

(4.6a)

pq(z, u) := argminv∈Tq(z)|v − u|2. (4.6b)

The value pq(z, u) is well-defined since the mapping v 7→ |v − u|2 is convex and the

set Tq(z) is convex for each (q, z) such that z ∈ Cq ∩ H . However, the mapping

pq(·, u) is discontinuous in z. Here the co is the closed convex hull of the set cl(pq).

The set-valued mapping cl(pq) is the outer-semicontinuous mapping whose graph

is equal to the closure of the graph of pq; that is, it is the outer semicontinuous hull

of pq. For more details, see [56, Section 5B].

ii. Hysteresis switching between gradient descent and accelerated gradient descent:

In addition to the logic variable q, the algorithm employs another logic variable

α ∈ {0, 1} that allows the optimization algorithm to switch, via hysteresis, between

a simple gradient descent law and a law inspired by accelerated gradient descent
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laws. We use the former when “close” to the boundary of the constraint set and

use the latter when “far” from the boundary of the constraint set. Here, “far” could

mean far away enough that we never actually use or need to use the accelerated

gradient descent. The law inspired by accelerated gradient descent may permit

faster convergence for optimal values away from the boundary of the constraint

set. On the other hand, its implementation on the boundary of the constraint set

is problematic and can induce spurious equilibria, which we wish to avoid. In

particular, we use

u = −(1 − α)BT
q (z)∇ f (z) + αζ (4.7a)

ζ̇ ∈ −[δ,∆]ζ − αBT
q (z)∇ f (z) (4.7b)

α̇ = 0 (4.7c)

where 0 < δ ≤ ∆. The flows are additionally constrained by the condition

(z, ζ) ∈ Hα × R2 (4.8)

where

H0 :=
{
z ∈ R3 : nT (z − z0) ≤ β0

}
(4.9a)

H1 :=
{
z ∈ R3 : nT (z − z0) ≥ β1

}
(4.9b)

with β0 > β1 > 0.

iii. Timer variable: The algorithm employs a timer variable τ that flows according to

τ ∈ [0,T ] τ̇ = 1. (4.10)
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iv. System Summary: The conditions (4.5)-(4.10) define the flow dynamics

x ∈ C ẋ ∈ F(x) (4.11)

where the flow map F is outer semicontinuous and locally bounded with nonempty

convex values on the closed flow set C, which is the set of points in the state space

where all of the constraints in (4.5)-(4.10) are satisfied. The flow set has the form

C = C × [0,T ] (4.12)

where

C := (4.13){
(z, ζ, q, α) ∈

(
S2 ∩H

)
× R2 × {1, 2} × {0, 1} :

z ∈ Cq ∩ Hα
}
.

5. Jump Creation:

Our algorithm has jumps from three different sources:

i. Hysteresis switching between charts, through the variable q: These jumps toggle

q while leaving all other variables unchanged. These are the only jumps that can

occur when τ ∈ [0,T ), and z ∈ int(Hα). They can occur when z ∈ (S2 \ Cq) ∩ H .

Thus, defining

D1 := (4.14){
(z, ζ, q, α) : z ∈ int(Hα) ∩ ((S2 \Cq) ∩H)

}
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we can write

(z, ζ, q, α, τ) ∈ D1 × [0,T )



z+ = z

ζ+ = ζ

q+ = 3 − q

α+ = α

τ+ = τ

. (4.15)

ii. Random probing of cost function to avoid getting stuck at singular points of the

function’s gradient, triggered by a timer variable τ and possibly inducing jumps in

the variable z: These are the only jumps that can occur when z ∈ int(Hα) and z ∈ Cq.

They can occur when τ = T . Thus, defining

D2 := (4.16){
(z, ζ, q, α) : z ∈ int(Hα) ∩Cq ∩H)

}
we can write

(z, ζ, q, α, τ) ∈ D2 × {T }



z+ = ωa

ζ+ = ζ

q+ = ωb

α+ = α

τ+ = 0

(4.17)
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where the variables ωa and ωb are given by:

ωa ∈ argmins∈{z,h1(υ1),h2(υ2)}∩H f (s) (4.18a)

ωb ∈
{
q ∈ {1, 2} : ωa ∈ (Cq ∩H)

}
. (4.18b)

In (4.18a), the υ is the placeholder of an iid sequence of random variables and

its distribution is uniform on the set X1 × X2. The coordinate function hq maps

the random variable υq from Xq to Cq. Since we are restricting our attention to

jumps located on the feasible set, the algorithm jumps only if the jump lands on the

intersection of the manifold and the half space. By using random jumps of state,

we probe the feasible set and escape local minima and saddle points. In (4.18a),

the set used for possible values of z will never be empty, as z will always lay on the

feasible set. The condition (4.18b) adjusts the coordinate charts appropriately.

iii. Hysteresis switching between simple gradient descent and accelerated gradient de-

scent, via the variable α: These are the only jumps that occur when τ ∈ [0,T ) and

z ∈ Cq. They can occur when z ∈ S2 ∩H\Hα. Thus, defining

D3 := (4.19){
(z, ζ, q, α) : z ∈ Cq ∩H\Hα

}
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we can write

(z, ζ, q, α, τ) ∈ D3 × [0,T )



z+ = z

ζ+ = 0

q+ = q

α+ = 1 − α

τ+ = τ.

(4.20)

The union of the closure of these jump sets provides the overall jump set D for the

system. Moreover, the outer semicontinuous hull of the mapping defined by all of the

jumps will define the overall jump map G.

4.2 Behavior of algorithm

4.2.1 Solution Existence

Using the structure of the data created above and results from [27], local existence of solu-

tions follows if we can show that F(x)∩TC(x) , ∅ for each C\D, which boils down to showing

that the projected flow map for the z dynamics intersects the tangent cone to S2 ∩ H for each

z ∈ ∂H . Using results from [57], and the definition of co(cl(pq(z, u)), it is enough to estab-

lish that Bq(z)pq(z, u) ∈ TS2(z) ∩ TH (z). But this fact holds from the definition of Tq(z) in the

definition of pq(z, u) in (4.6a).
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4.2.2 Stability Analysis

Theorem 4 For the hybrid dynamical system defined above, the set

A := A0 × {0} × {1, 2} × {0, 1} × [0, 1] (4.21)

where

A0 :=
{
z ∈ S2 ∩H : f (z) = min

s∈S2∩H
f (s)

}
(4.22)

is uniformly globally asymptotically stable in probability (UGASp).

Proof. We use [28, Theorem 8]. Let f ∗ := mins∈S2∩H f (s). Define the Lyapunov function

candidate V : S2 → R≥0 as

V(z) := f (z) − f ∗ + 0.5ζTζ.

This function is positive definite with respect to A, when restricted to the union of the flow

and jump sets. Moreover, its sublevel sets are compact, when again restricted to the union of

the flow and jump sets. We first analyze the derivative of the Lyapunov function candidate

using the projection function pq. Subsequently, we show that a nonpositive derivative with the

function pq implies a nonpositive derivative when pq is replaced by co(cl(pq)). We first observe

that

uT pq(z, u) = |pq(z, u)|2. (4.23)

Indeed, when u ∈ Tq(z) we have pq(z, u) = u so that the above equality holds. Otherwise,

pq(z, u) is a projection onto the plane and thus there exists a symmetric matrix Pq(z) satisfying
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Pq(z)2 = Pq(z) such that pq(z, u) = Pq(z)u. Thus

uT pq(z, u) = uT Pq(z)u = uT Pq(z)2u = |pq(z, u)|2. (4.24)

This calculation is relevant only for the case where α = 0, i.e., simple gradient descent is being

used. In that case,using (4.23) we note that

⟨∇ f (z), Bq(z)pq(z,−BT
q (z)∇ f (z))⟩ =

−|pq(z,−BT
q (z)∇ f (z))|2. (4.25)

Hence, we have

⟨∇ f (z), Bq(z)pq(z,−BT
q (z)∇ f (z))⟩ ≤ 0. (4.26)

The inequality (4.26) holds for u ∈ cl(pq(z,−BT
q (z)∇ f (z))) since ∇ f and Bq are continuous.

We also have u ∈ co(cl(pq(z,−BT
q (z)∇ f (z)))) since u enters in an affine manner. Thus for u ∈

co(cl(pq(z,−BT
q (z)∇ f (z)))) equation (4.26) holds and the derivative of the Lyapunov function is

negative semidefinite and it does not increase during flows. Now consider the case α = 1. This

case is used only for z ∈ H1 defined in (4.9a). We have:

⟨∇ f (z),−Bq(z)ζ⟩ + ⟨ζ,−[δ,∆]ζ − BT
q (z)∇ f (z)⟩

= −ζT [δ,∆]ζ ≤ 0. (4.27)

Since 0 < δ ≤ ∆, the Lyapunov function does not increase. In this step, we check to see how

the jumps affect the Lyapunov function candidate V . First, due to the definition of G, for all
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(v1, v2) ∈ X1 × X2 and all g ∈ G(x, v), we have V(g) ≤ V(x). Thus, we have:

∫
X1×X2

max
g∈G(x,v)

V(g)µ(dv) ≤ V(x) (4.28)

regardless of the distribution µ. As a result, V is a Lypuanov function for A in the sense of

[28, Theorem 8]. We still have to establish that there does not exist an almost surely complete

solution that remains in a non-zero level set of the Lyapunov function almost surely. We note

that there is no sample path with a purely discrete-time domain. This fact follows from the

hysteresis used to create each type of jump. For example, if z belongs to the relative boundary

of Ci ∩H then it belongs to the relative interior of C j ∩H , j , i, by virtue of the fact that both

C1 ∩H and C2 ∩H are relatively open and cover S2 ∩H . Consequently, each sample path is

uniformly non-Zeno and hence each complete sample path has a time domain that is unbounded

in the ordinary time direction. Since jumps due to G happen every T units of ordinary time, it

is enough to show that those jumps result in a decrease in the expected value of V from points

outside the set of global minimizers. Let z ∈ (S2 ∩ Ȟ)\A and let z∗ ∈ A. Let i ∈ {1, 2} and

v∗i ∈ Xi be such that z∗ = hi(v∗i ) ∈ (Ci ∩H). Let B := {x ∈ Rn : |x| ≤ 1}. By the continuity of f

and hi, there exists ε > 0 such that
{
v∗i

}
+ εB ⊂ Xi and f (hi(vi)) ≤ f (z)− ε for all vi ∈

{
v∗i

}
+ εB.

Without loss of generality, assume that i = 1. Then

∫
X1×X2

max
g∈G(x,v)

V(g)µ(dv) ≤V(z)

−µ
(({

v∗i
}
+ εB

)
× X2

)
ε.

Since µ
(({

v∗i
}
+ εB

)
× X2

)
> 0, by virtue of the distribution being uniform overX1×X2 (though

any distribution for which each open set has positive measure would be sufficient), it follows

that there does not exist an almost surely complete solution that remains in a non-zero level set

of the Lyapunov function almost surely. ■
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4.3 Numerical Example

In this section, we provide examples of the unit sphere with half-space constraint created by

two different plane equations. In order to simulate the algorithm, we need to make a (possibly

time-varying) selection from the interval [δ,∆] to serve as the dissipation gain of the accelerated

gradient algorithm. We make the selection g(t) := 3
t+ε +εwith ε being 0.01 to emulate the time-

varying gain deduced in [55]. Thus, we are using δ = ε and ∆ = ε+3ε−1. The function defined

on the sphere is given by:

f (z) := z2z3 + z3
1. (4.29)

The given function has two local minima, two local maxima, four saddle points, one global

maximum and one global minimum. The value of these critical points is analytically calculated

and given in Chapter 3. We choose a small value of β0 and β1, which define H0 and H1 close

to zero so that AGD is used except very close to the boundary. Consider a boundary plane

according to (4.3), which passes through the sphere with the normal vector n = (0, 1, 1)T
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Figure 4.1: Standard Gradient Descent Sample Paths
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Figure 4.2: Standard Gradient Descent Sample Paths

Figure 4.3: Accelerated Gradient Descent Sample Paths

and the point (0.1343, 0.8543,−0.5021). In this case, the global minimum of the function is

not located on the upper half-space subset of the sphere. In Figure 4.4, we demonstrate the

projection of the sample paths on the boundary. Since the global minimum of the function is

not located within the half space constrained set, the trajectory converges to the least value of

the function in the feasible half space. The trajectory starts from an initial point (green point)

in Figure 4.4 and it potentially goes towards the local minimum (light blue) or the saddle point

(black), which are both located under the boundary constraint. However, the trajectory gets

projected on the boundary when it reaches the plane. Finally, it converges to the least value of
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Figure 4.4: Sample Paths on the Half-Space Subset of the Sphere (Standard Gradient Descent-
Optimal value on boundary)

the function within the half-space constraint created by the intersection of the given plane and

the unit sphere. The analytically calculated value of the optimal point is −0.8774 and in Figure

4.4 the projected gradient descent has converged to this value.

Since the projected flows are combined with stochastic jumps, we have plotted log10( f − f ∗)

with f ∗ being the optimal value in 4.1, for 50 different sample paths to demonstrate the variance

of the algorithm.

In Figure 4.5, we have a different normal vector n = (0, 1, 3)T . In this case, we observe that

the global minimizer of the function with the value −1 is located in the interior of the feasible

subset. The trajectories jump twice after getting stuck at a local minimum and a saddle point.

Finally, it converges towards the least value of the function (white point) within the constrained

half space.

In Figure 4.6, we also demonstrate a scenario in which the global minimum is located on the
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Figure 4.5: Sample Paths on the Half-Space Subset of the Sphere (Standard Gradient Descent-
Optimal value in the interior)

interior of the feasible set and there is no need for boundary projection of the sample paths.

In this case, the accelerated gradient descent flows for β1 close enough to zero converge to the

global minimum.

4.4 Concluding Remarks

We have captured stochastic hybrid optimization algorithms in the framework of stochastic

hybrid inclusions (SHI). The SHI optimization algorithm is designed to minimize a function

defined on the sphere with a half-space constraint. The algorithm has the ability of switch-

ing between accelerated gradient descent flows in the interior of the half-space and standard

gradient descent flows for both interior and boundary. The idea of casting stochastic hybrid

optimization algorithms for smooth manifolds was developed in Chapter 2 and applied to a

unit sphere in Chapter 3. However, none of the previous chapters considered constraints for the
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Figure 4.6: Sample Paths on the Half-Space Subset of the Sphere (Accelerated Gradient
Descent- Optimal value in the interior)

optimization on manifolds. In order to avoid having dynamics and jumps outside of the half-

space feasible set, we developed a projection method that keeps the standard gradient dynamics

within the interior and boundary of the feasible set. The combination of the gradient flows with

random probing on the sphere allows for the escape from saddle points and local minima. We

presented a detailed stability characterization of this algorithm, particularly for the unit sphere.

Lastly, a numerical example of optimization on the unit 2-sphere with half-space constraints is

provided.
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Robust stability analysis for switched

systems with distinct equilibria using

Omega-limit sets
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Chapter 5

Omega-limit sets and robust stability for

switched systems with distinct equilibria

In the following two chapters, we utilize hybrid dynamical systems for a different area of study

and in conjunction with switched systems. In a series of recent papers, various authors have

studied the robust stability properties of switched systems with multiple equilibria. See, for

example, the pioneering results from [58] and the recent studies of [59], [60] and [61]. Studying

this class of switched systems is motivated by many applications from game theory in [62],

where the system switches between multiple games of different Nash equilibria, to robotics in

[63],[64] for motion estimation of legged robots. The control of multicell wireless networks

with mobile switching between cells (subsystems) [65] and modeling of non-spiking neurons in

neurophysiology (see [66]) are other interesting applications of switched systems with multiple

equilibrium points. Typically in the existing literature, an assumption about the existence of

Lyapunov functions with certain properties is made and boundedness of solutions is established

under a sufficiently small average dwell-time switching constraint. In this work, we eschew a

Lyapunov-function-based approach and we aim to give a more precise characterization of the

set to which trajectories converge. We approach the analysis problem using a hybrid systems
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modeling framework [27]. We employ the notion of anΩ-limit set from a compact set of initial

conditions, as considered in [67] for a hybrid system. We characterize this Ω-limit set for

an associated, ideal hybrid system that employs an average dwell-time switching automaton

coming from [68] or [67] with the switching rate set to zero so that only a finite number of

switches is allowed. In turn, we draw conclusions for the switched system under small average

dwell-time switching by using results developed for hybrid results on robust (semi-global,

practical) asymptotic stability for a compact set.

5.1 Preliminaries

5.1.1 General notation

We use Rn to denote n-dimensional Euclidean space. We use R≥0 to denote the nonnegative

real numbers and Z≥0 to denote the nonnnegative integers. We use |x| to denote the Euclidean

norm of the vector x ∈ Rn. For a closed set K ⊂ Rn and a vector x ∈ Rn, the symbol |x|K

denotes the distance of x to K, i.e., |x|K := infy∈K |x − y|. Given r > 0, we use rB to denote the

set {x ∈ Rn : |x| ≤ r} and rB◦ to {x ∈ Rn : |x| < r}. For a set S ⊂ Rn, the symbol S denotes its

closure. The closure of the convex hull of the set S is written as coS . We say that α ∈ K+ if

α : R≥0 → R≥0 is continuous and strictly increasing. Given α1, α2 ∈ K
+, the symbol α1 ◦ α2

denotes their composition, i.e., α1 ◦ α2(s) = α1(α2(s)). We say that α ∈ K if α ∈ K+ and

α(0) = 0. A function β : R≥0 × R≥0 → R≥0 is of class KL if β(., t) is of class K for each fixed

t ≥ 0 and t 7→ β(r, t) is nonincreasing and decreases to zero as t → ∞ for each fixed r ≥ 0.
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5.1.2 Hybrid systems

We use the framework for hybrid systems described in [27]. The model of a hybrid system

is written formally as

x ∈ C, ẋ ∈ F(x) (5.1a)

x ∈ D, x+ ∈ G(x) (5.1b)

where x ∈ Rn is the state, C ⊂ Rn is the flow set, D ⊂ Rn is the jump set, F : Rn ⇒ Rn is the

flow map, and G : Rn ⇒ Rn is the jump map. The data (C, F,D,G) is said to satisfy the hybrid

basic conditions if C and D are closed, the graphs of F and G are closed, F and G are locally

bounded, the values of F are nonempty and convex on C and the values of G are nonempty on

D. A solution of the hybrid system (5.1) is a hybrid arc satisfying the constraints in (5.1); a

hybrid arc is defined through the following concepts. A compact hybrid time domain is a set of

the form

∪J
j=0

(
[t j, t j+1] × { j}

)
⊂ R≥0 × R≥0

for some real numbers 0 = t0 ≤ t1 ≤ · · · ≤ tJ+1. A hybrid time domain is a set E ⊂ R≥0 × R≥0

having the property that, for each (T, J) ∈ E, the set E ∩ ([0,T ] × {0, . . . , J}) is a compact

hybrid time domain. A hybrid arc is a function x : E → Rn where E is a hybrid time domain

and x(·, j) is locally absolutely continuous for each nonnegative integer j. We typically use

dom(x) to denote the domain of the hybrid arc x. A hybrid arc is a solution of (5.1) if it satisfies

the constraints implicit in (5.1), i.e.,

1. If (t1, j), (t2, j) ∈ dom(x) and t1 < t2 then, for almost all t ∈ [t1, t2],

x(t, j) ∈ C, ẋ(t, j) ∈ F(x(t, j))
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2. If (t, j), (t, j + 1) ∈ dom(x) then

x(t, j) ∈ D, x(t, j + 1) ∈ G(x(t, j)).

Given K ⊂ Rn, we use S(K) to denote the set of solutions to (5.1) that start in K. Given

K ⊂ Rn, we use R(K) to denote the reachable set from K, i.e.,

R(K) := {z ∈ Rn : z = x(t, j), x ∈ S(K), (t, j) ∈ dom(x)}.

Given K ⊂ Rn, we use Ω(K) to denote the Ω-limit set from K, i.e.,

Ω(K) :=
{
z ∈ Rn : z = lim

i→∞
xi(ti, ji), xi ∈ S(K),

(ti, ji) ∈ dom(xi), lim
i→∞

ti + ji = ∞

}

A sequence of hybrid arcs {xi}
∞
i=1 is said to be locally eventually bounded if for any m > 0, there

exists i0 > 0 and a compact set K ⊂ Rn such that for all i > i0, all (t, j) ∈ dom ϕi with t+ j < m,

xi(t, j) ∈ K.

Fundamental to our analysis are results derived from the properties of the solutions to (5.1)

for the solutions of the inflated system

x ∈ Cδ, ẋ ∈ Fδ(x) (5.2a)

x ∈ Dδ, x+ ∈ Gδ(x) (5.2b)
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where δ > 0 and

Cδ := {x ∈ Rn : (x + δB) ∩C , ∅} (5.3a)

Fδ := coF((x + δB) ∩C) + δB (5.3b)

Dδ := {x ∈ Rn : (x + δB) ∩ D , ∅} (5.3c)

Gδ := G((x + δB) ∩ D) + δB. (5.3d)

We use Sδ(K) to denote the solutions of (5.2) from K.

5.1.3 Stability concepts

We state several stability concepts for hybrid systems. They apply just as well to ordinary

differential equations. The hybrid system (5.1) is said to be Lagrange stable if there exists

α ∈ K+ such that, for each x◦ ∈ Rn, each x ∈ S(x◦), and (t, j) ∈ dom(x), we have

|x(t, j)| ≤ α(|x◦|).

A compact set A ⊂ Rn is said to be (Lyapunov) stable for the hybrid system (5.1) if, for

each ε > 0 there exists δ > 0 such that |x◦|A ≤ δ, x ∈ S(x◦) and (t, j) ∈ dom(x) imply that

|x(t, j)|A ≤ ε.

A compact set A ⊂ Rn is said to be attractive for the hybrid system (5.1) if there exists

δ > 0 such that each solution x ∈ S(A+ δB) is bounded and, if complete, satisifes x(t, j)→ A

as t+ j→ ∞. The basin of attraction for an attractive setA is the set of initial conditions from

which each solution is bounded and, if complete, converges toA as t + j→ ∞.

A compact setA ⊂ Rn is said to be asymptotically stable for the hybrid system (5.1) if it is

stable and attractive. It is said to be globally asymptotically stable for the hybrid system (5.1)

if it is asymptotically stable with stable Rn as its basin of attraction.
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The setA ⊂ Rn is said to be semiglobally practically asymptotically stable in the parameter

δ > 0 for the system (5.2) if there exists β ∈ KL and for each ε > 0 and ∆ > 0 there exists

δ > 0 such that each x ∈ Sδ(A + ∆B) satisfies

|x(t, j)|A ≤ β(|x(0, 0)|A, t + j) ∀(t, j) ∈ dom(x). (5.4)

5.1.4 Some useful preliminary results

The first preliminary result is contained in Exercise 4.3(b) of [56].

Lemma 2 If the convergent sequence {zi}
∞
i=1 satisfies zi ∈ S i for all i, where {S i}

∞
i=1 is a decreas-

ing sequence of closed subsets of Rn, i.e., S i+1 ⊂ S i ⊂ R
n for all i, then limi→∞ zi ∈

⋂
i

S i.

The next result is Corollary 7.7 from [27].

Lemma 3 Suppose (C, F,D,G) satisfy the hybrid basic conditions. Let K be compact and

suppose that R(K) is bounded and Ω(K) is nonempty and contained in the interior of K. Then

Ω(K) is asymptotically stable with basin of attraction containing K.

The next result is Lemma 7.20 from [27].

Lemma 4 Suppose (C, F,D,G) satisfy the hybrid basic conditions. If the compact set A is

globally asymptotically stable for (5.1) then it is semiglobally practically asymptotically stable

in the parameter δ > 0 for the system (5.2).

5.2 Problem setting

Let M be a positive integer and define

Q := {1, . . . ,M} . (5.5)
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For each q ∈ Q, let fq : Rn → Rn. Let δ > 0. We analyze the asymptotic behavior of the

solutions of the differential inclusion

ż ∈ co fq(z + δB) + δB (5.6)

where q : R≥0 → Q is any switching signal that satisfies an average dwell-time switching

constraint paramterized by δ. In particular, letting N0 be a positive integer, and letting N(s, t)

denote the number of switches of q in the interval [s, t], we assume that

N(s, t) ≤ δ(t − s) + N0 ∀ 0 ≤ s ≤ t. (5.7)

Our other assumption pertains to the family of differential equations

ż = fq(z) (5.8)

where q ∈ Q is constant.

Assumption 7 For each q ∈ Q, fq is continuous and the point z∗q ∈ R
n is globally asymptoti-

cally stable for (5.8). ■

At times, we may also impose the following assumption, a sufficient condition for which is that

the continuity in Assumption 7 is strengthened to local Lipschitz continuity.

Assumption 8 For each q ∈ Q, the solution of the initial value problem

ż = − fq(z) , z(0) = z∗q (5.9)

is unique. ■

Our goal is to characterize the asymptotic behavior of (5.6) under the switching signal con-
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straint (5.7) when δ > 0 is small. To make progress toward this goal, we cast the combination

of (5.1) and (5.7) as an equivalent hybrid system that employs an automaton to capture the av-

erage dwell-time switching constraint. That is, we consider the behavior of the hybrid system

Hδ given by

Hδ



(z, q, τ) ∈ Rn×Q×[0,N0]



ż ∈ co fq(z + δB) + δB

q̇ = 0

τ̇ ∈ [0, δ]

(z, q, τ) ∈ Rn×Q×[1,N0]



z+ = z

q+ ∈ Q\ {q}

τ+ = τ − 1.

(5.10)

According to [69], the solutions to (5.10) are in a one-to-one correspondence with the solutions

of (5.1) under the switching constraint (5.7). We also note that, under Assumption 7, the data

of the hybrid system (5.10) satisfies the hybrid basic conditions spelled out in [27, Assumption

6.5].

5.3 Analysis of an ideal system

5.3.1 The model

To characterize the asymptotic behavior of the solutions ofHδ in (5.10), we first character-

ize the asymptotic behavior of the the ideal systemH0 that results from setting δ = 0 in (5.10),
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i.e.,

H0



(z, q, τ) ∈ Rn×Q×[0,N0]



ż = fq(z)

q̇ = 0

τ̇ = 0

(z, q, τ) ∈ Rn×Q×[1,N0]



z+ = z

q+ ∈ Q\ {q}

τ+ = τ − 1.

(5.11)

We will see that the asymptotic behavior of the solutions of this system will give an indication

of the asymptotic behavior of the solutions to the system (5.10).

5.3.2 Boundedness

In this section, we establish a boundedness property for the solutions ofH0 in (5.11) under

Assumption 7. We start with such a boundedness result under a relaxation of Assumption 7.

Proposition 1 If, for each q ∈ Q, the system (5.8) is Lagrange stable then the hybrid system

H0 in (5.11) is Lagrange stable.

Proof: According to the assumption of the proposition, there exists a family of functions{
αq

}
q∈Q

with αq ∈ K
+ for each q ∈ Q, such that each solution x = (z, q, τ) of the flow dynamics

in (5.11), i.e., of

(z, q, τ) ∈ Rn×Q×[0,N0]



ż = fq(z)

q̇ = 0

τ̇ = 0

(5.12)
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satisfies

|x(t)| ≤ αq(0)(|x(0)|) ∀t ∈ dom(x). (5.13)

LetN denote the family of functions obtained from k compositions of the functions αq for any

k ∈ {1, . . . ,N0} without composing the same function with itself, i.e.,

N :=
{
α : α = αqk ◦ · · · ◦ αq1 , k ∈ {1, . . . ,N0} ,

q j ∈ Q ∀ j ∈ {1, . . . , k} ,

q j+1 , q j ∀ j ∈ {1, . . . , k − 1}
}
. (5.14)

Since the composition of continuous, nondecreasing functions is continuous and nondecreas-

ing, it follows that N ⊂ K+. Note that the number of functions in the set N is finite. Thus we

can define

α̃(s) := max
α∈N
α(s) ∀s ≥ 0, (5.15)

yielding α̃ ∈ K+ since the pointwise maximum of continuous, nondecreasing functions is

continuous and nondecreasing.

Let x = (z, q, τ) be a complete solution of H0 in (5.11) and define J := max(t, j)∈dom(x) j.

Note that J is well-defined and satisfies J ∈ {0, . . . ,N0}; it denotes the number of switches

experienced by the solution x. Using this definition, we can write dom(x) as

dom(x) =

 J−1⋃
j=0

([t j, t j+1] × { j})

 ∪ (
[tJ,∞) × {J}

)
(5.16)

where 0 = t0 ≤ t1 ≤ · · · tJ < ∞. For notational convenience, we let tJ+1 > tJ denote an

arbitrarily large positive number.
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It follows from the assertion in (5.13) for the solutions of the system (5.12) that, for each

j ∈ {0, . . . , J} and each t ∈ [t j, t j+1],

|x(t, j)| ≤ αq(t j, j)(|x(t j, j)|). (5.17)

By concatenating these bounds, it follows that, for all k ∈ {0, . . . , J} and each t ∈ [tk, tk+1],

|x(t, k)| ≤ αq(tk ,k) ◦ αq(tk−1,k−1) ◦ . . . ◦ αq(0,0)(|x(0, 0)|). (5.18)

By the definition of the flow map and jump map in (5.11), it follows that q(tk, k) , q(tk−1, k− 1)

for each k ∈ {1, . . . , J}. Hence, for each k ∈ {0, . . . , J}, we have

αq(tk ,k) ◦ αq(tk−1,k−1) ◦ . . . ◦ αq(0,0) ∈ N . (5.19)

It follows from the definition of α̃ in (5.15) that, for each k ∈ {0, . . . , J} and each t ∈ [tk, tk+1],

|x(t, k)| ≤ α̃(|x(0, 0)|). (5.20)

Since tJ+1 is arbitrary, it follows that

|x(t, k)| ≤ α̃(|x(0, 0)|) ∀(t, k) ∈ dom(x). (5.21)

Thus, the hybrid system (5.11) is Lagrange stable.

Since global asymptotic stability of a compact set implies Lagrange stability, the following

corollary is a consequence of Proposition 1.

Corollary 1 Under Assumption 7, the hybrid systemH0 defined in (5.11) is Lagrange stable.
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5.3.3 The Ω-limit set forH0

Let K ⊂ Rn+2. For the systemH0 defined in (5.11), we use Ω0(K) to denote the Ω-limit set

from K and we use R0(K) to denote the reachable set from K. We define

S q :=
⋂
j∈Z≥0

R0

( ( {
z∗q

}
+

1
j + 1
B

)
× {q} × [0,N0]

)
(5.22a)

S :=
⋃
q∈Q

S q. (5.22b)

The next lemma is a result of Corollary 1 and the construction of S in (5.22).

Lemma 5 Under Assumption 7, the set S defined in (5.22) is compact.

The rest of this section is devoted to establishing that Ω0(K) = S for sufficiently large

compact sets K.

Proposition 2 If Assumptions 7 and 8 hold then, for each compact set K ⊂ Rn+2 containing

the set

⋃
q∈Q

{
z∗q
}
× {q}

 × [0,N0]

in its interior, Ω0(K) = S .

Proposition 2 follows from the subsequent two lemmas.

Lemma 6 If Assumption 7 holds then, for each compact set K ⊂ Rn+2, Ω0(K) ⊂ S .

Proof: Let p ∈ Ω0(K) and let the sequence of solutions ϕi ∈ S(K) and times (ti, ji) ∈

dom(ϕi) satisfy

lim
i→∞

ti + ji = ∞ (5.23a)

lim
i→∞
ϕi(ti, ji) = p. (5.23b)
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Since K is compact and the system H0 is Lagrange stable (due to Corollary 1) the sequence

{ϕi}
∞
i=1 is locally eventually bounded. Consequently, it contains a subsequence converging to

a complete solution ϕ ∈ S(K) [27, Theorem 6.1]. Henceforth, we use {ϕi}
∞
i=1 for the con-

verging subsequence. Define J := max(t, j)∈dom(ϕ) j. Note that J is well-defined and satisfies

J ∈ {0, . . . ,N0}; it denotes the number of switches experienced by the solution ϕ. Using this

definition, we can write dom(ϕ) as

dom(ϕ) =

 J−1⋃
j=0

([t j, t j+1] × { j})

 ∪ (
[tJ,∞) × {J}

)
(5.24)

where 0 = t0 ≤ t1 ≤ · · · tJ < ∞. Moreover, with (z, q, τ) = ϕ, since q and τ are constant during

flows, there exists (q∗, τ∗) ∈ Q × [0,N0] such that (q(t, J), τ(t, J)) = (q∗, τ∗) for all t ∈ [tJ,∞).

Also, due to Assumption 7,

lim
t→∞
|z(t, J) − z∗q∗ | = 0. (5.25)

Thus, there exists an increasing, unbounded sequence of times
{
s j

}
j∈Z≥0

such that, for each

j ∈ Z≥0,

tJ ≤ s j , |z(s j, J) − z∗q∗ | ≤
1

2( j + 1)
. (5.26)

For each j ∈ Z≥0, let i∗( j) ∈ Z≥0 be such that, for all i ≥ i∗( j), we have

ti + ji ≥ s j + J + 0.5 (5.27)
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and there exists t̂i such that (t̂i, J) ∈ dom(ϕi) satisfying

|t̂i − s j| ≤
1

2( j + 1)
(5.28a)

|ϕi(t̂i, J) − ϕ(s j, J)| ≤
1

2( j + 1)
. (5.28b)

By combining (5.26)-(5.28), it follows that

ti + ji ≥ t̂i + J (5.29a)

|zi(t̂i, J) − z∗q∗ | ≤
1

j + 1
. (5.29b)

It follows that

ϕi∗( j)(ti∗( j), ji∗( j)) ∈ (5.30)

R0

(({
z∗q∗

}
+

1
j + 1
B

)
× {q∗} × {τ∗}

)
.

Without loss of generality, we may assume that

i∗( j + 1) ≥ i∗( j) + 1 (5.31)

so that i∗( j) grows unbounded in j, and hence, using (5.23),

lim
j→∞

ti∗( j) + ji∗( j) = ∞ (5.32a)

lim
j→∞
ϕi∗( j)(ti∗( j), ji∗( j)) = p. (5.32b)
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It follows from Lemma 2 that

p ∈
⋂
j∈Z≥0

R0

(({
z∗q∗

}
+

1
j + 1
B

)
× {q∗} × {τ∗}

)
⊂ S q∗ ⊂

⋃
q∈Q

S q = S . (5.33)

This containment establishes the result.

Lemma 7 If Assumptions 7 and 8 hold then, for each compact set K ⊂ Rn+2 containing the set

K0 :=

⋃
q∈Q

{
z∗q

}
× {q}

 × [0,N0] (5.34)

in its interior, S ⊂ Ω0(K).

Proof: Since K0 belongs to the interior of K, there exists ε > 0 such that K0 + εB ⊂ K.

Let p ∈ S . According to (5.22b), we have

p ∈
⋃
q∈Q

S q . (5.35)

Thus, there exists a q∗ ∈ Q such that

p ∈ S q∗ (5.36)

=
⋂
j∈Z≥0

R0

( ( {
z∗q∗

}
+

1
j + 1
B

)
× {q∗} × [0,N0]

)
.

As a result we have that, for all j ∈ Z≥0,

p ∈ R0

( ( {
z∗q∗

}
+

1
j + 1
B

)
× {q∗} × [0,N0]

)
. (5.37)
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It follows that there exist a solution ϕ∗j and (t∗j , l
∗
j) ∈ dom ϕ∗j such that

ϕ∗j(0, 0) ∈
( ( {

z∗q∗
}
+

1
j + 1
B

)
× {q∗} × [0,N0]

)
(5.38)

and

|ϕ∗j(t
∗
j , l
∗
j) − p| ≤

1
j + 1
. (5.39)

Let z∗j and τ∗ be such that ϕ∗j(0, 0) = (z∗j, q
∗, τ∗j). Let z j be a solution to the system ż = − fq∗(z)

with the initial condition

z j(0) = z∗j. (5.40)

Define

h( j) := min{ j, inf{t ∈ dom z j : |z j(t) − z∗q| = ε}}. (5.41)

It follows from Assumptions 7 and 8 that

lim
j→∞

h( j) = ∞. (5.42)

Next, we define a hybrid arc ϕ j with the domain

dom ϕ j :=
(
[0, h( j)] × {0}

)⋃(
dom ϕ∗j + ({h( j)} × {0})

)
, (5.43)
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given by

ϕ j(t, k) := (5.44)
(z j(h( j) − t), q∗, τ∗j) ∀(t, k) ∈ [0, h( j)] × {0}

ϕ∗j(t − h( j), k) ∀(t, k) ∈ dom ϕ∗j + ({h( j)} × {0}).

It can be verified that ϕ j is a solution of system (5.11) starting at (z j(h( j)), q∗, τ∗j). This point

belongs to K, due to (5.41) and the definition of ε.

Next, we define

t j := t∗j + h( j), l j := l∗j (5.45)

so that, due to (5.42),

lim
j→∞

t j + l j = ∞. (5.46)

It follows from (5.45), (5.44) and (5.39) that

|ϕ j(t j, l j) − p| = |ϕ j(t j∗ + h( j), l j∗) − p|

= |ϕ∗j(t
∗
j , l
∗
j) − p| ≤

1
( j + 1)

. (5.47)

As a result, we have that

lim
j→∞
ϕ j(t j, l j) = p. (5.48)

Now follows from (5.46) and (5.48) that p ∈ Ω0(K).

84



Omega-limit sets and robust stability for switched systems with distinct equilibria Chapter 5

5.4 Main result

We are now ready to state our main results.

Theorem 5 Under Assumptions 7 and 8, the set S defined in (5.22) is semiglobally, practically

asymptotically stable in the parameter δ > 0 for the systemHδ defined in (5.10).

Proof: Let the compact set K ⊂ Rn+2 be such that the set S defined in (5.22), which is

compact according to Lemma 5, is contained in the interior of K. According to Proposition

2, Ω(K) is contained in the interior of K. According to Lemma 3, the compact set Ω(K) is

asymptotically stable with basin of attraction containing K for the systemH0 defined in (5.11).

Since K can be taken to be arbitrarily large, it follows that S is globally asymptotically stable

for the system H0 defined in (5.11). It then follows from Lemma 4 that the set S is semi-

globally practically asymptotically stable in δ > 0 for the systemHδ defined in (5.10).

In the case where Assumption 8 does not hold, we still have the following result:

Theorem 6 Let Assumption 7 hold and let r > 0 be such that S ⊂ rB0. Then the set Ω0 (rB) is

compact, contained in S , and semi-globally, practically asymptotically stable in the parameter

δ > 0 for the systemHδ defined in (5.10).

Proof: According to Lemma 6, Ω0 (rB) ⊂ S . Then, due to the assumption that S ⊂ rB◦,

we have that Ω0 (rB) ⊂ rB◦. It follows from Lemma 3 that the set Ω0 (rB) is asymptotically

stable with basin of attraction containing rB. We claim that the basin of attraction is Rn+2.

Indeed, for any value r′ > r, we again have that Ω0 (r′B) ⊂ S is asymptotically stable with

basin of attraction containing r′B. It follows from the containment S ⊂ rB◦ that each complete

solution from r′B reaches rB in finite time, and thus each point in r′B belongs to the basin of

attraction of the asymptotically stable setΩ0 (rB). 1 Since r′ > r was arbitrary, this observation

establishes that the set Ω0 (rB) is globally asymptotically stable for the system H0 defined in

1In fact, it can be shown that Ω(r′B) = Ω(rB) for each r′ > r, though this is not needed for the proof.
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(5.11). It then follows from Lemma 4 that the set S is semi-globally practically asymptotically

stable in δ > 0 for the systemHδ defined in (5.10).

5.5 Numerical Example

In this section, we consider an example with N0 = 1, to ease the visualization of the ideal

Ω-limit set. Consider the following linear time-invariant systems

ẋ = A1x + b1 (5.49a)

ẋ = A2x + b2, (5.49b)

where x ∈ R2 and

A1 =

 0 1

−10 −1

 ; A2 =

 0 10

−1 −1


b1 =

−20

4

 ; b2 =

−1

4

 .
The matrices A1 and A2 are invertible, yielding the unique equilibrium points for (5.49a) and

(5.49b), respectively, at x∗1 = [−1.6, 20]T and x∗2 = [3.9, 0.1]T . Each equilibrium is exponen-

tially stable since A1 and A2 are Hurwitz.

In Figure 5.1, we have generated the Ω-limit set for the ideal hybrid system.

Figure 5.2 shows behavior under a particular, persistently switching signal that satisfies a

dwell-time constraint with δ = 0.1. The initial condition starts near the ideal Ω-limit set and

so corresponds to a type of “steady-state” behavior. Figure 5.3 shows behavior from an initial

condition farther from the ideal Ω-limit set.

86



Omega-limit sets and robust stability for switched systems with distinct equilibria Chapter 5

Figure 5.1: The Ω-limit set corresponding to the ideal system (5.11) for the example (5.49)
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Figure 5.2: “Steady-state” behavior near the ideal Ω-limit set for dwell-time switching with
δ = 1

10 and disturbances

5.6 Concluding Remarks

This chapter provides a characterization of the asymptotic behavior of a perturbed, switched

system with distinct equilibria under average dwell-time switching with a small rate parameter.

The asymptotic behavior of an ideal hybrid system without disturbances and without persistent
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Figure 5.3: Transient response from a non-equilibrium initial condition

switching was analyzed first. It was shown that the solutions of such a system are bounded

if each subsystem is Lagrange stable. Subsequently, the Ω-limit for the ideal hybrid system

was characterized and was shown to be semiglobally practically asymptotically stable in the

average dwell-time parameter for the switched system. Finally, an example for a system with

two equilibria was provided.
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Chapter 6

Analyzing the Effect of Persistent Asset

Switches on a Class of Hybrid-Inspired

Optimization Algorithms

In this chapter, we exploit the previously developed theory for an optimization problem. Con-

vex optimization challenges are pervasive across many current science and technology fields.

Such optimization problems are often solved using iterative algorithms such as first-order

gradient-based methods that can be naturally represented and analyzed as dynamical systems.

However, most studies of these algorithms do not account for applications in which the objec-

tive function to be optimized can instantaneously change at discrete moments in time during

the algorithm’s execution. Switching objectives arise in increasingly many real-world applica-

tions, such as multi-agent systems in which the agents must be replaced according to a real-time

mission constraint, as well as resource allocation problems in which the allocated assets can

experience persistent changes in the reward they generate. Other examples can be found in

branches of human science, such as sociology, psychology, and organization science, which

study the group interactions and performance of teams with multiple individuals engaged in a
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common task [70], [71]. In [72], for instance, an algorithm is proposed and studied for opti-

mizing the sum of the team members’ performance measures, and each member’s performance

measure is determined by variables such as the member’s specific skill level. Thus, the ob-

jective will switch whenever a team member is replaced during execution of the algorithm.

Persistent switches of assets could also play an important role in the realm of intelligent con-

trol of unmanned aerial vehicles (UAVs), also referred to as drones. In recent years, there has

been a surge in the use of UAVs for surveillance and security, parcel shipment, traffic moni-

toring, disaster recovery, and military reconnaissance [73],[74]. Cooperative and collaborative

optimization of UAV performance is essential in such applications. In [75], applications and

engineering constraints for UAV-based mobile ad hoc networking are surveyed. In all these set-

tings, there are few studies of how optimization dynamics are impacted by objectives that per-

sistently switch due to failures or replacements of UAVs in a network/relay. In this chapter, we

analyze how the presence of a persistently switching objective impacts the asymptotic stability

properties of optimization dynamics. Our analysis aims to be applicable to systems such as the

aforementioned UAV ad hoc networks, where the UAVs that suffer from low battery, poten-

tial damages, or other disabling aspects may be replaced during the execution of optimization

dynamics. Our analysis targets applications where a system must instantaneously replace as-

sets (UAVs, team members, etc.) at discrete moments in time, while it optimizes performance

continuously in time. To prevent instability and be able to characterize the set to which the opti-

mization dynamics converge, such switches should satisfy an average dwell-time constraint. In

Chapter 5 (see also [76]), stability is studied for systems involving switches between multiple

differential equations with distinct equilibria, with switches satisfying an average dwell-time

condition. We extend the results from [76] and apply the provided asymptotic characterization

method to consider switching between differential inclusions with distinct equilibria. The dif-

ferential inclusions each take the form of the Hybrid-inspired Heavy Ball System from [77],

which takes advantage of the differential inclusion to achieve efficiency comparable to acceler-
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ated gradient methods while also retaining certain robustness properties. We characterize the

set to which the resulting switched system converges, in terms of the Omega-limit set of an

associated ideal hybrid system. This ideal hybrid system involves an automaton with solutions

that are in one-to-one correspondence with time domains satisfying the average dwell-time

constraint and with the rate parameter set to zero. Finally, we show that the system switching

between differential inclusions with a small disturbance is a perturbed version of the men-

tioned ideal hybrid system with a globally asymptotically stable Omega-limit set. Thus, we

can establish semi-global, practical asymptotic stability for the perturbed system. The robust

stability of switched systems with distinct equilibria is a well-studied subject as discussed in

the previous Chapter 5 (see [58],[61]). For example, [78] studies the steady-state optimization

of switched systems with time-varying cost functions. We take advantage of the results from

Chapter 5 and demonstrate our stability results on an application involving a data relay formed

by UAVs, where the objective model’s various performance measures such as communication

quality or battery consumption. Sections 6.2, 6.3, 6.3.1, and 6.3.2 review some relevant ideas

from Chapter 5.

6.1 Notations

In this work, Rn is used to demonstrate the n-dimensional Euclidean space. The R≥0 is used

to show the nonnegative real numbers. We use |x| to denote the Euclidean norm of the verctor

x ∈ Rn. Given r > 0, we use rB for the set {x ∈ Rn : |x| ≤ r}. For a function α, we say α ∈ K+

if α : R≥0 → R≥0 is continuous and strictly increasing.
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6.2 Hybrid Systems

The hybrid systems framework that we use is described in (5.1) Chapter 5. We use S(K) to

denote the set of solutions to (5.1) that start in K.

6.3 Preliminaries

In the first part of this section, we introduce some notions later used in this work and state

some stability concepts for hybrid systems. In the second part of this section, we review the

concept of average dwell-time constraint [79]. Next, we consider a perturbed hybrid system,

in which the perturbation is parameterized by a dwell-time parameter satisfying the average

dwell-time condition from [69]. Finally, we discuss the advantages of optimization methods

employing differential inclusions for applications with persistent asset switches, introducing an

efficient differential inclusion-based optimization algorithm inspired by the hybrid algorithms

studied in [77]. This optimization algorithm has been shown in [77] to have desirable robust-

ness properties and will be shown to be especially suitable for online optimization problems

with persistent asset switches.

6.3.1 Stability concept for hybrid systems

We state some stability analysis concepts particularly for the hybrid system framework

(5.1). The hybrid system (5.1) is said to be Lagrange stable if there exists α ∈ K+ such that,

for each z0 ∈ R
n, each x ∈ S(x0) and (t, j) ∈ dom (x), we have |x(t, j)| ≤ α(|x0|). A compact set

A ⊂ Rn is said to be stable for the hybrid system (5.1) if, for each ε > 0, there exists δ > 0 such

that |x◦|A ≤ δ, x ∈ S(x◦) and (t, j) ∈ dom(x) imply that |x(t, j)|A ≤ ε. A compact set A ⊂ Rn

is said to be attractive for (5.1) if there exists δ > 0 such that each solution x ∈ S(A + δB)

is bounded and, if complete, satisfies limt+ j→∞ |x(t, j)|A = 0. The basin of attraction for an
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attractive set A is the set of initial conditions from which each solution is bounded and, if

complete, satisfies limt+ j→∞ |x(t, j)|A = 0. A compact set A ⊂ Rn is said to be asymptotically

stable for (5.1) if it is stable and attractive. It is said to be globally asymptotically stable for

(5.1) if it is asymptotically stable with Rn as its basin of attraction. The setA ⊂ Rn is said to be

semiglobally practically asymptotically stable in the parameter δ > 0 for the perturbed hybrid

system if there exists β ∈ KL and, for each ε > 0 and ∆ > 0, there exists δ > 0 such that each

x ∈ Sδ(A + ∆B) satisfies |x(t, j)|A ≤ β(|x(0, 0)|A, t + j) + ε for all (t, j) ∈ dom(x).

6.3.2 Average dwell time switching and its automaton

Let a family of differential inclusions be given

ż ∈ coFσ(z + δB) + δB, σ ∈ Σ. (6.1)

Let Σ := {1, · · · ,M} with M being a positive integer. The switching signal is denoted by

σ : R≥0 → Σ which satisfies the average dwell-time constraint parameterized by a small δ > 0.

We formalize the concept of average dwell time for the switching signal σ. Let Nσ[s, t] denote

the number of switches σ within the interval [s, t] and N0 being a positive integer. We then

assume

Nσ(s, t) ≤ δ(t − s) + N0 ∀ 0 ≤ s ≤ t. (6.2)

We cast a hybrid system, which associates the dynamics from differential inclusions given in

(6.1) and hybrid time domains satisfying the constraint from (6.2). This hybrid system employs

an automaton to capture the average dwell-time condition. The model of this hybrid system

Ĥδ is given

93



Analyzing the Effect of Persistent Asset Switches on a Class of Hybrid-Inspired Optimization
Algorithms Chapter 6

Ĥδ



(z, σ, τ) ∈ C×Σ×[0,N0]



ż ∈ coFσ(z+δB)+δB

σ̇ = 0

τ̇ ∈ [0, δ]

(z, σ, τ) ∈ C×Σ×[1,N0]



z+ = z

σ+ ∈ Σ\ {σ}

τ+ = τ − 1.

(6.3)

According to [69, Proposition 1.1], the solutions to Ĥδ are in a one-to-one correspondence

with the solutions of (6.1) under the average dwell-time switching constraint (6.2) and Ĥδ

satisfies the hybrid basic conditions from [27, Assumption 6.5]. Note that, for convenience, the

parameter δ > 0 describes both the maximum flow rate of the automaton τ and the perturbed

differential inclusion.

6.3.3 Ideal system analysis

The goal is to extend the results from Chapter 5 and [76] to differential inclusions and

characterize the asymptotic behavior of (6.1) under average dwell-time constraint parametrized

by a small δ. In order to realize this goal, we characterize the asymptotic behavior of the Ĥδ

without the perturbation, which results from setting δ = 0 in (6.3). This new ideal hybrid
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system obtained by setting δ = 0 is denoted by Ĥ0 and corresponds to

Ĥ0



(z, σ, τ) ∈ C×Σ×[0,N0]



ż ∈ Fσ(z)

σ̇ = 0

τ̇ = 0

(z, σ, τ) ∈ C×Σ×[1,N0]



z+ = z

σ+ ∈ Σ\ {σ}

τ+ = τ − 1.

(6.4)

As we will see, the asymptotic behavior of (6.4) approximates the asymptotic behavior of the

(6.3).

6.3.4 A differential inclusion-based optimization algorithm

Differential inclusions have been useful for studying stability of steepest descent/ascent dy-

namics in convex optimization [80]. Differential inclusions are also discussed in [81], in which

a continuous-time analogue of the Alternating Direction Method-of-Multipliers is given. In

[82] and [83], differential inclusions are used to approximate a high-gain anti-windup strategy

for handling input constraints in feedback-based optimization. In this section, we focus on

an algorithm, represented as a differential inclusion, whose trajectories seek a solution to the

problem

min
q∈Rn

ϕ(q) B
n∑

i=1

ϕi(qi)

 (6.5a)

s.t. 1T q = d, d ∈ R, (6.5b)

under the following assumptions.
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Assumption 9 The objective ϕ : Rn → R is continuously differentiable, has compact sub-level

sets, has an L-Lipschitz gradient ∇ϕ, and is convex.

Under Assumption 9, [84, Prop. 5.3.7] implies that the set Q∗ of solutions to (6.5) is non-empty

and compact. Furthermore, [84, Prop. 5.3.3] implies that q∗ ∈ Q∗ if and only if there exists

µ∗ ∈ R such that

∇ϕ(q∗) + µ∗1 = 0, 1T q∗ = d. (6.6)

Defining L as the Laplacian of a connected undirected graph, we have that the nullspace of L

is span(1) [85, Sec. II], and thus, the conditions (6.6) can be equivalently expressed as

L∇ϕ(q∗) = 0, 1T q∗ = d. (6.7)

It is convenient to express the above conditions in terms of L because L will play an important

role in the analysis and application of our proposed algorithm. Our algorithm is based on

the following differential equation, which we refer to as the Laplacian-Gradient Heavy Ball

Method (HBM) and is a continuous-time analogue of the algorithm in [86]. The HBM is given

by

ẋ =

 p

−K p − L∇ϕ(q)

 . (6.8)

To achieve fast convergence without oscillations, first-order convex optimizations methods of-

ten require knowledge of problem parameters for a precise algorithmic parameter tuning. Theo-

retically, convergence of iterative optimization algorithms for convex problems can be achieved

through momentum in the sense of Nesterov’s method [87]. However, often the algorithmic

parameters such as momentum and stepsize should be accurately specified depending on the
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problem parameters. When such precise parameters are not known, momentum methods such

as Nesterov’s method suffer from oscillations in their trajectories. Such oscillations exhibited

by Nesterov’s method often restrict its application to real-world systems [88]. Therefore, we

consider the differential inclusion, based on HBM and inspired by the hybrid algorithm in [89],

which can greatly reduce oscillations without precise algorithmic parameter tuning. This algo-

rithm is referred to as the Laplacian-Gradient Hybrid-inspired Heavy Ball Method (HiHBM).

This approach using a differential inclusion can also improve transient performance in settings

where the objective is persistently switching during the algorithm execution. In this system,

the state is denoted as x B (q, p). The parameters {K,K} ∈ R2 satisfy 0 < K ≤ K. The system

is defined as

ẋ ∈ F(x) B

 p

−κ(x)p − L∇ϕ(q)

 , (6.9a)

κ(x) B κ(x; K,K)

B


K if ⟨L∇ϕ(q), p⟩ > 0,

K if ⟨L∇ϕ(q), p⟩ < 0,[
K,K

]
if ⟨L∇ϕ(q), p⟩ = 0,

(6.9b)

C B {(q, p) ∈ R2n : 1T q = d & 1T p = 0}. (6.9c)

To establish the following global asymptotic stability property of HiHBM, it will be convenient

to write Fd to denote the feasible set defined by (6.5b). That is, we have

Fd B {q ∈ Rn : 1T q = d}, (6.10)

and the set defined in (6.9c) can be written C = Fd × F0.

Theorem 7 Under Assumption (9), the setA B Q∗ × {0} is GAS for the system (6.9).
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Proof: Let L† denote the generalized inverse Laplacian [90], which can be shown to be a

symmetric positive semi-definite matrix of rank n − 1 satisfying

L†1 = 0, LL† = In −
1
n
11T . (6.11)

We aim to apply [27, Thm. 8.2]. Toward this goal, consider

V(q, p) B ϕ (q) − ϕ∗ +
1
2

pTL†p, (6.12)

ϕ∗ B min
w∈Fd
ϕ(w). (6.13)

The map q 7→ ϕ(q)−ϕ∗ is positive definite on C with respect to Q∗ because q ∈ Fd for all points

in C. The map p 7→ pTL†p is positive definite on C with respect to {0}, which follows from

(6.11) and the fact that p ∈ F0 for all points in C. By Assumption (9), V is radially unbounded

with respect toA relative to C. The Lie derivative of V with respect to (6.9a) satisfies

⟨∇ϕ(q), p⟩ −
〈
L∇ϕ(q), L†p

〉
− κ(x)pTL†p

= pT

(
1
n
11T

)
∇ϕ(q) − κ(x)pTL†p = −κ(x)pTL†p ≤ 0,

where the first equality follows from (6.11), and the second equality follows from the fact that

1T p = 0. Stability ofA has now been shown. To show attractivity, first recall that p 7→ pTL†p

is positive definite when restricted to F0, and thus, κ(x)pTL†p can remain at zero for all time

only if p remains at zero. However, if p remains at zero, then (6.9a) implies that both q̇ and

L∇ϕ(q) must remain at zero, which can happen only if q remains in Q∗, due to (6.7). In

summary, κ(x)pTL†p remains at zero only if (q, p) remains in A, and the result then follows

from [91, Thm. 2.11].
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6.4 Online optimization with persistent switches

In this section, we discuss an optimization problem that models a team of drones collec-

tively executing a task. The drones are the assets that persistently switch in this scenario, due to

each drone’s limited battery life, potential physical damages, or other disabling aspects. Con-

sider a team of n drones with the collective task of forming a relay to transmit data from a

source to a destination. The drones form a straight path of length d ∈ R>0 from the first to n-th

drone. The network-wide state vector is denoted by q ∈ Rn, where qi is the relative distance

from drone i to the node that precedes it, while the data source is considered to precede the

first drone. We assume that the drones 1 to n never cross over their neighboring drones, and

their ordering remains the same during their movement. In practice, enforcement of a box con-

straint on each qi is needed, which can be done using the penalty-based approach in [92], but

the details are beyond the scope of this work. The problem can be modeled as a variant of the

problem (6.5), in which the objective switches according to a switching signal σ : R≥0 → Σ:

min
q∈Rn

ϕσ(t)(q) B
n∑

i=1

ϕi,σ(t)(qi)

 (6.14a)

s.t. 1T q = d. (6.14b)

In a similar setting to (6.1), the switching signal satisfies the average dwell-time constraint

parametrized by a small δ.

Assumption 10 For each constant σ(.) ∈ Σ, the function q 7→ ϕσ(q) satisfies the conditions of

Assumption 9 and there exists a unique solution q∗ to (6.14).

Theorem 8 If Assumptions 9 and 10 hold then the Ω-limit set associated with the ideal hybrid
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system Ĥ0 given in (6.4) with z = (q, p) and with

Fσ(z) B

 p

−κ(z)p − L∇ϕσ(q)

 ,

B


K if ⟨L∇ϕσ(q), p⟩ > 0,

K if ⟨L∇ϕσ(q), p⟩ < 0,[
K,K

]
if ⟨L∇ϕσ(q), p⟩ = 0,

(6.15)

C B {(q, p) ∈ R2n : 1T q = d & 1T p = 0}, (6.16)

is semiglobally, practically asymptotically stable in the parameter δ > 0 for the perturbed

system Ĥδ given in (6.3).
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Figure 6.1: Steady State Behavior near Omega-limit set

The proof of Theorem 8 is given in Section 6.6.
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Figure 6.2: Optimization with persistent switches
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Figure 6.3: Optimization with fewer asset switches
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Figure 6.4: Comparison of HBM (6.8) and HiHBM (6.9)

6.5 Numerical Example

In this section, we give numerical examples for the application and the optimization method

discussed in Sections 6.4 and 6.3.4 respectively. In Figure 6.1, we consider a team of 2 drones

in a relay of distance d = 100, and we consider N0 = 1 in order to demonstrate the Ω-limit set.

The blue line represents the position of the first drone (initial condition: distance of 35.5071

units from the data source), and the green line represents the position of a second drone relative

to the first drone in the relay (initial condition: distance of 33.7398 units from the first drone).

These two lines depict the Ω-limit set of the ideal hybrid system given in (6.4). The red lines

are created by allowing for the small dwell-time parameter δ = 0.0338. The switches satisfy the

average dwell-time condition. Considering the switching behavior to be a small disturbance as

in Theorem 8, we observe that the solutions converge to a small neighborhood of theΩ-limit set

of the ideal hybrid system. These observations agree with the results from Theorem 8. Figure
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6.2 shows the decrease in the value of the objective function under the dynamics of the HiHBM

algorithm applied to the problem (6.14) for 20 drones in a relay of length d = 100, with the

network-wide objective being ϕσ(q) = 1
2qT Pσq + bT

σq for σ ∈ {1, 2}. Each Pσ is diagonal with

eigenvalues i.i.d. uniform on [10, 20], and each bσ has its entries i.i.d. uniform on [−10, 10].

The objective at each drone is ϕi,σ(qi) = 1
2 Pσ,iiq2

i + bσ,iqi, where qi is the distance from drone i

to drone i − 1, as described in Sec. 6.4. We allow persistent switches satisfying average dwell

time with δ = 0.06. Figures 6.2 shows that HiHBM converges efficiently even as the objective

switches persistently. Figure 6.3 shows the same example with fewer switches. In Figure

6.4, the gray line displays the gradient descent optimization. The red line demonstrates the

convergence of the HBM optimization algorithm with K = 5 and the green line demonstrates

the same optimization algorithm with K = 1. The black line in Figure 6.4 shows the HiHBM

optimization algorithm with a faster, more efficient convergence. The lower and upper-bound

for HiHBM are 0.01 and 35.5 respectively. In Figure 6.4, we see the efficiency of the HiHBM

algorithm that generates smaller errors in comparison with the simple gradient descent and the

HBM method.

6.6 The proof of theorem 8

6.6.1 A new result on switching between constrained inclusions

Motivated by applications requiring persistent asset switches while optimizing, in this sub-

section we provide results on characterization of the asymptotic behavior that results from

persistent switches among asymptotically stable differential inclusions with distinct equilibria.

The switching signal is considered to satisfy an average dwell-time constraint as mentioned in

the preliminaries 6.3.2.
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Assumptions

We have two assumptions regarding the following family of differential inclusions parametrized

by σ ∈ Σ given as

ż ∈ Fσ(z) z ∈ C. (6.17)

Assumption 11 For each σ ∈ Σ, Fσ is outer semi-continuous, locally bounded relative to C ⊂

dom Fq, and, for each z, Fσ(z) is non-empty and convex for all values of z ∈ C. Furthermore,

the point z∗σ is globally asymptotically stable for (6.17).

Assumption 12 For each σ ∈ Σ, the only solution to

{
z ∈ C, ż ∈ −Fσ(z) (6.18)

with an initial value of z(0) = z∗σ is z(t) = z∗σ for all t ≥ 0.

Assumption 12 extends the Assumption 8 from Chapter 5 (see [76, Assumption 2]) from dif-

ferential equations to differential inclusions.

6.6.2 Extended Main Result

In this section, we adapt the results from Chapter 5 and [76] to the hybrid system Ĥδ.

First, we establish boundedness for solutions to Ĥ0 by claiming the following proposition and

corollary.

Proposition 3 If, for each σ ∈ Σ, the system (6.17) is Lagrange stable, the hybrid system Ĥ0

is Lagrange stable.
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The proof of Proposition 3 follows the boundedness results from [76, Section 4.2] for the ideal

hybrid system Ĥ0. As a consequence of Proposition 3 we have the following corollary.

Corollary 2 If Assumption 11 holds then the hybrid system Ĥ0 is Lagrange stable.

Using the definition of Ω-limit set from [76], the rest of this section is devoted to the charac-

terization of the Ω-limit set of Ĥ0 from a compact set K ⊂ Rn+2 denoted by Ω0(K). We use the

definition of reachable sets from [76] and demonstrate the reachable set from K with R0(K).

Following the setting from [76], we define

S σ :=
⋂
j∈Z≥0

R0

( ( {
z∗σ

}
+

1
j + 1
B

)
× {σ} × [0,N0]

)
(6.19a)

S :=
⋃
σ∈Σ

S σ. (6.19b)

Lemma 8 Under Assumption 11 and as a result of Corollary 2, the set S is compact.

Proposition 4 Under Assumptions 11 and 12, for each compact set K with
(⋃
σ∈Σ

{
z∗σ

}
× {σ}

)
×

[0,N0] in its interior, Ω0(K) = S .

This result follows from the following Lemmas.

Lemma 9 If Assumption 11 holds then, for each compact set K ⊂ Rn+2, Ω0(K) ⊂ S .

Lemma 10 If Assumptions 11 and 12 hold then, for each compact set K ⊂ Rn+2 containing the

set

K0 :=

⋃
σ∈Σ

{
z∗σ

}
× {σ}

 × [0,N0] (6.20)

in its interior, S ⊂ Ω0(K).
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The proof of Lemmas 9 and 10 follows the same lines as the proof for unconstrained differential

equations given in Chapter 5 and [76, Section 4.3]. Since the required changes to the proof are

minimal the details are omitted. We can finally state our extension of the main results according

to [76].

Theorem 9 Under Assumptions 11 and 12, the set S defined in (6.19b) is semi-globally, prac-

tically asymptotically stable in the parameter δ > 0 for the system Ĥδ.

6.6.3 Verifying that the systems in Section III satisfy the assumptions of

Theorem 9

Theorem 10 Under Assumptions 9 and 10, and for σ ∈ Σ, HiHBM with objective function ϕσ

satisfies Assumption 12.

Proof: Under the given assumptions, for each constant σ, let z∗σ B (q∗σ, 0), where q∗σ

is the unique solution of (6.14) be the initial value to ż ∈ −Fσ(z). Let z be also a solution to

(6.18). There exist L ≥ 0 and r > 0 such that |Fσ(z) − Fσ(z∗σ)| ≤ L|z − z∗σ| for all z ∈
{
z∗σ

}
+ rB.

Then, with e := z − z∗σ and noting that e(0) = 0 and ⟨e, ė⟩ ≤ L|e|2, it follows from standard

comparison theorems that e(t) = 0 for all t ≥ 0.

Theorem 11 Under Assumptions 9 and 10, and for σ ∈ Σ, HiHBM with objective function ϕσ

satisfies Assumption 11.

Proof: For each constantσ ∈ Σ, let q∗σ denote the solution to problem (6.14). Then, global

asymptotic stability of z∗σ B (q∗σ, 0) for HiHBM with objective ϕσ follows from Theorem 7 by

setting Q = {q∗σ} × {0} for each σ.

Proof: We now prove Theorem 8. Suppose Assumptions 9 and 10 hold. It follows from

Theorems 10 and 11 that Assumptions 11 and 12 hold. From Theorem 9, it follows that the
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set S in (6.19b) is semi-globally practically asymptotically stable for the system (6.3)-(6.5)

embedded with an average dwell-time automaton as in (6.3) with respect to the parameter δ.

Finally, according to Proposition 4, the set S is the Ω-limit set indicated in Theorem 8.

6.7 Concluding Remarks

We discussed the importance of enabling persistent switches of objective functions during

an online execution of an optimization algorithm. The reason for these persistent switches is

motivated by many engineering applications of convex optimization. We further extend the

existing results of Chapter 5 (see also [76]) on differential equations with multiple equilibria to

differential inclusions with distinct multiple equilibria. We present the asset switches occurring

in an optimization problem consisting of drones in a relay aiming for maximizing the signal

strength. The asset switches are analyzed through the use of average dwell-time parameter

which determines the rate of objective’s switching during the online HiHBM optimization.

Hence, we establish semi-global practical asymptotic stability of a certain set with respect to

this parameter. We characterize this set via Omega-limit sets.
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Soft-reset systems
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Chapter 7

Input-to-state stability of soft-reset

systems with nonlinear data

In this chapter, we investigate the ISS property for a class of reset control systems. The concept

of input-to-state stability (ISS) property was introduced in the 1989 paper [93]. This property

became a bedrock for analyzing nonlinear dynamical systems with inputs, including to estab-

lish closed-loop stability results based on the ISS nonlinear small-gain theorem [94]. Though

most nonlinear control algorithms are based on either continuous-time systems or discrete-time

systems, reset control systems employ hard state resets that lead to a mixture of continuous-

time and discrete-time dynamics. Reset systems reset their states or a subset of their states to

zero based on a determined condition. Typically, in a closed-loop control system, resets occur

in the controller state rather than the plant state. Reset systems have various applications in

control systems. A reset integrator, also referred to as a Clegg integrator (CI) [95], is one of the

earliest examples of a reset system. This integrator circuit has a describing function similar to

the frequency response of a linear integrator but with a different phase lag. Later, in the 1970’s,

Horowitz and co-authors attempted to provide a systematic approach for designing reset con-

trollers in order to add flexibility in linear controller designs and eliminate the limitations of

109



Input-to-state stability of soft-reset systems with nonlinear data Chapter 7

Clegg’s integrator [96],[97]. In the 1990’s, Hollot presented performance and stability analysis

for general linear reset control systems [98],[99],[100]. Later, Beker and co-authors achieved

controller design specifications that demonstrated some advantages of reset controllers over

linear controllers in [101], [102], and [103]. In the last two decades, researchers have begun

to approach reset systems from a hybrid dynamical systems point of view [104]. Due to to the

nature of continuous/discrete interplay, reset systems can be modeled within the framework of

hybrid dynamical systems in the sense of [105], [106], and [4]. Looking at reset controllers

from the hybrid systems point of view has led to a more rigorous analysis on stability and ro-

bustness of reset systems; see, for example, [107] and [108]. In many practical instances it has

been shown that embedding reset-like behavior in an otherwise continuous controller results

in desirable performance; see, for example, [109] and [110]. However, due to the difficulty in

providing rigorous analytical tools that can handle instantaneous changes of system solutions

and a lack of performance analysis in nonlinear settings, reset systems have not been applied

extensively.

Recently, attempts have been made to broaden the applicability of reset systems by intro-

ducing an alternative “soft-reset” implementation, which does not require the framework of

hybrid systems but instead is modeled by a differential inclusion. The idea was introduced in

[111] for linear reset systems without inputs. Follow-up work related to numerical verifica-

tion of stability for these soft-reset systems is given in [112]. Soft resets were studied from a

passivity point of view for nonlinear reset systems with inputs in [113].

In this work, we study the soft-reset implementation of hard-reset systems having nonlinear

data, establishing conditions for ISS of the soft-reset system. We begin in Section 7.2 by

exploiting strong convexity of a Lyapunov function for the hard-reset system, as done in [111].

However, in contrast with [111], which studies global asymptotic stability given linear data,

we study ISS given nonlinear data that satisfy certain local sector growth conditions. Then,

in Section 7.3, under a different sector growth condition, we infer ISS of the soft-reset system
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using global asymptotic stability of the origin for the zero-input system. We do this using two

approaches, one involving strong Lyapunov conditions and the other involving homogeneity of

the system data. In Section 7.4, by assuming a strongly convex weak Lyapunov function for

the zero-input hard-reset system, we establish global exponential stability of the origin of the

zero-input soft-reset system, using homogeneity of both the data and the Lyapunov function.

We then use this result to claim that the conditions for ISS in Section 7.3 are satisfied for the

soft-reset system with nonzero inputs.

Lastly, some numerical examples on asymptotic stability and ISS of a soft-reset system in

a closed loop are provided.

7.1 Notation

The set of (nonnegative) real numbers is denoted by (R≥0) R. The set of (nonnegative)

integers is denoted by (Z≥0) Z. For any two vectors u, v ∈ Rn, we use ⟨u, v⟩ B uT v. For x ∈ Rn,

we use |x| B
√
⟨x, x⟩. We denote by G the set of functions from R≥0 to R≥0 that are continuous,

nondecreasing, and zero at zero. The subset of strictly increasing functions in G is denoted by

K . The subset of unbounded functions inK is denoted byK∞. Moreover, β : R≥0×R≥0 → R≥0

is said to belong to class KL if β(·, s) belongs to class K for each s ≥ 0, and for each fixed

r ≥ 0, the mapping β(r, ·) is decreasing to zero. A set-valued mapping F : Rn ⇒ Rm is said

to be sector bounded near the origin if there exist δ > 0 and L > 0 such that | f | ≤ L|z| for

all z ∈ Rn satisfying |z| ≤ δ and all f ∈ F(z). It is said to be quadratically bounded near the

origin if there exist δ > 0 and L > 0 such that | f | ≤ L|z|2 for all z ∈ Rn satisfying |z| ≤ δ

and all f ∈ F(z). It is said to be homogeneous of degree k ∈ Z≥0 if F(λx) = λkF(x) for all

x ∈ Rn and λ > 0. We use C1 for any function that is continuously differentiable. A C1 function
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V : Rn → R is called strongly convex if there exists a µ > 0 such that, for all x, y ∈ Rn, we have

V(y) ≥ V(x) + ⟨∇V(x), y − x⟩ + µ|x − y|2. (7.1)

Given x ∈ Rn and a nonempty setA ⊂ Rn, the distance of x toA is denoted |x|A and is defined

by |x|A B infy∈A|x − y|. The origin of the system ẋ ∈ F(x) is said to be (Lyapunov) stable

if, for each ε > 0, there exists δ > 0 such that |x(0)| ≤ δ implies |x(t)| ≤ ε for all t ≥ 0. It

is said to be globally attractive if every solution x satisfies limt→∞|x(t)| = 0. It is said to be

globally asymptotically stable (GAS) if it is both stable and globally attractive. It is said to be

globally exponentially stable (GES) if there exist positive constants c0 and c1 such that every

solution x satisfies |x(t)| ≤ c0|x(0)| exp(−c1t) for all t ≥ 0. The system ẋ ∈ F(x, d) is said to be

input-to-state stable (ISS) if, for each locally essentially bounded input d, maximal solutions

are defined on [0,∞) and there exist a class KL function β and a class G function γ such that

every solution x satisfies

|x(t)| ≤ β(|x(0)|, t) + γ(∥d∥∞) ∀t ≥ 0. (7.2)

7.2 ISS for nonlinear soft-reset systems

A hard-reset system with input is a hybrid dynamical system in the modeling framework of

[27] with state x ∈ Rn and an external disturbance d ∈ Rm given as:

x ∈ C := {x ∈ Rn : φ(x) ≤ 0} , ẋ ∈ F̂(x, d), (7.3a)

x ∈ D := {x ∈ Rn : φ(x) ≥ 0} , x+ = g(x). (7.3b)
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The set C indicates where the continuous change of the state is allowed, and the set D indi-

cates where the instantaneous change of the state is allowed. Continuous change is governed

by the input-driven differential inclusion in (7.3a) while instantaneous change is governed by

the difference equation in (7.3b). The mappings that define these entities have the following

properties:

Assumption 13

1. F̂ : Rn × Rm ⇒ Rn is outer semi-continuous (that is, its graph is closed) and locally

bounded with nonempty, convex values.

2. g : D→ Rn is continuous.

In this chapter, we are interested in the ISS property for reset, or reset-inspired, systems with

inputs. If we were to consider ISS for the hard-reset system (7.3), a potential Lyapunov condi-

tion would be the existence of a C1 function V : Rn → R≥0 that admits a continuous, positive

definite function Ŵ : Rn → R≥0, functions α1, α2 ∈ K∞, and a function γ ∈ K∞ such that

α1(|x|) ≤ V(x) ≤ α2(|x|), ∀x ∈ Rn, (7.4)

and

x ∈ C, |x| ≥ γ(|d|), f̂ ∈ F̂(x, d) =⇒
〈
∇V(x), f̂

〉
≤ −Ŵ(x), (7.5a)

x ∈ D =⇒ V(g(x)) ≤ V(x). (7.5b)

However, there is a problem with this condition. In particular, (7.5b) does not rule out the

possibility of solutions that exclusively jump without decreasing the Lyapunov function V .

To avoid having to worry about such solutions, it is of interest to recast the hard-reset system
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(7.3) via its “soft-reset” implemention, first introduced in [111] for linear reset systems without

inputs. This implementation corresponds to the differential inclusion

ẋ ∈ F̂(x, d) + κ(x)
(
SGN (φ(x)) + 1

)
(g(x) − x) =: F(x, d), (7.6)

where κ : Rn → R>0 and the set-valued mapping SGN is defined as

SGN(s) :=


s
|s| s , 0

[−1, 1] s = 0.
(7.7)

Lemma 11 If Assumption 13 holds and κ : Rn → R>0 is continuous then the set-valued map-

ping F defined in (7.6) is outer semicontinous and locally bounded with nonempty, convex

values.

Proof: (Sketch) See [114, Prop. 2.23(a), Prop. 5.51(a),(b)].

As we will show below, the Lyapunov conditions (7.4)-(7.5) guarantee ISS of (7.6) at least

for κ(·) sufficiently large if the following additional conditions hold:

Assumption 14

1. The function V in (7.4)-(7.5) is strongly convex.

2. There exists a M = MT such that φ(x) = xT Mx for all x ∈ Rn.

3. F̂ : Rn × Rm ⇒ Rn sector bounded near the origin, g : D → Rn is sector bounded near

the origin, and Ŵ is quadratically bounded near the origin.

4. Jumps starting in the jump set x ∈ D land in the flow set i.e., g(x) ∈ C for all x ∈ D.
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5. The function γ in (7.5) belongs to K∞ and satisfies

lim sup
s→0+

s
γ(s)

< ∞. (7.8)

6. The condition (7.5a) holds with C replaced by the inflated set Cε :=
{
x ∈ Rn : φ(x) ≤ εxT x

}
for some ε > 0.

The condition (7.8) can always be satisfied by, for example, adding a linear term to γ near

the origin. By assuming Item 4 of Assumption 14, we allow for solutions of the hard-reset

system (7.3) to flow without immediately jumping after a prior jump, but this does not remove

the purely discrete-time solutions to (7.3) that do not decrease the function V . The strong

convexity of V in Item 1 of Assumption 14 enables establishing ISS of the soft-reset system

(7.6), as in the following theorem:

Theorem 12 The conditions (7.4)-(7.5), augmented with the conditions in Assumptions 13

and 14, guarantee that there exists a continuous function κ : Rn → R>0 with sufficiently large

values and a continuous, positive definite function W : Rn → R≥0 such that |x| ≥ γ(|d|) implies

⟨∇V(x), f ⟩ ≤ −W(x) for all f ∈ F(x, d).

Proof: Since the function g is assumed to be continuous and sector bounded near the

origin, there exists a continuous function σ0 : Rn → R≥0 that is positive definite and sector

bounded near the origin satisfying

|M(g(x) + x)| ≤ σ0(x), ∀x ∈ D. (7.9)

Using the inequality from (7.9) and the Cauchy-Schwarz inequality, M = MT , and Item 4 of
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Assumption 14, giving g(x)T Mg(x) ≤ 0 when xT Mx ≥ 0, it follows that

x , 0, xT Mx ≥ 0 =⇒

|g(x) − x)| ≥
−(g(x) − x)T M(g(x) + x)

σ0(x)
=

xT Mx − g(x)T Mg(x)
σ0(z)

≥
xT Mx
σ0(x)

.

(7.10)

By the strong convexity of V , as in (7.1), from Item 1 of Assumption 1, we can write

V(g(x)) ≥ V(x) + ⟨∇V(x), g(x) − x⟩ + µ|x − g(x)|2. (7.11)

From (7.11) and (7.5b), we have:

x ∈ D =⇒ ⟨∇V(x), x − g(x)⟩ ≥ µ|x − g(x)|2. (7.12)

It then follows from the definition of the set D in (7.3b) and the definition of SGN below (7.6)

that (7.12) can be rewritten as

s ∈ SGN(xT Mx) =⇒

⟨∇V(x), (s + 1)(g(x) − x)⟩ ≤ −(s + 1)µ|x − g(x)|2. (7.13)

Combining (7.13), (7.10), and Assumption 1 gives

x , 0, s ∈ SGN(xT Mx) =⇒

⟨∇V(x), (s + 1)(g(x) − x)⟩ ≤ −2µmax{0, xT Mx}
xT Mx
σ0(x)2 .

(7.14)

Due to Item 5 of Assumption 1, there exist ε,m > 0 such that s/γ(s) ≤ m for all s ∈ (0, ε]. We

will show that there exists a continuous function σ : Rn → R≥0 that is quadratically bounded
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near the origin such that, for all x ∈ Rn and |d| ≤ ε, we have

f̂ ∈ F̂(x, d), |x| ≥ γ(|d|) ≥
|d|
m

=⇒
〈
∇V(x), f̂

〉
+ Ŵ(x) ≤ σ(x). (7.15)

Due to Item 6 of Assumption 14, σ(x) may take any nonnegative values for x ∈ Cε. If ε >

σ(M), the latter denoting the maximum singular value of M, then Cε = Rn. Since V is a C1

function, ∇V is sector bounded near the origin, and, due to Assumption 14, Ŵ is quadratically

bounded near the origin. Hence, using the Cauchy-Schwarz inequality on the left-hand side

of the inequality (7.15), and the local sector boundedness of F̂ and ∇V , as well as W being

quadratically bounded near the origin, we have that there exist positive constants L∇V , L f , and

LW such that, for values of x ∈ Rn near the origin,

f̂ ∈ F̂(x, d), |x| ≥ γ(|d|) ≥
|d|
m

=⇒

|∇V(x)|| f̂ | + Ŵ(x) ≤ L∇V |x|LF (|x| + |d|) + LW |x|2

≤ L∇V L f |x|2 + mL∇V L f |x|2 + LW |x|2

≤
(
L∇V L f (1 + m) + LW

)
|x|2.

Let us define σ1(x) :=
(
L∇V L f (1 + m) + LW

)
|x|2. We have now shown that (7.15) holds for

small values of x and d. For large values of x and d, due to the fact that F̂, ∇V , and Ŵ are each

locally bounded, there exist h ∈ G and a constant c > 0 such that

f̂ ∈ F̂(x, d), |x| ≥ γ(|d|) =⇒〈
∇V(x), f̂

〉
+ Ŵ(x) ≤ h(|x| + |d| + c)

≤ h(|x| + γ−1(|x|) + c) C σ2(x). (7.16)

Let ξ : R → R≥0 be a smooth function satisfying ξ(r) = 0 for r ≤ γ(0.5ε) and satisfying
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ξ(r) = 1 for r ≥ γ(ε). Then, letting σ(x) B σ1(x)+ ξ(|x|)σ2(x), and noting that (7.15) holds for

γ−1(|x|) ≤ ε, we have from (7.16) that

f̂ ∈ F̂(x, d), |x| ≥ γ(|d|) =⇒
〈
∇V(x), f̂

〉
+ Ŵ(x) ≤ σ(x). (7.17)

It follows from (7.17) that

x , 0, f̂ ∈ F̂(x, d), |x| ≥ γ(|d|), xT Mx ≥ ε|x|2 =⇒〈
∇V(x), f̂

〉
+ Ŵ(x) ≤ σ(x)

≤
σ0(x)2σ(x)
ε2|x|4

max{0, xT Mx}
xT Mx
σ0(x)2 . (7.18)

Due to σ and σ0 being quadratically bounded and sector bounded near the origin, respectively,

we can establish

lim sup
x→0,x∈D\{0}

σ0(x)2σ(x)
ε2|x|4

< ∞.

Pick the continuous function κ : Rn → R>0 such that

1
2µ

(
κ0(x) +

σ0(x)2σ(x)
ε2|x|4

)
≤ κ(x), ∀x ∈ D\{0}, (7.19)

where κ0 : Rn → R>0 is continuous. Here, we can combine our so far derived bounds from

(7.14), (7.18) with (7.19) and write

x , 0, f̂ ∈ F̂(x, d), |x| ≥ γ(|d|), s ∈ SGN(xT Mx) =⇒〈
∇V(x), f̂ − κ(x)(s + 1)(x − g(x))

〉
≤ −Ŵ(x) − κ0(x) max{0, xT Mx}

xT Mx
σ0(x)2 . (7.20)
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Let us define

W(x) := Ŵ(x) + κ0(x) max{0, xT Mx}
xT Mx
σ0(x)2 .

Due to Item 3 of Assumption 1, the positivity and continuity of κ0(·), and the fact that σ0

is positive definite and sector bounded near the origin, we have that W(·) is continuous and

positive definite. From (7.20), we have

f̂ ∈ F̂(x, d), |x| ≥ γ(|d|), s ∈ SGN(xT Mx) =⇒〈
∇V(x), f̂ − κ(x)(s + 1)(x − g(x))

〉
≤ −W(x)

It follows that the soft-reset system (7.6) is ISS for large enough κ (see [115, Theorem 1]),

particularly for κ satisfying (7.19).

Remark 1 Note that the gain function γ is preserved in the input-to-state stability property

from the hard-reset system (7.3) to the soft-reset system (7.6).

7.3 From Global Asymptotic Stability to ISS

In this section, we demonstrate two methods for inferring ISS from a globally asymptoti-

cally stable (GAS) soft-reset system (7.6) together with the following sector growth condition:

Assumption 15 There exists a positive constant L such that

| f̂ |F̂(x,0) ≤ L|d|, ∀x ∈ Rn, d ∈ Rm, f̂ ∈ F̂(x, d).

The first method takes advantage of the strong Lyapunov conditions for GAS of the origin for

soft-reset system (7.6) with zero disturbance to achieve ISS. The second method establishes

119



Input-to-state stability of soft-reset systems with nonlinear data Chapter 7

ISS by exploiting a homogeneity assumption on the data of (7.6) and a GAS assumption for

the origin of (7.6) with zero disturbance. The latter can be establish under weakened Lyapunov

conditions with a strong convexity assumption, as in Section 7.4.

7.3.1 ISS from Strong Lyapunov Conditions

ISS of (7.6) is established under the following assumptions involving strong Lyapunov

conditions on the system having zero disturbance.

Assumption 16 There exists a continuously differentiable function V : Rn → R≥0 such that

1. the below inequality holds

α1(|x|) ≤ V(x) ≤ α2(|x|), ∀x ∈ Rn, α1, α2 ∈ K∞ (7.21)

2. there exist positive constants c and ĉ such that, recalling the definition of F in (7.6),

⟨∇V(x), f0⟩ ≤ −c|x|2, ∀x ∈ Rn, f0 ∈ F(x, 0) (7.22a)

|∇V(x)| ≤ ĉ|x|, ∀x ∈ Rn, (7.22b)

Theorem 13 If Assumptions 15 and 16 hold then the system (7.6) is ISS.

Proof: Let x ∈ Rn, d ∈ Rm, and f ∈ F(x, d). Let f̂ ∈ F̂(x, d) and h ∈ κ(x)
(
SGN (φ(x)) + 1

)
(g(x)−

x) be such that f = f̂ + h. Let f̂ ∗0 ∈ F̂(x, 0) be such that | f̂ |F̂(x,0) = | f̂ − f̂ ∗0 |. Note that
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f̂ ∗0 + h ∈ F(x, 0). Then, using (7.22), we have

⟨∇V(x), f ⟩ =
〈
∇V(x), f̂ + h

〉
(7.23)

=
〈
∇V(x), f̂ ∗0 + h

〉
+

〈
∇V(x), f̂ − f̂ ∗0

〉
≤ −c|x|2 + |∇V(x)| | f̂ − f̂ ∗0 |

= −c|x|2 + |∇V(x)| | f̂ |F̂(x,0)

≤ −c|x|2 + ĉL|x||d|.

To dominate the term ĉL|x||d| for large |x|, we introduce 0 < θ < 1 in the previous inequality as

follows:

∂V
∂x

f ≤ −c(1 − θ)|x|2 − cθ|x|2 + ĉL|x||d|

≤ −c(1 − θ)|x|2, ∀|x| ≥
ĉL|d|

cθ
.

Hence, the conditions for input-to-state stability from [115, Theorem 1] are satisfied with

ρ(r) = (ĉL/cθ)r, and we conclude that system (7.6) is input-to-state stable with γ(r) :=

α−1
1 ◦ α2 ◦ ρ(r).

7.3.2 ISS from Homogeneity Conditions and GAS

In this section, we emulate the results from the previous section and obtain ISS by using

GAS of the origin and homogeneity for the soft-reset system (7.6) with d ≡ 0.

Assumption 17

1. The origin of the soft-reset system (7.6) is GAS when d ≡ 0.

2. The function g and the mapping x 7→ F̂(x, 0) are homogeneous of degree 1, and the

function κ is homogeneous of degree 0.
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Theorem 14 If Assumptions 13 and 17 hold and there exists a M = MT such that φ(x) = xT Mx

for all x ∈ Rn then the system (7.6) is ISS.

Proof: Due to Item 2 of Assumption 17 and the assumption that φ(x) = xT Mx, we have

that F is homogeneous of degree 1. Indeed,

F(λx, 0) = F̂(λx, 0) + κ(λx)
(
SGN (φ(λx)) + 1

)
(g(λx) − λx),

= λF̂(x, 0) + κ(x)
(
SGN (φ(x)) + 1

)
λ(g(x) − x),

= λ
[
F̂(x, 0) + κ(x)

(
SGN (φ(x)) + 1

)
(g(x) − x)

]
,

= λF(x, 0).

(7.24)

Next, due to Item 1 of Assumption 13 and Lemma 11, x 7→ F(x, 0) is outer semi-continuous

and locally bounded. Therefore F(x, 0) is compact for each x ∈ Rn; see [114, Theorem 5.19]. It

follows from Item 1 of Assumption 17 and [116, Theorem 1.2] that there exists a C∞ function

V and a positive definite, continuous function W : Rn → R≥0 such that (7.21) holds and, for

all x ∈ Rn and f0 ∈ F(x, 0), ⟨∇V(x), f0⟩ ≤ −W(x). Then, from [117, Prop. 8], there exists a

C1 function V : Rn → R≥0 that is homogeneous of degree 2 and a positive definite, continuous

function W : Rn → R≥0 such that

α1(|x|) ≤ V(x) ≤ α2(|x|), ∀x ∈ Rn, α1, α2 ∈ K∞, (7.25a)〈
∇V(x), f0

〉
≤ −W(x), ∀x ∈ Rn, f0 ∈ F(x, 0). (7.25b)

Note that V can be constructed from V using [117, Eq. 36] and [117, Eq. 37]. We will show

that Assumption 16 holds with V replaced by V and thereby invoke Theorem 13 to conclude

that (7.6) is ISS.

Due to the fact that V is homogeneous of degree 2, we have that, for all x ∈ Rn such that
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x , 0, with w B x/|x|,

V(x) = V(|x|w) = |x|2V(w) ≥ |x|2 min
v: |v|=1

V(v). (7.26)

Letting a1 B minv: |v|=1 V(v), we have from (7.25a) that a1 > 0. It follows from (7.26) that

V(x) ≥ a1|x|2, ∀x ∈ Rn. (7.27)

Due to the fact that V is homogeneous of degree 2, the Euler homogeneous function theorem

ensures that ∇V is homogeneous of degree 1. Then, due to the homogeneity of degree 1 of ∇V

and x 7→ F(x, 0), along with the homogeneity of degree 2 of V , it can be shown that, for all

x ∈ Rn and f0 ∈ F(x, 0),

c1 B sup
v: |v|=1

⟨∇V(v), f0⟩

V(v)
,〈

∇V(x), f0

〉
≤ c1V(x). (7.28)

From (7.25), we have that c1 must be negative. Hence, with λ B −c1 > 0, we have

〈
∇V(x), f0

〉
≤ −λV(x), ∀x ∈ Rn, f0 ∈ F(x, 0). (7.29)

Combining (7.29) with (7.27), we have that V satisfies (7.22a) with c B a1λ. Due to the

fact that ∇V is homogeneous of degree 1, V satisfies (7.22b) with ĉ B maxv: |v|=1

∣∣∣∇V(v)
∣∣∣. We

conclude that Assumption 16 holds with V replaced by V , and it follows from Theorem 13 that

(7.6) is ISS.
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7.4 GAS for homogeneous soft-reset systems

The goal of this section is to give weak Lyapunov conditions on the hard-reset system with

d ≡ 0 that guarantee the assumptions of the previous sections 7.3.1 and 7.3.2 on the soft-reset

system with d ≡ 0. We consider the continuous-time implementation (7.6) of the hybrid, reset

control system (7.3) with d ≡ 0 and show that the origin of the soft implementation is globally

exponentially stable (GES) if the following assumption holds.

Assumption 18

1. The function g and the mapping x 7→ F̂(x, 0) are homogeneous of degree 1, and the

function κ is homogeneous of degree 0.

2. Let M = MT . There exist ε > 0 and a C1 and strongly convex, homogeneous of degree

2, positive definite function V : Rn → R>0 such that, with the definition Cε := {x ∈ Rn :

xT Mx ≤ εxT x}, the following inequalities hold:

〈
∇V(x), f̂0

〉
≤ 0, ∀x ∈ Cε, f̂0 ∈ F̂(x, 0), (7.30a)

V(g(x)) ≤ V(x), ∀x ∈ D. (7.30b)

3. Jumps starting in the jump set x ∈ D land in the flow set i.e., g(x) ∈ C for all x ∈ D.

4. There is no solution to (7.3a) in C with an unbounded time domain that keeps the function

V equal to a nonzero constant.

According to Assumption 18, we have stability of the origin for system (7.3) with d ≡ 0.

However, these assumptions are not strong enough to establish GES of the origin. It is possible

for hard-reset systems to have discrete-time solutions which do not converge to zero. This

can be addressed by considering the corresponding continuous-time soft-reset implementation
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(7.6) of the hard-reset system (7.3), for which GES of the origin can be obtained with d ≡ 0 as

in the following result.

Theorem 15 Under Assumptions 13 and Assumption 18, the origin of (7.6) with d ≡ 0 is

globally exponentially stable for κ : Rn → R>0 taking sufficiently large values.

Proof: For the origin of (7.6) with d ≡ 0, consider the Lyapunov candidate V , which is

positive definite and radially unbounded due to Item 2 of Assumption 18. First, we bound the

inner product ⟨∇V(x),
(
SGN(xT Mx) + 1

)
(g(x) − x)⟩. By using (7.3b), strong convexity of V as

in (7.1), and (7.30b), we have

xT Mx ≥ 0 =⇒ ⟨∇V(x), (g(x) − x)⟩ ≤ −µ|g(x) − x|2. (7.31)

We can rewrite (7.31) as follows:

s ∈ SGN(xT Mx) =⇒

⟨∇V(x), (s + 1)(g(x) − x)⟩ ≤ −(s + 1)µ|g(x) − x|2. (7.32)

Let δ0 > 0 be such that, for all x ∈ Rn, we have |M(g(x) + x)|2 ≤ δ0|x|2, and then, using the

Cauchy-Schwarz inequality, we have

x , 0, xT Mx ≥ 0 =⇒ |g(x) − x)| ≥
−(g(x) − x)T M(g(x) + x)

δ0|x|

=
xT Mx − g(x)T Mg(x)

δ0|x|

≥
xT Mx
δ0|x|

. (7.33)
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Combining (7.32) and (7.33) results in

x , 0, s ∈ SGN(xT Mx) =⇒

⟨∇V(x), (s + 1)(g(x) − x)⟩ ≤ −2µmax{0, xT Mx}
xT Mx
δ2

0|x|
2
. (7.34)

The next step is to bound
〈
∇V(x), f̂0

〉
for f̂0 ∈ F̂(x, 0) and for all x ∈ Rn. Due to Assumption

18, this quantity is negative when the inequality xT Mx ≤ ε|x|22 holds. Using homogeneity of

degree 2 for V and thus, homogeneity of degree 1 of ∇V due to Euler’s homogeneous function

theorem, along with homogeneity of degree 1 of x 7→ F̂(x, 0), it follows for xT Mx ≥ ε|x|22 that

there exists a Γ > 0 such that, for all f̂0 ∈ F̂(x, 0),

xT Mx ≥ ε|x|22 > 0 =⇒
〈
∇V(x), f̂0

〉
≤ Γ|x|2

≤
Γ

ε
xT Mx

≤
Γδ2

0

ε2 max{0, xT Mx}
xT Mx
δ2

0|x|
2
. (7.35)

It follows from (7.34), (7.35), and Assumption 18 that, for each constant v > 0, there exists κ

taking sufficiently large values such that, for f̂0 ∈ F̂(x, 0),

s ∈ SGN(xT Mx) =⇒〈
∇V(x), f̂0 − κ(x)(s + 1)(x − g(x)

〉
≤ −v max{0, xT Mx}

xT Mx
|x|2

≤ 0.

Due to the invariance principle for differential inclusion [118, Theorem 11] and properties of

F, the origin is globally asymptotically stable if and only if there is no c > 0 and solution x

such that V(x(t)) = c for all t ≥ 0. Let us assume that V(x(t)) is equal to a nonzero constant.
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Let f̂0(t) ∈ F̂(x(t), 0) and s(t) ∈ SGN
(
x(t)T Mx(t)

)
satisfy, for almost all t ≥ 0,

ẋ(t) = f̂0(t) − κ(x(t))(s(t) + 1)(x(t) − g(x(t)). (7.36)

Then we have

〈
∇V(x(t)), f̂0(t) − κ(x(t))(s(t) + 1)(x(t) − g(x(t))

〉
= 0.

According to (7.35), such solutions require xT (t)Mx(t) ≤ 0 for all t ≥ 0. As a result, it follows

from (7.30a), (7.32), and the positivity of κ that, for almost all t ≥ 0,

〈
∇V(x(t)), f̂0(t)

〉
= 0,

⟨∇V(x(t)),−κ(x(t))(s(t) + 1)(g(x(t) − x(t))⟩ = 0.

With (7.32) and the positivity of κ(·) and µ, it follows that for almost all t ≥ 0

(s(t) + 1)|g(x(t)) − x(t)| = 0.

It follows from (7.36) and the definition of f̂ (t) that x(·) is also a solution of (7.3a). Since

we have assumed in Item 4 of Assumption 18 that solutions of (7.3a) do not keep V equal to

a nonzero constant, it follows that no solution keeps V equal to a nonzero constant and thus

we have estalished GAS of the origin of ẋ ∈ F(x, 0). That is, GAS of the origin of (7.6)

with d ≡ 0 can be concluded. With this conclusion, along with Assumption 13, it can be

shown using [116, Theorem 1.2] and [117, Prop. 8], as done in the proof of Theorem 14, that

there exists a C1 function V that is homogeneous of degree 2 and a constant λ > 0 such that

(7.29) holds. Furthermore, due to the fact that V is homogeneous of degree 2, it can be shown

using steps similar to those in the proof of Theorem 14 that, with a1 B minv: |v|=1 V(v) and
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a2 B maxv: |v|=1 V(v), we have a1|x|2 ≤ V(x) ≤ a2|x|2 for all x ∈ Rn. It follows that the origin of

(7.6) with d ≡ 0 is GES.

The following corollary establishes that the soft-reset system (7.6) is ISS by combining Theo-

rems 14 and 15.

Corollary 3 If Assumptions 15 and 18 hold then the system (7.6) is ISS for κ : Rn → R>0

taking sufficiently large values.

Proof: Given that Assumption 18 holds, Theorem 15 ensures that Item 1 of Assumption

17 holds for κ(·) taking sufficiently large values. The remaining items of Assumption 17 follow

immediately from the assumptions stated here. Hence, Theorem 14 can be invoked to conclude

ISS of (7.6).

In the next section, we present a numerical example.

7.5 Numerical Example

7.5.1 GAS example

Consider the soft-reset system (7.6) with state x comprising a plant state xp ∈ R and a

compensator state xc ∈ R, i.e., x B (xp, xc)T ∈ R2, with the system data given by

F̂(x, 0) =

 xc

−K SGN(xc)|x| − xp

 , (7.38a)

g(x) =

 xp

0

 , φ(x) = xT

 0 1

1 0

 x, (7.38b)

for some K ∈ R>0. We choose κ(·) in (7.6) to be constant, namely with κ(x) = κ ∈ R≥0 for all

x ∈ R2. Consequently, κ(·) is homogeneous of degree 0, and, noting that x 7→ F̂(x, 0) and g
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in (7.38) are homogeneous of degree 1, we have that Item 1 of Assumption 18 holds. For all

x ∈ R2, consider V(x) B xT x, which is a C1, strongly convex, and positive definite function

that is homogeneous of degree 2 and satisfies

〈
∇V(x), f̂0

〉
= −2K|x|xc ≤ 0, ∀x ∈ R2, f̂0 ∈ F̂(x, 0), (7.39a)

V(g(x)) = xT
p xp ≤ V(x), ∀x ∈ R2. (7.39b)

Hence, V satisfies Item 2 of Assumption 18 with M =

 0 1

1 0

 and Cε = Rn. For all x ∈ R2,

g(x)T Mg(x) = 0, and thus Item 3 of Assumption 18 holds. Supposing that a solution x of

system (7.3a) keeps V(x(t)) at a nonzero constant for all t ≥ 0, it follows from (7.39a) that

xc ≡ 0 and, therefore, that ẋc ≡ 0. It then follows from (7.38a) that solutions x of system (7.3a)

satisfy ẋp = xc ≡ 0 and ẋc = −xp ≡ 0. It follows that x ≡ 0 and V(x) = xT x ≡ 0, contradicting

the premise that V(x) is a nonzero constant. We have thus shown by contradiction that Item 4

of Assumption 18 holds. It is now verified that Assumption 18 holds, and Theorem 15 may be

applied to conclude GES of the origin of (7.6) with d ≡ 0 and with the system data given by

(7.38).

Setting K = 0.5, Figures 7.1 and 7.2 respectively show the evolution of the states xp and

xc, highlighting the effect of setting κ equal to various constant values. Figure 7.3 shows the

evolution of V(x) = xT x.

7.5.2 ISS example

Figures 7.4-7.6 show the same example from Section 7.5.1 but with

F̂(x, d) =

 xc + d

−K SGN(xc)|x| − xp

 (7.40)
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Figure 7.1: The value of xp(t) as a function of t using nonlinear homogeneous system data
and initializing the system state at (x◦p, 0)T with x◦p being randomly selected.

Figure 7.2: The value of xc(t) as a function of t using nonlinear homogeneous system data
and initializing the system state at (x◦p, 0)T with x◦p being randomly selected.

and a disturbance of d(t) = 0.1 sin(t) for all t ≥ 0.

Setting d ≡ 0 makes (7.40) equivalent to (7.38a), and thus, Assumption 18 holds for the
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Figure 7.3: The value of V(x(t)) as a function of t using nonlinear homogeneous system data
and initializing the system state at (x◦p, 0)T with x◦p being randomly selected.

same reasons given in Section 7.5.1. With F given by (7.6), (7.38b), and (7.40), for any x ∈ R2,

d ∈ R, and f̂ ∈ F̂(x, d), letting f̂ ∗0 be such that | f̂ |F̂(x,0) = | f̂ − f̂ ∗0 |, we have that f̂ − f̂ ∗0 = d, and

thus, Assumption 15 holds with L = 1. We conclude that the conditions of Corollary 3 hold

for the soft-reset system (7.6) with system data given by (7.38b) and (7.40), ensuring that, for

sufficiently large κ(·), (7.6) is ISS with this system data. Figures 7.4-7.6 show results for the

various constant values of κ considered in Section 7.5.1.

7.6 Concluding Remarks

Conditions were provided for input-to-state stability of nonlinear soft-reset systems with

inputs. Assuming strong convexity of a Lyapunov function for the hard-reset system, suffi-

cient conditions are provided for input-to-state stability of the corresponding soft-reset system.

Moreover, two methods are described for obtaining input-to-state stability for the soft-reset sys-

tem via asymptotic stability for the origin of the zero-input soft-reset system. Lastly, exponen-
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Figure 7.4: The value of xp(t) as a function of t using nonlinear homogeneous system data, a
sinusoidal input disturbance in the plant, and initializing the system state at (x◦p, 0)T with x◦p
being randomly selected.

Figure 7.5: The value of xc(t) as a function of t using nonlinear homogeneous system data, a
sinusoidal input disturbance in the plant, and initializing the system state at (x◦p, 0)T with x◦p
being randomly selected.
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Figure 7.6: The value of V(x(t)) as a function of t using nonlinear homogeneous system data,
a sinusoidal input disturbance in the plant, and initializing the system state at (x◦p, 0)T with x◦p
being randomly selected.

tial stability is established for a soft-reset system using strong convexity of a weak Lyapunov

function for the hard-reset system, along with homogeneity of the data and the Lyapunov func-

tion. Numerical examples are given, illustrating global asymptotic stability and input-to-state

stability of a soft-reset control system in a closed loop.
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