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MOTIVATION Analyzing bulk tumor specimens often misses crucial molecular details due to a mix of cell
types within the tumor microenvironment (TME). While recent efforts have focused on the tumor immune
microenvironment, less attention has been paid to the roles of other TME cells in progression and patient
outcomes. Our approach leverages the growing collection of single-cell RNA-seq data to identify unique
cell-type signatures across various datasets. Employing deconvolution, we analyze these signatures in
the TCGA collection both on their own and together in a tumor cell-type map, revealing significant, previ-
ously unrecognized correlations with patient outcomes.
SUMMARY
The cellular components of tumors and their microenvironment play pivotal roles in tumor progression, pa-
tient survival, and the response to cancer treatments. Unveiling a comprehensive cellular profile within bulk
tumors via single-cell RNA sequencing (scRNA-seq) data is crucial, as it unveils intrinsic tumor cellular traits
that elude identification through conventional cancer subtyping methods. Our contribution, scBeacon, is a
tool that derives cell-type signatures by integrating and clustering multiple scRNA-seq datasets to extract
signatures for deconvolving unrelated tumor datasets on bulk samples. Through the employment of scBea-
con on the The Cancer Genome Atlas (TCGA) cohort, we find cellular and molecular attributes within specific
tumor categories, many with patient outcome relevance. We developed a tumor cell-type map to visually de-
pict the relationships among TCGA samples based on the cell-type inferences.
INTRODUCTION

Cancer is a disease involving the interplay of many cell types.1

Tumor cells are surrounded by a microenvironment of various

types of cells such as stromal and blood cells. Characterizing

the composition and spatial arrangement of human cell types

embedded in the tumor microenvironment is a relatively new di-

rection in cancer biology research. Most notably, immune infil-

tration has been a focus in recent years for the implications of

emerging and promising immunotherapies that have been

shown to depend on the presence of certain immune cell types

and states.2 However, studies have shown that additional cell

types and molecular characters beyond immune cells play an

important role in tumor character and response to treatment

and patient outcomes.3–5 Therefore, it is important to detect

and quantify a full profile of cell types to improve our understand-

ing and treatment of cancer.

Characterizing the tumor cell types has been largely limited by

the low number of known cell-type signatures.Most studies have
Cell Reports Methods 4, 100799, J
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focused nearly exclusively on immune-associated cell types.

Leveraging cell-type signatures derived from newly available sin-

gle-cell RNA sequencing (scRNA-seq) presents an opportunity

to broaden the detection of cell types. scRNA-seq6 has trans-

formed biological research by making it possible to determine

gene expression separately for each cell in a biological sample.

The technology provides a higher definition of cell types and cell

states and has already expanded the catalog of known cell

types.7 Advances in sequencing technology have facilitated an

explosion of the availability of scRNA-seq datasets supported

by databases such as the Single Cell Expression Atlas (SCEA)8

and the Human Cell Atlas.9 Those large databases are great re-

sources of cell-type transcriptomes.

Over the years, there have been several bioinformatics tools

developed to deconvolute bulk tumors with cell-type-specific

gene expression profiles derived from scRNA-seq data.

CIBERSORT(X) is a widely used cell-type deconvolution tool

based on support vector regression. BSeq-SC applied

scRNA-seq-derived cell-type signatures to deconvolute bulk
une 17, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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tissues using CIBERSORT and discovered subpopulations and

heterogeneity within pancreatic cell types.10 MuSiC deconvo-

lutes bulk RNA-seq samples using cell-type references gener-

ated from hierarchical clustering on multi-subject scRNA-seq

data using weighted non-negative least squares (NNLS)11;

also, DeconvSeq utilizes a generalized linear model for cell-

type ratio estimation,12 Bisque uses NNLS regression,13 and

BayesPrism14 and BLADE15 implement a probabilistic model

(multinomial) to deconvolute bulk RNA-seq data using an

scRNA-seq-derived gene expression profile. These methods

rely on a cell-type signature matrix from only one scRNA-seq

dataset that has been pre-annotated, which limits the number

of datasets used for bulk tissue deconvolution. With the

increasing number of scRNA-seq datasets available and large

scRNA-seq consortiums being built, strictly supervised decon-

volution approaches could limit the opportunity to discover new

cell types and a comprehensive characterization of bulk tissues.

Few computational resources exist that automatically extract

cell-type information from scRNA-seq repositories in an unsu-

pervised manner. SCDC16 leverages multiple scRNA-seq refer-

ence datasets by integrating the deconvolution results with opti-

mizedweights. UniCell17 is one such recent approach that uses a

deep learning model trained on hundreds of fully annotated

scRNA-seq datasets representing 840 cell types for comprehen-

sive cell-type deconvolution. However, deep learning ap-

proaches can lack robustness and lead to ‘‘black box’’ solutions

that are difficult to interpret and share. In contrast, Ecotyper18

used linear gene expression vectors extracted from scRNA-

seq clusters that extend the original LM22 signatures into 64 im-

mune system-related cell types used to deconvolute The Cancer

Genome Atlas (TCGA) samples. Similarly, TIMEx19 extracted 37

immune-related cell-type signatures from a pan-cancer scRNA-

seq data compendium and performed enrichment-based de-

convolution on TCGA bulk tumors.

We introduce scBeacon, which infers cell types from the inte-

gration and clustering of multiple scRNA-seq datasets to provide

transparent cluster ‘‘signatures’’ for downstream deconvolution

of bulk RNA-seq specimens. It extends the work of TIMEx and

Ecotyper by including additional single-cell datasets beyond

cancer samples and incorporates additional cell types beyond

malignant and immune system types. We introduce a non-para-

metric signature comparison metric that can detect related clus-

ters across diverse datasets and merge them into a single-cell-

type signature. In addition, our pipeline includes a step that tests

each signature for an association with patient outcomes.

We extracted 217 cell-type signatures from SCEA, 602,359

single cells in total, and we used them to quantify cell types in

bulk tumor specimens from the TCGA RNA-seq compendium.

We validated the use of the signatures for deconvolution using

in silico mixtures as well as several positive controls. We find

dozens of expected and unexpected associations between cell

types and tumor types in the TCGA collection, with implications

for synergistic and antagonist interactions between cell types

based on the co-occurrence or mutual exclusivity of cell-type

groups. Some cell-type signatures were found to be significantly

associated with patient outcomes in several tested tumor types,

many of which are independent of published cancer subtypes

and thus provide an independent measure of disease state.
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Toprovideacomprehensiveviewof the relationshipof all TCGA

samples to each other based on their inferred microenvironment

contents, we developed an interactive tumor cell-type (TCT)

map that uses the inferred exemplar estimates to arrange the

samples in one layout. The two-dimensional projection of TCGA

samples on the tumormap20 revealed several unexpected cluster

associations, several with implications about patient survival.

RESULTS

Validation of reciprocal top-K enrichment metric for
deconvolution
The scBeacon workflow relies on exemplar signatures, i.e., gene

expression profiles aggregated across many single cells similar

enough to be clustered together, constructed frommultiple clus-

ters, from possibly multiple datasets, derived from several

scRNA-seq platforms (Figure 1A; see STAR Methods). To help

mitigate possible batch effects, we used signatures in which

each cluster’s expression profile was rank-transformed to form

a rank centroid before it was compared to other clusters. We

created a reciprocal top-K enrichment (RTKE) metric to detect

if the top-expressing genes in one cluster are also top-ranked

in another, linking related clusters for a second clustering step

to identify exemplars (see STAR Methods).

While rank transformation harmonizes data, it might weaken

cell-type signals.We compared rank- and count-based centroids

for deconvolution. Peripheral blood mononuclear cell (PBMC)

data from multiple platforms showed that rank centroids pre-

served cell-type information better than count centroids (Figures

1B–1D). Except for two cases associated with smart-seq2 data

(Figure 1D), ranking and RTKE enhanced the distinction among

major cell types, useful for cross-platform identification.

Next, wemeasured the effectiveness of rank centroids for their

use as exemplar signatures for deconvolving in silico mixtures.

To this end, we created in silico mixtures from single-cell as

well as bulk RNA-seq data that simulate immune infiltration

into tumor tissue. We created in silico mixtures by combining

several PBMC-related expression signatures together at known

mixing proportions. The expression signatures were generated

by taking the average of single-cell transcriptomes sampled

from pre-established clusters either from the PBMC dataset or

a published scRNA-seqmelanoma dataset (see STARMethods).

Next, we measured the accuracy of CIBERSORT deconvolution

for identifying and quantifying the PBMC cell types at the pre-

scribed mixing proportions.

We compared the use of count-based signatures to rank-

based signatures for deconvolution and found that rank-based

signatures provided slightly more accurate estimates of cell

proportions. We used both the Pearson correlation and the

root-mean-square error (RMSE) tomeasure theconcordancebe-

tween theknowns topredicted levels. For thecount-basedsigna-

tures,weusedan immunecell-type signaturematrix derived from

an scRNA-seq PBMC dataset with transcripts per million reads

count-based expression values to deconvolute a synthetic bulk

melanoma single-cell dataset containing infiltrating immune cells

(Figure 2A). For the rank-based signatures, we formed exemplar

rank centroids by averaging the rank centroids of clusters found

in multiple PBMC datasets (Figure 2B). While there is not a



Figure 1. scBeacon workflow and validation

(A) scBeacon workflow. Individual scRNA-seq datasets are clustered using Louvain clustering. Cluster centroids are ranked and then compared to each other

using a reciprocal top-K enrichment (RTKE) metric. High-scoring cluster pairs that exceed an empirically determined threshold are retained as a graph for further

clustering to identify exemplars from associated groups of meta-clusters. Exemplar centroids are computed by averaging the cluster-ranked centroids and

recorded as exemplar signatures, assumed to be proxies of cell-type signatures for downstream analysis (see STAR Methods).

(B‒D) tSNSE plots of PBMC scRNA-seq centroids using different transformations of the count-based data or similarity calculations between centroids. Left panel

in each plot shows cells colored by single-cell sequencing technology platform (10x version 1 or 2 chemistries, green; 10x version 3 chemistry, aqua; 10x

Chromium version 3 chemistry, light green; 10x Chromium version 2A chemistry, red; 10x Chromium version 2B chemistry, orange; CEL-Seq2, light blue; Drop-

seq,mediumblue; inDrops, dark blue; Seq-Well, purple; Smart-seq2, pink). Right panels in each plot show cells colored by cell type (T cells, light blue; B cells, red;

monocytes, green). (B) Centroids represent vectors of count-based data (transcripts permillion reads, TPMs). (C) Same as (B) but centroidswere rank normalized.

(D) Same as (C) but using the matrix of RTKE similarity metrics as input to tSNE.
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consistent trend over all three immune cell types, the deconvolu-

tion estimates using the scBeacon-derived signature matrix are

generally closer to the mixed-in proportion resulting in a lower

RMSE. For example, CIBERSORT tends to overestimate T cell

populations when count-based signatures are used compared

to rank-based ones. Rank- and count-based centroids provide

comparable estimates for all cell types, with higher correlations

in T and B cells and slightly lower correlation for monocytes.

In another evaluation using scRNA-seq for synthetic bulk head

and neck tumors, rank-based signatures more accurately esti-

mated B cells and monocytes than count-based ones (Figures

S1A and S1B). Rank-based centroids frommultiple PBMC data-

sets performed comparably to LM22 signatures, originally pub-

lished with CIBERSORT, for deconvoluting synthetic PBMC

mixtures (Figure S1). Count-based signatures overestimated
T cells, while rank-based ones improved RMSE, but otherwise,

the results were comparable (Figures S1C‒S1F). Systematic

biases were observed, such as overestimating monocytes and

underestimating B cells in the melanoma sample, likely a result

of some mismatch in PBMC vs. infiltrating immune transcrip-

tional signatures. Overall, rank-based centroids for deconvolu-

tion provided lower RMSEs and high correlations between

predicted and known cell-type proportions, illustrating their

effectiveness (Figures S1G and S1H).

scBeacon clusters and signatures from EBI’s Single-
Cell Expression Atlas: Building a comprehensive single-
cell-derived cell-type signature library
The European Bioinformatics Institute (EBI)’s Single Cell Expres-

sion Atlas (SCEA) is a public scRNA-seq data repository that
Cell Reports Methods 4, 100799, June 17, 2024 3



Figure 2. Validation of scBeacon workflow

in synthetic mixtures of an scRNA-seq mel-

anoma dataset

(A) Correlation between the truemixture proportion

of in silicomixtures from an scRNA-seq melanoma

dataset to the deconvolution estimates of using a

count-based signature matrix from a single PBMC

scRNA-seq dataset (10X, v2). Red line marks the

correct estimate (x = y). Cell-type ratios are

normalized to sum up to 1.

(B) Same as (A) but using a rank-normalized

signature matrix from the combination of multiple

PBMC scRNA-seq datasets: all PBMC datasets

from Figures 1B–1D, except Smart-seq2: 10X

chemistry v1–v3, CEL-Seq2, Drop-Seq, inDrops,

and Seq-Well. (RMSE = root-mean-square error,

corr = Pearson correlation).
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hosts datasets from published studies for six different species.8

For this analysis, we downloaded 62 homo sapiens scRNA-seq

datasets available in February 2020 (Table S1). The datasets

cover a wide range of healthy and diseased tissues, consisting

of numerous cell types in the human body, and they were pro-

cessed with different single-cell sequencing technologies.

Clusters were extracted for each SCEA dataset, producing a

total of 585 clusters. Centroids and rank centroids were calcu-

lated for each of these and used as the clusters’ signatures.

Clusters were linked if their RTKE metric was above 77.39 (top

10% percentile) and then clustered into meta-clusters using

the Louvain algorithm with default Seurat settings. The RTKE

threshold and Louvain method were found to obtain the highest

Silhouette scores out of a series of thresholds and clustering

methods (K-means, hierarchical, and iGraph’s method, see

STAR Methods, Figure S2). Louvain clustering produced 217

meta-clusters. Exemplar signatures were created from the

average rank signatures of clusters assigned to a meta-cluster,

using the top 20% of differentially ranked genes (see STAR

Methods; Figure 3A). The 217 meta-clusters were annotated us-

ing author’s published annotations and an enrichment test (see

STAR Methods and Table S2).

We found several examples inwhichmultiple datasets contrib-

uted to the definitions of a single exemplar. Overall, 16 (7.4%) of

the exemplars were implicated by two or more datasets (see Fig-

ure S3). Even so, the map contains many singleton exemplars—

141 (65.0%), derived from a single cluster and dataset. Altering

meta-clustering parameters would result in different clusters

and singletons. However, we found that the chosen setting pro-

vided distinct singletons in that even those that were ‘‘close’’ to

one another gave deconvolution results across the TCGA that

were just as distinct from each other as those that were ‘‘far’’

apart, justifying maintaining them as separate signatures for
4 Cell Reports Methods 4, 100799, June 17, 2024
our use (Figures S4A‒S4C). We also

note that a few centroids combine clus-

ters from different datasets that probed

distinctly different human tissues. These

centroids could represent a common cell

type found in many tissues, as is the

case with immune cell types.
We queried the scBeacon collection of exemplars to deter-

mine the extent to which they reflected distinct cell types. First,

we investigated the distribution of cell types expected to be high-

ly similar based on the expression of a particular known tissue-

specific marker gene. To that end, we queried the map for all

centroids with high expression of the insulin gene to identify

pancreatic-associated clusters. Meta-cluster X85 contains

several such pancreatic clusters (Figure 3B) that were derived

from three different datasets that all assayed different states of

pancreatic tissue (Figure 3C). We also queried three immune

cells using marker genes, CD3E for T cells, MS4A1 for B cells,

and CD14 for monocyte (Figures S4D‒S4F).

Deconvolution of TCGA samples using scBeacon
signatures
Themeta-clusters from the humanSCEAwere further processed

with the scBeacon workflow (Figure 1; see STAR Methods) to

extract 3,988 genes that were differentially expressed across

the meta-clusters and included in the signature matrix for use

in deconvolution (Figure S5). We used CIBERSORT to deconvo-

lute the bulk RNA-seq samples available for 33 different tumor

types from TCGA21 using the signatures matrix derived from

the 217 cell-type exemplars (Figures 3D and 3E). As expected,

many cell-type signatures are undetected within most tumor

samples, reflecting a degree of specificity to the signatures

and their use in deconvolution. Assuming that a signature was

‘‘detected’’ in a sample if it had a CIBERSORT score of 0.01 or

greater (i.e., it was estimated to account for 1%of the expression

among all detected signatures for a particular sample after 0–1

normalization), then 83.4% of the signatures (n = 181) were de-

tected in at least one sample but less than 50% of all samples.

On the other hand, a small number of signatures (n = 2) were de-

tected in over 90% of the samples. Finally, 10 signatures were



(legend on next page)
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detected at levels of 1% or less in any of the samples. These

lowly-estimated signatures could represent cell types absent

from the current TCGA collection among several possibilities.

Still, the vast majority of the SCEA signatures (207, 95%) were

detectable in at least some of the samples.

Tumor types that arise in similar tissues of the body had similar

deconvolution profiles (Figure 3D). For example, the estimated

cell-type profile for COAD (colon adenocarcinoma) is most similar

to the estimated cell-type profile of READ (rectum adenocarci-

noma). Likewise, LIHC (liver hepatocellular carcinoma) and

CHOL (cholangiocarcinoma) clustered together, as well as GBM

(glioblastoma multiforme) and LGG (brain lower grade glioma),

and a group of squamous cell carcinomas (HNSC = head and

neck squamous cell carcinoma, LUSC = lung squamous cell car-

cinoma, BLCA = bladder urothelial carcinoma, and CESC = cervi-

cal squamouscell carcinomaand endocervical adenocarcinoma).

These results suggest that tumors arising from related tissues in

the body share a similar microenvironment makeup compared

to tumors arising from different tissues. Indeed, when we repeat

the cell-type analysis using deconvolution on normal tissue (using

the TCGA-matched normal samples), we again find that tissues

cluster together based on their cell-type profiles (Figure 3E).

To confirm this result and to validate the scBeacon procedure

for identifying exemplars using a positive control test case, we

repeated the entire analysis using normal samples from the

GTEx consortium from which exemplars were derived from the

published single-nucleus RNA sequencing (snRNA-seq) data-

set,22 and deconvolution was performed on samples from the

bulk GTEx RNA-seq dataset.23 We found that similar tissues of

related organ systems clustered together based on their GTEx

exemplar deconvolution scores and that the results correlated

with the results obtained with the SCEA-derived 217 signatures

on the sameGTEx samples (Figures S6A and S6B). For example,

brain cerebellum clustered with another cerebellum, colon with

small intestine with stomach, several arteries clustered together,

and so on (Figures S6C and S6D). Expected cell types were

again found with high deconvolution scores in GTEx tissues

(Figures S6E‒S6H). Slightly more than half of the signatures in

GTEx (19 out of 35; 54%) had high correlations (Pearson > 0.5)

with at least one signature in scBeacon’s SCEA-derived set.

Thus, we estimate another 16 signatures from GTEx could

have been included to the collection of the EBI 217, consisting

of a marginal increase in cell-type representation (7.4%). On

the other hand, the EBI collection captured many signatures

not represented in GTEx (164 out of the 217 had correlations

below 0.50 for anything present among the GTEx signatures)
Figure 3. 217 exemplars of cell types and states identified from RNA-s

(A) Distinct cell types were identified by comparing clusters of single cells with sim

by their grouping into exemplars representing distinct cell types/states. Nodes re

found in the SCEA collection. To determine a non-redundant set of cell states/type

linking clusters found in possibly separate datasets.

(B) To reveal pancreas-related cell-type clusters, clusters in (A) are colored bas

expression, red). Exemplar X85’s centroid (circled) had a high level of INS expre

(C) Detailed view of the X85 exemplar illustrating it was derived from 18 different c

(colors of the nodes), 12 clusters of which are highly mutually similar and make u

(D) CIBERSORT estimation of 217 exemplars on TCGA bulk tumor samples. Co

samples within each of the 33 TCGA cancer types.

(E) Same as (D) but for CIBERSORT deconvolution of TCGA normals using the s
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and thus provides a 3.5-fold increase over what is represented

in the GTEx collection. In summary, the meta-clustering proced-

ure for identifying exemplars from scRNA-seq cluster signatures,

as well as their use to identify them in bulk samples via deconvo-

lution, was reproducible using a completely orthogonal dataset

in a scenario where the signatures and deconvolution results

were well annotated. In addition, the resulting GTEx signatures

compared well to what was found and represented in the

scBeacon collection based on SCEA, even though the GTEx sig-

natures were derived from nuclei transcriptomes.

Single-cell exemplar signatures deconvolve appropriate
bulk tumors but with lower scores compared to their
normal counterparts
Wemeasured the degree towhich deconvolution with exemplars,

derived from a particular tissue, could ‘‘detect’’ the presence of a

cell type in bulk tumor (or normal) samples fromTCGAwhen using

a tumor type of that same tissue. To quantify and visualize exem-

plar specificity, we used the CIBERSORT deconvolution results

that considered all 217 exemplars to compare the estimates ob-

tained in related to unrelated tissues. We selected three tis-

sues—breast, lung, and brain—for which exemplars were anno-

tated as either derived from normal or cancerous tissue. We

collected the CIBERSORT estimates and aggregated them as

either related to the exemplar’s tissue or unrelated. For example,

X10 (myoepithelial cell ofmammarygland)wasusedas the normal

breast exemplar, while X62 (B cells from lymph node in breast car-

cinoma patients) was used as the cancerous breast adenocarci-

noma (BRCA) exemplar since these signatures had the highest

CIBERSORT scores in normal breast and cancerous breast,

respectively, amongall other signaturesannotatedasbeingbreast

related (Figure S6I). Exemplars for the other two tissueswere cho-

sen using the samecriteria (Figures S6J andS6K). The 113normal

samples of the TCGA BRCA cohort showed significantly higher

CIBERSORT scores for X10 than normal samples in other TCGA

cohorts (p < 2.2e�16, Kruskal-Wallis test; Figure 4A, left panel).

Similarly, the 1,104 tumor samples of the TCGA BRCA cohort

showedhigher scores for X62 than tumor samples in other cohorts

(p < 2.2e�16, Kruskal-Wallis test; Figure 4A, left panel). The same

trendswere found for both the normal and tumor signatures when

the comparisons were repeated in lung (Figure 4A, center panel)

and brain (Figure 4A, right panel). Thus, exemplars annotated as

derived from a specific tissue, and that have the highest match

to a particular tissue in TCGA among all other exemplars anno-

tated as derived from that tissue, also were found to be relatively

specific for deconvolving that tissue (i.e., they receive the highest
eq datasets in the Single Cell Expression Atlas (SCEA)

ilar expression profiles acrossmultiple datasets. scBeacon clusters are colored

present 585 clusters of single cells derived from clustering individual datasets

s from these dataset-derived clusters, clusters were connected to each other,

ed on INS (insulin marker gene) gene expression (low expression, blue; high

ssion, implicating an insulin system role for its represented cell type.

lusters (nodes) contributed by three different pancreas-related SCEA datasets

p the core of the exemplar.

lumns: 217 exemplar deconvolution estimation. Rows: averaged across the

ame set of 217 exemplars.



Figure 4. Cell-type exemplar signatures are specific to their tissue type for tumor deconvolution

(A) Exemplars were selected if annotated as derived from a tissue common to a TCGA cohort. Normal and cancer exemplars were selected, either from a normal

or cancer-derived cluster. Both types of exemplars show specificity to the matching tissue type in TCGA for all three tumor types inspected including breast

cancer (BRCA, left panel, X10 for normal breast, X62 for breast cancer), lung cancer (LUAD and LUSC cohorts, middle panel, X41 for normal lung, X168 for lung

cancer) and brain cancer (LGG and GBM, right panel, X206 for normal brain, X86 for brain cancer). The distribution of CIBERSORT estimation scores for samples

within the tissue type (pink/left box in each panel) was compared to all estimations for samples outside the tissue type (blue/right box in each panel).

(B) Radar plots illustrate more detail of the exemplar CIBERSORT deconvolution results in distinct tumor subsets (higher estimates correspond to outer rings) for

the same cohorts as in (A) (breast cancer BRCA, left panel; lung cancers of LUSC and LUAD, middle panel; brain cancers of GBM and LGG, right panel). Each

radar level shows the average CIBERSORT estimate of a cancer-related exemplar for that cancer type (yellow area) or a normal-tissue-specific exemplar for the

cancer type (blue area) averaged across all TCGA samples within one of the 33 tumor types.

(C) Similar to (B), but the CIBERSORT estimates of each exemplar are averaged for 132 different cancer subtypes (spokes around the circle), which group tumors

based on shared molecular properties within each of the 33 tumor types.
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CIBERSORT scores among all other tissues). In summary, even

when used together with signatures derived frommany cell types,

deconvolution of TCGA samples using the exemplars results in

scores that are consistent at the tissue level.
Cancer signatures had lower CIBERSORT scores than their

corresponding normal counterparts for all three of the tissue

types tested (cancer boxplots in Figure 4A). This suggested

that cancer signatures reflect a quantitatively lower degree of
Cell Reports Methods 4, 100799, June 17, 2024 7
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tissue specificity compared to their normal counterparts. This

could be due to patient-specific factors or the loss of differenti-

ation fidelity, among other possibilities. To further investigate, we

plotted the CIBERSORT scores of both the normal and cancer

samples summarized at the TCGA tumor-type level (Figure 4B)

and at the level of tumor subtypes (Figure 4C). The radar plots

of all three tissue types investigated reveal that, compared to

the normal signatures (Figures 4B and 4C, blue radar areas),

the cancer signatures (Figures 4B and 4C, yellow radar areas)

have a reduced relative match to their expected tissues. For

the breast and lung signatures, matches apparently similar to

cell types in other tissues may explain the relative lower scores,

whereas for the GBM signature, the similarity to cell types in

brain-related tissue is lower without a concomitant increase in

scores to cell types in non-brain tissues. In the case of the breast

signature, strong matches to prostate (PRAD) cancer samples

appeared to provide a better match than to breast samples

when the scores were averaged. However, when the scores

were averaged at the subtype level instead of at the cohort level

(Figure 4C), the highest average score matched a HER2-ampli-

fied subtype of breast cancer, which represents a minor propor-

tion of the overall BRCA samples, even though matches to

several PRAD subtypes also had high scores.

Taken together, exemplar signatures had their highest relative

matches in TCGA to samples obtained from the same tissues

as the exemplar signatures were obtained. In addition, cancer

exemplar signatures exhibited lower relative scores to their tis-

sues on average compared to normal signatures from the

same tissue. These findings suggest CIBERSORT maintains its

ability to identify the presence of a cell type in a bulk RNA-seq

sample using the ranked exemplar signature together with 217

total signatures. Moreover, the results indicate cancer tissue sig-

natures may lose some of the strength of their match relative to

normal tissues, which may reflect a loss of differentiation fidelity.

Survival analysis based on deconvolution results: Some
cell-type signatures align with patient outcomes in
some tumor types
Wenext askedwhether any of the exemplars representedmicro-

environment determinants that indicate either better or worse

outcomes for patients. To that end, we performed survival anal-
Figure 5. Single-cell exemplar signatures stratify patients into high- an

(A) CIBERSORT estimates for each of the 217 exemplars (circles, crosses, boxes

scoring. Five cohorts had at least one signature with a significant separation (FDR

of the survival separation using only the exemplar signature were plotted (‘‘naive S

for a tumor type’s published subtypes (‘‘subtype-corrected SOS,’’ y axis, log10 of m

with subtype correction (crossed), or both (crossed boxes) and colored if the pr

(FDR < 0.25) that are either poorer (red, hazard ratio > 1) or better (blue, hazard

(B) For each exemplar signature in each cohort, two groups of patient samples we

a bimodal distribution. An example of such a case is shown for exemplar X164

distinguished from an ‘‘up group’’ (red-shaded area).

(C) In the case where the bimodal test failed, samples were grouped into the top a

for exemplar X58 in PRAD samples with samples below the median score define

(red-shaded area).

(D) The significance by which each cell-type exemplar in each cohort separated

model (CoxPH) that used either the exemplar signature alone (univariate CoxP

(multivariate CoxPH). The survival separation is illustrated for exemplar X164 in P

higher levels of the cell type represented by X164 have associated poorer outco

(E) Same as (D) but for a different cell-type exemplar X58 that also shows poore
ysis separately for each cancer cohort using each of the exem-

plar signatures (see STAR Methods). In total, 6,944 exemplar-

cohort pairs were tested, formed from the 217 exemplars tested

against 32 cancer cohorts. For each exemplar-cohort pair, we

grouped the patients in the cohort as either scoring high or low

using the CIBERSORT estimates of the exemplar’s deconvolu-

tion proportion for each patient’s bulk tumor sample. We deter-

mined if the patient scores reflected a natural bimodal distribu-

tion (see Figure 5B for an example with signature X164 in

PRAD; see STARMethods). 2,801 exemplar-cohort pairs passed

the bimodality test (n = 2,801). In each of these cases, the two

modes were detected, and a cutoff was determined that was

equidistant between the modes, dividing the samples into

high- and low-scoring groups. 4,143 exemplar-cohort pairs

failed the bimodality test. For these cases, the patient samples

were split into two groups using themedian of the score distribu-

tion as the cutoff (see Figure 5C for an example with signature

X58 in PRAD).

Once two groups were determined, we asked if the presence

versus absence of an exemplar’s signature implicated a differ-

ence in patient outcomes for a particular type of cancer. To

that end, we calculated a signature outcome separation (SOS)

measure for an exemplar applied to a TCGA cohort by fitting a

Cox proportional hazards (CoPH) model using the covariate of

high-/low-scoring patient group (see Figures 5D and 5E for

Kaplan-Meier plots illustrating SOS for signatures X164 and

X58). The significance (�log base 10) of the SOS measure was

recorded as the fit of the model. Both univariate CoPH—in which

only the signature was used as the predictor of outcome—and

multivariate—in which an additional covariate was used that rep-

resented the previously published subtype groupings of the

samples—tests were calculated. In this latter multivariate case,

we refer to the SOS as the subtype-corrected SOS. A significant

subtype-corrected separation would indicate an exemplar’s de-

convolution score separates the patients into groups that are

distinct from the established cancer subtypes, or that further

separate patients within a subtype, and may be of particular bio-

logical and clinical interest.

We tested all exemplar-cohort pairs to determine if an exem-

plar’s signature separated the patients by their outcomes using

a subtype-corrected and false discovery rate (FDR)-adjusted
d low-risk groups in several types of cancer

in plots) were used to stratify patients in each cohort from low scoring to high

< 0.25 using a Cox Proportional Harzard’s (CoxPH) model). The CoxPH results

OS,’’ x axis, log10 of univariate p value) or combinedwith a covariate to account

ultivariate p value) to show those that are significant on their one (open circles),

esence of the signature indicates a significant separation in patient outcomes

ratio < 1) (full results in Table S3 and plotted in Figures S8 and S9).

re determined as the high and low category of the score distribution if matching

estimated in PRAD samples where a ‘‘down group’’ (blue-shaded area) was

nd bottom half using the median of an exemplar’s score. An example is shown

d as the ‘‘down group’’ (blue-shaded area) and those above as the ‘‘up group’’

the outcomes of the patients was measured using a Cox proportional hazards

H) or combined with a covariate to account for published patient subtypes

RAD using a Kaplan-Meier survival plot to show that samples with estimated

mes.

r outcomes when the exemplar signature is present.
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test (Figures S9A and S9B). We calculated SOS and subtype-

corrected SOS only for pairs that had at least 10 non-zero sam-

ples in samples classified into the high-scoring category (5,931

out of 6,944). Of these, we found 5,730 cases that did not sepa-

rate by outcome, across all 217 exemplars and 32 tumor types.

89 exemplars produced no outcome separation on any of the tu-

mor types; likewise, for 27 tumor types, no exemplars were

found that could separate the outcomes after accounting for

the published subtypes. For example, there were 163 exem-

plar-tumor type pairs in which the subtype correction in the

multivariate model eliminated the outcome separation detected

by the univariate model. In these cases, it may be informative to

investigate whether unanticipated microenvironment factors

correlate with the published subtypes. However, we chose to

focus on cases in which an exemplar had a clear implication

on patient outcomes and that were independent of the published

subtypes that we discuss next.

We found 38 exemplar-cohort pairs that had a significant

subtype-corrected SOS for at least one exemplar (Figure 5A;

Table 1) including four exemplars for the kidney carcinoma

(KIRC) cohort, two for leukemia (LAML), four for liver (LIHC),

six for the pheo- and panglioma neuroendocrine (PCPG) tu-

mors, and 21 for prostate (PRAD). For example, four exemplars

(X88, X197, X30, and X18) were found for LIHC that may reflect

differentiation differences between the tumors. All four were

associated with high hazard ratios, indicating poorer outcomes

when the signature was detected. Moreover, the ratios were

relatively unchanged in the multivariate models, indicating the

exemplar-induced dichotomies of the patients are independent

of the published subtypes (i.e., represent a different way of

grouping the patients).

We plotted the Benjamini-Hochberg-adjusted significance

of the uncorrected and subtype-corrected SOS analysis.

Most of the signatures discovered across these five tumor

types were associated with poorer outcomes (red entries in

Figure 5A) and no exemplars in which the outcome separation

was found to be significant only after accounting for published

subtypes. We note that there are three borderline significant

exemplars in PRAD that may represent cases where the sub-

type correction does help reveal the survival separation. Other

than these three exceptions in PRAD, we found that the

outcome separation either remained significant (Figure 5A,

crossed circles) or was no longer significant in the case that

an exemplar recapitulated a separation already accounted

for by the published subtypes (Figure 5A, open circles).

Several cancer types (e.g., PRAD) had a linear trend near

Y = X, indicating the published subtypes had little to no influ-

ence on most of the patient groupings based on signature

scores. On the other hand, several tumor types (e.g., KIRC,

LAML, and PCPG) had linear trends off of Y = X, revealing

that subtype correction lessened the survival separation sig-

nificance, suggesting many of the signature groupings are

similar to the previously determined subtypes.

We foundbothexemplars that separatesurvival ina tumor-type-

specific manner as well as those that separate patients by out-

comes in two or more tumor types. For example, signature X132

shows an SOS in four tumor types, PRAD, KIRC, PCPG, and

LGG, whereas in all those four tumor types, the detection of the
10 Cell Reports Methods 4, 100799, June 17, 2024
signature X132 correlates with worse outcome (high SOS). The

cells in signature X132 were created from four centroids from the

same human dataset, of which a majority of the cells (4,568 cells

out of 5,782 total, 79%) were annotated as ‘‘endothelial cells

from embryonic heart.’’ Gene set enrichment analysis of X132

identified ‘‘GO_MUSCLE_ORGAN_MORPHOGENESIS’’ as the

most enriched pathway from Gene Ontology. Studies have

shown endothelial cells play a role in tumor microenvironment in

regulating tumor initiation, progression, and metastasis,24–26

possibly reflecting a dedifferentiation mechanism to gain an im-

mune privilege of developmental cell lineages.27 The SCEA con-

tained 7 different prenatal and pediatric datasets (SCEA:

E-GEOD-114530, SCEA: E-GEOD-124472, SCEA: E-HCAD-10,

SCEA: E-HCAD-13, SCEA: E-HCAD-7, SCEA: E-MTAB-7381,

and SCEA: E-MTAB-7407) from which 32 exemplar signature

were derived by the scBeacon pipeline that included cell types

originating from the liver, heart, kidney, umbilical cord blood,

bone marrow, and tonsils. These signatures may implicate addi-

tional developmental associations in tumor subsets and are tabu-

lated in the supplemental information (Table S7). Signature X112

was derived from stromal cells and metanephric cap cells of

the kidney. Studies have shown that bone marrow stromal cells

promote chemoresistance in acute myeloid leukemia cells28 and

potentially negatively influence patient survival rates.

We further investigated specific exemplar-cohort pairs relevant

to patient outcomes (see Table S3 documenting many others

worthy of exploration). For reasons that are not clear to us, many

more signatures (n = 22) were found to separate the patient sam-

ples of the PRADcohort compared to other cohorts. Among these

was exemplar X164 derived from lung carcinomas (dataset

E-MTAB-6653), which was found to have a bimodal distribution

for thePRADsamples (Figure5A). Thepresenceof theX164signa-

turewasassociatedwithpooreroutcomes for PRADpatientsboth

with and without subtype correction (Figure 5C). Our annotation

pipeline associates the signature with natural killer cells and

T cells of the immune system (based on PanglaoDB). Because

signature X164was derived from another cancer cohort (lung car-

cinoma), it is possible this immune-related signature represents a

cancer-permissive state (e.g., exhausted or inhibited T cell popu-

lations).Consistentwith this finding, some typesof T cells, suchas

TH17 and/or Treg CD4
+ T cells, have been shown to be involved in

the development or progression of prostate cancer.29

As another example, exemplar X58 scores did not exhibit a

bimodal distribution on PRAD samples but split the samples by

the median signature score (Figure 5B) yielding patient groups

with different outcome classes (Figure 5D). X58 was derived

from an ‘‘innate lymphoid cell’’ scRNA-seq dataset (SCEA:

E-GEOD-70580). Studies have shown that type 2 innate

lymphoid cells are enriched in prostate cancer,30 which produce

interleukin (IL)-4 and IL-13, and are known to regulate tumor

microenvironment and promote cancer proliferation.31,32

Pan-cancer clustering on a tumor cell-typemap using all
cell-type exemplar signatures
We projected the TCGA samples onto a two-dimensional land-

scape, using the estimates of all 217 cell types as input to

the UCSC TumorMap,20 producing an interactive TCTmap avail-

able online at bit.ly/TCTmap_217exemplars. We clustered the

http://bit.ly/TCTmap_217exemplars


Table 1. All results with a subtype-corrected signature outcome separation (multivariate CoxPH model) FDR-adjusted p value% 0.05

Tumor type Exemplar signature Subtype-corrected SO-HR Naive SO-HR Subtype OS

KIRC X125: cortical excitatory neuron from organoids 3.64 (s) 3.70 (n) (G)

KIRC X184: fetal fibroblast from placenta 2.23 (S) 2.88 (N) (G)

KIRC X54: B cells from liver 1.84 (s) 1.68 (n) (G)

KIRC X145: pancreatic stellate cell 0.58 (s) 0.50 (N) (G)

LAML X92: astrocyte from brain 3.87 (s) 3.60 (N) (G)

LAML X112: stromal cell and metanephric

cap from multiple tissues

3.65 (s) 2.26 (n) (G)

LIHC X88: oligodendrocyte precursor cell 5.32 (s) 5.40 (N) (�)

LIHC X197: iPSC normal culture to maintain pluripotency 3.18 (s) 3.12 (n) (�)

LIHC X30: spermatid and germ cells from testis 3.11 (s) 3.00 (n) (�)

LIHC X18: plasma cells from bone marrow 2.91 (s) 2.50 (n) (�)

PCPG X68: mammary epithelial cells from primary

breast cancer cells and lymph node

5.93 (s) 4.59 (n) (�)

PCPG X205: muller cell and retinal rod cell

from retinal neural layer

4.55 (s) 5.20 (n) (�)

PCPG X132: endothelial cells from embryonic heart 4.43 (s) 4.51 (n) (�)

PCPG X167: epithelial and basal cells from lung carcinomas 4.40 (s) 3.97 (�) (�)

PCPG X54: B cells from liver 3.98 (s) 4.62 (n) (�)

PCPG X39: type I pneumocyte 0.06 (s) 0.11 (�) (�)

PRAD X38: lung ciliated cell 6.41 (s) 4.69 (n) (�)

PRAD X150: acinar cell from pancreas 5.22 (S) 4.16 (n) (�)

PRAD X2: epithelial cells from lung bronchoalveolar carcinoma 5.13 (s) 5.36 (n) (�)

PRAD X164: immune from lung carcinomas 5.07 (s) 3.38 (n) (�)

PRAD X211: fetal hepatocytes 4.72 (s) 3.27 (�) (�)

PRAD X134: neurons from heart 4.02 (s) 3.52 (n) (�)

PRAD X122: erythroid lineage cell from multiple tissues 3.90 (s) 4.48 (n) (�)

PRAD X58: innate lymphoid cell from tonsil 3.49 (s) 3.30 (n) (�)

PRAD X44: mast cell from lung 3.47 (s) 2.90 (�) (�)

PRAD X145: pancreatic stellate cell 3.01 (s) 2.49 (�) (�)

PRAD X205: Muller cell and retinal rod cell from

retinal neural layer

2.93 (s) 3.03 (n) (�)

PRAD X166: epithelial cells from lung carcinomas 2.60 (s) 2.33 (n) (�)

PRAD X196: induced neural plate border stem

cells from fibroblast

2.55 (s) 2.82 (n) (�)

PRAD X80: acinar cell 2.54 (s) 2.93 (n) (�)

PRAD X132: endothelial cells from embryonic heart 2.42 (s) 2.70 (n) (�)

PRAD X25: EC blood from testis 2.36 (s) 2.12 (�) (�)

PRAD X151: alpha cells from pancreas 0.36 (s) 0.39 (n) (�)

PRAD X103: embryonic stem cell from H9 cell line 0.31 (s) 0.29 (n) (�)

PRAD X39: type I pneumocyte 0.29 (s) 0.28 (n) (�)

PRAD X32: peritubular myoid cells from testis 0.28 (s) 0.40 (�) (�)

PRAD X87: macrophages from brain 0.19 (s) 0.22 (n) (�)

PRAD X9: luminal epithelial cell of mammary gland 0.16 (s) 0.22 (n) (�)

SO-HR, signature outcome hazard ratio; OS, outcome separation. The subtype-corrected SO-HR is marked with ‘‘s’’ if the outcome separation has a

false discovery rate adjusted p value p < 0.05 and with ‘‘S’’ for p < 0.001. Similarly, the naive SO-HR is marked ‘‘n’’ for p < 0.05 and ‘‘N’’ for p < 0.001,

and a tumor type for which the subtype groups show significant (p < 0.001) outcome separation is marked with ‘‘G.’’ Results for all exemplars in all

tumor types are listed in Table S3.
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samples using a spatial hierarchical method called hdbscan33 to

identify 50 TCT clusters, out of which 35 were ‘‘pan-cancer,’’

consisting of at least two tumor types. If a tumor type had at least
five samples in multiple clusters, an outcome analysis was per-

formed between the main cluster of that tumor type and the

smaller minor cluster(s) (see STAR Methods, Table S4).
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Figure 6. Tumor cell-type (TCT) map

(A) TCT map colored by TCGA tumor type.

(B) Clustering of tumor types into clusters and the similarity (adjusted Rand index) of the clusters to the clustering solution derived in TCGA PanCanAtlas21 as well

as the grouping of samples into tumor subtypes.

(C) STAD samples, colored by STAD subtypes.

(D) Colors show the most differential signatures in STAD GI.CIN samples between cluster c39 and c40: exemplar X151 (alpha cells from pancreas) and exemplar

X101 (neural progenitor cells).

(E) Survival of STAD subtype GI.CIN samples based on their clusters. Cox proportional hazard’s (CoxPH) models were used to calculate p-values between two

clusters of the same cancer type including subtype information as a covariate to account for subtype imbalances.

(F) KIRC samples, colored by KIRC subtypes.

(G) Colors show the most differential signatures in KIRC mRNA subtype 1 samples between cluster c15 and c16: exemplar X11 (luminal epithelial cells of

mammary gland) and exemplar X22 (CD4-positive helper T cells from HIV infection blood).

(H) Survival of KIRC mRNA subtype 1 samples in clusters. Statistical analysis to calculate p values was performed as described in part (E).

12 Cell Reports Methods 4, 100799, June 17, 2024
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Most samples cluster by their tumor type (Figure 6A) as ex-

pected due to the cell-of-origin signal in mRNA-seq data.21

Even so, some exceptions were observed in which TCT clusters

revealed unanticipated divisions. Interestingly, the TCT clusters

corresponded highly to PanCanAtlas groupings relative to pub-

lished subtypes in many cases. We compared the TCT clusters

with previous subtypes quantitatively for each tumor type (Fig-

ure 6B). STAD had low similarity to both PanCanAtlas clustering

solution and published subtypes. The STAD samples were ori-

ented into three main TCT clusters—c36, c39, and c40 (Fig-

ure 6D). Each of the three clusters contained a mixture of the

published STAD subtypes. Thus, STAD as well as 6 other tumor

types (i.e., CESC, LUSC, PRAD, LUAD, UCEC, and UCS) reveal

TCT factors correlated with exceptions to the general rule in

which tumors cluster with others primarily of their same tissue

of origin. We discuss several examples of ‘‘splitting’’ or ‘‘merg-

ing’’ of TCT clusters relative to the expected pattern.

We found several cases inwhich the TCTmap split a published

subtype into multiple new clusters and cases where the map

merged samples of previously separated published subtypes

into a single new cluster. A splitting pattern was found for the

STAD cohort where samples annotated originally by TCGA as

copy number unstable (i.e., the STAD-GI.CIN subtype) were

divided into three TCT clusters and revealed a survival difference

among the patients for two of these clusters (c39 and c40, Fig-

ure 6D). For example, cluster c39 patients have significantly

lower progression-free interval (PFI) survival rates compared to

c40 patients, and both c40 and c39 patients have lower PFI sur-

vival probability compared to c36 patients. c39 had a higher

signal from exemplar X151 (alpha cells from the pancreas), and

c40 had a higher signal from exemplar X101 (neural progenitor

cells), compared to c39. We suspect that the alpha cell exemplar

reflects the enteroendocrine signal in STAD samples due to the

current lack of a stomach enteroendocrine exemplar in the

scBeacon collection as endocrine cells are found throughout

the gastrointestinal tract.34,35 The association of X101 with c40

suggests the enteric nervous system (ENS) marks distinct tumor

microenvironments, which is supported by work showing the

ENS plays an essential role in regulating both the stem cell niche

and the tumor microenvironment in many organs.36

We found examples in which the TCT map clustered merged

together samples belonging to different previously published

subtypes. For example, TCT clusters c15 and c16 contain a

mix of published KIRC subtypes (Figures 6F–6H). TCT cluster

c15 had higher signal from exemplar X11(luminal epithelial cells),

while cluster c16 had higher X22 signal (CD4+ helper T cells from

HIV infection blood). For KIRC mRNA subtype 1 samples be-

tween cluster c15 and c16, samples in c15 had better survival

rates compared to c16, possibly due to the role that tumor

epithelia play in regulating immunotherapy outcomes and mo-

lecular components in tumor microenvironment.37 In Zhang

et al., the authors found KIRC-TCGA samples with high esti-

mated fraction of CD8+ T cells have lower survival probability

than samples with high estimated endothelial cells, consistent

with the dissimilar survival trend we observed for TCT cluster

c15 versus c16.

Visual inspection of the TCT map revealed additional exam-

ples of groupings that go against the expected trends (cancer
types or their subtypes clustering) that may suggest microenvi-

ronment factors associated with tumor state. For example, the

TCT divided some of the lung cancers into two distinct clusters

(c09 versus c41) with both clusters having equal representation

from the major subtypes (LUSC and LUAD). The division ap-

peared to separate potentially different lineages with c09

showing higher levels of X38 (lung ciliated cell) and X41 (trans-

formed epithelial cell from lung) compared to those with higher

levels in c41 such as X167 (epithelial and basal cells from lung

carcinomas) and X46 (type II pneumocytes). As another

example, uterine carcinomas (UCEC) had an interesting pattern

in the TCT. Among the copy number high UCEC subtype sam-

ples, several clustered with the serous ovarian tumors in c28

(n = 30), while others clustered into the c27 group (n = 114).

The microenvironment factors that underlie the UCEC copy

number high distinctions are complicated to interpret as both

the high signatures in c28, such as X59 (neurons in the

neocortex), and the high signatures in c27, such as X43 (B cell

from lung), were annotated with lower confidence. Other UCEC

samples cluster with sarcomas into TCT cluster c32, distin-

guished by high levels of signature X108 (keratinocytes/supra-

basal cells of esophagus) and low levels of the well-annotated

signature X168 (basal cells from lung carcinomas). More precise

cell-type signatures may be needed to understand the major de-

terminants of the UCEC divisions by the TCT. On the other hand,

some of the uterine sarcomas (UCSs) clustered with the UCEC

samples into c27 (n = 13) instead of the main cluster (n = 14)

with immune-related signatures correlated with the division,

e.g., with X22 (CD4-positive helper T cell from HIV infection

blood) higher in the UCEC cluster compared to epithelial cells

(X132 and X117) that are higher in the other cluster. Finally, the

TCT map divided some of the prostate (PRAD) samples into

two clusters that were not subtype related, with some PRAD

samples clustering into c24 (n = 199), and others clustering

with samples in c26 (n= 296), with higher levels in c24 associated

with exemplars X152 (acinar cell from pancreas) and X156

(CD8-positive T-lymphocytes from influenza patients), reflecting

a lineage difference (e.g., involving the secretory glands) and/or a

variation in the immune components underlying the disease.

Thus, the TCT map revealed commonalities among tumors pre-

viously considered to have distinct molecular profiles.

DISCUSSION

There is ever-growing evidence that the cell types present in a tu-

mor’s microenvironment influence the outcome of a cancer pa-

tient.1 In recent years, since single-cell sequencing became

available, the characterization of various cell types in the human

body has improved immensely.38–40 A growing number of public

single-cell sequencing datasets provide a more accurate and

comprehensive definition of the human cell type repertoire. How-

ever, there are still challenges to efficiently integrate and analyze

those datasets together. First, due to the high level of technical

noise and systematic differences between sequencing plat-

forms, simple concatenation could result in batch effects that

become the dominant variance rather than biology. Batch effects

have been shown to cause an increased number of false posi-

tives in downstream analyses.41 To reduce the chance of false
Cell Reports Methods 4, 100799, June 17, 2024 13
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discoveries, integration of multiple datasets must eliminate

batch effects.42 Whole reference atlas initiatives such as the Hu-

man Cell Atlas started collaborative projects to integrate as

many datasets as possible to create a whole human cell-type

map, and the data integration process for this task should

not only be able to handle batch effects well but also be compu-

tationally efficient and fast while ingesting and integrating

datasets.

We introduced a scRNA-seq pipeline called scBeacon that

clusters and integrates datasets to identify single-cell signatures

useful for the deconvolution of bulk cancer samples. Unsuper-

vised clustering of full transcriptome data has been used to iden-

tify subsets of related samples or genes for years since the

establishment of DNA microarrays.43,44 Since then, clustering

has only increased in importance for the analysis of bulk and later

scRNA-seq datasets.45 Computational algorithms leverage an

ever increasing number of samples of scRNA-seq datasets using

approaches like community detection46 and later deep learning

autoencoders.47 In our approach, we assume many of the clus-

ters represent a collection of cells with highly similar transcrip-

tomes that concentrate distinct cell types. Given this assump-

tion, ‘‘marker genes’’ of a cell type/state or lineage may be

approximated with the cluster centroids. Our pipeline infers

cell types using multiple datasets by using an enrichment-based

test to determine when clusters from different scRNA-seq data-

sets are highly similar.

We validated scBeacon’s deconvolution using in silico mix-

tures from single-cell and sorted bulk RNA-seq data. We used

EBI’s SCEA as a database to create a comprehensive set of

cell-type signatures with an enrichment-based similarity test,

the RTKE test. We used the resulting 217 signatures for the de-

convolution of 33 different cancer types from TCGA. Many of the

cell-type signatures are found to be correlated to patient out-

comes in single tumor types, some also over multiple tumor

types.

Several methods have been created to help biologists search

these collections to find cell types of interest. Scmap48 imple-

mented a fast approximate k-nearest-neighbor search with

cosine distance to project cells in scRNA-seq datasets to refer-

ence databases. CellBlast49 built a robust data query method in

an scRNA-seq database based on a neural network-based

generative model and a customized cell-to-cell similarity metric.

CellAtlasSearch50 used locality-sensitive hashing Hamming dis-

tance for bulk and single-cell RNA-seq data processing and

query. We found the RTKE test to be robust in the comparison

of cluster centroids across datasets and scRNA-seq platforms.

We found that the use of rank-based cell-type signatures for

the deconvolution of bulk RNA-seq data compared to count-

based cell-type signatures is effective for forming signatures

from multiple data sources. The rank normalization and combi-

nation of multiple datasets did not impact the accuracy of de-

convolution and sometimes even improved the inference. Thus,

our rank-based approach offers a promising and simple strat-

egy for the ongoing derivation of a comprehensive set of cell-

type signatures from an expanding collection of scRNA-seq

datasets.

Validation of the scBeacon approach using the GTEx con-

sortium data further affirmed its robustness and accuracy in
14 Cell Reports Methods 4, 100799, June 17, 2024
identifying cell-type signatures and their application in decon-

volving bulk RNA-seq datasets. By leveraging the orthogonal

dataset published by the GTEx consortium containing

snRNA-seq-derived signatures and subsequent deconvolution

of GTEx bulk RNA-seq samples, we demonstrated that decon-

volution with scBeacon-derived signatures for GTEx effectively

grouped similar tissues, thereby underscoring its utility across

diverse biological datasets. Notably, tissues from related organ

systems such as the brain, gastrointestinal tract, and vascular

structures exhibited coherent clustering, which is indicative of

the tool’s precision in capturing organ-specific cellular compo-

sitions. Moreover, the comparison of the scBeacon-derived

signatures from the SCEA with the 35 obtained from GTEx re-

vealed significant overlaps, with more than half of the GTEx sig-

natures showing a high correlation with the SCEA-derived set.

The majority of SCEA signatures were unique compared to

those in GTEx, indicating a broader scope of cellular diversity

captured by the SCEA dataset, reinforcing the capability of

scBeacon to provide a detailed and expansive view of cellular

landscapes across different conditions and tissues, which is

crucial for understanding complex biological systems and their

underlying mechanisms in health and disease.

In summary, we provide a comprehensive collection of cell-

type signatures based on the preprocessing of a large amount

of scRNA-seq data, strategies for identifying and merging signa-

tures across datasets even from different platforms using rank-

based centroids, a graph-based meta-clustering approach,

and an enrichment-based cluster comparison metric. We pro-

vide annotations for all of the discovered 217 signatures and

document survival associations for 33 exemplar signatures in 5

tumor types. We have made available an interactive map of all

TCGA tumors based on their TCT content. We found evidence

for both merging pre-established subtypes into common TCT

clusters as well as splitting samples of one subtype into multiple

TCT clusters. We found several examples in which regrouping

samples, either using individual signatures on a single tumor

cohort or using all signatures in a pan-cancer TCT clustering, re-

vealed unexpected outcome implications.

Limitations of the study
The interpretation of the deconvolution results has challenges.

When a cell type is detected in a cancer sample, it may be due

to the cell type being present in the tumor microenvironment.

However, another possibility is that the tumor cells themselves

have acquired certain characteristics of other cell types, which

are ascribed to a particular cell type by the deconvolution

method. Yet another possibility is that the usage of an incom-

plete reference might influence the deconvolution estimate to

detect the most closely related cell type when the actual cell

type is not included in the signature matrix. In addition, the

annotation of the established collection of cell-type signatures

is challenging since only a subset of the clusters of a dataset

may have reliable annotations either assigned by the authors

or inferred by computational methods like those presented in

this study. Finally, the granularity of our cell-type signatures

may have an effect on the downstream analysis. Some data-

sets in our database are represented completely by just one

cell-type signature. This happens because all cells in the
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dataset are from a specific cell type and are very similar to each

other compared to other datasets. Nevertheless, a more fine-

grained cell-type definition might be desirable in some cases,

and a hierarchical definition of cell types and cell-type signa-

tures might be a solution to this issue.

TCGA does not contain an exhaustive representation of all

tissues and cell types in the body. Indeed, it has a limited

set of cancer types. Thus, we expect many cell types to be

absent from the TCGA collection. The fact that some signa-

tures are not found when deconvolving may either be the

exclusion of certain types of cells in cancer tissues in the

biased TCGA set or ‘‘odd’’ cell types found in scRNA-seq

data that are not present in bulks samples (although the latter

is hard to rule out as we did not analyze a comprehensive set

of bulk tissue data). As the collection of signatures grows,

there will concomitantly be increases in the number of signa-

tures that fail to be detected in any analyzed set of tissues.

However, at this stage, such extra cell types have not proven

to be detrimental to the deconvolution or downstream ana-

lyses in any tangible way.
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40. Karlsson, M., Zhang, C., Méar, L., Zhong, W., Digre, A., Katona, B.,
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Single Cell Expression Atlas (SCEA) scRNA-seq data Papatheodorou et al.8 see Table S1

TCGA bulk RNA-seq data Hoadley et al.21 see Table S1

scRNA-Seq data from a human head and

neck cancer dataset

Puram et al.51 GSE103322

human melanoma dataset Tirosh et al.52 GSE72056

MSigDB gene set collection Liberzon et al.53 https://www.gsea-msigdb.org/gsea/msigdb/

scRNA-Seq PBMC datasets Ding et al.54 see Table S1

scRNA-Seq PBMC 10X genomics https://www.10xgenomics.com/datasets/

10-k-pbm-cs-from-a-healthy-donor-

v-3-chemistry-3-standard-3-0-0

Bulk RNA-Seq data for each of melanoma cell lines Pawlikowski et al.55 see Table S1

Software and algorithms

CIBERSORT Chen et al.56 https://cibersortx.stanford.edu/

Tumor Cell Type (TCT) UCSC TumorMap Newton et al.20 bit.ly/TCTmap_217exemplars

Seurat Stuart et al.57 https://satijalab.org/seurat/

PanglaoDB Savi�c et al.58 https://panglaodb.se/

Harmonizome Rouillard et al.59 https://maayanlab.cloud/Harmonizome/

Original code for data analysis This paper https://doi.org/10.6084/m9.figshare.25814632.v1
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, Josh Stuart

(jstuart@ucsc.edu)

Materials availability
This study did not generate new unique reagents.

Data and code availability
d This paper analyzes existing, publicly available data. The accession numbers for the datasets are listed in the key resources

table.

d All original code has been deposited at Figshare and is publicly available as of the date of publication. DOI is listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

EBI single-cell expression atlas
Datasets and cluster centroids

The Single Cell Expression Atlas (SCEA), a part of EMBL-EBI’s Expression Atlas, is a public single-cell RNA sequencing data con-

sortium that hosts datasets from published studies for six species.8 For this analysis, we downloaded the 62 homo sapiens sin-

gle-cell RNA sequencing datasets available in February 2020 (Table S1). The datasets come from a wide range of healthy and

diseased tissues, consisting of numerous cell types in the human body. The 62 datasets were sequenced using different single-

cell RNA sequencing techniques, such as 10X Genomics platform, smart-seq, drop-seq etc.
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scBeacon - Exemplar signature derivation

The scBeacon workflow is shown in Figure 1A. Starting from a compendium of scRNA-Seq datasets, the cells in each dataset are

clustered using the Louvain algorithm.46 We found louvain clustering had the best performance regarding speed and memory effi-

ciency on different environments (dgtMatrix in R, pandas data frame in python) compared to various other clustering algorithms,

e.g., k-means and hierarchical clustering (Figures S2A‒S2E).
We used cell-wise rank normalization to reduce any possible batch effects that would be introduced by integrating

clusters across different datasets. For each cell cluster, a centroid was computed by taking the average rank of a gene

across all the cells in the cluster, resulting in a rank average for each gene. We found that rank normalized centroids were ac-

curate and robust representations of single-cell clusters. First, we found that rank centroids accurately preserved biological

information using the MOCA (Mouse Organogenesis Cell Atlas) dataset51 as a test case. Centroids ‘‘islands’’ in different

colors were found to represent unique cell types in MOCA (Figure S7A) and the developmental trajectory was well preserved

according to the annotated murine developmental stages (Figure S7B). Second, we found that generating rank normalized cen-

troids from 50 cells is robust to represent a cluster based on subsampling cells and finding that the Spearman correlation be-

tween the centroid derived from a random subset and its corresponding centroid from the complete data saturates at 50

(Figure S7C).

In order to group centroids by unique cell types, we used the reciprocal top-k enrichment (RTKE) method introduced in the Bio-

logical Process Activity manuscript by Ding et al.52 After rank-normalization, the top 10 percent of the genes in a centroid were used

to perform RTKE and the enrichment scores were used as similarity scores to compare all centroids to each other. We found that

other choices for the top k genes, ranging from 5% up to 40%, yielded highly similar results as using the top 10% of genes

(Figure S2J).

To cluster the cluster centroids into meta-clusters that include similar cell types, we compute the empirical distribution of similarity

scores. We set a threshold for centroids as 0.006 upper quantile of the empirical distribution and then use the louvain clustering to

define meta clusters. Each meta-cluster is considered to represent a cell type, and it can be made of multiple centroids from one or

multiple datasets or be a unique cluster from just one dataset. The 0.006 top quantile is selected by screening through thresholds

ranging from 0 up to 0.1, the clustering results are evaluated using Silhouette scores, when threshold is 0.006, Louvain clustering

reaches the highest Silhouette score (Figure S2K).

The meta-cluster centroids, also called exemplars, are used as cell-type signatures. To obtain cell-type signatures for tumor de-

convolution, we first constructed a differential gene expression matrix. For each cell type, we identify a unique set of genes that dis-

tinguishes it from other signatures. First, we compute the average expression of each gene in the 217 cell types. For each gene, we

subtract the average expression value of the highest-expressing cell type and the second-highest expressing cell type. This strategy

ensures that only genes expressed distinctly high in each cell type are included in the signature matrix, which is key for subsequent

analyses as overlap in gene signatures between cell types can complicate deconvolution results. The 20% most differentially ex-

pressed genes are chosen as signature genes and this subset matrix was used as the signature matrix as the input for

CIBERSORT. Figure S5 shows a heatmap of the 3988 unique genes that were used in at least one of the 217 cell type signatures.

We used this signature matrix in bulk tumor deconvolution.

Annotating the SCEA signatures using pathway enrichment

To better understand the biological features of SCEA signatures, we use GSEA enrichment analysis to test for both enriched cell

types and pathways by using a combination of gene sets from PanglaoDB,55 Harmonizome,54 and the cell type pathways from

MSigDB (C8). To maintain specificity as well as robustness for the enrichment analysis, we retained gene sets that had more than

50 genes and less than 100 genes. This resulted in a collection of 5398 gene sets in total – 178 from PanglaoDB, 84 from Harmoni-

zome, 4436 from MSigDB GO genesets and 700 from MSigDB cell type genesets(Table S6). For each signature, we used GSEA to

score and rank all of the gene sets in the collection. The top five ranking gene sets for each cluster was recorded in an annotation table

(Table S2). We also used cell-level annotations published in the manuscripts that described the dataset from which a cluster was

derived and prioritized using these author-provided annotations to label a cluster centroid wherever it was available. If multiple an-

notationswere present among the cells in a cluster, a summary annotation ‘‘short name’’ was created.Manual inspection of the cases

where author annotations and PangloDB-inferred annotations were both available revealed a high concordance between the inde-

pendently derived annotations (see Table S2). In the absence of an author-derived annotation, a ‘‘short name’’ was created by sum-

marizing the top ranking gene sets for the associated signature.

Deconvoluting cell types in bulk tumors
The exemplar cell-type signatures generated from the scBeacon workflow were used for deconvolution of cancer bulk RNA-Seq

data, in which each signature’s contribution to the mixture was estimated. We used the Cibersort deconvolution method,60 which

performed well in the DREAM deconvolution competition.56 We ran Cibersort with parameters: perm = 100, QN = FALSE, absolute =

TRUE, abs_method = ’no.sumto1’.

We used rank-normalized cell type signatures in CIBERSORT to deconvolute TCGA bulk tumors. Compared to cell type signatures

derived from count-based expression values, rank-normalized signatures outperformed count-based signatures in bulk tumor de-

convolution, which is commonly used in other deconvolution approaches. This was validated by our validation analysis using syn-

thetic bulk samples.
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In this study, we used the TCGA collection as the bulk tumor data for deconvolution. We downloaded the counts per tumor type

data fromXena,57 which represents The Cancer GenomeAtlas (TCGA) gene expression HTSeq counts data originally provided by the

NCI’s Genomic Data Commons. We normalized the count data to TPM (transcripts per million reads).

Validation experiments
Tissue-specificity evaluation

To determine the extent to which the 217 cell type signatures reflect their specific tissues of origin when used in deconvolution, we

identified a collection of breast, lung, and neural signatures from normal tissues, cancer tissues, and evaluated their tissue specificity

in TCGA samples using the highest estimated signatures.

We first selected datasets that contain the cell type of interest, then collect and evaluated the cell type signatures that come from

those datasets. Here are the signatures we collected that represent specific tissues. Breast normal tissue signatures: X7, X8, X9, X10,

X11, X12; Breast cancer tissue signatures: X62, X63, X64, X65, X66, X67, X68; Lung normal tissue signatures: X38, X39, X40, X41,

X42, X43, X44, X45, X46, X47; Lung cancer tissue signatures: X1, X2, X114, X120, X163, X164, X165, X166, X167, X168, X169, X170;

Neuron normal tissue signatures: X125, X199, X200, X201, X202, X203, X204, X205, X206; Neuron cancer tissue signatures: X5, X86,

X87, X88, X89, X90, X91, X92, X93.

To pick the most representative cell type signatures, we computed the average estimation of the collection of signatures in their

specific tissues in TCGA samples, and select the top estimated signatures to compare within the entire TCGA cohort (Figure S6).

Then wemade radar plot that shows the CIBERSORT estimation of the signatured that comes from one tissue, both normal and can-

cer state. The radar plot shows the normal tissue signatures has higher tissue-specificity compared to its cancer tissue signature

(Figure 4).

In silico immune infiltration evaluation

We created different types of in silico cell type mixtures simulating immune infiltration in cancer tissue in order to validate the

217 cell type signatures for deconvolution. We created 200 in silico mixtures from scRNA-Seq data from a human head and

neck cancer dataset53 (GSE103322), human melanoma dataset58 (GSE72056), and bulk RNA-Seq data for each of 6 different

melanoma cell lines.59 The centroid of all scRNA-Seq tumor cells or bulk RNA-Seq cell lines in each dataset was used to repre-

sent the tumor component of the mixture. The tumor component was randomly assigned a mixture percentage between 50 and

90%. The rest of the mixture was randomly distributed between immune and microenvironment cell-type centroids in integer-

valued percentages: B cells, dendritic cells, NK cells, endothelial cells, fibroblasts, macrophages, mast cells, myocytes, and

T cells.

For the melanoma cell lines dataset, the immune cell types were purified from blood using marker genes in a vaccination study.61

We take the average of the 2 patients at time point t0 (before vaccination) to represent pure cell type references. For both datasets, the

expression data were reduced to the overlapping genes between the two datasets and quantile normalized to remove batch effects

and enable mixing.

To validate this approach, we used scRNA-Seq PBMC (peripheral blood mononuclear cell) datasets from different sequencing

platforms.62 PBMCs consist mainly of monocytes, B cells, and T cells, with other minor fractions of dendritic cells, NK cells, andmac-

rophages.63 We created cell-type signatures from scRNA-Seq PBMC datasets62 from various single-cell sequencing technologies,

e.g., 10X Chromium, CEL-Seq2, Drop-Seq, inDrops, Seq-Well. Additional PBMCdatasets were downloaded from the 10XGenomics

website, Chromium demonstration data64.

(1) Dataset by Cell Ranger 1.1.0, published on July 31, 2016

(2) 10X-v2: 8k PBMCs from a Healthy Donor, Platform: 10XGenomics v2 chemistry, Single Cell Gene Expression Dataset by Cell

Ranger 2.1.0, published on November 8, 2017

(3) 10X-v3: 10k PBMCs from a Healthy Donor, Platform: 10XGenomics v3 chemistry, Single Cell Gene Expression Dataset by Cell

Ranger 3.0.0, published on November 19, 2018

We clustered each dataset using the Louvain algorithm and assigned three main clusters to monocytes, B cells, and T cells using

the expression of established marker genes (CD3E for T cells, MS4A1 for B cells, and CD14 for monocytes). We calculated centroid

for each cell type and generated a signature matrix for each dataset.

We performed three different deconvolution approaches with the signatures to determine if ranking the centroids and combining

the signatures produced accurate deconvolution results. First, the log-transformed, count-based TPM (transcripts per million reads)-

normalized centroids from the 10X-v2 dataset alone were used as the signature matrix in deconvolution. Second, the rank-normal-

ized centroids from the 10X-v2 dataset were used on their own as the signature matrix for deconvolution. Finally, the rank-normalized

centroids were combined with all PBMC scRNA-Seq datasets and used as a combined signature matrix in deconvolution.

Tumor cell-type (TCT) map of pancancer connections
Building the map

The two-dimensional layout of the Tumor Microenvironment (TCT) map was created by providing the matrix of the 217 exemplar

CIBERSORT estimates for each of the 11,057 TCGA samples to the DrL layout engine of the UCSC TumorMap tool.20
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Clustering the samples on the TCT map

The samples on the TCT map were clustered by their two-dimensional coordinates using hdbscan, a spatial hierarchical clustering

method,33 with a minimum cluster size of 20. This resulted in 49 sample clusters (Figure S10A). Additionally, 1,277 samples were not

assigned a TCT map cluster.

To measure the difference of the resulting clustering solution and previously published clusterings of the tumor samples, we first

measured the similarity between the spatial TCT map clusters and the grouping by disease subtype using the adjusted rand index.

Additionally, we measured the similarity to the PancanAtlas mRNA-based TumorMap.21 This TumorMap provides a similar compre-

hensive look at the same set of TCGA samples, and it is based on mRNA data, which is also the basis of our exemplar estimates.

Therefore, we can now determine if any grouping we find on the TCT map is only a recapitulation of known subtype biology or

gene expression, or if it is newly determined by our exemplar estimates.

We applied the same spatial hdbscan clustering method to the PancanAtlas mRNA TumorMap with a minimum cluster size of 50

samples in order to reach a similar number of resulting clusters (Figure S10B). The samples on the PancanAtlas TumorMap were as-

signed to 41 clusters and 1,123 samples were not assigned a cluster. We then measured the similarity of the two spatial clustering

solutions using the adjusted rand index.

QUANTIFICATION AND STATISTICAL ANALYSIS

Signature-cohort bimodality test
After obtaining the CIBERSORT deconvolution results on TCGA cancer samples, we analyze if the presence of the cell-type signa-

tures in tumors correlates with the survival outcomes of patients. First, we define patient groups based on how much a signature is

detected in the patients’ tumor samples. For each signature in each tumor type, samples that have a relatively high proportion of the

signature detected are defined as ‘‘patients-up group’’ and samples that have a relatively lower proportion of the signature detected

are defined as ‘‘patients-down group’’.

To formalize this separation of samples in the deconvolution results, we applied a bimodality test for each signature, based on the

student-t distribution65 implemented in the t-StudentMixtureModelsModule (SMM) library66 in python. It models data by amixture of

t-Student distributions, estimating the parameters with Expectation Maximization, and uses the Bayesian information criterion(BIC)

to decide whether the current model fits the proposed data. Signatures that fit the student-t bimodal distribution are kept for survival

analysis since they represent a meaningful separation between patient groups. From the two distributions identified in the model, we

define sample groups: samples that have a cell type estimate higher than the upper mean are labeled as ‘‘patients-up’’, samples that

have a cell type estimate lower than themean of the lower distribution are labeled as ‘‘patients-down’’ (Figure 4B). For signatures that

don’t fit the student-t bimodal distribution, the patients are separated by the median. However, in cases where a signature had es-

timates of zero in more than 50% of the tumor-type samples, all samples with an estimate of zero were assigned to the ‘‘patients-

down’’ group and all samples with an estimate above zero were assigned to the ‘‘patients-up’’ group. A signature was excluded

from survival analysis in a tumor type if less than 10 samples had an estimate above zero.

Survival analysis of single cell-type signatures with patient outcomes
TCGA survival information was downloaded from the Xena portal.67 We used progression-free interval (PFI) to measure disease pro-

gression, except for Acute Myeloid Leukemia (LAML) patients, which only have Overall Survival (OS) available.

To measure the separation between the two sample groups, we used the R package ‘‘survminer’’ for Kaplan-Meier survival anal-

ysis, and applied Cox proportional hazards (CoxPH) model68 by using R package ‘‘survival’’.69 Reported hazard ratios (HR) were ex-

tracted from the CoxPH model and all p-values for survival analysis were, unless stated otherwise, p-values of the log rank test. We

report the results for a ’naive’ signature outcome separation (SOS), which is a univariate CoxPH model.

In Table S3 we curated subtype annotations for all TCGA tumor types, mostly from the TCGA PanCanAtlas project21 and

TCGAbiolinks,70 except for DLBCL (diffuse large B-cell lymphoma), which had no subtype information available. Subtype information

was used as a covariate in multivariate CoxPHmodels per tumor type in order to correct a potential imbalance in subtypes, and avoid

recapitulating known cancer subtypes by the separation of the patients groups.

To understand how the 217 cell type signatures separate the patients survival, we used Benjamini Hochberg multi-test corrected p

values from the survival analysis, and focused on the ones that have corrected p value lower than 0.05.We also extracted hazard ratio

from the models. A hazard ratio greater than 1 indicates the hazard increases and thus the length of survival decreases. When a haz-

ard ratio is smaller than 1, it indicates the cell type variant positively influences the patients’ survival length.

Survival analysis of TCT map clusters
We applied survival analysis on TCT map cluster groupings of the TCGA samples analogously to the approach we described previ-

ously. First, we analyzed survival in the context of each disease. We defined the main clusters of each disease as any cluster con-

taining 5 or more samples of that disease. Then, we applied CoxPH models between pairs of sample clusters of the same disease,

comparing each cluster to the largest cluster, i.e., the cluster with the most samples of that disease. We again provided the disease

subtype information curated in Table S3 to the CoxPHmodels as a covariate in order to correct for a potential imbalance in subtypes.

Second, we repeated the same survival analysis in each disease subtype, eliminating the need to provide a subtype covariate and
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determining which subtypes contributed to the overall findings per disease. The disease and subtype level results are presented in

Table S4.

Additionally, Table S4 lists the most differential exemplars between each cluster and the largest cluster in each disease and each

subtype. We determined the three highest, and the three lowest exemplars in each comparison using a Student’s t test.

ADDITIONAL RESOURCES

An interactive browsing session of the TCT map is available online through the UCSC TumorMap portal at bit.ly/TCTmap_217exem-

plars. The interactive map includes attributes for browsing various results of our analysis including exemplar estimates, TCGA dis-

ease categories, TCGA disease subtype categories (Table S5), and TCGA PancanAtlas clustering solutions.21
e5 Cell Reports Methods 4, 100799, June 17, 2024


	Single-cell signatures identify microenvironment factors in tumors associated with patient outcomes
	Introduction
	Results
	Validation of reciprocal top-K enrichment metric for deconvolution
	scBeacon clusters and signatures from EBI’s Single-Cell Expression Atlas: Building a comprehensive single-cell-derived cell ...
	Deconvolution of TCGA samples using scBeacon signatures
	Single-cell exemplar signatures deconvolve appropriate bulk tumors but with lower scores compared to their normal counterparts
	Survival analysis based on deconvolution results: Some cell-type signatures align with patient outcomes in some tumor types
	Pan-cancer clustering on a tumor cell-type map using all cell-type exemplar signatures

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Method details
	EBI single-cell expression atlas
	Datasets and cluster centroids
	scBeacon - Exemplar signature derivation
	Annotating the SCEA signatures using pathway enrichment

	Deconvoluting cell types in bulk tumors
	Validation experiments
	Tissue-specificity evaluation
	In silico immune infiltration evaluation

	Tumor cell-type (TCT) map of pancancer connections
	Building the map
	Clustering the samples on the TCT map


	Quantification and statistical analysis
	Signature-cohort bimodality test
	Survival analysis of single cell-type signatures with patient outcomes
	Survival analysis of TCT map clusters

	Additional resources





