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Abstract

Electronic Structure Modelling of Catalysis and Complex Systems: Theory, Analysis and
Application

by

Matthias Loipersberger

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Martin Head-Gordon, Chair

This thesis contributes to three areas of electronic structure theory: First, chapters 2 to
5 cover the development of energy decomposition schemes based on absolutely localized
orbitals (ALMO-EDA). In chapter 2, the second-order Møller-Plesset perturbation theory
(MP2) based version of this decomposition scheme is generalized to restricted and unre-
stricted open-shell. This new method allows to decompose the interaction energy of radical
species at the MP2 level. Furthermore in chapter 3, a variational forward-backward (VFB)
approach is presented to decompose the overall charge transfer (CT) stabilization energy
into contributions from forward and backward donation for the density functional theory
(DFT) based ALMO-EDA scheme. The two “one-way” CT states are variationally relaxed
such that the associated nuclear forces can be readily obtained. In chapter 4, the DFT
based ALMO-EDA scheme is extended to intermolecular interactions in the solution phase
by the development of ALMO-EDA(solv); a scheme that allows the application of continuum
solvent models within the framework of energy decomposition analysis.

Second, the performance of second- and third-order Møller-Plesset perturbation (MP3) the-
ory wavefunction methods is probed for non-covalent interactions in chapter 5. The κ-
regularization improves the energetics in almost all data sets for both MP2 and OOMP2.
Scaled MP3 using κ-OOMP2 reference orbitals provides the most accurate results among all
tested methods for non-covalent interactions across all data sets.

Third in chapters 6–8, a robust computational model is presented to study mechanisms of
molecular catalysts for the CO2 reduction reaction (CO2RR) to CO using DFT calcula-
tions. This model is applied and refined by the mechanistic studies of four pyridine based
catalysts. In chapter 5, the bipyridine based [Fe(bpyNHEtPY2)(H2O)2]

2+ system is stud-
ied. In chapter 7, the mechanisms of [CoII(qpy)(H2O)2]

2+ and [FeII(qpy)(H2O)2]
2+ (with

qpy = quaterpyridine) are investigated using DFT calculations to shed light on the contrast-
ing catalytic pathways. In chapter 8, a terpyridine(tpy)-based iron polypyridine complex,
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[Fe(tpyPY2Me)]2+, is investigated in a combined experimental and computational approach
to elucidate the different mechanisms at low and high overpotentials.
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Chapter 1

Introduction

In 1929, Paul Dirac made a bold claim about the influence of quantum mechanics on chem-
istry: “The underlying physical laws necessary for the mathematical theory of [...] the whole
of chemistry are thus completely known”[1]. However, he also admits: “ The difficulty is
only that the exact application of these laws leads to equations much too complicated to be
soluble. It therefore becomes desirable that approximate practical methods of applying quan-
tum mechanics should be developed”[1]. His claim about the (dark) future of chemistry did
initially not find much attention among chemists.[2] In hindsight, it is apparent that Dirac’s
claim about chemistry was too bold as it is still a thriving field of research; however, it is
undeniable that the laws of quantum mechanics (QM) had a huge impact. QM provides a
framework to understand and predict the behavior of the electrons in molecules, which at the
core governs chemical reactivity. The field of quantum chemistry, more specifically electronic
structure theory, is concerned with developing these “approximate practical methods of ap-
plying quantum mechanics” [1]. Exciting progress has been made over the last decades due to
many ground breaking theoretical developments and the rapid development of computational
power (Moore’s law). To-date, electronic structure calculations are routinely performed to
gain insights into the bonding situation in molecules, predicting reaction energetics and rates
with an accuracy of a few kcal/mol.[3–5] In the field of catalysis, electronic structure calcu-
lations can yield invaluable mechanistic insights into the catalytic pathways, which usually
involve many transient species (often) not possible to track experimentally. These mecha-
nistic studies can provide explanations for the origin of activity and selectivity as well as
the cause of any intrinsic limitations. In the future, electronic structure theory will have an
even stronger influence as advances in both machine learning[6] and quantum computing[7]
may leverage it to have a disrupting impact not only in quantum chemistry but chemistry
as a whole.

This thesis is concerned with three aspects of electronic structure theory. First, the devel-
opment of novel methods in the realm of energy decomposition analysis and its applications,
this topic spans chapters 2 to 4; second, the performance of perturbation theory based wave
function methods for non-covalent interactions in chapter 5; third the modelling of catalytic
pathways for homogeneous CO2 reduction catalysts and rational catalyst design based on



CHAPTER 1. INTRODUCTION 2

those models, this topic spans chapters 6 to 8. The first chapter of this thesis provides proper
background and literature overview with the objective to facilitate the understanding of the
core research chapters 2–8. Consequently, this first chapter is based on standard textbooks
of quantum mechanics such as reference [8] and quantum chemistry such as references [9–12].

1.1 Quantum Mechanics in Chemistry
The postulates of quantum mechanics offer a theoretical framework to predict chemical
observables ab initio. The (non-relativistic time dependent) Schrödinger equation[13] con-
stitutes the central equation in quantum mechanics and describes the dynamics of quantum
particles such as electrons:

i~
∂

∂t
|Ψ〉 = Ĥ |Ψ〉 , (1.1)

where Ĥ denotes the Hamiltonian operator and |Ψ〉 denotes the wave function of the system.
Solving for the eigenvalues and eigenfunction of Ĥ in the time-independent Schrödinger
equation yields the total energy of the quantum system:

Ĥ |Ψn〉 = En |Ψn〉 , (1.2)

where n = 0 denotes the ground state, E0 the ground state energy of the system and
n = 1, 2, ..., K denotes the first, second and Kth excited state. This thesis is only concerned
with the ground state energy and wave function; thus, the subscript is dropped. The wave
function represents the quantum system and is the key for obtaining desired properties of
the system.

The Hamiltonian operator for a molecule consisting of M nuclei with charge Z and N
electrons has the following form (in atomic units):

Ĥ = −
N∑
i=1

1

2
∇2
i −

M∑
A=1

1

2MA

∇2
A −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
+

M∑
A=1

M∑
B>A

ZAZB
RAB

, (1.3)

where riA denotes the distance between the ith electron and Ath nuclei, rij the distance
between the ith and jth electron and RAB the distance between nuclei A and B.
In short hand notation:

Ĥ = T̂e + T̂N + V̂eN + V̂ee + V̂NN ,

where T̂e denotes the kinetic energy operator of the electrons, T̂N the kinetic energy operator
for nuclei and V̂eN , V̂ee, V̂NN the Coulomb potential operator for electron-nuclei, electron-
electron and nuclei-nuclei, respectively. The wave function of such a quantum system depends
on the coordinates of both electrons (x, spin and spatial) and nuclei (R): Ψ = Ψ(x,R).

The nuclei move several order of magnitude slower than electrons; therefore, a feasible
approximation is the description of electrons in a static field of nuclei as proposed by Born and
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Oppenheimer [14]. This allows a separation of variables and the wave function is factorized
into two parts: (i) an electronic wave function Ψel = Ψel(x; R), depending on the coordinates
of the electrons and parametrically on the nuclei position (R); (ii) the nuclear wave function
Υ(R), only dependent on the nuclei coordinates. This allows to neglect of the effect of T̂N
on the electronic wave function and V̂NN can be treated as a constant term. Thus, solving
for electronic wave function simplifies to (for a set of fixed nuclei coordinates R):

Ĥel |Ψel〉 = Eel |Ψel〉 , (1.4)

with Ĥel = T̂e + V̂eN + V̂ee + V̂NN
Solving the electronic Schrödinger equation for various nuclear geometries yields a high

(3M−6) dimensional potential energy surface V (R) = Eel(R). Stationary points are impor-
tant for describing chemical reactions. Minima correspond to stable reactants and products,
which determine the direction of the chemical reaction, and saddle points correspond to
transition states (TS), which determine the rate of the chemical reaction.

The electronic wave function is a many-body wave function of electrons (fermions), which
is associated with a high dimensional Hilbert space. In classical physics, the state space S of
n particles, each described by an m dimensional vector space Si, yields an nm dimensional
state space for the many-body system; the individual particle spaces combine via a direct
sum: S =

⊕n
i=1 Si. In contrast, quantum one-particle Hilbert spaces Ha combine into the

many-body Hilbert space H via the tensor product: H =
⊗n

i=1Hi, resulting in a Hilbert
space of dimension mn. In other words, exponential growth with number of particles.

Furthermore, a fermionic wave function must obey the anti-symmetry relation:

|Ψ(x1,x2, ...,xn)〉 = − |Ψ(x2,x1, ...,xn)〉 , (1.5)

which also implies that the wave function must vanish if two electrons are in the same
quantum state (Pauli exclusion principle). Slater determinants fulfill this requirement and
are defined as:

|Φ〉 =
1√
N !

∣∣∣∣∣∣∣∣∣
χ1(1) χ1(2) . . . χ1(N)
χ2(1) χ2(2)

... . . .
χN(1) χN(N)

∣∣∣∣∣∣∣∣∣ , (1.6)

where χi denotes a one-electron function (spin-orbital). Given a complete basis of spin-
orbitals {χp}, the space can be partitioned into occupied and virtual orbitals (unoccupied):

Î = P̂ + Q̂ , (1.7)

where Î, P̂ and Q̂ are the projectors for the total, occupied and virtual space, respectively.
General orbitals are denoted with p, q, r, ..., occupied orbitals with i, j, k, ... and a, b, c, ...

represent virtual orbitals. The n-particle Hilbert space can be decomposed into subspaces of
Slater determinants. Based on the degree of substitution from a reference determinant |Φ0〉
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(comprised of the occupied orbitals), subspaces of singly, doubly,... to n-fold substitution of
occupied and virtual orbitals can be defined as[15]:

H = 0⊕ S ⊕D ⊕ T ⊕ ...⊕ n , (1.8)

where 0 denotes the subspace of the reference determinant, S the subspace of singly sub-
stituted determinants, D the subspace of all doubly substituted determinants, and so on.
Thus, the electronic wave function can be expanded as:

|Ψ〉 = c0 |Φ0〉+
∑
ia

cai |Φa
i 〉+

∑
ia

∑
j>i,b>a

cabij
∣∣Φab

ij

〉
+ ... , (1.9)

where |Φa
i 〉 denotes a singly substituted determinant and

∣∣Φab
ij

〉
a doubly substituted deter-

minant and so on. This expansion is called full configuration interaction (FCI). The number
of determinants grows combinatorially with increasing number of electrons; thus, this full
expansion is only feasible for a very small number of electrons. Accurate approximation of
the electronic ground state energy of molecules at the lowest possible computational cost
is the heart of the matter in quantum chemistry. For instance, efficient truncation of the
expansion in a compact orbital representations allows one to approximate |Ψ〉 in a subspace,
e.g. the subspace 0⊕ S ⊕D.
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1.2 Quantum Chemistry
This thesis is concerned with the solution to the electronic Schrödinger equation (equa-
tion 1.4) and thus the “el” subscripts are dropped in the following. This chapter is based on
the textbooks [9, 11, 16]. Furthermore, reference [17] provides an excellent introduction to
the Hartree-Fock method and references [18, 19] and [20] to density functional theory.

Hartree-Fock Method

The Hartree-Fock (HF) Method approximates |Ψ〉 as a single Slater determinant:

|Ψ〉 ≈ |ΦHF 〉 (1.10)

The HF method approximates the pairwise Coulombic electron-electron interactions in a
mean-field; i.e. the potential experienced by the ith electron is the average potential of the
remaining electrons. The HF method does not correlate electrons with opposite spin.[21]

The variational principle provides an ansatz to obtain an optimal set of occupied orbitals.
It states that the energy EHF can never be lower than the true ground state energy E0. Thus,
the best approximation for a single Slater determinant is obtained by minimizing the energy
of the expectation value with respect to a set of occupied orbitals {χi} comprising the Slater
determinant Φ({χi}):

Eel ≤ EHF = min
{χi}

〈Φ({χi})|Ĥ|Φ({χi})〉
〈Φ({χi})|Φ({χi})〉

(1.11)

Assuming orthonormal orbitals, the HF energy can be expressed in terms of the orbitals
using the Slater-Condon rules [22, 23]:

EHF =
N∑
i=1

〈i| ĥ |i〉+
1

2

N∑
i,j=1

〈ij||ij〉 , (1.12)

where N denotes the number of occupied orbitals and the ĥ(x1) is defined as the one-particle
operator:

ĥ(xi) = −1

2
∇2
i −

N∑
A

ZA
riA

(1.13)

and the resulting integral defined as

〈i| ĥ |j〉 =

∫
dx1χ

∗
i (x1)h(x1)χj(x1) , (1.14)

The two-electron integrals 〈ij||kl〉 are defined as

〈ij||kl〉 = 〈ij|kl〉 − 〈ij|lk〉 (1.15)
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and 〈ij|kl〉 as:
〈ij|kl〉 =

∫
dx1dx2χ

∗
i (x1)χ∗j(x2)

1

r12

χk(x1)χl(x2) . (1.16)

The canonical Hartree-Fock equations emerge to obtain the set of orbitals that minimize
equation 1.11 with the constraint of orthonormal orbitals:

f̂χi = εiχi i = 1, 2, 3, ... , (1.17)

where εi denotes the ith eigenvalue (orbital energy) and the Fock-operator f̂ is defined as:

f̂(x1) = ĥ(x1) +
N∑
j

(Ĵj − K̂j)

Ĵj(x1)χi(x1) =

[∫
dx2χ

∗
j(x2)

1

r12

χj(x2)

]
χi(x1)

K̂j(x1)χi(x1) =

[∫
dx2χ

∗
j(x2)

1

r12

χi(x2)

]
χj(x1) ,

(1.18)

where Ĵ denotes the coulomb operator and K̂ the exchange operator. The Fock operator
is a one-particle operator, which approximates the two-body electron-electron interaction as
an effective one-particle operator via the Hartree-Fock potential v̂HF :

v̂HF =
N∑
j

Ĵj + K̂j . (1.19)

The Fock operator itself depends on the orbitals and exact solutions to the “pseudo-eigenvalue
problem” only exist for very small systems. In practice, one usually introduces a basis and
solves this equation in a self-consistent way (see below).

Most commonly, one solves either the restricted HF equations (RHF) for closed shell
systems or the unrestricted HF equations for open-shell systems (UHF) where the spin part
is integrated out. As a spin orbital can be represented as:

χ(x) = φi(r)s(ω)

where φ(r) is the spatial orbital and s is either α or β depending on the spin coordinate.
This yields the RHF equations:

f̂φi = εiφi . (1.20)

and the RHF Fock operator (using n = N/2):

f̂(ri) = ĥ(ri) +
n∑
j

(2Ĵj(ri)− K̂j(ri)) (1.21)
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This spatial integro-differential equation is in practice solved by introducing a set of fixed
basis functions and solved iteratively via the self-consistent field procedure (SCF). In doing
so, the integro-differential equation is transformed into a matrix equation that is much easier
to solve (see below).[24]

The molecular orbitals (MOs) {φp} are linearly expanded in a set of K known basis
functions {ωµ : µ = 1, 2..., K}:

φp =
K∑
µ=1

Cµpωµ p = 1, 2, ..., K . (1.22)

A basis function is usually based on the spherical harmonics for the angular part, a gaussian
type orbital (GTO) for the radial part and are usually called atomic orbitals (AOs, abbre-
viated with Greek letters µ, ν, ...) and the expansion is called linear combination of atomic
orbitals (LCAO).

Using equations 1.20 and 1.22 yields a matrix equation for the MO vectors Cp, the
Roothaan-Hall equation [24]:

F C = S C ε . (1.23)

An element of the representation of the Fock operator in the AO basis (Fµν) has the following
form:

Fµν = hµν +
K∑

κ,λ=1

Pκλ [2(µν|κλ)− (µλ|κν)] , (1.24)

the matrix element hµν is defined as hµν = 〈ωµ| ĥ |ων〉 and the 4-center-2-electrons integrals
as: (µν|κλ) =

∫
dr1dr2ω

∗
µ(r1)ων(r1) 1

r12
ω∗κ(r2)ωλ(r2). The matrix elements of the one particle

density matrix P are defined as:

Pµν =
n∑
i=1

C∗µiCνi . (1.25)

The matrix S denotes the overlap matrix of the AOs since the basis functions need not
be orthogonal: Sµν = 〈µ|ν〉.

The Fock matrix depends on the occupied orbital vectors of the coefficient matrix F(C);
thus equation 1.23 is solved iteratively in the SCF procedure:

1. Specify molecular coordinates {R}, charge and multiplicity

2. Compute integrals for h and S

3. Obtain initial guess for P

4. Build the Fock matrix (equation 1.24)

5. Diagonalize F and get new C and P
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6. Check SCF convergence based on EHF and P change

7. Stop or go back to step 4 if not converged

In case of UHF, the variational flexibility is increased by allowing the coefficients for the
α and β spaces to be different:

χp =

{∑K
µ C

α
µpω

α
µ∑K

µ C
β
µpω

β
µ

(1.26)

This ansatz yields an α density (Pα), a β density (Pβ) and a Fock operator for each spin
state that depends on the total spin density (P = Pα +P β) resulting in two coupled matrix
equations similarly to equation 1.23 called the Pople-Nesbet equations [25]. It is noteworthy
that this ansatz can break spin symmetry as the expectation value for Ŝ2 is defined as:

〈ΦUHF |Ŝ2|ΦUHF 〉 = S2
exact +Nβ −

Nα∑
i=1

Nβ∑
j=1

∣∣∣Sαβij ∣∣∣2 , (1.27)

where S2
exact denotes the good quantum number for the respective spin multiplicity, Nβ the

number of electrons in the β space and Sαβij the overlap of the spatial orbitals i in the α
space and j in the β space. There are two main reasons why UHF breaks spin symmetry:
First, the system cannot be properly described by a RHF single determinant, e.g. for bond
dissociation or metallic systems with various configurations similar in energy, denoted as
essential symmetry breaking. Second, the system can be represented as single RHF deter-
minant; this is called artificial symmetry breaking and can be avoided by including explicit
electron-electron correlation in the SCF procedure (vide infra) [26]. Another approach to
enforce spin symmetry is to enforce constraints on the orbitals by forcing singly and doubly
occupied orbitals to be orthogonal and doubly occupied orbitals to be identical in both α
and β space; this ansatz is called restricted-open shell HF (RO-HF).

The HF method, even at the basis set limit, only yields an approximation to the electronic
Schrödinger equation (1.4); this energy is called the Hartree-Fock limit energy. The HF
method does not correlate electrons with opposite spins and the missing energy to reach
the exact electronic energy is called correlation energy (Ecorr = Eel − EHF ). The missing
correlation can be incorporated with the use of post-HF methods such as Møller-Plesset
Perturbation theory or density functional theory (vide infra).

An alternative approach to HF is provided by Pople and Head-Gordon via an orbital
optimization [27] ansatz. The goal is to find a unitary transformation, which yields the
eigenvectors of the Fock operator in the MO space:

C ′ = CU (1.28)

the unitary matrix can be expressed in terms of the exponential of an anti-Hermitian X
matrix:

U = e
(X) (1.29)
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The matrix exponential can be Taylor expanded:

U = I +X +
1

2
X X + ... . (1.30)

As only the mixing of occupied and virtual orbitals changes the energy, the new rotated
MOs (|p′〉) can be obtained by expanding the occupied-virtual sub-block of the matrix to
first order:

|i′〉 = |i〉+
∑
a

θai |a〉 (1.31)

and
|a′〉 = |a〉 −

∑
i

θai |i〉 , (1.32)

where θai denotes an element of the occupied-virtual sub-block of X.
The expansion is used in the HF energy functional (using the closed shell expression for HF):

ERHF = 2
∑
i

hi +
∑
ij

2(ii|jj)− (ij|ji) (1.33)

(or the MP2-energy functional, see equation 1.62). Taking a derivative with respect to the
orbital rotation coefficients (θai) yields the gradient for the energy:

∂ERHF
∂θai

= 4Fai (1.34)

The expression can then be minimized to yield the optimal set of occupied orbitals, for a
very robust algorithm see reference [28].

SCF for Molecular Interactions

SCF for Molecular Interactions (SCF-MI) is a constraint SCF procedure, where the system
is partitioned into fragments and each fragment’s MOs are only expanded in the AOs of
that fragment; in contrast, the canonical MOs are usually delocalized over all AOs. This
constraint enforces a block diagonal coefficient matrix yielding absolutely localized molecular
orbitals (ALMOs, see references [29–31] for a detailed discussion):∣∣φ(Xp)

〉
=
∑
µ∈X

∣∣ω(Xµ)

〉
C(Xµ)(Xp) , (1.35)

where (Xp) denotes the pth MO on fragment X and
∣∣ω(Xµ)

〉
the µth AO on fragment X. It

follows from this constraint that the ALMOs cannot be orthogonal to each other. Therefore,
a bi-orthogonal set, the contravariant orbitals {|φp〉}, is introduced and the energy can be
expressed in a mixed co and contravariant basis (see reference [15] for a an excellent overview
of quantum chemistry in a non-orthogonal single-particle basis):

ESCFMI =
〈
ΦALMO

∣∣H∣∣ΦALMO
〉

(1.36)
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ESCFMI = 2
F∑
X

∑
i∈X

〈
φ(Xi)

∣∣ĥ∣∣φ(Xi)
〉
+

F∑
X,Y

∑
i∈Xj∈Y

2(φ(Xi)φ
(Xi)|φ(Y j)φ

(Y j))−(φ(Xi)φ
(Y j)|φ(Y j)φ

(Xi)) ,

(1.37)
where F denotes the total number of fragments. Then, a fragment-wise orbital gradient can
be obtained to ensure only mixing of occupied and virtual orbitals on fragment:

∂ESCFMI

∂θ(Wa)(Wi)

∣∣∣∣
θ=0

= 4

[∑
X

〈
φ(Wa)(1− P̂ )

∣∣∣F ∣∣∣φ(Xj)

〉
σ(Xj)(Wk)σ(Wk)(Wi)

]
(Wa)(Wi)

, (1.38)

where θ(Wa)(Wi) denotes the orbital rotation parameter for fragment W . The problem can
be cast into a generalized eigenvalue equation similarly to equation 1.23 by projection of the
Fock operator[29, 30] in a fragment subspace yielding fragment-blocked eigenvalue equations:

FXCX = SXCXεX , (1.39)

where FX denotes an AO Fock matrix projected into fragment space X (see references [29–

31] for the definition), CX the X th block of the coefficient matrix, SX the X block of the

AO overlap matrix and εX the orbital energies for fragment X. The converged SCF-MI
solution represents a state which naturally forbids charge transfer (CT) between the two
fragments[32, 33] and is thus used as as a key intermediate in the ALMO based energy
decomposition method described below.

Møller-Plesset Perturbation Theory

In wave function-based quantum chemistry the Hartree-Fock (HF) mean field reference de-
terminant |ΦHF 〉 is the foundation of post-HF methods. The missing energetic effect of
other determinants is typically approximated by low-order Møller-Plesset (MP) perturba-
tion theory[34, 35] or by infinite order coupled cluster theory,[36, 37] truncated at low levels
of excitations from |Φ0〉 such as double or triple excitations. This approach yields a good
compromise between computational cost and amount of correlation energy recovered.

In MP perturbation theory, the Fock operator is used as the unperturbed Hamiltonian:

Ĥ(0) =
∑
i

f̂(xi) (1.40)

V̂ = Ĥ − Ĥ(0) . (1.41)

Both the energy and the wave function are expanded around the unperturbed wave function
and energy using the perturbation parameter λ:

Eel =EMP0 + λEMP1 + λ2EMP2 + λ3EMP3 + ... (1.42)

|ΨMP 〉 = |ΦHF 〉+ λ
∣∣Ψ(1)

〉
+ λ3

∣∣Ψ(2)
〉

+ ... , (1.43)
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where EMPi and
∣∣Ψ(i)

〉
denotes the ith order correction to the energy and wave function,

respectively. The corresponding perturbation equations are for zeroth order (assuming a
(pseudo) canonical basis for the Fock operator):

f̂ |ΦHF 〉 = EMP0 |ΦHF 〉 (1.44)

where EMP0 is the sum of orbital energies
∑

i εi which is not equal to EHF because of double
counting of the electron-electron interaction.

The first order correction is:

EMP1 = 〈ΦHF |V |ΦHF 〉 = −1

2

∑
ij

〈ii||jj〉 . (1.45)

Note this correction resolves the double counting issue and recovers EHF ; hence, EHF =
EMP0 + EMP1.

The second order energy correction depends on the first order wave function:∣∣Ψ(1)
〉

=
∑
ia

tai |Φa
i 〉 −

∑
ia

∑
j>i,b>a

tabij |Φa
i 〉 , (1.46)

where t denotes the amplitudes of the excited Slater determinant and the second order energy
(single excitations do not contribute due to Brillouin’s theorem):

EMP2 =
〈
ΦHF

∣∣V ∣∣Ψ(1)
〉

=
∑
ia

∑
j>i,b>a

tabij
〈
ΨHF

∣∣V ∣∣Ψab
ij

〉
(1.47)

where the t amplitudes are defined as

tabij = − 〈ij||ab〉
εa + εb − εi − εj

(1.48)

(1.49)

and the resulting second order energy correction :

EMP2 = −1

4

∑
ijab

| 〈ij||ab〉|2
εa + εb − εi − εj

(1.50)

The third order energy correction is defined as:

EMP3 =
〈
Ψ(1)

∣∣V ∣∣Ψ(1)
〉

(1.51)

resulting in:

EMP3 =
1

8

∑
ijabcd

(
tabij
)∗ 〈ab||cd〉tcdij

+
1

8

∑
ijklab

(
tabij
)∗ 〈kl||ij〉tabkl

−
∑
ijkabc

(
tabij
)∗ 〈kb||ic〉tackj .

(1.52)
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The Hylleraas functional, JH , is a variational formulation that when minimized yields
the first order wave function and MP2 energy; thus this approach can be used to obtain the
MP2 energy in another orbital basis than the canonical[38] or for the evaluation of the MP2
energy with non-stationary t-amplitudes such as a trial wave function

∣∣∣Ψ̃〉:
JH [Ψ̃] =

〈
Ψ(0)

∣∣∣V − EMP1

∣∣∣Ψ̃〉+
〈

Ψ̃
∣∣∣H(0) − EMP0

∣∣∣Ψ̃〉+
〈

Ψ̃
∣∣∣V̂ − EMP1

∣∣∣Ψ(0)
〉

(1.53)

or in a more compact matrix-vector notation:

JH [̃t] = t̃†∆t̃ + t̃†III + III†t̃ , (1.54)

where t̃ is a vector composed of the wave function amplitudes t̃abij , III is a vector composed of
two-electron integrals, 〈ij||ab〉, and ∆ is a supermatrix whose elements are defined as:

∆(abij ),(cdkl)
=
〈
Ψab
ij

∣∣F̂ − EMP0

∣∣Ψcd
kl

〉
. (1.55)

It can be derived from the second order energy expression[16]:

E(2) =
〈
Ψ(0)

∣∣V ∣∣Ψ(1)
〉

. (1.56)

The first order equation is projected with the first order wave function:〈
Ψ(1)

∣∣H(0) − EMP0

∣∣Ψ(1)
〉

=
〈
Ψ(1)

∣∣EMP1 − V
∣∣Ψ(0)

〉
. (1.57)

Next, equation 1.57 is added to equation 1.56 to obtain the Hylleraas functional in equa-
tion 1.53; obviously for

∣∣∣Ψ̃〉 =
∣∣Ψ(1)

〉
, EMP2 is retained.

For real wave functions and if intermediate normalization (
〈

Ψ̃
∣∣∣Ψ(0)

〉
= 0) is enforced, the

expression simplifies to:

JH [Ψ̃] =
〈

Ψ̃
∣∣∣H(0) − EMP0

∣∣∣Ψ̃〉+ 2
〈

Ψ̃
∣∣∣V ∣∣∣Ψ(0)

〉
(1.58)

and variation of the functional results in:

δJH = 2
〈
δΨ̃
∣∣∣H(0) − EMP0

∣∣∣Ψ̃〉+ 2
〈
δΨ̃
∣∣∣V ∣∣∣Ψ(0)

〉
. (1.59)

Therefore, the stationary condition is the first order equation with
∣∣Ψ(1)

〉
as a solution:

(H(0) − EMP0)
∣∣∣Ψ̃〉 = V

∣∣Ψ(0)
〉

. (1.60)

Thus, the first order wave function and second order energy can be obtained by making the
Hylleraas functional stationary with respect to the t-amplitudes:

JH [Ψ̃] ≥ EMP2 . (1.61)
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The Hylleraas functional can be added to the HF energy expression to yield the MP2
Lagrangian, an orbital optimized (OO) MP2 energy functional; see references [39, 40] for a
more detailed presentation. The OOMP2 energy is minimized with respect to the orbital ro-
tation parameters (instead of the HF energy functional) and it depends on occupied orbitals,
virtual orbitals ({χp}) and the t-amplitudes t:

EOOMP2[{χp}, t] = EHF [{χi}] + JH [{χp}, t] . (1.62)

Analogously to equation 1.34 an orbital gradient can be obtained with an identical ansatz but
more algebra, see reference [39] for the final expression and derivation. The new set of orbitals
produced by the OOMP2 ansatz often recovers spin symmetry through incorporation of
dynamic correlation in the orbital optimization procedure (in case of artificial spin symmetry
breaking of the HF orbitals).

Density-Functional Theory

Density functional theory (DFT) is –by far– the most popular quantum chemical method
because of its balance between computational cost and accuracy. Its theoretical foundation
lies in the two Hohenberg-Kohn theorems[41] which state:

Theorem 1. The external potential vext(r), and hence the total energy, is a unique functional
of the electron density ρ(r).

Theorem 2. The ground state energy can be obtained variationally: The density that min-
imizes the total energy is the exact ground state density.

Therefore, there exists a one-to-one mapping between the electronic energy of the system
and the electron density. Instead of computing/approximating the mN dimensional wave
function of a system of N electrons (exponentially growing in complexity), it is sufficient to
compute the three dimensional electron density ρ(r) for the same system. The ground state
energy can be expressed as a functional of the electron density:

E[ρ(r)] = min
ρ(r)

(
FU [ρ(r)] +

∫
drvext[ρ(r)]

)
, (1.63)

where FU denotes an (unknown) universal functional and Vext the system specific exter-
nal potential. The Thomas-Fermi-Dirac functional (TFD)[42] was an early approximation
attempt purely based on the electron density for a system with M nuclei:

E[ρ(r)] = Te[ρ(r)] + Eee[ρ(r)]−
M∑
A

∫
dr

ZAρ(r)

|RA − r| , (1.64)

where Te denotes the kinetic energy functional, Eee electron-electron repulsion energy (con-
taining a Coulomb and exchange part) and RA the position of the Ath nuclei. Unfortunately
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even with several extensions, the accuracy of this orbital free ansatz is poor due to the large
error in the kinetic energy functional [43].

Alternatively, orbitals are reintroduced via the Kohn-Sham (KS) framework, which laid
the foundation of accurate density functional theory [44]. The kinetic energy is computed
via a reference system of non-interacting electrons, which is identical to the true density of
the N electron system:

TS = −1

2

N∑
i

〈χi|∇2
i |χi〉 , (1.65)

where the set of spin orbitals {χi} yields the true ground state electron density:

ρS(r) =
N∑
i

∑
s∈α,β

|χi(r, s)|2 = ρ(r) . (1.66)

The universal functional FU is separated into:

FU [ρ(r)] = TS[ρ(r)] + J [ρ(r)] + EXC [ρ(r)] , (1.67)

where J [ρ(r)] denotes the classical Coulomb energy functional and EXC denotes the exchange-
correlation energy functional, which encapsulates several missing pieces: first, the resid-
ual of the true kinetic energy (T [ρ(r)] − Ts[ρ(r)]); second, non-classical effects such as
the self-interaction correction, exchange and correlation of the electron-electron interaction
(Eee[ρ(r)]−J [ρ(r)]). The exchange-correlation potential VXC is then defined as the functional
derivative of EXC :

VXC =
δEXC
δρ

. (1.68)

The set of orbitals ({χi}) can be obtained, similarly to HF, via the Kohn-Sham equations:

f̂KS(r) = ĥ+

∫
dr

ρ(r)

|r− r′| + VXC (1.69)

f̂KSχi = εiχi . (1.70)

Those equations can be transformed into a set of matrix equations and solved iteratively
similarly to the Roothaan-Hall equations (1.23):

FKS C = S C ε , (1.71)

where FKS represents f̂KS in the AO basis; see reference [45] for a detailed derivation. The
KS-DFT approach can yield the exact electron density and energy given the exact VXC is
used. Unfortunately, the exact exchange-correlation potential is (also) unknown. Several
approximations exist and they are organized in different rungs on the so-called Jacob’s
ladder based on the sophistication of the approximation (see table 1.1) [46]. However in
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contrast to wave function methods, there is no guaranteed systematic improvement in the
approximation.

The first rung is the local density approximation (LDA); it treats the density as an infinite
uniform electron gas to calculate EXC . The exchange-correlation functional only depends on
the scalar value of the electron density. The contributions in EXC are split into the exchange
(EX) and correlation (EC) (EXC = EX+EC). The exchange term can take the analytic form
of the uniform electron gas [47], while the correlation term is approximated, for example,
by fitting to quantum Monte-Carlo data in the PW92 functional [48]. This approximation
already leads to good predicted molecular geometries, a reasonable description of the molec-
ular electronic structure, and a qualitative description of thermochemistry. However, bond
energies are overestimated by up to 20 kcal/mol referenced to high level coupled cluster
methods [20].

The second rung contains generalized gradient approximations (GGA). In the GGA for-
malism, a functional dependence on the reduced spin-density gradient, sσ, is introduced:
sσ = | 5 ρσ|/ρ4/3

σ , where σ denotes the spin σ ∈ {α, β}, whereas α and β are treated sep-
arately. Two of the most popular exchange functionals are PBE [49] and B88 [50]. GGA
exchange functionals lead to an improvement in accuracy in comparison to the LDA, yielding
semi-quantitative accuracy for a wide range of problems in chemistry [20, 51]. The third rung,
called meta-GGA, include the kinetic energy density (|∇ρ(r)|2), two popular functionals in
this rung are TPSS [52] and M06-L[53].

The fourth and most popular rung in chemistry contains hybrid density functionals. The
purely local functional of the previous rungs suffer from (nonphysical) self-interaction error in
the Coulomb energy functional, which is not properly canceled in all approximate exchange-
correlation functionals.[54, 55] This can be partially alleviated by incorporating Hartree-
Fock exchange. On the one hand, LDA and GGA functionals tend to overestimate binding
energies. On the other hand, the HF method underestimates these energies. These two can
be combined in hybrid functionals to yield improved accuracy. Hybrid GGA functionals
combine Hartree-Fock exchange with LDA and GGA exchange and correlation functionals:

EH
XC = cxE

HF
x + EDFA

XC , (1.72)

where EHF
x is the HF exchange, EDFA

XC the density functional approximation to the exchange-
correlation energy, and cx is typically ranging from 0.1 to 0.5. The parameter cx is usually
referred to as the “amount of exact exchange” (given in %). This approach was first pro-
posed by Becke [56] and –by far– the most popular (hybrid) density functional is B3LYP, a
combination of the B88 exchange functional and the VWN1RPA and LYP correlation func-
tionals with exact exchange [50, 56, 57]. It achieves overall good accuracy for a wide range
of problems [20, 51, 58]. Density functional theory is excellent in modeling interactions in
the local region, but fails for large separations. Hartree-Fock has naturally incorporated long
range exchange interactions in the exchange integral, but lacks correlation effects that are
significant in the local region. Long-range corrected hybrid functionals or range separated
hybrids (RSH) combine the strengths of the two by a smooth transition from density func-
tional theory in the short range to Hartree-Fock exact exchange in the long range (up to
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100%) [59, 60]. The exchange-correlation functional ERSH
XC is defined as follows:

ERSH
XC = cLRx ELR−HF

x +cSRx ESR−HF
x +(1−cLRx )ELR−DFA

X +(1−cSRx )ESR−DFA
X +EDFA

C , (1.73)

where the superscripts LR and SR denote long range and short range, respectively. A
popular example is the ωB97X functional. It performs better for standard thermochemistry
calculation and greatly reduces errors for problems involving self-interaction [61].

The fifth and final rung contains the double-hybrid functionals and they incorporate not
only exact exchange but also a correlated wave function theory such as MP2 (vide supra)
to further incorporate missing dynamical correlation. Therefore, the energies do not only
depend on the occupied KS-orbitals but also on the virtual orbitals. Popular double hybrid
functionals are B2PLYP[62] or ωB97M(2)[63].

There exist many strategies for the design of DFAs, which has led to an enormous number
of different functionals to date. The number of parameters in the DFA vary significantly
from 0 empirical parameters, e.g. in TPSS, to over 40 parameter in MN15 [64]. The highly
parameterized functionals can yield very high accuracy for specific energetics or properties
but also leads to poor transferability. This makes extensive benchmarking of DFAs an impor-
tant aspect of DFT. A detailed assessment of the performance of many density functionals
for a wide range of systems and properties can be found in references [20, 51, 58].

Rung name Variable Example

5. Double hybrid ρ(r),∇ρ(r), ∇2ρ(r), { χi, χa } ωB97M(2)
4. Hybrid ρ(r),∇ρ(r), ∇2ρ(r), { χi} B3LYP
3. meta-GGA ρ(r),∇ρ(r), ∇2ρ(r) TPSS
2. GGA ρ(r),∇ρ(r) PBE
1. LDA ρ(r) SPW92

Table 1.1: Jacob’s ladder of density functional approximations.

Several problems occur when DFT is used to describe electronic structure: First, long
range dispersion interactions between unbound chemical species are not well reproduced by
many commonly used functionals [65]. However, this problem is largely solved in modern
density functional theory by Grimme with the addition of an empirical dispersion correction
term (ED3)[66, 67]:

EDFT−D3 = EKS−DFT + ED3 . (1.74)

The empirical correction can be added to “traditional” functionals like B3LYP yielding
B3LYP-D3. In modern density functionals, the correction is often directly incorporated
such as B97-D3[62] and ωB97X-D3[68]. Another less empirical solution to this problem
is the development of non-local correlation functionals[69], which is used for example in
ωB97M-V[70].
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The second problem is poor cancellation between the electron self-interaction present
in the Coulomb term and the exchange energy. This error favors delocalized electronic
configurations and overestimates their stability. Therefore, reaction barriers are often un-
derestimated if the TS has a more delocalized electronic structure [20]. Another example is
the correct relative energy prediction of the different spin states in first row transition metal
complexes in the absence of strong field ligands. The calculated spin-state splitting for a
given complex varies almost linearly with the proportion of exact Hartree-Fock exchange
included in an otherwise constant functional. Increased exact exchange contributions lead
to lower relative energies for higher-spin states (or higher energies for low-spin states). As
a consequence, pure GGA functionals which do not contain any HF exchange overestimate
the stability of the low-spin configurations [58].

Thirdly, the KS-DFT framework uses a single Slater determinant; consequently, it is dif-
ficult to describe systems with significant amount of static correlation. A solution is broken
symmetry DFT (BS-DFT) in the unrestricted KS framework (UKS).[71–74] In analogy to
UHF, α and β spatial orbitals can differ, which results in spin symmetry breaking of the ref-
erence determinant as shown in equation 1.27 and is often referred to as a spin-contaminated
state. This state yields an electron density which corresponds well to the electron density of
the real antiferromagnetic state but qualitatively incorrect spin-densities.[75] The magnetic
coupling can be estimated with the Heisenberg-Dirac-van Vleck Hamiltonian (ĤHDvV )[76]:

ĤHDvV = −Jab
(
Ŝa · Ŝb

)
, (1.75)

where Jab denotes the magnetic coupling constant between two spin centers a and b and Ŝi
is the spin angular momentum of center i. Jab can be calculated with BS-DFT[77]:

Jab =
EBS − EHS

〈S2〉HS − 〈S2〉BS
(1.76)

where BS denotes the broken symmetry and HS the spin-pure high-spin state. This ap-
proach can yield high accuracy for systems with a few centers[78–80] but fails for pathological
cases like the multi-metal cluster, e.g. the P-cluster[81].

Energy Decomposition Analysis

“Give us insight and numbers” stated Frank Neese in a recent perspective article on the re-
quirements of modern quantum chemistry [5]. He argues that accurate energies alone are not
enough to advance the understanding of pressing chemical problems like nitrogen fixation.
Chemists often optimize interactions; thus they face questions such as “How dominant are
classical electrostatic interactions?”, or “how important are orbital donor-acceptor interac-
tions?”. Those insights are invaluable to engineer a given interaction, such as optimizing
the second coordination sphere moiety for the binding of CO2 to a catalyst (see chapter 4).
Consequently, energy decomposition analysis methods (EDA) play a vital part in the modern
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Figure 1.1: Schematic representation of the change of the electron density and the MO
coefficient matrix during the ALMO-EDA procedure.

quantum chemist’s toolkit to provide in-depth insights into important interactions. Those
methods usually aim to decompose the intermolecular binding energy ∆EINT defined for a
molecular complex comprising F molecules:

∆EINT = ETOT −
F∑
i=1

Ei , (1.77)

ETOT denotes the electronic energy of the supersystem and Ei the electronic energy of the
ith fragment (individual molecule).

Unfortunately, there is no unique approach to such a decomposition; hence, several
schemes are available with different philosophies leading to controversial discussions [82].
This thesis focuses on the absolutely localized molecular orbital EDA (ALMO-EDA) scheme[83,
84] and is based on a recent review article [85]. The binding energy is decomposed in four
terms:

∆EINT = ∆EGD + ∆EFRZ + ∆EPOL + ∆ECT , (1.78)

where ∆EGD denotes the geometry distortion energy, ∆EFRZ the frozen energy, ∆EPOL the
polarization energy and ECT the charge transfer energy. These four terms correspond to
energy differences of five intermediate states with different constraints explained below and
shown in figure 1.1. First, the energies are calculated fragmentwise with the optimized ge-
ometries of the m isolated molecules: Eiso =

∑
iEi, which corresponds to the reference state

of ∆EINT . Second, the frozen intermediate energy is computed from the isolated fragments
evaluated at the system geometry: Esys

iso =
∑

iE
sys
i , where Esys

i denotes the unconstrained
electronic energy of the ith molecule at the supersystem geometry. The energy distortion
term is then defined as: ∆EGD = Esys

iso − Eiso and comprises the energy required to distort
isolated molecules in the geometry they adopt in the supersystem complex.
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Third, the frozen state energy Efrz is computed for the supersystem with “frozen” orbitals.
The frozen orbitals are subject to the constraint that the orbitals of the isolated fragments
are unmodified (taken from the Esys

i states), denoted φi for the ith fragment; the union of all
frozen orbitals of each fragments form the supersystem frozen MOs: φFRZ = φ1⊕φ2⊕...⊕φm.
This constraint excludes any energy lowering due to polarization and charge transfer. The
frozen energy is then defined as: ∆EFRZ = Efrz − Esys

iso . It contains the following physical
components: (i) classical electrostatics, (ii) dispersion, (iii) Pauli repulsion (see below for a
detailed definition of these components). The energy contribution of each component can
be separated by further decomposition of the frozen energy [86]:

∆EFRZ = ∆EELEC + ∆EDISP + ∆EPAULI . (1.79)

Fourth, the polarized state energy Epol is obtained using an SCF-MI procedure described
in the HF section (SCF-MI can likewise be performed with KS-DFT). It allows for orbital
rotation on each fragment while keeping the fragment block structure of the MO coefficient
matrix. This constrained SCF procedure yields the ALMOs which, by construction, do not
allow charge transfer between fragments but polarization of each fragment. The polarization
energy is defined as ∆EPOL = Epol − Efrz.

Fifth, an unconstrained final state calculation yields delocalized canonical orbitals of
the supersystem complex φfull. The charge transfer energy can be decomposed in pairwise
donor-acceptor orbital interactions [87, 88].

The following passage defines each physical component of the EDA briefly:

Classical electrostatics are the Coulomb interactions of the charges and charge distribu-
tions of the fragments, it can be expressed for two fragments A and B in the non-overlapping
limit as

∆Eelec(AB) =

∫∫
dr1dr2ρA(r1)

1

r12

ρB(r2) ,

where ρi denotes the total (electron and nuclei) charge distribution of fragment i. It can either
be repulsive or attractive and has polynomial distance dependence with 1/R for charged-
charged fragments, 1/R2 for ion-dipole interactions and so on.

Dispersion or London force, is an quantum mechanical attractive interaction. Correlated
electron fluctuations lead to favorable induced dipole–induced dipole interactions. The inter-
action is usually weak but becomes significant for large systems as it grows with the number
of electrons. The leading long range decay is 1/R6.

Pauli Repulsion arises from the overlap of the electron densities of the fragments when
compressed into the supersystem complex. The anti-symmetry requirement of the fermionic
wave function forbids electrons with the same spin to occupy the same space. Therefore, the
Pauli repulsion “force” distorts the fragment electron densities, which is accompanied by a
loss of kinetic energy reflected in the (repulsive) Pauli repulsion energy. As it depends on
the overlap of orbitals, it decays exponentially with distance (e−αR).
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Figure 1.2: a) key donor-acceptor orbital pairs of the charge transfer for a
N2−[Ru(II)(NH3)5]

+ complex; b) schematic PES for the frozen, polarized and fully relaxed
PES for in the adiabatic EDA picture (relative energies against the isolated monomer en-
ergy).

Polarization describes favorable intra-fragment relaxation of the electron densities due to
the presence of the other fragments in the supersystem. Thus, polarization can be understood
as the response of the fragment’s electron density to the rest of the complex. In the long
range it is dominated by the response to the electric field of the remaining complex. Thus,
the leading long range decay is 1/R4 when a dipole responds to a monopole field.

Charge Transfer is the inter-molecular orbital mixing between donor and acceptor or-
bitals from different fragments such as a dative bond from a Lewis base to a Lewis acid.
The charge transfer energy decays exponentially as it depends on the overlap of the orbitals
(e−α′R). The important donor and acceptor orbitals can be extracted from the EDA cal-
culation with a pair-wise charge transfer decomposition scheme[87, 88] and are illustrated
for a pentaamine(dinitrogen)ruthenium(II) complex (N2−[Ru(II)(NH3)5]

+) in figure 1.2 (a).
The key CT orbitals recover the well established Dewar–Chatt–Duncanson model [89, 90]
for π-acidic ligand (such as N2) with σ forward donation and π back bonding.

The EDA scheme introduced above is evaluated at a single geometry (aside from the
geometric distortion term), and therefore is commonly denoted as vertical EDA (vEDA).
However, the definition of the new intermediate energy states (Efrz and Epol) allows one
to optimize the geometry or compute observables such as the vibrational modes at those
constrained intermediates. This yields for example bond distances without the effect of
charge transfer on the polarized surface or allows one to probe the effect of electrostatics,
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polarization or charge transfer on the blue shift in certain hydrogen bonds’ vibrational fre-
quencies[91]. In addition, the adiabatic energy decomposition (aEDA) can be defined, where
the complex geometry is optimized on each surface; as illustrated here for the polarization
energy ∆Ead

POL:
∆Ead

POL = Epol(Rpol)− Efrz(Rfrz) (1.80)

where Epol(Rpol) denotes Epol at the optimal geometry on the polarized surface (Rpol) and
Efrz(Rfrz) denotes Efrz at the optimal geometry on the frozen surface (Rfrz). This concept
is illustrated schematically in figure 1.2 (b).
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1.3 Computational Catalysis
“In theory there is no difference between theory and practice, while in practice
there is” -Benjamin Brewest

Computational chemistry has become a core part of catalysis research as modeling of the
reaction mechanism can provide vital insights into the catalytic pathway. It is possible to
predict complete catalytic pathways based on thermodynamics and kinetics, identifying tran-
sient intermediates and transition states. This can be achieved by employing state-of-the-art
electronic structure methods to compute –among many examples– Gibbs free energies, reac-
tion rates, redox potentials and pKa values. In addition, these calculations provide electronic
structure information about key intermediates, such as the localization of additional electrons
upon reduction. These insights illuminate intrinsic limitation in catalytic rates, degradation
pathways, the origin of selectivity and form the basis of rational improvements and design
of catalysts. The success of computational catalysis studies for a broad spectrum of topics
in homogeneous catalysis is illustrated by these review articles [92–96] and in particular for
homogeneous CO2 reduction in reference [97].

Despite this indisputable success, computational mechanistic studies must employ simpli-
fications in order to simulate complex reaction conditions in a feasible manner. Consequently,
it is not (yet) possible to obtain a comprehensive mechanistic picture solely by computational
studies. Noyori and Richmond express their scepticism about computational catalysis quite
dramatically: “The conclusions derived from an unrealistic assumption are far from truth,
and confuse and mislead the community” and further note: “We should appreciate solid ex-
perimental evidence more than frivolous computations. This prevailing trend is harmful to
the community”[98]. This illustrates the importance of cross-validation of both experimental
and computational findings to synthesize robust mechanistic insights. The quantum chem-
istry methods and models must be carefully calibrated and supplemented by experimental
methods, prediction errors estimated and the robustness of the findings probed. There are
various experimental methods which can be used to cross validate computational findings,
for example, cyclic voltammetry, X-ray diffraction, Mössbauer spectroscopy, X-ray absorp-
tion spectroscopy and stopped-flow kinetics technique. The interested reader is referred to
references [99] and [100].

This section presents the conceptional framework for the modelling of catalytic cycles
and major challenges that must be addressed to avoid “frivolous computations”. The pre-
sentation focuses on the modelling of homogeneous CO2 reduction catalysis as chapters 6–8
are concerned with mechanistic studies of various homogeneous electrocatalysts for the two-
proton two-electron reduction of CO2 to CO. There are several factors which govern the
success of computational catalytic mechanism studies; they are briefly outlined below and
closely follow reference [101]:

• Accurate electronic energies

• Treatment of enthalpic and entropic effects
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• Solvation

• Kinetic Model

• Conformer Analysis

These topics are discussed in the following sections; lastly, a brief overview is given on artifi-
cial photosynthesis, namely the role of CO2 reduction reaction (CO2RR) and the importance
of efficient catalysts to motivate the mechanistic studies in sections 6–8.

Calculation of Thermodynamic Properties

In this section the methods used to calculate thermodynamic properties are introduced;
namely the reaction free energy in different standard states, acid dissociation constants
(pKa values) and reduction potentials. In addition, the limits and accuracy are elucidated
to allow for a comparison to experimental data.

Electronic Energies

The electronic energy Eel constitutes the main part of the free energy and consequently any
inaccuracies translate to large inaccuracies in the free energy calculations. The most popular
electronic structure method is -without a doubt- KS-DFT (see section 1.2). DFT offers the
best compromise between accuracy and speed for typical systems in computational catalysis
(> 50 atoms, containing transition metals), with a formal scaling of O(N4) [20, 51, 102].

Alternative correlation wave function methods such as perturbation theory or coupled
cluster based methods perform poorly [39, 103] unless higher order terms are included making
them computationally unfeasible for larger systems [104]. A promising alternative to DFT
are local approximation of correlation methods such as local coupled cluster but their usage
requires careful tuning of various parameters to obtain both accurate and fast results [105–
107].

However regarding DFT calculations, a daunting question remains: Which functional
should be used? The number of available DFT functionals is enormous and (quickly) growing;
for example, over 200 DFT functionals are available in the Q-Chem software package[108].
Unfortunately, the optimal functional is highly system specific and therefore screening of
various DFT functionals for the problem at hand is essential. In the case of homogeneous
electrocatalysis for CO2 reduction, first row transition metal complexes with bulky chelating
ligands and a weak ligand field are used as catalysts. These systems have small spin gaps
and several possible stable coordination geometries. Both coordination geometry and spin
state greatly influence reaction pathways; thus, a high prediction accuracy is necessary. Dif-
ferent DFT functionals will produce biased results based on their parameters: First, the spin
gap (energy difference between the high-spin and low-spin configuration) in transition metal
complexes depends almost linearly on the amount of exact exchange used in the functional.
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As a consequence, local GGA functionals, which do not contain any HF exchange, overesti-
mate the stability of the low-spin configuration and functional with a large amount of exact
exchange will favor the high-spin configuration [58]. The recommendations for the accurate
prediction of spin gaps also varies dramatically in the literature from 0% exact exchange
[109] to 15%[110] and 20% – 30% [111]. The spin state bias is illustrated in figure 1.3 for
an iron(II) d6 complex (investigated in more detail in chapter 8). The experimentally deter-
mined spin gap is ∼ 1kcal/mol (favoring the low-spin configuration) and DFT functionals
predict a wide range of different energy gaps.

Figure 1.3: Illustration of the functional dependence of the spin gap in an iron(II) complex.

Second, long range dispersion forces are not included in many density functionals. This
can systematically bias results towards lower coordination numbers if the dative bonds to the
metal are weak. However, this shortcoming of DFT can readily be addressed by empirical
dispersion corrections [66, 112] or nonlocal correlation functionals[69]. Many modern density
functionals include these by default such as B97-D[62] or ωB97M-V [70].

Third, reaction barriers are often underestimated if the transition state has a more de-
localized electronic structure. This originates from poor cancellation between the electron
self-interaction present in the Coulomb term and the exchange energy. This error favors
delocalized electronic configurations and overestimates their stability. Consequently, local
functionals with no exact exchange like B97-D underestimate barrier heights significantly;
this is illustrated in the comprehensive review [20] (figure 26) where B97-D exhibits RMSDs
for barrier height of ∼8 kcal/mol and RSHs like ωB97M-V with 100% long range and 15%
short range exact exchange exhibits RMSDs of ∼2 kcal/mol.

Fourth, static or strong correlation cannot properly be described by DFT within the KS
framework as it generates densities from a single Slater-determinant. Problems with static
correlation can for example arise in reduced intermediates of a catalytic cycle. In many
cases the additional electrons localize in non-innocent ligand moieties and are stabilized
by exchange interactions with unpaired electrons at the metal center (see chapters 6–8).
These weak metal-ligand bonds have small energy gaps between bonding and anti-bonding
orbitals resulting in partial occupation of various orbitals. Thus, multi-determinant wave
function methods such as complete active space SCF (CASSCF) are required to describe
this bonding situation properly. However, in many cases broken-symmetry DFT can be used
(see section 1.2). This approach can yield remarkably high accuracy [78–80] although it is
known to fail for pathological cases [81]. Unfortunately, the accuracy of BS-DFT prediction
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is functional- and system-dependent.[113] Specifically for polypyridyl complexes investigated
in this study local functionals predict more accurate results [114, 115]. Therefore, it requires
deep understanding of the electronic structure of the targeted system to recognize if BS-DFT
can be used and if so to converge the SCF to the target BS-DFT state [103].

Fifth, converging results (close) to the basis set limit is desirable to avoid basis set
artifacts. A small basis will bias results towards higher coordination numbers because of the
basis set superposition error [116]. In case of DFT a triple zeta (preferably quadruple zeta)
basis can typically yield results sufficiently close the basis set limit [20]. However, for wave
function methods larger basis sets or extrapolation schemes are necessary [117]. The most
economical compromise (also used in this thesis work) between accuracy and cost is to run
the geometry optimization and frequency calculation with a smaller basis set, followed by a
single point calculation with a larger basis set.

Calculation of Gibbs Free Energies

The electronic energy Eelec obtained from quantum chemistry refers to the energy of a single
molecule in vacuum at 0 K. This is seldom a good approximation for chemistry. Most
reactions happen at finite temperature and in macroscopic quantities. Therefore, these
large ensembles of molecules are governed by macroscopic properties such as the Gibbs free
energy or enthalpy. This section briefly summarizes the key approximations and equations
which make it possible to augment electronic energies to obtain these desired thermodynamic
quantities. This section is based on reference [10].

The core approximation for this procedure is the ideal gas approximation: The system is
treated as a canonical ensemble of an ideal gas (fixed temperature T , volume V and particle
number N) with an ensemble partition function Q(N, V, T ). The ideal gas approximation
reduces the ensemble partition function Q to be only expressed in terms of the partition
function of a single molecule q:

Q(N, V, T ) =
q(V, T )N

N !
. (1.81)

Furthermore, the molecular partition function q is assumed to be separable into electronic,
translational, rotational and vibrational contributions:

q(V, T ) = qelec(T )qtrans(V, T )qrot(T )qvib(T ) . (1.82)

The desired thermodynamic properties can be obtained by partial differentiation of Q.
The internal energy U is defined as

U = kBT
2

(
∂lnQ

∂T

)
N,V

, (1.83)

where kB denotes the Boltzmann’s constant and the enthalpy H is defined as

H = U + PV . (1.84)
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The entropy S is defined as

S = kBlnQ+ kBT

(
∂lnQ

∂T

)
N,V

(1.85)

and Gibbs free energy G is given by:

G = H − TS . (1.86)

The separability of the partition function results in additive contributions to U and S:

U = U0 + Uelec + Utrans + Urot + Uvib (1.87)

S = Selec + Strans + Srot + Svib (1.88)

The internal energy U at 0 K is defined as:

U0 = Eel + εZPE , (1.89)

where εZPE denotes the zero-point vibrational energy. The vibrations of the molecule are
approximated by a harmonic potential around the stationary point (geometry) on the Born-
Oppenheimer PES. The correction term arises then from the quantum mechanical treatment
of the harmonic oscillator where the lowest vibrational energy level is not zero. εZPE is
defined as:

εZPE =
1

2

M∑
i

~ωi , (1.90)

where ~ denotes the reduced Planck’s constant, ω the vibrational frequency and M the
number of vibrational modes.

The individual contributions to the partition function from equation 1.82 are discussed
below:

Electronic Contributions: The electronic partition function is usually set to be simply
qelec = 1, assuming no degeneracy at the ground state and large energy gaps between the
electronic ground state and excited states. Thus, the contribution to both the internal energy
beyond U0 and the entropy are zero.

Translational Contributions: The molecule is treated as a particle in a large cubic box
with volume V which yields the following partition function:

qtrans(V, T ) =

(
2πMkBT

h2

)3/2

V , (1.91)

where M denotes the molecular mass. This yields the following contributions:

Utrans =
3

2
RT , (1.92)
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where R denotes the gas constant and the entropy is defined as

Strans = R

(
ln

([
2πMkBT

h2

]3/2
V

NA

)
+

5

2

)
. (1.93)

In the standard state V corresponds to 24.5 L (1 atm and 298 K).
Rotational Contributions: The molecule is treated as a quantum mechanical rigid-rotor

which yields the following partition function (for a general case):

qrot(T ) =

√
πIAIBIC
σ

(
8π2kBT

h2

3/2
)

, (1.94)

where IX denotes a principal component of inertia. This results in the following contribu-
tions:

Urot =
3

2
RT (1.95)

Srot = R

(
ln

([
8π2kBT

h2

]3/2 √
πIA, IB, IC

σ

)
+

2

2

)
(1.96)

Vibrational Contributions: The vibrations of the molecules are assumed to be separa-
ble and are approximated as quantum harmonic oscillators. This results in the following
partition function (assuming a non-linear molecule):

qvib(T ) =
3K−6∏
i

1

1− e−hωi/(kBT )
, (1.97)

where K denotes the number of atoms. This results in the following contributions:

Uvib = R
3K−6∑
i

hωi
kB(ehωi/kBT − 1)

(1.98)

Svib = R

[
3K−6∑
i

hωi
kBT (ehωi/kBT − 1)

− ln
(
1− e−hωi/kBT

)]
. (1.99)

Solvation

The accurate but efficient description of solvation effects is crucial for catalytic pathways.
Ideally the effect of solvation is treated with full molecular simulations and statistical me-
chanics, for example the role of thermal flucuation was identified to be critical for binding of
CO to the electrocatalyst in heterogeneous catalysis.[118] However, implicit solvation mod-
els offer the best compromise between accuracy and computational cost and are, therefore,
used most commonly. The polarizable continuum model (PCM)[119, 120] treats the solvent
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as a polarizable medium with a dielectric constant ε, which differs for each solvent, e.g.
ε(MeCN) = 35.7. The cavity is constructed from a union of atom-centered spheres using
different radii for each atom (UFF radii or Bondi radii[121]). The electric charge distribu-
tion of the molecule will polarize the medium, which in turn acts back on the solute, thereby
producing an electrostatic stabilization inducing a change in the electronic structure of the
solute. The interaction with the solvent model must therefore be calculated via an iterative
procedure. In addition to the electrostatic contribution, dispersion interactions between so-
lute and solvent lead to further stabilization and are included empirically in some models
such as the SMX models[122] (though not PCM itself).

The solvation free energy is approximated as the energy difference between the gas phase
electronic energy Egas and the implicit solvation electronic energy Esolv:

∆Gsolv ≈ Esolv − Egas . (1.100)

The models are parameterized to estimate solvation free energies and build upon the models
described above to estimate free energies in the gas phase. The accuracy is quite remarkable
for uncharged species in polar solvents typically within 1 kcal/mol versus experiment. The
error is larger for charged species with up to 5 kcal/mol (for small organic molecules and
ions).[123] This difference in accuracy for charged and neutral species introduces biases for
reaction steps where the charge changes during the reaction, for example, a reduction pro-
cess or a protonation; see further discussion below. The performance for charged systems
can sometimes be improved by adding a single explicit solvent molecule to incorporate an
additional explicit local solute-solvent interaction. This improves solvation energies of sys-
tems where the charge is localized on a few exposed heteroatoms. By helping to account
for strong hydrogen bonding interactions between the anion and the solvent [124]. However,
one drawback of this method is how to decide when to incorporate explicit solvent molecules
and for bigger systems one must determine the number of water molecules and their optimal
position.[125]

Furthermore, the change in the standard ∆G◦→∗ state from 1 atm in the gas phase to
1 M in solution must be taken into account (for a detailed derivation see Ref [125]):

∆G◦→∗ = RT · ln(24.4654) = 1.89 kcal/mol (for T = 298 K) . (1.101)

Therefore, the Gibbs free energy in solution ∆G◦solv is defined as:

G◦solv = G◦gas + ∆Gsolv + ∆G◦→∗ . (1.102)

This allows to compute reaction energies of m products and n reactants:

∆RG
◦
solv =

m∑
i

aiG
◦
solv(i)−

n∑
j

ajG
◦
solv(j) , (1.103)

where ax denotes the stochiometric reaction coefficient.
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ΔRedG°gas
Agas + e- A-

gas

ΔRedG°solv
Asolv + e- A-

solv

−ΔGsolv(A) ΔGsolv(A-)

Figure 1.4: Thermodynamic cycle for calculating the change in free energy during a redox
process.

Calculation of Reduction Potentials

The change in Gibbs free energies for a reduction event in solution ∆RedG
◦
solv is obtained by

the thermodynamic cycle depicted in figure 1.4:

∆RedG
◦
solv = G◦gas(A

−) + ∆Gsolv(A
−)−G◦gas(A)−∆Gsolv(A) . (1.104)

The Gibbs free energy change is then used to calculate an absolute potential via:

Eabs
calc = −∆RedG

◦
solv

nF
, (1.105)

where F is the Faraday constant and n the number of electrons. However, experimental
potentials are always reported versus a reference electrode like the standard hydrogen elec-
trode. Therefore, the absolute potential of a reference electrode (Eabs

exp(Reference)) must
be subtracted from Eabs

calc to obtain comparable values (the unit and reference are given in
brackets):

E0
calc[V vs Reference] = Eabs

calc[V ]− Eabs
exp(Reference)[V ] . (1.106)

These absolute values are experimentally determined [126]. However, the values of the refer-
ence electrode can vary from experiment to experiment, depending on the solvent, electrolyte
and the reference electrode itself. The experimental variations as well as the systematic er-
rors introduced by the theoretical approach (i.e. choice of functional, basis set and solvent
model) usually lead to deviations of approximately 200 mV relative to the experiment [127].

Alternatively and often more satisfactory, experimental redox potentials can be reported
with respect to a reference couple (RC), e.g. the Ferrocene/Ferrocenium couple ([Fc]0/+) as
an internal standard.

E0
exp[V vs RC] = E0

exp[V vs Reference]− E0
exp(RC)[V vs Reference] , (1.107)
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where E0
exp is the experimental redox potential.

The same approach can be used for the reduction potentials calculated with DFT. Using
a reference couple as internal reference, a reduction of the systematic error is achieved with
accuracy of∼ 100 mV compared to experimental values [128]. This improved accuracy can be
explained by both the decrease in the computational systematic error because of favorable
error cancellation and preclusion of an experimentally measured absolute potential. The
origin of the systematic errors in the calculations are extensively discussed in section 1.3.
The potentials are calculated as follows:

E0
calc[V vs RC] = Eabs

calc[V ]− Eabs
calc(RC)[V ] . (1.108)

To minimize systematic errors the internal references should be measured under the exact
same experimental conditions and computed with the exact same level of theory. In addition,
the internal reference should contain a transition metal of the same row [128]. Therefore, in
this thesis the Fc0/+ couple was used as an internal reference.

Calculation of pKa Values

The pKa value is used by chemists to classify the acidity of a molecule. Its calculation using
only first principals quantum mechanical methods is briefly introduced in the following. This
section is based on the two reviews [125, 129] and they should be consulted for further details.
For the acid dissociation reaction of an acid HA in a solvent S the following equilibrium can
be formulated:

HAs 
 A−s +H+
s (1.109)

and the associated equilibrium constant Ka can be calculated:

Ka =
[A−][H+]

[HA]
, (1.110)

where [HA], [A– ] and [H+] correspond formally to the activities of the acid HA, the corre-
sponding base A– and a proton. However, in practice simple concentrations are used for
liquid systems with low acid concentrations. The pKa is then defined as:

pKa = −log(Ka) . (1.111)

Ka can also be calculated from the Gibbs free reaction energy ∆rG
◦
solv:

∆rG
◦
solv = −RTln(Ka) = −2.303 ·RTlog(Ka) . (1.112)

Since the Gibbs free energy is a state function, a thermodynamic cycle can be used to obtain
∆rG

◦
solv. It is calculated according to the cycle depicted in figure 1.5:

∆rG
◦
solv = G◦solv(A

−) +G◦solv(H
+)−G◦solv(HA) . (1.113)
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ΔrG°gas
AHgas A-

gas        +        H+

ΔrG°solv
AHsolv A-

solv       +        H+

-ΔGsolv(A) ΔGsolv(A-) ΔGsolv(H+)

Figure 1.5: Thermodynamic cycle for calculating the change in free energy for the dissociation
of an acid HA. The free energies of HA and A– are obtained from converged gas phase
calculations and the solvation energies from C-PCM calculations. For the free energy of the
proton the experimental value −264.58 kcal/mol is used (see text for details).

The Gibbs free energies of HA and A– are obtained in the same way as illustrated earlier in
this section. However, the Gibbs free energy of a proton cannot be calculated using quantum
chemical methods because it does not have any electrons. G◦gas(H+) can be calculated using
the Sackur-Tetrode equation yielding −6.28 kcal/mol for 1 M in the standard state at 298 K
and 1 atm pressure [125]. Unfortunately, the value for the solvation energy ∆Gsolv(H

+) is
less certain and different values have been reported in recent years because it is difficult
to measure an isolated ion [125]. The value which is currently used is −260.2 kcal/mol for
1 M in the standard state [130]. This value is also used in the computational CO2 reduction
literature [131–133]. Furthermore, the change in standard state from 1 atm gas phase to 1 M
solution phase must be taken into account which is 1.89 kcal/mol at 298 K. Adding up these
values leads to G◦solv(H+) = −264.6 kcal/mol. Employing this experimental value makes it
challenging to compute accurate pKa values because an error of only 1.36 kcal/mol leads
to a deviation of 1 pKa unit [134]. Besides the already discussed error due to introducing
experimental solvation values, other factors need to be considered to minimize errors in the
pKa calculations.

The greatest source of error is the calculation of the solvation energies of A– and HA.
This leads to a different accuracy in solvation energies of the acid HA and the base A– .
Therefore, the difference ∆∆Gsolv(HA), which is defined as:

∆∆Gsolv(HA) = ∆Gsolv(A
−)−∆Gsolv(HA) , (1.114)

is dominated by the solvation energy of the anion; thus, the systematic errors tend to not
cancel out. This is one of the main reasons for the deviations of experimental and calculated
pKas. The RMSD error for a set of small neutral (in)organic acids is 4–11 units [133, 135].
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Another way to avoid the experimental value of G◦solv(H+) and have error cancellation in
both the gas phase reaction and solvation energies is the isodesmic reaction scheme [125, 129,
136]. Instead of a direct calculation of the dissociation reaction, the difference is calculated
to a known reference system (BH):

HAs +B−s 
 A−s +BHs

and with the associated ∆rG
◦
solv and the known pKa of the reference the pKa is calculated:

pKa(HA) =
∆rG

◦
solv

2.303RT
+ pKa(BH) . (1.115)

In this reaction the usage of a proton is avoided; in addition, the net charge on both sides
of the reaction is balanced, which allows cancellation of the systematic error in the solvation
energies for charged species. This approach has the capability to produce Gibbs free reac-
tion energies within a few tenth of a kcal/mol for organic acids in various solvents yielding
considerably more accurate pKa values [129]. In case of transition metal systems, the pKa

prediction for hydride complexes of the first, second and third transition metal row achieved
an accuracy of 1.9 pKa units using the same reference for all molecules [136]. However, this
approach is only valid if the pKa of a reference system is known and also similar to the
unknown one. Furthermore, the degree of error cancellation also depends on the similarity
of the investigated and reference system in electronic structure and geometry.

A similar approach is presented by Muckerman et al [135], they also realized the signifi-
cance of the systematic solvation error ∆∆Gsolv and suggested a linear correction by fitting
a training set of acids to their experimental values in order to obtain a correction term for
∆rG

◦. They were able to reduce the RMS significantly for a test set of neutral acids from
11.3 to 1.3 pKa units with this approach and claim an accuracy of 2 units. They emphasize
the importance of choosing a suitable training set for each problem, e.g. they classified dif-
ferent training sets for neutral and cationic acids. This ansatz has the same problems as the
above discussed isodesmic reaction approach.

The systems investigated in this thesis do not have suitable reference molecules for the
isodesmic ansatz. In addition, the calculation of explicit solvent molecules for every pro-
tonated species is not tractable. Therefore, all pKa values are directly calculated using
G◦solv(H

+) = −264.6 kcal/mol but as extensively discussed in this section the values should
only be compared to each other but not to experimental values due to uncertainties. How-
ever, work in this thesis computes free energies for the protonation reactions with carbonic
acid H2CO3 instead of a proton. This has two advantages, it resembles the experimental con-
ditions and leads to better error cancellation in the computation as the charge is conserved
over the reaction step.

Kinetic Model

Accelerating the overall reaction rate k is the core ability of a catalyst. Thus, catalysis is
an intrinsically kinetic effect which should be reflected in the modeling. The metric of a
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catalyst activity is the turnover frequency (TOF) number of cycles per catalyst per second:

TOF =
N

[C]t
, (1.116)

where N denotes the total turnover number of cycles, [C] the catalyst concentration and
t time (assuming first order in the catalyst and in the steady state). The whole cycle can
be decomposed in a series of elemental reaction steps with rates k1, k2, ..., kn and reaction
free energies ∆rG1,∆rG2, ...,∆rGn. However, experimentally only the overall rate k and free
energy ∆rG can be determined.

The Eyring Theory connects the kx of a single elementary step with stationary points on
the PES: reactants (minima) and transition states (saddle points). The activation energy
∆G‡solv is defined as the Gibbs free energy difference between the TS and the reactants. The
rate constant k of a reaction depends on ∆G‡solv:

k =
kBT

h
e−∆G‡

solv/RT . (1.117)

In a first approach to compute the overall TOF, all the elementary steps of the cycle
can be coupled with quasi-stationary concentrations, which leads to complicated systems
of equations [137]. A second approach is to estimate the overall TOF from the slowest
elementary step in the cycle: TOF ≈ kx and the associated reactant and transition state are
denoted rate limiting intermediate and rate limiting step. This approach, however, is a crude
approximation especially if multiple steps are important or if the rate limiting intermediate
is not in the same step as the transition state. A third approach is the energetic span model,
which is currently one of the most popular models [138–140].

This model connects the free energy landscape of the DFT based catalytic cycles with
the experimentally measured turnover frequencies using Eyring transition state theory. The
model couples the elementary reaction steps in the energy representation (the natural rep-
resentation of quantum chemistry) instead of the rate representation discussed above. The
key assumption behind the energetic span model are: first, transition state theory is valid;
second, the system is in a steady state; third, the intermediates undergo fast relaxation [138,
139]. The TOF can be expressed in the following way (see references [138] and [139] for the
derivation):

TOF =
kBT

h

e−∆rG/RT − 1∑N
ij e

(Ti−Ij−δGij)/RT
=

∆∑N
ij Mij

, (1.118)

where ∆rG denotes the free energy of the global reaction, Ti the free energy of ith transition
state and Ij the free energy of the jth intermediate, and δGij = ∆rG ∀i ≥ j (when the
intermediate appears after the transition state in the cycle) or δGij = 0 otherwise.

The TOF is often dominated by a single transition state and intermediate denoted as
TOF-determining transition states (TDTS) and the TOF-determining intermediates (TDI).
Thus, equation 1.118 is dominated by single term of the sum in the denominator and the
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TOF can be approximated as:

TOF ≈ kBT

h
eδE/RT , (1.119)

where δE = TDTS−TDI+δGij. This energy difference is called the TOF determining ener-
getic span. It is important to realize that the TDI and TDTS are not necessarily the highest
or lowest states and must not be necessarily adjoined in a single step. The identification of
these intermediates is the basis for rational improvements of the catalyst.

However, the TOF is not necessarily controlled by a single intermediate or transition
state. The influence of a single state can be expressed by the degree of rate control XTOF,i,
which is defined as the normalized influence of a certain rate constant Ei on the overall rate
of the reaction [140, 141]:

XTOF,i =

∣∣∣∣ 1

TOF

∂TOF

∂Ei

∣∣∣∣ (1.120)

This yields the following equations for the influence of intermediates XTOF,Ik and transition
states XTOF,Tk :

XTOF,Ik =

∑
iMik∑
ijMij

(1.121)

XTOF,Tk =

∑
jMkj∑
ijMij

(1.122)

The range of XTOF is between 0 and 1, where 0 denotes that the species has no influence
on the TOF and 1 denotes that the species solely controls the TOF. The AUTOF program1

automatically generates both TOF and XTOF based on the computed cycles with a simple
input file [138, 139, 142].

Conformation Analysis

To date, it is easily possible to use quantum mechanical DFT calculations to simulate sys-
tems with over 100 atoms. As the number of atoms grows, the conformer space grows
exponentially and reaction pathways/ networks become complex. This makes it increasingly
difficult to identify the global minimum for each intermediate or transition state, which can
have detrimental effects on the reliability of the predicted reaction pathway. This can be
illustrated for the reduction of the iron complex in figure 1.3: The isomer space includes
different (broken symmetry) spin states, coordination numbers, and partial dissociation of
the chelating ligand. It is not possible to explore the whole isomer space, therefore, chemical
intuition and creativity are key for exploring the isomer space efficiently and accurately.

Alternatively, force fields or semi-empirical methods can be used to screen a larger space.
Lowest energy isomers are then used in the quantum mechanical calculations.[143] Another

1It can be downloaded free of charge from https://www.bgu.ac.il/~kozuch/software.html

https://www.bgu.ac.il/~kozuch/software.html
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approach is the automated generation of structures, which are then used as guess structures
in the quantum chemistry calculations.[144, 145] In addition, machine learning models like
random forests or neural networks can be utilized in reaction mechanism discovery and
catalyst design. This interesting emerging field is, however, beyond the scope of this thesis
and the interested reader is referred to references [146–148].

Artificial Photosynthesis and CO2 Reduction

Anthropogenic CO2 emission has risen significantly since the beginning of the industrial rev-
olution[149] resulting in unprecedented high atmospheric CO2 concentrations of 420 ppm in
2020[150]. The green-house effect of CO2 has detrimental environmental implications such
as global warming and acidification of the ocean [151]. Simultaneously, natural fuel resources
are diminishing which makes the conversion of CO2 into high energy fuels a promising long
term solution [152]. In order to achieve a net carbon emission free society, the transforma-
tion of CO2 should be coupled to renewable energy sources such as solar power. Nature
already provides a successful template for such a process: Photosynthesis uses sunlight to
convert CO2 and H2O into glucose and oxygen. Consequently, artificial photosynthesis has
emerged as a prominent research field in chemistry [153–156]. This process is multifaceted
and requires innovation in various aspects: efficient light harvesting, e.g. via solar cells;
efficient CO2 capture and storage and efficient electrocatalysts for the CO2 reduction reac-
tion (CO2RR). This thesis focuses on the last point: electrocatalysts for CO2RR. There are
various approaches such as biological [157], photochemical [158], electrochemical [159–161],
photoelectrochemical reduction[155, 159] or reduction by hydrogenation [162].

The inertness of CO2 is illustrated by the negative potential required for the one electron
reduction, summarized in table 1.2. However, proton coupled electron transfers requires
significantly less negative potentials. There is a plethora of possible products and a short
summary for each possible oxidation state is shown in table 1.2; a comprehensive overview
is presented in reference [163]. Among those products, CO is economically most viable due
to its usage in the Fischer-Tropsch process [164]. Another key take-away from table 1.2 is
that the hydrogen evolution reaction (HER) is a possible side reaction feasible at similar
potentials which is why substrate selectivity is another important aspect to consider. In
order to operate at a small overpotential, with fast reaction rates and product selectivity,
the employment of electrocatalysts is critical.

Homogeneous electrochemical reduction is a promising candidate because of its high
substrate and product selectivity (> 90%) good turnover rates and tunability [165–167].
The concept of an electrocatalyst is illustrated in figure 1.6. In the uncatalyzed system,
the electrochemical reaction takes place directly at the electrode without a catalyst and
requires a high overpotential to achieve fast reaction rates. In contrast, a homogeneous
electrocatalyst gets reduced at the electrode at a lower overpotential and diffuses in the
double layer to then transfer the electrons to CO2. In addition to facilitating the electron
transfer, it can also catalyze other elementary reaction steps like protonation and thereby
both reduce overpotential and increase rates [168]. Even further improvements in rates is
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Table 1.2: Reduction potentials of CO2 and proton reduction at pH = 7 versus the standard
hydrogen electrode.[163]

Reaction Potential

CO2 + e– −−→ CO ·–
2 E0= −1.90 V

CO2 + 2H+ + 2 e– −−→ CO + H2O E0= −0.53 V
CO2 + 4H+ + 4 e– −−→ H2CO + H2O E0= −0.48 V
CO2 + 6H+ + 6 e– −−→ H3COH + H2O E0= −0.38 V
CO2 + 8H+ + 8 e– −−→ CH4 + 2H2O E0= −0.24 V
2H+ + 2e– −−→ H2 E0= −0.42 V

Figure 1.6: Schematic concept of (a) an uncatalyzed CO2 reduction reaction and (b) a
homogeneous electrocatalyst (the silver surface corresponds to the electrode and the blue
surface to the double layer).

possible with a flow cell, achieving a current density comparable to a heterogeneous catalyst
and a selectivity above 95% [169]. Alternatively, activity can be improved by incorporating
the catalyst into metal/covalent organic frameworks [170, 171].

1.4 Outline
The chapters two, three and four are concerned with the development of energy decomposi-
tion methods. The fifth chapter surveys the accuracy of various perturbation theory methods
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for non-covalent interactions, and the remaining three chapters provide mechanistic studies
for various polypyridine based catalysts for the reduction of CO2 to CO. In more detail:

Chapter 2: To study intermolecular interactions involving radicals at the correlated level,
the Energy Decomposition Analysis scheme for Second-Order Møller-Plesset Perturbation
Theory based on Absolutely Localized Molecular Orbitals (ALMO-MP2-EDA) is generalized
to unrestricted and restricted open-shell MP2. The benefit of restricted open-shell MP2 is
that it can provide accurate binding energies for radical complexes where density functional
theory can be error prone due to delocalization errors. As a model application, the open-shell
ALMO-MP2-EDA is applied to study the first solvation step of halogenated benzene radical
cations, where both halogen and hydrogen bonded isomers are possible. We determine that
the lighter halogens favor the hydrogen-bonded form, while the iodine-substituted species
prefers halogen bonding due to larger polarizability and charge transfer at the halogen. As a
second application, relevant to the activation of CO2 in photoelectrocatalysis, complexes of
CO2

−• interacting with both pyridine and imidazole are analyzed with ALMO-MP2-EDA.
The results reveal the importance of charge transfer into the π∗ orbital of the heterocycle in
controlling the stability of the carbamate binding mode, which is favored for pyridine, but
not for imidazole. This work has been published in reference [172].

Chapter 3: To facilitate the understanding of charge transfer (CT) effects in dative com-
plexes, we propose a variational forward-backward (VFB) approach to decompose the over-
all CT stabilization energy into contributions from forward and backward donation in the
framework of energy decomposition analysis based on absolutely localized molecular orbitals
(ALMO-EDA). Such a decomposition is achieved by introducing two additional constrained
intermediate states in which only one direction of CT is permitted. These two “one-way”
CT states are variationally relaxed such that the associated nuclear forces can be readily
obtained. This allows for a facile integration into the previously developed adiabatic EDA
scheme so that the molecular property changes arising from forward and back donation can
be separately assigned. Using ALMO-EDA augmented by this VFB model, we investigate
the energetic, geometric, and vibrational features of complexes composed of CO and main
group Lewis acids (BH3, BeO/BeCO3), and complexes of the N2, CO, and BF isoelectronic
series with [Ru(II)(NH3)5]

2+. We identify that the shift in the stretching frequency of a
diatomic π-acidic ligand (XY), such as CO, results from a superposition of the shifts in-
duced by permanent electrostatics and backward CT: permanent electrostatics can cause an
either red or blue shift depending on the alignment of the XY dipole in the dative complex,
and this effect becomes more pronounced with a more polar XY ligand; the back-donation
to the antibonding π orbital of XY always lowers the X−Y bond order and thus red-shifts
its stretching frequency, and the strength of this interaction decays rapidly with the inter-
molecular distance. We also reveal that while σ forward donation contributes significantly
to energetic stabilization, it affects the vibrational feature of XY mainly by shortening the
intermolecular distance, which enhances both the electrostatic interaction and backward CT
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but in different rates. The synergistic effect of the forward and backward donations appears
to be more significant in the transition metal complexes, where the forward CT plays an es-
sential role in overcoming the strong Pauli repulsion. These findings highlight that the shift
in the XY stretching frequency is not a reliable metric for the strength of π back-donation.
Overall, the VFB-augmented EDA scheme that we propose and apply in this work provides
a useful tool to characterize the role played by each physical component that all together
lead to the frequency shift observed. This work has been published in reference [173].

Chapter 4: To facilitate computational investigation of intermolecular interactions in the
solution phase, we report the development of ALMO-EDA(solv), a scheme that allows the
application of continuum solvent models within the framework of energy decomposition anal-
ysis (EDA) based on absolutely localized molecular orbitals (ALMOs). In this scheme, all
the quantum mechanical states involved in the variational EDA procedure are computed
with the presence of the solvent environment so that solvation effects are incorporated in the
evaluation of all its energy components. After validation on several model complexes, we em-
ploy ALMO-EDA(solv) to investigate substituent effects on two classes of complexes that are
related to molecular CO2 reduction catalysis. For [FeTPP(CO2−κC)]2− (TPP = tetraphenyl-
porphyrin), we reveal that two ortho substituents which yield most favorable CO2 binding,
−N(CH3)

+
3 (TMA) and −OH, stabilize the complex via through-structure and through-

space mechanisms, respectively. The Coulombic interaction between the positively charged
TMA group and activated CO2 is found to be largely attenuated by the polar solvent. Fur-
thermore, we also provide computational support for the design strategy of utilizing bulky,
flexible ligands to stabilize activated CO2 via long-range Coulomb interactions, which cre-
ates biomimetic solvent-inaccessible “pockets” in that electrostatics is unscreened. For the
reactant and product complexes associated with the electron transfer from the p-terphenyl
radical anion to CO2, we demonstrate that the double terminal substitution of p-terphenyl
by electron-withdrawing groups considerably strengthens the binding in the product state
while moderately weakens that in the reactant state, which are both dominated by the sub-
stituent tuning of the electrostatics component. These applications illustrate that this new
extension of ALMO-EDA provides a valuable means to unravel the nature of intermolecular
interactions and quantify their impacts on chemical reactivity in solution. This work has
been published in reference [174].

Chapter 5: This chapter systematically assesses the influence of reference orbitals, regu-
larization and scaling on the performance of second- and third-order Møller-Plesset pertur-
bation theory wavefunction methods for non-covalent interactions (NCI). Testing on 19 data
sets (A24, DS14, HB15, HSG, S22, X40, HW30, NC15, S66, AlkBind12, CO2Nitrogen16,
HB49, Ionic43, TA13, XB18, Bauza30, CT20, XB51 and Orel26rad) covers a wide range
of different NCI including hydrogen bonding, dispersion, and halogen bonding. Inclu-
sion of potential energy surfaces from different hydrogen bonds and dispersion-bound com-
plexes gauges accuracy for non-equilibrium geometries. 15 methods are tested. In notation
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where nonstandard choices of orbitals are denoted as method:orbitals, these are MP2, κ-
MP2, SCS-MP2, OOMP2, κ-OOMP2, MP3, MP2.5, MP3:OOMP2, MP2.5:OOMP2, MP3:κ-
OOMP2, MP2.5:κ-OOMP2, and κ-MP3:κ-OOMP2, κ-MP2.5:κ-OOMP2, MP3:ωB97X-V,
and MP2.5:ωB97X-V. Furthermore, we compare these methods to the ωB97M-V and B3LYP-
D3 density functionals as well as CCSD. We find that the κ-regularization (κ = 1.45 a.u.
was used through-out) improves the energetics in almost all data sets for both MP2 (in 17
out of 19 data sets) and OOMP2 (16 out of 19). The improvement is significant (e.g. the
RMSD for the S66 data set is 0.29 kcal/mol for κ-OOMP2, versus 0.67 kcal/mol for MP2),
and for interactions between stable closed shell molecules, not strongly dependent on the
reference orbitals. Scaled MP3 (with a factor of 0.5) using κ-OOMP2 reference orbitals
(MP2.5:κ-OOMP2) provides significantly more accurate results for NCIs across all data sets
with non-iterative O(N6) scaling (S66 data set RMSD: 0.10 kcal/mol). Across the entire
data set of 356 points, the improvement over standard MP2.5 is approximately a factor of
two: RMSD for MP3:κ-OOMP2 is 0.25 kcal/mol vs 0.50 kcal/mol for MP2.5. The use of
high-quality density functional reference orbitals (ωB97X-V) also significantly improves the
results of MP2.5 for NCI over a Hartree-Fock orbital reference. All our assessments and
conclusions are based on the use of the medium-sized aug-cc-pVTZ basis to yield results
that are directly compared against complete basis set limit reference values. This work has
been published in reference [175].

Chapter 6: A solar-driven conversion of CO2 into fuels by artificial photosynthesis would
not only mitigate the greenhouse effect but also provide an alternative to obtain fuels in a
renewable fashion. To this end, the new iron polypyridine catalyst [Fe(bpyNHEtPY2)L2]

2+ (L
= H2O, CH3CN) was recently developed for the electrochemical reduction of CO2 to CO. In
this study, we performed density functional theory (DFT) electronic structure calculations to
shed light on a possible pathway for CO2 reduction and the origin of the selectivity between
CO2 versus hydrogen evolution reaction. The metal center remains Lewis acidic through-
out the reduction process due to ligand loss and mainly ligand based reduction stabilized
by antiferromagnetic coupling to a high-spin Fe(II) center. This results in a high barrier
for hydride formation but a facile addition and activation of CO2 via an η2 coordination
and stabilizing hydrogen bonding by the amine group. The second unoccupied equatorial
coordination site opens up the possibility for an intramolecular protonation with a coordi-
nated water ligand. This facilitates protonation because not only CO2 but also the proton
source H2O is activated and properly aligned for a proton transfer due to the Fe−OH2 bond;
consequently, both protonation steps are facile. The moderate ligand field allows a rapid
ligand exchange for a second intramolecular protonation step and facilitates an exergonic
CO release. The lower selectivity of the related [Fe(bpyOHPY2)L2]

2+ compound can be re-
lated to the more acidic second coordination sphere because it opens up the possibility of an
intramolecular proton transfer which has a comparable barrier to CO2 addition. This work
has been published in reference [176].
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Chapter 7: Both [CoII(qpy)(H2O)2]
2+ and [FeII(qpy)(H2O)2]

2+ (with qpy = 2,2′:6′,2′′:6′′,2′′′-
quaterpyridine) are efficient homogeneous electrocatalysts and photoelectrocatalysts for the
reduction of CO2 to CO. The Co catalyst is more efficient in the electrochemical reduction
while the Fe catalyst is an excellent photoelectrocatalyst (ACS Catal. 2018,8, 3411–3417).
This work uses density functional theory to shed light on the contrasting catalytic pathways.
While both catalysts experience primarily ligand-based reductions, the second reduction in
the Co catalyst is delocalized onto the metal via a metal-ligand bonding interaction, caus-
ing a spin transition and distorted ligand framework. This orbital interaction explains the
experimentally observed mild reduction potential and slow kinetics of the second reduction.
The decreased hardness and doubly occupied dz2-orbital facilitate a σ-bond with the CO2-π∗
in an η1-κC binding mode. CO2 binding is only possible after two reductions resulting in an
EEC mechanism (E=electron transfer, C=chemical reaction), and the second protonation is
rate-limiting. In contrast, the Fe catalyst maintains a Lewis acidic metal center through-
out the reduction process because the metal orbitals do not strongly mix with the qpy-π∗
orbitals. This allows to bind the activated CO2 in an η2 binding mode. This interaction
stabilizes the activated CO2 via a π-type interaction of a Fe-t2g orbital and the CO2-π∗ and a
dative bond of the oxygen lone pair. This facilitates CO2 binding to a singly reduced catalyst
resulting in an ECE mechanism. The barrier for CO2 addition and the second protonation
are higher than those for the Co catalyst and rate-limiting. This work has been published
in reference [177].

Chapter 8: [Fe(tpyPY2Me)]2+ ([Fe]2+) is an exceptional homogeneous catalyst for convert-
ing CO2 into CO at low overpotentials with high selectivities at turnover frequencies faster
than 100,000 s–1. In our initial study of [Fe]2+, we reported the design, synthesis, char-
acterization, and electrocatalytic activity. Synthesis of the two-electron reduced product,
[Fe(tpyPY2Me)]0, and extensive spectroscopic characterization supported the assignment
of an open-shell singlet electronic structure that we attributed to the low thermodynamic
barrier required to selectively reduce CO2 (J. Am. Chem. Soc. 2020, 142, 48, 20489).
The mechanistic pathways through which [Fe]2+ functions, however, are entirely unexplored.
Electrochemical data shows the formation of two distinct catalytic regimes as a function of
applied potential. This work uses a combined experimental and computational approach
to shed light on these low and high overpotential mechanistic pathways. We propose that
at low overpotentials,the catalyst undergoes a two electron reduction, two proton trans-
fer mechanism (EECC) where turnover occurs through the dicationic iron complex, [Fe]2+.
Computational analysis further validated the importance of the singlet ground state elec-
tronic structure for CO2 binding and the rate limiting step is the second protonation in this
low overpoential regime. When more negative applied potentials are applied, an additional
electron transfer event occurs through either a step-wise or a proton coupled electron transfer
(PCET) pathway, allowing for catalytic turnover from the monocationic iron complex ([Fe]+)
via an ECEC mechanism. Comparison of experimental kinetic data obtained from variable
controlled potential electrolysis experiments with direct product detection with calculated
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rates obtained from the energetic span model support the PCET pathway as the most likely
mechanism. Building upon the understanding gained from the detailed mechanistic analysis,
we propose the design of an improved ligand framework that is predicted to stabilize the key
transition states identified from our study and explore their electronic structures using an
energy decomposition analysis. Taken together, this study illustrates the importance of es-
tablishing a working mechanistic understanding of new electrocatlaysts to direct the rational
design of improved catalyst platforms. This work is submitted for publication.
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Chapter 2

Energy Decomposition Analysis for
Interactions of Radicals: Theory and
Implementation at the MP2 Level with
Application to Hydration of Halogenated
Benzene Cations and Complexes between
CO−•2 and Pyridine and Imidazole

2.1 Introduction
Intermolecular interactions describe attractive or repulsive forces between molecular species
that govern important chemical processes, like the formation and structure of biological
macromolecules and a wide range of catalyst systems. [178–187] Their energy scale ranges
from a few kJ/mol for weak van der Waals complexes to more than 150 kJ/mol for strong
hydrogen bonds or metal ligand interactions. The origin of these interactions can be under-
stood readily for simple cases like rare gas dimers which bind because of dispersion. However,
it can be difficult to understand the interaction for a more complicated system such as a com-
plex formed by cationic halogenated benzene radical and water, where other intermolecular
terms such as electrostatics, polarization, and charge transfer are all in play.

Modern quantum chemical methods are able to predict most intermolecular binding en-
ergies quite accurately, but there lacks a direct bridge between these energies and chemical
concepts. [5] To this end, energy decomposition analysis (EDA) [188–190] aims to unravel
the origin of the interaction by decomposing the binding energy into chemically motivated
components. Admittedly, the resulting decomposition cannot be uniquely defined in the
overlapping regime, and consequently there are multiple approaches in the literature for pro-
viding chemical interpretations of molecular complexes. Important seminal EDA schemes



CHAPTER 2. MP2-EDA FOR RADICALS 43

include the Kitaura-Morokuma (KM)-EDA that decomposes the Hartree-Fock (HF) interac-
tion energy into electrostatic, Pauli repulsion, polarization and charge transfer contributions,
[191–193] and the extended transition state (ETS) method developed by Ziegler and Rauk,
which partitions interactions calculated from density functional theory (DFT) into electro-
statics, Pauli repulsion, and orbital interaction. [194, 195]

A significant improvement to the KM-EDA for HF and DFT was made possible by the
variational treatment of polarization, accomplished via imposing a fragment-blocking con-
straint on the molecular orbital (MO) coefficient matrix. [30, 196] Solving the resulting con-
strained variational equations leads to absolutely localized MOs (ALMOs) [31] that are used
in the Block-Localized Wavefunction EDA (BLW-EDA)[197–199] and the ALMO-EDA [83,
84, 200] approaches, both of which separate the interaction energy into a “frozen" term and
allow for separability of general induction into the polarization and charge transfer contribu-
tions. The frozen energy corresponds to the interaction between monomers with their MOs
optimized for each isolated fragment, the polarization energy is then defined by the relax-
ation of each fragment’s MOs in the presence of other fragments, and finally charge transfer
corresponds to the energy lowering resulting from inter-fragment orbital mixing. Further-
more, each intermediate energy exhibits correct asymptotic behavior and is a well-defined
variational quantity. Recently a second generation ALMO-EDA [84] was developed, which
includes two further improvements: first, the frozen term can be further decomposed into
contributions from Pauli repulsion, permanent electrostatics, and dispersion [86]; and sec-
ond, the use of a basis constructed from fragment electric response functions (FERFs) in the
ALMO-constrained SCF calculation enables a well defined basis set limit for the separation
between polarization and charge transfer. [32] The resulting second generation ALMO-EDA
scheme [84] also permits any underlying representation with no restriction to atomic orbitals.
Other recent advances in ALMO-EDA include decomposition of molecular properties [201]
and an extension to singly excited-state methods.[202, 203]

In principle, EDAs can be extended to more accurate interaction energies obtained from
correlated wavefunctions methods.[204] The simplest correlation method is second-order
Møller-Plesset perturbation theory (MP2), which is accurate and widely used for molec-
ular interactions such as hydrogen bonding, [205, 206] as well as being fast and efficient with
the use of density fitting or resolution of the identity (RI). [207, 208] MP2 also performs
well for radical-solvent interactions, [209] provided that a restricted open shell reference is
used when the HF reference is spin-contaminated. The KM scheme has been extended to
post-HF methods such as MP2, by assigning the entire contribution from correlation energy
to dispersion. [210] However, the inclusion of correlation also has an effect on electrostatic in-
teractions, polarization and charge transfer, [211, 212] and thus other EDAs were developed
to understand the full correlation effects on intermolecular binding. The local second-order
Møller-Plesset perturbation theory (LMP2) approach naturally allows for a decomposition
of the correlation energy into an intramolecular correlation, a dispersion and an ionic contri-
bution. [213] However, MP2 can overestimate binding in dispersion-dominated interactions
like π-stacking, [214–217] while coupled cluster theory provides significantly higher accuracy
if triples are included (e.g. via CCSD(T)), albeit at significant computational cost. A similar
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concept to LMP2 has been applied at the CCSD(T) level to define the Local Energy Decom-
position (LED) scheme, which distinguishes between intra- and intermolecular correlation
contributions. [218–221] Perhaps the most widely used EDA approach is symmetry-Adapted
Perturbation Theory (SAPT), which computes the interaction energy via a perturbative
expansion starting with non-interacting fragments. High-level SAPT with intramolecular
correlation taken into account can yield accuracy comparable to CCSD(T),[222] and it de-
composes the interaction energy into an electrostatic, an exchange, an induction and a dis-
persion term. [223–226]

We have developed an alternative post-HF approach, the ALMO-MP2-EDA scheme, [212,
227] which builds on local correlation models[228, 229] and on an earlier pilot effort[230]
which did not correct the mean-field frozen and polarization terms for the effect of corre-
lation. The original ALMO-MP2-EDA scheme was designed to decompose the correlation
energy into the same terms as the mean-field ALMO-EDA scheme through the addition of an
explicit dispersion term. The core idea was to assign the excitations that contribute to the
MP2 energy into different classes (see Fig. 2.1): intra-fragment for frozen and polarization,
charge conserving for dispersion and charge transferring for charge transfer. However, the
previous ALMO-MP2-EDA scheme and implementation were both limited to interactions
between closed-shell molecules. In this work the ALMO-MP2-EDA scheme is generalized to
unrestricted and restricted open-shell MP2 to permit the study of intermolecular interactions
of radicals with a correlated wavefunction method, for which DFT methods are shown to be
error prone.[209, 231] We verify that the correct asymptotic behaviour of frozen, polariza-
tion, dispersion and charge transfer is operative, and the method is applied to understand the
hydration of halogenated benzene radical cations. [232], as well as the different interaction
motifs of the CO2

−• radical anion with N-heterocycles in the gas phase. [233, 234]

2.2 Theory
The notation used in this manuscript employs indices i, j, k, ... for occupied orbitals, a, b, c,
... for virtual and p, q, r, ... for either. As far as possible, the discussion is presented in
the spin-orbital basis. However, at some points we specifically discuss unrestricted spatial
orbitals where p̄ represents the β spin space. Labels for fragments are denoted as A,B,C ...
and P,Q,R refer to the auxiliary (RI) basis functions.

Summary of MP2 Theory

The Hylleraas functional, JH , is a variational formulation that when minimized yields the
first order wave function and MP2 energy. The Fock operator (F̂ ) is the usual choice for the
zeroth-order Hamiltonian [38–40]:

JH [Ψ̃] =
〈

Ψ(0)
∣∣∣V − E(1)

∣∣∣Ψ̃〉+
〈

Ψ̃
∣∣∣H(0) − E(0)

∣∣∣Ψ̃〉+
〈

Ψ̃
∣∣∣V − E(1)

∣∣∣Ψ(0)
〉

(2.1)
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type I type II type III

type I type III

A A AB B B

A B A B

Figure 2.1: A representation for each of the three types of double excitations for a two-
fragment system (A and B): on fragment (type I), charge conserving (type II) and charge
transferring (III). In the case of RMP2 single excitations are also included, for which the
on fragment and charge conserving constraints are identical. The lower level represents the
occupied space and upper level the virtual space of each fragment.

or in a more compact matrix-vector notation:

JH [̃t] = t̃†∆t̃ + t̃†III + III†t̃ (2.2)

Here t̃ is a vector composed of the wave function amplitudes, t̃abij , III is a vector composed of
two-electron integrals, 〈ij||ab〉, and ∆ is a supermatrix whose elements are defined as:

∆(abij ),(cdkl)
=
〈
Ψab
ij

∣∣F̂ − E(0)
∣∣Ψcd

kl

〉
(2.3)

Unlike restricted or unrestricted MP2, the choice of the zeroth-order Hamiltonian is
not unique for ROHF, and, consequently, there are multiple approaches to MP2 with re-
stricted open-shell HF references. Those approaches include ROMP2 by Amos et al., [235]
OPT1 and OPT2 by Murray and Davidson [236], HCPT by Hubač and Čársky [237], Z-
averaged PT (ZAPT) by Lee and Jayatilaka [238], RMP2 by Knowles and co-workers [239]
and ROHF-MBPT2 by Bartlett and co-workers [240]. This paper follows the RMP2 ap-
proach of Knowles et al. [239] where the occupied-occupied and virtual-virtual blocks of the
pseudo-canonicalized F̂α and F̂ β are defined as the zeroth-order Hamiltonian. This results
in similar equations to unrestricted MP2 (UMP2). However, Brillouin’s theorem does not
hold and therefore singles contributions are included in the first-order MP wave function,
yielding the following open-shell RMP2 energy expression:

E(2) = −
∑
ia

taiFai −
1

4

∑
ijab

tabij 〈ij||ab〉 (2.4)
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Here as usual 〈ij||ab〉 = (ia|jb) − (ib|ja). After pseudo-canonicalization, the singles and
doubles amplitudes are defined as

tai =
Fai

εa − εi
(2.5)

tabij =
〈ij||ab〉

εa + εb − εi − εj
(2.6)

Of course in UMP2, tai = 0. In RMP2, the energy is spin-pure (though the amplitudes are
not).

We will also use the RI approximation for the two-electron integrals:

(ia|jb) '
Naux∑
Q

[
Naux∑
P

(ia|P )(P |Q)−1/2

][
Naux∑
R

(Q|R)−1/2(R|jb)
]

(2.7)

=
Naux∑
Q

BQ
iaB

Q
jb

The MP2-EDA Scheme

The total binding energy is defined as the energy difference between the complex and the
isolated non-interacting fragments. It can be divided into a geometry distortion term, which
is the energy required to deform isolated fragments from their optimum geometry to their
geometry in the complex, and the interaction energy at the supersystem geometry (∆EINT).
This interaction energy can be further partitioned into a mean-field contribution ∆EHF

INT and
a correlation contribution ∆EMP2

INT . In this work, the mean-field contribution is decomposed
using the original ALMO-EDA scheme [83]:

∆EHF
INT = ∆EHF

FRZ + ∆EHF
POL + ∆EHF

CT (2.8)

The frozen and polarized intermediate energies are evaluated using constrained HF wave
functions. At the frozen level, a single determinant is constructed by combining the isolated
fragments into a supersystem using unrelaxed fragment MOs. This captures the HF-level
electrostatic and Pauli repulsion contributions. For polarization, the MOs are variationally
optimized subject to the fragment-blocking constraint, leading to polarized ALMOs from
solving the locally projected SCF scheme (SCF-MI). [30, 31, 196, 241] This allows the electron
densities on each fragment to adjust to the supersystem environment and naturally excludes
charge transfer, which is finally obtained using the unconstrained HF energy.

The MP2 correlation energy is decomposed into the same terms by enforcing similar
constraints; however, an additional term for dispersion naturally arises [212]:

∆EMP2
INT = ∆EMP2

FRZ + ∆EMP2
POL + ∆EMP2

DISP + ∆EMP2
CT (2.9)
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The intermediate energies are presented in this section, largely following the notations
used previously [212] where energies are given parenthetical labels that indicate (system-
size/basis-type) at each stage of the analysis. System-size will be either “frag” for a fragment,
or “sys” for the supersystem.

At the mean-field level both frozen and polarized wave functions are constructed using
fragment-blocked ALMO orbitals. The molecular orbitals in this basis are only orthogonal
within each fragment. However, the MP2 energy expression is only well-defined for separated
occupied and virtual spaces. Thus, both the frozen orbitals and converged ALMOs need to
be properly prepared by projecting the occupied subspace out of the virtual orbitals. The
occupied orbitals are then symmetrically orthonormalized [242] (globally) and the virtual
orbitals are symmetrically orthonormalized on each fragment after being projected against
the occupied space, yielding the pFRZ and pALMO basis, respectively. [212]. The MP2 con-
tribution to frozen energy, which captures the pure electrostatic effects and Pauli repulsion,
is obtained using

∆EMP2
FRZ =

Nfrag∑
A

Efrz(frag/pFRZ)A −
Nfrag∑
A

Eiso(frag)A − ABSSE (2.10)

where Eiso(frag)A is the standard MP2 energy of each fragment evaluated in the canonical
basis and ABSSE refers to the auxiliary basis set superposition error (vide infra). The frozen
MP2 energy of each fragment, Efrz(frag/pFRZ)A, is obtained by freezing both fragment
orbitals and t-amplitudes. The Hylleraas functional is employed to evaluate the MP2 energy
with non-stationary t-amplitudes, using the full system frozen Fock matrix in the pFRZ MO
basis for each fragment.

However, the MP2 wave function is not stationary with respect to occupied-virtual (ov)
orbital rotations (θai). As a consequence, the relaxed second-order density matrix incor-
porating first-order orbital response effects is required for evaluting the frozen energy (see
previous work by some of us for a more detailed derivation [212]). The final expression for
the frozen energy has the following form:

EfrzA = JH [tisoA ,CA,FA]− 2
∑
ia

P
(2)
iaAFiaA (2.11)

where tisoA refers to the isolated t-amplitudes in the canonical fragment basis, FiaA is the
frozen Fock matrix transformed into the pFRZ MO basis of each fragment, and the ov block
of the second-order density matrix, P (2)

ia = −Zia (the so-called Z-Vector [243]). The Z-vector
(Zia) is obtained by contracting the inverse of HF electronic hessian with the MP2 orbital
gradient:

Zjb =
∑
ia

(
∂2ESCF

∂θai∂θbj

)−1
∂E(2)

∂θai
(2.12)

The explicit expressions and derivations for these terms can be found elsewhere.[39, 40, 244]
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For restricted open-shell MP2 methods like RMP2, the derivation of the Z-vector is more
involved, and interested readers are referred to refs. [245, 246]. The important point is that
the RMP2 CPSCF equation can be expressed in a form that is equivalent to UMP2 gradient
theory. In summary, obtaining the frozen energy at the MP2 level requires calculating the
t-amplitudes on each isolated fragment, evaluating the Hylleraas functional and solving a
CPSCF equation for each fragment.

Next, the MP2 contribution to polarization energy is obtained using

∆EMP2
POL =

Nfrag∑
A

Epol(frag/pALMO)A −
Nfrag∑
A

Efrz(frag/frz)A (2.13)

After the SCF-MI is converged the ALMOs on each fragment are transformed into the
pALMO basis. The ALMO basis allows the assignment of molecular orbitals to fragments.
The polarization constraint, like the frozen system, permits only paired double substitutions
on the same fragment. This allows for obtaining Epol(frag/pALMO) with standard MP2
energy evaluation using the pALMO basis of each fragment.

The dispersion energy is obtained using

∆EMP2
DISP = Eccc(sys/ALMO)−

Nfrag∑
A

Epol(frag/ALMO)A (2.14)

where the charge conserving correlation (CCC) constraint is imposed. This constraint only
permits excitations that conserve the charge on each fragment as shown in Fig. 2.1 (types I
and II). The CCCMP2 energy (Eccc(sys/ALMO)) is evaluated for the whole system in the
pALMO basis, which is neither orthonormal nor canonical. The derivative of the Hylleraas
functional with respect to the amplitudes yields a set of linear equations to obtain the MP2
amplitudes:

∂JCCC
H

∂tCCC
= 0⇒∆CCCtCCC = IIICCC (2.15)∑

i′j′a′b′

(∆CCC)
(abij ),

(
a′b′
i′j′

)(tCCC)a
′b′

i′j′ = 〈ij||ab〉CCC (2.16)

where ∆ represents an 8 th-rank tensor that has the following form:(
∆CCC)

(abij ),
(
a′b′
i′j′

) = −Fii′gaa′gjj′gbb′ + gii′Faa′gjj′gbb′ − gii′gaa′Fjj′gbb′ + gii′gaa′gjj′Fbb′ (2.17)

where grr′ refers to the MO-overlap matrix.
Utilizing the internal structure of ∆ tensor arising from the properties of the basis as

well as the CCC constraint (ia ∈ A, i.e., pairs must be on the same fragment) simplifies
the contraction on the left-hand side of Eq. 2.16. An efficient iterative algorithm to solve
Eq. 2.16 was developed previously and is applied here as well. [227] The coupling terms
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(
(∆CCC)

(abij ),
(
a′ b̄′
i′ j̄′

)) for the same-spin (tabij ) and opposite-spin (tab̄ij̄ ) blocks of the t-amplitudes

are zero. As a consequence, the three spin blocks of the t-amplitudes can be solved inde-
pendently. In contrast to the same-spin case, the opposite-spin ∆ tensor has no symmetry
between the first and third or between the second and fourth terms, rendering the contrac-
tion over the opposite-spin amplitudes in Eq. 2.16 twice as costly. Finally, the energy is
obtained by contracting the amplitudes with the charge-conserving two-electron integrals in
the pALMO basis. For RMP2, we also need to include the contribution from the singles. [239]
The CCC constraint for singles is identical to the on-fragment constraint. Therefore, the
singles contribution from the polarization calculation is added to obtain Eccc.

At last the MP2 contribution to charge transfer energy can be evaluated using

∆EMP2
CT = E(sys)− Eccc(sys/ALMO)− BSSE + ABSSE (2.18)

where E(sys) corresponds to the full MP2 energy of the supersystem, BSSE to the standard
basis set superposition error in MP2 correlation energy calculated from applying a coun-
terpoise correction, [116] and ABSSE to the auxiliary basis set superposition error, which
corresponds to the difference between isolated fragment MP2 energies evaluated with and
without auxiliary basis function on the ghost atoms. [212]

2.3 Computational Details
All geometries were fully optimized with ωB97X-D[68]/def2-TZVPPD[247, 248] and with
an ECP for iodine [249] in the gas phase. The aug-cc-pVTZ basis set [250–252] in combi-
nation with the corresponding auxiliary basis [253, 254] was employed for the MP2-EDA
calculations. Reference calculations for the interaction energies were performed with the
double-hybrid ωB97M(2) functional [63] with either the def2-QZVPPD or def2-TZVPPD
basis set,[248] with their corresponding auxiliary basis set and an ECP for iodine. [249, 255]

The electron density plots were visualized with an isovalue of 0.1 a.u., and a smaller
isovalue (0.001 a.u.) was used for the density difference plots. A further analysis of CT
using complementary occupied-virtual orbital pairs (COVPs) [87] is currently only available
for mean-field methods, and thus we used EDA results with the ωB97M-V functional [70] to
generated the COVPs (with an isovalue of 0.05 a.u.). ωB97M-V has been identified as one
of the most accurate density functionals for intermolecular interactions by recent extensive
benchmarks.[20, 256] Furthermore, the calculated ωB97M-V interaction energies were similar
to the RMP2 results (see tables A.4 and A.6 in the appendix).

Implementation Details

We implemented the EDA scheme for RMP2 (UMP2) in a development version of the Q-
Chem 5 package,[108] which comprises the following steps:
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1. Perform fragment ROHF (UHF) and subsequently canonical MP2 calculations based
on these references.

2. Evaluate the frozen HF energy and compute Efrz for each fragment (Eq. 2.11).

3. Perform an ROSCF-MI (USCF-MI) calculation enforcing fragment-blocking of the MO
coefficients and subsequently evaluate Epol for each fragment.

4. Iteratively solve for the CCC t-amplitudes and evaluate Eccc.

5. Perform a fully relaxed ROSCF (USCF) calculation for the supersystem followed by a
canonical MP2 calculation.

6. Perform ROSCF (USCF) and canonical MP2 calculations for each individual fragment
with other fragments as ghost atoms for BSSE and ABSSE corrections.

In cases where the radical is a single atom (e.g. Cl•) or of a highly symmetric geometry
(e.g. •OH), there can be multiple degenerate electronic configurations with the unpaired
electron residing in different orbitals, yielding non-uniquely defined frozen states as illus-
trated by the Cl•···H2O complex in Fig. 2.2. For such systems, it is desirable to obtain the
orientation of fragment spin that yields the most favorable frozen energy. We achieve this by
recalculating the isolated fragments after the SCF-MI step with the corresponding block of
the ALMO coefficient matrix as the initial guess in combination with the Maximum Overlap
Method (MOM). [257] Note that the proper alignment of the radical was suggested in the
EDA scheme for chemical bonds previously developed by Levine et al. [258, 259]. To obtain
the Z-vectors, we iteratively solve a CPSCF equation (either RO or U) for each fragment
which avoids the direct inversion of the electronic hessian.

Cl

Cl
H

O
H

H
O
H

H
O
H

H
O
H

Cl

Cl

Figure 2.2: Illustration of the degenerate electronic configuration of the Cl• radical, which
then yields distinct frozen energies for the Cl•···H2O complex depending on the initial ori-
entation of the Cl• spin density.

The linear equation to obtain the three sets of t-amplitudes (Eq. 2.16) follows an adaption
of the efficient procedure of the closed-shell MP2-EDA scheme. [227] The initial guess is the t-
amplitudes of the polarization calculations and a diagonal preconditioner is used to accelerate
convergence. The construction of the charge conserving two-electron integrals for CCCMP2
follows a modified approach:



CHAPTER 2. MP2-EDA FOR RADICALS 51

• Loop over all fragment pairs (AA, AB, AC, ...)

• For a given fragment pair AB, construct an intermediate W containing all two-electron
integrals of the given fragment subspaces WAB = (iAaA|j̄B b̄B):

WAB = BQ†
ai∈A ·BQ

b̄j̄∈B

• Map each WAB into the IIICCC tensor

All parts of the code are parallelized using a shared-memory programming model (OpenMP).
The correct behavior of all terms were verified with simple test cases (see appendix A.1).
The correct long-range decay of the polarization (1/r4) was confirmed using an isolated
lithium atom (Li•) interacting with an external charge. The correct long-range behavior of
dispersion (1/r6) and charge transfer (exponential) were confirmed with He· · ·Li• complex
(see Figs. A.1(a)–(d)).

2.4 Results
The method is first applied to the binary radical-solvent complexes from the TA13 benchmark
set. [209] Next, we use this method to investigate the first solvation step of cationic halo-
genated benzene radicals. As the final example, we study the different interaction motifs of a
CO2

−• radical with N-heterocycles (pyridine and imidazole) in the gas phase. With UMP2,
there is spin contamination in at least one example in all three sets of applications: HF−CO+

in the TA13 benchmark set (〈S2〉 = 0.83), the halogen-bonded chlorobenzene radical cation–
water complex (〈S2〉 = 0.88), and the Py−CO2

−• complex (〈S2〉 = 0.94). Furthermore,
the RMSDs of UMP2 and RMP2 for the TA13 benchmark set (8.9 and 6.9 kJ/mol, respec-
tively) suggest that RMP2 yields more accurate interaction energies. Hence, the following
discussion focuses on the RMP2-EDA results only, which are also consistent with DFT-EDA
(ωB97M-V) results (Tables A.4 and A.6 in the SI).

TA13 Benchmark Set

The TA13 benchmark set [209] includes thirteen binary radical-solvent complexes with
non-bonded interactions, which are considered to be challenging non-covalent interactions
for DFT due to a prominent self-interaction error. [20, 54, 55, 231] The popular B3LYP
functional has an RMSD of 16.1 kJ/mol for the interaction energies, and ωB97M-V, the
overall best-performing functional according to extensive benchmarking, has an RMSD of
11.5 kJ/mol.[20] Both UMP2 and RMP2 calculations were performed for the interaction
energies on all 13 molecules with significantly smaller RMSD values of 8.9 and 6.9 kJ/mol
(for full results see Tables A.1 (U) and A.2 (RO) in the appendix), respectively. The UMP2
vs. RMP2 difference stems mainly from the CO+−HF complex because UMP2 exhibits sig-
nificant spin contamination (〈S2〉 = 0.83 for the complex and 0.93 for the CO+ monomer).
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The correlation energy is significant in most cases: e.g., it accounts for ∼ 50% of the binding
energy for Al−H2O. The frozen terms at the MP2 level are all positive as the perturbation
theory tends to correct for the overestimation of the dipole moments of the HF reference
(see Table A.2). The radical alignment scheme (see Sec. 2.3) is crucial for radicals with
degenerate electronic configurations such as Cl−OH2, for which there can be a difference up
to 40 kJ/mol in the resulting frozen term otherwise, depending on how the fragment spins
are aligned initially.

The RMP2-EDA results are presented in Table 2.1 and are categorized into three groups
based on the interaction motifs: electron-rich metal-water complexes, electron-poor hemi-
bonded complexes, and hydrogen-bonded complexes. Additional details are provided in
Table A.2 in the appendix, such as the break-down into HF and correlation contributions.
The electron-rich metal-water complexes (Li, Al, Be+) display large polarization and rela-
tively small charge transfer. This is already an interesting and surprising result, because it
suggests that the strong interaction is primarily non-bonded rather than having a substantial
covalent contribution, as had been inferred from natural bond orbital (NBO) analysis.[260]
The optimized geometry of these complexes involves interaction of the O atom of water with
the metal center, which is the main reason that CT from the electron-rich metal center to the
solvent is somewhat suppressed. As a fraction of the binding energy, CT is most important
for the Al−H2O complex, which also has a prominent contribution from dispersion.

The interaction of the family of electron-poor hemibonded complexes is mainly driven
by charge transfer. Both Cl– and Br–water complexes show a significant charge transfer
contribution to overcome Pauli repulsion at the frozen level. The cationic carbonyl complex
with HF also shows a large CT contribution. However, in contrast to the halogen complexes,
its short bond distance (r(O-F) = 1.8 Å) results in a strongly repulsive frozen term and the
charged fragment induces significant polarization. The NH +

3 −H2O complex shows balanced
contributions from all terms, which is more similar to the typical scenario of the hydrogen-
bonded motifs.[83, 261] The strong electrostatic interaction renders the frozen term already
attractive as the charge on the NH +

3 radical and dipole moment of the water are favorably
aligned. The charge also results in significant polarization. The last member of this group,
F−OH2, exhibits the largest error among the RMP2 interaction energies in this benchmark
set. This complex has significant static correlation and is consequently not very accurately
described by MP2 (or DFT) methods as discussed in ref. [209]. Hence, the EDA terms are
just reported for completeness.

The hydrogen-bonded complexes have more balanced contributions from all energy com-
ponents including significant charge transfer similar to results reported for closed-shell hydro-
gen bonding. [201, 261, 262] However, there are variations in the weight of these terms: the
importance of charge transfer (measured relative to the total interaction energy) is higher
for the more electropositive radicals such as CH3 and BH2, while complexes of the more
electronegative radicals (NH2, OH and HNH +

2 ) exhibit stronger attractive electrostatic in-
teraction (resulting in a less repulsive frozen term) and more significant polarization.
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Table 2.1: RMP2-EDA results for the TA13 benchmark set evaluated with the aug-cc-pVTZ
basis. Energies are in kJ/mol and r refers to the complex bond distance.

System ∆EFRZ ∆EPOL ∆EDISP ∆ECT ∆ETOT r(Å)

electron-rich metal-water complexes
H2O−Al 96.9 -86.1 -21.5 -16.7 -27.5 2.20
H2O−Be+ 102.8 -306.9 -11.8 -42.7 -258.6 1.57
H2O−Li 40.5 -66.2 -8.0 -11.5 -45.2 1.88

electron-poor hemibonded complexes
H2O−F 60.6 -9.5 -11.7 -36.3 3.1 2.11
H2O−Cl 28.9 -7.1 -12.2 -19.7 -10.0 2.60
H2O−Br 28.9 -8.5 -12.9 -17.6 -10.2 2.70
HF−CO+ 121.5 -101.8 -22.1 -117.4 -119.9 1.80
H2O−NH +

3 -14.3 -21.5 -12.3 -22.8 -70.8 2.32
hydrogen bonded complexes

HOH−CH3 6.8 -2.9 -5.5 -5.1 -6.7 2.33
H2O−HNH +

2 -3.2 -54.9 -13.5 -32.6 -104.2 1.54
FH−BH2 11.1 -8.6 -5.6 -13.3 -16.4 2.22
FH−NH2 12.9 -24.0 -9.9 -20.6 -41.7 1.75
FH−OH 5.7 -12.0 -6.6 -10.8 -23.7 1.81

Halogenated Benzene Radical Cation: Halogen or Hydrogen
Bonding?

Ionic hydrogen bonds (IHBs) constitute a subclass of hydrogen bonding between radical
ions and polar molecules with a binding energy ranging from -20 to -140 kJ/mol. [232, 263]
Halogen bonds are defined according to IUPAC as a linear binding motif R−X···Y where X
denotes a covalently bonded halogen atom acting as a Lewis acid (electron-poor) and Y is
an electron-rich Lewis base (e.g. halide anion, water, etc.). [264] Halogen bonding is a type
of intermolecular interaction that in part arises from the favorable electrostatic interaction
between the halogen atom and the acceptor (Lewis base), which is often described in terms of
the so-called σ-hole [265, 266]. However, many recent studies suggest that the n→ σ∗ charge
transfer plays an important and even dominant role in halogen bonding.[267–272] While a
consensus has almost been reached that permanent electrostatics alone is inadequate to
describe halogen bonds, there is still an ongoing debate especially about the role of charge
transfer. [266, 267, 269–274]

A recent study by El-Shall and co-workers discovered two competing mechanisms for the
first hydration step of halogen-substituted benzene radical cations using mass-selected ion
mobility spectroscopy. Depending on the halogen atom there is a preference for either IHBs,
as depicted in Fig. 2.3(a), or ionic halogen bonds (IXBs), as depicted in Fig. 2.3(b). [232]
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The authors found that C6H5F
+• solely forms IHB while C6H5I

+• solely forms IXB, and
the chloro- and bromobenzene radical cations show an equilibrium between IXB and IHB
isomers. [232] The substituent dependence of the IHB vs. IXB competition makes this class
of systems interesting candidates for an EDA analysis. These insights on the control of
halogen bonding strengths can be useful for the design of new catalysts.[275]

HO
H

Ha)
X

H O
H

H

b)
X

X = F, Cl, Br, I

Figure 2.3: Two competing binding motifs for the interaction between a halogenated benzene
radical cation (C6H5X

+•) and a water molecule: (a) Ionic hydrogen bonding (IHB) and (b)
ionic halogen bonding (IXB).

(a) (b)

Figure 2.4: Optimized geometries for two isomers of the halogenated benzene radical cation–
water complex: (a) the IHB structure (rH···O in Å: F: 2.02, Cl: 2.04, Br: 2.05, I: 2.08); (b)
the IXB structure (rX···O in Å: F: 2.97, Cl: 2.78, Br: 2.78, I: 2.83).

The RMP2-EDA was employed to understand the competition between IHB and IXB in
complexes of H2O with C6H5X

+•: a total of eight different isomers were analyzed. As an
example, the optimized geometries of the IHB and IXB complexes formed by bromobenzene
are shown in Fig. 2.4. All RMP2 interaction energies are in good agreement with the results
of an accurate double-hybrid functional (ωB97M(2)) with the def2-TZVPPD basis (see Ta-
ble A.3). Furthermore, it is verified that the trends in both the total interaction energies and
the individual energy components are consistent with the results of DFT-based ALMO-EDA
with ωB97M-V (see table A.4).

The full results for the bromobenzene–water complex are shown in Fig. 2.5, whose IHB
and IXB isomers are of the closest total interaction energies (with the IXB isomer being
slightly more favorable by 2.8 kJ/mol) among all halogenated benzene radicals investigated
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here. The relative EDA energies with respect to fluorobenzene for both binding motifs are
shown in Fig. 2.6, which help uncover the trends within each binding mode. Finally, the
energy differences between IHB and IXB in the total interaction energies and each individual
energy component is depicted in Fig. 2.7 to help understand the different binding preferences
for each halogenated benzene radical cation.
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Figure 2.5: Individual EDA terms (in kJ/mol) for the two binding motifs of the water–
bromobenzene radical cation complex, separated into HF and MP2 contributions.

The EDA results for the IHB bromobenzene radical cation (see the left panel of Fig. 2.5)
show an interaction that is dominated by attractive frozen (due to permanent electrostatics)
and polarization terms, and the contributions from dispersion and charge transfer are also
not negligible. Although the MP2 contribution to the total IHB interaction energy is small,
its contributions to the individual terms are not, especially its effect on the frozen term where
MP2 corrects the overly attractive electrostatic interaction evaluated at the HF level.[211]
The EDA results uncover a favorable error cancellation for the IHB motif at the HF level as
the overestimated permanent electrostatic interaction compensates for the missing dispersion
contribution that only arises at the MP2 level. The IXB motif has a more significant net
MP2 contribution, and it is noteworthy that IXB is more favorable than IHB for this complex
only when the effects of electron correlation are incorporated.

For the IHB isomers H2O· · ·C6H5X
+•, as shown in the left panel of Fig. 2.6, the magni-

tude of the total interaction energy monotonically decreases from lighter to heavier halogens.
This trend stems mainly from the changes in the frozen and polarization terms (i.e. perma-
nent and induced electrostatics), and can be readily rationalized with the increasing strength
of the mesomeric effect (donating lone pairs to the benzene ring) of the halogens that makes
the para-carbon more electron-rich and the C–H bond less polar. The CT term appears
to be nearly independent of the halogen, which can be rationalized by analyzing the most
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Figure 2.6: Changes in the total interaction energy and individual EDA terms for the heav-
ier halogenated benzene radical cations relative to the fluorobenzene results with the two
bonding motifs of the H2O· · ·C6H5X

+• complexes.

important COVP. As shown in Fig. A.2(a) in the SI, the CT in the IHB isomer is primar-
ily from the oxygen lone pair on H2O to the C−H σ∗ orbital. This acceptor orbital is not
strongly affected by the para-substitution.

The EDA results for the IXB bromobenzene (the right panel of Fig. 2.5) show significant
contributions from all terms with polarization and dispersion being the most important
contributions. The MP2 term has the same sign for EPOL and ECT but has an opposite
sign for the frozen term, for the reason discussed above. The importance of all interaction
energy components (permanent electrostatics, polarization, dispersion, and charge transfer)
to overcome the Pauli repulsion for the IXB binding motif is in line with the conclusion
reached by a previous study on halogen bonding by some of us.[270]

As shown in Fig. 2.6, the IXB interaction energy increases strongly for the heavier halo-
gens. The interaction with fluorobenzene is the weakest, and in fact, the IXB isomer for
fluorobenzene could only be obtained with a symmetry constraint (C2v) in the geometry
optimization (i.e. it is not the global minimum on the PES). The increase in halogen bond
strength is mainly attributed to an increase in polarization, dispersion and charge transfer.
The increase in dispersion and polarization can be rationalized by the increasing softness
and ionic radius down the halogen series. Interestingly, the frozen term exhibits an oppo-
site trend and is most favorable for the fluorobenzene, which is mainly attributed to the
increase in Pauli repulsion as the halogen becomes more diffuse from F to I while the equi-
librium X· · ·O distances do not change significantly (see the distances given in the caption
of Fig. 2.4). The increase in charge transfer can be rationalized by analyzing the COVP (see
Fig. A.2(b)): the charge transfer is dominated by the donation from the oxygen lone pair
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to the C−X σ∗ orbital whose energy is lowered (which facilitates CT) monotonically for the
heavier halogens.

The comparison between the IHB and IXB isomers for each halogenated benzene radical
cation is shown in Fig. 2.7, in which the differences (IHB − IXB) in both the total interaction
energy and each individual component are plotted. The IHB is more favorable than the IXB
motif by over 20 kJ/mol for fluorobenzene, while the interaction energies of IHB and IXB
are very similar for both Cl- and Br-substituted benzene radical cations. Iodobenzene, on
the other hand, prefers the IXB motif by more than 27 kJ/mol. This trend can be explained
by the increase of polarization, dispersion, and charge transfer of the IXB motif due to the
increasing softness, atomic radius, and lower-lying C−X σ∗ from F to I contrasting with the
almost constant behavior of the hydrogen bonding side.

Figure 2.7: Term-by-term energy differences between the IHB and IXB binding motifs of the
H2O· · ·C6H5X

+• complexes.

Anionic CO2 radical N-heterocycle complexes

Fossil fuel emission is yielding unprecedentedly high concentrations of CO2 in the atmosphere,
which acts as one of the main driving forces of global climate change. This has attracted
considerable attention on artificial photosynthesis. [276, 277] Both pyridine (Py), C6H5N,
and imidazole (Im), C3N2H, are known to be active catalysts in the photoelectrochemical
conversion of CO2. [278, 279] Interestingly, two distinct mechanisms are proposed for the
initial CO2 activation: pyridine forms a C−N bond via a carbamate intermediate; in contrast,
imidazole forms a C−C bond with the C2 carbon. [279] In the quest for the elucidation of
catalytic mechanisms, structural information about possible intermediates is both crucial
and scarce.

Johnson and co-workers characterized possible intermediates via the reaction of both
N-heterocycles with small anionic CO2 clusters ((CO2)m−•, m=2−7) [280–282] in the gas
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Figure 2.8: Different binding motifs for the association of a CO2
−• with nitrogen heterocycles:

(a) pyridine (Py) resulting in a carbamate radical anion and (b) imidazole (Im) resulting in
hydrogen bonding.

phase. They obtained vibrational spectra of both anionic complexes: Py−CO2
−• and

Im−CO2
−•. [233, 234] The stable carbamate Py−CO2

−• radical anion (Fig. 2.8(a)) was
discovered by the reaction of (CO2)m−• clusters with pyridine in the gas phase. [233, 283]
The carbamate motif was identified via a C-N stretch feature in the vibrational predissocia-
tion spectra of Py−CO ·–

2 · (CO2)3. [233] A similar study using imidazole instead of pyridine
found a different interaction motif (Fig. 2.8(b)): hydrogen bonding of CO2

−• to the H−N
group yields a strong red-shift in the N-H stretching frequency. [234]

Since the different nature of these interactions could be relevant to their different cat-
alytic mechanisms, we employ RMP2-EDA to gain insights into these two distinct binding
motifs. In particular, by comparing the EDA results for the four complexes shown in Fig. 2.9
(Py−CO2

−• and Im−CO2
−• with two binding modes for each), we elucidate why different

binding motifs are preferred by pyridine and imidazole. All RMP2 interaction energies are
in good agreement with reference interaction energies calculated at the ωB97M(2)/def2-
QZVPPD level of theory (see table A.5). Furthermore, the same trends in both the total
interaction energies and the individual EDA terms are obtained using DFT-EDA with the
ωB97M-V functional (see table A.6).

The calculated total binding energies are similar for Py−CO2
−• and Im−CO2

−•, which
are −140 and −104 kJ/mol, respectively. However, as shown in Fig. 2.10, the energy com-
ponents reveal dramatically different nature of these interactions. The carbamate motif is
strongly repulsive at the frozen level. This can be understood by the fact that the unpaired
electron is localized in a CO2 π

∗ orbital, which localizes most of the spin density on the
carbon atom (see Fig. A.3(a)). In addition, the C−N bond distance is very short at only
1.49 Å, rendering the frozen term dominated by the Pauli repulsion between the lone pair of
the N atom and the π* of the CO2

−•-fragment. The polarization term is strongly attractive,
which is most likely due to the redistribution of charges on the CO2

−• fragment induced by
the lone pair on nitrogen. This effect can be rationalized by the electron density difference of
CO2

−• with and without a partial negative charge (0.5e−) located 1.5 Å away from the car-
bon atom on the bisector, which demonstrates how an electronegative species redistributes
the spin density from C to both O atoms (see Fig. A.3(b)). CT also plays an important
role in this interaction, and it is bidirectional with both forward and backward donations
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r = 1.45 Å

(a)

r = 1.71 Å

(b)

r = 1.49 Å

(c)

r = 2.18 Å 

(d)

Figure 2.9: Geometries of the four possible isomers using both binding motifs for the reaction
of a CO2

−• with nitrogen heterocycles: (a) carbamate Im−CO2
−•; (b) hydrogen-bonded

Im−CO2
−•; (c) carbamate Py−CO2

−•; (d) hydrogen-bonded Py−CO2
−•.

being significant. The spin density of the fully relaxed Py−CO2
−• complex reveals a forward

donation of the unpaired electron into the pyridine’s π* orbital (see Fig. A.3(c)). However,
the bent O−C−O angle indicates a reduced CO2 fragment, implying significant backward
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Figure 2.10: RMP2-EDA results (using the aug-cc-pVTZ basis) for the carbamate and hy-
drogen bonding motifs of CO2

−•, separated into HF and MP2 contributions.

CT from the lone pair into the CO2 fragment. Note that polarization of the CO2 fragment,
as discussed above, makes the carbon more positive and thus more prone to nucleophilic
attacks).

In contrast, the EDA fingerprints of the hydrogen-bonded Im−CO2
−• complex (the right

panel of Fig. 2.10) shows more balanced contributions from various components, which is
similar to the IHB motifs discussed in Sec. 2.4. The O−H bond distance (1.71 Å) is slightly
longer than the carbamate motif for Py−CO2

−•. The largest contribution comes from polar-
ization, followed by also significant contributions from dispersion and charge transfer. The
dominant role of polarization can be readily rationalized by the anionic CO2 fragment that
has large polarizability and the polar N−H bond. Interesting, the HF and MP2 contributions
to the frozen term almost perfectly cancel each other for this complex, rendering the overall
frozen term close to zero.

The experimentally observed Py−CO2
−• carbamate has an interaction energy of −146.4

kJ/mol as calculated with RMP2. By contrast, the imidazole carbamate (Fig. 2.9(a)) is
far less stable with an interaction energy of only −20.7 kJ/mol. The EDA components
of the imidazole carbamate relative to the pyridine results are shown in the left panel of
Fig. 2.11. The frozen interaction is significantly more repulsive for imidazole carbamate,
which, however, is almost fully compensated by its more favorable polarization energy. There
is also a significant decrease in CT from pyridine to imidazole, even though the latter is a
stronger base and thus should exhibit a stronger forward donation from the nitrogen lone
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Figure 2.11: Left panel: comparison of the EDA components for the Py−CO2
−• carbamate

against those for its para-substituted (by −OH and −BH2) derivatives and the imidazole
carbamate; right panel: comparison of the Im−CO2

−• hydrogen-bonded complex against the
hydrogen binding of pyridine and its para-substituted derivatives with CO2

−•.

pair to CO2
−•. The results imply that this is insufficient to compensate for the less favorable

back donation of the CO2
−• fragment into the π∗ orbital of imidazole.

To probe the effect of substituent groups on the Py−CO2
−• carbamate complex, we

separately place an electron-donating hydroxyl (−OH) group and an electron-withdrawing
−BH2 group at the para carbon. The energy components relative to the unsubstituted
pyridine results are plotted on the left panel of Fig. 2.11. The −BH2 group yields a more
electron-deficient aromatic system, strengthening the interaction energy by ∼100 kJ/mol.
The comparison against the unsubstituted case manifests its less repulsive frozen term as
well as a less favorable polarization contribution, for which the differences largely cancel each
other. The −BH2 group also facilitates the donation from CO2

−• to the lowered π∗ orbital,
as reflected by the markedly stronger charge transfer stabilization. An opposite effect is
observed with the −OH group, which has a positive mesomeric effect by donating electron
to the π-system, and it reduces the interaction energy with CO2

−• by 28 kJ/mol. This net
decrease mainly stems from the more repulsive frozen interaction and the weaker donation
from CO2

−• to the π∗ orbital.
The RMP2 results for experimentally observed hydrogen-bonded Im−CO2

−• yields an in-
teraction energy of−104.2 kJ/mol, while the hydrogen-bonded Py−CO2

−• complex (Fig. 2.9(d))
is only half as strongly bound (−51.5 kJ/mol). The EDA components of the hydrogen-bonded
pyridine relative to the hydrogen-bonded imidazole complex are shown on the right panel
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of Fig. 2.11. All energy components are destabilized upon the replacement of imidazole
by pyridine. The N−H bond is more polar than C−H, which explains the more favorable
electrostatic interaction as well as the stronger polarization of CO2

−• in the complex with
imidazole. The COVPs reveal a donation from CO2

−• into the N−H σ* orbital, which is
more favorable than the donation into the C−H σ*, elucidating the difference in CT (see
Fig. A.4). This is similar to the trend observed in Sec. 2.4. In contrast to the carbamate
motif, there is no clear substituent effect for the hydrogen bonding motif because the π
system does not play a key role in this type of interaction as the same COVP implies.

2.5 Conclusion
In this work, we generalized the previously reported closed-shell MP2-EDA scheme [212, 227]
to unrestricted and restricted open-shell MP2. This permits decomposition of the correlation
energy of intermolecular interactions of radical systems into frozen, polarization, dispersion
and charge transfer components. The scheme is efficiently implemented using OpenMP
parallelism. In the case of a single atom or small radical fragments where the unpaired
electron is located in a non-spherically symmetric orbital (e.g. Cl•), a proper alignment of
the radical at the isolated fragment stage is necessary for obtaining unambiguously defined
frozen and polarization energies.

Restricted open-shell MP2 is able to provide reasonably accurate binding energies for
the radical-neutral complexes contained in the TA13 benchmark set, for which DFT can be
error prone due to the self-interaction problem. The EDA analysis revealed that the different
bonding motifs are driven by different energy components: the electron-rich metal-water
complexes by polarization, the electron-poor hemibonded complexes by charge transfer, and
the hydrogen bonded complexes show more balanced contributions from all terms.

The MP2-EDA was applied to study the first solvation step of halogenated benzene
radical cations with water where two binding modes are possible: ionic hydrogen bonding
and ionic halogen bonding. The EDA results show that IXB becomes more favorable as the
halogen becomes heavier due to an increase in polarization, dispersion and charge transfer,
whereas the IHB binding site is not strongly affected by the type of halogen. This makes
the halogen bonding site more attractive for the iodobenzene-water complex.

Analysis of CO2
−• interacting with pyridine as a carbamate and with imidazole via hy-

drogen bonding revealed very different fingerprints for these interactions. The carbamate
shows very repulsive frozen interaction, strong polarization and bidirectional charge transfer.
The hydrogen bonding motif exhibits balanced contributions from polarization, dispersion
and charge transfer with a frozen term of very small magnitude. The carbamate motif is
preferred by pyridine as it allows for a stronger charge transfer interaction, whereas the hy-
drogen bonding motif is preferred by imidazole because the more polar N−H bond results in
stronger polarization of the CO2

−• fragment. Furthermore, the importance of charge transfer
into the π∗ orbital of the heterocycle was discovered as a parameter to control the stability
of the carbamate binding mode with a substituent effect.
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While the MP2-EDA is already useful for chemical applications, as demonstrated by the
examples presented here, further methodological development is still desirable in the future.
Unlike the second generation ALMO-EDA for DFT that has a useful basis set limit for all
terms [84], our current MP2-EDA scheme does not have this desirable feature. We hope to
lift this limitation in future work. Additionally, it would be highly desirable to extend this
approach from MP2 to recently developed methods based on regularized orbital-optimized
MP2 (OOMP2) [26, 40, 284] and double-hybrid density functionals.[63, 285] Furthermore,
extending it to higher-order MP approach using OOMP2 orbitals[286] as well as revisiting
coupled-cluster methods [230] are needed when a more accurate description for electron-
electron correlation effects is necessary.
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Chapter 3

Variational Forward-Backward Charge
Transfer Analysis Based on Absolutely
Localized Molecular Orbitals: Energetics
and Molecular Properties

3.1 Introduction
The stability of dative bonds in classical Lewis acid-base compounds is controlled by the effect
of charge transfer (CT). [287] The widely used concept of donor-acceptor interaction stems
from the assumption that charge flows from one fragment to another. In simple adducts
like ammonia–borane or transition metal complexes with ligands that are σ-donors only
(e.g. NH3, H2O), the assignment of the donor and acceptor moieties is straightforward, while
in many other cases, the donor and acceptor moieties interchange their roles when different
orbital interactions are considered, wherein the CT is bi-directional. The relative strength
of the forward and backward CT and their cooperativity impose a substantial influence on
the physical and chemical properties of these donor-acceptor systems.

Complexes formed by π-acidic ligands (e.g. CO, N2, NO, etc.) with main group or
transition metal Lewis acids serve as a prominent class of examples for bi-directional CT.
The synergistic effect of the σ forward donation (ligand→metal) and the π back-donation
(ligand←metal) is a well-established concept (Dewar-Chatt-Duncanson) [89, 90] and was
extensively studied with various computational and analysis schemes. [87, 199, 288–292]
The most prominent representative of this class of ligands is carbon monoxide (CO), which
gives rise to the rich chemistry of a large variety of organometallic compounds ranging from
mono-metal complexes (e.g. [Ni(CO)4] [293]) to small multi-metal clusters (e.g. [Fe2(CO)9]
[287, 294, 295]). Classical carbonyl compounds exhibit a red shift of 0–300 cm–1 in the
CO stretching frequency (νCO) relative to that of the free CO molecule (2143 cm–1), and
the shift can be as large as 681 cm–1 for Na4[CrCO4]. [296] On the other hand, some
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other metal-carbonyl complexes (especially cationic complexes) exhibit a blue shift in νCO,
which were classified as “nonclassical” metal carbonyls. [297] Besides bonding with transition
metals, CO also forms adducts with main group Lewis acids where the similar bi-directional
CT is observed, including various boron compounds [83, 87, 298] and intramolecular B/N
frustrated Lewis pairs [299]. Most recently, it was shown that CO is able to form octacarbonyl
complexes with alkaline earth metals (Ca, Sr, and Ba) in their zero oxidation state [300] and
a strongly red-shifted cationic monocarbonyl complex with Ba+,[301] where the ns2 electrons
are promoted to the empty (n-1)d orbitals to facilitate the backbonding to CO, which further
indicates the strong π-acidity of CO.

Dinitrogen (N2), which is isoelectronic to CO, is considered to be a weaker σ-donor due
to its more compact electron lone pair and also a weaker π-acceptor because of its larger
HOMO-LUMO gap than CO, and consequently the coordination chemistry of N2 is less
rich. Nonetheless, since the discovery of the first complex with Ru(II),[302] many transi-
tion metal dinitrogen complexes have been synthesized (the interested reader is referred to
the published reviews[303, 304]). The complexation of N2 with transition metals is of cru-
cial importance for artificial nitrogen fixation at ambient conditions, [305–312] which often
involves the “activation” of the triple bond, i.e., the back-donation from the metal to the
π∗ antibonding orbital of N2. In practice, one often measures how activated the N2 is by
measuring the red shift in its stretching frequency. The shift is about 200 cm–1 for the
first reported [Ru(II)(NH3)5N2]

2+ complex and increases to 400 cm–1 for a recently reported
tris(phosphino)silyl osmium complex. [310] Gaining insights into how the chemical environ-
ment (such as the metal center and the ligand field) modulates the strength of the backward
donation to N2 will thus play an essential role in understanding the molecular mechanism of
nitrogen fixation that facilitates the design of novel and highly efficient catalysts.

The strength of forwards and backwards direction of CT in the above-mentioned com-
plexes depends on both the π-acidic ligand and the σ-acceptor moiety. To shed light on the
nature of donor-acceptor interactions as well as the factors that govern their strength, one
can resort to energy decomposition analysis (EDA) schemes [188–190] to unravel the effect
of charge transfer (along with other binding forces) upon the formation of dative complexes.
Originating from the pioneering Kitaura-Morokuma EDA,[192, 193] the early variational
EDA approaches define CT as the mixing of one fragment’s occupied orbitals into virtuals
of other fragments. Therefore, starting with molecular orbitals (MOs) optimized on each
fragment, one can quantify the energy contribution associated with the CT from one frag-
ment (A) to another (B) by evaluating the change in SCF energy upon the inclusion of the
A(occupied)→B(virtual) relaxations into the variational degrees of freedom. This approach
was widely used in early EDA methods, such as the reduced variational space (RVS) [313]
and the similar constrained space orbital variation (CSOV) [314] schemes, to identify the
forward and backward CT contributions between a pair of fragments. The natural bond
orbital (NBO) analysis [315, 316] also employs a similar way to define CT between pairs of
fragments although very different reference orbitals (“Lewis” orbitals prepared by the NBO
procedure that remain strongly orthogonal even between fragments) are employed.

The more recently developed charge transfer analysis (CTA) based on absolutely local-
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ized molecular orbitals (ALMOs) [87] is also able to separate the forward and backward
CT contributions for each pair of molecules in a system. Starting from fragment orbitals
that are variationally optimized within the supersystem (polarized ALMOs),[31] this ap-
proach approximates the CT stabilization energy using the energy lowering associated with
a single Roothaan step, i.e., one diagonalization of the supersystem Fock matrix, which is fur-
ther reformulated with unitary orbital rotations generated from a single-excitation operator
(Xvo).[317] The total stabilization energy can then be partitioned into contributions from for-
ward and backward CT between different fragment pairs, which is achieved by evaluating the
energetic stabilization associated with each off-diagonal block of Xvo in the polarized ALMO
basis. Moreover, one can perform a singular value decomposition (SVD) on each off-diagonal
block of Xvo, yielding the complementary occupied-virtual pairs of orbitals (COVPs) that
make the most significant contribution to the CT between a specific pair of fragments.[87]

While the schemes introduced above can separate the total CT energy into forward and
backward contributions and even further into contributions from different pairs of donor
and acceptor orbitals, most are unable to characterize the observable effects of CT. The
recently developed adiabatic EDA scheme [201] (see Sec. 3.2) represents a systematic step
forward to address this gap, which allows one to characterize the effects of CT (and other
physical components) on molecular structures and vibrational frequencies. This approach
has been employed to investigate observable shifts induced by intermolecular binding, such
as the red or blue shifts in vibrational frequencies upon the formation of hydrogen or halogen
bonds.[33, 91, 261, 270, 272] However, it has not been made generally possible yet to separate
the observable effects of forward/backward CT in a manner that is similar to how the ALMO-
CTA identifies the A→B and B→A contributions for a pair of fragments A and B,[87] even
though such a partition is highly desirable in particular for interpretation purposes. One
early exception was the already mentioned CSOV approach, which employed full SCF for
one fragment in the field of e.g. frozen orbitals of the other. CSOV was applied for studies of
CO bound to metal atoms and clusters.[314, 318, 319] We note that a decomposition scheme
with a similar objective was recently formulated by deriving ALMO-based linear response
equations, which, nonetheless, is limited to molecular properties that are only concerned
with electronic degrees of freedom, such as static polarizabilities.[320, 321]

In this work, we extend the original formulation of the adiabatic ALMO-EDA by intro-
ducing two additional intermediate potential energy surfaces (PESs). Inspired by the RVS
and CSOV approaches, on each of these surfaces one single direction of CT (either A→B
or B→A) is permitted while the other direction remains forbidden. The response of the
acceptor fragment to such a one-directional CT, on the other hand, is captured by the in-
termediate state defined thereof. We obtain these “one-way” CT intermediate states via a
special type of self-consistent field (SCF) calculation, whose details are given in Sec. 3.2.
The variational feature of these two states renders the associated nuclear gradients readily
attainable, and thus one can conveniently use them in the context of adiabatic EDA. This
opens the door to an in-depth analysis for the effect of forward and backward donations
on the energetic, structural, and vibrational features of dative complexes. In Sec. 3.4, we
first validate the results produced by these two “one-way” CT states using two prototypical
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borane complexes (H3N−BH3 and OC−BH3). We then utilize this approach to investigate
the carbonyl complexes of beryllium oxide and carbonate (Sec. 3.4), as well as the complexes
composed of a series of π-acidic ligands and the pentaammineruthenium ([Ru(II)(NH3)5]

2+)
moiety.

3.2 Theory

Vertical vs. Adiabatic ALMO-EDA

The ALMO-EDA scheme [83, 84] separates the overall intermolecular interaction energy,
∆EINT, into contributions from frozen interaction (∆EFRZ), polarization (∆EPOL), and
charge transfer (∆ECT):

∆EINT = ∆EFRZ + ∆EPOL + ∆ECT (3.1)

where the frozen term can be further decomposed into contributions from permanent elec-
trostatics (∆EELEC), Pauli repulsion (∆EPAULI), and dispersion interaction (∆EDISP).[84,
86, 322] Such a decomposition is usually performed at a single given geometry and thus
we refer to this approach as the vertical ALMO-EDA thereafter. For details regarding the
physical meaning and mathematical definition of each of these terms, we refer the reader to
our previous publications.[84, 86]

Contrasting with the vertical EDA, recently we also proposed an adiabatic formulation
of the ALMO-EDA in order to analyze the shifts in molecular properties induced by in-
termolecular interactions.[201] Instead of decomposing a single-point interaction at a fixed
geometry, the geometry of the complex is relaxed at the initial (isolated fragments), inter-
mediate (frozen and polarized), and final (full complex) stages of an ALMO-EDA procedure.
As in the vertical version of ALMO-EDA, the frozen state is defined as an antisymmetric
product of isolated fragment wavefunctions, and the polarized state is obtained by varia-
tionally optimizing the supersystem wavefunction with respect to the orbital rotations on
each fragment.[83] These electronic states correspond to distinct PESs, and the geometry
relaxation on each of them is facilitated by use of the associated analytical nuclear gradients.
Optimization of the isolated fragment and fully relaxed complex geometries can be achieved
by employing standard SCF nuclear gradients, and the gradients for the frozen and polarized
states have been previously derived by some of us.[201]

The geometry relaxation on each intermediate surface allows one to obtain information
on how each intermolecular interaction component modulates the structure of a complex.
Moreover, one can perform harmonic frequency calculations at the stationary points eval-
uated on each surface, thereby obtaining the vibrational frequency shifts induced by each
physical component of the interaction.[201]
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Generalized SCF-MI

In the original formulation of ALMO-EDA,[83] the polarized yet CT-forbidden state is ob-
tained by using the “SCF for molecular interaction” (SCF-MI) procedure, where one vari-
ationally optimizes a fragment-block-diagonal AO-to-MO coefficient matrix with respect to
the orbital rotations on each fragment. The variational space of each fragment is thus deter-
mined by the span of AO basis functions associated with the atoms that belong to the same
fragment. The one-particle density matrix (1PDM) can be constructed from ALMOs using

P = Co(σoo)
−1(Co)

T (3.2)

where Co refers to the MO coefficients for the occupied ALMOs, and σoo denotes their
overlap metric, which is obtained by transforming the AO overlap matrix (S) into the basis
formed by these occupied ALMOs:

σoo = (Co)
TSCo (3.3)

The energy functional, E = E[P], can be minimized by solving locally projected SCF
equations[30, 31, 196] or using gradient-based optimization algorithms (with respect to on-
fragment orbital rotations).[32]

By introducing the concept of fragment variational subspaces, we propose a generalized
formulation of SCF-MI. For a given fragment A, instead of using its full AO span (IA), we
define its variational degrees of freedom as GA, where GA is the space spanned by a set of
vectors whose expansion coefficients in the AO basis are given by a matrix GA, i.e., GA =
span{GA}. The concatenation of subspace vectors for each fragment, G = [GA,GB, ...],
defines the effective working basis for SCF-MI. The MOs can thus be represented as linear
combinations of vectors in G, whose coefficients are denoted as CG = [CG

o ,C
G
v ]. By left-

multiplying CG with G, one can retrieve the AO-to-MO coefficient matrix:

C = [Co,Cv] = G[CG
o ,C

G
v ] (3.4)

and the 1PDM can thus still be calculated via Eq. (3.2).
Within generalized SCF-MI, one only requires CG to be fragment-block-diagonal, while

the vectors that span the variational subspace of a given fragment (GA, GB, ...) are allowed
to be expanded by AO basis functions centered on other fragments. The vectors in G
that belong to the same fragment are orthonormalized against each other for convenience,
while interfragment orthogonality is usually not enforced. It is evident that the generalized
SCF-MI scheme imposes a weaker constraint on the MO coefficient matrix than the original
ALMO definition since the AO-to-MO coefficient matrix C need no longer be “absolutely
localized”, and in fact, if one chooses GA = IA for each fragment, the original AO-based
ALMO results will be recovered by generalized SCF-MI. Nevertheless, as CG has a fragment-
block-diagonal structure just like the C matrix in the original scheme, similar equations still
hold for generalized SCF-MI once the quantities are properly transformed into the basis
defined by G. In last two section of this chapter, we show the the locally projected SCF
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equation and the energy gradient with respect to on-fragment orbital rotations for generalized
SCF-MI.

The generalized SCF-MI scheme was originally proposed to allow for a truncated virtual
space for each fragment being used in the polarization step of ALMO-EDA,[32] thus providing
a well-defined separation between polarization and charge transfer. In addition to that, by
modifying the content of G, one can solve a broad spectrum of variational optimization
problems with varying degrees of freedom using the SCF-MI procedure. As an extreme
example, if one uses the full AO span of the whole system (I) as the variational subspace
for each fragment, the full SCF result will be recovered by performing a generalized SCF-MI
calculation.

Variational Forward-Backward Analysis of the CT contribution

Making use of the flexibility in variational space offered by generalized SCF-MI, we introduce
two additional intermediate states into the ALMO-EDA. For a system comprising two frag-
ments, we first denote the converged orbitals (expanded in AOs) at the polarization step as
[Co,A,Cv,A]∪ [Co,B,Cv,B], which are absolutely localized on fragments A and B, respectively.
Note that within generalized SCF-MI, these orbitals can be used to define the variational
space for the polarized wavefunction (shown as stage (a) in Fig. 3.1), and the corresponding
MO coefficient matrix CG, according to Eq. (3.4), will be an identity matrix (I). We then
construct the virtual space for the full system that is strongly orthogonal to the occupied
space, which is spanned by the orthonormalized projected virtual orbitals. The projected
virtuals are defined as

Cv,proj = (I−PS)Cv (3.5)

and the orthonormalized vectors, Cv,full, are obtained through a canonical orthogonaliza-
tion[323] of Cv,proj.

Now we construct two “one-way” CT surfaces: on the first surface, we allow Co,A to
be mixed with Cv,full and Co,B with Cv,B, thus the corresponding G matrix has the form
[Co,A,Cv,full]∪ [Co,B,Cv,B] (stage (b) in Fig. 3.1); on the second surface, we allow Co,B to be
mixed with Cv,full while Co,A only with Cv,A, and the corresponding G matrix is [Co,A,Cv,A]∪
[Co,B,Cv,full] (stage (c) in Fig. 3.1). From the choice of variational spaces one can infer that
A→B donation (but not B→A) is allowed on the first of of these two surfaces, and that the
response of the acceptor fragment B, called “repolarization”, is also captured. The second
surface is the reverse: B→A donation (but not A→B) is allowed, with A being repolarized.
Finally, as we mentioned above, if one chooses G to be [Co,A,Cv,full] ∪ [Co,B,Cv,full] (stage
(d) in Fig. 3.1), the fully relaxed SCF surface will be recovered.

We note that the construction of these two “one-way” CT states is inspired by the previ-
ously developed RVS[313] and CSOV[314] schemes. One notable difference is that in these
previous methods the variational space is constructed from orbitals calculated at the iso-
lated fragment level, while here we start from variationally optimized ALMOs obtained in
the polarization step. In addition, in RVS and CSOV only the occupied orbitals on the
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Figure 3.1: The form of G matrix in generalized SCF-MI at four different stages in adiabatic
ALMO-EDA: (a) the polarized state without CT; (b) the A→B one-way CT state; (c) the
B→A one-way CT state; (d) the fully relaxed SCF state.

donor fragment are relaxed while the acceptor fragment orbitals are frozen in their initial
shape when considering a given direction of CT; in contrast, in our scheme both fragments
are variationally relaxed on these “one-way” CT surfaces. For brevity, in the following we
refer to our approach as illustrated in Fig. 3.1 as the variational forward-backward (VFB)
analysis.

The overall CT stabilization energy in ALMO-EDA is defined as

∆ECT = ETot − EPol (3.6)

where ETot is the unconstrained, fully relaxed SCF energy of the supersystem and EPol

the energy of the polarized yet CT-forbidden state that is represented by Fig. 3.1(a). The
stabilization effect of each direction of CT, denoted as ∆ECTf (A→B) and ∆ECTb (B→A),
can be analogously defined:

∆ECTf = ECTf − EPol (3.7)
∆ECTb = ECTb − EPol (3.8)

where ECTf and ECTb are the energies of the variational forward and backward states repre-
sented by Figs.3.1(b) and 3.1(c), respectively. We adopt this convention because in our later
examples we consistently choose fragment A to be a typical σ-donating Lewis base, such as
NH3, CO, etc., and fragment B a Lewis acidic moiety (e.g. BH3 or [Ru(NH3)5]

2+). The total
charge transfer energy can thus be partitioned into three terms:

∆ECT = ∆ECTf + ∆ECTb + ∆EHO (3.9)
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where the higher-order (HO) term captures the non-additive contribution to energetic sta-
bilization arising from the relaxation of electronic structure when both directions of CT are
permitted simultaneously. This term is negative and relatively small in all examples inves-
tigated in this work (1–3% of the overall strength of ∆ECT for the main group complexes
and around 10% for the transition metal complexes). One should note that in the original
ALMO-CTA scheme [87] the decomposition of the CT energy also yields the three terms on
the right-hand side of Eq. (3.9) but uses a single non-iterative Roothaan-step correction upon
the converged ALMO polarized state. Therefore, our scheme based on generalized SCF-MI
serves as an alternative approach to decompose the energetic stabilization of CT with the
advantage that the energies of the forward and backward CT states are strict upper bound
to the full SCF energy. The results of these two approaches will be compared in Sec. 3.4.

One desirable feature of the present VFB scheme is that the forces associated with these
two “one-way” CT states can be evaluated in the same way as the nuclear gradients for the
polarized (AO-based SCF-MI) and fully relaxed (standard SCF) states (see the last section of
this chapter for the mathematical details). Therefore, one can readily augment the adiabatic
ALMO-EDA scheme with the PESs of these additional VFB states.

3.3 Computational Details
The generalized SCF-MI scheme has been implemented in the released version of Q-Chem
5.2.2. [108] On top of that, we enabled the energy and force calculations for the VFB “one-
way” CT states, fully integrated into the adiabatic ALMO-EDA framework. The original
AO-based SCF-MI scheme[31] is utilized in both vertical and adiabatic EDA calculations
to separate the polarization and charge transfer contributions. To validate the CT energy
decomposition results given by our VFB scheme, we compared them against the results of
the original perturbative ALMO-CTA.[87] The latter approach was also used to generate
the COVPs that help identify the key donor and acceptor orbitals. The COVP orbitals are
plotted with an isovalue of 0.1 a.u. and density difference plots with an isovalue of 0.01 a.u.

All the energy and molecular property calculations were performed using the B3LYP
functional [50, 56, 57] in combination with the def2-TZVPP[248] basis set unless other-
wise specified. For the 4d transition metals (Ru and Tc), an effective core potential [249]
was employed. The B3LYP functional was chosen because it provides adequate accuracy
for CT-dominated complexes [20] and also decent agreement with experimental vibrational
frequency shifts in all three application examples discussed in this work. In addition, we
repeated all the calculations with two other functionals (B97-D [62] and ωB97X-D [68]).
The functionals tested range from pure GGA (B97-D) to global and range-separated hybrid
GGAs (B3LYP and ωB97X-D, respectively) and thus exhibit different extents of charge delo-
calization errors, [324] which consequently lead to the discrepancies in the predicted strength
of CT and in the magnitude of frequency shift obtained. In general, B97-D produces the
most red-shifted frequencies and ωB97X-D the least, since delocalization errors are largest
for the pure GGA, and smallest for the range-separated hybrid. Nonetheless, our results
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demonstrate that the qualitative trends given by the VFB analysis can all be reproduced
with either of the three functionals (see Tables B.2, B.5–B.7, and B.9–B.13 in the appendix).

The optimized structures on different PESs were verified as true minima by examining
the lowest harmonic frequency, and all the vibrational frequencies were computed with a
finite-difference approach using the analytical nuclear gradients associated with each PES,
for which the step size of atomic position displacement was set to be 10−3 Å. In Sec. 3.4,
we report the frequency shift in the stretching mode of diatomic ligands N2, CO, and BF
(denoted by XY) relative to that calculated in the isolated (uncoordinated) state:

∆νXY = νXY(complex)− νXY(free) (3.10)

A negative value of ∆νXY corresponds to frequency red shift and a positive value blue shift.
The adiabatic EDA framework allows one to locate the energy minimum and obtain the as-
sociated harmonic frequencies on each individual PES: frozen (Frz), polarized (Pol), forward
CT (CTf), backward CT (CTb) and fully relaxed (Tot).

As the geometry of a complex relaxes when moving from one PES to another, the shift
in vibrational frequency calculated in such an adiabatic fashion arises not only from the
distinction in constraints applied to different electronic states (i.e. the four states illustrated
in Fig. 3.1) but also from the change in molecular structure. For instance, the inclusion of
CT usually shortens the intermolecular distance, which, however, also enhances other effects
such as those from electrostatic interactions. In order to estimate the strength of both the
electronic and geometric effects of CT, one can perform a constrained geometry optimization
in the Pol state with the intermolecular distance fixed at the CTf/CTb minimum-energy
distance followed by a frequency calculation. The frequencies obtained thereof are denoted as
νXY(Pol@CTf) and νXY(Pol@CTb), whose respective differences from the adiabatic CTf and
CTb frequencies correspond to the pure electronic effect of forward and backward donation
on the vibrational frequency shift:

∆νeff(CTx) = νXY(CTx)− νXY(Pol@CTx) (3.11)

where CTx stands for either CTf or CTb.

3.4 Results

Borane Complexes

The VFB decomposition of CT (see Sec. 3.2) yields two new PESs on which only one direc-
tion of CT is permitted. As the first step to validate this method, we analyze the H3N−BH3
complex in which the H3N→BH3 forward donation dominates (see the large forward vs. back-
ward ratio for this complex in Table 3.1). As shown in the left panel of Fig. 3.2, the surface
that allows forward donation only (denoted as CTf) stays fairly close to the fully relaxed
PES (Tot), whereas the one with H3N←BH3 backward donation only (denoted as CTb) close
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Figure 3.2: Potential energy surface (rigid scan) for each ALMO-EDA intermediate state
(Frz, Pol, CTf, CTb, and Tot) for the two borane complexes. Left panel: H3N−BH3; right
panel: OC−BH3.

to the Pol surface, confirming that these two newly introduced intermediate states describe
this simple mono-directional CT correctly.

We then move to the OC−BH3 adduct that is known to have more involved bi-directional
CT as many other carbonyl compounds do: a σ-type forward donation (OC→BH3) from the
lone pair on CO into the empty p orbital on boron, and a π-type backbonding (OC←BH3)
from the B−H σ bonding orbitals to CO’s empty π∗ level, which are illustrated by the COVPs
shown in Fig. 3.3. The vertical EDA results for this complex, as given in Table 3.1, reveal its
strongly repulsive frozen interaction as well as the substantially favorable polarization and
CT contributions. A further decomposition of the CT energy using the scheme introduced in
this work suggests that the two directions of CT contribute almost equally in this complex.

Table 3.1: Vertical ALMO-EDA results for H3N−BH3 and OC−BH3. The energies are in
kJ/mol and the distance in Å. The ratio refers to ∆ECTf/∆ECTb.

molecule ∆EFrz ∆EPol ∆ECTf ∆ECTb ∆ECT ∆ETot ratio r(X−B)
H3N−BH3 112.3 −147.2 −131.4 −15.6 −145.4 −180.3 8.0 1.658
OC−BH3 331.8 −289.0 −104.0 −108.9 −218.1 −175.3 1.0 1.520

The five intermediate surfaces (Frz, Pol, CTf, CTb, and Tot) for OC−BH3 are shown in
the right panel of Fig. 3.2. While the vertical EDA results (Table 3.1) suggest that the for-
ward and backward CT are almost equally strong for this system, one should note that this
actually only holds around the equilibrium N−B distance. Another remarkable feature is
that the π-type backbonding decays faster than the forward donation right beyond the equi-
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(a) (b)

Figure 3.3: The key COVPs in OC−BH3 that illustrate its bi-directional CT: (a) σ-type
and (b) π-type. The donor orbtial is shown as a solid isosurface while the acceptor orbital
is shown as a mesh isosurface).

librium, rendering the latter as the dominant contribution to CT at long range. As shown
in Fig. B.1 (appendix), this behavior can also be reproduced with the forward and backward
CT contributions obtained from the perturbative ALMO-CTA.[87] This finding also holds
for the metal complexes (see Figs. 3.5 and 3.10) and might be useful for kinetic control of
carbonyl insertion/elimination reactions as the M−CO distance is usually elongated in tran-
sition states, where the forward CT plays a dominant role in the donor-acceptor interaction.
In addition, Fig. B.1 also demonstrates that the forward and backward CT are dominated
by the σ-type and the π-type COVPs, respectively, as the two perturbative stabilization
energies are almost fully recovered by their dominant COVPs.

Table 3.2: Adiabatic ALMO-EDA results for the structural and vibrational parameters of
OC−BH3 complex. ∆r(CO) and ∆νCO refer to changes relative to the values of a free CO
molecule (r(CO) = 1.125 Å and νCO = 2216 cm–1). The experimental values are taken from
Refs. [325] and [326].

Surface r(CB) ∆r(CO) ∆νCO
[Å] [Å] [cm–1]

Frz 3.29 −0.001 8
Pol 3.18 −0.001 9
CTf 1.77 −0.010 108
CTb 1.54 0.001 24
Tot 1.52 0.004 −2
Exp 1.54 0.003 22

The importance of CT for this interaction is further highlighted by the adiabatic ALMO-
EDA results (Table 3.2). On the fully relaxed surface, the obtained C−B and C−O bond
distances and the shifts in νCO are in reasonable agreement with the previous theoretical
studies and experimental values. [298, 325–327] The non-CT binding forces (frozen inter-
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action and polarization) yield only a weakly bound adduct with the C−B distance, r(CB),
being over 3 Å, and r(CB) is only shortened by ∼0.2 Å upon moving from the Frz to Pol
surface. Allowing only forward donation drastically reduces the C−B distance to 1.77 Å, and
with backward CT only the C−B distance is shortened even more, yielding a C−B distance
of 1.54 Å that is already very close to the full equilibrium distance. The extraordinarily
shortened intermolecular distance obtained on the CTb surface can be rationalized by the
relatively weak Pauli repulsion in this complex, which is almost fully compensated by the
favorable permanent electrostatics and polarization contributions even at a short intermolec-
ular distance, and also by the rapid decay of CTb beyond equilibrium. This is in contrast
to the transition metal complex cases (vide infra) where the synergy of CTf and CTb is
required to overcome the stronger Pauli repulsion.

The calculated νCO on the fully relaxed surface is marginally red-shifted, while that on
the Pol surface exhibits a small blue shift. The latter is in line with our previous work [33,
328] as well as other studies showing blue shifts in CO stretching frequency in the presence
of an electric field along the C→O direction, such as in complexes where CO is bound to
a metal cation, [329, 330] which is known as molecular Stark effect. This is because the
dipole moment of CO increases when the C−O bond is contracted, which is favored by
the electrostatic interaction between CO and the positively charged moiety. The blue shift
is most prominent on the PES with forward CT only (CTf), which can be attributed to
two effects: (i) the forward donation itself (electronic) and (ii) the shortened intermolecular
distance r(CB) (geometric) that enhances the electrostatic interaction. The significance of
these two effects can be estimated by optimizing the geometry of this complex in the Pol
state with the C−B distance constrained at the minimum-energy r(CB) on the CTf surface
(1.77 Å) and then evaluating the frequency shift. A blue shift of 105 cm–1 is obtained in this
“Pol@CTf” state, which is almost identical to the blue shift on the CTf surface (108 cm–1),
indicating that the large blue shift caused by forward CT is almost solely a geometric effect,
i.e., enhanced electrostatic interaction due to the shortened C−B distance.

With backward CT only, νCO is also moderately blue-shifted (24 cm–1), for which the
geometric and electronic effects can be separated in the same way as described above. With
r(CB) fixed at 1.54 Å, the “Pol@CTb” frequency is significantly more blue-shifted (+184 cm–1

relative to free CO) than the “CTb@CTb” frequency, indicating that the back-donation, as
expected, results in an effective red shift of 160 cm–1 by modifying the electronic structure
of the CO moiety. This result, as well as the very small ∆νCO in the fully relaxed complex,
suggests that the shift in νCO is not always a reliable indicator for the strength of back-
donation, as it can be largely compensated by the competing electrostatic force that blue-
shifts νCO, which is nicely illustrated by this example. These results are in line with previous
discussions in literature,[87, 327, 329] while our VFB approach is able to directly identify
the origin of shifts in r(CB), ∆r(CO), and ∆νCO.

In summary, our analysis of the two borane adducts above demonstrates that the VFB
decomposition of charge-transfer effects yields qualitatively correct results as one would
expect for these systems, validating its use in the applications presented below. It not only
serves as an alternative scheme to separate the entire CT stabilization energy into forward
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and backward contributions, but also directly probes their effects on shifts in observables.

Binding of CO with BeO and BeCO3

A combined spectroscopic and theoretical study by Frenking et al. [331] investigated the
binding of CO with beryllium oxide and carbonate (BeY with Y = O or CO3) as well as
the shifts in CO’s stretching frequency (νCO). These beryllium compounds are strong Lewis
acids that are even able to form adducts with noble gases. [332] In their study, carbonyl
adducts of two binding modes with either the carbon or oxygen atom of CO interacting with
the BeY moiety were isolated and characterized by IR spectroscopy,[331] which are denoted
as the κC and κO modes in the following discussion, respectively. It was shown that νCO is
red-shifted for κO carbonyls (−80 cm–1 for CO−BeO and −53 cm–1 for CO−BeCO3) while
blue-shifted for the κC isomers (43 cm–1 for OC−BeO and 122 cm–1 for OC−BeCO3). The
theoretical investigation demonstrated that the magnitude of interaction energies follows the
order OC−BeO > OC−BeCO3 > CO−BeO > CO−BeCO3. Interestingly, the more strongly
bound OC−BeO exhibits a significantly smaller blue shift than OC−BeCO3. The EDA-
NOCV (natural orbital for chemical valence) [190, 333] analysis for the two κC complexes
revealed that their σ-type forward donations (OC→BeY) are of similar strengths, while
the π-type back-donation (OC←BeY) is more pronounced in OC−BeO, which explained
both its stronger interaction energy and less blue-shifted νCO. For the κO complexes, the
contribution from CT is slightly weaker and the σ and π donations are of similar strength.
Therefore, instead of backward CT, the authors attributed the red-shifted νCO in the κO
complexes to the “reversed polarization” of CO relative to the κC complexes, which makes
the C−O bond longer and less polar.

We compare the previous findings with the results of our more detailed VFB-EDA analysis
including a decomposition of the shifts in νCO. The ALMO-EDA results at the equilibrium
geometries of these four complexes (Table 3.3) are analyzed first. The comparison between
the κC and κO binding modes for BeO reveals that the former is more stable by over
70 kJ/mol, and the difference is evenly distributed over all three EDA terms. The difference
in ∆EFrz results from the substantially more favorable electrostatic interaction under the κC
mode, which overcomes its stronger Pauli repulsion. Upon polarization, one can observe a
reduction of electron density on the distant atom for both binding modes, which is shown
in Fig. B.3. The difference between their CT energies is mainly caused by the stronger
back-donation in the κC complex (see Table 3.3), which can be rationalized via the COVPs
obtained from the perturbative CT analysis (Fig. B.4(a) and Figs. B.4(c)–(e)): under the
κC mode, the π∗ acceptor orbital of CO (Fig. B.4(d)) has a better overlap with the π-donor
orbital of BeO (Fig. B.4(c)) than that under the κO mode (Fig. B.4(e)), since the π∗ orbital
of CO is polarized towards the C atom.

The comparison between the BeO and BeCO3 complexes (see Table 3.3) indicates that
the carbonate analogues bind CO less strongly than the oxides mainly because of their
less favorable CT contributions. The CTf/CTb ratios for the BeCO3 complexes reveal the
weaker back-donation in these complexes, which is consistent with the previous EDA-NOCV
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Table 3.3: Vertical ALMO-EDA results (energies in kJ/mol) for the four BeY–carbonyl
adducts. The ratio corresponds to the value of ECTf/ECTb for each complex.

Adduct ∆EFrz ∆EPol ∆ECTf ∆ECTb ∆ECT ∆ETot ratio

OC−BeO 11.4 −108.8 −26.5 −49.2 −77.9 −175.2 0.5
CO−BeO 31.4 −78.4 −29.8 −24.2 −54.9 −101.9 1.2

OC−BeCO3 12.7 −93.9 −29.5 −14.9 −44.9 −126.1 2.0
CO−BeCO3 27.0 −69.0 −28.3 −7.2 −35.6 −77.7 4.0

(a) (b)

Figure 3.4: Key COVPs contrasting the π backbonding for both OC−BeY complexes: (a)
OC−BeO: (b) OC−BeCO3. The donor orbitals are in solid colors and the acceptor orbitals
are meshed.

results.[331] This can be elucidated by the smaller overlap between the π-donor orbital on
BeCO3 with the π∗ orbital on CO as illustrated in Fig. 3.4. The comparison between the
κC and κO isomers of the carbonate complex, on the other hand, shows the same trend as
for the above-discussed BeO complexes. Finally, we note that the higher-order contribution
is very small for this set of systems (3% of the overall CT energy for the complexes with
BeO and ∼1% for those with BeCO3), indicating that the decomposition of CT stabilization
energy using the VFB approach yields nearly additive results for these Be complexes.

The PES scans for OC−BeO and CO−BeO are shown in Fig. 3.5. Both isomers (κC
and κO) are only weakly bound in the frozen state with shallow minima located at 2.15 and
2.17 Å, respectively. Polarization strengthens the interactions and shortens the equilibrium
Be−X distances of both isomers significantly. The κC complex is of a larger polarization
energy, which can be rationalized by the chemically softer lone pair located on the C atom.
Interestingly, given the characteristic difference between the lone pairs located on C and
O, the energetic contributions from forward donation (from CO/OC to BeO) are of similar
magnitude for these two complexes in the range of 1.5–1.8 Å. Nevertheless, the energetic
contribution of forward CT (energy lowering relative to the Pol surface) does show a slower
decay to zero in the long range under the κC mode, as one would expect based on the more
diffuse electron lone pair on the C atom (see Fig. B.5 in the appendix). The backward
donation, on the other hand, is of a greater strength in the κC complex, which is in line with
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Figure 3.5: Potential energy surface (rigid scan) for each ALMO-EDA intermediate state
(Frz, Pol, CTf, CTb, and Tot) for OC−BeO (left) and CO−BeO (right).

the vertical EDA results that were discussed above (Table 3.3). The strong back-donation in
the κC complex also leads to a reduction of the Be−C distance by 0.1 Å, and the resulting
intermolecular distance is only 0.016 Å longer than the full equilibrium distance.

The most pronounced difference between these two binding modes is observed when
comparing their CTf against CTb surfaces for each of them: for CO−BeO, the forward and
backward donations yield very similar energetic stabilization relative to the Pol state at all
ranges; by contrast, OC−BeO exhibits markedly stronger backward CT than forward around
the minimum-energy distance while the back-donation decays more rapidly, resulting in a
crossover around 2 Å. Note that the faster decay of backward CT was also observed in the
OC−BH3 example discussed above (Sec. 3.4). Altogether, the CO molecule binds with BeO
more strongly under the κC mode mainly because of the more favorable polarization and
backward CT contributions. It is noteworthy that the equilibrium Be−X distance on the
fully relaxed surface appears to be longer for the κC complex despite its stronger interaction.
This, once again, can be rationalized by the more diffuse lone pair (σ-donor orbital) as well
as the larger amplitude of the π-acceptor orbital on the C atom, with the former rendering
the κC complex more prone to Pauli repulsion and thus energetically less favorable at a short
distance, and the latter facilitating a considerable interaction strength at a comparatively
large intermolecular separation.

The adiabatic ALMO-EDA results for OC−BeO and CO−BeO are shown in Table 3.4.
The carbonyl stretching frequency (νCO) is blue-shifted by 102 cm–1 for the κC complex
at the Frz level, accompanied by a contraction of the C−O bond by 0.01 Å. In contrast,
the κO complex exhibits a moderate red shift of −28 cm–1 relative to the free νCO and
correspondingly a lengthened C−O bond (by 0.004 Å). While Ref. [331] assigned the origin
of the opposite frequency shifts in OC−BeO and CO−BeO to the “reversed polarization” of
the C−O bond in these two complexes, our adiabatic ALMO-EDA results reveal that the



CHAPTER 3. VARIATIONAL CHARGE TRANSFER ANALYSIS 79

respective blue and red shifts in these two complexes already appear on the frozen surface
where no orbital interaction (polarization or charge transfer) is involved. According to this
result, one can elucidate the opposite shifts in νCO for these two complexes through the
molecular Stark effect: since the Be atom carries partial positive charge and the dipole
moment of CO (with oxygen as the positive end) increases upon the contraction of the C−O
bond, a shortened C−O bond enhances the attractive electrostatic interaction and therefore
is energetically favored, rendering νCO blue-shifted; on the contrary, a lengthened C−O bond
is more favored by the electrostatic interaction in CO−BeO due to the opposite orientation
of CO’s permanent dipole, resulting in a red shift in νCO. These results are in agreement
with the previous studies on classical (neutral) and non-classical (cationic) metal carbonyls.
[33, 328–330, 334, 335]

The inclusion of polarization further enhances both the blue shift in OC−BeO and the
red shift in CO−BeO. However, as the frequency shifts on the Pol surface are calculated at
shortened intermolecular distances relative to those on Frz, these more pronounced frequency
shifts again arise from both the geometric and electronic effects. While the forward donation
to BeY imposes insignificant effects on the bond length and stretching frequency of CO,
the back-donation substantially lowers νCO under both the κC and κO modes. With bi-
directional CT, their νCO’s are further red-shifted relative to those on the CTb surface,
which can be attributed to the non-additive relaxation of their electronic structure.

The two BeCO3 complexes exhibit shifts in νCO that are comparable to those of the
corresponding BeO complexes on the Frz, Pol, and CTf surfaces. The most pronounced
difference originates from the much weaker backbonding from BeCO3 than that from BeO,
which is reflected in the much smaller changes in νCO from Pol to CTb for the BeCO3
complexes (see Table 3.4). This is also consistent with the vertical EDA results shown in
Table 3.3. Therefore, the significant blue shift in the fully relaxed OC−BeCO3 complex is
a consequence of the strong Stark effect, which significantly shortens the C−O bond and
increases its stretching frequency, complemented with the weak back-donation from BeCO3
that is inadequate to compensate for the blue-shifting effect.

The discussion in Sec. 3.4 regarding the shift in νCO nicely revealed that the enhanced
electrostatic interaction upon the shortening of r(C−B) is the main contributor to the fre-
quency shift on the CTf surface by calculating νCO in the “Pol@CTf” state. Here we employ
a similar analysis to investigate the distance dependence of the effects of Frz, Pol, CTf, and
CTb on νCO. Specific attention is paid to the shifts induced by each energy component at the
full equilibrium X−Be distances (e.g. Frz@Tot) since all these effects are at their maximum
strength there. For both OC−BeO and CO−BeO, we performed constrained geometry opti-
mizations on each intermediate surface with r(X−Be) fixed at varying values and evaluated
νCO at each given distance. The resulting frequency shifts relative to the free CO stretching
frequency, which are denoted as ∆νCO, are plotted in Fig. 3.6 as a function of r(X−Be). It is
clearly revealed that the overall frequency shifts are mainly determined by how the strength
of permanent electrostatics, which is encompassed in the frozen term, compares to that of
backward CT, and that both polarization and forward CT only result in moderate red shifts
relative to νCO on the Frz surface. At the minimum-energy distance on the Tot surface, the
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Table 3.4: Adiabatic ALMO-EDA results for the four X−BeY adducts (for a free CO
molecule r(CO) = 1.125 Å and νCO = 2216 cm–1). The distances are in Å and frequen-
cies in cm–1.

Property Surface OC−BeO CO−BeO OC−BeCO3 CO−BeCO3

r(CO) Frz 1.115 1.129 1.117 1.129
r(CO) Pol 1.112 1.132 1.113 1.132
r(CO) CTf 1.112 1.133 1.112 1.134
r(CO) CTb 1.121 1.137 1.114 1.132
r(CO) Tot 1.122 1.141 1.115 1.135

r(X-Be) Frz 2.148 2.167 2.345 2.324
r(X-Be) Pol 1.833 1.793 1.888 1.845
r(X-Be) CTf 1.823 1.707 1.868 1.727
r(X-Be) CTb 1.733 1.700 1.831 1.812
r(X-Be) Tot 1.717 1.620 1.810 1.695

∆νCO Frz 102 −28 80 −28
∆νCO Pol 141 −42 130 −46
∆νCO CTf 140 −51 133 −59
∆νCO CTb 44 −115 101 −54
∆νCO Tot 31 −160 95 −76
∆νCO Exp 43 −80 122 −53

CO−BeO isomer exhibits a minimal blue shift on the frozen surface (+13 cm–1 relative to
free CO), small but still sizable red shifts induced by Pol (−44 cm–1 relative to Frz) and CTf
(−13 cm–1 relative to Pol), and a significant red shift caused by CTb (−85 cm–1 relative to
Pol). In contrast, the OC−BeO isomer exhibits a much more considerable blue shift on the
frozen surface (+199 cm–1 relative to free CO). Despite the substantial red shift associated
with the backward CT (−127 cm–1 relative to Pol), it is still inadequate to compensate for
the strong blue shift induced by frozen interaction, leading to an overall blue-shifted νCO.

In summary, our VFB-EDA analysis reveals that the distinct frequency shifts in the κC
and κO complexes of beryllium oxide and carbonate result from the competition between
the electrostatic interaction and the backward CT from BeO or BeCO3 to CO. The electro-
static interaction affects the CO stretching frequency through the Stark effect, rendering νCO
strongly blue-shifted for the κC motif while moderately red-shifted for κO. Polarization and
forward CT further increase the blue or red shift, mainly by shortening the intermolecular
distance, which leads to enhanced Stark effect. The backward CT, which is more pronounced
in the complexes with BeO, weakens the C−O bond under both binding modes. It offsets the
blue shifts in the κC complexes while further red-shifts νCO in the κO ones. The results for
the κO complexes demonstrate that significant red shift in νCO is possible even with a weak
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Figure 3.6: Shift in νCO (in cm–1) as a function of the intermolecular distance in each
intermediate state (relative to free CO) for OC−BeO (left) and CO−BeO (right). The
frequencies are evaluated at complex geometries relaxed at each given Be−X distance. The
black dashed lines indicate the full equilibrium distance for each complex.

back-donation if it is aligned with the electrostatic effect. Our results agree with Ref. [331]
in explaining the stronger blue shift in OC−BeCO3 than in OC−BeO while providing a
distinct explanation for the opposite frequency shifts in the κC and κO complexes.

Pentaammineruthenium(II) Complexes of the Isoelectronic N2, CO
and BF

The red shift in CO or N2’s stretching frequency is often used as an indicator for the strength
of the π-type metal-to-ligand back-donation, whereas the effect of the forward donation on
this vibrational mode is small due to the non-bonding character of the σ-donating orbital
(lone pair on the ligand). [329, 330, 336] Bistoni et al. recently investigated the effects of both
σ forward and π backward donations on the C−O bond length and its stretching frequency
using charge displacement analysis [337, 338] with a large set of classical and non-classical
carbonyl complexes. [335] They found that νCO and r(CO) are in very good correlation with
the strength of the π back-donation but not with the strength of the σ forward donation.
The blue shift in non-classical carbonyl complexes, on the other hand, stems mainly from
electrostatic interaction and polarization due to the positively charged metal moiety. Using
the block-localized wavefunction (BLW) approach, Mo and co-workers obtained optimized
structures and vibrational frequencies of a series of transition metal monocarbonyls with both
directions of CT “quenched”.[199, 334] They revealed that νCO is uniformly blue-shifted in
both neutral and cationic transition metal monocarbonyls when CT is absent, and that CT
always results in a red shift in νCO, which is more pronounced in neutral, classical complexes.



CHAPTER 3. VARIATIONAL CHARGE TRANSFER ANALYSIS 82

The blue shift induced by the transition metal moiety is in line with the Stark effect of CO
in an electric field,[329, 330] and first arises even without polarization, i.e., on the frozen
surface.[33, 328] The experimentally observed shift in νCO is thus a superposition of these
effects and the net effect can be small since they induce shifts in opposite directions.

Boron monofluoride is also isoelectronic to CO and N2, and was predicted to be both
a stronger σ-donor and π-acceptor compared against CO. [339–341] It possesses a lower
bond order and like CO, the dipole moment of BF is in the opposite direction of intuition,
with the B atom as the negative pole. [342, 343] However, BF is only stable under extreme
conditions, rendering its coordination compounds difficult to prepare. [344, 345] Nonetheless,
recent work by Drance et al. reported the synthesis and characterization of a transition
metal complex with a terminal coordinating BF ligand and demonstrated BF’s σ-donor and
π-acceptor properties. [346] Experimental evidence including NMR-, IR-, and Mössbauer-
spectroscopy and X-ray crystallography suggests that BF is not only a stronger σ-donor
than its isoelectronic counterparts (CO, N2) but also a strong π-acceptor. Differing from the
analogous complexes with CO and N2 that exhibit red-shifted ligand stretching frequencies,
the B−F stretching frequency, νBF, is markedly blue-shifted, which is seemingly contradictory
to the assignment of BF as a strong π-acceptor.

Using the extended adiabatic ALMO-EDA with the VFB states, one is able to charac-
terize and separate the effects of permanent and induced electrostatics, σ forward donation,
and π back-donation on the structural and vibrational properties of a given complex. Here
we provide a systematic study of octahedral transition metal complexes with the above-
mentioned three isoelectronic ligands: N2, CO, and BF. In order to compare these three
ligands directly, we choose a [Ru(II)(NH3)5]

2+ framework because of its simplicity (homo-
geneous auxiliary ligands (NH3) and low-spin singlet state) and its strong association with
π-acidic ligands. Furthermore, the [Ru(II)(NH3)5N2]

2+ cation is experimentally accessible
and has been well characterized.[302]

The vertical ALMO-EDA results at the minimum-energy structure of each complex are
summarized in Table 3.5. Starting with the ammine (NH3) ligand that is a σ-donor only, we
find that it exhibits a favorable frozen interaction due to the large dipole moment of NH3.
It also shows a relatively long Ru−N distance (2.2 Å), which gives rise to more favorable
electrostatic interaction and weaker Pauli repulsion, respectively. Combined with ∆EPol
(−46 kJ/mol), the total non-CT contribution is significant and constitutes ∼30% of the
total interaction energy. The CT term, nonetheless, still makes the largest contribution to
binding, and is strongly dominated by forward donation (H3N→Ru) as indicated by the large
CTf/CTb ratio (10.8).

The three π-acidic ligands (N2, CO, and BF) exhibit drastically different vertical EDA
fingerprints than NH3. Although both permanent electrostatics and polarization become
more favorable in these complexes, they are overlaid by the stronger Pauli repulsion that
increases from N2 to BF (see Table B.8). Thus, CT becomes the key contributor to these
interactions. As indicated by the large magnitude of both ∆ECTf and ∆ECTb values, CT
in these complexes is of a typical bi-directional character, and the most significant COVPs
(Figs. 3.7 and 3.8) clearly demonstrate σ forward donation and π back-donation. The total
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Table 3.5: Vertical ALMO-EDA results for the transition metal complexes. The energies are
in kJ/mol and the distance in Å. The ratio refers to ∆ECTf/∆ECTb.

Complex ∆EFrz ∆EPol ∆ECTf ∆ECTb ∆ECT ∆ETot ratio r(M−X)
H3N−[Ru(NH3)5]

2+ −11.6 −46.0 −102.4 −9.5 −113.4 −171.0 10.8 2.194
NN−[Ru(NH3)5]

2+ 160.4 −70.1 −95.0 −99.5 −212.6 −122.4 1.0 1.951
OC−[Ru(NH3)5]

2+ 283.2 −119.6 −190.0 −155.8 −392.8 −229.2 1.2 1.860
FB−[Ru(NH3)5]

2+ 317.1 −171.0 −284.8 −130.0 −477.2 −331.1 2.2 1.871
NN−[Fe(NH3)5]

2+ 82.4 −57.1 −42.1 −53.2 −100.9 −75.6 0.8 1.929
NN−[Tc(NH3)5]

+ 263.8 −75.0 −94.6 −277.4 −414.7 −226.0 0.3 1.873

interaction strength of these complexes is in the order of N2 < CO < BF, which is also in
line with their relative strength of CT. The further decomposition of CT using the VFB
approach reveals that N2 is a much weaker σ-donor as well as a weaker π-acceptor than the
more polar CO and BF. The increase in bond polarity (N2 < CO < BF) in this isoelectronic
series reduces the HOMO-LUMO gap, facilitating both forward and backward donation.
The increase in the strength of CT with more polar ligands can also be rationalized with
the COVPs shown in Figs. 3.7 (for N2) and 3.8 (for CO and BF), which illustrate that more
polar ligands are more favored as either σ-donor or π-acceptor. Interestingly, the relative
strength of forward donation increases more rapidly than backward donation with the ligand
polarity, as indicated by the increasing CTf/CTb ratio from N2 to BF. It is also noteworthy
that although BF is more polar than CO, which is supposed to yield an even better overlap
of π∗ with Ru(II)’s 4d orbitals, the back-donation towards BF is 25 kJ/mol less favorable
than that towards CO and the interaction between BF and the Ru(II) moiety is dominated
by the σ forward donation. These findings hold for different types of density functionals as
shown in Table B.9 in the appendix.

The adiabatic EDA results (Table 3.6) show that the Ru(II) moiety binds the three π-
acidic ligands (denoted as XY) only loosely on the Pol surface with the minimum-energy
Ru−X distances ranging between 2.6–2.7 Å. This is in contrast to the main group beryllium
carbonyls discussed in Sec. 3.4 above where short intermolecular distances were already
observed on the Pol surface (see Table 3.4). In the case of N2, introducing either the forward
or backward CT shortens the Ru−X distance by ∼0.3 Å, indicating the similar σ-donating
and π-accepting abilities of this ligand. For CO, the forward CT shortens the Ru−X distance
more than backward CT, and this difference is further enlarged in the case of BF, where
forward donation shortens the Ru−X distance by over 0.2 Å. This differs from the two main
group examples (OC−BH3 and OC−BeO) discussed in the above sections, where the adduct
bond lengths on the CTb and fully relaxed surfaces are very similar because of the fast decay
of CTb energy. For the Ru(II) complexes one can still observe similar fast decay of CTb as
shown in Fig. 3.10. However, the strong Pauli repulsion between the lone pair on the XY
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(a) (b)

(c) (d)

Figure 3.7: Key COVPs illustrating the σ- and π-type donations in NN−[Ru(NH3)5]
2+: (a)

σ-donor, (b) σ-acceptor, (c) π-donor, and (d) π-acceptor.

ligand and the 4d electrons of Ru(II) do not allow for a shorter Ru−X distance without the
presence of forward donation, even though it would greatly increase the strength of back-
donation. The forward donation moves electron density from the lone pair of the ligand
to Ru(II)’s empty dz2 orbital and thereby reduces the Pauli repulsion, which is illustrated
by the COVP acceptor orbital for σ-donation (Fig 3.7(b)) and the plots of electron density
difference between the CTf and Pol states for N2, CO, and BF (Figs. 3.9(a)–(c)). Therefore,
the forward donation not only stabilizes the complex by itself but also enables stronger back-
donation by reducing Pauli repulsion, which allows for a shorter M−X distance. This is not
the case in the main group complexes where Pauli repulsion is not as prominent and can
already be overcome by the non-CT contributions.

The comparison of the PES scans for these complexes with respect to the Ru−X distance
(Fig. 3.10) further confirms the variation in the relative strength between the forward and
backward CT. For the N2 complex (left panel), CTf and CTb are of similar magnitude over
the full range of the r(N−Ru), with CTb being marginally more favorable in the short range
and a crossover taking place around 1.9 Å; for the CO complex (middle panel), the CTf
surface is consistently of a lower energy than that of CTb although the gap between them
is small. The BF ligand (right panel), on the other hand, is an even stronger σ-donor but a
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(a) (b)

(c) (d)

Figure 3.8: Key COVPs illustrating the σ- and π-type donations in OC−[Ru(NH3)5]
2+: (a)

σ-donor, (b) π-acceptor, and in FB−[Ru(NH3)5]
2+: (c) σ-donor, (d) π-acceptor.

weaker π-acceptor, with a substantial gap between the CTf and CTb surfaces. Furthermore,
from N2 to BF the frozen surface becomes less favorable, while the stabilization effect due
to of polarization (the difference between Frz and Pol) increases.

The IR shifts in the stretching frequency of these π-acidic ligands (see Table 3.7) show
an opposite trend to the ordering of the strength of their CT energies (∆ECT in Table 3.5):
a red shift of 150 cm–1 for N2, a smaller red shift of 102 cm–1 for CO, and a blue shift
of 123 cm–1 for BF. The origin of this seemingly counterintuitive trend can be unraveled
by the frequency shifts (∆νXY) evaluated on the Pol surface, where the blue shifts increase
drastically from N2 to BF. The blue shift in νXY for each complex is further increased at
the equilibrium structures on the CTf surface, which, as in the OC−BH3 and OC−BeO
cases, is mainly a geometric effect as indicated by the close agreement between Pol@CTf
and CTf@CTf frequencies in Table 3.8. The backward CT, on the other hand, lowers the
frequencies relative to their values on the Pol surface for all three ligands, which, as indicated
by the three right columns in Table 3.8, is truly an electronic effect. For the complex with N2,
the back-donation overpowers the weak electrostatic effect, yielding an overall red-shifted νN2
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(a) (b) (c)

Figure 3.9: Electron density difference between the CTf and Pol states (plotted with isovalue
0.01 a.u.) for (a) N2−[Ru(NH3)5]

2+, (b) OC−[Ru(NH3)5]
2+, and (c) FB−[Ru(NH3)5]

2+

(green: increase in electron density; yellow: decrease in electron density).
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Figure 3.10: Potential energy surface (rigid scan) for each ALMO-EDA intermediate state
(Frz, Pol, CTf, CTb, and Tot) for N2−[Ru(NH3)5]

2+ (left), OC−[Ru(NH3)5]
2+ (middle), and

FB−[Ru(NH3)5]
2+ (right).

on the CTb surface (−39 cm–1 relative to the free N2 stretch). The red shift becomes much
more pronounced (−150 cm–1relative to free N2) when both directions of CT are permitted,
which can be explained by the combined effect of forward and backward CT in shortening
the Ru−N distance. According to the adiabatic EDA results in Table 3.6, CTf and CTb
shorten the Ru−N distance by 0.32 Å and 0.31 Å, respectively, and when combined they
shorten the distance by 0.67 Å, indicating that their effects are almost additive in this case.
The shortened Ru−N distance then strengthens both the electrostatic effect (blue-shifting)
and the back-donation (red-shifting), whereas the latter plays a dominant role in this case.

The same mechanism applies to both the CO and BF complexes, where the bond short-
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Table 3.6: Metal-ligand distance [r(M−X)] and bond length of the diatomic ligand [r(X−Y)]
(both in Å) evaluated on the Pol, CTf, CTb, and Tot surfaces. In the isolated state,
r(N−N) = 1.091 Å, r(C−O) = 1.125 Å, r(B−F) = 1.265 Å.

r(M-X) r(X-Y)
Complex Pol CTf CTb Tot Pol CTf CTb Tot

NN−[Ru(NH3)5]
2+ 2.625 2.308 2.318 1.951

OC−[Ru(NH3)5]
2+ 2.605 2.219 2.329 1.860 1.117 1.114 1.124 1.139

FB−[Ru(NH3)5]
2+ 2.690 2.165 2.379 1.871 1.243 1.237 1.249 1.266

NN−[Fe(NH3)5]
2+ 2.538 2.267 2.190 1.929 1.090 1.090 1.092 1.097

NN−[Tc(NH3)5]
+ 2.638 2.388 2.091 1.873 1.090 1.089 1.115 1.133

Table 3.7: Adiabatic ALMO-EDA results for the shifts in the vibrational frequency of N2,
CO and BF (∆νXY in cm–1) when associated with the transition metal moiety.

∆νXY
Complex Pol CTf CTb Tot

NN−[Ru(NH3)5]
2+ 11 25 −39 −150

OC−[Ru(NH3)5]
2+ 74 109 −5 −102

FB−[Ru(NH3)5]
2+ 143 208 108 123

NN−[Fe(NH3)5]
2+ 7 16 −21 −80

NN−[Tc(NH3)5]
+ 16 27 −236 −373

ening effects of CTf and CTb are also nearly additive. However, the relative strength of the
blue-shifting electrostatic effect and the red-shifting backward CT, as well as their varia-
tion with the Ru−X distance, differs in each complex. The blue shifts on the Pol and CTf
surfaces are more significant with more polar ligands, which is in line with the increasingly
contracted r(X−Y) from N2 to BF (see Table 3.6). The back-bonding to CO appears to
exert a strong effect such that the frequency calculated on the CTb surface is red-shifted
already (5 cm–1 relative to the free νCO). The synergy of forward and backward CT further
results in a substantial red shift of 102 cm–1 in the fully relaxed complex, suggesting that
the strength of backward CT increases more rapidly than the blue-shifting electrostatics
with the shortening of the Ru−C distance. The back-bonding to BF, on the other hand,
introduces a less pronounced red shift (35 cm–1 relative to νBF on the Pol surface) such
that the frequency evaluated on the CTb surface is still strongly blue-shifted (108 cm–1

relative to the free νBF). More interestingly, with both directions of CT permitted, νBF
becomes more blue-shifted relative to that on the CTb surface, which is opposite to the
substantial red shifts induced by the synergistic effect of forward and backward CT found
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in the N2 and CO complexes, suggesting that the enhancement of the blue-shifting effect
overshadows the increase in the strength of back-donation. This is confirmed by the strongly
blue-shifted Pol@Tot frequency as shown in Table 3.9 (314 cm–1 relative to the free νBF),
which is 142 cm–1 higher than the Pol@CTb frequency. The red shift induced by backward
CT, on the other hand, is only increased by 55 cm–1 upon moving from the minimum-energy
Ru−B distance on the CTb surface to that on the fully relaxed surface, and therefore it is
overpowered by the enhanced blue-shifting electrostatic effect.

Table 3.8: Shifts in the stretching frequency of N2, CO, and BF (in cm–1) when associated
with [Ru(NH3)5]

2+ with the Ru−X distance fixed at the optimum values on the CTf (“@CTf”)
and CTb (“@CTb”) surfaces, respectively.

∆νXY@CTf ∆νXY@CTb
Complex Pol CTf ∆νCTf Pol CTb ∆νCTb

NN−[Ru(NH3)5]
2+ 33 25 −8 32 −39 −71

OC−[Ru(NH3)5]
2+ 107 109 2 92 −5 −97

FB−[Ru(NH3)5]
2+ 207 208 1 172 108 −64

Table 3.9: Shifts in the stretching frequency of N2, CO, and BF (in cm–1) when associated
with [Ru(NH3)5]

2+ evaluated at the fully relaxed minimum-energy Ru−X distance (“@Tot”).

∆νXY@Tot
Complex Pol CTf CTb Tot

NN−[Ru(NH3)5]
2+ 105 83 −73 −150

OC−[Ru(NH3)5]
2+ 217 188 7 −103

FB−[Ru(NH3)5]
2+ 314 305 195 123

We then perform the same set of analyses on NN−[Fe(NH3)5]
2+, which is the 3d ana-

logue of the Ru(II)−N2 complex. The 3d electrons are more compact than 4d, resulting
in an almost halved magnitude of the ∆EFrz and ∆ECT terms at the equilibrium structure
compared to the values of the corresponding Ru(II) complex (see Table 3.5). Turning to the
adiabatic EDA results (Table 3.6), the Fe−N distance optimized in the Pol state is ∼0.1 Å
shorter than the corresponding Ru−N distance, which is consistent with the weaker Pauli
repulsion exerted by the 3d orbitals. Nonetheless, once fully relaxed, r(Fe−N) is only ∼0.02
Å shorter than r(Ru−N) optimized in the same state, indicating the stronger effects of CT
in the Ru(II) complex. One should also note that the forward CT has a weaker effect than
backward CT on the Fe(II) complex, which is revealed by its CTf/CTb ratio (0.8) as well as
the significantly larger Fe−N distance on the CTf surface than on CTb. The decomposition
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of the shift in νN2 follows the synergistic mechanism discussed above, whereas the overall red
shift (relative to the free νN2) for the Fe(II) complex is slightly more than one half of that
for the Ru(II) complex, which is consistent with the relative strength of their ∆ECTb values
in Table 3.5.

At last we investigate the Tc(I) complex with N2, where the metal center is also of 4d6

configuration but has a different oxidation state. Compared to the Ru(II) complex, the frozen
interaction at the equilibrium geometry is over 100 kJ/mol more repulsive (Table 3.5) due
to the more diffuse d-orbitals of Tc(I), while their ∆EPol and ∆ECTf terms only minimally
differ. The backward CT, however, almost triples upon the replacement of Ru(II) with
Tc(I), resulting in an overall CT stabilization energy that is over 200 kJ/mol more favorable
in the latter. The results of adiabatic EDA further highlight the prominent contribution
from back-donation in the Tc(I) complex, such as the significant elongation of the N−N
bond (Table 3.6) and the substantial red shift in νNN (236 cm–1 relative the free N2) that
already appears on the CTb surface (Table 3.7). Despite the overwhelming dominance of
CTb, the Tc−N distance on the CTb surface is still over 0.2 Å longer than the fully relaxed
equilibrium distance. This demonstrates that even for strong π-donating metals, CTf still
plays an important role in overcoming the Pauli repulsion to achieve the final metal-ligand
distance. Surprisingly, the Ru(II) and Tc(I) complexes show similar N−N bond lengths and
frequency blue shifts on the Pol and CTf surfaces. A closer look at the structures of these
complexes reveals that the M−NH3 distances are almost 0.1 Å shorter in the Ru(II) complex,
indicating the stronger donation from the ammine ligands to Ru2+ that partially neutralizes
its excessive positive charges. Finally, we note that the synergistic effect of forward and
backward CT remains significant for the Tc(I) complex despite the dominance of backward
CT, which is indicated by the further elongated r(N−N) and more red-shifted νN2 when both
directions of CT are permitted.

3.5 Conclusions
Making use of the flexibility of the generalized SCF-MI scheme, we introduced two new
intermediate states in which only one direction of CT is permitted under the ALMO-EDA
framework. This allows us to separate a total CT stabilization energy into forward (CTf)
and backward (CTb) contributions with a residual higher-order term. This new variational
forward-backward (VFB) decomposition scheme yields similar results compared to the previ-
ously developed ALMO-CTA that employs a perturbative approach. An important difference
is that, these two new intermediate states are each variationally optimized such that their
energies are strict variational upper bounds to the full SCF energy and the nuclear forces
associated with them can thus be readily computed, rendering it possible for one to identify
the forward and backward CT contributions to the changes in structural and vibrational
properties upon the formation of dative complexes.

As a proof-of-concept example, we first applied VFB analysis to the OC−BH3 complex.
The decomposition of ∆ECT reveals that while CTf and CTb are of similar strength at
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the minimum-energy distance, the backward donation from BH3 to CO decays substantially
faster in the long range. This steep distance dependence of the strength of back-donation,
together with the relatively weak Pauli repulsion due to the electron-deficient nature of BH3,
elucidates the close agreement between the minimum-energy C−B distances on the CTb and
Tot surfaces. The CO stretching frequency (νCO) in this system is only minimally shifted
relative to that of the free CO, and the adiabatic ALMO-EDA results show that νCO is
strongly blue-shifted on the CTf surface and moderately blue-shifted on the CTb surface,
which are seemingly counterintuitive. We identified the significant blue-shifting effect of the
electrostatic interaction as it shrinks the CO bond distance to increase the dipole moment
of CO, which is further enhanced upon the shortening of the C−B distance driven by CT.
This blue-shifting electrostatic effect largely cancels out the red-shifting effect of the back-
donation.

We then applied VFB analysis to the carbonyl complexes of BeY (Y = O or CO3), where
CO is bound to the BeY moiety under either the κC or κO mode. At their equilibrium
structures, the κC complexes are more strongly bound than their respective κO isomers, and
the energy differences are rather evenly distributed betwee the Frz, Pol, and CTb terms. The
CO stretching frequencies in the κC and κO complexes are blue- and red-shifted, respectively,
which agree with the results in Ref. [331]. Using the adiabatic ALMO-EDA, we demonstrated
that the opposite shifts in νCO originate from the frozen interaction, which can be attributed
to the molecular Stark effect: depending on the orientation of the CO dipole to the Lewis
acid, the electrostatic interaction induces a blue shift (κC) or a red shift (κO). Both Pol and
CTb further increases the blue/red shift in the κC/κO complexes simply by shortening the
intermolecular distances. The backward CT red-shifts νCO in both the κC and κO complexes
and has a stronger effect in the former because of the larger amplitude of the π∗ orbital on
the C atom. Nevertheless, the backward CT is not of enough strength to overcome the blue-
shifting electrostatics in the κC isomers, especially in the case of OC−BeCO3 where the
back-donation is particularly weak. The sizable red shifts in the κO complexes, on the other
hand, result from the cooperation of the electrostatic effect and backward CT in elongating
and weakening the O−C bond.

Finally we investigated the complexes of N2, CO, and BF with the [Ru(II)(NH3)5]
2+

moiety. The vertical EDA results at the minimum-energy structures reveal that the total
binding strength increases in the order of N2 < CO < BF, which is attributed to the enhanced
Pol and CT terms that overshadow increased Pauli repulsion. The adiabatic VFB-EDA
results show that the contributions from CTf and CTb to the shortening of the Ru−X
distance are almost additive, which differs from the scenarios of the complexes with main
group Lewis acids (BH3, BeO/BeCO3) where intermolecular distance obtained on the CTb
surface is already close to the full equilibrium distance. This result can be rationalized by
stronger Pauli repulsion exerted by the d-electrons of the transition metal center, whose
alleviation requires the assistance of forward CT. A counterintuitive trend is observed for
the shifts in the stretching frequency of these ligands, with both νN2 and νCO red-shifted
(−150 and −102 cm–1, respectively) and νBF strongly blue-shifted (+123 cm–1), which is
not consistent with their relative strength of ∆ECTb. Our further decomposition of the
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frequency shifts demonstrated that the molecular Stark effect induces a stronger blue shift
for a more polar π-acidic ligand, and its enhancement with the decrease of the Ru−X distance
exceeds the red shift due to π back-donation, giving rise to the unusual blue shift in νBF.

In summary, our new VFB extension of the ALMO-EDA provides a useful tool to char-
acterize the roles played by forward and backward CT in the formation of dative complexes,
which complements the currently available ALMO-CTA scheme by allowing the decompo-
sition of shifts in molecular properties. The application of VFB analysis to main group
and transition metal complexes with π-acidic ligands further revealed that permanent elec-
trostatics and π back-donation are the two crucial parameters in determining the shifts in
vibrational frequencies (∆νXY). Our results highlighted that ∆νXY may become an unreli-
able metric for the strength of π back-donation because of the often pronounced electrostatic
effect in the bonding regime.

3.6 SCF equations for generalized SCF-MI
Using 1PDM in the AO basis, the energy (objective function) of a generalized SCF-MI
problem can be expressed as

ESCFMI = Vnn + P · h +
1

2
P · II ·P + Exc[P] (3.12)

which has the same form as the standard SCF-MI energy. The four terms on the right-
hand side of Eq. (3.12) are nuclear repulsion energy, one-electron energy (kinetic energy
and nuclei-electron attraction), two-electron energy (Coulomb and exact exchange), and
exchange-correlation energy, respectively. Note that when non-hybrid (pure) functionals are
used II reduces to the Coulomb repulsion between electrons.

The Stoll equation [196] for a given fragment X has the following form in generalized
SCF-MI: [

GT (I− SP + SPT
X)F(I−PS + PXS)G

]
XX

CG
X

= [GTSG]XXCG
XεX (3.13)

where one “X” in the subscript denotes columns corresponding to fragment X in a matrix
and “XX" denotes both rows and columns corresponding to fragment X. P and S are the
global 1PDM and the AO overlap matrix, respectively, F is the Fock matrix built from P,
and the fragment projector matrix PX in the Stoll equation is defined as

PX =
[
GCG

o (σ−1
oo )
]
X

(CG
o,X)TGT

X (3.14)

Finally, εX and CG
X are the eigenvalues and eigenvectors (fragment MOs in the basis defined

by G) to be self-consistently obtained, respectively.
Besides solving locally projected SCF equations, one can also use gradient-based op-

timization algorithms to obtain variationally optimized CG. The gradient of energy with
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respect to orbital rotations in the basis defined by G on a given fragment X (θGov,X) is

∂E

∂θGov,X
=
[
(σ−1

oo )(CG
o )TFG(IG −PGSG)

]
XX

CG
v,X + c.c. (3.15)

where

FG = GTFG (3.16)
SG = GTSG (3.17)
PG = CG

o (σ−1
oo )(CG

o )T (3.18)

and IG is an identity matrix of G’s column dimension. “c.c.” refers to the complex of the
previous term (transpose in the real case).

3.7 Nuclear gradient for generalized SCF-MI
Differentiating the generalized SCF-MI energy given by Eq. (3.12) with respect to the posi-
tions of nuclei yields

Ex
SCFMI = V x

nn + P · hx +
1

2
P · IIx ·P + Ex

xc[P] +
∑
X

EθX
SCFMI · θxX

+ ES
SCFMI · Sx +

∑
X

EGX
SCFMI ·GφX

X · φxX (3.19)

The first four terms are of the same forms as these components in the nuclear gradient of a
standard KS-DFT energy except for the specialized 1PDM. The variable θX in the fifth term
refers to the on-fragment rotations of MOs in the given basis defined by G, which vanishes
at the convergence of the generalized SCF-MI problem since by definition one would have
EθX

SCFMI = 0.
The second last term in Eq. (3.19) arises from the fact that on each fragment both GX

and CG
o,X are orthogonalized. Given P = GCG

o (σ−1
oo )(CG

o )TGT , using the chain rule we have

ES
SCFMI · Sx =

∂E

∂P
· ∂P

∂S
· Sx

=
∂E

∂P
·
(∑

X

∂P

∂CG
o,X
· ∂CG

o,X

∂S
+

∂P

∂σoo
· ∂σoo

∂S
+
∑
X

∂P

∂GX

· ∂GX

∂S

)
· Sx (3.20)

The first term on the right-hand side of Eq. (3.20) vanishes because of the stationary condi-
tion ∂E/∂CG

o,X = 0 for a generalized SCF-MI problem. The second term

∂E

∂P
· ∂P

∂σoo
· ∂σoo

∂S
= F ·Co

∂(σ−1
oo )

∂S
CT

o · Sx

= −F ·Co(σ
−1
oo )

∂σoo

∂S
(σ−1

oo )CT
o · Sx

= −(PFP) · Sx (3.21)
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which possesses the same form as the overlap matrix contribution to the standard SCF
gradient (the matrix PFP is often called the energy-weighted 1PDM).

Now we focus on the last term in Eq. (3.20). Without considering the fragment structure
of G, we have

∂E

∂G
= F · ∂P

∂G

= F ·
[
CG

o (σ−1
oo )(CG

o )TGT + GCG
o (σ−1

oo )(Co)
T −Co(σ

−1
oo )

∂σoo

∂G
(σ−1

oo )CT
o

]
= CG

o (σ−1
oo )(CG

o )TGTF + FGCG
o (σ−1

oo )(Co)
T

− SPFGCG
o (σ−1

oo )(CG
o )T −CG

o (σ−1
oo )(CG

o )TGFPS

= (I− SP)FGCG
o (σ−1

oo )(CG
o )T + c.c. (3.22)

While in the most general cases the right-hand side of Eq. (3.22) would be non-zero, it does
vanish for the solutions to the generalized SCF-MI problems that correspond to the two
“one-way” CT surfaces. We first reintroduce the fragmentation: without losing generality,
we assume that fragment A is the donor fragment such that the left index of GA covers all
AO basis functions in the system:

∂E

∂(GA)µAs
= [(I− SP)FGCG

o (σ−1
oo )] Aiµ (CG,T

o ) As
Ai (3.23)

The variational subspace functions for fragment B, on the other hand, are only expanded
by AOs on its own fragment

∂E

∂(GB)BµBs
= [(I− SP)FGCG

o (σ−1
oo )] BiBµ (CG,T

o ) Bs
Bi (3.24)

We now show that the two derivatives above are both zero. The stationary condition for
the generalized SCF-MI problem:

∂E

∂(CG
o )AsAi

= F · ∂P

∂(CG
o )AsAi

= 0

=⇒ [(IG − SGPG)GTFGCG
o (σ−1

oo )] AiAs = 0

=⇒ (GT ) µ
As[(I− SP)FGCG

o (σ−1
oo )] Aiµ = 0 (3.25)

For our specific problem, the variational degrees of freedom for fragment A are essentially
given by the full AO space without any further constraint. Therefore, we have

∂E

∂(CG
o )AsAi

= 0⇔ ∂E

∂(Co)
µ
Ai

= 0 =⇒ [(I− SP)FGCG
o (σ−1

oo )] Aiµ = 0 (3.26)

Similarly, for fragment B whose variational space is given by all AOs on that fragment, we
have

∂E

∂(CG
o )BsBi

= 0⇔ ∂E

∂(Co)
Bµ
Bi

= 0 =⇒ [(I− SP)FGCG
o (σ−1

oo )] BiBµ = 0 (3.27)
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Substituting Eqs. (3.26) and (3.27) into Eqs. (3.23) and (3.24), respectively, we get ∂E/∂GA =
0 and ∂E/∂GB = 0. Therefore, the last term in Eq. 3.20 also vanishes, suggesting that the
overlap matrix contribution to the nuclear gradient can be computed in the same way as a
standard SCF problem:

ES
SCFMI · Sx = −(PFP) · Sx (3.28)

One should note that Eq. (3.28) only holds for special generalized SCF-MI problems where
the variational subspace of each fragment has the same span as the AOs. In cases where this
condition is not satisfied, e.g., the definition of each fragment’s polarization subspace using
fragment electrical response functions (FERFs), [32] one no longer has ∂E/∂GX = 0.

The variable in the last term on the right-hand side of Eq. (3.19), φX , refers to the
orbital rotations on a given fragment (X) at the polarization stage (the standard AO-based
ALMO scheme), which also contributes to the variation of G with the displacement of nuclear
positions. However, since we have shown above that EGX

SCFMI = 0 for this special problem,
the last term in Eq. (3.20) can also be discarded. Taken all together, the nuclear gradients
for the two “one-way” CT states are given by

Ex
SCFMI = V x

nn + P · hx +
1

2
P · IIx ·P + Ex

xc[P]− (PFP) · Sx (3.29)

which is exactly of the same form as the standard SCF nuclear gradients.



95

Chapter 4

Consistent Inclusion of Continuum
Solvation in Energy Decomposition
Analysis: Theory and Application to
Molecular CO2 Reduction Catalysts

4.1 Introduction
Intermolecular interactions play an essential role in modern chemical research. Most chemi-
cal processes take place in solution, making it desirable to develop computational chemistry
tools to model and analyze intermolecular interactions with solvent effects taken into ac-
count. The inclusion of solvent brings new challenges to the existing methods as solvation is
able to modulate intermolecular interactions in a variety of ways. For interactions involving
ionic species, the solvent helps stabilize the charged moieties while screening the long-range
electrostatic interactions as a dielectric medium. Even for a neutral solute species, its elec-
tronic structure and related properties, such as multipole moments, may be altered by polar
solvents, which in turn affects its interaction with other solute molecules. Such effects can
impose profound influences on relative stability of intermolecular complexes as well as ther-
modynamics and kinetics of chemical reactions in solution. [347, 348]

Implicit solvent models, which typically treat the solvent environment as a dielectric
continuum and ignore its molecular-level resolution, remain widely used in modern quantum
chemistry calculations to incorporate solvation effects. [349–351] These methods are also
known as self-consistent reaction field (SCRF) models, since the implicit solvent perturbs
the quantum mechanical (QM) Hamiltonian via an external field, and the field itself depends
on the QM electron density. Many variants of SCRF models that differ significantly in their
formulation and complexity have been developed, including methods based on apparent
surface charges (ASC),[119, 120, 122, 352–359] generalized Born models,[123, 360, 361] and
models based on direct solution of inhomogeneous Poisson-Boltzmann equations. [362–366]
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The popular conductor-like (C-PCM) [119, 120, 354] and integral-equation-formalism (IEF-
PCM) [355, 356] polarizable continuum models are outstanding examples among the ASC
models.

Energy decomposition analysis (EDA) [85, 188–190, 221] is a powerful tool that facilitates
one’s understanding of intermolecular interactions by quantifying the relative importance of
various physically motivated components, such as permanent electrostatics, polarization,
dispersion, etc. While there are many perturbative or variational EDA schemes available,
these developments have been focusing on intermolecular interactions in vacuum. To extend
the utility of EDA approaches to intermolecular interactions under solvent environment, it is
natural to integrate existing EDA schemes with implicit solvent models, considering the wide
usage of the latter for describing solute-solvent interactions with minimal computational cost.
The simplest approach to achieve that is to include the solvent contribution to interaction
energy as an a posteriori correction to the gas-phase EDA result. This approach was adopted,
for instance, in the EDA scheme implemented in the ONETEP [367] linear-scaling density
functional theory (DFT) program. [368, 369] While such an approach is applicable to most
EDA schemes, it is not entirely satisfactory as it is unable to describe the solvation effect on
each individual energy component.

In a pioneering effort to consistently incorporate solvent effect in an EDA procedure,
Cammi et al.[370] modified the Kituara-Morokuma (KM)-EDA [192, 193] by adding the
SCRF potential of the full dimer complex to the Fock matrix that was used to generate the
energy components in this EDA scheme. Similar approaches were later proposed by Contador
et al.[371] to study hydrogen-bonded complexes in solution, where the KM-EDA was applied
to decompose interaction energies evaluated within “dimeric” cavities, and also by Gora et
al.[372] where the intermolecular interaction (free) energy was separated into electrostatics,
exchange-repulsion, delocalization, and reaction field (solvation) contributions. Fedorov and
Kitaura extended their pair-interaction (PI)-EDA scheme [373] to treat intermolecular inter-
actions in solution by combining the fragment molecular orbital (FMO) method[374] with
PCM models,[375] in which they characterized two types of solvent effects: (i) screening of
electrostatics and (ii) desolvation upon the formation of complex.

The EDA-PCM scheme developed by Su et al.,[376] which was based upon the local-
ized molecular orbital (LMO)-EDA scheme,[210] is more closely related to the present work.
It accounts for the solvation environment in two stages: (i) the isolated fragment orbitals
(LMOs) are optimized with continuum solvent, and are then used to construct the intermedi-
ate states that are required for the evaluation of the electrostatics, exchange, repulsion, and
polarization terms; (ii) a “desolvation” term, which describes the change in solute-solvent
interaction energies associated with the destruction of monomer SCRFs and the formation
of the full complex SCRF, is introduced in addition to the original LMO-EDA scheme. In
the more recent generalized Kohn-Sham (GKS)-EDA, [377, 378] this same approach is used
to incorporate the solvent contribution to the interaction free energy. While this is a rather
sophisticated approach that integrates implicit solvation with a modern DFT-based EDA,
the solvent reaction field is constructed only for the initial (isolated fragment) and final (full
complex) states. Since it is not re-optimized for the intermediates, the solvent effect on each
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individual term is still not explicitly characterized.
In this paper, we integrate SCRF implicit solvent models with energy decomposition

analysis of DFT calculations based on absolutely localized molecular orbitals (ALMO-EDA),
whose gas-phase version was previously developed by some of us. [83–85, 379] For brevity,
we denote this new extension of the ALMO-EDA for studying non-covalent interactions in
solution as “ALMO-EDA(solv)” throughout this paper. The second-generation ALMO-EDA
method [84, 379] partitions the total interaction energy (∆EINT) into contributions from
permanent electrostatics (ELEC), Pauli repulsion (PAULI), dispersion (DISP), polarization
(POL), and charge transfer (CT):

∆EINT = ∆EELEC + ∆EPAULI + ∆EDISP + ∆EPOL + ∆ECT (4.1)

where the first three terms constitute the frozen interaction energy (∆EFRZ).[86] This decom-
position relies on the definition of two intermediate states: (i) the frozen (FRZ) state, which
is constructed as an antisymmetrized product of isolated fragment wavefunctions, and (ii)
the polarized (POL) state, which is obtained from variationally relaxing the frozen wavefunc-
tion with respect to orbital rotations that are “absolutely localized” on each fragment.[31,
32] Differing from the scheme previously developed by Phipps et al.,[369] our new approach
incorporates continuum solvent effects at all stages of the EDA procedure, namely, the iso-
lated fragment states and FRZ, POL, and fully relaxed supersystem states. We validate
and rationalize the results given by ALMO-EDA(solv) on the Na+· · ·Cl– model complex
as well as the potential energy curves of two ion-water (H2O· · ·Na+ and H2O· · ·Cl– ) com-
plexes, in which the solvation environments are treated with C-PCM (with no empirical
non-electrostatic terms) [119, 120, 354] and the popular SMD model,[122] respectively.

We then utilize the ALMO-EDA(solv) scheme to investigate the role of intermolecular
interactions in two distinct examples of catalyzed CO2 reduction reactions: one is assisted
by the [Fe(II)TPP]0 catalyst (TPP = tetraphenylporphyrin) or its derivatives,[380] which
facilitates the 2e−/2H+ reduction of CO2 to CO with fast turnover rates and high product
selectivity at a low overpotential [100] by acting as an “electron mediator” between the elec-
trode and CO2 in solution and stabilizing intermediates such as adducts of activated CO2;
the other involves a single-electron transfer from a photoactivated and then reduced oligo(p-
phenylenes) photocatalyst (OPP) to CO2.[381] The catalysts investigated in this work for
these two CO2 reduction processes are summarized in Figs. 4.1 and 4.2, respectively. Elec-
tronic structure calculations and EDA can help provide vital insights into catalytic pathways
by identifying key intermediates and characterizing substrate-catalyst interactions, allowing
one to understand the origin of activity or selectivity as well as the cause of any intrinsic
limitation of a catalyst. [131–133, 176] Many CO2 reduction catalysts operate in aprotic po-
lar solvents [100, 380–382], aqueous solutions[383], or water/organic solvent mixtures [384,
385]. In such cases, it is essential to incorporate solvation effects in electronic structure cal-
culations for one to obtain meaningful and reliable energetic results, especially for adducts
of activated CO2 (CO2

•−) whose interactions with other species would be vastly different in
the gas and solution phases.
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Figure 4.1: Summary of all FeTPP derivatives investigated in this study.
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Figure 4.2: Summary of all OPP derivatives investigated in this study.

4.2 Theory
The overall procedure of ALMO-EDA(solv) is illustrated in Fig. 4.3, which, like the gas-
phase second-generation ALMO-EDA (Eq. (4.1)), separates the total interaction into five
terms:

∆E
(s)
INT = ∆E

(s)
ELEC + ∆E

(s)
PAULI + ∆E

(s)
DISP + ∆E

(s)
POL + ∆E

(s)
CT (4.2)
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Here the superscript “(s)” indicates that the energetic terms are calculated with solvent taken
into account. Unlike many other EDA schemes where the solvent contribution is treated as
a correction to the EDA results in vacuum, our approach incorporates the solvation effect
in all states (initial, intermediate and final) involved in the EDA. The interaction energy to
be decomposed is given by the difference between the energy of the solvated, fully relaxed
complex (stage (iv) in Fig. 4.3) and the sum of energies of isolated fragments that are
individually solvated (stage (i) in Fig. 4.3), which, as in the gas-phase ALMO-EDA, can be
first partitioned into contributions from frozen interaction (FRZ), polarization (POL), and
charge transfer (CT):

∆E
(s)
INT = E

(s)
Full −

∑
A

E
(s)
A (4.3)

= ∆E
(s)
FRZ + ∆E

(s)
POL + ∆E

(s)
CT (4.4)

The frozen interaction energy (∆E(s)
FRZ) describes the energy change upon the formation

of a solvated complex from several individually solvated, non-interacting fragments without
relaxing their orbitals. It corresponds to the energy change from (i) to (ii) in Fig. 4.1:

∆E
(s)
FRZ = E

(s)
FRZ −

∑
A

E
(s)
A (4.5)

To quantify the effect of the solvent on the interaction, we introduce a new term, ∆ESOL,
to describe the gain or loss of solute-solvent interaction energy upon the formation of the
frozen complex:

∆ESOL = (E
(s)
FRZ − E

(0)
FRZ)−

∑
A

(E
(s)
A − E

(0)
A ) (4.6)

where the superscript “(0)” denotes internal electronic energies of the solute (i.e. excluding
solute-solvent interaction, but orbitals optimized with solvent). Subtracting ∆ESOL from
∆E

(s)
FRZ thus recovers ∆E

(0)
FRZ, which can be further decomposed into permanent electrostatics

(ELEC), Pauli repulsion (PAULI), and dispersion (DISP) contributions as in vacuum:[86]

∆E
(0)
FRZ = ∆E

(s)
FRZ −∆ESOL

= E
(0)
FRZ −

∑
A

E
(0)
A

= ∆E
(0)
ELEC + ∆E

(0)
PAULI + ∆E

(0)
DISP (4.7)

The overall decomposition of the frozen interaction energy, including solvation, is thus given
by

∆E
(s)
FRZ = ∆ESOL + ∆E

(0)
ELEC + ∆E

(0)
PAULI + ∆E

(0)
DISP (4.8)

In this, the decomposition of the internal frozen interaction energy (∆E(0)
FRZ) is based on the

“quasiclassical” scheme exclusively,[86, 322] where the electrostatic component, ∆E
(0)
ELEC, is

defined as the Coulomb interaction between total charge distributions of isolated fragments.
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Figure 4.3: Illustration of the ALMO-EDA(solv) scheme: (i) isolated fragments that are
individually solvated (the initial state); (ii) and (iii) the frozen (FRZ) and polarized (POL)
intermediate states; (iv) the fully relaxed complex (the final state). Note that the shape
of the molecular cavity for the complex remains the same across states (ii)–(iv), but the
dielectric continuum (solvent) is polarized differently by the solute complex.

For most generic implicit solvent models, the solute-solvent interaction comprises both
electrostatic and non-electrostatic components. While the description of the electrostatic
component plays a pivotal role in the formulation of a solvent model, the non-electrostatic
solute-solvent interaction is typically described by empirical, highly parameterized func-
tions (e.g. the cavity-dispersion-solvent structure (CDS) term in the SMD model [122]) and
sometimes even ignored. Upon the formation of a complex, the solute-solvent electrostatic
interaction may be drastically changed due to the Coulomb interaction between induced
charges that belong to different fragment cavities as well as modifications to the shape of
molecular cavities. The overall effect of the change in solute-solvent electrostatic interac-
tion, as we observe in practice, is often screening the electrostatic interaction between each
fragment’s “internal” charge distribution (∆E(0)

ELEC). The change in the non-electrostatic
component of the solute-solvent interaction energy is usually of lesser importance compared
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to the electrostatic component, and in most cases it supplies a destabilizing effect due to
the reduction of total surface area of molecular cavities upon the formation of a complex.
Bearing these considerations in mind, we separate ∆ESOL into electrostatic (∆Eel

SOL) and
non-electrostatic (∆Enon-el

SOL ) components: the former is combined with ∆E
(0)
ELEC, giving rise

to a solvent-corrected electrostatic term that is denoted as ∆E
(s)
ELEC, and the latter is com-

bined with ∆E
(0)
PAULI because of their common short-ranged nature. The decomposition of

the frozen term in ALMO-EDA(solv) (Eq. (4.8)) can thus be rewritten as

∆E
(s)
FRZ = (∆Eel

SOL + ∆E
(0)
ELEC) + (∆E

(0)
PAULI + ∆Enon-el

SOL ) + ∆E
(0)
DISP

= ∆E
(s)
ELEC + ∆E

(s)
PAULI + ∆E

(s)
DISP (4.9)

One should note that in Eq. (4.9) we have assumed that ∆E
(s)
DISP ≈ ∆E

(0)
DISP, that is, the

dispersion interaction between fragments is unaffected by the presence of solvent except that
the fragment wavefunctions are optimized with solvent. This assumption is plausible when
the two interacting moieties are in close contact, especially when they reside in the same
molecular cavity, but may become less justified when the two moieties are well-separated and
reside in two non-overlapping cavities, since dispersion interaction, which can be viewed as
interactions between fluctuating dipoles, may also be screened by the dielectric medium. [386]
This many-body dispersion effect [387] seems non-trivial to include in a continuum solvent
model, so we stick with this assumption for now and decompose the frozen interaction energy
based on Eq. (4.9) in the rest of this paper.

The polarization energy (∆E(s)
POL) in ALMO-EDA(solv) is defined as the energy difference

between the polarized intermediate state and the solvated frozen complex, which corresponds
to the energy change from stage (ii) to (iii) in Fig. 4.3:

∆E
(s)
POL = E

(s)
POL − E

(s)
FRZ (4.10)

It describes the energetic stabilization associated with the intramolecular relaxation of each
fragment in the presence of other fragments as well as the solvent environment. In DFT-based
ALMO-EDA, the POL state is obtained by variationally minimizing the supersystem energy
subject to the constraint that the polarized molecular orbitals (MOs) of each fragment are
expanded in fragment-specific basis functions (either atomic orbitals (AO) or frozen occupied
MOs plus fragment electrical response functions (FERFs)[32]), which is known as the “self-
consistent field for molecular interaction” (SCF-MI) approach. [30, 31, 196] In each iteration
of the SCF-MI calculation, the solvent reaction field will be re-equilibrated in accord with
the updated electron density of the complex, ensuring that the response of the solvent to the
change of solute electronic structure is incorporated in a self-consistent manner.

Finally, we perform a standard, unconstrained SCF calculation within the solvent envi-
ronment, and the energy lowering relative to the POL state (from (iii) to (iv) in Fig. 4.3) is
defined as the charge-transfer (CT) energy:

∆E
(s)
CT = E

(s)
Full − E

(s)
POL (4.11)
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Note that the charge transfer process might be associated with charge redistribution in the
complex, which in turn induces responses in the reaction field. Such an effect is captured by
the self-consistent minimization of E(s)

Full in the presence of solvent.
In summary, the energy decomposition given by the ALMO-EDA(solv) scheme is formally

identical to its gas-phase counterpart. The explicit change in solute-solvent interaction en-
ergy upon the formation of complex is reflected in ∆ESOL, which can be further partitioned
into electrostatic and non-electrostatic components that serve as corrections to the internal
ELEC and PAULI terms, respectively. The POL and CT contributions to the interaction
are calculated with all involved intermediate states properly solvated, and hence the solvent
effect on these terms will also be taken into account.

4.3 Computational Details
We implemented the ALMO-EDA(solv) scheme in a locally modified Q-Chem 5.2 software
package,[108] which serves as an extension of the original routines for the second-generation
ALMO-EDA for DFT calculations. [84, 379] While this scheme, in principle, should be
compatible with most of the available SCRF models, in this work we demonstrate it with
two widely used approaches: the conductor-like PCM (C-PCM) [119, 120, 354] and the
SMD model.[122] The non-electrostatic effects of the solvent were ignored in our calcula-
tions using C-PCM, whereas the solvation free energy (∆GS) produced by SMD comprises
both electrostatic and non-electrostatic contributions, which correspond to the “electronic-
nuclear-polarization” (ENP) and the “cavity-dispersion-solvent structure” (CDS) terms, re-
spectively:[122]

∆GS = ∆GENP + ∆GCDS

In the Q-Chem implementation of the SMD model, IEF-PCM [355, 356] is employed to
describe the solute-solvent electrostatic interaction.

Both C-PCM and IEF-PCM require solving for discretized point charges on the surface
of a molecular cavity. In our calculations using C-PCM, the molecular cavities were con-
structed using the union of a series of atom-centered spheres whose radii are determined using
each atom’s van der Waals radius from the Universal Force Field [388] scaled by a factor of
1.2. The boundary between solute and solvent constructed thereof is known as the solvent
accessible surface (SAS). The calculations using SMD construct the molecular cavities in a
similar manner but use its own set of atomic radii.[389] To ensure the smoothness of po-
tential energy surfaces (PESs) associated with molecular complexes, the switching/Gaussian
method developed by Lange and Herbert [358, 359] was employed in both C-PCM and SMD
calculations, in which the atomic spheres are discretized using Lebedev grids rather than
more traditional tessellation schemes (e.g. the GEPOL algorithm [390]). In this work, 302
Lebedev points were used for all atoms in our calculations using C-PCM or SMD.

Unless otherwise specified, the second-generation ALMO-EDA calculations are performed
with the ωB97X-V functional, [391] which was shown to be one of the best-performing func-
tionals for non-covalent interactions via extensive benchmarks [20, 392, 393] and gave excel-
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lent results in our previous studies involving systems such as ion-water complexes. [33, 322,
394] The DFT calculations employ a (99, 590) grid (99 radial shells with 590 Lebedev points
on each) for the integration of the exchange-correlation (XC) functional and the SG-1 grid
[395] for the VV10 non-local correlation functional [69] in ωB97X-V. The decomposition of
the frozen interaction energy in ALMO-EDA calculations follows the “quasiclassical” scheme
[86, 322] exclusively in this work, as we have noted in Sec. 4.2. For the separation between
POL and CT, the more sophisticated fragment electrical response function (FERF) method
[32] featuring a well-defined basis set limit was used for the small model systems (Secs. 4.4
and 4.4), while the original ALMO scheme based on partition of the AOs [31, 83] was used
for the applications in Secs. 4.4 and 4.4 with more moderate basis sets (def2-TZVPP and
def2-TZVPD,[247, 248] respectively) given the substantial sizes of these systems.

4.4 Results

The sodium-chloride model complex

To validate the treatment of solvent effects in ALMO-EDA(solv), we first investigate a
Na+· · ·Cl– model complex where the two ions are separated by 20 Å and immersed in sol-
vent with varying dielectric constant described by C-PCM. At the asymptotic limit, the
strength of the electrostatic interaction between Na+ and Cl– in a dielectric medium is 1/ε
of that in vacuum according to Coulomb’s law, where ε is the (relative) dielectric constant of
the medium. This relation is reproduced by ALMO-EDA(solv) as demonstrated in Table 4.1.
The ∆E

(0)
ELEC term reflects the strength of the Coulomb interaction in vacuum, while ∆Eel

SOL
is the correction from solute-solvent electrostatic interaction, which is an unfavorable term as
its net effect is to damp the attractive Coulomb interaction between Na+ and Cl– . The sum
of these two terms obtained in EDA calculations gives the effective (screened) electrostatic
interaction in solution, ∆E

(s)
ELEC, whose relative strength against ∆E

(0)
ELEC shows excellent

agreement with the dielectric constants (ε) specified as an initial parameter in these calcu-
lations. This agreement can also be reproduced with the widely used IEF-PCM approach
(see Table S1 in the ESI†), confirming that the treatment of solvent-screened permanent
electrostatics in our EDA shows correct asymptotic behavior.

The distance dependence of the three electrostatics-related terms in Table 4.1 is shown
in Fig. 4.4, where H2O (ε = 78.2) described by C-PCM is employed as the implicit solvent.
At long range, the attraction between Na+ and Cl– is subjected to strong solvent screening,
which renders the effective electrostatic interaction in solution minimal (e.g. at 5 Å ∆E

(s)
ELEC

is only −4.3 kJ/mol). Furthermore, the ∆E
(0)
ELEC/∆E

(s)
ELEC ratio stays close to the asymptotic

limit (78.2) in this range, albeit with more pronounced deviation when moving closer. In
contrast, at shorter distances (< 5 Å) this ratio decreases rapidly indicating less effective
screening of the attractive electrostatics. At the minimum-energy distance (2.5 Å), ∆E

(s)
ELEC

gains appreciable magnitude (−140 kJ/mol) and the value of ∆E
(0)
ELEC/∆E

(s)
ELEC lowers to



CHAPTER 4. CONTINUUM SOLVATION IN ALMO-EDA 104

Table 4.1: Strength (in kJ/mol) of internal QM electrostatics (∆E(0)
ELEC) and the effect of

solute-solvent electrostatic interaction (∆Eel
SOL) for a Na+· · ·Cl– complex separated by 20

Å calculated with ωB97X-V/def2-TZVPPD and C-PCM with varying dielectric constants.
∆E

(s)
ELEC = ∆E

(0)
ELEC + ∆Eel

SOL is the effective (screened) electrostatic interaction in solution.

ε ∆E
(0)
ELEC ∆Eel

SOL ∆E
(s)
ELEC ∆E

(0)
ELEC/∆E

(s)
ELEC

1 -69.47 0.00 -69.47 1.0
10 -69.47 62.52 -6.95 10.0
20 -69.47 65.99 -3.48 20.0
40 -69.47 67.73 -1.74 40.0
80 -69.47 68.60 -0.87 79.9
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Figure 4.4: Left y-axis: distance dependence of ∆E
(0)
ELEC, ∆Eel

SOL, and ∆E
(s)
ELEC for the

Na+· · ·Cl– model complex in C-PCM water in the range of 1.8–20.0 Å; right y-axis: vari-
ation of the ∆E

(0)
ELEC/∆E

(s)
ELEC ratio with the Na+· · ·Cl– distance (plotted with the green

dashed curve).
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Figure 4.5: Schematic illustration of solvent effect on the Na+· · ·Cl– electrostatic interaction
in the non-overlapping (upper and middle panels) and overlapping (lower panel) regimes.
The dashed lines depict the cavities for each solute and “+” and “−” represent positive and
negative surface charges, respectively.

4.1. Further examining the distance dependence of ∆Eel
SOL reveals an inflection point at 3.35

Å, i.e., the curve starts to flatten when moving to shorter distances.
The sharp contrast between the short- and long-range behavior of these terms can be ra-

tionalized schematically with Fig. 4.5. In the long-range limit (upper panel), the cavities for
Na+ and Cl– are well-separated and the surface charges are mainly induced by their respec-
tive nuclei and electrons, yielding strong solvent screening of the long-range electrostatics.
With the decrease in inter-fragment distance, even before the cavities start to overlap, the
surface charges on each cavity will be influenced by both solutes (Na+ and Cl– ) simulta-
neously, which then largely cancel each other in the inter-fragment region (see mid-panel
of Fig. 4.5). This would result in weakened screening and potentially explains the modest
increase in the deviation from the long-range limit for ∆E

(0)
ELEC/∆E

(s)
ELEC. Finally, when the
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two cavities start to overlap and merge with each other (for this system it occurs at 4.8 Å
with our computational setup for PCM), as shown in the lower panel of Fig. 4.5, the dielec-
tric solvent between the two fragments is “squeezed out” and the screening becomes even
more incomplete. In addition, the inter-penetration of QM electron densities in the over-
lapping regime enhances the internal electrostatic attraction between Na+ and Cl– , which
further contributes to the decrease in the value of ∆E

(0)
ELEC/∆E

(s)
ELEC since this short-ranged

effect is subjected to almost no solvent screening. These effects, all together, result in only
partial screening of the attractive internal electrostatics as well as the inflection point in the
magnitude of ∆Eel

SOL at short Na+· · ·Cl– distances.

Potential energy curves for ion-water interactions

As a further validation of ALMO-EDA(solv), we employ it to investigate the distance de-
pendence of ion-water interactions (H2O· · ·Na+ and H2O· · ·Cl– ) in three different solvents:
toluene (ε = 2.37), acetonitrile (ε = 37.5), and water (ε = 78.3). The gas-phase ALMO-EDA
results for these systems are available in Ref. [322]. The long-range electrostatics in these
systems can be depicted as charge-dipole interactions (R−2), and in the short range polar-
ization also contributes significantly to binding (especially in the H2O· · ·Na+ case). These
strong interactions, however, will be diminished in solution due to solvent screening.
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SMD (MeCN)

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6

O· · ·Na distance (Å)
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Figure 4.6: ALMO-EDA(solv) results (in kJ/mol) for the H2O· · ·Na+ complex in toluene,
acetonitrile (MeCN), and water solutions with the O· · ·Na+ distance ranging from 1.8 to
3.6 Å. All calculations are performed using ωB97X-V/def2-TZVPPD with the SMD sol-
vent model. Terms in ALMO-EDA(solv) are represented with solid lines while the internal
electrostatic interaction, denoted as “ELEC(0)”, is shown as a dashed line.

Figure 4.6 shows the ωB97X-V/def2-TZVPPD total interaction energy and its compo-
nents for the H2O· · ·Na+ complex vs rO-Na in the range of 1.8–3.6 Å. Permanent electro-
statics makes the largest contribution to binding at this full range despite solvent screening.
Comparing the results for different solvents, one remarkable feature is that the internal
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electrostatic interaction, ELEC(0), becomes more favorable with the increase in solvent di-
electric constant (from left to right in Fig. 4.6). This is because the dipole moment of an
isolated H2O molecule increases when placed in a more polar solvent environment. Nonethe-
less, since more polar solvent also screens more strongly, the total electrostatic interaction
(ELEC) shows similar strength in both solvents around equilibrium (∼2.2 Å). The strength
of long-range electrostatics and the total interaction energy, on the other hand, is governed
by solvent screening, as evidenced by the smaller magnitude of ELEC at 3.6 Å in water vs
toluene in Fig. 4.6.

Another energy component that is strongly impacted by solvent effects is polarization
(POL). According to Ref. [322], the gas-phase polarization energy for H2O· · ·Na+ at 2.2 Å is
around −25 kJ/mol, while this value reduces to around −9 kJ/mol in SMD water. Similar to
long-range electrostatics, POL becomes less diminished when the solvent is less polar. The
other three energy components, PAULI, DISP, and CT show much smaller variance with
the change of solvent. They are apparently less affected by the solvent properties, at least
within the present ALMO-EDA(solv) model.

Within the SMD model, the solvent contribution to binding can be further partitioned
into electrostatic and non-electrostatic contributions. The distance dependence of these
two terms as well as that of the overall ∆ESOL is shown in Fig. S1 in the ESI†. The non-
electrostatic (CDS) term has minimal significance compared to the electrostatic contribution
and vanishes in the long range when the cavities of two fragments are fully separated. It
is noteworthy that the non-electronic contribution to binding does not have a definite sign:
among the three solvents here, ∆Enon-el

SOL is exclusively positive for toluene while negative for
acetonitrile and water. This is presumably a consequence of the CDS term in SMD aiming to
account in aggregate for non-electrostatic solvation effects to better reproduce experimental
solvation free energies.

The solvent electrostatic contribution (∆Eel
SOL), on the other hand, is repulsive over the

full range (1.8–8.0 Å) for all three solvents. As in the Na+· · ·Cl– case (Fig. 4.4(a)), this
contribution first increases rapidly with the shortening of intermolecular distance, which
damps the increasingly attractive internal electrostatic interaction. ∆Eel

SOL is more repulsive
in solvents with larger dielectric constants, indicating their stronger screening capability.
Moving into the overlapping regime, the solvent electrostatic term flattens first and then
reaches a maximum when the O· · ·Na+ distance is slightly below 3 Å, i.e., the magnitude
of ∆Eel

SOL starts to decrease when the intermolecular distance is further shortened. This
maximum in the solvent electrostatic contribution was also revealed by Su et al. with their
LMO-EDA-PCM scheme for the water dimer. [376] We attribute this behavior to the merging
of fragment cavities upon the formation of complex, which leads to diminished screening of
the internal electrostatic interaction (vide supra).

In the ESI† we also show the analogues of Figs. 4.6 and S1 for the H2O· · ·Cl– complex
(Figs. S2 and S3). The ELEC and POL terms obtained from ALMO-EDA(solv) with different
solvents (Fig. S2) show similar trends as in the H2O· · ·Na+ case except that the relative
strength of solvent screening (indicated by their dielectric constants) has a more substantial
impact on the electrostatic interaction and total interaction energy around the equilibrium
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distance, rendering the intermolecular binding notably stronger in the least polar solvent
(toluene). In addition, the location of the maximum in the solvent electrostatic contribution
(∆Eel

SOL) varies from solvent to solvent: it appears at a notably longer O· · ·Cl distance in
H2O than in the other two solvents. This distinction between solvents is more pronounced
than in the H2O· · ·Na+ case where the maxima in ∆Eel

SOL with different solvents appear at
similar distances.

Substituent effects on the stability of [FeTPP(CO•−2 )] complexes:
through-space vs. through-structure mechanisms

There is tremendous research interest in homogeneous electrochemical reduction of CO2,[100,
155, 161] because CO2 conversion to carbon-based fuels could underpin a future carbon-
neutral economy. The initial step is activating CO2, whose one-electron reduction potential
is quite unfavorable (−1.90 V vs. NHE) by comparison with the reduction potential to con-
vert CO2 to more reduced products such as the 2e− reduction to CO (−0.53 V vs. NHE).
The first function of a catalyst is thus to stabilize the activated CO2 as it drives the first
reduction, and thereby reduce the thermodynamic overpotential. Molecular catalysts are
of great interest for this purpose, in addition to enhancing turnover rates, and suppressing
competitive side reactions such as the hydrogen evolution reaction (HER). Among available
transition metal based catalysts, iron complexes have received particular attention because
of the earth abundance of Fe and their low toxicity. To date, several iron catalysts with dif-
ferent ligand frameworks have been developed for the reduction of CO2. [176, 384, 396–398]
The most prominent family is [Fe(II)TPP]0 (TPP = tetraphenylporphyrin) [399, 400] and its
derivatives. [380, 401–404] Mechanistic studies indicate that stabilizing the activated CO2
adduct intermediate can substantially improve the performance of the catalyst. [168, 380,
382] An “electronic scaling electronic scaling relationship” (so-called because it reflects elec-
tronic substituent effects) between overpotential and turnover frequency (TOF) was previ-
ously established by stepwise fluorination of the phenyl groups in the TPP ligand framework.
[402] The four derivatives FeTPP, FeF5TPP, FeF10TPP and FeF20TPP (full fluorination
of zero, one, two and four phenyl rings, respectively) show a linear correlation between a
favorable decrease in overpotential and an unfavorable decrease in TOF. This effect stems
from stronger inductive effects that accompany the addition of −F substituents, which was
referred to as a “through-structure” electronic effect. [402]

A subsequent experimental study[380] further demonstrated that charged substituents
can break electronic scaling relationships. Introducing a positively charged trimethylam-
monio (TMA, −NMe +

3 ) group to either the ortho or para position of each phenyl group,
yielded tetra-trimethylanilinium-porphyrin complexes (Fe-p-TMA) and Fe-o-TMA). Unlike
the fluorinated complexes, Fe-o-TMA exhibits high TOFs at a low overpotentials. In con-
trast, introducing the negatively charged sulfonate (−SO –

3 ) group at the para positions to
yield Fe-p-SUL results in lower TOF at higher overpotential relative to Fe(TPP) and Fe-o/p-
TMA. Based on these results, the authors hypothesized that in these cases the strength of
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CO2 binding is not only controlled by the through-structure inductive effect of the electron-
withdrawing groups but is more importantly modulated by the long-range (through-space)
electrostatic interactions between these charged substituents and the negatively charged
CO2

•− moiety. This suggested mechanism could explain why Fe-o-TMA catalyzes CO2
reduction at such high TOFs.[380] Further evidence for the importance of stabilizing the
activated CO2 adduct is provided by the ortho hydroxyl substituted TPP complex, tetrakis-
(2′,6′,-dihydroxyphenyl)-porphyrin (CAT).[401] This derivative is also a more active catalyst
than unsubstituted FeTPP, where the stabilization of activated CO2 may also be due to
favorable (through-space) interactions between the hydroxyl groups and negatively charged
CO2

•−.
Here we employed the ALMO-EDA(solv) approach to gain insights into the stabilization

mechanisms of activated CO2 in the [FeTPP(CO2−κC)]2− adducts arising from the reac-
tion of CO2 with the doubly reduced [FeTPP]2− (formally Fe(0)) complex (see Scheme 4.7
for a simplified reaction scheme). The solvent MeCN was described by the C-PCM with
the dielectric constant set to 35.88. [405] The electronic ground state of the complex
is a (broken-symmetry) triplet in an η1-κC binding mode, whose spin density contours
(Fig. 4.8) reveal a significant amount of excess spin in the ligand framework as well as
on the CO2 moiety indicating reduction of both the CO2 and the non-innocent TPP lig-
and. These reduced moieties are both antiferromagnetically coupled to the metal center
as previously discussed in Ref. [382]. Therefore, this complex can be best represented as
[Fe(II)(TPP•3−)(CO•−2 −κC)]2−. For brevity, in the following discussion we omit the “κC”
notation that specifies the binding mode of CO2 to the metal center.

[Fe(II)(TPP)]0 [Fe(II)(TPP) (CO2) ]2-
+ 2e- + CO2[Fe(II)(TPP)   ]2-

Figure 4.7: Simplified steps in the catalytic pathway of FeTPP leading to the activated CO2
intermediate.

We illustrate the effects of different substituents by comparing the EDA results of com-
plexes with varying substitutions (−H, −NMe +

3 , −SO –
3 , −OH) on the phenyl rings. To

reduce the computational expense, we truncated these systems by removing two of the four
phenyl groups based on the fact that the CO2 moiety is positioned in such a way that only
two substituent groups can strongly interact with it (see Fig. 4.9). In total, we compare
six different CO2 adducts with varying net charges due to the distinction in substituents:
(a) the unsubstituted [FeTPP(CO2)]2−, (b) para −NMe +

3 substituted [Fe-p-TMA-(CO2)]0,
(c) ortho −NMe3+ substituted [Fe-o-TMA-(CO2)], (d) para −SO –

3 substituted [Fe-p-SUL-
(CO2)]4−, (e) ortho −OH substituted [Fe-o-OH-(CO2)]2−, and (f) the perfluorinated FeTPP
([FeF10TPP(CO2)]2−) . The geometries of these complexes are shown in Fig. 4.9.

The results of the EDA calculations depend on the choice of reference states of both
fragments, i.e., the electronic states they are in when they are infinitely separated. In
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Figure 4.8: Spin density of the doubly reduced CO2 adduct [FeTPP(CO2−κC)]2− (green:
excess α spin; gold: excess β spin)

(a) [FeTPP(CO2)]2− (b) [Fe-p-TMA-(CO2)]0

(c) [Fe-o-TMA-(CO2)]0 (d) [Fe-p-SUL-(CO2)]4-

(e) [Fe-o-OH-(CO2)]2- (f) [FeF10TPP(CO2)]2-

Figure 4.9: Optimized geometries for the [FeTPP(CO2−κC)]2− adduct with varying sub-
stitutions: (a) unsubstituted (−H); (b) para-trimethylammonio (−NMe +

3 ); (c) ortho-
trimethylammonio (−NMe +

3 ); (d) para-sulfonate (−SO –
3 ); (e) ortho-hydroxyl (−OH); (f)

all-fluorinated (−F).
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this example two fragmentation schemes are plausible: (i) the “natural" fragmentation that
corresponds to reactants in the catalytic cycle, where a neutral CO2 (S = 0) molecule is
bound to a doubly reduced iron complex (S = 1); (ii) fragmentation based on the charge
population of the final product complex, giving a singly reduced metal complex (S = 3/2)
and a singly reduced (or activated) CO2 radical anion (CO2

•−, S = 1/2). Our results
show that the former fragmentation scheme is unsuitable here due to the drastic geometry
distortion energy (> 200 kJ/mol) that is associated with the bending of a neutral CO2
molecule, which would lead to EDA results that are dominated by this geometry distortion
term and are thus less insightful (see Table S2 in the ESI†). In contrast, the geometry
distortion term associated with the CO2

•− moiety in the latter fragmentation scheme is
minimal (less than 1 kJ/mol). Therefore, we selected the second fragmentation scheme in
the following discussion, which corresponds to the binding of CO2

•− with singly reduced
FeTTP and its substituted derivatives.

Our choice yields (up to) two charged fragments where the net charge on the FeTPP
moiety depends on the substituents. A comparison across all these compounds without
considering the solvent effect would lead to unreasonably large variations in total interac-
tion energy due to the large variation in gas-phase electrostatic interaction (see Table S5).
Hence, we employ the new ALMO-EDA(solv) approach to better capture these interactions
in solution. The EDA results for unsubstituted [FeTPP(CO2)]

2– are shown in Table S4 in
the ESI†. This complex is subjected to strong Pauli repulsion (634 kJ/mol), which arises
from the repulsion between the iron d-electrons and CO2

•− whose excess spin density is
mainly located on the carbon atom (see Fig. S4). The strongly favorable electrostatic inter-
action (−363 kJ/mol) makes the largest contribution to binding, and is comprised of (i) a
moderate gas-phase ELEC term (∆E(0)

ELEC = −94 kJ/mol) and (ii) a substantially favorable
contribution from solute-solvent interaction (∆ESOL = −269 kJ/mol). The former can be
rationalized by the attractive short-range Coulomb interaction between the CO2

•− moiety
and the partially positive-charged iron center, and the latter reflects the solvent screening
of the repulsive Coulombic interaction between CO2

•− and the reduced π system of the
TPP ligand. Despite the appreciable electrostatic contribution, the net frozen interaction is
still strongly repulsive (+205 kJ/mol), and thus both POL (−135 kJ/mol) and CT (−123
kJ/mol) are essential to the stabilization of CO2

•−. The electron density difference between
the frozen and polarized states reveals that the occupation of iron’s d-orbitals changes due to
interaction with CO2

•−. This is mainly to alleviate Pauli repulsion, via depopulating the 3dz2

orbital (see Fig. 4.11(a)). The analysis of complementary occupied-virtual pairs (COVPs)
[87] further demonstrates that the charge transfer in [FeTPP(CO2)]

2– is dominated by the
donation from the odd-electron orbital of CO2

•− into the vacant 3dz2 orbital of Fe, where
CO2

•− acts as a σ-donor as illustrated in Fig. 4.11(b)).
To gauge the effect of the charged substituents (ortho- and para-TMA and para-sulfonate),

we compare the total interaction energies and EDA components of these adducts against the
results for the unsubstituted [FeTPP(CO2−κC)]2−. The results are shown in Fig. 4.10(a).
While para substitution with sulfonate groups alters the total charge of the CO2 adduct from
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Figure 4.10: Differential ALMO-EDA(solv) results (in kJ/mol) relative to the unsubstituted
[FeTPP(CO2)]2− complex: (a) results for the charged substituent groups (−NMe +

3 ,−SO –
3 ,

and the methylimidazolium-carrying group); (b) results for the substituent groups that retain
the net charge of the unsubstituted complex (−OH, −F).

−2 to −4, its effect on the total interaction strength is small. The largest changes in the EDA
components occur in the ELEC and PAULI terms: the former becomes slightly less favorable
due to the more negatively charged TPP ligand, while the latter is diminished (becoming less
unfavorable) by a similar amount, which is possibly related to the weak electron-withdrawing
inductive effect of the sulfonate group and the slightly lengthened Fe−C distance in [Fe-p-
SUL-(CO2)]4− (see Table S3). Besides the changes in ELEC and PAULI that largely cancel
each other, the effects of p-sulfonate on other energy components (DISP, POL, and CT) are
negligible.

The p-TMA group changes the total charge of the CO2 adduct from −2 to 0 and strength-
ens the total interaction by 21 kJ/mol relative to the unsubstituted FeTPP. Interestingly, the
electrostatic interaction is made more repulsive by the p-TMA substitution relative to the
unsubstituted adduct (by 67 kJ/mol), despite the presence of positively charged TMA groups
that can favorably interact with CO2

•−. Indeed, if one performs EDA in the gas phase, the
ELEC term in [Fe-p-TMA-(CO2)]0 is stabilized by ∼250 kJ/mol relative to unsubstituted
[FeTPP(CO2)]2−. However, the electrostatic attraction between the p-TMA groups and
CO2

•− is screened to a large extent in the solvation environment due to the long distance
between them (r(N· · ·O) > 8 Å for N in TMA and O in CO2). Complemented by other
secondary effects of the strongly electron-withdrawing TMA groups, the ELEC component
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(a)

(b)

Figure 4.11: (a) Electron density difference between the FRZ and POL states (yellow: elec-
tron density increase, purple: electron density decrease); (b) the key COVPs illustrating the
σ donation from the SOMO of CO2

•− to Fe’s dz2 orbital (the donor and acceptor orbitals
are plotted with solid and meshed isosurfaces, respectively).

in fact destabilizes [Fe-p-TMA-(CO2)]0 relative to the unsubstituted adduct.
Surprisingly, the largest change among EDA components appears to be the reduction in

Pauli repulsion (−183 kJ/mol). This reduction cannot be solely explained by the change
in the Fe−C distance since its value is almost identical in [Fe-p-SUL-(CO2)]4− and [Fe-p-
TMA-(CO2)]0 (see Table S4). We attribute it to the decrease in electron density at the iron
center, which originates from the weaker coordination of the TPP ligand due to the strong
electron-withdrawing inductive effect of the TMA groups and the rigidity of the porphyrin
framework that inhibits the further shortening of the Fe−N distances. The polarization
term is less favorable in [Fe-p-TMA-(CO2)]0 than that in the unsubstituted adduct, which,
however, is a less substantial effect compared to the reduction in Pauli repulsion, and the
relative changes in dispersion and charge transfer are of even less significance. Therefore,
according to the results of ALMO-EDA(solv), the enhanced CO2 stabilization resulting from
the p-TMA substitution almost entirely arises from the reduction of Pauli repulsion stemming
from the strong inductive effect of the TMA group, which is via a through-structure rather
than through-space mechanism.

Moving the charged TMA groups closer to the CO2
•− moiety in [Fe-o-TMA-(CO2)]0

yields more significant relative stabilization than p-TMA substitution (65 kJ/mol relative
to the unsubstituted adduct). Surprisingly, the contribution to this relative stabilization
from electrostatic interaction is only 16 kJ/mol, which serves as only the third largest con-
tributor. As the distance between CO2

•− and TMA is still long in [Fe-o-TMA-(CO2)]0
(r(N· · ·O) = 3.8 Å for N in TMA and O in CO2), the favorable electrostatic interaction



CHAPTER 4. CONTINUUM SOLVATION IN ALMO-EDA 114

remains strongly screened by the (implicit) solvent. As in the p-TMA case, the strong in-
ductive effect of the TMA groups reduces Pauli repulsion by 89 kJ/mol, making the largest
contribution to the enhanced stabilization. Note that the reduction in the Pauli term here is
not as pronounced as that in the p-TMA case, which might result from the steric effect of the
bulky methyl groups that are in close contact with CO2

•−. In addition, the Fe−C distance is
slightly shorter in the o-TMA complex (r(Fe−C) = 2.06 Å (o-TMA) vs. 2.10 Å (p-TMA)),
which implies a stronger baseline Pauli repulsion. The close contact between methyl groups
and CO2

•− also results in the strengthened dispersion interaction in the o-TMA adduct,
which is 30 kJ/mol more favorable than that in the unsubstituted case and serves as the
second largest contributor to the relative stabilization. Combining these factors together, in
[Fe-o-TMA-(CO2)]0 we see stabilization of activated CO2 via both through-space (enhanced
dispersion and attractive electrostatics) and through-structure (reduction in Pauli repulsion
due to the strong inductive effect of TMA) mechanisms, and our EDA results reveal the
more significant role of the latter. The co-existence of these two mechanisms leads to larger
stabilization of the o-TMA substituted adduct.

We next apply our EDA analysis to investigate the stabilization of activated CO2 within
two adducts whose total charge remains unchanged (−2) upon substitution: the ortho hy-
droxyl substituted adduct [Fe-o-OH-(CO2)]2− and the F10 derivative. The results are shown
in Fig. 4.10(b). The o-OH substitution stabilizes the CO2 adduct by 64 kJ/mol, and the EDA
results reveal a significantly strengthened electrostatic interaction and moderately increased
DISP, POL, and CT components relative to the unsubstituted TPP adduct. Collectively
these attractive terms outweigh the increase in Pauli repulsion. A pattern of this type is
typical of EDA results for hydrogen bonds, [83, 84, 91], which in this case are formed between
−OH groups at the ortho positions of phenyl and the oxygen atoms in CO2

•− (see Fig. 4.9(c))
thanks to the short distance between them (r(H· · ·O) = 1.79 Å for H in o-OH and O in
CO2). When one moves the hydroxyl group to the para position (p-OH), no such hydrogen
bonds can be formed and consequently there is no notable difference in any of the energy
components relative to the unsubstituted adduct. This stark contrast between the results for
the o-OH and p-OH substituted derivatives suggests that the −OH group at the ortho posi-
tion stabilizes CO2

•− almost exclusively via a through-space mechanism (hydrogen bonding).
We note that the stabilization of activated CO2 through hydrogen bonds can be further en-
hanced by precisely tuning the position of H-donor, which was achieved by Nichols et al. by
introducing amide pendants at the ortho position of the meso phenyl groups.[406] In contrast
to [Fe-o-OH-(CO2)]2−, the F10 derivative with only through-structure electron-withdrawing
inductive effect does not lead to enhanced stabilization of CO2 since the reduction in Pauli
repulsion is far less pronounced than that in [Fe-p-TMA-(CO2)]0 or [Fe-o-TMA-(CO2)]0,
which is then almost fully compensated by the diminished ELEC and CT contributions.

The EDA results for the TMA-substituted derivatives suggest that the strategy to sta-
bilize activated CO2 through long-range electrostatic attraction may not be fully effective
in solution due to solvent screening. However, making use of the steric effects of the sub-
stituents, one may be able to create a solvent-free “cage” in which electrostatic interaction
is almost unscreened. It was reported by Khadhraoui et al. that the introduction of four
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(a) [Fe-o-imid-(CO2)]2− (b) [Fe-o-imid2-(CO2)]2−

Figure 4.12: Optimized geometries for (a) [Fe-o-imid-(CO2)]−, which carries one
methylimidazolium-containing group that was reported in Ref. [407], and (b) [Fe-o-imid2-
(CO2)]2−, which carries two modified methylimidazolium-containing groups.

bulky, methylimidazolium-containing groups at the ortho positions of the phenyl groups in
FeTPP elevates its electrocatalytic activity. [407] Due to the substantial size of the sub-
stituent, we optimized the structure of the CO2 adduct of this FeTPP derivative with only
one methylimidazolium-containing “arm” included (reducing the negative charge from −2 to
−1), which is denoted as [Fe-o-imid-(CO2)]−. The optimized structure of this adduct is de-
picted in Fig. 4.12(a). Differing from [Fe-o-TMA-(CO2)]0, the charged moiety (imidazolium
ring) is far away from the central metal, excluding the possibility of any electron-withdrawing
inductive effect from this positively charged substituent. A remarkable feature of the opti-
mized structure is that this “long-arm” substituent folds over the activated CO2 and thereby
creating a small pocket that is inaccessible by solvent. The geometry also demonstrates that
the activated CO2 is stabilized by both the hydrogen bonding from the amide group and the
electrostatic attraction from the positively charged methylimidazolium moiety: the H· · ·O
distance in this hydrogen bond is 1.98 Å, and the distance between the mid-point of two N
atoms in the imidazolium ring and the closest O atom in CO2 is 4.55 Å.

Our results show that [Fe-o-imid-(CO2)]− stabilizes CO2 more strongly by −49.2 kJ/mol
relative to the unsubstituted FeTPP (see Table S4 in the ESI†), similar to the o-OH and
o-TMA cases. However, it should be noted that here we only included one substituent group
(“arm”) whereas the other derivatives are doubly substituted in our calculations. There-
fore, once the two methylimidazolium-containing “arms” are both included, one can expect
that this complex can stabilize activated CO2 more than the o-OH and o-TMA derivatives.
The ALMO-EDA(solv) results (Table S4) show that the dominant contributor to stabi-
lization is electrostatic interaction (−85.9 kJ/mol), which stems from both the N−H· · ·O
hydrogen bond and the positively charged methylimidazolium. The key difference from
the p-TMA substituent is that this bulky ligand effectively “squeezes out” solvent from the
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space in between the activated CO2 and the positively charged moiety, rendering the at-
tractive electrostatics nearly unscreened. Furthermore, as in the o-OH case, the strength
of dispersion, polarization, and charge transfer is also enhanced by the introduction of this
methylimidazolium-containing substituent, which, together with the gain in attractive elec-
trostatics, contribute to this more stabilized CO2 adduct.

In order to further optimize this interaction motif, we removed the phenyl group in the
methylimidazolium-containing “arm”, which moves the methylimidazolium moiety closer to
the CO2 moiety. The optimized structure for this adduct (denoted as [Fe-o-imid2-(CO2)]0
since the second substituent is added for a better comparison with the results of other deriva-
tives) is shown in Fig. 4.12(b), in which the distance between the mid-point of two N atoms
in the imidazolium ring and the closest O atom in CO2 reduces to 3.74 Å. The stabilization
energy relative to the unsubstituted adduct is −143.5 kJ/mol, which is significantly larger
than that of the second most stabilized o-TMA and o-OH derivatives (see Fig. 4.10(a)). The
relative stabilization arising from the electrostatic attraction is by far the strongest among
the adducts that we investigated (−642.0 kJ/mol), and we estimate that −140 kJ/mol out
of that stems from the two hydrogen bonds (see the “NH-ref” results in Table S4) and the
rest (about −500 kJ/mol) from the imidazolium rings. These results indicate the impor-
tance of taking solvent effects into account if one wants to harness through-space Coulomb
interaction in solution and pursue the promise of bulky, flexible substituents that can form
a solvent-free “active” pocket mimicking that in enzymes to facilitate much stronger electro-
static interaction with CO2.

It is important to point out that we focused here on the concept of strengthening the
binding of activated CO2 in adducts as that was presumed to accelerate catalysis. However,
the substituents may also affect other intermediates in a catalytic cycle. This is illustrated by
the ortho hydroxyl substituted TPP complex, CAT, where the hydroxyl group stabilizes the
activated CO2 and also leads to a fast intramolecular protonation pathway.[382] Ultimately,
detailed mechanistic studies are necessary to understand the influence of each substituent
on the TOF.

Electron transfer from terphenyl•− to CO2: substituent effects on
the intermolecular binding of reactant and product complexes

An alternative to transition metal based catalysts for CO2 reduction is organic (photo)redox
catalysts, which can be more environment-friendly, economical, and are likewise highly tun-
able with substituents. [408] These catalysts access their electronic excited states through
UV-Vis absorption and are subsequently quenched, yielding a reactive radical species that
serves as the electron donor to CO2. [408, 409] A prominent class of examples are oligo(p-
phenylenes) (OPPs), which, for instance, are able to catalyze hydrocarboxylation from
CO2. [381] The introduction of different substituents alters the absorption wavelength but
also impacts the rate of electron transfer. Some of us recently[410] investigated the sub-
stituent effects on the calculated rate of electron transfer (ET) reaction from an OPP radical
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anion to molecular CO2 using double terminal-substituted p-terphenyl as examples. We have
shown that electron-donating groups (EDGs) facilitate this reaction in general by increasing
the free energy driving force (∆G in Marcus theory [411]) since they elevate the LUMO level
of OPP. Besides the reductive potential of OPP/OPP•−, the difference in the association
energies of the reactant (OPP•− · · ·CO2) and product (OPP· · ·CO2

•−) complexes in solu-
tion, ∆∆EINT = ∆EINT(Rr)−∆EINT(Rp), also contributes to the free energy driving force
(Rr and Rp denote optimized structures for the reactant and product states, respectively).
Here we employ ALMO-EDA(solv) to investigate the substituent effects on the association
energies of the reactant and product complexes in CH2Cl2 (ε = 8.93) described by the SMD
model, which will afford us deeper insight into how these chemical modifications affect the
reactivity of OPPs as photoredox catalysts.

The geometries of the reactant and product complexes are directly taken from our pre-
vious work,[410] which were optimized on their respective diabatic PESs constructed from
constrained DFT (CDFT) [412, 413] calculations at the B3LYP-D3(BJ)/6-311G(d,p) [56,
414, 415] level of theory with C-PCM. As illustrative examples, in Fig. 4.13 we show the
optimized structures of the reactant and product complexes between CO2 (or CO2

•−) and
p-terphenyl•− (or neutral p-terphenyl) substituted with dimethylamino (−NMe2) and nitro
(−NO2) groups. Compared to the reactant complexes where CO2 is linear and mainly in-
teracting with one of the terminal phenyl groups, in the product state the CO2 moiety is
bent and moves closer to the middle ring of p-terphenyl. By contrast with the adducts with
FeTPP where CO2

•− is ligated to Fe through the κC mode (see Sec 4.4), here in the product
state the two oxygen atoms of CO2

•− are in closer contact with the p-terphenyl moiety, an
orientation that is favored by these dispersion-dominated anion-π interactions (vide infra).

The substituent effect on the difference between interaction energies in the reactant and
product states (∆∆EINT) in CH2Cl2 solution is exhibited in the upper panel of Fig. 4.14
with three electron-donating (−NMe2, −OH, −CH3) and three electron-withdrawing (−Br,
−CF3, −NO2) groups. The strength of the electronic effects of these substituent groups
can be characterized using their Hammett parameters[416] (σp): more negative (positive) σp
indicates stronger electron-donating (withdrawing) ability. It is shown that the difference
in interaction energies decreases monotonically with increases in σp, i.e., strong electron-
withdrawing groups (EWGs) such as −NO2 facilitate the stabilization of the product com-
plex relative to the reactant. Relative to the unsubstituted species, the differential product
stabilization by the strongest EWG, −NO2, is over 10 kJ/mol. ALMO-EDA(solv) reveals
that this prominent substituent effect is dominated by electrostatics despite the presence of
solvent (see Table S6 in ESI† for the full EDA results). As shown in the left panel of Fig. 4.14,
∆∆EELEC reproduces the trend in ∆∆EINT with only one marginal exception (−CH3).

To demonstrate the effect of solvent on the trend in ∆∆EINT versus σp, we also performed
ALMO-EDA calculations for the same set of complexes in vacuum (see Table S7 in ESI† for
the complete results). The results for the total interaction energy and the ELEC component
are shown in the lower panel of Fig. 4.14. While the same trend in ∆∆EINT (monotonically
decrease with increasing σp) is reproduced without solvent, the magnitude of ∆∆EINT with
different substituent groups exhibits a much wider range, which, once again, mainly results
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(a) reactant (-H) (b) product (-H)

(c) reactant (-NMe2) (d) product (-NMe2)

(e) reactant (-NO2) (f) product (-NO2)

Figure 4.13: Optimized structures of unsubstituted and substituted p-terphenyl· · ·CO2 rad-
ical anion complexes: (a) (b) unsubstituted reactant and product complexes; (c) (d) NMe2-
substituted; (e) (f) NO2-substituted.

from the larger variation in ∆∆EELEC in vacuum. In contrast to the solution phase where
the polarization component exhibits only minimal effects on ∆∆EINT, in the gas phase, POL
stabilizes the product complex by ∼20 kJ/mol relative to the reactant for these complexes.
The contrast between the upper and lower panels of Fig. 4.14 demonstrate the attenuation
of substituent effects on the differential interaction energies due to solvent screening.

In our previous study[410] where the ALMO-EDA calculations were performed in vac-
uum at the B3LYP-D3(BJ)/6-311G(d,p) level of theory, we identified CT as another main
contributor to the stabilization of the product complexes relative to the reactant ones and
also to the trend in substituent effects. This contradicts the gas-phase ALMO-EDA results
obtained here with ωB97X-V/def2-TZVPD, according to which CT only makes a minimal
contribution to each complex’s ∆∆EINT (see the comparison between Tables S7 and S8 in
the ESI†). We ascribe this discrepancy to the more substantial delocalization error [324, 417]
associated with the B3LYP functional than that of ωB97X-V, which, as shown in Table S10
in the ESI†, is more pronounced in the gas phase. We refer the reader to Sec. S3 in the ESI†
for a detailed discussion.

We then turn to the full ALMO-EDA(solv) results for the reactant and product com-
plexes to gain further insights into the substituent effects on ∆∆EINT revealed in Fig. 4.14.



CHAPTER 4. CONTINUUM SOLVATION IN ALMO-EDA 119

0

5

10

15

20

25

∆
∆
E

(k
J/

m
ol

)
Br

CF3

CH3 H

N(CH3)2

NO2

OH

CH2Cl2 (SMD)

Total INT

ELEC

ELEC+POL

−0.8−0.6−0.4−0.2 0.0 0.2 0.4 0.6 0.8
σp

−40

−20

0

20

40

60

∆
∆
E

(k
J/

m
ol

)

Br

CF3

CH3
H

N(CH3)2

NO2

OH

Gas Phase

Figure 4.14: Substituent effects on the differences in total interaction energies as well as
the ELEC and POL components (in kJ/mol) between the reactant and product states. The
calculations are performed at the ωB97X-V/def2-TZVPD level of theory. The upper panel
shows results in dichloromethane (CH2Cl2) solvent described by SMD and the lower panel
shows gas-phase results. The x-axis shows the Hammett parameter of each substituent
group.

The reactant complexes (Fig. 4.15(a)) are mainly bound by electrostatic and dispersion in-
teractions, which, taken together, overcome the Pauli repulsion between p-terphenyl•− (or its
substituted derivatives) and the neutral CO2 moiety. Moderate substituent effects are exhib-
ited among the reactant complexes, where the EDGs yield more attractive total interactions
in general (e.g. the NMe2-substituted complex is more favorable than NO2-substituted by ∼3
kJ/mol). This trend, as revealed by the EDA results, mainly stems from the enhancement in
electrostatic interaction with stronger electron-donating substituents. The same trend is also
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Figure 4.15: ALMO-EDA(solv) results (in kJ/mol) for (a) reactant and (b) product com-
plexes between p-terphenyl and CO2 with different substituent groups.

exhibited in the strength of POL and CT across different substituents, despite the relatively
small magnitude of these two components. The product complexes, on the other hand, are
not as strongly bound as in their respective reactant state, and they are mainly stabilized
by dispersion interaction according to our EDA results (Fig. 4.15(b)). The magnitude of the
total interaction is strongly impacted by the substituent group on the p-terphenyl moiety:
with EDGs (−NMe2, −OH, and −CH3), the intermolecular binding between terphenyl and
CO2

•− is of only minimal strength (less favorable than −1 kJ/mol), while with EWGs (−Br,
−CF3, and −NO2) the interaction becomes increasingly more favorable with the increase in
substituent’s electron-withdrawing ability (σp). Note that the resulting interaction energy
for the NMe2-substituted product complex is net repulsive (+1.96 kJ/mol), which most likely
arises from the distinct levels of theory that were used in CDFT geometry optimizations [410]
and ALMO-EDA(solv) calculations in the present paper. Similar to the reactant complexes,
the substituent effects on the total interaction strength in the product state is also dominated
by the ELEC component, where the EWGs are shown to strengthen the binding by reducing
the electrostatic repulsion between CO2

•− and the π electrons on the p-terphenyl moiety.
To summarize, the substituent effects on the intermolecular binding strength of the reac-

tant and product p-terphenyl· · ·CO2 radical anion complexes exhibit opposite trends, where
EWGs diminish and enhance the interaction in the reactant and product states, respectively.
While dispersion contributes significantly to binding in both states, the substituent effects
are mainly controlled by the electrostatic component in both states despite the presence
of solvent environment. These two opposite trends, combined together, lead to the trend
shown in Fig. 4.14 where EWGs yield more strongly bound product complexes relative to
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the reactant ones. Interestingly, the trend in ∆∆EINT with respect to varying σp is opposite
to that in the total free energy change (∆G) upon the electron transfer (ET), where EDGs
yield more favorable driving forces.[410] This implies that although EWGs assist in stabiliz-
ing the product complexes, they are unable to reverse the trend in the free energy driving
force dominated by the gap between the monomer energies before and after ET. In Table S11
in the ESI†, we show the comparison between ∆∆EINT and the energy associated with the
reactant-to-product electronic transitions at the monomer level (denoted as ∆EPREP) for
this series of complexes.

4.5 Conclusions
In this work, we have developed the ALMO-EDA(solv) scheme to incorporate solvation
effects described by dielectric continuum models into the second-generation ALMO-EDA
based on DFT calculations.[84] This method possesses the following main features:

1. The implicit solvent environment is included in the construction of all states across the
EDA procedure. Hence all energy differences (∆EFRZ, ∆EPOL, and ∆ECT) are always
computed between two consecutive states that are both properly solvated.

2. A new term, ∆ESOL, is introduced to describe the direct change in solute-solvent
interaction energy upon the formation of the frozen complex. In most generic cases, it
comprises both electrostatic and non-electrostatic components, which can further be
combined into the ELEC and PAULI components of the (internal) frozen interaction
energy.

ALMO-EDA(solv) consistently incorporates continuum solvent effects, which permits
study of solvation effects on each energy component in a systematic, physically motivated
manner. To validate our EDA scheme, we first investigated the electrostatics-related terms
using a solvated Na+· · ·Cl– model complex. Our EDA reproduces the correct bulk limit for
long-range electrostatics in solvent. We also rationalized diminished screening in the short
range. We next analyzed the distance dependence of the energy components produced by
ALMO-EDA(solv) for the H2O· · ·Na+ and H2O· · ·Cl– complexes and demonstrated how
solvents with varying dielectric constants affect the net strength of permanent electrostatics
and polarization in these systems. The results further confirmed that ALMO-EDA(solv)
yields physically sensible results for the energy components of these simple interactions in
the solution phase and correctly reflects the trend in the relative strength of solvent effect.

We then employed ALMO-EDA(solv) to investigate more complex chemical systems re-
lated to catalysis of CO2 reduction reactions. We first considered CO2 complexes with
[Fe(II)TTP(CO2

•−)]2− (TPP = tetraphenylporphyrin) and its substituted derivatives.[380,
402] We found that the most strongly bound o-TMA-substituted complex is not mainly
stabilized via through-space electrostatic attraction as was presumed (since the solvation
environment screens this interaction significantly). Instead, it mainly benefits from reduced
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Pauli repulsion compared to the unsubstituted [FeTTP(CO2
•−)]2−. This originates from

the substantial electron-withdrawing inductive effect of the positively charged trimethylam-
monio groups that reduces electron density around the Fe center and give rise to a more
Lewis acidic metal center. This stabilization is thus via a through-structure mechanism.
Another strongly bound complex with o-OH substitution, in contrast, is mainly stabilized
via hydrogen bonding between the o-OH groups and the negatively charged CO2 moiety,
which is exclusively a through-space effect. Our study thus provides new insights into how
substituent effects influence the ability of FeTPP to stabilize activated CO2. Inspired by the
EDA results and the ligand reported in Ref. [407], we designed a bulky, floppy substituent
group that contains a positively charged methylimidazolium moiety. When introduced to
the ortho positions of the phenyl groups in FeTPP, they can create a solvent-inaccessible
“pocket” in that stabilization of activated CO2 via long-range Coulomb interaction can be
achieved due to the removal of solvent screening effects.

Second, we investigated complexes associated with the electron transfer reaction from p-
terphenyl•− (and its double terminal-substituted derivatives) to CO2. We demonstrated that
differences between the interaction energies in the reactant and product states (∆∆EINT) are
considerably modulated by the substituents, where electron-withdrawing groups were shown
to stabilize the product complexes while moderately destabilizing the ones in the reactant
state. Our EDA results further revealed that although dispersion plays an important role in
the formation of both reactant and product complexes, the substituent tuning of ∆∆EINT

is almost entirely achieved through modulating the electrostatic component (∆EELEC) es-
pecially that in the product state. This example shows how ALMO-EDA(solv) assists in
elucidating the nature of intermolecular interactions and mechanisms of chemical processes
in the solution phase.

Finally, we shall note some of the limitations of the present ALMO-EDA(solv) scheme.
First, as we have noted in Sec. 4.2, currently available DFT-based EDA schemes including our
approach are most likely unable to fully describe the many-body solvent effect on dispersion
interactions. Second, the current ALMO-EDA(solv) scheme is limited to the decomposition
of single-point (vertical) interaction energies, and it is certainly desirable to further extend its
capability to the analysis of molecular property shifts in solution based upon our previously
developed adiabatic ALMO-EDA scheme.[201] This would require the development of nuclear
gradients for the FRZ and POL intermediate states in the presence of implicit solvent.
Besides these limitations from the perspective of EDA, one should also bear in mind that
there are many other molecular approaches to describe solvent effects in modern theoretical
chemistry that are more sophisticated than the relatively simple dielectric continuum model.
It is an interesting challenge to make an EDA scheme compatible with those more advanced
solvation models. These limitations, on the other hand, provide a wide range of future
opportunities to further extend the treatment of solvation effects in ALMO-EDA calculations.
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Chapter 5

Exploring the Limits of Second- and
Third-Order Møller-Plesset Perturbation
Theory for Non-Covalent Interactions:
Importance of Regularization and
Reference Orbitals

5.1 Introduction
Non-covalent intermolecular interactions (NCI) are important in many areas of chemistry
ranging from catalysis to the structure of biological macromolecules. [174, 176, 177, 180–
182, 186, 187, 398] For example, the network of hydrogen bonds and hydrophobic effects
play a crucial role in the transmission rate of the highly contagious SARS-CoV-2 virus.[418]
Electron correlation is essential for an accurate description of NCI.[419, 420] Dispersion
is a type of NCI which is purely driven by electron-electron correlation as it is a long-
range dynamic correlation effect with a well-known asymptotic behavior of 1/R6 where R
is the distance between two fragments. Consequently, mean field methods like Hartree-Fock
or approximate exchange correlation functionals within the Kohn-Sham density functional
theory (KS-DFT) framework do not incorporate this effect unless an (empirical) correction
term is applied.[65–67, 421] or a Van der Waals functional such as VV10[69] is included. Due
to its highly accurate correlation treatment, coupled cluster theory with single, double, and
perturbative triple excitations [CCSD(T)] is considered the “gold standard” for describing
NCI.[214, 420] Unfortunately, this method exhibits a steep computational scaling (O(N7),
whereN is the system size) and thus its canonical implementation is limited to small systems.
Reduced scaling CCSD(T) methods are very promising but require care to ensure adequate
numerical precision.[105–107]

Therefore, alternative methods are desirable to treat larger systems with a lower scaling
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and ideally similar accuracy. Perturbation theory (PT) based methods such as second-
order Møller-Plesset perturbation theory (MP2) can be employed with a O(N5) scaling.
However, conventional MP2 is known to overbind dispersion-dominated interactions[214–
217] and modifications to MP2 have been explored[217, 422–425].

The first approach is to improve the reference orbitals used in MP2; instead of using
Hartree-Fock (HF) orbitals, the MP2 energy can be determined via a self-consistent-field
(SCF) procedure which includes the MP2 correlation energy yielding orbital-optimized MP2
(OOMP2) methods.[39, 426, 427]. For systems where the unrestricted HF (UHF) refer-
ence exhibits spin-contamination (artificial spin-symmetry breaking), its use as a reference
determinant can lead to poor performance of MP2.[428–431] Orbital optimization at the
MP2 level often reduces the degree of spin-contamination and improves energetics.[39, 426,
432] Despite the benefits of OOMP2 described above, it is not without its own pitfalls.
Orbital optimization of the MP2 correlation functional can produce divergent energy con-
tributions as the orbital energy difference denominator approaches zero. Overstabilization
of bond-stretched configurations by OOMP2 leads to significant underestimation of har-
monic vibrational frequencies.[433] OOMP2 also has difficulty transitioning smoothly from a
spin-restricted (ROOMP2) to a spin-unrestricted (UOOMP2) solution via a Coulson-Fischer
point, further limiting its applicability for bond-breaking.[434, 435]

Recently our group has explored regularization of the MP2 correlation energy to prevent
its divergence at zero gap via a κ-regularizer[40]. The resulting methods, κ-MP2 and κ-
OOMP2, use the following modified form of the MP2 correlation energy:

Eκ−MP2(κ) = −1

4

∑
ijab

|〈ij||ab〉|2
∆ab
ij

(
1− e−κ(∆ab

ij )
)2

. (5.1)

where i and j are occupied orbital indices, a and b are unoccupied orbital indices, 〈ij||ab〉 is an
element of the two-electron repulsion integral, and ∆ab

ij is the orbital energy gap associated
with orbitals i, j, a, b. The unregularized energy expression is recovered for large energy
denominators while terms in the sum with small energy denominators are attenuated. The
empirical κ parameter was trained for κ-OOMP2 on the TAE140 subset of the W4-11 set.[436]
An optimized value of κ = 1.45E−1

h was shown to provide excellent results upon further
testing on overall W4-11, RSE43[437], and TA13[209] sets. With this, κ-OOMP2 is fit to
replace OOMP2 for general application. Complex restricted (cR) and complex general (cG)
orbital extensions of κ-OOMP2 have also been developed.[26, 284]

The second approach is scaling or attenuated parts of the correlation energy: spin-
component-scaled MP2 (SCS-MP2)[112, 422, 438–441] and orbital optimized SCS-MP2 (SCS-
OOMP2)[39, 426] methods, which weight correlation contributions coming from same-spin
and opposite-spin pairs of electrons differently. These techniques have also been applied to
the second-order correlation contribution in several double-hybrid density functionals.[63,
442–445] However, different scaling parameters are necessary depending on the type of inter-
action (e.g. NCI) vs thermochemistry (TC).[440] Ochsenfeld and coworkers recently showed
that MP2-F12 can yield good results for NCI when omitting expensive terms and re-scaling
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the remaining components allowing an efficient calculation of large systems.[446] Another set
of approaches are the attenuated MP2 methods that partially cancel basis set superposition
errors with errors in MP2 itself to yield improved intermolecular interaction energies in finite
basis sets.[423–425, 447]

Lastly, for further improvements, one may include the third-order terms in the MP per-
turbative expansion (MP3) which have the following correlation energy expression:

EMP3 =
1

8

∑
ijabcd

(
tabij
)∗ 〈ab||cd〉tcdij +

1

8

∑
ijklab

(
tabij
)∗ 〈kl||ij〉tabkl − ∑

ijkabc

(
tabij
)∗ 〈kb||ic〉tackj . (5.2)

Despite its higher computational cost (O(N6)) compared to MP2, MP3 offers only a modest
if any improvement over MP2 results. Specifically for weak NCI, MP3 does not improve
the MP2 results.[112, 440, 448–452] However, Hobza and coworkers[450–452] suggested scal-
ing the third-order correlation energy to interpolate between MP2 and MP3, e.g. MP2.5.
These methods substantially improve binding energies for NCI and can even be used for rad-
ical systems[453]. Bozkaya and coworkers[432, 454–457] developed OOMP3 and OOMP2.5
and evaluated the performance of these methods on thermochemistry, kinetics, and NCI.
OOMP2.5 was shown to outperform coupled cluster theory with single and double excita-
tions (CCSD)[458, 459] on reaction energies and barrier heights [432] and perform compara-
bly to CCSD(T)[460] for NCI[456]. These results motivated recent work in our group, where
we developed an MP3 method using reference orbitals generated by κ-OOMP2, denoted as
MP3:κ-OOMP2. Furthermore, scaling the third-order contribution was explored and 0.8
(MP2.8:κ-OOMP2) was determined to be an optimal scaling parameter to further improve
the energetics.[286]

This previous work[286] showed promising results for both NCI and TC; however, the
NCI analysis was limited to two small benchmark sets: A24[461], comprising 24 small dimer
complexes and TA13, comprised of 13 radical-solvent complexes. This present work aims to
provides a comprehensive analysis of NCI for novel MP2 and MP3 approaches by assessing 19
popular NCI benchmark sets (see Table 5.1). These data sets formed the basis for assessing
the performance of DFT functionals for NCI in a previous study from our group.[20] We
include various second- and third-order MP methods as well as the top performing DFT
functional for NCI[20],ωB97M-V[70].

We do not want to overlook promising results with non-perturbative approaches. First,
lower-order coupled cluster methods showed promising performance in atomization and reac-
tion energies without any additional empirical parameters.[462] However, more benchmark
data is necessary to test whether this high accuracy is transferable to NCI. Hobza and
coworkers developed a same- and opposite-spin scaled CCSD method, specifically parame-
terized for NCI (SCS(MI)-CCSD)[463], parameterized on the S22 benchmark set[215]). The
method performs remarkably well for the S66 (RMSD: 0.08 kcal/mol) and X40 (RMSD: 0.06
kcal/mol) NCI benchmark sets.[464, 465] In both cases the scaling is O(N6) but iterative
and thus more expensive than the perturbative approaches detailed above.

Modern density functionals (e.g ωB97M-V) perform excellent for all types of NCI when
empirical dispersion corrections[66, 112] or nonlocal correlation functionals[69] are used.
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We refer the interested reader to ref. [20] which includes an extensive comparison of many
DFT functionals and various NCI data sets. However, approximate exchange correlation
functionals incorporate many empirical parameters, which are often trained and/or tested
on these benchmark sets[20, 63, 391]. Alternatively, there are promising NCI results obtained
by employing the random phase approximation (RPA) as a correction to DFT,[466–468] as
well as active development and testing of further corrections to RPA.[469–471] However, we
note that radical systems or charged systems can still pose a problem for density functionals
due to the self-interaction error.[20, 54, 55]

This paper is organized as follows: First, we give a short overview of the data sets used
in this study which are separated in two categories NCED (non-covalent ‘easy’ dimers; easy
refers to low sensitivity to the self-interaction error in these data sets) and NCD (non-covalent
’difficult’ dimers). Second, we describe the electronic structure methods used in this study
and the computational details. Third, we discuss the optimal scaling parameter for the third
order methods for S66 and the whole NCED data category. Fourth, we discuss in detail the
performance of each method in each data set and draw conclusion after both NCED and
NCD data categories. Lastly, we conclude and summarize important findings in our work.

5.2 Overview of Benchmark Sets
The benchmark sets used in this study are inspired by the data categories for non-covalent
interactions from ref. [20], which includes two data categories: “non-covalent easy dimers”
(NCED) and “non-covalent difficult dimers” (NCD) (the classification “easy dimers” means
that these systems are not sensitive to the self interaction error (SIE) of approximate ex-
change correlation functionals[20, 54, 55]).

The NCED data category includes thirteen equilibrium geometry data sets: A24[461],
DS14[472], HB15[473], HSG[474], S22[215], X40[465], HW30[475], NC15[476], S66[464], Alk-
Bind12[477], CO2Nitrogen16[478], HB49[479] and Ionic43[480]. These data sets cover a
wide range of different NCI interaction motifs like classical hydrogen bonds, dispersion
bound systems, ionic interactions and halogen bonding with various sub-classes such as π-
stacking, aliphatic dispersion, halogen-π interactions, cyclic hydrogen bonds, charged-neutral
and charged-charged ionic interactions; see Table 5.1 for a short description of each data
set. We omitted the five non-equilibrium geometries data sets (NBC10[481], BzDC215[482],
A21x12[483], S66x8[484], 3B-69-DIM[485]) in the overall statistical analysis. However, some
data points in these data sets were included in the section about potential energy curve
calculations.

The NCD is a collection of four non-covalent interactions:
TA13[209], XB18[486], Bauza30[487], CT20[488], XB51[486] and we extended the category by
adding the Orel26rad[231] set. These are classified as difficult for DFT functionals because
these systems are prone to the SIE.[20] We excluded all complexes with iodide in both
halogen bonding sets following ref. [20]. In XB18 10 data points and XB51 30 data points
were excluded analogous to ref. [20]. This data category covers neutral and charged radical
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complexes, hydrogen bonding, halogen, chalcogen and pnicogen bonding; see Table 5.1 for a
short description of each data set.

Name Data-type # Description Max(E) Min(E) Ref

A24 NCED 24 small non-covalent complexes 1.10 −6.53 [461]
DS14 NCED 14 sulfur based small non-covalent complexes −0.85 −6.33 [472]
HB15 NCED 15 ionic hydrogen complexes −11.46 −28.56 [473]
HSG NCED 21 protein-ligand docking relevant non-covalent complexes 0.38 −19.08 [474]
S22 NCED 22 hydrogen-bonded and dispersion-bound complexes −0.53 −20.64 [215]
X40 NCED 31 halogenated hydrocarbons non-covalent complexes −0.49 −14.32 [465]
HW30 NCED 30 hydrocarbon water dimers −0.66 −3.81 [475]
NC15 NCED 15 small non-covalent interactions −0.02 −3.31 [476]
S66 NCED 66 hydrogen-bonded and dispersion-bound complexes −1.39 −19.68 [464]
AlkBind12 NCED 12 unsaturated hydrocarbon dimers −1.99 −4.65 [477]
CO2Nitrogen NCED 16 polyheterocyclic CO2 dimers −1.18 −5.54 [478]
HB49 NCED 49 hydrogen bonding complexes −1.75 −33.85 [479]
Ionic43 NCED 43 charged non-covalent complexes −7.96 −120.80 [480]

TA13 NCD 13 binary radical-solvent complexes −1.69 −64.20 [209]
XB18 NCD 8 halogen bonded dimers −1.41 −8.60 [486]
Bauza30 NCD 30 halogen, chalcogen and pnicogen bonded complexes −1.42 −46.42 [487]
CT20 NCD 20 ground state charge-transfer complexes −0.32 −1.83 [488]
XB51 NCD 20 halogen bonded dimers −0.74 −23.11 [486]
Orel26rad NCD 26 aromatic radical dimer complexes −1.89 −20.30 [231]

Table 5.1: Non-covalent interaction data-sets used to evaluate the performance of various
methods in this work. These data sets were all taken from ref. [20]. # indicates the number
of data points in each set. Max(E) and Min(E) denote the weakest and strongest interaction
energy of the data set in kcal/mol, respectively.

5.3 Overview of Methodology
The majority of interaction energies reported in this work are computed without a geometric
distortion term, meaning that the geometry of monomers are identical for the complex and
in isolation. In this case, all energies are computed using the standard BSSE approach[116]:

∆Eint = EAB
AB (AB)− EA

A(AB)− EB
B (AB)− EBSSE . (5.3)

where EN
M(X) denotes the energy of N ∈ {A,B,AB} in the basis of M ∈ {A,B,AB} and

in the geometry of X; AB denotes the supersystem of A and B. The basis set superposition
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error correction[116] is defined as:

EBSSE = EA
AB(AB) + EB

AB(AB)− EA
A(AB)− EB

B (AB) . (5.4)

The benchmark sets HB49, XB18, XB51 and TA13 include geometric distortion, meaning the
reference states are optimized structures for both isolated and supersystem geometries. We
use the following equation to compute interaction energies in accordance with reference [479]:

∆Eint = EAB
AB (AB)− EA

A(AB)− EB
B (AB)− EBSSE + EGD , (5.5)

with the geometry distortion term[489] defined as:

EGD = EA
A(AB) + EB

B (AB)− EA
A(A)− EB

B (B) , (5.6)

where (AB) correspond to the monomer geometry in the complex, (A) to the optimized
isolated geometry of monomer A, and respectively for (B). This approach yields almost
identical RMSDs to non-BSSE corrected values for ωB97M-V in ref. [20].

All perturbation methods used in this study are summarized in Table 5.2. All PT methods
utilize an all-electron approach (no frozen core approximation) and the RI approximation.
The non-iterative second-order methods include: standard MP2:

EMP2 = EHF + E
(2)
D , (5.7)

κ-MP2 using the recently developed κ-regularizer[40] (using the recommended κ = 1.45E−1
h

for the parameter) for the MP2 correlation energy:

Eκ−MP2 = EHF + E
(2)
D (κ) , (5.8)

this method is used to systematically assess the effect of regularization and orbital optimiza-
tion in κ-OOMP2. We note, that the κ parameter is optimized for the orbital optimized
variant, not the κ-MP2. In addition, spin-scaled (SCS) MP2 using 0.333 for same spin (ss)
and 1.200 for opposite spin (os) scaling factors for the same spin and opposite spin correlation
energy contribution of MP2 (E(2)

ss and E(2)
os ), as implemented in Q-Chem.[112]:

ESCS−MP2 = EHF + cssE
(2)
ss + cosE

(2)
os , (5.9)

The iterative second-order methods include orbital-optimized MP2 (OOMP2) and κ-regularized
OOMP2 (κ-OOMP2) which minimize the EMP2 and Eκ−MP2 energy expressions stated
above.

The third-order methods include: standard MP3 and MP2.5[450–452] which scales the
third-order contribution (c3) to the correlation energy by 0.5:

EMP2.5 = EHF + E
(2)
D + c3E

(3)
D . (5.10)

Additionally, we tested MP3 using OOMP2 reference orbitals (MP3:OOMP2); MP2.5 us-
ing OOMP2 reference orbitals (MP2.5:OOMP2); MP3 using κ-OOMP2 reference orbitals
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where the regularizer is only applied for the generation of the the reference orbitals (MP3:κ-
OOMP2); and MP2.5 using κ-OOMP2 reference orbitals (MP2.5:κ-OOMP2). For these
non-HF reference orbitals, the MP2 energy includes the singles contributions, E(2)

S :

E
(2)
S = −

∑
ia

|Fia|2
εa − εi

, (5.11)

where Fia denotes an element of the occupied-virtual block of the Fock matrix. We also
combined (scaled) MP3 and regularized MP2 where the regularizer is applied for the MP2
energy with κ-OOMP2 reference orbitals (κ-MP3:κ-OOMP2):

Eκ−MP2.5 = EHF + E(2)(κ)D + c3E
(3)
D (5.12)

and the scaled version κ-MP2.5:κ-OOMP2. For these cases, E(2)
S is omitted.

Lastly, inspired by recent work in our group[490], we also investigate the effect of KS-
DFT reference orbitals using ωB97X-V[391] for both MP2.5 and MP3, where we use the
converged KS-DFT orbitals to evaluate the HF, MP2 and MP3 energy (in contrast to double
hybrid functionals). This functional is among the most accurate for dipole moments[491],
polarizabilities[492], electron density variances[493] and yielded among the most accurate
reference orbitals for MP3 calculations[490]. Table 5.2 summarizes the range of perturbative
methods assessed in this work.

5.4 Computational Details
All electronic structure calculations were performed with a local development version of
Q-Chem (version 5.2.2)[108]. The MP2 and MP3 correlation energy calculations were per-
formed with the RI approximation and correlate all electrons. We refer to RI-MP2 and
RI-MP3 as simply MP2 and MP3, respectively. The MP3 calculations are performed with
an amplitude direct approach which only requires the cubic storage overall.[494, 495] The
aug-cc-pVTZ basis and the corresponding RI auxiliary basis were employed for all calcula-
tions[253, 254], except for parts of Orel26rad, TA13 and XB51. For Orel26rad, we used the
more compact def2-tzvpd[247, 248] and corresponding auxiliary basis[255, 496, 497] for the
larger systems due to computational efficiency; for TA13, we used the cc-pVQZ auxiliary
basis for Li because there is no auxiliary basis for aug-cc-pVTZ; for XB51, we used the
aug-cc-pVTZ-PP basis and the corresponding ECP and auxiliary basis for Br[249] and the
frozen core approximation was employed to harmonize with the reference values which were
also generated with aug-cc-pVTZ-PP and ECP for Br.[486]

All geometries and reference interaction energies were taken from ref. [20] (see references
therein) with the exception of the Orel26rad data set, which was taken from ref. [231]. Note
carefully that we compare our TZ-level calculations against reference values at the complete
basis set limit. We do this to make the MP2 and MP3 calculations far more feasible than
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Method Orbitals E
(2)
S E

(2)
D E

(3)
S E

(3)
D

MP2 HF 0 X X X
κ-MP2 HF 0 κ X X
SCS-MP2 HF 0 S X X
OOMP2 OOMP2 0 X X X
κ-OOMP2 κ-OOMP2 0 κ X X
MP3 HF 0 X 0 X
MP2.5 HF 0 X 0 S
MP3:OOMP2 OOMP2 X X X X
MP2.5:OOMP2 OOMP2 X X X S
MP3:κ-OOMP2 κ-OOMP2 X X X X
MP2.5:κ-OOMP2 κ-OOMP2 X X X S
MP3:ωB97X-V ωB97X-V X X X X
MP2.5:ωB97X-V ωB97X-V X X X S
κ-MP3:κ-OOMP2 κ-OOMP2 X κ X X
κ-MP2.5:κ-OOMP2 κ-OOMP2 X κ X S

Table 5.2: Summary and short description of all perturbation theory methods used in this
study; X indicates that the contribution is not included, Xmeans included, 0 indicates
the contribution is identically to 0, and κ indicates regularized second order contribution
(κ = 1.45E−1

h ), S indicates scaled second or third order contribution

if larger basis sets were used. We note that this affects the optimal scaling parameter (see
figure D.2).

In addition, we performed density functional calculation using ωB97M-V with a fine inte-
gration grid (99 radial grid points and 590 Lebedev angular grid points) for quadrature, the
resulting RMSD are almost identical to those reported in ref. [20]. Some small discrepancies
(maximum deviation: 0.02 kcal/mol in DS14) can be explained with the different computa-
tional set-up (aug-cc-pVTZ with BSSE correction used here versus def2-QZVPPD[248, 498]
without BSSE correction used in ref. [20]). The data for B3LYP-D3 is directly taken from
ref. [20] and CCSD numbers are taken from the references for each data set. We performed
the whole NCED data category with restricted HF (RHF) and ROOMP2. The same is true
for the NCED data category with the exception of TA13 and Orel26rad. In TA13, we used
UHF (and restricted open-shell HF (ROHF) just for MP2) and UOOMP2. In Orel26rad,
we used ROHF for all HF methods and UOOMP2 for all OOMP2 methods including the
composite MP3 methods.
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5.5 Results and Discussion
The systems included in this study cover a wide range of NCI such as σ dispersion, π-
stacking, hydrogen, halogen and ionic bonding; the complete list of 19 data sets was already
shown in Table 5.1. The root-mean-square deviations (RMSD) are given in kcal/mol. We
discuss equilibrium geometry data sets of the two data categories NCED (non-covalent: easy
dimers) and NCD (non-covalent: difficult; with Orel26rad added) taken from an extensive
benchmark work for DFT functionals.[20] In addition, we include potential energy surface
(PES) scans for benzene, pyridine, water and methylamine dimers. We assess the perfor-
mance of 15 methods (see Table 5.2) to systematically gauge the effect of scaling, reference
orbitals and regularization. We compare these results to the top performing functional for
NCI, ωB97M-V (based on ref. [20]). We also compare our results against those from a
widely used exchange correlation functional B3LYP-D3, CCSD and SCS(MI)-CCSD wher-
ever available. The results are summarized in tables 5.3 and 5.4. The SCS-MP2 results are
consistently worse than regular MP2 as illustrated in tables 5.3 and 5.4.Consequently, we
omit SCS-MP2 from most of the discussion below. In addition, we explore the option of using
KS-DFT reference orbitals for MP3 and MP2.5 due to recent promising results employing
this approach.[490]

Optimal Scaling of the Third-Order Energy

Both standard MP2 (c3 = 0.0) and MP3 (c3 = 1.0) (see equation 5.10) perform poorly for
NCI as MP2 usually overbinds (too negative interaction energies) and MP3 underbinds (too
positive interaction energies). Therefore, Hobza and coworkers[450–452] suggested scaling
the third-order correlation energy to interpolate between MP2 and MP3. Thus, we expect
an optimum scaling parameter between 0 and 1. In two previous studies,[286, 490] 0.8 was
determined as the optimal scaling parameter (c3) for the third-order energy contribution (see
equation 5.10) using theW4-11 thermochemistry data set as a training set and CCSD(T) with
aug-cc-pVTZ as a reference. However, other studies specifically for non-covalent interaction
found a scaling factor of 0.5 yields good results for both MP3 and orbital optimized MP3.[432,
452] Therefore, we probed the scaling factor dependence for all four MP2.X methods (MP2.X,
MP2.X:OOMP2, MP2.X:κ-OOMP2 and κ-MP2.X:κ-OOMP2) employed in this study. The
results are depicted in figure 5.1 using the S66 benchmark set as a training set. A scale
factor of around 0.5 is optimal for MP2.X, MP2.X:OOMP2 and MP2.X:κ-OOMP2 (optimal
c3 values were 0.45, 0.55, and 0.60 for MP2.X, MP2.X:κ-OOMP2, and MP2.X:OOMP2,
respectively).

We stress again, however, that the c3 coefficient is optimized in the medium sized aug-
cc-pVTZ basis by training against CCSD(T)/CBS reference values. The c3 parameter tends
to shift to larger values for larger basis sets or when a CCSD(T)/aug-cc-pvtz reference is
used (as in ref. [286] and [490]). MP2 tends to overestimate correlation energy with larger
basis sets and consequently a higher amount of third order contribution becomes optimal.
We illustrate this for the A24 benchmark set in figures D.1 and D.2.
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Returning to figure 5.1, it is very interesting that both MP2.X:OOMP2 and MP2.X:κ-
OOMP2 exhibit a sharper and deeper minimum than MP2.X. A more detailed look into
the individual plots for each data set reveals that in many hydrogen bonding data sets (S66
hydrogen bonding subsection, HSG and HB49), Ionic43 and CT20 the minimum for MP2.X
is at c3 = 0 or very small. The optimal c3 parameter for MP2.X:OOMP2 is always larger
than MP2.X:κ-OOMP2 and notable deviations from c3 = 0.5 are observed for A24 (c3 ∼ 0.3)
and CT20 (c3 ∼ 0.8). The appendix D contains a plot for each of these data sets.

Furthermore, we combined both κ-regularization of the MP2 energy and scaling of the
MP3 energy. We found, however, that the c3 scaling factor was small and often did not yield
a sizable improvement versus κ-OOMP2 (see figure 5.1). This is in accordance with the
findings of our previous study.[286] Therefore this method is omitted from further discussion.

Figure 5.1: Dependence of the the root-mean square deviation on the scaling of the third-
order energy (c3) in the S66 training set; in kcal/mol; for four scaled MP2.X methods
(MP2.X, MP2.X:OOMP2, MP2.X:κ-OOMP2, κMP2.X:κ-OOMP2); for reference, the RMSD
of ωB97M-V is depicted as a flat line.

NCED

We discuss the S22 and S66 data sets in detail since they are the most popular benchmark
sets for NCI and many findings are transferable to the other sets. The results for all data
sets of that category are summarized in table 5.3.
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Table 5.3: Results of the NCED data category; RMSD in kcal/mol. For each data set all method cells are
colored in a heatmap from green to yellow to red. Low RMSD are represented in green and high RMSD in
red.
* B3LYP-D3(BJ) interaction energies were taken from ref. [20];** CCSD interaction energies for A24 and HSG were taken from
ref. [392] (CCSD/aTZ), for S22 from ref. [463] (CCSD/CBS), for XB40 and S66 from ref. [465] (CCSD/CBS), for AlkBind12
from ref. [477] (CCSD/CBS), and for HB49 from ref. [499] (CCSD/aTZ).
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Table 5.4: Results of the NCD data category; RMSD in kcal/mol; RO-HF is used as a
reference for the three MP2 methods in Orel26rad. For each data set all method cells are
colored in a heatmap from green to yellow to red. Low RMSD are represented in green and
high RMSD in red.
* B3LYP-D3(BJ) interaction energies were taken from ref. [20];** CCSD interaction energies for TA13 are taken from ref. [209]
(CCSD/CBS); XB18 (CCSD/aQZ) and XB51 (CCSD/aTZ) were taken from ref. [486] and adjusted to the subset.

S22

The S22[215] benchmark set comprises 22 non-covalent interactions of model systems relevant
to biological molecules. Typical systems are π-stacked aromatic systems like the benzene
dimer or hydrogen bonded systems like the formic acid dimer. The two largest systems
are adenine-thymine complexes (30 atoms). The set is divided into three subgroups: (i)
hydrogen bonded complexes; (ii) dispersion-bound complexes; and (iii) mixed electrostatic
and dispersion complexes.

Among the second order methods, MP2 is well-known to overbind dispersion-driven com-
plexes[214–217], yielding a large RMSD of 1.25 kcal/mol and a mean signed deviation (MSD)
of −0.45 kcal/mol. The largest deviations for MP2 are the π-stacked indole-benzene complex
(−3.27 kcal/mol) and the adenine-thymine complex (−2.61 kcal/mol). Regularization damps
the small gap correlation energy contributions which significantly decreases the RMSD to
0.50 kcal/mol for κ-MP2 (almost by a factor of 3). This is a remarkable improvement espe-
cially given that the κ value used in κ-MP2 was never trained on non-covalent interactions.
The lower RMSD stems mainly from the improved binding energies of the π-stacked out-
liers described above: deviation of 1.18 kcal/mol for the indole-benzene complex and −1.18
kcal/mol for adenine-thymine complex. This is also seen in the boxplot of in figure 5.2 (a)
where the spread of the error significantly decreases from MP2 to κ-MP2 and κ-OOMP2
to MP2.5:κ-OOMP2. By contrast, a currently more widely used MP2 variant, SCS-MP2
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performs even worse than canonical MP2 for this data set. SCS-MP2 improves the per-
formance of the π-stacked species e.g. deviation in the indole-benzene complex is −0.08
kcal/mol; however, this improvement in the dispersion category is accompanied by signifi-
cant underbinding of hydrogen bonding, e.g. adenine thymine complex with 2.8 kcal/mol.
This is further illustrated by both the mean signed deviation (MSD): 1.05 kcal/mol and the
boxplots in figure 5.2. In total, the RMSD of SCS-MP2 is 1.45 kcal/mol performing worse
than standard MP2.

For the MP3 methods, scaling MP3 correlation energy contribution improves the RMSD
for all three sets of reference orbitals by ∼1 kcal/mol e.g., MP3:κ-OOMP2: 1.38 kcal/mol
versus MP2.5:κ-OOMP2: 0.18 kcal/mol. Comparing the three scaled methods, the HF
reference orbitals yield significantly worse binding energies (RMSD: 0.50 kcal/mol) than
OOMP2 (RMSD: 0.28 kcal/mol), while κ-OOMP2 (RMSD: 0.18 kcal/mol) provides the best
reference orbitals for scaled MP3. The box plots in figure 5.2 (a) and (b) show how all three
MP2.5 methods significantly decrease the spread of the error in comparison to standard
MP2.

Interestingly, for this dataset, the performance of the regularizer does not strongly de-
pend on the reference orbitals, since both κ-MP2 (RMSD: 0.50 kcal/mol) and κ-OOMP2
(RMSD: 0.65 kcal/mol) yield similar accuracy. In addition, the comparison of κ-OOMP2
and OOMP2 show that improvements in the energetics mainly stem from the κ-regularizer
(RMSD: OOMP2: 1.45 kcal/mol versus κ-OOMP2: 0.65 kcal/mol).

The two DFT functionals ωB97M-V (RMSD: 0.28 kcal/mol) and B3LYP (RMSD: 0.43
kcal/mol) perform less well than MP2.5:κ-OOMP2. In addition CCSD (CCSD/CBS) per-
forms poorly with an RMSD of 0.61 kcal/mol[463] in comparison to MP2.5:κ-OOMP2;
however, a scaled CCSD version, SCS(MI)-CCSD (RMSD: 0.06 kcal/mol)[463] outperforms
MP2.5:κ-OOMP2 slightly; but the spin scaling parameters were trained on this data set[463].

In summary, the best performing method is MP2.5:κ-OOMP2 with an RMSD of 0.18
kcal/mol. The largest deviation is seen in the π-stacked adenine-thymine complex with
−0.46 kcal/mol.

S66

The S66[464] benchmark set consists of 66 NCI. Similarly to S22, the data set covers a
large variety of NCI relevant to biology with a more balanced representation of dispersion
and electrostatic contributions. The interactions are also classified in three categories: (i)
hydrogen bonds, (ii) dispersion and (iii) others/mixed. The largest data point is a pentane
dimer (34 atoms).

Among the second-order methods both κ-OOMP2 and κ-MP2 are significant improve-
ments on standard MP2. Similarly to S22, the improvements stem mainly from regular-
ization and not orbital optimization which is illustrated by the RMSD of 0.28 kcal/mol for
κ-MP2 and 0.29 kcal/mol for κ-OOMP2 versus standard MP2 0.67 kcal/mol. The boxplot
in figure 5.2 illustrates this behaviour as MP2 shows a downwards bias and κ-MP2 (and
κ-OOMP2) a significantly decreased spread in the data.
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For the third-order methods, both scaling and κ-OOMP2 reference orbitals improve the
energies; thus, the top performer is MP2.5:κ-OOMP2 with an RMSD of 0.10 kcal/mol.
The largest MP2.5:κ-OOMP2 deviation is −0.41 kcal/mol for a π-stacked uracil complex.
Both MP2.5 (RMSD: 0.36 kcal/mol) and MP3:κ-OOMP2 (RMSD: 0.74 kcal/mol) perform
significantly less well than MP2.5:κ-OOMP2. As already mentioned, S66 was used as a
training set to determine an optimal scaling parameter for the third-order correlation energy
in the three MP3 methods surveyed and yielded optimal parameters of around 0.5 for each
case, see table 5.5. This is consistent with results reported previously using HF reference
orbitals.[450–452] Interestingly, this holds for each of the three subclasses in this set (see
table 5.5 and figure D.3).

Method c3 tot c3 h-bonds c3 disp c3 mixed

MP2.X 0.45 0.45 0.45 0.40
MP2.X:κ-OOMP2 0.55 0.50 0.55 0.50
MP2.X:OOMP2 0.60 0.60 0.60 0.55
κ-MP2.X:κ-OOMP2 0.15 0.10 0.15 0.15

Table 5.5: Optimal scaling parameter for the MP3 energy contribution (c3) for the whole
S66 data set and the three subsets hydrogen bonds, dispersion and mixed.

The dispersion-bound subsection of S66 (23 data points) are of particular interest as
standard MP2 is known to overbind these complexes.[214–217] This is illustrated by the
high RMSD of 0.94 kcal/mol. The κ-regularized MP methods significantly improve binding:
κ-MP2 with an RMSD of 0.39 kcal/mol, κ-OOMP2 with an RMSD of 0.44 kcal/mol and
MP2.5:κ-OOMP2 with an RMSD of 0.13 kcal/mol. For MP2, the largest deviation is seen in
the π-stacked pyridine dimer−1.97 kcal/mol; this is reduced to −0.74 kcal/mol for κ-MP2, to
−0.64 kcal/mol for κ-OOMP2 and to 0.01 kcal/mol for MP2.5:κ-OOMP2. Consequently, κ-
MP methods are suitable for describing dispersion-bound complexes because the regularizer
damps the correlation energy appropriately.

The DFT functional ωB97M-V performs well with an RMSD of 0.15 kcal/mol and is
only outperformed by MP2.5:κ-OOMP2. B3LYP-D3 performs worse with an RMSD of 0.34
kcal/mol and is also outperformed by κ-MP2. The coupled cluster method CCSD performs
poorly in comparison to MP2.5:κ-OOMP2 with an RMSD of 0.70 kcal/mol (CCSD/CBS)
but the scaled version SCS(MI)-CCSD performs similarly to MP2.5:κ-OOMP2 (RMSD: 0.08
kcal/mol SCS(MI)-CCSD/CBS).[465]

In summary, the top performer is MP2.5:κ-OOMP2 with an RMSD of 0.10 kcal/mol. In
addition, MP2.5:κ-OOMP2 results in a smaller spread in the data and fewer outliers than
the other methods (see boxplots in figure 5.2 (c) & (d)).
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Figure 5.2: Boxplots of the S22 & S66 data-sets: (a) MP2 methods for S22, (b) MP3 methods
for S22; (c) MP2 methods for S66, (d) MP3 methods for S66. Red lines mark the median
deviation, boxes bound the central 50% of the data, whiskers enclose all data points within
1.5 times the inter-quartile range of the box edges, and points denote outlying data.
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A24

The A24[461] benchmark set consists of 24 very small non-covalent complexes including
the water-ammonia dimer and methane-ethane dimer. Among the second-order methods,
only OOMP2 (RMSD: 0.13 kcal/mol) shows a considerable improvement over MP2 (RMSD:
0.17 kcal/mol). Among the third-order methods, the top performers are MP2.5:κ-OOMP2
with an RMSD of 0.09 kcal/mol, MP2.5:OOMP2 with an RMSD of 0.09 kcal/mol. ωB97M-V
performs similarly with an RMSD of 0.09 kcal/mol. In contrast, CCSD performs significantly
worse with an RMSD of 0.38 kcal/mol (CCSD interaction energies for A24 and HSG were
taken from ref. [392] (CCSD/aTZ)). The spread in the error is smallest for MP2.5:κ-OOMP2
(see boxplots in figure D.8). Overall, MP2.5:κ-OOMP2 is the top performer.

DS14

The DS14[472] benchmark set comprises of 14 non-covalent dimers with sulfur-containing
species, e.g. the water-hydrogen sulfide dimer and methane-hydrogen sulfide dimer. The
largest data point is the benzene-dimethyl sulfide dimer (21 atoms). The top performer on
this data set is MP2.5:κ-OOMP2 with an RMSD of 0.05 kcal/mol, significantly outperforming
ωB97M-V with an RMSD of 0.13 kcal/mol. Among second-order methods κ-OOMP2 per-
forms best with an RMSD of 0.10 kcal/mol. Standard MP2 has an RMSD of 0.33 kcal/mol;
the poor performance mainly stems from overbinding of the two benzene systems (benzene-
dimethyl sulfide and benzene-methanethiol). Regularization almost halves (κ-MP2 RMSD of
0.18 kcal/mol) the MP2 RMSD by improving on the two outliers (see boxplots in figure D.8),
whereas orbital optimizing without regularization leads to slightly worse results (OOMP2
RMSD of 0.39 kcal/mol).

HB15

The HB15[473] benchmark set consists of 15 medium-sized ionic hydrogen bonded systems
relevant to biology like the guanidinium-methanol dimer (16 atoms). The top performer is
MP2.5:κ-OOMP2 with an RMSD 0.13 kcal/mol. Scaling the MP3 correlation energy and
using κ-OOMP2 reference orbitals significantly improves the results from MP3 (RMSD of
0.44 kcal/mol). All second-order methods perform very similarly as neither regularization nor
orbital optimization significantly improves the binding energies [e.g. MP2: 0.36 kcal/mol, κ-
MP2: 0.34 kcal/mol]. It is noteworthy that all MP methods outperform the popular B3LYP
functional, which has an RMSD of 0.75 kcal/mol. Charge delocalization error[500] makes
these systems more challenging for DFT.

HSG

The HSG[474] data set comprises 21 NCIs relevant to protein-ligand docking. The largest
data point is the butane-N -tert-butylformamide dimer (32 atoms). The top performer is
MP2.5:κ-OOMP2 with an RMSD of 0.05 kcal/mol; runners-up are κ-OOMP2 with an RMSD
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of 0.12 kcal/mol performing similarly to ωB97M-V (0.11 kcal/mol). Interestingly, in this data
set neither regularization (κ-MP2: 0.29 kcal/mol) nor OOMP2 (0.28 kcal/mol) significantly
improve upon standard MP2 (0.30 kcal/mol), only the combination of both is effective via
κ-OOMP2.

X40

The X40[465] data set comprises 31 π-stacking, halogen bonding and hydrogen bonding
interactions containing halogenated molecules (we excluded the 9 dimers containing iodide
in accordance with ref. [20]). The largest system is bromobenzene-trimethylamine dimer (25
atoms). Among the second-order methods, κ-OOMP2 performs best with an RMSD of 0.28
kcal/mol; κ-MP2 performs similarly with 0.30 kcal/mol. Both improve upon standard MP2
with RMSD of 0.58 kcal/mol. Similar to other data sets, the poor performance of MP2 can
be attributed to two π-stacked benzene data points, which MP2 overbinds by ∼2 kcal/mol
(see boxplots in figure D.10). Regularization alone significantly improves the binding of those
outliers (κ-MP2 has an RMSD of 0.30 kcal/mol).

Among the third-order methods, the top performer is MP3:κ-OOMP2 with an RMSD of
0.09 kcal/mol as both spin scaling and κ-OOMP2 (and OOMP2) reference orbitals improve
the energetics significantly. This is illustrated by the comparison to MP2.5 (0.28 kcal/mol)
and MP3:κ-OOMP2 (0.68 kcal/mol). The ωB97M-V functional performs quite well (0.22
kcal/mol), surpassing B3LYP-D3(BJ) (0.34 kcal/mol). CCSD performs worse than the top
MP3 methods with an RMSD of 0.48 kcal/mol (CCSD/CBS[465]) but SCS(MI)-CCSD
performs similarly (SCS(MI)-CCSD/CBS RMSD: 0.08 kcal/mol[465]). Overall, MP2.5:κ-
OOMP2 is the top performer with an RMSD of 0.09 kcal/mol, which is three times lower
than the best second order method (κ-OOMP2).

HW30

The HW30[475] data set contains 30 hydrocarbon-water dimer interactions including the
benzene-water and butane-water dimers. Among the second-order methods, κ-MP2 performs
best with an RMSD of 0.12 kcal/mol improving significantly on standard MP2 with an
RMSD of 0.45 kcal/mol. Orbital optimization does improve upon MP2 with an RMSD of
0.16 kcal/mol for OOMP2. However, κ-OOMP2with a RMSD of 0.13 kcal/mol performs
slightly worse than k-MP2. Among the third-order methods, the top performer is MP2.5:κ-
OOMP2 with an RMSD of 0.04 kcal/mol improving upon MP2.5 (0.09 kcal/mol). The
popular B3LYP-D3 (0.17 kcal/mol) and ωB97M-V (0.23 kcal/mol) perform worse than both
top performing MP2 and MP3 methods. The overall top performer is MP2.5:κ-OOMP2.

NC15

The NC15[476] data set comprises 15 very small non-covalent interactions like the argon
dimer. Among the second-order methods, κ-OOMP2 is the top performer (0.059 kcal/mol),
even though standard also MP2 performs well (0.088 kcal/mol). Among the third-order
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methods, the top performers set are MP2.5:OOMP2 (0.052 kcal/mol), MP2.5:κ-OOMP2
(0.056 kcal/mol). However, none of the perturbative methods outperform ωB97M-V (0.040
kcal/mol).

AlkBind12

The AlkBind12[477] benchmark set comprises 12 medium-sized dispersion-bound saturated
and unsaturated hydrocarbon dimers including the benzene dimer. Standard MP2 systemat-
ically overbinds these dispersion-bound complexes (MSD: −0.37 kcal/mol) and consequently
performs poorly with an RMSD of 0.69 kcal/mol. Both κ-OOMP2 and κ-MP2 improve
upon MP2 with RMSDs of 0.24 kcal/mol and 0.43 kcal/mol, respectively. The poor per-
formance of MP2 results mainly from one outlier, the benzene dimer, with a deviation of
−2.00 kcal/mol. Notably κ-OOMP2 reduces this error to −0.48 kcal/mol. In contrast, all of
the unscaled MP3 methods systematically underbind these dispersion complexes (e.g. MP3
MSD: 0.754 kcal/mol). The scaling (MP2.5) improves the RMSD to 0.30 kcal/mol and κ-
OOMP2 reference orbitals in MP2.5:κ-OOMP2 further improve the results (RMSD of 0.09
kcal/mol). ωB97M-V (0.12 kcal/mol), CCSD (RMSD 0.85 kcal/mol; CCSD/CBS[477]) and
SCS(MI)-CCSD (RMSD: 0.18 kcal/mol; SCS(MI)-CCSD/CBS[477]) are outperformed by
MP2.5:κ-OOMP2 making it the overall top performer for this set.

CO2Nitrogen16

The CO2Nitrogen16[478] benchmark set includes 16 model complexes for the absorption of
CO2 onto eight polyheterocyclic aromatic compounds ranging from pyridine and pyrazine
to 1,6-diazacoronene. However, we excluded the two largest diazacoronene data points due
to difficulty obtaining MP3 energies for these systems. Among the second-order methods κ-
MP2 performs best with an RMSD of 0.31 kcal/mol followed by κ-OOMP2 (0.39 kcal/mol).
Standard MP2 significantly overbinds (MSD: −0.30 kcal/mol) resulting in an RMSD of 0.64
kcal/mol. Among the third-order methods, the top performer for this set is MP2.5:κ-OOMP2
with an RMSD of 0.11 kcal/mol improving upon MP2.5 (0.36 kcal/mol). Both B3LYP-D3
(0.07 kcal/mol) and ωB97M-V (0.09 kcal/mol) functionals perform significantly better than
all MP methods.

HB49

The HB49[479, 499, 501] data set consists of 49 small- and medium-sized hydrogen bond-
ing complexes. The sets includes both neutral-neutral and ion-neutral complexes and thus
governs a wide range of interaction energies (3–25 kcal/mol). A typical example is the
guanidinium–methanol dimer (16 atoms). Among the second-order methods, the top per-
former on this set is κ-OOMP2 with an RMSD of 0.18 kcal/mol, halving the RMSD in com-
parison to standard MP2 (0.40 kcal/mol). This is the best-performing method on this set.
For comparison, with regularization alone, κ-MP2 already improves significantly upon stan-
dard MP2 with an RMSD of 0.29 kcal/mol. Among the third-order methods MP2.5:OOMP2
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performs best with an RMSD of 0.20 kcal/mol and MP2.5:κ-OOMP2 performs similarly
(RMSD: 0.21 kcal/mol). Both κ-OOMP2 and MP2.5:κ-OOMP2 outperform ωB97M-V (0.24
kcal/mol) and B3LYP (0.59 kcal/mol).

Ionic43

The Ionic43[480] data set comprises 43 small- to medium-sized charged non-covalent inter-
actions (cationic-neutral, anionic-neutral and anion-cation dimer), e.g. the formate-water
dimer. Among the second-order methods (and indeed all methods), the top performer is κ-
OOMP2 with an RMSD of 0.53 kcal/mol improving upon both standard MP2 (0.90 kcal/mol)
and κ-MP2 (0.74 kcal/mol). Among the third-order methods, MP2.5:κ-OOMP2 performs
best with an RMSD of 0.63 kcal/mol. Both ωB97M-V (0.70 kcal/mol) and B3LYP (0.80
kcal/mol) perform worse than most MP methods as these systems are prone to charge de-
localization error making them more challenging for DFT calculations[324]. The boxplots
indicate that the error is distributed similarly in all of the top performing methods (see
figure D.12).

Discussion

The accumulated NCED data category has 356 data points and the top performer is MP2.5:κ-
OOMP2 with an RMSD of 0.25 kcal/mol. Notable among the second-order methods are
κ-OOMP2 with an RMSD 0.33 kcal/mol and κ-MP2 with an RMSD of 0.37 kcal/mol; both
improve upon standard MP2 by almost a factor of two (MP2 RMSD: 0.63 kcal/mol). This
is further illustrated by figure 5.3 which shows a histogram of the absolute deviation from
the reference energies for MP2, κ-MP2, κ-OOMP2 and MP2.5:κ-OOMP2. It shows how
the error distribution is concentrated towards the smaller deviations, and larger deviations
are significantly reduced moving from MP2 to MP2.5:κ-OOMP2. A similar picture emerges
from boxplots of the NCED data category in figure 5.4. κ-MP2 reduces the spread of the
data in both directions (over and underbinding) compared to MP2 but is more effective
for overbinding. The quite systematic success of regularized κ-MP2 over standard MP2
is very encouraging: it appears to be a preferable choice for a wide range of NCI. The
value of regularization is also clear from the fact that OOMP2 is significantly less effective
than κ-OOMP2. While κ-OOMP2 outperforms κ-MP2 (overall and in 8 of 13 datasets), the
energetic improvements for these mostly closed shell systems from regular MP2 to κ-OOMP2
stem mainly from the κ-regularization rather than the orbital optimization.

In contrast, scaled MP3 (i.e. with HF orbitals) removes many of the overbinding outliers
at the cost of a significant underbinding bias. Interestingly, the scaled MP3 methods not
only remove underbinding outliers but also decrease the spread of the error more than just
the κ-regularization. These findings are consistent with the fact that adding a scaled MP3
correlation energy on top of κ-MP2 led to a very small c3 coefficient with only marginal
improvement. Both the addition of the third-order term and the κ-regularization damp the
correlation energy so as to remove the overbinding.
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panel), κ-OOMP2 (bottom left panel) and MP2.5:κ-OOMP2 (bottom right panel).
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Figure 5.4: Boxplots of the NCED data category for (a) MP2 methods, (b) MP3 and DFT
methods. Red lines mark the median deviation, boxes bound the central 50% of the data,
whiskers enclose all data points within 1.5 times the inter-quartile range of the box edges,
and points denote outlying data. DFT and MP2.5:κ-OOMP2 are included in all plots for
comparison.
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Figure 5.5: Dependence of the the root-mean square deviation on the scaling of the third-
order energy (c3) for the whole NCED data data category; in kcal/mol; for four scaled MP2.X
methods (MP2.X, MP2.X:OOMP2, MP2.X:κ-OOMP2, κMP2.X:κ-OOMP2); for reference,
the RMSD of ωB97M-V is depicted as a flat line.

For the third order methods, using all of NCED to train the c3 scaling parameter leads
to the conclusion that the S66 training set results are transferable to the total NCED data
category: the optimal c3 values are close to 0.5 with 0.35, 0.50, and 0.55 for MP2.X, MP2.X:κ-
OOMP2, and MP2.X:OOMP2, respectively. The dependence of the RMSD with respect to
c3 for MP2.X:κ-OOMP2, and MP2.X:OOMP2 is depicted in figure 5.5. This data supports
keeping the established factor of 0.5 yielding MP2.5, MP2.5:OOMP2 and MP2.5:κ-OOMP2.

The standard MP3 RMSDs are in general worse than standard MP2; there is an improve-
ment in only 1 (HW30) out of 13 data sets. Consistent with conventional wisdom, it cannot
be recommended for NCI. Both scaling the third-order energy by a factor of 0.5 (MP2.5) or
changing the reference orbitals (e.g. MP3:κ-OOMP2) improves the results. The combination
of both in MP2.5:κ-OOMP2 yields very high accuracy in all benchmark sets. It is the top
performer in 8 out of 13 benchmark sets and among the top performing methods in the oth-
ers. It outperforms CCSD in all cases and even performs similarly to SCS(MI)-CCSD, which
is more expensive (iterative O(N6)) and the spin scaling parameters were trained to perform
well on NCI. We note that MP2.5:OOMP2 has a very similar RMSD in all benchmark sets;
thus it is, perhaps surprisingly, a good alternative if the κ-regularizer is not available (we
shall see later that ωB97X-V orbitals are another excellent alternative).
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NCD

The NCD data category includes TA13, XB18, Bauza30, XB51 augmented with the Orel26rad
data set. By contrast with NCED, this class is more difficult due to self-interaction errors,
and also includes open-shell cases for which HF orbitals may exhibit significant spin contam-
ination. The results for all data sets of that category are summarized in table 5.4.

TA13

The TA13 benchmark set includes thirteen small binary radical-solvent complexes like lithium
water dimer. [209] For the MP2 methods, orbital optimization is necessary in this benchmark
set to remove spin-contamination of the reference orbitals as illustrated by the improvement
of κ-OOMP2 (0.88 kcal/mol) over standard MP2 (using canonical UHF reference orbitals,
2.14 kcal/mol). The maximum deviation in MP2 is seen in the HF· · ·CO+ dimer with −5.07
kcal/mol. However, the RMSD for MP2 can be further decreased to 1.65 kcal/mol by us-
ing a restricted-open shell HF (RO-HF) reference.[172] Among the third-order methods, the
top performer is unscaled MP3:κ-OOMP2 with an RMSD of 0.63 kcal/mol and the largest
deviation is seen in H2O· · ·Al dimer with 1.04 kcal/mol. Scaling of the third-order energy
significantly increases the error to 0.93 kcal/mol. This stems mainly from overbinding of
both the H2O· · ·F and H2O· · ·Cl with the scaled MP3 energy contribution. All complexes
are sensitive to the charge delocalization error and consequently both B3LYP (3.85 kcal/mol)
and ωB97M-V (2.85 kcal/mol) perform poorly. CCSD performs similarly to κ-OOMP2 with
an RMSD of 0.89 kcal/mol. Overall the top performer is MP3:κ-OOMP2 with an RMSD of
0.63 kcal/mol.

XB18

The XB18[486] contains 8 halogen bonded complexes such as Br2· · · NCH (we omitted the 10
iodide containing complexes originally included). Furthermore, we used a slightly different
computational set-up: the aug-cc-PVTZ-PP basis and the corresponding ECP were used for
Br[249] and the frozen core approximation was employed to harmonize with the reference
values which were also generated with aug-cc-PVTZ-PP and ECP for Br.[486]

Among the second-order methods κ-MP2 (0.26 kcal/mol) performed best followed by
standard MP2 (0.31 kcal/mol). Notably, orbital optimization worsens the results for both
κ-OOMP2 (0.50 kcal/mol) and OOMP2 (1.01 kcal/mol). Among the third-order methods,
MP2.5:κ-OOMP2 performs best (0.35 kcal/mol) performing slightly worse than the MP2
methods. The top MP methods outperform B3LYP (0.37 kcal/mol) and are similar to
ωB97M-V: (0.27 kcal/mol). CCSD performs worse than most MP methods with an RMSD
of 0.66 kcal/mol suggesting that the inclusion of CC triples is important for halogen bond-
ing motifs. In contrast, SCS(MI)-CCSD performs remarkably well with an RMSD of 0.11
kcal/mol (SCS(MI)-CCSD/aQZ); RMSD adjusted to the subset investigated here. Overall,
the top performing method is κ-MP2 with an RMSD of 0.26 kcal/mol.
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Bauza30

The Bauza30[487, 502] data set includes 30 small halogen, chalcogen, and pnicogen bonded
complexes, e.g. the Cl– · · · BrF complex. The top performer is standard MP2 with an
RMSD of 0.72 kcal/mol. Both regularization and orbital optimization increase the RMSD
(κ-MP2: 0.98 kcal/mol, OOMP2: 1.76 kcal/mol). The runner-up is MP2.5:κ-OOMP2 with
an RMSD of 0.88 kcal/mol which is still a significant improvement over B3LYP (RMSD:
1.87 kcal/mol). However, all MP methods perform worse than ωB97M-V with an RMSD of
0.59 kcal/mol.

CT20

The CT20[488] data set is comprised of 20 small ground state charge-transfer complexes of
NF3 with HCN, HNC, HF, or ClF. All MP2 methods perform very similarly but the top
performer is κ-MP2 (0.10 kcal/mol). Among the third-order methods, MP3:OOMP2 (RMSD
of 0.09 kcal/mol) and MP3:κ-OOMP2 (RMSD of 0.10 kcal/mol) also achieve virtually the
same accuracy. All MP methods outperform B3LYP, which has an RMSD of 0.28 kcal/mol,
but not ωB97M-V, which has an RMSD of 0.08 kcal/mol.

XB51

The XB51[486] contains 20 halogen bonded complexes such as Br2· · · FCCH dimer; we omit-
ted the 31 iodide containing complexes and the HLi complex following ref. [20]. Furthermore,
we used a slightly different computational set-up: the aug-cc-PVTZ-PP basis and the cor-
responding ECP were used for Br[249] and the frozen core approximation was employed to
harmonize with the reference values which were also generated with aug-cc-PVTZ-PP and
ECP for Br.[486]

Among the second-order methods, MP2 (RMSD: 0.36 kcal/mol) and κ-MP2 (0.36 kcal/mol)
and κ-OOMP2 (0.36 kcal/mol) perform similarly. Interestingly both MP2 and κ-OOMP2
also slightly overbind with MSDs of −0.24 kcal/mol and −0.16 kcal/mol, respectively; but
κ-MP2 underbinds with an MSD of 0.21 kcal/mol. Among the third-order methods, the
top performer is MP2.5:κ-OOMP2 with an RMSD of 0.34 kcal/mol and a MSD of −0.25
kcal/mol suggesting that MP2.5:κ-OOMP2 slightly overbinds. MP2.5:κ-OOMP2 improves
upon MP2.5 (0.54 kcal/mol) but is only slightly better than MP2. For comparison, B3LYP-
D3 performs significantly worse with an RMSD of 1.05 kcal/mol, while but ωB97M-V per-
forms well with an RMSD of 0.26 kcal/mol. Interestingly, both MP2.5:κ-OOMP2 and κ-
OOMP2 outperform the more expensive CCSD (CCSD/aTZ) with an RMSD of 0.67 kcal/mol
(adjusted to the subset investigated here).

Orel26rad

The Orel26[231] data set comprises 26 cationic radical dimer complexes of aromatic (het-
ero)cycles, such as py•+ · · · py (where py is pyridine). The largest system is the tetrathia-
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fulvalene dimer complex (28 atoms). We use ROHF as a reference for the MP2 results as
suggested in ref. [231] due to severe spin contamination in the UHF wave function for these
systems; while using UKS and UOOMP2 as those theories are less prone to spin contami-
nation due to inclusion of electron correlation in the SCF procedure. We note that properly
converging ROHF (and RO-SCF in general) can be significantly more challenging than UHF
and thus is less desirable.

Among second-order methods, the top performer is κ-OOMP2 with an RMSD of 0.59
kcal/mol. κ-MP2 (RO reference) with an RMSD of 1.53 kcal/mol significantly improves on
standard MP2 with an RMSD of 3.03 kcal/mol. MP2 strongly overbinds these dispersion-
dominated interactions with an MSD of −2.36 kcal/mol (maximum deviation of −6.08
kcal/mol for the bithiophene dimer (π-stacked)). Interestingly, κ-regularization seems to
slightly over-regularize which results in underbinding with an MSD of 1.29 kcal/mol and
the maximum deviation is 2.91 kcal/mol for the thiophene dimer (π-stacked). In contrast,
κ-OOMP2 only slightly overbinds with an MSD of −0.26 kcal/mol and a small and bal-
anced spread of errors. The largest deviation is the bithiophene dimer (−1.32 kcal/mol); see
boxplots in figure 5.6.

We used a more compact basis (def2-tzvpd[247, 248] and corresponding auxiliary ba-
sis[255, 496, 497]) for the MP3 calculations of the eight larger systems to reduce the compu-
tational cost (tetrathiafulvalene, thienothiophene, bifuran and bithiophene complexes; two
isomers each). We checked the difference between aug-cc-pVTZ and def2-tzvpd for a few
cases and the differences in the interaction energies were between 0.2–0.5 kcal/mol (pyridine
dimer, thiophene and thienothiophene; see appendix D). Thus, the reported RMSDs for the
MP3 methods have a mixed basis. However, the same trends hold if the larger systems are
excluded. The top performer among the MP3 methods is MP2.5:κ-OOMP2 with an RMSD
of 0.78 kcal/mol and an MSD of −0.58 kcal/mol. The maximum deviation is the thiophene
dimer (−1.29 kcal/mol).

For context, these systems are quite challenging even for good hybrid DFT methods due
to delocalization error, as illustrated by the high RMSDs of B3LYP-D3 (5.67 kcal/mol) and
ωB97M-V (1.59 kcal/mol).

In summary, both MP3 and the κ-regularizer damp the correlation energy to avoid strong
overbinding. κ-OOMP2 is recommended for these systems as the top performer. It restores
spin-symmetry and yields accurate binding energies at moderate cost.

Discussion

The TA13 and Orel26rad results show the importance of good reference orbitals for radical
and aromatic systems as a poor mean-field reference yields artificial symmetry breaking. This
is illustrated by the good performance of κ-OOMP2 in both data sets. The κ-regularizer
improves the energetics in both cases for OOMP2 (but for MP2 only in Orel26rad).

In the NCD data category the optimal c3 deviates from 0.5 in several data sets: TA13
is the only data set where the unscaled MP3:κ-OOMP2 is the top performer as there is no
minimum for the scaling parameter c3 between 0.0 and 1.0. The optimal scaling for halogen
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Figure 5.6: Boxplots of the Orel26rad data set for (a) MP2 methods, (b) MP3 methods. Red
lines mark the median deviation, boxes bound the central 50% of the data, whiskers enclose
all data points within 1.5 times the inter-quartile range of the box edges, and points denote
outlying data. DFT and MP2.5:κ-OOMP2 are included in all plots for comparison.

bonding seems to be around 0.7 for both M2.X:OOMP2 and MP2.X:κ-OOMP2 but 0.2 for
MP2.X. Similary for CT20, the optimal c3 parameters are 0.80 for MP2.X:κ-OOMP2, 0.85
for MP2.X:OOMP2 and 0.15 for MP2.X.

For halogen bonding, standard MP2 performs remarkably well. It is the top performer in
Bauza30 and performs only slightly worse than the top performing MP3 methods in XB18
and XB51. The top performer for halogen bonding is MP2.5:κ-OOMP2 but it provides less
than 0.1 kcal/mol improvement for the XB sets and performs worse than MP2 in Bauza30
and thus is not worth the higher compute cost.

Potential energy surfaces

In order to gauge any distance dependence of our conclusions on accuracy of MP2 and MP3-
based methods, we investigated potential energy surface (PES) scans for a few important
NCI binding motifs. For dispersion-dominated interactions we chose the benzene dimer; the
reference geometries and values are taken from the NBC10 data set[481, 503]. We also use
two hydrogen bonding motifs from S66x8[484]: the water dimer and methylamine (CH3NH2)
dimer (classified as a mixed interaction).

The benzene dimer PES consists of 17 points from 3.2 to 10 Å. MP2 over-binds signifi-
cantly, yielding an RMSD of 1.62 kcal/mol. The top performer is SCS-MP2 with an RMSD
of 0.05 kcal/mol. Both κ-regularization (κ-MP2 0.36, κ-OOMP2 0.27) and all three MP2.5
methods also yield high accuracy (MP2.5 0.14, MP2.5:κ-OOMP2 0.13, MP2.5:OOMP2 0.08).
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The PESs for MP2, κ-MP2, κ-OOMP2, MP2.5, MP2.5:κ-OOMP2 (including the CCSD(T)
reference values taken from ref. [481]) are depicted in the left panel of figure 5.7. The plot
shows that all methods besides standard MP2 produces accurate PESs. However, κ-MP2,
κ-OOMP2, and MP2.5 underbind around the minimum, whereas MP2.5:κ-OOMP2 slightly
overbinds (∼0.15 kcal/mol).

Next, we investigate two hydrogen binding motifs from S66x8[484]; in both cases 8 points
are taken along the PES based on the scaled equilibrium bond distance (r0): 0.90, 0.95, 1.0,
1.05, 1.10, 1.25, 1.50, 2.0, where r0 is 2.01 Å for the H2O dimer and 2.28 Å for the CH3NH2
dimer. The top performer for the combined surfaces are κ-OOMP2, MP2.5:κ-OOMP2 and
MP2.5:OOMP2 all with an RMSD of 0.04 kcal/mol. Both OOMP2 (0.10 kcal/mol) and
κ-MP2 (0.11 kcal/mol) perform similarly to MP2 (0.11 kcal/mol), but SCS-MP2 performs
significantly worse (0.63 kcal/mol). The PESs are depicted in figure 5.7, MP2.5 significantly
underbinds around the minimum for both hydrogen bonds, MP2 underbinds for the wa-
ter dimer and κ-MP2 for CH3NH2 dimer. κ-OOMP2 and MP2.5:κ-OOMP2 produce very
accurate PES for both hydrogen bonding motifs.
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Figure 5.7: PES scan of the π-stacked benzene dimer with insets for the minimum region
(geometries and reference values taken from the NBC10[481, 503] data set and PES scan of
CH3NH2 dimer and water dimer (geometries and reference values taken from the S66x8[484]
data set).

Use of KS-DFT Orbitals for MP2.X

Another possible choice for reference orbitals, which already incorporate electron correlation,
are KS-DFT orbitals. Our group recently demonstrated similar performance of (κ-)OOMP2
orbitals and KS-DFT orbitals for MP3 and MP2.X methods.[490] In addition, these results
were robust with respect to the functional choice; even local functionals provided a good set
of reference orbitals.[490] Consequently, the MP2.X:DFT is a potential alternative, especially
if (κ-)OOMP2 capabilities are not available in the software package of choice.
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To this end, we tested MP3:ωB97X-V and MP2.5:ωB97X-V for a subset of data sets.
We not only use classic NCI data sets as A24 and S22 but also include those where charge
delocalization is more prominent like Ionic43, TA13 and Orel26rad; the results are summa-
rized in figure 5.6. In most cases the performance of significantly better MP2.5:ωB97X-V is
better than MP3:ωB97X-V (except in TA13) and thus the following discussion focuses on
the former. The performance of MP2.5:ωB97X-V is comparable to MP2.5:κ-OOMP2, even
slightly better in some cases. For instance, in S22, the RMSD of MP2.5:ωB97X-V is 0.08
kcal/mol, a factor of two lower than MP2.5:κ-OOMP2, which is the top performing MP
method. A similar trend is observed for the A24 data set: MP2.5:ωB97X-V outperforms
MP2.5:κ-OOMP2 slightly with an RMSD of 0.07 kcal/mol. We note, however, that such an
error reduction occurs at an energy scale comparable to the basis set error.

Interestingly, as seen for Ionic43, TA13 and Orel26rad in figure 5.6, MP2.5:ωB97X-V
works reasonably well even when the KS orbitals themselves behave poorly due to self-
interaction error (SIE). For Ionic43, MP2.5:ωB97X-V performs well with an RMSD of 0.62
kcal/mol, similar to MP2.5:κ-OOMP2 (RMSD: 0.63 kcal/mol) and ωB97M-V (RMSD: 0.70
kcal/mol) but is not able to outperform the top performer κ-OOMP2 (RMSD: 0.53 kcal/mol).
The TA13 data set comprises systems which are strongly affected by SIE and consequently
most functionals perform poorly (e.g. ωB97M-V with an RMSD of 2.85 kcal/mol). Nonethe-
less, MP3:ωB97X-V performs surprisingly well with an RMSD of 0.70 kcal/mol, which is
close to MP3:κ-OOMP2 (RMSD: 0.62 kcal/mol). This is surprising especially when con-
sidering the good performance of κ-OOMP2 itself (RMSD: 0.88 kcal/mol) versus the poor
performance of density functionals on this set. For the Orel26rad data set we omitted the
eight larger systems involving tetrathiafulvalene, thienothiophene, bifuran and bithiophene
complexes due to computational cost. Consequently, we adjusted the RMSD for the other
methods to that subset accordingly to assure comparability. MP2.5:ωB97X-V performs sim-
ilarly to both MP2.5:κ-OOMP2 and ωB97M-V.

In summary, MP2.5:ωB97X-V is a comparable method to MP2.5:κ-OOMP2 and is also
surprisingly reliable even for systems where spin-contamination is present, see table 5.7 for
a detailed comparison using various metrics.

5.6 Conclusions
In summary, this work systematically assesses the influence of reference orbitals, regular-
ization and scaling on the performance of second- and third-order Møller-Plesset perturba-
tion theory wavefunction methods for non-covalent interactions (NCI). We employ 19 data
sets (A24[461], DS14[472], HB15[473], HSG[474], S22[215], X40[465], HW30[475], NC15[476],
S66[464], AlkBind12[477], CO2Nitrogen16[478], HB49[479], Ionic43[480], TA13[209], XB18[486],
Bauza30[487] , CT20[488], XB51[486], Orel26rad[231]) covering a wide range of NCI. The
data is sub-divided into “easy dimers” (NCED; 356 data points), and “difficult” systems
(NCD) that are subject to delocalization errors in DFT and spin-contamination in UHF.
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Table 5.6: Results of MP3:ωB97X-V and MP2.5:ωB97X-V for A24, S22, Ionic43, TA13 and
Orel26rad (8 data points omitted, see main text); for reference we included the results of
κ-MP2, κ-OOMP2, MP3:κ-OOMP2 and MP2.5:κ-OOMP2; RMSD in kcal/mol. For each
data set all method cells are colored in a heatmap from green to yellow to red. Low RMSD
are represented in green and high RMSD in red.

Method MP2.5:κ-OOMP2 MP2.5:ωB97X-V
Set RMSD MSD MaxDev RMSD MSD MaxDev

A24 0.09 0.08 0.24 0.07 0.05 0.16
S22 0.18 0.00 −0.46 0.08 0.02 −0.23
Ionic43 0.63 0.47 1.94 0.62 0.42 2.01
TA13 0.93 0.07 −2.28 1.26 −0.37 −3.64
Orel26rad 0.93 −0.82 −1.29 0.71 −0.60 −1.12

Table 5.7: Comparison (via RMSD, MSD and largest outlier (MaxDev)) of MP2.5:κ-OOMP2
and MP2.5:ωB98X-V for for A24, S22, Ionic43, TA13 and Orel26rad (8 data points omitted,
see main text); in kcal/mol.
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Furthermore, we include PESs from different hydrogen bonds and dispersion-bound com-
plexes to gauge the accuracy for non-equilibrium geometries.

We test 15 perturbation theory based methods: MP2, κ-MP2, SCS-MP2, OOMP2, κ-
OOMP2, MP3, MP2.5, MP3:OOMP2, MP2.5:OOMP2, MP3:κ-OOMP2, MP2.5:κ-OOMP2,
and κ-MP3:κ-OOMP2, κ-MP2.5:κ-OOMP2, MP3:ωB97X-V, and MP2.5:ωB97X-V. Further-
more, we compare these methods to the density functionals ωB97M-V and B3LYP-D3 and
CCSD. The main findings from this study are:

1. MP2.5:κ-OOMP2 is a very accurate method for NCI providing accurate results in
nearly all data sets invested in this study (RMSD on the NCED data category: 0.25
kcal/mol). The improvement over standard MP2.5 is quite statistically significant
(RMSD on the NCED data category: 0.50 kcal/mol) Furthermore, MP2.5:κ-OOMP2
performs also well for radical systems, halogen bonding and provides accurate PESs.
It performs at least comparably to CCSD and even the spin-scaled CCSD method
with parameters specifically optimized for NCI (SCS(MI)-CCSD[463]). Furthermore,
we investigated the effect of Kohn-Sham density functional reference orbitals (using
ωB97X-V[391]) for NCI as a previous study found promising results[490]. We find that
ωB97X-V reference orbitals perform very similarly to using κ-OOMP2 orbitals even
in NCD benchmark sets where the self-interaction error is prominent, such as Ionic43,
Orel26rad and TA13.

2. We investigated the optimal scaling parameter for all scaled MP3 methods and find
that a scaling factor near 0.5 is optimal for the Hartree-Fock reference and also for
both OOMP2 and κ-OOMP2 reference orbitals based on the S66 [464] benchmark
set (optimal c3 values were 0.45, 0.55, and 0.60 for MP2.X, MP2.X:κ-OOMP2, and
MP2.X:OOMP2, respectively). These optimized parameters were similar for the entire
NCED super set (optimal c3 values were 0.35, 0.50, and 0.55 for MP2.X, MP2.X:κ-
OOMP2, and MP2.X:OOMP2, respectively)

3. Limiting ourselves to second order perturbation theory, we find the substantial im-
provements over MP2 are attained using a κ-MP2 with κ = 1.45E−1

h , with κ-OOMP2
performing slightly better. It is noteworthy that this value was determined based on
the W4-11 thermochemistry benchmark set, and was not optimized for NCI.[40] The
RMSD for the NCED data category (356 data points) is 0.33 kcal/mol for κ-OOMP2
and 0.37 kcal/mol for κ-MP2; both improve upon standard MP2 by almost a factor
of two (RMSD MP2: 0.63 kcal/mol). In radical systems κ-OOMP2 provides clearly
better results as it removes spin-contamination of the reference and damps unphysical
contributions to the correlation energy. This is illustrated by the excellent performance
of κ-OOMP2 in Orel26rad (RMSD: 0.59 kcal/mol vs 1.53 kcal/mol for κ-MP2 and 3.03
kcal/mol for MP2) and TA13 (RMSD: 0.88 kcal/mol vs 2.46 kcal/mol for κ-MP2 and
2.14 kcal/mol for MP2).
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4. We obtain high accuracy in a medium sized basis (aug-cc-pVTZ) with non-HF orbitals
(either κ-OOMP2 or DFT) and scaling of the third-order contribution. The success
of these MP2/MP3 methods versus CCSD(T) at the complete basis set (CBS) limit
is encouraging, and indicates that modified double excitations can compensate for the
lack of triples and basis set incompleteness. Accordingly, the scaling of the third-order
methods is basis set dependent. We showed that 0.5 is optimal with a triple-zeta basis
to approximate CCSD(T)/CBS results. However, a larger fraction of the third-order
correlation energy is optimal when a larger basis is used or when CCSD(T) with a finite
basis is used as a reference. This means that our results are broadly compatible with
the recent success of MP2.8:κ-OOMP2 and MP2.8:DFT against CCSD(T) in a triple
zeta basis,[286, 490] on a far more limited set of NCI tests, and some thermochemistry
test sets.
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Chapter 6

Computational Study of an
Iron(II)-Polypyridine Electrocatalyst for
CO2 Reduction: Key Roles for
Intramolecular Interactions in CO2
Binding and Proton Transfer

6.1 Introduction
The world energy consumption is approaching a record high 15000 Mtoe. Fossil fuels are still
one of the main energy sources resulting in a continuous rise of CO2 emissions. [504] This
anthropogenic emission yields unprecedented high concentration of CO2 in the atmosphere
which is one of the main driving forces of global climate change. This has focused considerable
attention on artificial photosynthesis. [276, 277] The solar driven conversion of CO2 into
fuels or other chemically useful compounds, will not only mitigate the greenhouse effect
but also provide a valuable method to obtain fuels in a renewable fashion. The inertness
of CO2 is illustrated by the negative one-electron reduction potential; however, coupled
multi-electron and multi-proton reductions make an efficient conversion at modest potentials
feasible. Unfortunately, these potentials are similar to the potential of the hydrogen evolution
reaction (see Table 6.1). [155] This means that its reduction requires not only energy but also
the deployment of a catalyst which is ideally substrate selective, efficient, stable and made
out of earth abundant materials. Several strategies are known for efficient CO2 conversion
such as biological [157], hydrogenation [162], photochemical [505], electrochemical [506],
or photoelectrochemical reduction. [155, 159, 507] Among possible products CO is one of
the most economically viable. [164] It can be further utilized to synthesize fuels using the
Fischer-Tropsch process [508].

One approach to reduce CO2 is to employ heterogeneous catalysts such as earth abundant
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metallic electrodes; however, the catalytic mechanisms can be difficult to study, and catalytic
activities often suffer from poisoning of the electrode by the intermediates and substrate
selectivity. [155, 159, 509–512] Indeed only Cu is capable of reducing CO2 beyond CO to C1
or C2 hydrocarbons, and not selectively or with high energy efficiency. [513]

As an alternative strategy, molecular homogeneous electrocatalysts can show high selec-
tivity, good turnover numbers, and fast catalytic rates. However, they usually operate at
a high overpotential. When operated in aqueous media, proton reduction takes place at
a similar potential (see table 6.1); thus, a high selectivity for the CO2 reduction reaction
(CO2RR) over the hydrogen evolution reaction (HER) is especially desirable. The catalyst
acts as an electron shuttle between an electrode and CO2 in solution. It accepts electrons
and stabilizes intermediates to facilitate the transformation which results in a smaller over-
potential and faster turnover rates. Many different molecular catalysts have been developed
but are often based on expensive metals like Re, Ir or Ru. [155, 506] However, many notable
catalysts containing earth abundant first row transition metals such as Mn, Co, Fe, Ni, Cu
and Zn were developed recently. [165, 396, 397, 401, 514–517] They can be incorporated
into covalent or metal organic frameworks [170, 518, 519], attached on surfaces [520, 521] or
incorporated into a flow cell architecture [169] to further enhance their activity.

Table 6.1: Reduction potentials of CO2 and proton reduction at pH = 7 versus NHE. [155,
522]

Reaction Potential

2H+ + 2e– −−→ H2 E0= −0.42 V
CO2 + 2H+ + 2 e– −−→ CO + H2O E0= −0.53 V
CO2 + e– −−→ CO ·–

2 E0= −1.90 V

In the quest for rational catalyst design, mechanistic studies of both a spectroscopic
and computational nature are essential to uncover possible intermediates and intrinsic fac-
tors influencing selectivity and activity. Several molecular electrocatalysts for the two elec-
tron, two proton reduction of CO2 to CO were studied thoroughly; most prominently, the
Re(bpy)(CO)3Cl family and its derivatives. Experimental efforts include (spectro) electro-
chemical analysis, rapid scan Fourier-transform infrared spectroscopy (FTIR) spectroscopy
during stopped-flow mixing, kinetic isotope studies and X-ray absorption spectroscopy. [523–
530] In addition, a mechanism was proposed using density functional theory (DFT) calcula-
tions. [133] Further computational studies elucidated the mechanistic differences between the
rhenium and manganese derivatives and explained the importance of weak Brønsted acids
for the manganese catalyst. [132, 531] The second protonation was determined to be the rate
limiting step which coincides with the proton dependence of the catalytic activity. The high
selectivity favoring CO2 reduction over HER is one of the main advantages of this family
of catalysts. Although thermodynamics favors the formation of a hydride intermediate, the
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high reaction barrier compared to the essentially barrierless CO2 addition makes the H2
pathway kinetically inaccessible.

Another well-studied system is [Ni(cyclam)]2+ (cyclam = 1,4,8,11-tetraazacyclotetradecane),
which was also investigated using DFT. [516, 532] A single initial reduction of the metal,
followed by CO2 binding is proposed. Next, a proton coupled electron transfer (PCET)
step yields a carboxylate anion followed by the concerted second protonation and C–O bond
cleavage to yield CO and H2O. The dissociation of CO then regenerates the catalyst to close
the catalytic cycle. The Ni(II)-CO species can also accept an electron and the calculated
reduction potentials are much lower than for the initial reduction of the Ni(II) complex. Dis-
sociation of CO from the reduced Ni(I)-CO species is an endergonic process. Therefore, this
species was predicted to accumulate during catalysis. [532] This poisoning of the catalyst is
also observed experimentally and determined to be rate-limiting [533, 534].

Iron is one of the most earth-abundant elements. Hence, it is especially desirable to use it
as the central metal of a catalyst. The prominent catalyst family for the conversion of CO2
to CO are iron porphyrin-based. They show very high turnover rates accompanied by a high
selectivity for CO2 reduction [401, 535]. The catalytic pathway for the iron tetraphenylpor-
phyrin starts with two initial reductions of the catalyst, a recent combined spectroscopic and
computational investigation revealed that both reductions are mainly ligand-centered [536].
This is followed by the formation of a CO2 adduct, a two step protonation and dehydration.
At low acid concentrations, the second protonation is the rate-limiting step. The CO release
to regenerate the catalyst is coupled to another reduction. [537, 538] A computational study
confirmed that the second protonation has a significantly higher barrier than the first proto-
nation [539]. Further mechanistic studies clarified the role of the pendant phenol groups in
the more active heme catalyst: the CO2 adduct is initially stabilized by the pendant phenol
groups through intramolecular hydrogen bonding. The first protonation of the CO2 adduct
is believed to involve proton transfer from the pendant phenol group, followed by reprotona-
tion of the phenoxide ion by external phenol. Thus, the pre-positioned phenol groups act as
both hydrogen bonding stabilizers and as local proton donors [382] The second protonation
is assumed to occur via a PCET step with concerted cleavage of the C−O bond [382, 540].

The incorporation of proton relays like phenol groups in the secondary and outer coordi-
nation spheres is a well-established strategy in bioinspired catalyst design to control product
selectivity and enhance catalytic activity. [165, 167, 401, 535, 541–547] Correct positioning
of the hydrogen bonding moiety can play crucial role in tuning the activity of the catalyst for
CO2 to CO reduction. [385, 406] To this end, a recent experimental study identified a family
of non-heme iron complexes [Fe(bpyRPY2Me)]2+ with various protic functional groups in
the second coordination sphere as a viable catalysts for the conversion of CO2 to CO in
acetonitrile solutions with 11 M H2O. [385] Among the tested compositions, the ethylamine
functional group (R = NHEt) is notable for affording the [Fe(bpyNHEtPY2Me)L2]

2+ complex
with high CO2 to CO conversion activity, high selectivity against HER, and electrolytically
stable for 12 h (see figure 6.1). Interestingly, the Fe complex bearing the more acidic hydroxyl
group instead favors production of H2 CO in a ca. 2:1 ratio. [385] The new catalyst features
three functional partitions: a reactive metal center, a ligand-based electron reservoir, and
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a secondary coordination sphere Brønsted-acidic moiety. However, the mechanistic details
remain unclear. This study presents first efforts to elucidate the Fe-catalyzed CO2 reduction
mechanism using electronic structure calculations.

N

N L
FeII

N

L

N

HN

2 H+

2 e-

CO2

CO + H2O

H2

Figure 6.1: The catalytic system [Fe(bpyNHEtPY2Me)L2]
2+ (L = CH3CN), a CO2 reduction

catalyst with high selectivity against hydrogen evolution reaction.

6.2 Computational Model
Density functional theory calculations were performed with the Q-Chem package [108] (ver-
sion 5.0.2) using the ωB97X-D [68] and ωB97M-V [70] functionals. All reported geome-
tries were fully optimized in the gas phase without constraints. Minimum and transition
state structures were verified by having only positive, real frequency eigenvalues or having
only one imaginary frequency, respectively. The geometry optimization and frequency cal-
culations were performed with ωB97X-D and a mixed basis (def2-SVP basis for all main
group elements, def2-TZVP basis set for Fe). [247] Single point calculations with the larger
def2-TZVPP basis [247] using ωB97M-V [70] were used to refine the electronic structure
for free energies and barrier heights. The ωB97M-V functional has performed very well
in comparative assessments of density functionals for both main group [20] and transition
metal [51] chemistry. The solvation energies were calculated using the C-PCM model (ace-
tonitrile, ε = 37.5) as implemented in Q-Chem [119]. Additional calculation were performed
with B97-D [62] and B3LYP[50, 56, 57]+D3[66] to gauge functional dependency and can be
found in the appendix E. CASSCF/NEVPT2 calculations were performed with Orca (ver-
sion 4.0.0.2) [548] employing the RI approximation along with the def2-TZVPP basis and
auxiliary basis set [497]. All molecular orbitals (MO) were plotted using an isovalue of 0.03
(blue: positive, red: negative values) and spin density using an isovalue of 0.005 (green: α
spin density, yellow: β spin density).

The reaction free energies (∆RG), activation energies (∆G‡), reduction potentials and
pKa values were calculated based on the standard thermodynamic cycles (see Refs [128,
130, 133, 532]). The Gibbs free energies include enthalpic contributions from the zero-point
energy correction and the entropic contribution is calculated from the vibrational frequencies
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at T = 298 K. Solvation energies were approximated by performing single point calculations
applying the implicit C-PCM solvent model.

The calculation of pKa values requires the Gibbs free energy of a proton, which can-
not be calculated using quantum chemical methods. Therefore, we used the experimental
value based on the Sackur-Tetrode equation and an estimated solvation energy of G(H+) =
−264.6 kcal/mol.[125, 130] Employing this experimental value makes it challenging to com-
pute accurate pKa values because an error of 1.36 kcal/mol leads to a deviation of 1 pKa
unit [134]. Other studies found deviations between this approach and experimental values of
± 3 units. [549] In this vein, we tested our computational protocol with two acids (CH3COOH
and phenol); in both cases the computed pKa values were lower than the experimental ones
in acetonitrile by 4 units (see table E.10). In spite of this systematic computational error,
calculated relative pKa values are more reliable because of favorable error cancellation by
removing the experimental free energy of the proton. Thus, calculated pKa values should
mainly be compared against each other. Furthermore, it is important to note that electroly-
ses with the Fe catalysts were conducted in a solution of 11 M H2O in acetonitrile, saturated
with 1 atm of CO2, not in pure acetonitrile.[385] These experimental conditions lead to sev-
eral important complications that merit further discussion here. First, experimental pKa
values of acids in mixtures of acetonitrile and water are lower than in pure acetonitrile. [550,
551] This decrease in pKa is not accounted for by the implicit solvent model used in our
calculations. Therefore, the actual pKa of possible intermediates under the experimental
conditions should be lower than the calculated values. An overview of pKa values and cor-
responding free energies for all relevant intermediates are provided in table E.11. Second,
the introduction of CO2 to the water-acetonitrile mixture lowers the effective pKa of H2O to
11.2. [552] This occurs via the complexation between CO2 and OH– , and is not accounted
for in our computational model either.

Reduction potentials are reported against the ferrocene/ferrocenium (Fc/Fc+) couple
used as an internal standard. [127, 128] This method allows accurate predictions even at a
modest level of theory with an accuracy of < 100 mV relative to experimental values. [128]
However, other studies have shown that the errors can be larger for charged transition metal
complexes and are functional-dependent. [549, 553–555]

The correct prediction of (adiabatic) spin gaps (∆hs/lsG = G(hs)−G(ls)) in first row TS
metal complexes is very sensitive to the choice of the density functional. Generalized gradient
approximation (GGA) functionals tent to overstabilize the low-spin (ls) state whereas hybrid
functionals tend to overstabilize the high-spin (hs) state. The amount of Hartree-Fock (HF)
exchange plays a crucial role because it is found that spin gaps depend almost linearly
on the amount of HF exchange incorporated in the functional. An increasing amount of
HF exchange stabilizes the hs state. [556–559] Various studies specifically for iron complexes
revealed that hybrid functionals perform better for correctly predicting the ground spin state.
However, the recommended amount of HF exchange varies. [109, 557, 559, 560]. The range
separated hybrid ωB97M-V (short range: 12% HF exchange) performed best in predicting
both the experimentally known spin gap of [Fe(bpyNHEtPY2Me)L2]

2+ (L = CH3CN) and the
reduction potentials (see appendix E).
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[Fe(bpyNHEtPY2Me)L2]
2+ has two open coordination sites, which are occupied by solvent

ligands. Acetonitrile, water, or hydroxide ion are conceivable due to the experimental con-
ditions. All three ligands occupy similar positions in the spectrochemical series. However,
water not only interacts as a ligand but can also form intramolecular hydrogen bonds. This
can lead to an overestimation of the dissociation energies, as hydrogen bonding might in the
experiment be provided by solvent (water) molecules. The hydroxide ion is charged which
results in overestimation of the binding energy to positively charged species because solva-
tion is only taken into account implicitly. Acetonitrile solely acts as a σ-donating ligand and
is not charged. Hence, it is used as the primary ligand in this study to compare the stability
of different coordination numbers.

We reasoned that H2O should be used as the main proton source for calculating reaction
barriers (i.e. kinetics) involving protonation reactions, because under the experimental con-
ditions the concentration of water is significantly higher (by a factor of roughly 105) than
both H3O

+ and H2CO3. [532]. The reaction barriers with H2CO3 are also presented. These
kinetic barriers do not reflect the experimental catalytic system (as the concentration of
carbonic acid is vanishingly small). We include them here to illustrate how barriers for the
protonation steps can vary when using a stronger acid source; for example, when another
acid is added to the reaction mixture. The calculated pKa of H2CO3 is significantly lower
than commonly used acids sources like phenol [561] or trifluoroethanol [514] (see table E.10).
Therefore, the H2CO3 barriers should be lower than with these weaker acids.

6.3 Results and Discussion
Various reaction pathways for the catalytic reaction of [Fe(bpyNHEtPY2Me)L2)]

2+ are ex-
plored in this study using electronic structure calculations. The proposed reaction mechanism
is depicted in figure 6.2. The paper is structured as follows: in the first part, the catalytic
cycle is described step-wise starting with the initial reduction, followed by CO2 fixation and
protonation. In the second part, alternative intermediates are presented and discussed with
respect to their relevance.

A consistent naming scheme is used throughout the manuscript which encodes the multi-
plicity (2S+1), the total charge, the iron coordination number (CN) and a consecutive num-
ber X for each intermediate step (1: initial complex, 2: CO2 adduct, ...):

multiplicity
charge XCN, e.g.

5
216 describes the initial hexacoordinated complex [Fe(bpyNHEtPY2Me)L2)]

2+ in the quintet
spin state and overall charge 2+.

Reduction of the Initial Complex

The optimized geometry of the initial complex is illustrated in figure 6.3. The calculated
and experimentally determined X-ray crystal structure show good agreement between the-
ory and experiment using the ωB97X-D functional (see appendix table E.1). The Fe(II)
compound shows a distorted octahedral coordination by a tetradentate chelating ligand
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Figure 6.2: Proposed mechanism for the selective CO2 to CO reduction using
[Fe(bpyNHEtPY2Me)L2)]

2+. The red colored molecular moiety indicate localization of the
excess electrons; reaction and activation energies in kcal/mol; reduction potentials against
Fc/Fc+; L = CH3CN expect for the free energies and activation energies of the intramolec-
ular protonation steps where water/hydroxide is used (see main text for justification); pKa
values were computed using L = CH3CN.

(bpyNHEtPY2Me) and two solvent molecules (in this case, acetonitrile) (figure 6.3 (a)). The
spin gap between high and low-spin states is only 1.5 kcal/mol with the low-spin state being
higher in energy. This is in good agreement with the experimentally determined effective
magnetic moment µeff=1.4 µB [385], which demonstrates the presence of both spin states in
experimental samples and a spin gap of less than 1.0 kcal/mol.

The cyclic voltammetry (CV) of [Fe(bpyNHEtPY2Me)L2)]
2+ exhibits two one-electron

reduction events within a narrow 0.2 V window at −1.79 V and −1.87 V versus Fc/Fc+. [385]
The calculated reduction potential of [Fe(bpyNHEtPY2Me)L2)]

2+, here denoted 5
216, to yield

[Fe(bpyNHEtPY2Me)L2)]
+, 6

116, is −1.79 V, in excellent agreement with the experimental
result; the analysis of the spin densities of the unreduced complex 5

216 versus the one electron
reduced complex 6

116 in figures 6.3 (b) and (c) reveals a non-innocent ligand-based reduction
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Figure 6.3: a) the optimized geometry of [Fe(bpyNHEtPY2Me)L2]
2+ (5216); b) spin density of

5
216 and c) spin densiity of the singly reduced intermediate [Fe(bpyNHEtPY2Me)L2]

+ (6116).
In contrast to 5

216, the spin density on the ligand in 6
116

is non-zero, indicating that the first reduction is ligand-centered.

in the bpy π∗. A ligand-based reduction was also observed in all other spin states and is
robust to the choice of DFT functional. A schematic MO diagram is depicted in figure 6.4 (a).

The second reduction event is accompanied by the dissociation of one or two solvent
ligands. We identified two possible intermediates: the four-coordinate trigonal pyramidal
complex ([Fe(bpyNHEtPY2Me)]0, 3

014) and the five-coordinate trigonal bipyramidal species
([Fe(bpyNHEtPY2Me)(η2−NCCH3)]

0, 3
014), see figure 6.5. The ground states for both com-

plexes 3
014 and 3

015 were calculated to be triplet states, with the corresponding quintet states
calculated to be 4.5 and 1.9 kcal/mol higher in energy, respectively.

The complex 3
015 contains a side-on bound, bent acetonitrile ligand (∠(NCC) = 142.4◦),

which implies a ligand-based second reduction step featuring a reduced acetonitrile in an η2

coordination mode. Although rare, the side-on bound η2 acetonitrile ligand has been crys-
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Figure 6.4: Schematic diagram of the frontier molecular orbitals of a) 6
116

([Fe(bpyNHEtPY2Me)L2]
+), b) 3

015 ([Fe(bpyNHEtPY2Me)(η2−NCCH3)]
0) and c) 3

014

([Fe(bpyNHEtPY2Me)]0) including the key molecular orbitals for the reduction step. In (a)
the α SOMO is a ligand centered, bpy π∗, consistent with fig. 6.3. The doubly reduced
species shown in panels (b) and (c), exhibit antiferromangetic coupling between ligand and
metal orbitals, leading to partial occupation and strong correlation (indicated by half-length
arrows).

Figure 6.5: a) Geometry of five-coordinate doubly reduced complex 3
015

([Fe(bpyNHEtPY2Me)(η2−NCCH3)]
0) and b) the four-coordinate alternative 3

014

([Fe(bpyNHEtPY2Me)]0).
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tallographically observed in a number of low valent transition metal complexes, including
Mo [562], W [563], Ni [564], Ir [565], and Nb [566]. The spin density plot and the β HOMO
and β HOMO−1 shed light on the electronic structure: two β electrons in an acetonitrile π∗
orbital and a bpy π∗ orbital couple antiferromagnetically (afm) with the Fe-t2g orbitals of
a high spin metal center to an overall triplet state (see fig. E.1(a) & (b)). In addition, the
decrease in the coordination number and η2 coordination of CH3CN results in a distorted
ligand field. The schematic MO diagram in figure 6.4 (b) summarizes the electronic struc-
ture. Interestingly, the Mulliken spin population on iron does not decrease drastically upon
reduction from 5

216 (3.8) to 3
015 (3.3). The electron density on the metal only slightly in-

creases during the reduction process and the increase of electron density due to afm coupling
is compensated by a ligand loss. The calculated reduction potential of −1.87 V is again in
excellent agreement with experimental measurements.

The electronic structure of the four-coordinate complex 3
014 is best described as a reduced

bpy and a reduced pyridine ligand resulting in a doubly reduced chelate ligand framework
which couples to a high-spin Fe(II) center as illustrated by the spin density in figure 6.6.
A schematic diagram of the frontier MOs of 3

014 is depicted in figure 6.4 (c). The species
is 7.7 kcal/mol higher in energy than 3

015, resulting in a calculated reduction potential of
−2.20 V (deviation of −330 mV from experiment). However, both isomers exhibit signif-
icant spin contamination (<S2>(3014) = 3.5, <S2> (3014) = 3.2 and <S2>(triplet) = 2).
Furthermore, the energy difference between the two isomers is strongly dependent on the
choice of functional: wB97M-V predicted the largest energy difference and PBE the smallest
at 1.8 kcal/mol.

All hybrid functionals tend to localize the additional electron density upon both reduction
steps onto the ligand suggesting a doubly reduced ligand framework which couples to a
high-spin Fe(II) center. In contrast, local functionals like PBE preferably delocalize more
electron density at the metal center which would suggest a stronger afm (or metal based
reduction). This is illustrated by the different spin densities obtained with ωB97M-V and
PBE in figure 6.6. This finding is in agreement with current literature about the physical and
formal oxidation states of the central metal in reduced complexes containing redox-active
ligand frameworks like Fe(II) pyridine and bpy complexes. [114, 567–569] Benchmark of
density functionals against wave function methods showed in such cases a poor performance
of hybrid functionals. The top performers were local functionals like PBE and TPSS which
suggests that ωB97M-V is not an ideal choice for this doubly reduced intermediate. [114]
Therefore, we employed CASSCF(8,7)/NEVPT2 to get insights into the static correlation in
the electronic structure and an estimate of the energy difference between the two isomers (see
appendix E for a detailed discussion). Both 3

014 and 3
015 revealed partial occupation numbers

of the natural orbitals and confirm that these highly reduced Fe(II) pyridine complexes have
some amount of static correlation.

The wave-function method predict a small gap of ≈2 kcal/mol and 3
015 to be lower in

energy (see appendix E for further details). An in-depth analysis of the electronic structure
of these two possible intermediates using CASSCF is beyond the scope of this work. [570–
574] However, this discussion should illustrate that 3

014 and 3
015 are likely closer in energy as
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predicted by the computational set up used in this study and thus are both accessible species.
Overall, 3

014 is most likely the key reactive intermediate in the catalytic cycle, and the active
species for the binding and activation of CO2 (vide infra). Both excess electrons are highly
delocalized among the bpy π∗ and py π∗ and the metal center. The antiferromagnetic ordering
in the electronic structure makes this intermediate challenging for KS-DFT. The ligand-based
character of the reductions was reported with both experimental and computational evidence
by some of us for a similar polypyridine iron catalyst. [398]

Figure 6.6: Spin density of 3
014 ([Fe(bpyNHEtPY2Me)]0) using the ωB97M-V (a) and the

PBE (b) functionals, respectively. (α spin density green; β spin density yellow); ωB97M-V
localizes most of the excess electron density in the ligand framework whereas PBE delocalizes
the excess electrons strongly over both ligand and metal center resulting in significantly less
spin density in the ligand moiety.

CO2 Binding

There are four different binding modes for CO2 to bind to a metal center: three restricted to
an interaction between metal center and CO2 and one involving a metal-ligand cooperation
(MLC) (see figure 6.7). The following discussion focuses on the metal binding; metal ligand
cooperation will be discussed in a later part of the manuscript.
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Figure 6.7: Schematic illustration of the four possible CO2 binding modes (MLC = metal
ligand cooperation).
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The reaction pathway remains on the triplet surface and the lowest energy species
[Fe(bpyNHEtPY2Me)(η2−CO2)]

0 is a pentacoordinated CO2 adduct in the η2 binding mode
(3025, see fig. 6.8 (a)) (the quintet species is 2.2 kcal/mol higher in energy). The OCO angle
(∠(OCO)) is 139◦, which indicates at least partial reduction of the CO2 fragment (∠(OCO)
is 134◦ for free CO ·–

2 ). This is also confirmed by the spin density of 3
025 which shows signif-

icant excess spin in the CO2 moiety (see figure S4). The 3
025 adduct is 2.4 kcal/mol lower in

energy than the η1-OCO isomer [Fe(bpyNHEtPY2Me)(CO2−κO)]0 (3025(η1κO)). This prefer-
ence for the η2 binding mode can be rationalized by analysing the electronic structure: the
η2 binding mode enables a σ interaction between the O lone pair and the Fe-dz2 orbital (see
the frontier MO in figure 6.8 (b)), a π interaction between the CO2 π∗ orbital with a Fe-t2g
orbital (see the frontier MO in figure 6.8 (c)) and hydrogen bonding by the amine group. A
dative bond σ bond is formed between the oxygen lone pair and a Fe-eg type orbital (dz2).
In total, three electrons occupy both bonding and anti bonding orbitals due to the high spin
iron center. Thus, the interaction is still net stabilizing, the frontier anitbonding e *g (dz2) is
depicted in figure 6.8 (b) (low lying bonding orbitals are depicted in figures S10 (a) and (b)).
The occupied π∗ orbital in the singly reduced CO2 moiety can delocalize onto two Fe-t2g
orbitals which are empty in the β space (figure 6.8 (c)). This interaction motif illustrates
that the Fe center remains Lewis acidic, allowing an effective coordination of the oxygen.

Both reduced complexes 3
015 and 3

014 can act as the active species to bind and activate
CO2, the energetics and kinetics involving both species are summarized in table 6.2. In a first
scenario, the binding of CO2 to 3

015 via an η2 binding mode is slightly thermodynamically
uphill and kinetically inhibited as the activation barrier is high. The geometry of the TS is
illustrated in figure 6.9 (b) and involves not only the bond formation of both Fe−CO2 and
Fe−OCO bonds but also the simultaneous bond dissociation of the Fe−N and Fe−C bonds
of the bound CH3CN, rationalizing the high barrier. It is noteworthy that the amine group
already forms a hydrogen bond to CO2 at the TS. In a second scenario, CO2 binds to 3

014

via the η2 binding mode which is thermodynamically favorable and the activation barrier
is significantly lower because CO2 can directly bind at the axial position with favorable
hydrogen bonding (see figure 6.9 (a)). In a third scenario, CO2 can bind via a η1-OCO.
However, this is not only thermodynamically less favorable but also kinetically inaccessible.
In summary the analysis of the CO2 adducts indicate that the active species for CO2 binding
is 3

014 and the resulting adduct 3
025 binds CO2 in the η2 binding mode including a stabilizing

hydrogen bond from the amine group.

Protonation of the CO2 Adduct

The subsequent protonation of the reduced CO2 significantly lowers the energy of the CO2
π∗ orbital, inducing a second charge transfer from the complex to COOH moiety. This
reduction of the CO2 ligand is reflected in the smaller O-C-O bond angle of 118◦ (see appendix
fig E.7). Upon protonation and charge transfer the bonding situation changes from a π
type interaction of the CO ·–

2 to a dative bond of the CO2H
– lone pair as a σ-donor into

the Fe-dz2 orbital. This causes a change of the binding mode from η2 to η1-COO which
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Figure 6.8: a) geometry of the CO2 adduct 3
125; b) MO illustrating the interaction of the

oxygen lone pair with the metal dz2 orbital; c) MO illustrating the stabilization of the CO2
π∗ with a t2g metal orbital via a π type interaction.
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Table 6.2: Relative Gibbs free reaction energies and barriers for the formation of CO2 adducts
after the second reduction (energies in kcal/mol).
∗ using B97-D geometries because the TS could not be located with wB97X-D.

Reaction ∆RG ∆G‡

3
015 + CO2 −−→ 3

025(η2) + CH3CN 2.1 25.4
3
014 + CO2 −−→ 3

025(η2) −5.7 9.5
3
014 + CO2 −−→ 3

025(η1κO) −2.5 ≈44∗

Figure 6.9: Geometries of the key transition states in the catalytic cycle: CO2 addition to
a) 3

014, b) 3
015, c) first protonation of 3

025, d) second protonation of 5
136, both protonation

transition states utilize water as the proton source (distances in Å).

leads to a small high-spin (S = 2) low-spin (S = 0) gap, similar to the unreduced catalyst
species. The hexacoordinated carboxy species [Fe(bpyNHEtPY2Me)(CO2H)L]

+ in the low-
spin configuration is the most stable intermediate (1136). However, the two high-spin isomers
lie within 1.5 kcal/mol (5135: 0.5 kcal/mol and 5

136: 1.5 kcal/mol). The advantage of the
high-spin surfaces is the ability to undergo rapid ligand exchange associated with a geometry
conversion from trigonal-bipyramidal to octahedral.

The open axial coordination site allows the CO2 adduct 3
025 to coordinate a water molecule

as a sixth ligand, which opens up the possibility of a intramolecular proton transfer using
H2O. The formation of such a precomplex is only slightly endergonic (2.5 kcal/mol). The
intramolecular protonation pathway leads to two major advantages: first, a perfect alignment
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of the H2O and CO2 molecules for the subsequent protonation due to a hydrogen- and a
dative bond of the water and the hydrogen bond of the amine group (see the TS geometry in
figure 6.9 (c); second, the enhancement of the Brønsted acidity of the H2O through binding
to the Lewis acidic metal center. This polarizes the O–H bond and stabilizes the resulting
base. Hence, the first protonation reaction yielding 5

135 is facile both thermodynamically
(−9.9 kcal/mol) and kinetically (barrierless). The first protonation step is also barrierless
on the quintet surface (see table E.3).

The second protonation is able to follow an intramolecular pathway as well. This is
attributed to the fact that the energy difference between the five and six-coordinated carboxy
intermediates is only 1.0 kcal/mol (vide supra). This facilitates the rapid ligand exchange
featuring the removal of the leftover hydroxide ligand from the complex, followed by the
coordination of a new water molecule. Alternatively, the hydroxide can also get protonated
by another acid source in solution (e.g. H2CO3).

The second protonation step is accompanied by the cleavage of the C–O bond and results
in H2O and a metal carbonyl [Fe(bpyNHEtPY2Me)(CO)L]2+ (2146). The reaction is more likely
to proceed on the quintet surface because it has a slightly lower barrier. However, both singlet
and quintet surfaces have similar energetics and kinetics (see table 6.3). Similarly to the first
protonation step, a coordinated water ligand benefits from an enhanced acidity due to the
Fe−OH2 bond and its optimized geometric alignment (see figure 6.9 (d)) yielding an exergonic
process (−3.3 kcal). The intramolecular second proton transfer happens simultaneously
with the heterolytic cleavage of the C–O bond and the release of one water molecule. The
concerted bond formation and cleavage is crucial to compensate the kinetic penalty of the C–
O bond splitting, which has been estimated to be 36 kcal/mol [532]. Thus, the intramolecular
process has still a sizeable barrier with 8.9 kcal/mol. The barrier gets lowered by 2.7 kcal/mol
if the proton source is H2CO3 which accelerates the this step by a factor of 100. In summary,
an EEC mechanism is proposed with the CO2 binding as the rate limiting step and the COOH
intermediate as the resting state. The second protonation step is prohibited on the triple
surface for both kinetic and thermodynamic reasons. The barrier for the second protonation
is 15.4 kcal/mol, 6.5 kcal/mol larger than the barrier along the quintet surface. Additionally,
the triplet carboxy intermediate is 14 kcal/mol higher in energy than the quintet carboxy
intermediate 5

135, presumably because of an less preferred intermediate spin Fe center on the
triplet surface.

The high oxidation state of iron (Fe(II)) in the resulting carbonyl intermediate 1
246 ratio-

nalizes the exergonic nature of the CO release (−6.0 kcal/mol) to regenerate 5
216 barrierless.

The interaction is mainly driven by the σ forward-donation of the CO because the π back-
donation is limited by the high oxidation state of the central metal. In addition, the CO
release is further enhanced by the low solubility of CO in water which promotes its direct
release into gas phase thus also reducing the likelihood of catalyst poisoning at this step in
the cycle (vide infra). The free energy diagram of the complete catalytic pathway is depicted
in figure 6.10.
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Table 6.3: The activation energies and pKa values of both protonation steps. The activa-
tion and reaction free energies correspond to the intramolecular proton transfer using H2O
(reactant) & OH– (product) as a sixth ligand. The pKa values refer to the equilibria using
acetonitrile as a ligand and experimental free energy for H+.

Reaction ∆RG ∆G‡ pKa

3
025 +H2O −−→ 5

036OH −9.9 - 26
5
135 +H2O −−→ 1

146OH + H2O −3.3 8.9 15
5
135 +H2CO3+L −−→ 1

246 + H2O+HCO –
3 −1.8 6.1 15

1
136 +H2O −−→ 1

146OH + H2O −2.8 9.9 14

Possible Pathways Towards Catalyst Degradation and Activity
Decrease

A high selectivity towards CO2RR versus HER is an important feature of a CO2 reduction
catalyst and is experimentally observed for the [Fe(bpyNHEtPY2Me)L2]

2+ system. It is a key
feature of a good catalyst and can originate either from thermodynamics [532] or kinetics [132,
133]. Furthermore, catalyst degradation tremendously reduces the efficiency of catalytic
materials. Thus, both aspects should be understood and are investigated in this section.

A possible mechanism for HER involves the formation of a hydride [HFe(bpyNHEtPY2Me)L].
The addition of a proton to 6

116 results in the formation of a metal hydride intermediate (2256).
Upon addition of the proton, a coincident oxidation of the metal center and bpy·– takes place
to form H– . The hydride is a strong σ donor; hence, the resulting stronger d-orbital splitting
stabilizes the low spin configuration. However, the formation of the complex 2

256 is thermo-
dynamically unfavorable and thus would require strong acidic conditions as the pKa of the
complex is negative. Thus, the formation of a hydride species can be ruled out after the first
reduction step.

In contrast, the formation of a hydride species from 3
014 is thermodynamically favorable

with a pKa of 33 which is higher than any pKa in the CO2RR; using water as the proton
source the free energy is −4.0 kcal/mol comparable to CO2 addition. The resulting hydride
species is hexacoordinated and low spin (1156). The two excess electrons localize to form a H–

and a Fe(II) metal center as the proton gets reduced by the two electrons delocalized over
the metal and π∗ orbital of the ligand framework. However, a high barrier (26.7 kcal/mol)
for hydride formation with water as the proton source hinders HER kinetically. This barrier
shrinks significantly (11.1 kcal/mol) using a moderately strong acid (H2CO3). Therefore,
the main product of catalysis should be CO even when a moderately strong acid is added to
the reaction mixture albeit with lower selectivity. The high selectivity even with moderately
strong acids can be explained by the electronic structure of 3

014. The highly delocalized
excess electrons and the low coordination number results in a Lewis acidic and positively
charged metal center. On the one hand, CO2 has a high quadruple moment allowing for a
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Figure 6.10: Free energy landscape of both CO2RR and HER pathways for
[Fe(bpyOHPY2Me)L2)]

2+ (green) and [Fe(bpyNHEtPY2Me)L2)]
2+ (black); solid lines cor-

respond to intermediate states and dashed line to a transition states; the sixth ligand L
corresponds to CH3CN, except for the two intramolecular protonation steps where water
and hydroxide are used; assuming a rapid ligand exchange between both protonation steps
(see main text for justification).

facile coordination via the oxygen resulting in a lower barrier (9.5 kcal/mol). On the other
hand, the coordination of an acid (via hydrogen) to a Lewis acid metal center results in a
high barrier. Thus, despite being thermodynamically favored, the addition of H+ even with
an acidic proton source (H2CO3) is about 15 times slower than CO2.

A third reduction is a possible degradation pathway because the dissociation of CO from
a singly reduced carbonyl intermediate is significantly endergonic (∆RG = 9.6 kcal/mol,
but barrierless) and could consequently trap the catalyst, especially in solvents with higher
CO solubility than acetonitrile. This CO poisoning was observed and proposed for the
nickel cyclam system. [532, 534] A third reduction can happen at various stages of the
catalytic cycle: First, the reduction of the CO2 adduct is unlikely as the reduction potential
is −2.16 V vs Fc/Fc+ which is more negative than the two reductions of 5

216. In addition, the
protonation processes utilize H2O as an intramolecular proton source; therefore, the lifetime
of these species is expected to be short and make an additional reduction less likely. Second,
the reduction of the carboxy intermediate 5

135 yielding 4
035 (−1.81 V) is feasible because

the potential is less negative than the potential required to obtain 3
015. Third, the carbonyl

intermediate 1
246 can readily be reduced to 4

145 (−1.00 V) because the excess electron increases
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Figure 6.11: Geometries of for the transition states for a possible formation of a hydride
using (a) water and (b) carbonic acid as the proton source (distances in Ångstrom).

the backbonding of CO as indicated by the red-shift of 136 cm–1 in the carbonyl stretching
mode.

The bent acetonitrile in 3
015 suggests a protonation of the activated acetonitrile may

be possible (see figures S1 (a) & (b)). However, the protonation is kinetically inhibited
using H2O as the proton source with a barrier over 30 kcal/mol. The transition state for
the possible intramolecuar protonation of the activated CH3CN is depicted in figure E.9.
Therefore, 3

015 is kinetically inhibited for the reaction with both CO2 and H2O.
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L = CH3CN.

6.4 Hydroxyl Substituent
The hydroxyl substituent complex [Fe(bpyOHPY2Me)L2)]

2+ showed a high Faradaic effi-
ciency but low selectivity. In bulk electrolysis, significant amounts of both CO and H2 were
observed. The lower selectivity of the can be related to the increased acidity of the second
coordination sphere. The doubly reduced active species 3

014OH has two competing pathways
with similar activation barriers: an intramolecuar proton transfer and CO2 addition.

On the one hand, the high acidity of the hydroxyl group opens up the possibility of an
intramolecular proton transfer for 3

014OH from the hydroxyl group to the Fe center with an
activation energy of 9.6 kcal/mol. The transition state is shown in figure 6.13 (a). This
process yields a hydride which is an important intermediate for HER. On the other hand,
the addiction of CO2 to 3

014OH has a slightly lower barrier of 8.3 kcal/mol and results in the
CO2RR pathway. The transition state is depicted in figure 6.13 (b). Thus, the stronger
hydrogen bonding further facilitates CO2 binding as the barrier is lower than for the NHEt
isomers (9.5 kcal/mol) but dramatically decreases selectivity by opening up a facile HER
pathway. This situation is illustrated in a free energy diagram of the two reaction pathways
in figure 6.10 for both the OH and NHEt substituent.

6.5 Alternative Catalysis Cycles
In addition to the discussed catalysis cycle, two alternative pathways are conceivable which
either originate due to the binding of CO2 to an alternative species formed during the
catalysis cycle or stem from an altered CO2 binding mode. They will be described in the
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Figure 6.13: Geometries of the and key parameters of the transition states for a) intramolec-
ular proton transfer and b) CO2 addition of [Fe(bpyOHPY2) L2Me)]2+ (distances in Å).

following section, which includes a discussion about their limitations with respect to the
proposed catalytic cycle.

1. CO2 could also bind to the singly reduced species 6
116 by replacing a solvent ligand

suggesting an ECE mechanism. The most stable isomer is a six-coordinated quartet state
with CO2 in an η2 mode (4126). The CO2 activation process is endergonic (4.6 kcal/mol)
implying that the species could exist in equilibrium. The reaction barrier of this step is
13.8 kcal/mol making it the rate limiting step in this cycle. The calculated potential for the
reduction of the CO2 adduct 4

126 to 3
025 is -1.76 V vs Fc/Fc+ which is in very good agreement

with the experimentally applied potential. The subsequent protonation of 3
025 is identical to

the proposed catalytic cycle. It is noteworthy that no singly reduced CO2 adducts could be
computed for the parent compound revealing that in this case the amine group is crucial for
the CO2 binding. In summary, it is both thermodynamically and kinetically less favorable
to bind CO2 after only 1 initial reduction. The rate limiting step remains the CO2 addition
and the resting states remains the carboxy adduct.

2. Alternatively to the formation of a solely metal-bound adduct, CO2 can also coop-
eratively bind to the ligand framework (see figure 6.7). This was observed in several other
cases e.g. pincer-type complexes [575–577] zirconium metallocene phosphinoaryloxide com-
plex [578] as well as in catalytic processes. [579, 580] There are two conceivable ligand-based
binding sites for CO2 in this ligand framework; it can be inserted into the amine group
yielding a carbamate or can bind via a reversible C–C bond to the ligand framework (see
fig. 6.14).
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Figure 6.14: Alternative cycles involving cooperatively bound CO2.

In a first scenario, CO2 is bound to the amine group. However, the formation of
this carbamate intermediate is not favorable in comparison to a metal bound CO2 adduct
(8.6 kcal/mol). In addition, it readily rearranges to a metal-hydride via an intramolecular
proton transfer (∆GR = −22.8 kcal/mol). The nucleophilic character of the hydride would
either favor the hydrogen evolution upon addition of a second proton or the formation of
formic acid over the experimentally observed CO.

In a second scenario, CO2 can bind via a reversible C–C bond to a pyridine forming an
sp3-C2 carbon in the ring (5025CC see fig. E.8). This intermediate is the most stable isomer
in the CO2 adduct isomer-space as it is more than 20 kcal/mol lower in energy than the
metal bound adducts in all spin states. A mechanism using this species is conceivable via
an aromatization/dearomatization sequence as the second reduction to 3

014 already breaks
the aromaticity in the pyridine (vide supra). Both protonation steps are possible (pKa =
12, 15) and the second protonation leads to a concerted O–H bond formation and C-C
and C-O bond cleavage yielding H2O, CO and the starting complex 5

216. The regaining of
aromaticity seems to be the main driving force for the C-C bond cleavage. However, 5

025CC

is only accessible from 3
025(η1κO) ([Fe(bpyNHEtPY2Me)(CO2−κO)]0) (see figure E.5) which

is an unlikely intermediate. The discussion about CO2 adducts (vide supra) ruled out a
direct formation of the η1-OCO adduct. But it was not possible to locate a transition state
connecting to the η2 adduct (3015) or binding CO2 directly in the metal ligand cooperation
(MLC) binding mode. However, the energy difference between both CO2 adducts (3015(η2)
and 3

025(η1κO)) is 2.4 kcal/mol. Therefore, if the lifetime of 3
025 would be sufficiently long,

an equilibrium could form between both binding modes. This would open up the possibility
to enter the CC pathway. However, the proposed cycle predicts a very facile and fast first
protonation step which makes the formation of the 5

025CC intermediate unlikely.
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6.6 Conclusion
Electronic structure calculations were performed in order to study the electrochemical reduc-
tion of CO2 to CO by [Fe(bpyNHEtPY2Me)L2]

2+. A schematic free energy diagram summa-
rizing the results is depicted in figure 6.10. The redox active ligand framework paired with
a high spin Fe(II) center allows effective delocalization of additional electrons rationalizing
the reduction events at mild negative potentials. The metal center remains Lewis acidic
through the reduction process because of the non-innocent chelate ligand framework and the
ability to dissociate up to two solvent ligands. The high Lewis acidity of the Fe in the doubly
reduced intermediate results in a high barrier for the formation of a hydride intermediate.
In contrast, the binding of CO2 is facile due to its high quadruple moment uncovering the
origin of the selectivity in the kinetics. The CO2 adduct exhibits an η2 binding mode to
maximize the π-type coupling of the singly reduced CO2 π

∗ to a t2g-type d-orbital. The
Lewis acidity of the central metal allows further charge delocalization via a dative bond of
the oxygen to the metal center. Furthermore, the amine group forms a favorable hydrogen
bond to stabilize the CO2 adduct.

The second available equatorial coordination site opens up the possibility of intramolecu-
lar protonation by coordination of H2O. The formation of this precomplex facilitates proto-
nation because not only CO2 but also the proton source H2O is activated due to the Fe−OH2
bond. This polarizes the O–H bond and aligns both CO2 and H2O properly, resulting in a
barrier-less first protonation. The small ligand field results in a high spin quintet surface for
both protonation steps. The energy difference between the five and hexacoordinated car-
boxy intermediates is small which allows a rapid ligand exchange for a second intramolecular
protonation. This step exhibits a concerted heterolytic cleavage of the C-O bond and the
release of a water molecule. The resulting carbonyl species is only weakly bound due to the
high oxidation state and weak ligand field; thus, the CO release is exergonic to recover the
initial state of the catalyst. The proposed mechanism follows an EEC mechanism with the
formation of the CO2 adduct as the rate-limiting step. This rationalized the importance of
the second coordination sphere.

The lower selectivity of the corresponding hydroxy-substituted complex is connected to
the higher acidity of the hydroxyl group as it opens up the possibility of an intramolcular
proton transfer to form a hydride intermediate. This barrier is even lower than protona-
tion with an acid source (H2CO3) and has a similar magnitude than CO2 addition. This
rationalizes the experimental finding that [Fe(bpyOHPY2Me)L2]

2+ produces both CO and
H2.
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Chapter 7

Mechanistic Insights into Co and Fe
Quaterpyridine Based CO2 Reduction
Catalysts: Metal-Ligand Orbital
Interaction as the Key Driving Force for
Distinct Pathways

7.1 Introduction
The electrochemical reduction of CO2 to CO is a promising pathway for sustainable fuel
production via artificial photosynthesis. [153, 154, 156] The resulting carbon monoxide can
be further transformed into hydrocarbons using the Fischer-Tropsch process [508], making
it one of the most economically viable products of CO2 reduction out of a variety of pos-
sible products. [164] Carbon dioxide is typically electrochemically inert, so proton coupled
reductions are necessary to operate at moderate potentials. Unfortunately, the two-electron
two-proton CO2 reduction reaction (CO2RR) to CO operates at a potential similar to the
less desirable hydrogen evolution reaction (HER). [155, 522] Consequently, catalysts are re-
quired which are ideally efficient (low overpotential), fast (high turnover frequency (TOF)),
substrate selective (CO2RR vs HER), and cheap (earth abundant materials).

The main catalytic [155] approaches are molecular [100, 168, 397, 581, 582], heteroge-
neous [159, 509] and biological [583]. Heterogeneous catalysts reduce CO2 with high current
densities [584], but often suffer from poisoning and poor substrate selectivity. [155, 159, 509,
510] For example, copper is able to reduce CO2 with a high current density but produces a
variety of C1 and C2 products with ethylene and ethanol as the main products, [509, 585]
making mechanistic studies difficult. [511, 513]

Homogeneous catalysts can facilitate electron transfer to CO2 yielding lower overpoten-
tials. Furthermore, the catalyst can stabilize various intermediates and transition states to
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accelerate the transformation of CO2. Molecular catalysts yield good TOF, a very high se-
lectivity (over 90%), and are highly tunable. [165–167] The activity of the molecular catalyst
can be dramatically improved by a novel flow cell design. Berlinguette et al. designed a zero-
gap membrane flow reactor which produced CO (from CO2) using a cobalt phthalocyanine
catalyst, achieving a current density comparable to a heterogeneous catalyst and a selectivity
of over 95%. [169] Alternatively, activity can be improved by incorporating the catalyst into
metal/covalent organic frameworks [170, 171, 518, 519] or attaching the molecular catalyst
onto a surface [521, 586–590].

Mechanistic insights in the catalytic pathway are invaluable for rational catalyst design
as they illuminate the origin of activity and selectivity, as well as the cause of any intrinsic
limitations. Both spectroscopic methods and computational chemistry should be employed
to identify possible intermediates, steps in the reaction pathway, activation barriers, and rate
limiting steps. Experimental tools include cyclic voltammetry (CV) [382, 591], Mössbauer,
EPR [398], X-ray spectroscopy/ crystallography [525, 536], spectroelectrochemistry [592],
and stopped-flow rapid mixing and transient absorption [526] (see references [99] & [100]
for a detailed overview). Computational methods such as density functional theory [20, 41,
44, 51] (DFT) can provide structural and spectroscopic information on intermediates along
with complete catalytic pathways by computing reaction free energies, reduction potentials,
pKa values, and barrier heights among many examples. Detailed computational studies
providing mechanistic insights were conducted, for example, by Ye et al. for the nickel
cyclam system [532] and Carter et al. for the rhenium/manganese tricarbonyl-bipyridine
system. [132, 133, 531]

The most prominent molecular catalysts for the electrochemical reduction of CO2 to
CO are nickel cyclam [516, 534, 593, 594], rhenium/manganese tricarbonyl-bipyridine [514,
523, 527–530, 595–598] and iron porphyrins such as FeTPP (TPP = tetraphenylporphyrin)
and its derivatives [380, 383, 399, 401, 535]. Both iron and cobalt catalysts are especially
desirable due to the natural abundance of the central metal, and notable iron [176, 385] and
cobalt [599] based catalysts were developed recently. This makes iron [600] and cobalt [601]
quaterpyridine complexes especially attractive as both complexes are active CO2 reduction
catalysts with an identical ligand framework. Both catalysts are efficient and selective,
meaning both catalysts (or their derivatives) find application in electrochemical [561, 602,
603] and photoelectrochemical [604] reduction of CO2 to various products, even to CH4
(albeit with a low Faradaic efficiency) [605]; furthermore, hybrid systems are able to operate
efficiently in water.[586, 606]

Robert et al. [561] reported a detailed experimental mechanistic study to investigate
the catalytic pathways of both Fe and Co systems. Interestingly, they proposed distinct
pathways despite an identical ligand framework (see figures 7.1 (a) and (b)). Therefore, this
system provides a unique opportunity to understand the role of the central metal for each
step throughout a catalytic pathway. In this work, we provide a computational study where
we propose detailed catalytic pathways for both metals in line with the experimental findings
of reference [561] (compare figures 7.1 (a) and (b) with figures 7.3 and 7.9). Furthermore,
we provide an in-depth analysis of the electronic structure of important intermediates to
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understand the origin of the different pathways and reactivities, and predict the effect of
ligand substituent groups on the key steps.

Experimental Findings

Robert et al. [561] reported two selective and efficient catalysts for the electrochemical reduc-
tion of CO2 to CO: [CoII(qpy)(H2O)2]

2+ and [FeII(qpy)(H2O)2]
2+ with qpy = 2,2′:6′,2′′:6′′,2′′′-

quaterpyridine. The cobalt catalyst shows fast turnover rates (500–33000 s–1). Both are
extremely selective for CO2RR over HER (>95%) and operate at low overpotentials (140–
240 mV). Furthermore, both are also highly selective and active catalysts for the photo-
chemical conversion of CO2 to CO with selectivity and turnover numbers up to 2600. [604]
Interestingly, experimental evidence suggests that the two catalysts exhibit different path-
ways despite the identical ligand framework. The experimentally suggested pathway for
[CoII(qpy)(H2O)2]

2+ is as follows: (i) two reductions to form a [Co(qpy)]0 intermediate;
(ii) binding of CO2 resulting in a [Co(qpy)CO2]

0 intermediate; (iii) two protonation steps
involving the C−O bond cleavage and CO release to close the cycle (see figure 7.1 (a)).
The suggested pathway for [FeII(qpy)(H2O)2]

2+ differs: (i) initial reduction resulting in an
[Fe(qpy)]+ intermediate; (ii) binding of CO2 to form a [Fe(qpy)CO2]

+ intermediate; (iii) two
protonation and reduction events cleaving one C−O bond of CO2 to form H2O and a singly
reduced [Fe(qpy)CO]+ adduct; (iv) release of CO to close the cycle (see figure 7.1 (b)). The
experimental evidence is summarized in the following paragraphs (potentials were reported
versus SCE but are converted in this work against ferrocene/ferrocenium couple (Fc+/Fc)
for consistency using −380 mV [607]).

The cobalt based catalyst [CoII(qpy)(H2O)2]
2+ exhibits two reduction waves at −0.95 V

and −1.18 V vs Fc+/Fc. The first reduction wave is reversible, but the second wave is only
observable at low scan rates, suggesting that a slow water loss occurs before the second
reduction. The addition of phenol during the CV experiments results in coordination of the
acid to the metal center which shifts the second reduction wave to −1.66 V vs Fc+/Fc. The
presence of CO2 does not induce a shift of the first reduction wave. This indicates no binding
of CO2 after only one reduction which is in contrast to the iron system. Controlled potential
electrolysis (CPE) at −1.5 V in wet acetonitrile (2% water) with electrolyte ions and 3 M
PhOH showed high selectivity (96% CO and 4% H2) and a high Faradaic efficiency (FE) of
94%. [CoII(qpy)(H2O)2]

2+ ranks among the fastest homogeneous CO2 reduction catalysts
reported to date with a TOFmax up to 33000 s–1 and an overpotential of 300 mV. This
can be compared to the fastest molecular catalyst for CO2 to CO reduction: Fe-o-TMA,
a tetra-TMA substituted FeTPP derivative (TMA = trimethylammonio, −NMe +

3 ), with
a TOFmax of up to 10 6 s–1 at an overpotential of 220 mV.[380] A second top performing
system is [Mn(mesbpy)(CO)3(MCN)]+ (mesbpy = dimesityl-2,2′-bipyridine) with a TOFmax
630 s–1 at an overpotential of 300 mV.[608] It is important to point out that both the
FeTPP [380, 383, 399, 401, 402, 535–539] and Mn/Re(bpy)(CO)3[132, 133, 514, 523, 527–531,
595–598, 608] systems were extensively studied and thus have optimized ligand frameworks
and reaction conditions unlike the [CoII(qpy)(H2O)2]

2+ and [FeII(qpy)(H2O)2]
2+ systems;
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see references [380],[561] and [608] for benchmarking Tafel plots including more (less active)
catalysts. A second study [602] on [CoII(qpy)(H2O)2]

2+ revealed that an alternative pathway
for CO2RR under different conditions is feasible: at lower acid concentrations (0.1 M PhOH)
and a higher applied potential (−1.98 V vs Fc+/Fc), a second pathway via a triply reduced
catalyst is accessible. However, both FE (77%) and selectivity against HER (77% CO and
20% H2) are decreased.

[FeII(qpy)(H2O)2]
2+ exhibits a reversible first reduction wave at −1.39 V vs Fc+/Fc and

a second reversible reduction at −1.60 V vs Fc+/Fc under argon atmosphere. The first re-
duction wave is positively shifted by 0.021 V and becomes irreversible upon saturation with
CO2. This suggests an EC mechanism: electron transfer (E) followed by the chemical (C)
addition of CO2 to the iron catalyst. The rate constant was estimated as 82 s–1M–1 based
on the scan rate dependence of the shift (assuming pure kinetic conditions). This corre-
sponds to an activation energy of ∼15 kcal/mol (using transition state theory). Catalysis is
observed after the second reduction at approximately −1.60 V vs Fc+/Fc and is enhanced
with an acid (phenol). On the backward scan an oxidation wave at −1.09 V vs Fc+/Fc was
observed. The shift to more anodic potentials is attributed to a singly reduced carbonyl
species [Fe(qpy)CO]+. The presence of this carbonyl species is further established by CV
experiments under CO atmosphere where a reversible reduction wave at −1.17 V vs Fc+/Fc
is observed, suggesting an EC sequence. In addition, a second reduction wave is observed at
−1.42 V vs Fc+/Fc which corresponds to the reduction of the singly reduced [Fe(qpy)CO]+

species. CPE at −1.6 V vs Fc+/Fc (240 mV overpotential) in wet acetonitrile (2% water)
and 1 M PhOH showed that the catalyst produces CO with over 99% selectivity but with
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a low Faradaic efficiency of 48%. However, the FE can be improved to 70% by irradiation
with visible light during the electrolysis. It is conjectured that light promotes CO release
from the [Fe(qpy)CO]+ intermediate over further reduction to [Fe(qpy)CO]0.

7.2 Computational Model
All quantum chemical calculations were performed with the Q-Chem package [108] (version
5.2.0) using the ωB97X-D [68] density functional for all Fe compounds and the B3LYP-
D3 [50, 56, 57, 414] density functional for all Co compounds. All DFT calculations use a
(75, 302) grid (75 radial shells with 302 Lebedev points on each) for the integration of the
exchange-correlation functional. The reason for choosing different functionals is to ensure
that the predicted reduction potentials are in good agreement with the experimentally re-
ported values (see below for further discussion). Minima and transition state (TS) geometries
were verified as stationary points by harmonic vibrational frequencies.

The geometry optimization and frequency calculations employed a mixed basis (def2-
SVP for N,C,H, def2-SVPD for O and def2-TZVP basis set for Fe and Co). [247] Single
point calculations were performed with the larger def2-TZVPPD basis [247] to decrease the
basis set incompleteness errors, consistent with best practices. [20]

The solvation energies were calculated using the C-PCMmodel (acetonitrile, ε = 35.88) as
implemented in Q-Chem [119]. All molecular orbitals (MOs) were plotted using an isovalue
of 0.03 (blue: positive, red: negative values) and spin densities were visualized using an
isovalue of 0.005 (green: α spin density, gold: β spin density).

The reaction free energies (∆RG), activation energies (∆G‡), reduction potentials, and
pKa values were calculated based on the standard thermodynamic cycles. [532] The Gibbs
free energies include enthalpic contributions from the zero-point energy correction and the
entropic contribution, which is calculated from the vibrational frequencies at T = 298 K.
Solvation energies were approximated using single point calculations with the implicit C-
PCM solvent model.

The gas phase rigid rotor and harmonic oscillator approximations were used for the
entropic contribution to the free energies of CO2 binding. It is known that this approach
can overestimate entropies for species in solution because both translational and rotational
degrees of freedom are reduced by surrounding solvent molecules. The comparison with
experimental entropies (obtained via Henry’s Law) indicate differences of up to 9 kcal/mol
for the free energy of CO2 in solution. [609, 610] This implies that calculated CO2 binding
free energies are too endergonic.

The calculation of accurate free energies for protonation reactions is difficult due to the
poor description of the solvation energy of protons by implicit solvent models. Therefore,
the experimental value based on the Sackur-Tetrode equation and an estimated solvation
energy of Gsolv(H

+) = −264.6 kcal/mol in acetonitrile was used.[125, 130] Studies found
deviations of this approach versus experimental values of ± 3 pKA units. [549] We tested our
computational protocol for phenol: B3LYP yielded a pKa of 24.8 and ωB97X-D 24.6 which
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are 4-5 units lower than the experimental value of 29.1 in acetonitrile [551]. In spite of this
systematic computational error, calculated relative pKa values are more reliable because of
favorable error cancellation by removing the experimental free energy of the proton. Thus,
calculated pKa values should mainly be compared against each other. It is important to
point out that the implicit solvation model corresponds to a pure solution of acetonitrile.
However, electrolysis experiments were conducted in a solution of 3 M phenol in acetonitrile,
saturated with 1 atm of CO2, not in pure acetonitrile. Therefore, the actual pKa of possible
intermediates under the experimental conditions should be lower than the calculated values
due to several factors: first, experimental pKa values of acids in mixtures of acetonitrile and
water are lower than in pure acetonitrile. [550, 551] This decrease in pKa is not accounted
for by the implicit solvent model used in our calculations. Second, the introduction of
CO2 to the water-acetonitrile-phenol mixture lowers the effective pKa of the solution. This
occurs via the direct formation of carbonic acid or complexation between CO2 and OH– . For
reference, the experimental pKa of water-acetonitrile mixtures saturated with carbon dioxide
is estimated to be 11. [552] Therefore, we report not only the pKa value of the protonation
steps but also the free energy of the protonation reaction coupled to carbonic acid. This is in
line with experimental approaches of determining the overpotential which also use carbonic
acid as the proton source. Even if it is assumed that phenol is involved in the rate limiting
barriers (vide supra), the conjugated base phenolate is reprotonated by the strongest acid in
the solution which is carbonic acid or aqueous CO2. [380]

We use phenol as the main proton source for calculating reaction barriers involving pro-
tonation reactions as it was added to the reaction mixture in the CPE experiments. [561]
The concentration of other proton sources (H+ and H2CO3) is negligible. [532] Nonetheless,
we also present the reaction barriers with H2CO3 for the Fe system. These kinetic barriers
do not reflect the experimental conditions. We include them here to illustrate how barriers
for the protonation steps decrease with a stronger acid. The calculated pKa in acetonitrile
of H2CO3 (13) is significantly lower than phenol (25). We note that implicit solvation mod-
els poorly describe the solvation of anions where the charge is concentrated, e.g. PhO– .
The augmentation of implicit solvent calculations with explicit water molecules improves
the accuracy as it helps to account for strong short-range hydrogen bonding interactions
between the anion and the solvent.[124] Hence, adding an explicit water molecule in the pKa
calculations to stabilize the conjugate base PhO– decreases the pKa to 22.

Reduction potentials are reported with an isodesmic scheme against the ferrocene/ fer-
rocenium couple used as an internal standard. [127, 128] This methods allows accurate pre-
dictions even at a modest level of theory with reported accuracy of ∼ 100 mV to experimental
values. [128]

We used different functionals for the Fe (ωB97X-D) and Co (B3LYP) complexes as these
functionals provided the best match between predicted and experimentally reported reduc-
tion potentials; see tables F.2 and F.3 in the appendix. Unfortunately, many properties [611]
of transition metal systems like energetics of ligand dissociation [612, 613], adiabatic spin
gaps (high spin–low spin) [614, 615] or reduction potentials [616] are sensitive to limita-
tions of approximate Kohn-Sham DFT functionals. In particular, many observables are
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Figure 7.2: Naming scheme for intermediates used throughout the manuscript.

quite sensitive to the amount of “exact” exchange (Hartee-Fock exchange), as this parameter
strongly affects the extent to which the charge delocalization error (often also described as
self-interaction error) affects a given system-functional pair. [324] Thus, a separate choice
of functional for each transition metal complex was necessary to accurately reproduce the
experimental findings. However, our main findings like relative barrier heights, key MOs
, localization of electrons upon reduction (ligand centered vs. metal centered); and CO2
binding modes are robust to a broad spectrum of suitable functionals unless otherwise noted
in the main text (see appendix F).

7.3 Results
We employ a naming scheme which encodes the spin multiplicity (2S+1), the total charge,
the coordination number (CN), a consecutive number X for each intermediate step (1: initial
complex, 2: CO2 adduct, ...) and an element symbol M (M = Co, Fe) to indicate the central
metal: multiplicity[XM(CN)]charge (see figure 7.2). As an example, 4[1Co(6)]2+ describes the
initial hexacoordinated diaqua complex [CoII(qpy)(H2O)2]

2+ in the quartet spin state and
overall charge 2+.

Catalytic Pathway for [CoII(qpy)(H2O)2]
2+

The proposed catalytic cycle for the electrochemical reduction of CO2 to CO with added phe-
nol (3 M) catalyzed by [Co(qpy)(H2O)2]

2+ is depicted in figure 7.3 (see figure F.9 for a more
detailed cycle including a possible third reduction). The first reduction of [Co(qpy)(H2O)2]

2+

(4[1Co(6)]2+, figure 7.4 (a)) is a ligand based reduction in the low-lying π∗ orbital of
the non-innocent qpy moiety and accompanied by the loss of one aqua ligand forming
[Co(qpy)(H2O)]+ (3[1Co(5)]+). The reduction is further stabilized by an antiferromagnetic
(afm) coupling to the high-spin d7 Co(II) center, which rationalizes the low reduction poten-
tial. The electronic structure is illustrated with a schematic MO diagram in figure 7.6 (a).
The calculated reduction potential is −0.78 V (vs Fc+/Fc), which is in acceptable agreement
with the experimentally measured potential (−0.95 V). The electronic structure is illustrated
by the spin density plot of 3[1Co(5)]+ in figure 7.4 (c) and can be compared to the spin den-
sity of 4[1Co(6)]2+ in figure 7.4 (b) where the spin density is localized solely on the metal
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center. The ligand loss reduces the negative charge on the central metal and allows a stronger
afm coupling. This seems to compensate for the weaker d orbital splitting, maintaining the
high spin state.
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(a) (b)

(c) (d)

Figure 7.4: (a) Geometry of the unreduced [CoII(qpy)(H2O)2]
2+ (4[1Co(6)]2+); (b) Spin

density of 4[1Co(6)]2+; (c) Spin density of the singly reduced intermediate 3[1Co(5)]+; (d)
Spin density of the doubly reduced intermediate 2[1Co(4)]0. Green and gold colors indicate
excess of α or β spin electron density, respectively.
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The second reduction step is accompanied by the dissociation of the second aqua lig-
and to form [Co(qpy)]0 (2[1Co(4)]0) with a distorted square planar coordination geometry.
Counterintuitively, the weaker d orbital splitting accompanies a spin transition to a low spin
Co resulting in a doublet metal center with a singly occupied dxz type orbital and an empty
dx2−y2 . This surprising result can be explained by a bonding interaction between the metal
and qpy ligand, which stabilizes the second excess electron. The bonding occurs due to the
stabilization of the dxz orbital by coupling with the qpy π∗ orbital. Analysis of the electronic
structure reveals that the second excess electron is strongly delocalized between metal and
ligand. It can be understood as a formally doubly reduced qpy moiety (triplet π∗) and a
doublet CoII (dxz) coupling to an overall doublet with a weak π type metal ligand bond. The
HOMO in the α space is a solely qpy based π∗, but the HOMO−1 exhibits significant metal
contribution (46%) and a π type bonding character between the dyz (which is empty in the
α space) and a qpy π∗. The electronic structure is illustrated in a schematic MO diagram in
figure 7.6 (b) and the spin density plot in figure 7.4 (d). Thus, the second electron is highly
delocalized between the metal and the qpy moiety and the reduction cannot be classified as
metal or ligand based. Further evidence for the significant metal contribution in the second
reduction is shown by the comparison of the doublet 2[1Co(4)]0 to the corresponding quartet
4[1Co(4)]0 (uncoupled metal doublet and ligand triplet), which localizes both excess elec-
trons in the qpy ligand. The partial Mulliken charges on Co change by 0.4 from the quartet
state to the doublet state. (The spin contamination of this broken symmetry solution is mild
(〈S2〉 =0.92) which also confirms small contributions of the quartet spin state and a bonding
character between the Co dxz and qpy π∗). Thus, the energetics and overlap of Co dxz and
qpy π∗ allows for an efficient delocalization of the electron over both metal and ligand. The
formation of this bonding interaction significantly shortens Co-N bond distances to 1.93 Å
(from 2.14 Å in 3[1Co(5)]+) which results in a distortion of the qpy framework to avoid
repulsion of two hydrogen atoms (see figure S1 (b)). In contrast, the first reduction from
4[1Co(6)]2+ to 3[1Co(5)]+ does not change the bond distance significantly (2.16 to 2.14 Å).

The stabilization of the second excess electron via the metal-ligand bond rationalizes the
mild second reduction potential. The calculated reduction potential is −1.13 V (vs Fc/Fc+),
which is in excellent agreement with the experimentally measured potential (−1.18 V). It
is noteworthy that a ligand centered first reduction was also observed in all other possible
spin states; furthermore, these findings are robust with respect to different DFT functionals
(for all possible spin states as well). The doubly reduced doublet species (2[1Co(4)]0) was
also identified as the most stable isomer among all possible doubly reduced isomers, but
the degree of metal-ligand delocalization varied among different density functionals (see
table F.1). However, the metal-ligand delocalization observed with the B3LYP functional is
similar to multi-reference active space (CASSCF) calculations (see table F.1 and appendix F
section CASSCF).

Experimentally, the first reduction wave is reversible, but the second one is irreversible
and only visible at slow scan rates. Because of this, Robert et al. [561] assign the first
reduction to be metal centered and the second reduction as ligand centered, with a slow
loss of H2O which was also hypothesized by Che et al. [601]. This is in contrast to our
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calculations, in which the first reduction is mainly ligand based and the loss of the first aqua
ligand does not change the spin at the Co center. Thus, the reorganization energy is small,
and the electron transfer is fast. In contrast, the second reduction has significant metal
character and also induces a spin transition from high spin to low spin. Consequently, the
reorganization energy is significantly larger and the kinetics of the electron transfer more
sluggish. Thus, we provide an alternative interpretation of the experimental observations.
Further CV experiments with phenol revealed a binding of phenol to the complex after the
first reduction and a significant shift in the second reduction wave to −1.66 V vs Fc+/Fc
(from −1.18 V). This can be compared to the calculated reduction potential of the second
reduction without an allowed water loss: −1.72 V vs Fc+/Fc from 3[1Co(5)]+ to 4[1Co(5)]0

(assuming the effect of H2O and PhOH on the d orbital splitting is similar). This highlights
the importance of the ligand loss and the spin transition in order to access the stable doubly
reduced intermediate 2[1Co(4)]0.

It is noteworthy that a similar reduction pathway was observed by some of us with exper-
imental evidence for the reduced intermediates in an iron complex with a terpyridine ligand
scaffold. [398]. Both reductions are ligand based, but the second reduction is accompanied
by the loss of an acetonitrile ligand and a spin transition from a low spin to intermediate spin
iron (S = 2). The metal d orbital mixes strongly with the terpyridine π∗ orbitals, similarly
resulting in a mild reduction potential. The π∗ orbitals of the qpy moiety are even lower
in energy than the terpyridine moiety, which rationalizes that these orbitals are involved in
both reduction steps of [Co(qpy)(H2O)2]

2+.
The catalyst state which binds CO2 is most likely the doubly reduced complex 2[1Co(4)]0

(or 4[1Co(5)]0) because it was not possible to converge a singly reduced CO2 adduct. This
suggests that the catalytic pathway follows an EEC mechanism. CO2 binds to 2[1Co(4)]0 in
the η1-κC binding mode to form [Co(qpy)(CO2−κC)]0 (2[2Co(5)]0) and the binding induces
bending of the CO2 ∠(OCO) angle of 146◦, which indicates the transfer of nearly one electron
into the CO2 moiety as the ∠(OCO) is 134◦ for free CO ·–

2 (see figure 7.7 (a)). It was not
possible to obtain either an η2 or η1-κO isomer. The spin density plot of 2[2Co(5)]0 shows
little spin polarization on both Co and CO2 and one electron still occupies the qpy π∗ (see
figure 7.7 (b)). This is also confirmed by the Mulliken spin population which is approximately
0.2 for both Co and CO2. Analysis of the MOs suggests a Co(I) in a d8 configuration
forming a dative σ bond with CO2 via the doubly occupied dz2 and the CO2-LUMO, see
figure 7.6 (c). The hybrid dz2 + CO2-π∗ MO has ∼ 70% dz2 character. The oxidation state
is confirmed by a localized orbital bonding analysis [617] which localizes 3 orbitals with over
90% Co d-character and one d orbital with over 70% Co d-character. The binding is slightly
endergonic but barrierless (∆G = 2.8 kcal/mol). The lowered oxidation state makes Co a
good Lewis base, and the low coordination number stabilizes the dz2 orbital; both factors
seem to facilitate CO2 binding. We probed the effect of adding a single explicit water to
stabilize the reduced CO2 in 2[2Co(5)]0. The structure is depicted in S2 (a) and shows a
more activated CO2 as the ∠(OCO) slightly decreases. However, the stabilizing effect on
thermodynamics is small as the formation of this complex is thermodynamically neutral.
The CO2 addition becomes significantly more exergonic (−10.7 kcal/mol) under higher acid
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concentration and a more negative potential for CPE as this implies a pathway via the
less stable doubly reduced 4[1Co(4)]0. This is in line with the experimental finding that a
potential of −1.5 V vs Fc/Fc+ is required to observe significant catalysis. Our calculation
suggest that additional thermodynamic driving force is necessary as the subsequent reaction
steps (protonation) are endergonic (vide infra).

The subsequent protonation of the CO2 adduct 2[2Co(5)]0 is also barrierless using PhOH
as the proton source with a pKa of 11 and is slightly endergonic coupled to the deprotonation
of H2CO3 (1.9 kcal/mol). Upon proton transfer, both excess electrons localize on the CO2
moiety as the CO2 angle of 121◦ indicates (see figure 7.8 (a)). The resulting anionic carboxy
intermediate [Co(qpy)(COOH)]+ (2[3Co(5)]+) is stabilized by a dative bond to a low spin
Co(II) central metal. Thus, the addition of a proton source leads to the second reduction
of CO2 via a push-pull mechanism, where the initial reduction of CO2 is achieved by a
“push” from the metal center and the second reduction arises from “pulling” of the acid
associated with the first protonation. [400] If phenol is assumed to be the proton source, the
catalytic cycle proceeds most likely via a phenoxide–2[3Co(5)]+ complex. The phenoxide is
then either reprotonated via the reaction with water and CO2 yielding phenol and HCO –

3
or stabilized by a counter-ion (e.g. electrolyte). The free energy for the formation of this
complex is estimated to be 10.6 kcal/mol (see figure F.3). Hence, this reaction step could
become slow during long electrolysis experiments when the pH of the reaction increases as
the concentration of CO2 decreases.

The second protonation yields the carbonyl [Co(qpy)(H2O)(CO)]2+ (2[4Co(6)]2+) and
water with a pKa of 12 which is thermodynamically neutral when coupled to the deprotona-
tion of H2CO3 (0.2 kcal/mol). The protonation process is coupled to the C−O bond cleavage;
the transition state exhibits a stretched C−O bond (2.12 Å) and is depicted in figure 7.8.
The activation barrier for the reaction is 11.6 kcal/mol, constituting the rate limiting step
in the cycle (corresponding to a rate of ∼20000 s–1). 2[4Co(6)]2+ is not stable since the
high oxidation state of the central metal allows only for a weak backbonding interaction
with CO. Consequently, the dissociation of CO and regeneration of [Co(qpy)(H2O)2]

2+ is
thermodynamically favorable (∆RG = −1.9 kcal/mol). In total, the pathway via 2[1Co(4)]0

exhibits three consecutive endergonic reaction steps and is overall endergonic by 3 kcal/mol.
This could explain why no catalysis is observed at −1.13 V vs Fc/Fc+. Instead at higher
acid concentration and more negative potential the less stable doubly reduced intermediate
4[1Co(5)]0 is accessed which makes CO2 addition, and the whole pathway, exergonic.
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Figure 7.5: Proposed mechanism for CO2 to CO reduction using [Co(qpy)L2]
2+ and incorpo-

rating a third reduction; the red colored molecular moiety indicates localization of the excess
electrons; reaction and activation energies in kcal/mol; reduction potentials against Fc/Fc+;
L = H2O; grey arrows indicate connections (via reduction) to doubly reduced intermediates
(see figure F.9 for the full cycle); see figure 7.2 for the naming conventions.

Increasing the applied potential to −1.98 V vs Fc+/Fc enables CO2 reduction at lower
acid concentrations (0.1 M PhOH), albeit with a lower selectivity since a significant amount
of H2 is produced as well (vide infra).[602] A possible mechanism at this more negative
applied potential is depicted in figure 7.5. The third reduction of the initial complex leads
to 1[1Co(4)]- in a singlet ground state with a doubly reduced qpy ligand (in the same or-
bital) and a d8 Co(I) center. The computed reduction potential is −1.93 V vs Fc/Fc+,
which is in excellent agreement with the experimentally [602] predicted reduction poten-
tial (−1.89 V vs Fc/Fc+). The subsequent CO2 addition is exergonic (−5.2 kcal/mol) and
has a small barrier of 2.4 kcal/mol. The adduct binds CO2 also in a κC binding mode
(1[2Co(5)]-). This suggests an EEEC mechanism for CO2 binding. The subsequent first
protonation yielding 3[3Co(5)]0 is barrierless and thermodynamically neutral when coupled
to deprotonation of H2CO3 with a pKa of 13. The second protonation yielding the carbonyl
complex, 1[4Co(5)]+, is barrierless (0.7 kcal/mol) using phenol as the proton source. The
process is strongly exergonic with a pKa of 38 and free energy of −34.5 kcal/mol (when
coupled to deprotonation of H2CO3). The barrier remains low (11.2 kcal/mol) even with
water as the proton source which explains the experimentally observed high activity without
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the addition of a proton source or at low phenol concentrations. In this case the main proton
source is most likely water. The driving force for the second protonation is the very stable
singly reduced carbonyl which entails an extremely endergonic CO release (16.8 kcal/mol)
to regenerate 3[1Co(5)]+. Thus, the CO release is slow, the rate limiting step in this al-
ternative pathway and 1[4Co(5)]+ a persistent intermediate. The carbonyl 1[4Co(5)]+ is
likely to accumulate during catalysis which increases the possibility for a further reduction
to 2[4Co(5)]0 at −1.28 V vs Fc/Fc+. Then, the regeneration of the catalyst is significantly
less exergonic (12.5 kcal/mol). In addition, the low solubility of CO and the negative applied
potential should further shift the equilibrium and facilitate the release.

In summary, an alternative pathway involving a third (and fourth reduction) is able
to drive CO2 reduction at a lower acid concentration (0.1 M versus 3 M) but a higher
applied potential (1.98 V versus 1.5 V vs Fc/Fc+). The second protonation and the CO
release are the rate limiting processes. The stability of the carbonyl intermediate allows to
drive the reaction efficiently even with water as the proton source (see figure S11(a)–(c) for
the transition states). Therefore, this catalyst is able to operate efficiently under different
experimental conditions by proceeding via a second mechanism. In both proposed cycles, the
rate-limiting barriers are similar which is in line with the similar experimentally measured
rates despite the distinct conditions.[561, 602]

A connection to the third reduction pathway is accessible at all intermediates as the
reduction of the CO2, CO2H and CO intermediates is possible at potentials lower than
−1.72 V vs Fc/Fc+ (the second reduction at high acid concentration, see figure F.9 for
a detailed cycle including a third reduction for every intermediate). Thus, triply reduced
intermediates could accumulate and could be responsible for the generation of H2 as the
selectivity in the three electron pathway is significantly lower. However, the first protonation
process is barrierless, the barrier for the second protonation barrier is low and the CO release
is barrierless. Therefore, it is unlikely for both 2[4Co(6)]2+ and 2[3Co(5)]+ to persist long
enough in order to get further reduced. This is also in line with experimental observations
as FE for CO2 to CO conversion is 94%.

A possible HER mechanism is depicted in figure F.7, starting with a direct protonation
of 2[1Co(4)]0. The formation of a hydride has a pKa of 12 similarly to both protonation
steps in the CO2RR cycle and is thermodynamically neutral (0.2 kcal/mol). However, it
was not possible to find a transition state for the direct formation of a hydride with phenol.
The acid prefers to coordinate to the metal via a dative bond (via O) which can lead to
a possible protonation of a pyridine. This could either be a possible degradation pathway
or HER proceeds via an unconventional pathway which is most likely not competitive with
the barrierless CO2 addition. This is in line with experimental findings as CPE experiments
with the addition of phenol yield over 96% CO. The exact nature of the (minority) HER
mechanism, however, is beyond the scope of this work. The formation of a hydride after three
reductions via 1[1Co(4)]- is exergonic with a pKa of 18 and −7.3 kcal/mol. Furthermore, the
process is barrierless (using phenol as the proton source) which can explain the significant
amount of H2 produced by this pathway.

The in-depth analysis of possible catalytic pathways is a basis for modifications to improve
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the catalyst by optimizing the metal-ligand interaction for 2[1Co(4)]0. Performance could
be altered by modifying the energy of the qpy π∗ orbitals by introducing electron donating
or withdrawing substituents. Table 7.1 shows the effect of three substituents (−NH2, −F,
−CN) on both the reduction potentials and the barrier of the (rate limiting) transition state.
We assume that the introduction of the substituents do not alter the proposed mechanism.
The substituent is introduced twice at the 4′′ and 4′′′ positions (para positions of the two
inner pyridines). We probe both a positive mesomeric effect with −NH2 and a negative
mesomeric effect with −CN. The amino group raises the qpy π∗ orbital energy and this
consequently increases the reduction potentials significantly. Conversely, the nitrile group
lowers the qpy π∗ orbital energy which reduces the reduction potentials. The first reduction
is more affected since it is mainly ligand based. The effect on the barriers is reversed: the
amino group decreases the barrier whereas the nitrile increases the barrier. Interestingly,
the fluoride group has a weak positive mesomeric effect and negative inductive effect which
decreases both overpotential and the barrier mildly. Furthermore, a fluoride substituent
would increase the solubility in aqueous solutions.

The amino-qpy could both decrease overpotential and increase catalytic activity more
significantly by altering the pathway. The analysis of the unsubstituted complex’s catalytic
pathway suggested that the less stable doubly reduced 4[1Co(5)]0 is accessed under high
acid concentrations and higher applied potentials as these conditions provide important
thermodynamic driving forces for the subsequent reaction steps (vide infra). In case of the
amino-qpy, the increase of the second reduction potential could provide enough thermody-
namic driving force to drive catalysis via the four coordinated doubly reduced intermediate
3[1Co(4)]0 at less negative potential than the unsubstituted complex (via 4[1Co(5)]0). In
addition, the amino substituent decreases the barrier of the rate limiting step substantially.
Hence, the amino group could reduce both the overpotential and increase the rate.

Substituent E1 E2 ∆G‡

−H −0.78 −1.13 11.6
−NH2 −1.11 −1.31 7.9
−CN −0.24 −0.79 17.7
−F −0.71 −1.08 10.9

Table 7.1: Effect of introducing a substituent at the 4′′ and 4′′′ position of the qpy on
both reduction potentials and the barrier of the second protonation (rate limiting step).
Reduction potential in V versus Fc/Fc+, activation energy in kcal/mol using phenol as the
proton source.
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Figure 7.6: Schematic MO diagram of the important intermediates in the cycle: a) the singly
reduced complex [Co(qpy)(H2O)]+ (3[1Co(5)]+), b) the doubly reduced complex [Co(qpy)]0

(2[1Co(4)]0) and c) the CO2 adduct [Co(qpy)(CO2−κC)]0 (2[2Co(5)]0). The green arrows
indicate the extra electrons due to reduction. The MO in (b) illustrates the delocalized
π type metal (dxz) ligand (π∗) bond to stabilize the excess electron; the MO in panel (c)
illustrates the σ type interaction of the Co-dz2 orbital and the CO2 LUMO leading to the η1

binding mode in [Co(qpy)(CO2−κC)]0.

(a) (b)

Figure 7.7: (a) Geometrical parameters of [Co(qpy)(CO2)]
0 (2[2Co(5)]0), the doubly reduced

complex that binds CO2, with emphasis on the structural features of the CO2 ligand; (b)
Spin density of the complex, showing most spin density remains on the qpy ligand.
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(a) (b)

Figure 7.8: (a) Geometrical parameters pertaining to [Co(qpy)(CO2H)]
+ (2[3Co(5)]+),

highlighting the CO2H ligand and (b) transition state for the second protonation step of
[Co(qpy)(CO2H)], with phenol as the proton donor, emphasizing the structural changes of
the involved species.
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Figure 7.9: Proposed mechanism for the selective CO2 to CO reduction using [Fe(qpy)L2]
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the red colored molecular moiety indicates localization of the excess electrons; grey arrows
indicate alternative competitive pathways; reaction and activation energies in kcal/mol; re-
duction potentials against Fc/Fc+; L = H2O; see figure 7.2 for the naming conventions.

The proposed catalytic cycle for CO2RR using [FeII(qpy)(H2O)2]
2+ is depicted in fig-

ure 7.9 (a more detailed cycle including a possible third reduction at every intermediate step
can be found in figure F.10). The initial first reduction of [Fe(qpy)(H2O)2]

2+ (5[1Fe(6)]2+)
to [Fe(qpy)(H2O)]+ (4[1Fe(5)]+) is a ligand based reduction in the low-lying π∗ orbital of
the non-innocent qpy moiety which is accompanied by the loss of one aqua ligand (see fig-
ure 7.10 (a)). The electronic structure is illustrated by the spin density plot of 4[1Fe(5)]+

in figure 7.10 (c) which exhibits an unpaired electron in the π∗ of the qpy ligand frame-
work antiferromagnetically coupled to the high spin metal (in contrast to the spin density of
5[1Fe(6)]2+ in figure 7.10 (b)). The electronic structure is illustrated by the schematic MO
diagram in figure 7.11 (a). The calculated reduction potential is −1.25 V vs Fc/Fc+ which
is in good agreement with the experimentally measured potential (−1.39 V) but slightly
less negative. This could suggest that the DFT calculation slightly overestimate the stabi-
lization by the afm coupling. It is noteworthy that the potential of the solely ligand based
reduction to the (uncoupled) sextet is −1.41 V, which is in even better agreement with the
experimental potential.
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The second reduction is also accompanied by a ligand loss to form [Fe(qpy)]0 (1[1Fe(4)]0).
The square planar coordination geometry induces a spin transition on the Fe(II) from high
spin (S = 2) to intermediate spin (S = 1). Unlike the cobalt catalyst, the second reduction
is ligand based in a second qpy π∗ orbital. The Fe contribution to both qpy π∗ orbitals is
small (5% & 11%). The electronic structure is best described as intermediate spin triplet
Fe(II) coupled to a triplet doubly reduced qpy ligand. The electronic structure is illustrated
by the spin density in figure 7.10 (d) and a schematic MO-scheme in figure 7.11 (b). This is
also confirmed by CASSCF calculations as the metal ligand bonding is weaker in 1[1Fe(4)]0

in comparison to 2[1Co(4)]0 (see appendix F section CASSCF). The computed reduction
potential of −1.58 V vs Fc/Fc+ is in very good agreement with the experimentally measured
potential (−1.60 V[561]). It is noteworthy, that ligand based reductions were also observed
in all other possible spin states for both reduction events. Furthermore, these findings are
robust with respect to different exchange-correlation functionals (see figures F.16–F.18).

Experimentally both reduction potentials are reversible with fast kinetics which suggests
minimal structural reorganization. Our computational results show that both reductions are
ligand based with little mixing between the iron d orbitals and qpy π∗ which could explain
the fast kinetics of both reductions. Hence, the Fe d orbitals are not suited to mix strongly
with the π∗ orbitals yielding ligand centered reductions.

The subsequent CO2 binding is possible after either a single reduction event yielding the
CO2 adduct [Fe(qpy)(H2O)(η2−CO2)]

+ (4[2Fe(6)]+) or after two reduction events yielding
[Fe(qpy)(η2−CO2)]

0 (3[2Fe(5)]0). In both cases CO2 binds in an η2 binding mode; no η1-κC
isomer could be located as a minimum structure, and the η1-κO isomers were significantly
higher in energy (first reduction: ∼6 kcal/mol and second reduction: ∼13 kcal/mol). The
binding of CO2 induces a bending of the CO2 angle to 147◦, and the Fe−O bond distance is
slightly elongated in comparison to the Fe−C bond (see figure 7.12 (a) & (c)).

The electronic structure analysis of 4[2Fe(6)]+ reveals a high spin (quartet) Fe center and
a singly reduced CO ·–

2 radical moiety (see figure 7.12 (b)). This indicates a charge transfer
from the π∗ orbital of the qpy into the π∗ orbital of the CO2 upon binding. The CO ·–

2 moiety
is stabilized by two pathways: first, by delocalizing some electron density from the CO2-π∗
into the unoccupied (in the β-space) Fe-dxz via a π-type metal ligand bond; second, by a
dative bond of the oxygen lone pair. This bonding situation is illustrated in the MO scheme
in figure 7.11 (c) (see also figure 7.17 (b) for the MO of the dative bond). Furthermore,
this binding mode was also observed both experimentally for a nickel complex [618] and in
a computational study of a similar iron based catalyst by some of us [176]. The η2 binding
mode benefits from a Lewis acidic metal center due to the additional dative bond from the
CO2-oxygen and is able to stabilize the CO ·–

2 moiety after a single reduction event. By
contrast, iron-porphyrin based catalysts are only able to form a CO2 adduct after multiple
reductions. [380, 382]

The electronic structure of the doubly reduced CO2 adduct 3[2Fe(5)]0 is similar to the
singly reduced 4[2Fe(6)]+ –high spin Fe center and stabilized CO ·–

2 moiety– as indicated by
the similar O−C−O angle, Fe−C and Fe−O bond distances (see figure 7.12 (c)). The second
excess electron is localized in the qpy ligand framework, and stabilized by afm coupling.
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(a) (b)

(c) (d)

Figure 7.10: (a) Geometry of the unreduced [FeII(qpy)(H2O)2]
2+ (5[1Fe(6)]2+); (b) Spin

density of 5[1Fe(6)]2+; (c) Spin density of the singly reduced intermediate 4[1Fe(5)]+; (d)
Spin density of the doubly reduced intermediate 1[1Fe(4)]0. Green and gold colors indicate
excess of α or β spin electron density, respectively.

Interestingly, the afm coupling to the reduced qpy ligand moiety decreases the Lewis-acidity
of the Fe center. This weakens the dative bond from the CO2 oxygen lone pair illustrated by
the elongation of the Fe−O bond from 2.19 Å in 4[2Fe(6)]+ to 2.25 Å in 3[2Fe(5)]0 despite
the loss of the water ligand. We gauged the effect of adding an explicit water to stabilize
the activated CO2 for both CO2 adducts (see figures F.2 (b) and (c)). The effect is similar
in both cases: the CO2 angle decreases further indicating a more activated CO2 moiety.

The existence of a stable singly and doubly reduced CO2 adduct yields two conceiv-
able pathways: either reduction-CO2-binding-reduction (ECE mechanism) or reduction-
reduction-CO2 binding (EEC mechanism). The binding of CO2 is thermodynamically more
favorable after the first reduction (5.5 kcal/mol versus 8.2 kcal/mol) but endergonic in both
cases. However, binding after a single reduction (ECE) overcomes a significantly lower bar-
rier (by 8.4 kcal/mol) which translates to a reaction rate that is seven orders of magnitude
faster. Both transition states show similar levels of CO2 activation with an O−C−O angle
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Figure 7.11: Schematic MO diagram of the important intermediates in the cycle: a) the singly
reduced complex [Fe(qpy)(H2O)]+ (4[1Fe(5)]0), b) the doubly reduced complex [Fe(qpy)]0

(1[1Co(4)]0) and c) the CO2 adduct [Fe(qpy)(η2−CO2]
0 (3[2Fe(5)]0). The green arrows

indicate the extra electrons due reduction. The MOs in (b) illustrate the mainly ligand
based character of the two reductions; the MO in panel (c) illustrate the π type CO2 LUMO
Fe-dyz bond in [Fe(qpy)(η2−CO2)]

0.

of 157◦ and a Fe−C bond distance of 2.3 Å. The weaker dative bond for the doubly reduced
adduct 3[2Fe(5)]0 translates also to the TS: the key difference is the much shorter Fe−O
bond distance in the transition state after a single reduction (see figures 7.13 (a) & (b)) and
could explain the lower barrier after a single reduction. The free energy for CO2 binding
is most likely lower than the reported one due to the overestimation of the calculated en-
tropic contribution of CO2 (see the Computational Model section). The computed reduction
potential of 4[2Fe(6)]+ to 3[2Fe(5)]0 is −1.63 V. This is 0.05 V higher than the predicted
second reduction of the initial complex 1Fe and should therefore be accessible.

Hence, CO2 binding most likely occurs after a single reduction event (ECE mechanism).
This is in line with experimental findings as CV experiments under CO2 atmosphere lead to
a positive shift and loss of reversibility in the first reduction wave. This suggests a chemical
reaction step after the first reduction. Scan rate dependence studies showed a rate constant
of 82 s–1M–1 which corresponds to a barrier of ∼15 kcal/mol similar to the computed barrier
of 13.9 kcal/mol.

The subsequent protonation of the CO2 adduct 3[2Fe(5)]0 yields the carboxy adduct
[Fe(qpy)(COOH)]+ (5[3Fe(5)]+), the protonation of the singly reduced adduct 4[2Fe(6)]+

is thermodynamically unfavorable. The protonation induces charge transfer of the second
excess electron from the qpy π∗ orbital into the CO2H moiety which also causes a change
in the binding mode from η2 to η1-κC and decreases the O−C−O binding angle to 118◦.
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The spin density is localized solely on the Fe-center which implies a doubly reduced CO2H
–

moiety acting as a ligand through the carbon lone pair to a high spin Fe center. The reaction
is thermodynamically favorable by −13.6 kcal/mol (coupled to H2CO3) as indicated by the
high pKa (25), where the main driving force is to restore aromaticity in the qpy ligand.
The activation energy of 1.7 kcal/mol makes this process almost barrierless; the transition
state is depicted in figure 7.14 (b). The addition of a water molecule is essential to facilitate
a fast protonation step. In the transition state a water molecule significantly facilitates
the protonation as it stabilizes both the conjugate base and the electron localization in the
CO2 moiety. In contrast when the water molecule acts as a sixth ligand, the corresponding
transition state geometry changes significantly (see figure F.5) and is higher in energy (over
10 kcal/mol).

The second protonation is accompanied by the cleavage of the C−O bond to form the
carbonyl intermediate [Fe(qpy)(H2O)(CO)]2+(2[4Fe(6)]+) and water. The process is exer-
gonic by −1.4 kcal/mol (coupled to H2CO3), but the pKa is significantly lower (9 units) than
the first protonation. The barrier is the highest in the cycle at 17.9 kcal/mol, making this
step rate limiting. The transition state involves a weak interaction of the phenol with the
metal center resulting in significant distortion in the complex (see figure 7.14 (c)). The high
oxidation state results in a weak Fe-CO interaction making the CO release and regeneration
of the catalyst exergonic and barrierless. The protonation steps are summarized in table 7.2.

The barrier for the second protonation using the stronger acid H2CO3 is 13.2 kcal/mol
which is 4.7 kcal/mol lower than the barrier with phenol (see table 7.2 and see figure F.6 (b)
for the structure of the TS). Consequently, the stronger acid should significantly increase the
catalytic activity. Therefore, a stronger acid could drive the second protonation efficiently
without a further third reduction (vide infra).

Reaction pKa ∆G‡

1 st protonation: 3[2Fe(5)]0 +H+ −−→ 5[3Fe(5)]+ 25 1.7
2 nd protonation: 5[3Fe(5)]+ +H+ +L −−→ 1[4Fe(6)]2+ +H2O 16 17.9 (13.2)
2 nd protonation: 4[3Fe(5)]0 +H+ −−→ 2[4Fe(5)]1+ +H2O 24 15.6

Table 7.2: Possible pathways for the protonation processes in the catalytic cycle for
[FeII(qpy)(H2O)2]

2+. Activation energies (∆G‡ ) are reported in kcal/mol and use phe-
nol as a proton source; ∆G‡ reported in parenthesis correspond to activation energies with
carbonic acid as a proton source.

The uptake of a third electron is possible for the doubly reduced CO2, CO2H or CO in-
termediates. All discussed pathways for a third reduction are summarized in table 7.3. The
reduction of the CO2 adduct 3[2Fe(5)]0 (resulting in 6[2Fe(5)]-) is unlikely as the computed
reduction potential is more negative than −1.8 V. In contrast, the reduction of the carboxy
intermediate 5[3Fe(5)]+ to 4[3Fe(5)]0 appears at a milder potential with a computed reduc-
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tion potential of −1.47 V. This is 110 mV less than the potential required for the second
reduction. The mild potential is readily rationalized as the qpy π∗ orbitals in 5[3Fe(5)]+

are not occupied. In addition, both forward and backward reaction barriers are high (rate
limiting) and consequently the 5[3Fe(5)]+ should accumulate and have a significant lifetime,
making a reduction after a single protonation likely. At last, the third reduction can also
occur for the carbonyl intermediate 1[4Fe(6)]2+ to 2[4Fe(5)]+ at a mild reduction poten-
tial of −0.97 V vs Fc+/Fc which is in good agreement with the experimentally observed
re-oxidation peak at −1.09 V. The additional electron strengthens the backbonding of the
π acidic carbonyl ligand. However, CO release is exergonic and barrierless for the doubly
reduced carbonyl intermediate 2[4Fe(6)]+; consequently, reduction at that stage is unlikely.

(Half)-Reaction E0

CO2 intermediate: 3[2Fe(5)]0 +e– −−→ 6[2Fe(5)]- −1.85
CO2H intermediate: 5[3Fe(5)]+ +e– −−→ 4[3Fe(5)]0 −1.47
CO intermediate: 1[4Fe(6)]2+ +e– −−→ 2[4Fe(5)]+ +L −0.97

Table 7.3: Possible pathways for the third reduction in the catalytic cycle for
[FeII(qpy)(H2O)2]

2+. Reduction potential are reported in V against the Fc+/Fc couple. For
reference: the computed second reduction of [FeII(qpy)(H2O)2]

2+ is −1.58 V (from 4[1Fe(5)]+

to 1[1Fe(4)]0)
.

The subsequent second protonation of the triply reduced 4[3Fe(5)]0 is both faster (with
a barrier of 15.6 kcal/mol) and thermodynamically more favorable (with a pKa of 24) than
the second protonation after only two reductions (pKa = 16, barrier: 17.9 kcal/mol) as the
reduction not only destabilizes the reactant, but also stabilizes the product. CO release
from 2[4Fe(5)]+ becomes endergonic (2.0 kcal/mol), but barrierless. Thus, the reduction of
the carboxy intermediate 5[3Fe(5)]+ facilitates the second protonation step both kinetically
and thermodynamically (see table 7.2) albeit at the cost of an endergonic CO release. In
addition, a second reduction (fourth overall) of the carbonyl species 2[4Fe(5)]+ has a calcu-
lated potential of −1.45 V vs Fc+/Fc which is lower than the second reduction of the initial
complex, 1Fe. The accumulation of 2[4Fe(5)]+ is observed experimentally by a reoxidation
peak in the CV experiments and is likely to contribute to the low FE of that catalyst (vide
infra). The FE was improved experimentally by irradiation with UV-light which induces a
low to high spin transition and facilitates the CO release versus a further reduction of the
carbonyl intermediate. These findings agree with the CV experiments under CO, where a
further reduction of the singly reduced carbonyl intermediate was observed at −1.42 V to
yield 1[4Fe(5)]0. The calculated free energy for CO dissociation from the doubly reduced
carbonyl 1[4Fe(5)]0 is 5.0 kcal/mol which does not justify the experimental observations that
1[4Fe(5)]0 poisons the catalyst. However, we find that if the CO release would proceed via
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(a) (b)

144.2°2.25

2.08

(c)

Figure 7.12: Geometrical parameters of both possible CO2 adduct intermediates of the Iron
catalyst (a) after one reduction yielding 4[2Fe(6)]+; (b) Spin density of 4[2Fe(6)]+ which
indicates the formation of a CO ·–

2 , (c) after two reductions yielding 3[2Fe(5)]0.

(a) (b)

Figure 7.13: Geometrical parameters of both transition states yielding the corresponding
CO2 adducts of the iron catalyst after (a) one reduction and (b) two reductions.
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1.35

(b)

(c)

1.76

2.39

1.27
1.12

(d)

Figure 7.14: Geometrical parameters of (a) the protonated carboxy intermediate 5[3Fe(5)]2+;
(b) the transition state for the first protonation step (quintet surface); (c) the transition state
for the second protonation step using phenol as the proton source after two reduction steps
(quintet surface); (d) the transition state for the second protonation step using phenol as
the proton source after a third reduction (quartet surface).

a spin transition on the triplet surface, the minimum energy crossing point of the singlet
and triplet surfaces along the Fe−C bond is over 20 kcal/mol higher in energy (at a Fe−C
bond distance of ∼2.2 Å, see figure F.12 (a)). We further note, that 1[4Fe(5)]0 could be
the starting point of a more sophisticated degradation pathway. This was observed for the
nickel cyclam system, where the formation of a NiCO4 was detected and the addition of CO
scavengers increased the activity.[534] Another possibility would be the decomposition of the
catalyst yielding metallic iron on the electrode. Further experimental insights are necessary
to determine the exact degradation pathway. We investigated possible intermediates and
found that upon binding of a second carbonyl, a partial dissociation of the qpy is observed
(see figure F.12 (b)).

The analysis of a large variety of intermediates showed that two steps in the the catalytic
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mechanism can proceed via different channels: (i) the binding of CO2 can occur after one or
two reductions (ECE vs EEC mechanism) – our calculations indicate that the ECE mecha-
nism is preferred – (ii) the second protonation can occur after two reductions or after a third
reduction where the latter results in a lower barrier and better thermodynamics at the cost
of an endergonic CO release. The population of both channels depends on the lifetime of the
carboxy intermediate 5[3Fe(5)]+, which should be significant due to the large barriers for
both protonation steps. Hence, a third reduction at this step seems likely for 5[3Fe(5)]+. The
rate limiting step is the second protonation. Similar barrier heights were reported by Carter
et al. [133] for the [Re(bpy)(CO)3Cl] catalyst using a comparable computational set-up and
methanol as proton source.

An important aspect of a good CO2 reduction catalyst is the selectivity for CO2RR over
HER. A possible HER mechanism is depicted in the appendix in figure F.8. The formation of
a hydride from the proposed active species of the catalyst 6[2Fe(5)]+ is thermodynamically
not favorable as the pKa for this step is negative. If it is assumed that the CO2RR mechanism
proceeds mainly via the ECE channel, then the formation of a hydride should not be possible
and the catalyst can operate even in very acidic conditions with high selectivity. These
findings can be related to the fact that the reductions are mainly ligand based for the Fe
catalyst (vide supra) which yields a Lewis acidic metal center. Hence, the formation of a
hydride is unfavorable. These findings are in line with the experimentally observed high
selectivity of over 99% CO in the CPE experiments.[561]

The in-depth analysis of possible catalytic pathways, side reactions, and degradation
pathways allows us to rationalize modifications to improve the activity: First, further fa-
cilitating the endergonic CO2 binding after the first reduction will provide not only more
driving force for CO2 addition but also should result in a high selectivity vs HER even in
acidic conditions. Thus, a modification of the ligand framework to stabilize the bound CO2
either via a well-positioned hydrogen bonding donor, [176, 385, 406] or through electrostatic
interactions [380] in the secondary coordination sphere would be beneficial. This concept
is well established in bio-inspired catalyst design to enhance catalytic activity. [165, 167,
541–543, 546] Secondly, to achieve a higher FE, a singly reduced carbonyl intermediate must
be avoided. However, our analysis shows that a third reduction at the carboxy intermediate
is necessary to improve both kinetics and thermodynamics of the second protonation step.
Alternatively, our calculations indicate that a stronger acid (e.g. H2CO3) is also capable
of driving the second protonation efficiently without a third reduction; thus, avoiding the
accumulation of a reduced carbonyl intermediate which deactivates a degradation pathway
and increases FE.
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Figure 7.15: Free energy landscape of the most likely CO2RR pathways of both Coqpy and
Feqpy; for the reduction steps, a potential of −1.6 V vs Fc+/Fc is applied; for the protonation
steps, phenol is used to estimate barriers and carbonic acid for free energies (see main text
for justification); solid lines correspond to intermediate states and dashed lines to transition
states; the energy difference for the total reaction energy in the two cycles stems from using
different functionals as the pKa of H2CO3 is 12.6 with B3LYP-D3 and 14.7 with ωB97X-D.

7.4 Comparison and Discussion
After the in-depth analysis of each system, the Co and Fe catalysts can be compared step-wise
and an energetic diagram comparing the most likely pathways of both catalyst is depicted
in figure 7.15:

Reduction: The [CoIIqpy(H2O)2]
2+ catalyst exhibits a ligand-based first reduction and

a highly delocalized second reduction. The second excess electron is stabilized by a π type
metal ligand bond (with significant metal contribution) between a Co t2g type d orbital and
a qpy π∗ orbital (see figure 7.16 (a)). The second reduction is accompanied by a ligand
loss which induces a spin transition to a low spin state and notable rearrangement of the
ligand framework (twist). These two factors could explain the experimentally observed slow
kinetics for this reduction.

The reduction process for the Fe catalyst is markedly different: The [FeIIqpy(H2O)2]
2+

catalyst exhibits two ligand based reductions in the low-lying qpy π∗ orbitals (see fig-
ure 7.16 (b)). The iron d orbitals are less suitable for mixing with the qpy π∗ orbitals
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which results in little metal contribution to the singly and doubly reduced states. This leads
to significantly more negative reduction potentials but faster kinetics. The doubly reduced
intermediates of both cycles 2[1Co(4)]0 and 3[1Fe(4)]0 are contrasted in the MO diagram in
figure 7.16.

CO2 Binding: In the cobalt system, the subsequent CO2 binding and activation is fast
(barrierless) and slightly endergonic. The doubly reduced catalyst 2[1Co(4)]0 binds CO2 in
an η1-κC binding mode where a low spin d8 Co(I) center interacts with CO2 via a σ type
bond from the doubly occupied metal dz2 to the CO2 LUMO. The binding of CO2 to a singly
reduced complex was not possible suggesting an EEC mechanism for CO2 binding.

In contrast, the Fe center remains Lewis acidic throughout the reduction process which
governs CO2 binding via an η2 binding mode. The CO ·–

2 moiety is stabilized by two path-
ways: first, by delocalizing some electron density from the CO2-π∗ orbital into the unoccupied
(in the β-space) Fe-dxz orbital via a π-type bond; second, by a dative bond from the oxygen
lone pair. This allows binding and activation of CO2 to a singly reduced catalyst which is
supported by experimental evidence. In both cases the binding and activation process is
endergonic with a significant barrier. However, CO2 binding to a doubly reduced catalyst
much slower. This can be explained by the weakened O−Fe (of the CO2) interaction upon
the second reduction which is already significant in the transition state. The computed
second reduction of the singly reduced CO2 adduct is at a similar potential as the second
reduction of the catalyst. All this taken into account, CO2 binding most likely proceeds via
reduction-CO2 binding-reduction (ECE) mechanism. Two factors can explain why the η2

binding mode is not observed in the Co catalyst: first, the softer Co metal center; second,
the additional d electron in Co (in comparison to Fe) yields doubly occupied t2g type orbitals
in all spin states, thus preventing a π type interaction of the CO2 LUMO and the Co. The
key MOs for both the Co and Fe CO2 adducts are depicted in figure 7.17.

Protonation: In the Co system, the first protonation is barrierless yielding a doubly
reduced COOH moiety bound to an unreduced complex. The second protonation is coupled
to the C−O bond cleavage yielding a carbonyl complex and water. This step has a barrier
of 11.6 kcal/mol making it rate limiting (and only barrier) in the cycle.

In the Fe system, both protonation reactions have barriers of 1.7 and 17.9 kcal/mol. The
second protonation is concerted with the C−O bond cleavage and is the rate limiting step.
The barriers are significantly higher for the Fe catalyst, which is in line with the reported
difference in activity.

Regeneration: The subsequent CO release to regenerate the catalyst is exergonic and
barrierless due to the high oxidation state of the central complex in both cases. The Co cata-
lyst has overall only one low barrier (11.6 kcal/mol) which aligns with the high kcat observed
for this catalyst making it one of the fastest molecular CO2 to CO reduction catalysts. The
Fe catalyst on the other hand has two significant barriers, for CO2 addition (13.9 kcal/mol)
and the second protonation (15.6 kcal/mol) rationalizing the lower experimentally observed
kcat.

Possible Third Reduction: For the Co catalyst, an alternative three reduction path-
way (EEEC) is feasible at a more negative potential. In addition, a third reduction is feasible
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for each intermediate species at lower potentials than the initial second reduction (see fig-
ure F.9). This pathway is able to use water efficiently as the proton source but suffers from
a very endergonic CO release.

For the Fe catalyst, the barriers for both protonation steps result in an accumulation
of the carboxy intermediate which can be further reduced at a mild potential. The third
reduction facilitates the second protonation both thermodynamically and kinetically (barrier:
15.6 kcal/mol); however, the subsequent CO release is slightly endergonic which could lead
to another reduction of the carbonyl intermediate posing a dead end for catalysis. This
could explain the low Faradaic efficiency of the catalyst and the increase of FE due to UV
irradiation.

Possible Improvements: Based on our proposed cycle for the Co system, further tuning
of the metal-ligand interaction for the doubly reduced intermediate via electron withdrawing
or releasing substituents can alter both the overpotential and catalytic activity: (i) a −F
group slightly decreases both rate limiting barrier and overpotential; (ii) a −NH2 group
markedly increases the reduction potential and also markedly decreases the rate limiting
barrier. This opens up the possibility of entering a pathway via the four coordinated doubly
reduced species (if a non coordinating acid is used). Thus, could increase kcat without an
increase of overpotential by proceeding via a different intermediate.

The ECE mechanism proposed for the Fe system makes it extremely robust against a
possible HER side reaction. The analysis of a possible HER pathway revealed that the
formation of a hydride intermediate from the singly reduced catalyst is only feasible under
extremely acidic conditions. This opens up the possibility to operate with stronger acids
without a loss in selectivity. Our calculations show that the barriers for the rate limiting
second protonation is significantly lower (13.2 kcal/mol); thus, a stronger acid could drive
the reaction effectively without a third reduction. This would increase both FE and max-
imum TOF by avoiding the accumulation of an carbonyl intermediate. Furthermore, the
modification of the ligand framework to incorporate a moiety in the second coordination
sphere could stabilize the bound CO2 (either via electrostatics or hydrogen bonding) and
should facilitate the endergonic CO2 addition.

7.5 Conclusion
In summary, we investigated the catalytic mechanisms of the experimentally reported Fe
and Co quaterpyridine molecular electrocatalysts for the two-electron, two-proton reduction
of CO2 to CO using electronic structure calculations (DFT). We report possible catalytic
and degradation pathways which are in line with the detailed experimental efforts of Robert
et al. [561]. Furthermore, we provide an in-depth analysis of the electronic structure of
intermediates to understand what factors affect the different pathways of both catalysts.

The [CoIIqpy(H2O)2]
2+ catalyst exhibits a ligand-based first reduction and a highly de-

localized second reduction. The CO2 binding proceeds via η1-κC binding mode, is only
possible after two reductions, and is barrierless (EEC mechanism). The subsequent first
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protonation is barrierless as well. The second protonation is rate limiting (11.6 kcal/mol)
followed by a barrierless CO release. The introduction of substituents on the qpy ligand can
decrease overpotential or increase the turnover rates. However, a fluorine substituent can
slightly improve both and could also increase solubility in aqueous solvents. The amino sub-
stituent could also decrease overpotential and turn over rates by proceeding via a different
intermediate.

The [FeIIqpy(H2O)2]
2+ catalyst exhibits two ligand based reductions in the low-lying qpy

π∗ orbitals and binds CO2 in an η2 binding mode. This interaction enables CO2 binding to a
singly and doubly reduced catalyst. The binding of CO2 after a single reduction is kinetically
preferred, suggesting an ECE mechanism. Both protonation steps have significantly higher
barriers than for the Co catalyst, and the second protonation is rate limiting (17.9 kcal/mol).
A third reduction is likely to happen for the carboxy intermediate and reduces the barrier for
the second protonation (15.6 kcal/mol) but results in an endergonic CO release. We show
that the Fe complex could be a more efficient catalyst with a stronger acid without decreased
selectivity towards CO2RR vs HER. This could prevent a third reduction and thus avoid a
possible degradation pathway.

Between the two metal systems, the key difference is the more favorable metal d or-
bital/qpy π∗ orbital interaction in the Co system. This becomes apparent when comparing
the metal character of the doubly reduced intermediates in figure 7.16. In the Co catalyst,
this leads to greater metal contribution in the first two reductions, resulting in milder re-
duction potentials and a softer metal center. The subsequent binding and activation of CO2
relies on a metal base binding to the nucleophilic carbon of the CO2 in an η1-κC binding
mode. Binding to a singly reduced Co catalyst was not possible since the metal center is
most likely “stuck in the middle” in terms of Lewis acidity. In case of the Fe catalyst, the
metal center remains Lewis acidic with mainly ligand based reductions. This leads to a
different mechanism of binding and activating CO2 via an η2 binding mode which benefits
from a Lewis acidic metal center that can bind CO2 after a single reduction. The key MOs
for both the Co and Fe CO2 adducts are depicted in figure 7.17.
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Figure 7.16: Schematic MO diagram of both doubly reduced intermediates a) 2[1Co(4)]0

and b) 1[1Fe(4)]0. The green arrows indicate the extra electrons due to both reductions.
The MO shown in panel (a) illustrates the delocalized π type metal (dxz) ligand (π∗) bond
to stabilize the excess electron; the MOs in panel (b) illustrate the mainly ligand based
character of the two reductions.
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Figure 7.17: Schematic MO diagram of both doubly reduced CO2 adducts a) 2[1Co(4)]0 and
b) 3[1Fe(4)]0. The green arrows indicate the extra electrons due to both reductions. The
MO in panel (a) illustrates the σ type interaction of the Co-dz2 orbital and the CO2 LUMO
leading to the η1 binding mode in the Co system; the MOs in panel (b) illustrate the two
ways the CO2 is stabilized in an η2 binding mode in the Fe system: (i) by a π type CO2
LUMO Fe-dxz bond; (ii) by a dative O−Fe bond from the oxygen lone pair.
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Chapter 8

Influence of Overpotential on an Iron
Terpyridine Complex for CO2 Reduction:
A Combined Experimental and
Computational Investigation

8.1 Introduction
Increasing energy demands and global climate change has motivated the need for technologies
that capture and utilize atmospheric carbon dioxide (CO2) and convert it into value-added
carbon sources.[153, 156, 619] There are various possible products for the electrochemical
CO2 reduction reaction (CO2RR) such as CO, CH3OH, CH4; a comprehensive overview is
presented in reference [163]. The two-electron two-proton reduction of CO2 to CO is econom-
ically most viable due to its usage in the Fischer-Tropsch process.[164] The electrochemical
reduction of CO2 via artificial photosynthesis[154, 155] offers a promising way to restore bal-
ance to the carbon cycle and develop a net negative carbon footprint if these technologies can
be coupled to renewable sources of electricity. In order for these goals to be realized, efficient
catalysts are required to selectively drive CO2 reduction versus the thermodynamic and ki-
netically competitive hydrogen evolution reaction (HER).[155, 522] The electrochemical CO2
reduction reaction has been extensively explored across materials[160], biological[583], and
molecular systems[161]. Molecular systems are of particular interest to us as they are ideal
platforms that can be rationally and systematically tuned through synthetic chemistry[97,
167, 620] with a level of precision and in the absence of defects, that is unavailable to het-
erogeneous catalysts[160, 621]. Moreover, due to their small size relative to enzymes and
their homogeneous nature, they can be investigated at an mechanistic level which aids in
the understanding and directed development of improved catalytic platforms.[97, 100, 538]

Due to its abundance, iron platforms are especially desirable; the iron porphyrin platform
FeTPP (TPP = tetraphenylporphyrin) is a robust and active catalyst making it a popular
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framework for ligand development with a considerable amount of derivatives having been
prepared in recent years.[380, 383, 399, 401, 535]. The rates of the original FeTPP platform
has been improved by several order of magnitude from a 10 2 s–1 to 10 6 s–1 for Fe-o-TMA,
a tetra-TMA substituted FeTPP derivative (TMA = trimethylammonio, −NMe +

3 ). The
(current) top performance of 10 9 s–1 for this platform is achieved by introducing four bulky,
methylimidazolium-containing groups.[407] The success story of the FeTPP system over the
last decade illustrates the effectiveness of synthetic modification of the ligand platform and
optimization of reaction conditions. Alternatively, simpler polypyridyl ligand platforms such
as, iron-bipyridine (bpy)[176, 385] (Figure 8.1 (a)) and iron-quarterpyridine (qpy) [177, 561,
600, 602] (Figure 8.1 (c)) have received increase attention. These ligand platforms are robust
under electrochemical conditions and are synthetically accessible through facile and modular
routes which facilitates precise tuning of their sterics and electronics in a rational fashion.
As such, the development of novel polypyridyl electrocatalysts for proton and CO2 reduction
has been a part of a larger research program between our labs.

We recently reported[398] a novel terpyridine(tpy)-based iron polypyridine complex (Fig-
ure 8.1 (b)), [Fe(tpyPY2Me)]2+ ([Fe]2+), that leverages ligand non-innocence of the tpy moi-
ety and metal-ligand cooperativity through exchange coupling. These two factors yield mild
reduction potentials for the complex in comparison to other pyridine based catalysts as illus-
trated in Figure 8.1 (see main text for detailed explanation) and allows it to electrochemically
convert CO2 into CO at extremely low overpotentials (η), resulting in high product selectiv-
ity and rates under both organic solvents and aqueous conditions. The Faradaic efficiency for
CO production (FECO), rates (kmax) and overpotentials of the three platforms are compared
to the FeTTP platforms and summarized in Table 8.1. Comparison of these parameters for
benchmarking catalytic performance clearly identifies these polypyridyl complexes as some
of the best homogeneous catalysts to date but should be done with care. Determination of
accurate overpotentials requires the use of the thermodynamic potential required to convert
CO2 into CO which is often unknown for the exact experimental conditions and can thus
vary by over 500 mV depending on solution conditions. To normalize for this uncertainly,
we give the values reported by Matsubara[552] that take into account the effect of solvent
mixtures and acid additives. Similarly, estimation of kinetic performance based on maximum
turnover frequency (TOFmax) is highly dependent on the method utilized (e.g., foot-of-the-
wave analysis, peak catalytic current analysis, etc). As such, the methods used to determine
the rate is indicated in Table 8.1. In order to minimize errors in rate determination for
our [Fe]2+ catalyst, we extracted the kinetic parameters directly from the averaged specific
current densities for CO production obtained from variable potential CPE experiments that
were conducted in triplicate as described by Saveant and coworkers.[622, 623]

In our initial study of the [Fe(tpyPY2Me)]2+ system, we reported the synthesis, char-
acterization, and electrocatalytic behavior of [Fe]2+ for CO2RR to CO. Synthesis of the
two-electron reduced product, [Fe(tpyPY2Me)]0 ([Fe]0), and spectroscopic characterization
allowed us to attribute its exceptional catalytic activity to its unique open-shell singlet elec-
tronic structure that results from the anti-ferromagnetic coupling of the intermediate-spin
Fe(II) center (SFe−−1) to a doubly reduced, triplet ligand system (Stpy−−1). We were able to
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Figure 8.1: Overview of various iron-pyridine based molecular catalyst platforms for CO2 to
CO reduction and their reduction potentials: a)[Fe(bpyPY2Me)L2]

2+, b) [Fe(tpyPY2Me)L]2+

(tpy = terpyridine); c) [Fe(qpy)L2]
2+; ; L = H2O or CH3CN; potential versus Fc/Fc

+.

establish that this electronic structure was responsible for the reduction of CO2 to CO at
low overpotentials, through the preparation and comparison to a series of redox-(in)active
metal and ligand controls.

Table 8.1: Key benchmark metrics of the three pyridine based catalyst platforms, the FeTPP
platform and a top performing derivative of that platform, the Fe-o-TMA; potential versus
Fc/Fc+.

Platform F.E. TOFmax η Ref.
[%] s–1 V

[Fe(bpyNHEtPY2Me)L2]
2+ 81 10 2 0.66 [385]

[Fe(tpyPY2Me)]2+ 97 10 5 0.71 [398]
[Fe(qpy)(H2O)2]

2+ 70 10 2 0.24 [561]

FeTPP 93 10 2 0.67 [552]
Fe-o-TMA 93 10 6 0.60 [380, 552]

However, the mechanistic pathways through which [Fe]2+ functions are entirely unex-
plored. In particular, this system interestingly exhibits two distinct catalytic regimes that
are potential dependent (Figure 8.2). Cyclic voltammograms collected under CO2 atmo-
sphere with the addition of 1 M phenol, as a proton source, shows the formation of two
catalytic waves. The first regime, reaches a plateau at −1.6 V vs Fc/Fc+ (η = 330 mV)
and displays canonical S-shaped wave instructive of pure kinetic conditions without sub-
strate consumption. At more negative applied potentials beyond −1.75 V vs Fc/Fc+ (η =
480 mV), a second catalytic response is observed reaching a maximum current density at ca.
−1.98 V vs Fc/Fc+ (η = 710 mV). This second catalytic regime shows peak-shaped behavior
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indicative of substrate consumption by the rate-determining step (Figure 8.2).
This present work aims to shed light on the mechanistic pathways using a combined exper-

imental and computational approach. Here we propose that at low overpotentials (η < 0.480
mV), [Fe]2+ undergoes a two electron reduction, two proton transfer mechanism (EECC)
where turnover occurs through the dicationic iron complex, [Fe]2+. At higher overpoten-
tials (η > 0.480 mV), an additional electron transfer event becomes possible through either
a step-wise or a proton coupled electron transfer (PCET) pathway, allowing for catalytic
turnover from the monocationic iron complex ([Fe]+) via an ECEC mechanism. Based on
the detailed mechanistic analysis, we propose the design of improved ligand frameworks and
explore their electronic structures with an energy decomposition analysis (EDA). This mech-
anistic analysis lays the framework for further rational optimization of theoretically driven
modification of the ligand framework for increased catalytic activity.

8.2 Computational Model
In this section we briefly explain the model, its assumptions and expected errors (see ap-
pendix G for technical details). Density functional theory calculations for free energies,
activation energies, reduction potential and the LOBA[617] oxidation state analysis were
performed with the Q-Chem package [108] (version 5.3.0) using the ωB97X-D [68] functional
with a mixed basis for the optimization and frequency calculations were performed with a
mixed basis (def2-SVP basis for all main group elements, def2-TZVP basis set for Fe).[247].
This functional was chosen based on our previous study and extensive functional screening
(see SI of reference [398]). Gibbs free energies (G) were used to compute reduction potentials
and adiabatic spin gaps and are based on standard thermodynamic cycles see Refs [128, 130,
532]. Solvation energies were approximated by performing single point calculations applying
the implicit C-PCM solvent model with the larger def2-TZVP basis for all elements[247].

Reduction potentials are reported with an isodesmic scheme against the ferrocene/ fer-
rocenium couple (Fc/Fc+) used as an internal standard. [127, 128] This method allows accu-
rate predictions even at a modest level of theory with reported errors within approximately
∼ 100 mV (∼ 4 kcal/mol) of experimental values.[128] Of particular relevance for this work,
this approach has yielded accurate calculated reduction potentials in several pyridine based
electro-catalysts.[176, 177, 398]

The RMSD of ωB97X-D for barrier heights is ∼2 kcal/mol using gas phase high level
wave function methods as the reference;[20, 624] When comparing to experimental values,
as done in this study, additional error arise from solvation by the implicit solvation model
and simplification by the computational model versus experiment.

The calculation of accurate free energies for protonation reactions with implicit solvent
models resulting in expected deviations versus experimental values of ± 3 pKA units. [549]
We tested our computational protocol for phenol ωB97X-D yielding a pKa of 24.6 which
are 4-5 pKa units too low.[551]. In spite of this systematic computational error, calculated
relative pKa values are more reliable because of favorable error cancellation by removing
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the experimental free energy of the proton. Thus, calculated pKa values should mainly be
compared against each other.

We use phenol as the main proton source for calculating reaction barriers involving pro-
tonation reactions as it was added to the reaction mixture in molar quantities for the CPE
experiments. The concentration of other proton sources (H+ and H2CO3) is negligible.[532]
However, we report free energies of protonation reaction steps versus carbonic acid (H2CO3)
because it is the strongest acid in solution and reprotonates phenolate (PhO– ) via complex-
ation of CO2 and OH– . This approach was also used in a previous study for quarterpyridine
based catalysts.[177] The calculated standard potential for the reduction reaction using car-
bonic acid is −1.28 V vs Fc/Fc+ which translates to a total reaction energy of −25.0 kcal/mol
at an potential of −1.82 V vs Fc/Fc+ (CO2 + 2H2CO3 + 2 e– −−→ CO + H2O + 2HCO –

3 ).
This is in good agreement with the experimental estimation of −1.27 V used in our previous
study[398]. Matsubara[552] estimates the standard potential in wet CH3CN depending on
the mole fraction of water to be between −0.95 V– −1.63 V vs Fc/Fc+. In contrast, using
Phenol as the acid sources results in standard potential of −1.94 V vs Fc/Fc+ and a resulting
reaction free energy of 5.1 kcal/mol.

We employ the energetic span model to predict the turnover frequency (TOF) based on
our calculated catalytic cycles. This model identifies the key intermediates and transition
states, which control the rate of catalysis (see the corresponding section for more detail).[140].

8.3 Results and Discussion
The catalytic voltammogram of [Fe]2+ given in Figure 8.2 clearly illustrates the formation
of two catalytic waves with maximum current densities achieved at −1.66 V vs Fc/Fc+

(η = 390 mV) and −1.98 V vs Fc/Fc+ (η = 710 mV). We attribute this behavior to the
occurrence of two distinct catalytic regimes with disparate mechanisms. In this study, we
explore various reaction pathways for these two catalytic regimes in the presence of 1 M
Phenol (PhOH) and 4-chlorophenol (Cl-PhOH) in order to probe the effect of the pKa on
the observed rates and to investigate the origin of selectivity of [Fe]2+ for the CO2RR relative
to the HER. These proposed mechanisms are in line with experimental kinetic data obtained
from controlled potential electrolysis (CPE) data collected with direct product detection
via gas chromatography (vide infra). In order to compactly provide relevant information
regarding the electronic structure of the proposed catalytic intermediates along the way, we
introduce a naming scheme that incorporates the multiplicity (M, M = 2S+1), Charge (C),
and the identity of the sixth, axial ligand (X) on the iron center: M[Fe−X]C; for example,
1[Fe−L]2+ corresponds to the unreduced, hexacoordinated initial iron complex in the singlet
state.
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Figure 8.2: Electrochemical characterization of 1[Fe]2+. Cyclic voltammograms of 1[Fe]2+

collected under Ar (black) and CO2 (purple) with the addition of 1 M phenol as a proton
source. Cyclic voltammograms were collected with a scan rate of 100 mV/s with an electrolyte
of 0.10 M TBAPF6 dissolved in CH3CN. The proposed two distinct mechanistic pathways
for 1[Fe]2+ that approach maximum rates at ca. −1.66 and −1.98 V vs Fc/Fc+ and are
labeled in red and blue, respectively. The first regime turns over from the 2 + complex and
undergoes a proposed EECC mechanism while the second regime at more negative potentials
undergoes turnover from the 1 + complex via an ECEC mechanism.

Low Overpotential Pathway.

Figure 8.2a shows that the current density of the first catalytic regime reaches a plateau at
−1.66 V vs Fc/Fc+ (η = 390 mV) with rates that are slower relative to the second catalytic
regime. A mechanism for this first regime is illustrated in Figure 8.3 and presented in this
section. First, we propose two, sequential single electron reduction steps followed by the
dissociation of CH3CN to generate the catalytically active open-shell singlet,1[Fe]0. CO2
binding and subsequent protontation steps can then occur resulting in the loss of a water
molecule and the formation of 1[Fe−CO]2+. Ligand exchange with exogenous CH3CN and
CO release closes the catalytic cycle. Interestingly, the formal oxidation state of the central
metal does not change during catalysis. The following sections will expand upon these
proposed individual elementary steps before we build our discussion to include a proposed
catalytic pathway for the second catalytic region that occurs at more negative potentials.

Reduction. The reduction pathway of 1[Fe]2+ was established in our initial report [398].
Variable temperature NMR and Mössbauer studies established that the starting 1[Fe]2+ com-
plex is predominantly low-spin, Fe(II) with a small population of thermally accessible spin
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Figure 8.3: Proposed mechanistic pathways for the low overpotential regime. Starting from
1[Fe]2+ (left side), we first propose two one-electron reduction steps followed by the dissoci-
ation of CH3CN to generate the catalytically active open-shell singlet, 1[Fe]0. CO2 binding
and subsequent protontation steps can then occur resulting in the loss of a water molecule
and the formation of 1[Fe−CO]2+. Ligand exchange with exogenous CH3CN and CO release
closes the catalytic cycle (outer pathway). Alternatively, direct protonation of the pyridyl
arm in 1[Fe]0 to give 1[Fe−NH]+ followed by CO2 coordination and proton transfer was found
to be a competitive pathway (inner pathway). All reaction and activation energies are given
in units of kcal/mol and all reduction potentials are referenced to the computed Fe/Fe+

couple.
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excited states near room temperature that we attributed to the axial distortions engendered
by the rigid tpyPY2Me ligand (Figure 8.4a). The first reduction of 1[Fe]2+ is ligand centered,
with occupation of the tpy-π∗ orbital with almost no excess spin density on the metal cen-
ter, yielding 2[Fe−L]+, a ground state doublet composed of an low-spin Fe(II) center and a
radical tpyPY2Me– ligand (Figure 8.4b). The addition of a second electron occupies another
tpy-π∗ orbital and induces a spin-state transition of the iron center from low-spin (SFe = 0)
to intermediate-spin (SFe = 1) and ligand dissociation of the axially coordinated CH3CN
solvent molecule. This tetraradicaloid electronic configuration allows for strong exchange
coupling of the two unpaired d electrons on the intermediate-spin iron center with the two
electrons in the tpy-π∗ manifolds forming an overall open-shell singlet ground state, 1[Fe]0

(Figure 8.4c). The open-shell singlet electronic structure was validated by synthesizing and
isolating 1[Fe]0 from the chemical reduction of 1[Fe]2+ with decamethylcobaltocene and fully
characterizing the resulting coordination compound by single-crystal X-ray crystallography,
NMR, Mössbauer spectroscopy, X-ray absorption spectroscopy, and DFT and CASSCF cal-
culations. Through these spectroscopic studies and with comparison to control complexes,
we were able to attribute the catalysis of 1[Fe]2+ for the CO2RR at mild overpotentials to
this anti-ferromagnetic complex. The predicted reduction potentials for both reductions
are −1.46 V and −1.51 V vs Fc/Fc+, which are in good agreement with the experimental
cyclic voltammetry data collected under argon atmosphere that show two closely spaced
one-electron reduction waves centered at −1.43 V vs Fc/Fc+. The exchange-coupling shifts
the second reduction wave positive by a remarkable 640 mV relative to [Zn(tpyPY2Me)]2+

which employs the same redox-active tpyPY2Me ligand, but contains a Zn(II) metal cen-
ter that is unable to participate in stabilization through antiferromagnetic coupling. The
change in electronic structure of 1[Fe]2+ along the reduction pathway is illustrated by the
spin density plots given in Figure 8.4. The closed shell unreduced complex, 1[Fe]2+, exhibits
no excess spin as expected (Figure 8.4a). The singly reduced complex, 2[Fe]+, shows spin
density almost exclusively in tpy π∗ orbitals of the tpyPY2Me ligand (Figure 8.4b) while the
doubly reduced complex, 1[Fe]0, shows spin polarization with spin density on the iron center
and the π∗ orbitals of the tpy moiety (Figure 8.4c).

CO2-Binding. CO2 coordination occurs after 1[Fe]2+ has been reduced by two electrons
and the iron center has undergone a spin-state transition and subsequent ligand dissociation
of the axially bound solvent molecule. The binding of CO2 under standard conditions is
endergonic and remains on the singlet surface yielding 1[Fe−CO2]

0. We tried to stabilize the
CO2 adduct with the addition of either explicit water molecules or electrolyte (TBAPF6) but
the binding remains endergonic with a free energy of +12.1 kcal/mol (∆H ∼ 4 kcal/mol, see
Figure G.1 a). The CO2 is bound via the carbon atom with an angle of 127◦. This is indicative
of a closed shell doubly reduced CO2 moiety and a low spin triplet Fe(II) center with a neutral
tpyPY2Me ligand. The endergonic binding can be rationalized by the high stability of 1[Fe]0,
attributed to its anti-ferromagnetically coupled electronic structure, which yields a positive
reduction potential but consequently at the cost of handicapped CO2 binding. This is in line
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Figure 8.4: Spin densities and schematic MO diagrams: (a) unreduced complex 1[Fe−L]2+
exhibiting no spin density; (b) singly reduced complex, 1[Fe−L]2+, exhibiting spin density
solely in the tpy ligand; (c) doubly reduced complex, 1[Fe−L]2+, exhibiting spin density on
both the metal center and the tpy moiety of the tpyPY2Me ligand in an exchange coupled
state.

with experimental findings as high concentrations of phenol are required in order to observe
CO2 binding and subsequent catalysis. In order to probe the binding of CO2, we attempted
to measure the equilibrium constants for CO2 binding K (CO2), based on the potential shift of
the ligand reduction wave under Ar and CO2 atmosphere. Under Ar atmosphere, without the
addition of phenol as a proton source, there is no shift in the ligand reduction waves centered
at −1.43 V vs Fc/Fc+. When phenol (1 M) is added, a catalytic wave is formed; however, a
reversible coupling could not be observed even when the experiment was performed with fast
scan rates up to 50 V/s. Taken together, this suggests that CO2 binding and thus catalysis
is hampered when the system is proton limited. Interestingly, the higher spin-state surfaces
[triplet (3[Fe]0) and quintet (5[Fe]0)] both exhibited much higher barriers for CO2 binding that
would effectively prevent catalysis. Thus, the open-shell singlet electronic structure of 1[Fe]0

is key not only to decrease the overpotentials required for catalysis but also to facilitate
CO2 binding even though it is thermodynamically difficult. We further investigated an
alternative pathway of CO2 binding to a singly reduced intermediate (2[Fe]+). This pathway
was not competitive as CO2 coordination is even more endergonic (14.1 kcal/mol). Moreover,
further reduction of this CO2 bound intermediate (4[Fe−CO2]

+) is not accessible under the
first catalytic regime based on the calculated redox potential of −1.81 V vs Fc/Fc+.
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Protonation. In a first scenario, the first protonation of 2[Fe−CO2]
0 is barrierless and

strongly exergonic (−14.1 kcal/mol) yielding the carboxyl intermediate, 1[Fe−CO2H]
+. This

intermediate can be best described as a CO2H
– moiety coordinated to the Fe(II) cen-

ter with the neutral tpy ligand framework. The second proton transfer step is exergonic
(−2.1 kcal/mol) but with a barrier of 14.1 kcal/mol as it is coupled to the cleavage of the
C−O bond and results in the loss of water and the formation of the carbonyl intermediate
(1[Fe−CO]2+). The transition state geometry is depicted in Figure G.1 d. The influence of
explicit solvent molecules added to the transition state geometry was probed, but we were
unable to find lower barriers with the addition of exogenous water molecules.

In a second scenario, 1[Fe]0 is protonated at one of the pyridine arms yielding a pyri-
dinium intermediate, 1[Fe−NPYH]

+. The calculated pKa of 8 is quite acidic (versus a cal-
culated pKa of 16 for H2CO3); thus, the free energy of protonation coupled to carbonic
acid is 11.5 kcal/mol. Previous experimental work by Matsubara shows that the pKa of the
reaction mixture is significantly lower with the addition of water. The experimental pKa
for CO2 saturated water-acetonitrile mixtures can range from 7.8 to 16.8 where we would
further expect the addition of molar quantities of phenol to further acidify the solution thus
making this intermediate competitive. [552] The binding of CO2 to 1[Fe−NPYH]

+ is very
exergonic and directly yields a carboxy intermediate, 1[Fe−CO2H]

+, by skipping the high
energy CO2 adduct. This is achieved by a simultaneous intramolecular proton transfer from
the pyridinium and electron transfer from the tpy upon binding of CO2 to form CO2H

– .
The second protonation proceeds as described above, see Figure 8.3 (outer pathway).

CO Release. CO release from 1[Fe−CO]2+ is exergonic and barrierless which can be at-
tributed to the relatively high oxidation state of the iron center, which limits backbonding
interactions. In addition, the low solubility of CO in CH3CN promotes removal of CO from
solution and into the gas phase. In order to further probe CO coordination and release,
CVs of 1[Fe]2+ were collected under CO atmosphere at variable scan rates (100 − 500 mV/s)
and compared to data collected under Ar atmosphere. The addition of CO results in the
formation of very small reductive features at −0.59 and a quantitative reductive wave at
−1.23 V vs Fc/Fc+. Additionally, the reversibility in the ligand reduction waves centered
at −1.43 are lost at slower scan rates of 100 mV/s. We assign the new reduction wave at
−1.23 V vs Fc/Fc+ to the reduction of an Fe(II)-carbonyl species (1[Fe−CO]2+). This agrees
well with the predicted reduction potential of −1.18 V vs Fc/Fc+, supporting this assign-
ment. These data suggest that CO coordination is kinetically relevant to the electrochemical
response and would be consistent with an CE-type mechanism (i.e., CO binding chemical
step followed by an electron-transfer step). However, when the scan rate is increased to
rates faster than 100 mV/s, reversibility is restored to the ligand reduction wave, suggesting
that ligand exchange is comparatively slow and can be out-competed by electron transfer.
Multisegmented CV data collected under CO2 atmosphere with the addition of 1 M phe-
nol, do not show any significant changes or the formation of a new reductive feature that
could be attributed to the build up of iron carbonyl species in the voltammograms across



CHAPTER 8. INFLUENCE OF OVERPOTENTIAL ON AN IRON TERPYRIDINE
COMPLEX FOR CO2 REDUCTION 217

one-hundred cycles. Taken together, these data support the computational findings that CO
binding is weakly endergonic by 2 kcal/mol and barrierless and thus we do not observe the
accumulation of iron carbonyl species under electrocatalytic conditions. Further reduction
of an iron carbonyl intermediate 2[Fe−CO]+ to 1[Fe−CO]0 can be eliminated based on the
predicted redox potential which is more negative than −2.0 V vs Fc/Fc+. A similar Fe(II)-
carbonyl species equipped with a comparable terpyridine and pyridyl-N-heterocyclic carbene
based ligand system was synthesized and structurally characterized by 1H NMR and single
crystal X-ray diffraction by Miller and coworkers[625]. Chemical reduction with two equiv-
alents of decamethylcobaltocene resulted in the dissociation of the pyridine ligand and the
formation of a pentacoordinate, low-valent iron carbonyl complex that was unfortunately
shown to undergo rate limiting endergonic release of CO. This hemilability of the pyridyl
arm to generate a stable 18-electron complex, may be a defining feature to explain the dif-
ference in catalytic activity and speaks to the potential advantages engendered by utilizing
a homoleptic tpyPY2Me ligand system.
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High Overpotential Pathway.

The application of more reducing potentials beyond −1.7 V vs Fc/Fc+ results in the forma-
tion of a second catalytic wave. A mechanism for this high overpotential regime is illustrated
in Figure 8.5 and presented in detail in this section. Here we investigate three potential path-
ways and found two to be competitive for this high overpotential regime. In all three cases,
the initial reduction steps are identical in redox potential and electronic structure to what
we presented for the low overpotential pathway discussed above. However, the first electron
transfer is off-pathway; where at more reducing potentials, we find that there is enough
driving force to reduce the carboxy intermediate (1[Fe−CO2H]

+) with a predicted redox po-
tential of −1.83 V vs Fc/Fc+ (vide infra). This results in catalytic turnover occurring from
the singly reduced, iron complex (1[Fe]+) rather than turnover from the unreduced 1[Fe]2+.
The three mechanistic pathways explored below diverge following the formation of the 1[Fe]0

catalytic resting state.
The mechanism is depicted in Figure 8.5. In the first two scenarios, from the 1[Fe]0

intermediate, CO2 coordination (Figure 8.5; outer cycle) or protonation (Figure 8.5; inner
cycle) can occur first as discussed above for the low overpotential regime. Both pathways
are uphill by approximately 11 kcal/mol and barrierless. The two pathways converge at the
formation of the CO2H adduct, 1[Fe−CO2H]

+, that can be further reduced at a calculated
applied potential of −1.81 V vs Fc/Fc+ yielding 2[Fe−CO2H]

0 where the electron populates
one of the low-lying tpy-π∗ orbitals. The second proton transfer step to yield the carbonyl
intermediate, 2[Fe−CO]+, is strongly exergonic by −17.5 kcal/mol. Moreover, the activation
barrier for the second protonation is 7.3 kcal/mol, which is 4 kcal/mol lower than the barrier
for the C−O bond cleavage step in the low overpotential regime. The CO release becomes
endergonic by 4.3 kcal/mol due to the excess electron density that is transferred from the
tpy-π∗ orbital to the Fe−CO moiety thus strengthening the backbonding to the CO ligand.
Hence, the additional reductive event significantly lowers the the barrier of the second pro-
tonation at the cost of more difficult CO release. Therefore, the second protonation is not as
critical as in the low over-potential regime. Depending on the pathway, either the addition of
CO2 (12.1 kcal/mol) or the protonation of the 1[Fe−py−H]+ (11.5 kcal/mol) become critical
steps as well. Unfortunately, it is not possible to distinguish those two pathways computa-
tionally due to the small relative energy difference of 0.6 kcal/mol and the error associated
with the predictions of protonation and CO2 addition. It is possible that both channels are
populated.

In a third scenario, following the formation of 1[Fe]0, a proton coupled electron transfer
(PCET) pathway is possible where one of the pyridyl arms is protonated yielding 2[Fe−NPYH]

0.
The additional electron is localized in the pyridinium moiety, thus the electronic structure can
be described as a doubly reduced tpy-π∗ moiety coupled to the intermediate spin iron center
and a singly reduced pyridinium. The reduction potential is acid dependent; using H2CO3
the calculated reduction potential is 2.14 V vs. Fc/Fc+. However, taking non-standard con-
centrations into account using a similar approach to Ref. [532], we compute a shift by 0.3 V
resulting in a potential of 1.84 V. For reference using H+ the computed reduction potential
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is 1.17 V vs Fc/Fc+. Next, CO2 can bind to 2[Fe−NPYH]
0 to directly yield 2[Fe−CO2H]

0

in an intramolecular proton and electron transfer with a free energy of −12.0 kcal/mol and
thus also ”skipping" the high energy CO2 adduct intermediate. The role of proton transfer
during catalysis was examined by measuring the H/D kinetic isotope effects at both catalytic
regimes using C6H5OH or C6D5OD as the proton source. Experimentally, normal primary
H/D kinetic isotope effects were observed under both catalytic regimes (kH/kD of 1.59 and
1.22, respectively), suggesting that proton transfer is involved in the rate determining step,
thus supporting the protonation-first pathways, and excluding the CO2-first mechanism.

Kinetic analysis of proposed mechanistic pathways.

The free energy landscape summarizing the total catalytic cycle is depicted in Figure 8.6. Fol-
lowing elucidation of the possible reaction pathways for CO2 reduction across both potential-
dependent regimes, we next sought to compare experimentally determined kinetic data
against computationally derived turnover frequencies (TOFs) obtained from the energetic
span computational model developed by Kozuch and coworkers.[140]. The energetic span
model was employed to identify key intermediates and transition states, which control the
rate of catalysis. This model connects the free energy landscape of the DFT based catalytic
cycles with the experimentally measured TOFs using Eyring transition state theory. The
model identifies TOF-determining transition states (TDTS) and the TOF-determining in-
termediates (TDI) and computes rates based on the energetic span of these two states.[140]
Often there are various intermediates with a significant influence on the catalytic rates. This
can be quatified in this model by the degree of TOF control (donated as XTOF)[138], which
describes how the TOF varies by a small change in energy of that intermediate or transition
state. The range of XTOF is between 0 and 1, where 0 denotes that the species has no in-
fluence on the TOF and 1 denotes that the species solely controls the TOF (see references
[140] and [142] for the exact mathematical definitions).[142, 626]

Experimental kinetic parameters were obtained from variable controlled potential (CPE)
experiments as described by Saveant and co-workers[622, 623]. Short-term (5 min; Fig-
ure 8.7) and long-term (1 h) CPE experiments were performed where the products (CO and
H2) were detected and quantified by gas chromatography for the long-term CPE experiments
conducted in an air-tight electrochemical cell. The observed rate constants (kobs) at each
applied potential were extracted from the average specific current densities taken across the
entire electrolysis experiment and were then compared to the computed rates obtained from
the energetic span model. To further probe the influence of the proton transfer step on the
observed rates, PhOH (see Figure S6), and Cl-PhOH, which is approximately one pKa unit
more acidic (in water), were utilized.

First, we explored the kinetics of the low overpotential regime (Potential window of
−1.40 − −1.75 V vs Fc/Fc+). CPE data collected at applied potentials between −1.42 −
−1.72 V vs Fc/Fc+ overlay closely with the voltammogram collected under CO2 atmosphere
with 1 M PhOH (Figure 8.7a). Current densities were stable across the entire electrolysis
(Figure 8.7b) and reached a plateau at ca. −1.6 V vs Fc/Fc+ with an average current
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density of 1.53 mA/cm2 which corresponds to a TOF of 1.74 x 10 5 s–1 (Figure 8.7c). When
the more acidic, Cl-PhOH was added as the proton donor, the maximum TOF of the first
catalytic regime increased to 5.50 x 10 5 s–1, a three-fold increase in observed rate relative
to the data obtained with phenol as the proton source (Figure 8.7d) without loss of product
selectivity. Analysis of this catalytic regime with the energetic span model shows that the
catalytic rate is solely controlled by the second protonation step (C−O bond cleavage to
release water) as the key rate limiting intermediate and transition state are both associate
with the second protonation. The carboxy intermediate, 1[Fe−CO2H]

+, is the TDI and the
second protonation barrier is the TDTS both with XTOF values close to 1. Based on this
analysis, a TOF of 400 s–1 is predicted. This is slower than the experimentally determined
TOF of 1.74 x 10 5; however, this translates to an energy difference of ∼3.5 kcal/mol which
is still within acceptable agreement. Furthermore, when Cl-PhOH is utilized as the acid
source, the barrier is lowered by 1.1 kcal/mol which translates to a rate increase by one
order of magnitude. The stronger acid lowers the TDTS which leads to an increase in the
importance of the CO2 binding step which is illustrated by the change in the degree of TOF
control: The XTOF of both the TDI (1[Fe−CO2]

+) and TDTS decreases from 0.98 to 0.86
and the CO2 binding step is increasingly important for the rate as the XTOF increases to
0.14 from 0.02. Distinction between the protonation first or CO2 binding first pathways by
this kinetic analysis was not possible because both options occur before the rate determining
protonation step.

Application of more negative onset potentials between −1.81 and −2.01 V vs Fc/Fc+

allowed us to probe the kinetics of the second, high overpotential regime. Tight correlations
between averaged current densities from the CPE experiments with the cyclic voltammo-
grams collected under CO2 atmosphere with PhOH (Figure 8.7a) or Cl-PhOH was observed.
Peak current density of 4.0 mV/cm2 was reached at −2.01 V vs Fc/Fc+ which corresponds to
a maximum TOF of 1.05 x 10 6 s–1. Addition of 1 M Cl-PhOH as the proton source results
in a smaller rate enhancement with a maximum TOF of 1.5 x 10 6 s–1, representing only a
1.4-fold enhancement relative to PhOH, about half of what was observed in the low over-
potential regime (Figure 8.7d). Catalytic Tafel plots comparing the two acids are presented
in Figure 8.7d. In addition, there is still a proton dependence on the rate limiting step as
illustrated by the normal, primary H/D kinetic isotope effect.

Next, the energetic span model was then applied to predict the rates for the three possible
mechanistic pathways proposed for the high overpotential regime. These rates are then com-
pared to the experimentally determined TOFs. The three pathways are given in Figure 8.5
and are illustrated in a free energy diagram (Figure 8.5) to allow for more direct compari-
son. From the 1[Fe]0 catalytic resting state, the iron complex can either go through: (1) a
CO2 coordination first pathway to give the η2 CO2 complex (2[Fe−CO2]

0); (2) a protonation
first pathway to generate the cationic pyridinium intermediate, 1[Fe−NPYH]

+; or a PCET
pathway to generate a similar neutral pyridinium species, 2[Fe−NPYH]

0.
A TOF of 16000 s–1 is predicted for the CO2 binding first pathway. The TOF is

completely controlled by the CO2 coordination step as the reduction of 1[Fe−CO2H]
+ to

2[Fe−CO2H]
0 lowers the (previously rate limiting) barrier for the second protonation by
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6.6 kcal/mol from 13.9 to 7.3 kcal/mol. This shrinks the XTOF for both 1[Fe−CO2H]
1 and

the transition state for the second protonation to 0. The CO2 first pathway can be eliminated
because CO2 coordination is shown by the energetic span model to be entirely rate limiting
and thus fails to explain the experimentally observed normal, primary H/D kinetic isotope
effect and a large catalytic enhancement with the addition of more acidic proton donors.

Next, for the protonation first pathway, we predict a TOF that is almost 3 orders of
magnitude slower than what we observed experimentally (11000 s–1). Additionally, we find
that the cycle is solely controlled by the first protonation of 1[Fe]0 to give the pyridinium
intermediate, 1[Fe−NPYH]

+. The protonation first pathway would account for the primary
kinetic isotope effect but not the rate enhancement upon addition of stronger acids as the
energetic span model predicts the same rate regardless of if PhOH or Cl-PhOH are utilized
as the proton source.

The TOF predicted for the PCET pathway of 1.4 x 10 7 s–1 resulted in the closest match
to the experimentally measured value of 1.05 x 10 6 s–1 with the pathway being controlled by
both the PCET step as well as the second protonation of 2[Fe−CO2H]

0 as both have XTOF
coefficients close to 0.5. The chloro-substituted phenol lowers the barrier for the second
protonation by 2.6 kcal/mol. However, only the PCET pathway is kinetically controlled by
this transition state increasing the TOF from 1.4 x 10 7 s–1 to 2.6 x 10 7 s–1. This increase is
smaller than the increase in the low overpotential regime despite a stronger effect on barrier
lowering. This can be understood by the lower XTOF of that step in the low versus high
overpotential regime. Taking together the experimental and computational findings, these
data suggest that the PCET pathway is the more likely mechanism for the high overpotential
regime.

Selectivity versus HER.

Achieving selectivity for CO2 reduction over the reduction of protons to H2 is critical. The
HER is a competitive side reaction across a similar potential window to the CO2RR and is
highly dependent on the presence and strength of the proton source.[97] The generation of
an iron hydride under reducing conditions in the presence of a proton donor can thus shift
the catalyst selectivity away from CO production and toward the formation of H2. It is
therefore important to understand the kinetic and thermodynamic barriers associated with
the protonation of the reduced iron center.

In our proposed pathway there are two critical intermediates through which the forma-
tion of a hydride is feasible. The first possibility is the direct protonation of the iron center
of the doubly reduced intermediate, 1[Fe]0. The other possibility is the rearrangement of the
pyridinium intermediate, 1[Fe−NPYH]

+, to a metal hydride. In both cases, high activation
barriers prevent these side reactions and explain the high product selectivity for CO2 reduc-
tion to CO that is observed experimentally. The direct formation of a hydride 1[Fe−H]+
from 1[Fe]0 albeit thermodynamically favorable with a free energy of −6.1 kcal/mol, is ki-
netically inhibited with a high activation barrier of 24.5 kcal/mol. The rearrangement of
1[Fe−NPYH]

+ to 1[Fe−H]+, is more exergonic (−17.5 kcal/mol); however, this pathway is
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also inhibited by a larger activation barrier of 21.4 kcal/mol. In both cases, the high barri-
ers can be rationalized by the electronic structure of 1[Fe]0: the metal center stabilizes the
two ligand reductions through antiferromagnetic coupling and thus the metal center remains
Lewis acidic. This is illustrated by the coordination of acid (e.g., PhOH or H2CO3) to

1[Fe]0

in which the acid prefers to bind via the oxygen atom to the iron center which then fa-
cilitates the protonation of the pyridyl arm, but blocks the metal center from protonation.
Therefore, the formation of a metal-hydride is prohibited by steep kinetic barriers ultimately
shutting down pathways to hydrogen production (see Figure G.3 for both HER transition
states). The difference between the rate limiting transition state in CO2RR and the barrier
for hydride formation is ∼10 kcal/mol which implies that 1[Fe]2+ should remain selective for
the CO2RR even when stronger acids are used as proton donors. This is illustrated by using
4-nitro-phenol, an even stronger acid (two pKa units stronger than Cl-PhOH), with a barrier
of 19.3 kcal/mol for the formation of a hydride. We explored this possibility and in all cases
we do not detect any hydrogen formation experimentally. However, 4-nitro-phenol was also
redox-active at the potentials applied, which prevented also the formation of CO.
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Figure 8.5: Proposed mechanistic cycles for the high overpotential regime. The high overpo-
tential catalytic regime turns over from 2[Fe]+ following an initial induction period. Single-
electron reduction of 2[Fe]+ gives the catalytic resting state, 1[Fe]0. Following formation of
1[Fe]0, the pathway diverges in three directions. CO2 binding can occur first followed by
protonation to give 1[CO2H]

+ (outer pathway) or protonation-first can occur followed by
CO2 coordination (inner pathway). The 1[Fe−CO2H]

+ intermediate can then be further re-
duced to 2[Fe−CO2H]

0 and following the final protonation step and loss of water generates
the carbonyl complex, 2[Fe−CO]+ which regenerates 2[Fe]+ following ligand exchange. We
additionally explore the possibility of overcoming the high energy barriers associated with
either CO2 binding or protonation of 1[Fe]0 by undergoing a PCET pathway to generate
2[Fe−NPYH]

0 (center pathway). All reaction and activation energies are given in units of
kcal/mol and all reduction potentials are referenced to the computed Fe/Fe+ couple.
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Figure 8.6: Free energy landscape of CO2RR (both regimes). For the reduction steps,
a potential of −1.8 V vs Fc+/Fc is applied; for the protonation steps, phenol is used to
estimate barriers and carbonic acid for free energies (see main text for justification); solid
lines correspond to intermediate states and dashed lines to transition states.
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Figure 8.7: Kinetic analysis of 1[Fe]2+ (a) Cyclic voltammograms of 1[Fe]2+ in the absence
(black) and presence (purple) of CO2 with 1 M phenol. Average current densities extracted
from the controlled potential electrolysis experiments (b) are overlayed on the catalytic CV
(black dots) (c) Catalytic Tafel plot for 1[Fe]2+ obtained from CPE experiments with 1 M
phenol. (d) Comparison of catalytic Tafel plots obtained with 1 M PhOH or Cl-PhOH. CPE
experiments were collected in an electrolyte of 0.10 M TBAPF6 dissolved in acetonitrile
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Figure 8.8: Free energy landscape of the CO2RR (low overpotential regime) and HER path-
ways; for the reduction steps, a potential of −1.8 V vs Fc+/Fc is applied; for the protonation
steps, phenol is used to estimate barriers and carbonic acid for free energies (see main text
for justification); solid lines correspond to intermediate states and dashed lines to transition
structures.
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Rational Catalyst Design Driven by Mechanistic Insights.

Based on the mechanistic studies we identified several critical intermediates and transition
states. This directed us to propose improved ligand designs that ideally stabilize several
critical intermediates. The key takeaways from the kinetic analysis are: first, the low over-
potential regime is solely controlled by the second protonation step, even when stronger
acids are used. Thus, modifications must either lower the energy of the transition state or
decrease the stability of the carboxy intermediate. Second, the high overpotential regime is
mainly controlled by either the CO2 adduct or the formation of the pyridinium intermediate,
especially when stronger acids are used as the proton source. Thus, an optimal modification
should have a positive effect on both the CO2 binding and second protonation. On the basis
of our detailed mechanistic investigation, we propose rationally designed synthetic modifi-
cations to the tpyPY2Me ligand to further increase the catalytic performance of the iron
complex. Synthetic modification to the pyridine moiety is the most promising for two rea-
sons: first, it does not affect the initial reduction potentials and the crucial antiferromagnetic
coupling of 1[Fe]0; second, substituents can affect all critical intermediates by stabilizing the
bound CO2 adduct, increasing the pKa of the pyridine itself for protonation and PCET, and
then stabilizing the transition state for the second protonation (Figure 8.9 for investigated
candidates).

In order to gain quantitative insights, we use ALMO-EDA(solv)[174] to understand
how a specific modification stabilizes the reduced CO2 adduct. We employ a difference-
in-difference-approach where we compare the change in interaction energy and EDA terms
using the unsubstituted tpyPY2Me ligand as the reference. We investigate hydrogen bond-
ing (−OH and −NH2) and ionic stabilization (−N(CH3)

+
3 ) as both moieties are known to

facilitate CO2 binding in other CO2RR catalysts (see figure 8.9).[167, 176, 380, 385, 401,
403] The EDA decomposition of that change in interaction energy is crucial for understand-
ing the exact stabilization pathway as substituents affect the reduced CO2 not only directly
via a non-covalent interaction but also indirectly via substituent effects. Both pathway often
have distinct EDA fingerprints and thus can be distinguished by an EDA scheme. This was
recently shown by us for an iron tetraphenylporphyrin catalyst.[174] The chosen reference
fragmentation of the complex is a doubly reduced CO 2–

2 and an unreduced catalyst. This
fragmentation is more suitable for this type of complex as the O−C−O bond angle of 124◦

indicates a transfer of both electrons into the CO2 moiety. The alternative choice, a neutral
but bent CO2 fragment and a doubly reduced metal complex will be solely dominated by
the geometry distortion term see reference [174] for a more detailed discussion. Thus, this
interaction energy decomposed by the EDA scheme corresponds to the stabilization of the
doubly reduced CO 2–

2 dianion by the unreduced catalyst. It is important to point out that
this is just a part of the total free energy of CO2 addition.

The EDA results are given in Figure 8.10 a and show that the interaction is dominated
by electrostatic interactions with significant charge transfer contributions. The short Fe−C
bond distance of 2.05 Å rationalizes the high Pauli repulsion. The change in interactions
energies as well as each EDA component for each substituent relative to the unsubstituted
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8.jpg

Figure 8.9: Chemical structures of second-sphere functionalized polypyridyl catalysts for
improved performance based on our mechanistic understanding

complex is depicted in Figure 8.10 b.
The ortho hydroxy substituent (o-OH) strengthens the interaction by 77.1 kJ/mol (18.5

kcal/mol). The main driving force is additional favorable electrostatic interaction, which is
also supplemented by favorable contributions from polarization and charge transfer, which
are typical of an hydrogen bonding fingerprint.[83] The large increase in Pauli repulsion can
be attributed to the repulsion of the diffuse lone pairs of the CO2 moiety and the hydroxy
group. Interestingly, this intermediate was not stable without freezing the hydroxy OH
bond as it otherwise directly protonates the CO2 moiety. The ortho amino substituent has a
much smaller stabilizing effect of −22.5 kJ/mol (5.4 kcal/mol). The favorable electrostatic
interaction cannot overcome the additional Pauli repulsion of the amino substituent and the
CO 2–

2 moiety. Lastly, the charged trimethylamino (TMA) moiety had to be placed at the
meta position due to the bulkiness of the group. The EDA results demonstrate how this
group provides a purely electrostatic stabilization; however, the solvation screens most of
the interaction to yield an overall stabilization of −44.6 kJ/mol (−10.7 kcal/mol).

The ortho hydrogen donating substituents have another advantage: They can stabilize
the transition state for the second protonation step by forming hydrogen bonds. These
interactions lower the transition state (see Figure G.4 b) for the o-OH by 1.3 kcal/mol which
translates to an order of magnitude faster TOF in the low overpotential regime (similar effect
to the use of stronger acids).

8.4 Conclusions
In summary, inspired by the excellent catalytic activity of [Fe(tpyPY2Me)]2+, we investigated
the mechanistic pathways through which it electrochemically converts CO2 into CO. Cyclic
voltammograms collected under CO2 atmosphere displayed the formation of two distinct
catalytic regimes with maximum current densities achieved at −1.66 V vs Fc/Fc+ (η =
390 mV) and −1.98 V vs Fc/Fc+ (η = 710 mV). For the low overpotential regime, the
computed pathway shows that 1[Fe]2+ first undergoes two, single-electron reduction steps to
generate the five-coordinate open-shell singlet, 1[Fe]0. From 1[Fe]0, we show that the order of
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Figure 8.10: ALMO-EDA(solv) results for CO2 adduct 1[Fe−CO2]
0: (a) the unsubstituted

adduct; (b) differential (ALMO-EDA(solv) results for three different substituents −OH,
−NH2 and −N(CH3)

+
3 (TMA) ; energies in kJ/mol.

CO2 addition or protonation is flexible and experimentally indistinguishable with both steps
having comparable calculated barriers. We find that both CO2 binding and protonation
of the pyridine arm are feasible steps with similar endergonic free energies. In any case,
the rate limiting step was found to be the second protonation step resulting in cleavage
of the C−O bond with subsequent CO release being barrierless and exergonic. Analysis
of the complete low overpotential regime revealed that catalysis is solely controlled by the
carboxyl intermediate (1[Fe−CO2H]

+) and the transition state for the second protonation
step. Consequently, the use of a stronger proton source, such as Cl-PhOH, resulted in three-
fold increase in the rate of catalysis without any loss in product selectivity.

Computational analysis of the high overpotential regime shows a similar two initial elec-
tron transfer steps; however, at more reducing potentials, the first reduction is off-pathway,
allowing for turnover from 2[Fe]1 rather than 1[Fe]2+ as is observed in the low overpoten-
tial regime. Following formation of the catalytic resting state, 1[Fe]0, we computationally
probed three mechanistic pathways and compared them to experimental kinetic data and
results obtained from the energetic span model. From this analysis, we identified the PCET
pathway of one of the pyridine arms as the most consistent mechanism. This intermediate
readily binds CO2 and rearranged into a singly reduced carbonyl intermediate. The addi-
tional electron greatly facilitates the second protonation step explaining the increased rates
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observed for the higher overpotential regime. Analysis of the cycle showed that both the
PCET and the second protonation steps control the rate of catalysis. As such, similar to
the low overpotential regime, the use of a more acidic proton source increases the rate of
catalysis, but to a lesser degree. The stronger acid only lowers the barrier for the second
protonation; however this step has less influence on the turnover frequency and thus the
effect of acid pKa is lower (see Figure G.5 for a complete overview).

Finally, the mechanistic insights gained from this study identified the pyridyl arms as
promising targets for further optimization of the catalytic performance of this system. The
pyridyl arms are not involved in stabilizing the excess electron density in the reduction
events and thus any modifications should not alter the reduction potential of 1[Fe]2+, which
is already optimally matched to the standard redox potential for the conversation of CO2.
The introduction of hydrogen bond donors into the second coordination sphere can further
greatly stabilize the CO2 adduct and lower the transition state for the second protonation
step, both of which are critical intermediates for fast catalysis. Moreover, we also expect
that the substituent effects can help to stabilize the pyridinium intermediate; therefore, this
synthetic modification has the potential to improve catalysis in all proposed cycles for both
the low and high overpotential regimes.
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Appendix A

MP2-EDA for Radicals

A.1 Long-Range Behavior of each Energy Component
The asymptotic behaviors of the four energy components are shown in Fig. A.1. All terms
show the correct behavior in the long range: frozen interaction and charge transfer decay
exponentially, while polarization and dispersion show 1/r4 and 1/r6 decay, respectively.
The test system for frozen and polarization energy is a single fragment Li atom with an
external charge, and dispersion and charge transfer are examined on a Li· · ·He complex
(doublet). These tests are analogous to those employed previously for closed-shell MP2-
ALMO-EDA. [212]



APPENDIX A. MP2-EDA FOR RADICALS 279

y = 2.13e-2.737x

R² = 0.99

y = 0.15x-4.082

R² = 0.99999

1E-12

1E-10

1E-08

0.000001

0.0001 1 10

En
er

gy
 [H

a]

r [Å]

Log-Log Plot of Li and a Positive Charge 
(UMP2/def2-QZVPPD)

FRZ POL Expon. (FRZ) Power (POL)

(a)

y = 0.08e-2.326x

R² = 0.987
y = 0.1634x-4.097

R² = 1

1E-12

1E-10

1E-08

0.000001

0.0001

0.01

1
1 10 100

En
er

gy
 [H

a]
r [Å]

Log-Log Plot of Li and a Positive Charge (RMP2/def2-QZVPPD)
FRZ POL Expon. (FRZ) Power (POL)

(b)

U: y = 20.975x-6.172

R² = 0.9999

1E-08

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1
1 10 100

En
er

gy
 [H

a]

r  [Bohr]

Log-Log Plot of EDIP He-Li doublet (R/UMP2/cc-pVQZ)  (long 
range)

DIP (R) DIP (U) Power (DIP (R)) Power (DIP (U))

R: y = 20.769x-6.168

R² = 0.9999

(c)

R: y = 0.015e-0.993x

R² = 0.994

U: y = 0.027e-1.062x

R² = 0.9918

1E-12
1E-11
1E-10
1E-09
1E-08

0.0000001
0.000001

0.00001
0.0001

0.001
0.01

0.1
1

1 10 100

En
er

gy
 [H

a]

r  [Bohr]

Log-Log Plot of ECT He-Li doublet (R/UMP2/cc-pVQZ)
CT (R) CT (U) Expon. (CT (R)) Expon. (CT (U))

(d)

Figure A.1: a) Log-Log plot for the decay of both the frozen and polarization terms for a Li
atom interacting with an external charge (UMP2); b) Log-Log plot for the decay of both the
frozen and polarization terms for the same Li•–external charge complex (RMP2); c) Log-
Log plot for the decay of dispersion energy for the He· · ·Li• complex with both UMP2 and
RMP2; d) Log-Log plot for the decay of charge transfer energy for the Li•–external charge
complex with both UMP2 and RMP2.
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A.2 TA13 Benchmark Set
All geometries and reference interaction energies were taken from Ref. [209]. All calculations
were performed with the aug-cc-pVTZ basis and the RI-aug-cc-pVTZ auxiliary basis for all
elements except Li and Be for which RI-cc-pVQZ was employed. [250–254] Both UMP2-EDA
(Table A.1) and RMP2-EDA (Table A.2) results are provided below.
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A.3 Complexes between Halogenated Benzene Radical
Cation and Water

All geometries were fully optimized using ωB97X-D[68]/def2-TZVPPD[247, 248] in the gas
phase with no constraints. An ECP was used for iodine. [249] The RMP2-EDA results for
F-, Cl-, and Br-substituted benzene radical cations were calculated with aug-cc-pVTZ and
its corresponding RI basis, while for iodobenzene the def2-TZVPPD basis set (with RI-def2-
TZVPPD) and an ECP were employed. The full results are presented in Table A.3. For
comparison, we also performed DFT-based ALMO-EDA using ωB97M-V [70] with the same
choice of basis sets for these complexes, whose results are shown in Table A.4. To make the
results comparable to those of RMP2-EDA, the original ALMO scheme [83] was employed,
and the use of fragment electric response functions (FERFs) [32] for polarization makes a
small difference (e.g. 0.5 kJ/mol for the hydrogen-bonded complex of water chlorobenzene
radical cation). The dominant complementary occupied-virtual orbital pairs (COVPs) for
the bromobenzene radical cation–water complexes (Fig. A.2) were also generated at the
ωB97M-V/aug-cc-pVTZ level of theory.

(a) (b)

Figure A.2: The main COVP for (a) the hydrogen-bonded form of the H2O· · ·C6H5Br
+• com-

plex, and (b) the halogen-bonded form of the same complex (filled: donor orbital; meshed:
acceptor orbital).
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Table A.4: Comparison of RMP2-EDA against DFT-based ALMO-EDA (unrestricted, with
ωB97M-V/aug-cc-pVTZ) for the halogenated benzene radical cation–water complexes. All
energies are in kJ/mol, and the reference values for total interaction energies were obtained
using ωB97M(2)/def2-TZVPPD.

Complex ∆EDFT
FRZ ∆EDFT

POL ∆EDFT
DISP ∆EDFT

CT ∆EDFT
INT Error

Hydro Bz-F -17.33 -9.84 -7.89 -4.99 -40.04 0.20
Hydro Bz-Cl -16.19 -9.07 -7.72 -4.59 -37.58 0.13
Hydro Bz-Br -15.53 -8.68 -7.63 -4.39 -36.23 -2.35
Hydro Bz-I -14.19 -7.64 -6.88 -4.27 -32.98 0.28

Halo Bz-F -14.66 -1.62 -2.92 -0.22 -19.42 -0.05
Halo Bz-Cl -13.05 -6.71 -8.29 -4.44 -32.49 -0.87
Halo Bz-Br -12.67 -9.83 -9.93 -6.22 -38.65 0.49
Halo Bz-I -11.55 -15.84 -12.63 -7.98 -48.00 1.20

Complex ∆EMP2
FRZ ∆EMP2

POL ∆EMP2
DISP ∆EMP2

CT ∆EMP2
INT Error

Hydro Bz-F -14.54 -11.27 -8.09 -5.90 -39.80 -0.04
Hydro Bz-Cl -13.17 -10.47 -7.92 -5.51 -37.07 -0.38
Hydro Bz-Br -12.49 -10.08 -7.81 -5.30 -35.69 -2.89
Hydro Bz-I -9.39 -8.66 -6.97 -5.47 -30.49 -2.19

Halo Bz-F -14.66 -1.58 -2.74 -0.48 -19.46 0.03
Halo Bz-Cl -10.89 -7.22 -9.18 -5.53 -32.81 -0.55
Halo Bz-Br -9.08 -10.58 -11.12 -7.70 -38.48 0.32
Halo Bz-I -7.07 -16.86 -12.49 -10.65 -47.07 0.28



APPENDIX A. MP2-EDA FOR RADICALS 286

A.4 Anionic CO2 radical N-heterocycle complexes
All reference total interaction energies were obtained with ωB97M(2)/def2-QZVPPD and the
corresponding auxiliary basis set. The EDA results were obtained with RMP2/aug-cc-pVTZ
(with the corresponding RI basis) and the results are presented in Table A.5. For comparison,
we also performed DFT-based ALMO-EDA with ωB97M-V/aug-cc-pVTZ and the results
are shown in Table A.6. As for the previous set of systems in Sec. A.3, the original ALMO
scheme was employed for DFT-based EDA calculations, and the use of FERFs also makes an
insignificant difference (e.g. 2 kJ/mol for the hydrogen-bonded Im−CO2

−• complex). The
plots electron density / spin density (Fig. A.3) and the dominant COVP (Fig. A.4) were also
generated with ωB97M-V/aug-cc-pVTZ.

(a) (b) (c)

Figure A.3: (a) RO-HF spin density at the frozen level for the carbamate Py−CO2
−•; (b)

density difference plot for a CO2
−• radical anion with and without a partial negative charge

located 1.5 Å away from the carbon atom (green indicates density depletion and yellow
indicates enhancement); (c) fully unconstrained RO-HF spin density for the carbamate
Py−CO2

−•.

Figure A.4: Most significant COVP for charge transfer in the hydrogen-bonded Im−CO2
−•

complex (filled: donor orbital; meshed: acceptor orbital).
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Table A.6: Comparison of RMP2-EDA against DFT-based ALMO-EDA (unrestricted, with
ωB97M-V/aug-cc-pVTZ) for the Py−CO2

+• and Im−CO2
+• complexes. The binding mode

is denoted by either (H) for hydrogen bonding or (C) for the carbamate motif. All energies
are in kJ/mol and reference total interaction energies are obtained using ωB97M(2)/def2-
QZVPPD.

Complex ∆EDFT
FRZ ∆EDFT

POL ∆EDFT
DISP ∆EDFT

CT ∆EDFT
INT Error

Im−CO2
−•(H) -18.07 -41.41 -21.58 -21.94 -103.00 2.12

Py−CO2
−• (C) 1270.86 -820.03 -84.05 -513.13 -146.35 -5.87

ImBH2−CO2
−•(H) -25.65 -52.01 -21.77 -26.94 -126.37 2.10

ImOH−CO2
−• (H) -19.82 -42.45 -20.99 -24.59 -107.85 -0.14

PyBH2−CO2
−•(C) 1122.99 -710.59 -81.94 -575.88 -245.43 -4.13

PyOH−CO2
−• (C) 1297.68 -869.18 -84.71 -462.33 -118.54 -4.87

Im−CO2
−• (C) 1448.52 -1003.49 -82.44 -399.41 -36.83 -9.47

Py−CO2
−• (H) 0.82 -25.02 -18.90 -8.16 -51.26 1.26

Complex ∆EMP2
FRZ ∆EMP2

POL ∆EMP2
DISP ∆EMP2

CT ∆EMP2
INT Error

Im−CO2
−•(H) 0.57 -56.01 -22.02 -26.79 -104.24 0.87

Py−CO2
−• (C) 1537.56 -967.44 -128.95 -575.26 -134.09 6.39

ImBH2−CO2
−•(H) -3.54 -68.87 -22.98 -32.12 -127.53 0.94

ImOH−CO2
−• (H) -1.17 -57.19 -21.55 -27.45 -107.36 0.35

PyBH2−CO2
−•(C) 1370.30 -828.99 -118.37 -657.35 -234.43 6.87

PyOH−CO2
−• (C) 1568.99 -994.26 -122.73 -558.43 -106.46 7.20

Im−CO2
−• (C) 1736.05 -1140.44 -120.48 -495.83 -20.73 6.63

Py−CO2
−• (H) 10.65 -33.24 -17.28 -11.58 -51.46 1.05
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Appendix B

Variational Forward-Backward Charge
Transfer Analysis

B.1 Additional results for BH3 complexes
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Figure B.1: Decay of the total forward and backward CT energies (∆ECTf and ∆ECTb)
obtained from perturbative CT analysis [87] with respect to the C−B distance. The forward
CT energy is well reproduced by the stabilization energy associated while the σ-type COVP
and backward CT energy by that of π-type COVP.
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Table B.1: Decomposition of the frozen interaction energy at the minimum-energy structures
using the “quasiclassical” scheme [86, 322] (energies in kJ/mol).

∆EElec ∆EPauli ∆EDisp

H3N−BH3 -354.14 497.52 -31.13
OC−BH3 -299.40 667.26 -35.75

Table B.2: Vertical ALMO-EDA results for OC−BH3 with the B97-D[62] and ωB97X-D[68]
functionals. Energies in kJ/mol and distances in Å.

∆EFrz ∆EPol ∆ECTf ∆ECTb ∆ECT ∆ETot r(B−C)
B97-D 331.6 -284.7 -99.8 -120.8 -227.6 -180.8 1.527
ωB97X-D 312.7 -281.2 -101.9 -99.6 -205.4 -173.9 1.523

Table B.3: Adiabatic ALMO-EDA molecular properties results for the OC−BH3 complex.
For the free CO, r(CO) = 1.134 Å and νCO= 2130 cm–1 (B97-D) and r(CO) = 1.123 Å and
νCO= 2248 cm–1 (ωB97X-D).

r(CB) ∆r(CO) ∆νCO
[Å] [Å] [cm–1]

Frz 3.25 -0.001 9
Pol 3.19 -0.001 10

B97-D CTf 1.84 -0.010 103
CTb 1.54 0.002 28
Tot 1.53 0.006 -3

Frz 3.14 -0.001 10
Pol 2.97 -0.001 13

ωB97X-D CTf 1.73 -0.011 116
CTb 1.55 -0.002 40
Tot 1.52 0.001 14
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B.2 Additional results for complexes between CO and
BeY (Y = O or CO3)

(a) (b)

Figure B.2: Electron density difference between the Pol and Frz states (plotted with iso-
value 0.01 a.u.) for (a) OC−BeO and (b) CO−BeO. Green and gold colors indicate the
enhancement and depletion of electron density, respectively.

Table B.4: Decomposition of the frozen interaction energy at the minimum-energy structures
of the CO−BeY complexes using the “quasiclassical” scheme with the B3LYP functional
(energies in kJ/mol).

∆EElec ∆EPauli ∆EDisp

OC−BeO -115.89 134.36 -7.04
CO−BeO -62.37 100.99 -7.22
OC−BeCO3 -103.35 124.82 -8.80
CO−BeCO3 -53.24 86.65 -6.46
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Figure B.3: Shifts in C−O bond length (∆r(CO)) as a function of the intermolecular distance
for OC−BeO (left panel) and CO−BeO (right panel). The geometry of the complex is
relaxed on each PES at each given X−Be distance. The black dashed lines indicate the full
equilibrium distance for each complex.

(a) (b) (c)

(d) (e)

Figure B.4: Key COVPs illustrating the σ and π donations in OC−BeO: (a) σ-donor, (b)
σ-acceptor, (c) π-donor, and (d) π-acceptor. Panel (e) shows the π-acceptor orbital in the
κO complex CO−BeO.
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Figure B.5: Decay of the forward CT stabilization energy (ECTf−EPol) with the intermolec-
ular (X−Be) distance for the κC and κO isomers.

Table B.5: Vertical ALMO-EDA results for the four CO−BeY complexes using B97-D and
ωB97X-D (energies in kJ/mol).

∆EFrz ∆EPol ∆ECTf ∆ECTb ∆ECT ∆ETot

B97-D

OC−BeO 28.1 -111.3 -24.9 -70.0 -98.1 -181.3
CO−BeO 50.9 -81.0 -28.7 -37.8 -69.4 -99.5
OC−BeCO3 19.4 -94.9 -27.4 -25.0 -53.8 -129.3
CO−BeCO3 31.4 -65.9 -26.0 -9.7 -36.1 -70.6

ωB97X-D

OC−BeO 2.1 -96.2 -23.2 -32.7 -57.2 -151.3
CO−BeO 22.9 -68.6 -23.2 -13.1 -36.6 -82.3
OC−BeCO3 0.0 -82.5 -25.6 -9.0 -34.7 -117.2
CO−BeCO3 20.1 -63.0 -23.3 -4.6 -27.9 -70.8
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Table B.6: Adiabatic ALMO-EDA molecular properties results for the four X−BeY adducts
using B97-D. The distances are in Å and the frequency shifts are in cm–1. For the free CO,
r(CO) = 1.134 Å and νCO= 2130 cm–1.

OC−BeO CO−BeO OC−BeCO3 CO−BeCO3

r(CO) Frz 1.124 1.137 1.126 1.137
r(CO) Pol 1.121 1.140 1.121 1.140
r(CO) CTf 1.121 1.142 1.121 1.142
r(CO) CTb 1.134 1.152 1.126 1.142
r(CO) Full 1.136 1.159 1.127 1.146

r(X-Be) Frz 2.24 2.51 2.40 2.60
r(X-Be) Pol 1.86 1.85 1.92 1.90
r(X-Be) CTf 1.85 1.76 1.90 1.78
r(X-Be) CTb 1.73 1.71 1.82 1.84
r(X-Be) Full 1.72 1.62 1.80 1.72

∆νCO Frz 94 -21 78 -20
∆νCO Pol 140 -37 131 -38
∆νCO CTf 138 -50 132 -53
∆νCO CTb 19 -170 69 -64
∆νCO Full 4 -227 56 -109
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Table B.7: Adiabatic ALMO-EDA molecular properties results for the four X−BeY adducts
using ωB97X-D. The distances are in Å and the frequency shifts are in cm–1. For the free
CO, r(CO) = 1.123 Å and νCO= 2248 cm–1.

OC−BeO CO−BeO OC−BeCO3 CO−BeCO3

r(CO) Frz 1.112 1.127 1.114 1.127
r(CO) Pol 1.110 1.130 1.110 1.130
r(CO) CTf 1.847 1.132 1.110 1.132
r(CO) CTb 1.115 1.132 1.111 1.131
r(CO) Full 1.116 1.134 1.111 1.132

r(X-Be) Frz 2.18 2.18 2.31 2.33
r(X-Be) Pol 1.87 1.87 1.92 1.87
r(X-Be) CTf 1.11 1.11 1.89 1.75
r(X-Be) CTb 1.77 1.77 1.88 1.85
r(X-Be) Full 1.75 1.75 1.85 1.73

∆νCO Frz 104 -34 86 -34
∆νCO Pol 138 -52 127 -56
∆νCO CTf 139 -62 131 -68
∆νCO CTb 75 -73 117 -57
∆νCO Full 66 -100 116 -72
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Figure B.6: Potential energy surface for each ALMO-EDA intermediate state for
H3N−[Ru(NH3)5]

2+.

B.3 Additional results for complexes between
[Ru(II)(NH3)5]

2+ and π-acidic ligand series

Table B.8: Decomposition of the frozen interaction energy at the minimum-energy struc-
tures of the transition metal complexes using the “quasiclassical” scheme with the B3LYP
functional (energies are in kJ/mol).

∆EElec ∆EPauli ∆EDisp

NN−[Ru(NH3)5]
2+ -240.89 420.96 -19.66

OC−[Ru(NH3)5]
2+ -485.79 796.45 -27.54

FB−[Ru(NH3)5]
2+ -700.15 1060.49 -43.26

NN−[Fe(NH3)5]
2+ -166.33 264.22 -15.46

NN−[Tc(NH3)5]
+ -326.24 622.11 -32.07
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Table B.9: Vertical ALMO-EDA results (in kJ/mol) for the transition metal complexes using
the B3LYP, B97-D and ωB97X-D functionals. ∆EPCTf and ∆EPCTb refer to the forward and
backward CT energies calculated using the perturbative CT analysis.

∆EFrz ∆EPol ∆ECTf ∆ECTb ∆ECT ∆ETot ∆EPCTf ∆EPCTb

B3LYP
NN−[Ru(NH3)5]

2+ 160.4 -70.1 -95.0 -99.5 -212.7 -122.4 -90.8 -103.1
OC−[Ru(NH3)5]

2+ 283.1 -119.6 -190.0 -155.8 -392.8 -229.2 -181.5 -170.8
FB−[Ru(NH3)5]

2+ 317.1 -171.0 -284.7 -130.0 -477.2 -331.1 -271.0 -139.2
NN−[Fe(NH3)5]

2+ 82.4 -57.1 -42.1 -53.2 -100.9 -75.6 -38.5 -51.0
NN−[Tc(NH3)5]

+ 263.8 -75.0 -94.6 -277.4 -414.7 -225.9 -90.1 -412.5

B97-D
NN−[Ru(NH3)5]

2+ 156.8 -68.0 -103.0 -117.2 -244.5 -155.7 -107.9 -170.5
OC−[Ru(NH3)5]

2+ 273.0 -117.3 -201.8 -173.5 -431.5 -275.8 -216.4 -248.2
FB−[Ru(NH3)5]

2+ 298.3 -170.7 -299.2 -141.1 -510.3 -382.6 -334.2 -182.6
NN−[Fe(NH3)5]

2+ 77.0 -55.2 -46.8 -76.8 -134.1 -112.3 -48.1 -112.5
NN−[Tc(NH3)5]

+ 259.6 -75.7 -103.5 -300.7 -455.0 -271.1 -106.5 -717.7

ωB97X-D
NN−[Ru(NH3)5]

2+ 138.1 -67.8 -92.7 -88.5 -196.5 -126.2 -75.7 -60.5
OC−[Ru(NH3)5]

2+ 257.5 -118.3 -188.4 -147.1 -378.9 -239.7 -149.9 -112.3
FB−[Ru(NH3)5]

2+ 294.2 -175.9 -282.8 -122.3 -461.7 -343.4 -210.0 -98.1
NN−[Fe(NH3)5]

2+ 65.5 -56.5 -40.7 -44.7 -89.7 -80.7 -30.1 -29.1
NN−[Tc(NH3)5]

+ 239.1 -70.0 -91.4 -258.0 -388.1 -219.0 -76.0 -189.3

Table B.10: Metal-ligand distance [r(M−X)] and bond length of the diatomic ligand [r(X−Y)]
(both in Å) evaluated on the Pol, CTf, CTb, and Tot surfaces using B97-D. In the isolated
state, r(N−N) = 1.099 Å, r(C−O) = 1.134 Å, r(B−F) = 1.279 Å.

r(M-X) r(X-Y)
Complex Pol CTf CTb Tot Pol CTf CTb Tot

NN−[Ru(NH3)5]
2+ 2.713 2.285 2.236 1.899 1.098 1.096 1.105 1.120

OC−[Ru(NH3)5]
2+ 2.614 2.189 2.184 1.836 1.126 1.122 1.137 1.154

FB−[Ru(NH3)5]
2+ 2.729 2.118 2.327 1.858 1.256 1.247 1.264 1.279

NN−[Fe(NH3)5]
2+ 2.857 2.857 2.046 1.820 1.099 1.097 1.106 1.116

NN−[Tc(NH3)5]
+ 2.992 2.390 2.079 1.853 1.098 1.096 1.128 1.149
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Table B.11: Adiabatic ALMO-EDA results with B97-D for the shifts in the vibrational
frequency of N2, CO, and BF (∆νXY in cm–1) when associated with the transition metal
moieties. In the isolated state, νNN = 2372 cm–1, νCO = 2130 cm–1, νBF = 1344 cm–1.

∆νXY
Complex Pol CTf CTb Tot

NN−[Ru(NH3)5]
2+ 12 33 -72 -202

OC−[Ru(NH3)5]
2+ 72 119 -28 -111

FB−[Ru(NH3)5]
2+ 133 220 110 154

NN−[Fe(NH3)5]
2+ 4 21 -87 -183

NN−[Tc(NH3)5]
+ 8 34 -252 -393

Table B.12: Metal-ligand distance [r(M−X)] and bond length of the diatomic ligand [r(X−Y)]
(both in Å) evaluated on the Pol, CTf, CTb, and Tot surfaces using ωB97X-D. In the
isolated state, r(N−N) = 1.088 Å, r(C−O) = 1.123 Å, r(B−F) = 1.266 Å.

r(M-X) r(X-Y)
Complex Pol CTf CTb Tot Pol CTf CTb Tot

NN−[Ru(NH3)5]
2+ 2.564 2.296 2.329 1.959 1.087 1.086 1.089 1.097

OC−[Ru(NH3)5]
2+ 2.555 2.194 2.225 1.856 1.114 1.112 1.120 1.134

FB−[Ru(NH3)5]
2+ 2.619 2.143 2.344 1.869 1.242 1.236 1.247 1.262

NN−[Fe(NH3)5]
2+ 2.471 2.241 2.216 1.964 1.087 1.087 1.088 1.091

NN−[Tc(NH3)5]
+ 2.558 2.361 2.090 1.869 1.086 1.086 1.108 1.124

Table B.13: Adiabatic ALMO-EDA results with ωB97X-D for the shifts in the vibrational
frequency of N2, CO, and BF (∆νXY in cm–1) when associated with the transition metal
moieties. In the isolated state, νNN = 2493 cm–1, νCO = 2248 cm–1, νBF = 1400 cm–1.

∆νXY
Complex Pol CTf CTb Tot

NN−[Ru(NH3)5]
2+ 15 29 -21 -106

OC−[Ru(NH3)5]
2+ 83 114 16 -74

FB−[Ru(NH3)5]
2+ 165 215 152 135

NN−[Fe(NH3)5]
2+ 10 20 -5 -42

NN−[Tc(NH3)5]
+ 22 28 -195 -337
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Appendix C

Consistent Inclusion of Continuum
Solvation in Energy Decomposition
Analysis: Theory and Application to
Molecular CO2 Reduction Catalysts

C.1 Additional results for the validation of
ALMO-EDA(solv)
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Table C.1: Strength (in kJ/mol) of internal QM electrostatics (∆E(0)
ELEC) and the effect of

solute-solvent electrostatic interaction on binding (∆Eel
SOL) for Na+· · ·Cl– separated by 20

Å calculated with ωB97X-V/def2-TZVPPD and IEF-PCM with varying dielectric constants.
∆E

(s)
ELEC = ∆E

(0)
ELEC + ∆Eel

SOL is the effective (screened) electrostatic interaction in the solu-
tion phase.

ε ∆E
(0)
ELEC ∆Eel

SOL ∆E
(s)
ELEC ∆E

(0)
ELEC/∆E

(s)
ELEC

1 -69.47 0 -69.47 1.0
10 -69.47 62.52 -6.94 10.0
20 -69.47 65.99 -3.47 20.0
40 -69.47 67.73 -1.74 40.0
80 -69.47 68.60 -0.87 79.9

2 3 4 5 6 7 8

O· · ·Na distance (Å)

0

10

20

30

40

50

∆
E

(k
J/

m
ol

)

SMD (toluene)SMD(tot)

SMD(elec)

SMD(non-elec)

2 3 4 5 6 7 8

O· · ·Na distance (Å)
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Figure C.1: Electrostatic and non-electrostatic components (in kJ/mol) of the solvent con-
tribution (∆ESOL) to the H2O· · ·Na+ interaction with the O· · ·Na+ distance ranging from
1.8 to 8.0 Å, with solvents toluene, MeCN, and water modeled by SMD.
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Figure C.2: ALMO-EDA(sol) results (in kJ/mol) for the H2O· · ·Cl– complex in toluene,
acetonitrile (MeCN), and water solutions with the O· · ·Cl– distance ranging from 2.9 to 4.1
Å. All calculations are performed using ωB97X-V/def2-TZVPPD with solvents described
by the SMD model. Terms in ALMO-EDA(sol) are represented with solid lines while the
internal electrostatic interaction, denoted as “ELEC(0)”, is shown in a dashed line.
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−5

5

15

25

35

45

∆
E

(k
J/

m
ol

)

SMD (toluene)SMD(tot)

SMD(elec)

SMD(non-elec)

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

O· · ·Cl distance (Å)
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Figure C.3: Electrostatic and non-electrostatic components (in kJ/mol) of the solvent con-
tribution (∆ESOL) to the H2O· · ·Cl– interaction with the O· · ·Cl– distance ranging from
2.9 to 8.0 Å, with solvents toluene, MeCN, and water modeled by SMD.
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C.2 Additional results for the [FeTPP(CO•−2 )]
derivatives

Figure C.4: Spin density of CO2
•− (isovalue: 0.08 a.u.) optimized with ωB97X-V/def2-

TZVPP).

Table C.2: Geometry distortion (GD) term for the CO2 fragment with different fragmenta-
tion schemes (in kJ/mol).

Fragment ∆EGD

CO2 206.6
CO ·–

2 0.6
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Table C.3: Fe−CO2 bond length (in Å) for all CO2 adducts investigated in this study. All
geometries are optimized with ωB97X-V/def2-TZVPP with PCM model for the CH3CN
solvent (ε = 35.88).

Complex r(Fe−C)
[FeTPP(CO2)]2− 2.08
[Fe-p-SUL-(CO2)]4− 2.09
[Fe-p-TMA-(CO2)]0 2.10
[Fe-o-TMA-(CO2)]0 2.06
[Fe-o-OH-(CO2)]2− 2.01
[FeTPPF10(CO2)]2− 2.10
[Fe-imid-(CO2)]− 2.07
[Fe-imid2-(CO2)]0 2.00

Table C.4: ALMO-EDA(solv) results (in kJ/mol) with ωB97X-V/def2-TZVPP and PCM sol-
vent (CH3CN, ε = 35.88) for all the different derivatives of the doubly reduced FeTPP−CO2
adducts studied in this work.

Complex ELEC PAULI DISP POL CT INT

[FeTPP(CO2)]2− -363.4 634.2 -66.2 -135.4 -123.0 -53.8
[FeTPPF10(CO2)]2− -343.1 594.9 -66.0 -127.1 -106.0 -47.3
[Fe-o-OH-(CO2)]2− -542.4 848.7 -88.5 -168.3 -167.5 -117.9
[Fe-p-OH-(CO2)]2− -357.3 626.9 -66.1 -134.2 -111.7 -42.5
[Fe-p-TMA-(CO2)]0 -296.2 451.2 -71.7 -47.3 -111.0 -75.0
[Fe-o-TMA-(CO2)]0 -379.3 545.7 -96.2 -59.5 -129.7 -119.0
[Fe-p-SUL-(CO2)]4− -343.1 613.9 -66.1 -132.6 -119.7 -47.6
[Fe-o-imid-(CO2)]− -449.3 748.0 -100.0 -153.0 -149.2 -103.1
[Fe-o-imid2-(CO2)]0 -1005.4 955.3 -131.2 -201.4 -176.1 -197.3
[Fe-o-imid2-(CO2)]2−(NH-ref) a -504.0 827.1 -91.3 -163.7 -155.5 -87.4
a The [Fe-o-imid2-(CO2)]2−(NH-ref) corresponds the reference calculation to separate
the effect of the amino hydrogen bonds and the methylimidazolium. We replaced the
methylimidazolium with methyl and kept the bond distances for both hydrogen bonds
frozen.
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Table C.5: Gas phase ALMO-EDA results with ωB97X-V/def2-TZVPP (in kJ/mol) for the
selected derivatives of the doubly reduced FeTPP−CO2 complexes.

Complex ELEC PAULI DISP POL CT INT

[FeTPP(CO2)]2− -135.5 600.6 -64.8 -182.2 -126.7 128.5
[Fe-p-SUL-(CO2)]4− 150.4 625.2 -65.8 -179.9 -121.8 408.1
[Fe-o-TMA-(CO2)]0 -401.0 444.6 -72.0 -95.1 -110.3 -233.8
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C.3 Additional results for the substituted
terphenyl· · ·CO2 complexes

Below we show the ALMO-EDA results for the reactant and product states of the sub-
stituted terphenyl· · ·CO2 complex (carrying −1 charge) evaluated at the ωB97X-V/def2-
TZVPD (Tables C.6) and C.7) and B3LYP-D3(BJ)/6-311G(d,p) levels of theory with or
without solvent. Comparing the results in Table C.7 and Table C.9, we found that B3LYP-
D3(BJ)/6-311G(d,p) produces much larger CT energies than ωB97X-V/def2-TZVPD for the
product-state complexes when the solvent is absent. The differences in reactant state, on
the other hand, are much more moderate. We ascribe this discrepancy to the more substan-
tial delocalization error associated with the B3LYP functional,[324, 417] which, as shown
in our previous work,[379] can result in substantial overestimation of the CT component
in ALMO-EDA (and correspondingly the total binding energy). Using the range-separated
hybrid ωB97X-V functional, on the other hand, considerably reduces the spurious charge de-
localization, and results in unconstrained SCF solutions for the reactant and product states
in which the excess electron is well-localized on the terphenyl and CO2 moieties, respec-
tively. Table C.10 shows the fragment Mulliken populations in the fully relaxed reactant
and product states given by these two levels of theory. It reveals that the charge popula-
tion on the CO2 moiety largely deviates from −1 when calculated with B3LYP-D3(BJ) in
vacuum, which, however, does not occur when ωB97X-V is employed. Interestingly, with
the presence of SMD solvent, the ALMO-EDA results at these two different levels of theory
become more comparable (see Tables C.6 and C.8), indicating that the solvent environ-
ment assists in stabilizing the charge-separated reactant and product states and mitigates
the spurious charge delocalization associated with the B3LYP-D3(BJ)/6-311G(d,p) model
chemistry. This further demonstrates the value of incorporating solvation effects in ALMO-
EDA calculations for intermolecular complexes in solution, since otherwise the EDA results
will suffer from artifacts caused by the unrealistic gas phase environment. The differences
between the CT energies given by these two levels of theory now mainly arise from the larger
basis set superposition error (BSSE) associated with the smaller 6-311G(d,p) basis set.
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Table C.6: ALMO-EDA(solv) results with ωB97X-V/def2-TZVPD (in kJ/mol) for the
reactant- and product-state complexes of the electron-transfer reaction from terphenyl•− to
CO2 in CH2Cl2 (ε = 8.93, described by the SMD model).

Reactant state
ELEC PAULI DISP POL CT INT

−NMe2 -14.32 24.63 -21.27 -1.26 -2.81 -15.02
−OH -12.61 21.31 -18.85 -1.06 -2.52 -13.73
−CH3 -13.52 22.01 -17.99 -1.07 -2.58 -13.15
−H -12.75 22.06 -19.29 -1.10 -2.62 -13.70
−Br -11.92 22.27 -19.5 -1.10 -2.60 -12.86
−CF3 -11.79 21.90 -19.56 -1.09 -2.50 -13.04
−NO2 -10.81 21.12 -19.09 -1.03 -2.21 -12.02

Product state
ELEC PAULI DISP POL CT INT

−NMe2 8.97 12.44 -16.80 -1.55 -1.10 1.96
−OH 5.79 13.28 -16.96 -1.56 -1.14 -0.58
−CH3 5.97 13.44 -17.12 -1.60 -1.16 -0.46
−H 4.78 13.52 -17.04 -1.56 -1.15 -1.44
−Br 0.65 13.78 -17.07 -1.61 -1.17 -5.42
−CF3 -1.26 14.02 -17.15 -1.60 -1.16 -7.15
−NO2 -4.97 14.42 -17.19 -1.67 -1.20 -10.61
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Table C.7: ALMO-EDA results (in kJ/mol) with ωB97X-V/def2-TZVPD for the
reactant- and product-state complexes of the electron-transfer reaction from terphenyl•−
to CO2 in the gas phase.

Reactant state
ELEC PAULI DISP POL CT INT

−NMe2 -19.05 26.29 -21.29 -3.58 -3.16 -20.80
−OH -17.53 22.69 -18.81 -3.17 -2.81 -19.64
−CH3 -17.71 23.75 -18.05 -3.31 -2.99 -18.31
−H -17.35 23.41 -19.28 -3.35 -2.93 -19.50
−Br -15.84 23.61 -19.52 -2.80 -2.85 -17.39
−CF3 -15.32 22.92 -19.59 -2.69 -2.70 -17.38
−NO2 -15.25 22.90 -19.39 -2.86 -2.57 -17.17

Product state
ELEC PAULI DISP POL CT INT

−NMe2 35.10 15.16 -17.09 -24.87 -1.43 6.88
−OH 19.27 16.00 -17.25 -23.20 -1.53 -6.72
−CH3 20.32 16.16 -17.43 -23.78 -1.56 -6.29
−H 15.58 16.26 -17.36 -22.84 -1.55 -9.92
−Br -2.11 16.53 -17.42 -24.83 -1.63 -29.46
−CF3 -12.37 16.80 -17.50 -24.06 -1.64 -38.77
−NO2 -27.95 17.22 -17.57 -25.04 -1.73 -55.07
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Table C.8: ALMO-EDA(solv) results with B3LYP-D3(BJ)/6-311G(d,p) (in kJ/mol) for
the reactant- and product-state complexes of the electron-transfer reaction from terphenyl•−
to CO2 in CH2Cl2 (ε = 8.93, described by the SMD model). Note that counterpoise
correction is not applied in these calculations since it is currently incompatible with the
SMD model.

Reactant state
ELEC PAULI DISP POL CT INT

−NMe2 -9.44 17.40 -19.38 -0.41 -8.54 -20.37
−OH -8.47 15.08 -17.22 -0.34 -7.34 -18.29
−CH3 -9.04 15.57 -16.60 -0.35 -7.43 -17.85
−H -8.32 15.49 -17.45 -0.36 -7.53 -18.16
−Br -7.67 15.98 -18.11 -0.37 -7.44 -17.61
−CF3 -7.77 15.74 -17.95 -0.31 -7.36 -17.65
−NO2 -7.05 15.40 -18.02 -0.27 -7.16 -17.10

Product state
ELEC PAULI DISP POL CT INT

−NMe2 13.42 3.76 -9.72 -1.29 -11.04 -4.87
−OH 10.61 4.07 -9.90 -1.26 -11.69 -8.18
−CH3 10.35 4.14 -9.99 -1.30 -11.95 -8.75
−H 9.30 4.16 -9.98 -1.26 -12.08 -9.85
−Br 5.62 4.19 -10.10 -1.31 -12.20 -13.81
−CF3 3.86 4.19 -10.17 -1.30 -12.33 -15.75
−NO2 0.24 4.32 -10.30 -1.38 -19.09 -26.21
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Table C.9: ALMO-EDA results (in kJ/mol) with B3LYP-D3(BJ)/6-311G(d,p)
(counterpoise-corrected) for the reactant- and product-state complexes of the electron-
transfer reaction from terphenyl•− to CO2 in the gas phase.

Reactant state
ELEC PAULI DISP POL CT INT

−NMe2 -14.43 18.81 -19.40 -2.10 -2.87 -19.99
−OH -13.88 16.31 -17.23 -1.96 -2.22 -18.99
−CH3 -13.33 16.94 -16.63 -2.04 -2.83 -17.89
−H -13.34 16.71 -17.48 -2.08 -2.42 -18.61
−Br -11.92 17.19 -18.14 -1.68 -2.43 -16.98
−CF3 -11.64 16.65 -17.98 -1.56 -2.29 -16.82
−NO2 -10.19 16.30 -18.05 -1.22 -2.01 -15.16

Product state
ELEC PAULI DISP POL CT INT

−NMe2 45.95 2.49 -9.72 -22.72 -8.98 7.02
−OH 30.65 2.68 -9.90 -20.77 -11.07 -8.42
−CH3 29.77 2.73 -10.00 -21.43 -14.66 -13.59
−H 25.44 2.74 -9.98 -20.37 -15.60 -17.76
−Br 8.37 2.77 -10.11 -22.30 -23.77 -45.03
−CF3 -2.01 2.75 -10.17 -21.38 -31.86 -62.67
−NO2 -18.18 2.86 -10.30 -22.56 -74.96 -123.14
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Table C.10: Mulliken charge population (e−) on the CO2 moiety in the fully relaxed reactant
and product states of the terphenyl· · ·CO2 complex with different substituent groups. The
calculations are performed at the B3LYP-D3(BJ)/6-311G(d,p) and ωB97X-V/def2-TZVPD
levels of theory, without and with the SMD solvation model. The results show that gas-phase
B3LYP-D3(BJ)/6-311G(d,p) calculations suffer from spurious charge transfer from CO2

•−

to the terphenyl moiety.

B3LYP-D3(BJ) ωB97X-V
(vacuum) (vacuum)

group reactant product reactant product

−NMe2 -0.004 -0.753 0.010 -0.994
−OH -0.004 -0.737 0.005 -0.989
−H -0.004 -0.699 0.002 -0.989
−CH3 -0.010 -0.706 0.008 -0.989
−Br -0.001 -0.645 0.012 -0.985
−CF3 0.000 -0.599 0.013 -0.986
−NO2 0.004 -0.423 0.012 -0.981

B3LYP-D3(BJ) ωB97X-V
(CH2Cl2) (CH2Cl2)

group reactant product reactant product

−NMe2 0.002 -0.977 0.014 -0.999
−OH 0.001 -0.974 0.009 -0.996
−H 0.001 -0.973 0.006 -0.995
−CH3 -0.004 -0.974 0.013 -0.995
−Br 0.003 -0.972 0.013 -0.994
−CF3 0.003 -0.972 0.015 -0.995
−NO2 0.007 -0.716 0.020 -0.993
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Table C.11: Differential interaction energies (in kJ/mol) between the reactant and prod-
uct complexes (∆∆EINT) and the differences between the monomer energies in the reac-
tant and product complexes (∆EPREP, including contributions from both geometric dis-
tortion and change in electronic configuration). Ignoring the entropic contributions the
free energy driving force for the electron transfer (ET) reaction can be approximated by
∆EET = ∆∆EINT + ∆EPREP.

∆∆EINT ∆EPREP ∆EET

−NMe2 16.98 -50.45 -33.47
−OH 13.15 -32.45 -19.30
−CH3 12.69 -20.82 -8.13
−H 12.26 -11.12 1.14
−Br 7.44 5.54 12.98
−CF3 5.89 25.72 31.61
−NO2 1.41 74.33 75.74
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Figure D.1: Dependence of the the root-mean square deviation on the scaling of the third-
order energy (c3) in the A24 data set aTZ with CBS reference (a); aTZ with aTZ reference
(b); RMSD in kcal/mol; four scaled MP2.X methods (MP2.X, MP2.X:OOMP2, MP2.X:κ-
OOMP2).

D.1 Optimal c3 Coefficients
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Figure D.2: Dependence of the the root-mean square deviation on the scaling of the third-
order energy (c3) in the A24 data set aTZ with CBS reference (a); aQZ with CBS reference
(b); RMSD in kcal/mol; four scaled MP2.X methods (MP2.X, MP2.X:OOMP2, MP2.X:κ-
OOMP2).
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Figure D.3: Dependence of the the root-mean square deviation on the scaling of the third-
order energy (c3) in the S66 data set (a) and the three subgroups hydrogen bonding (b),
dispersion (c) and mixed (d); RMSD in kcal/mol; four scaled MP2.X methods (MP2.X,
MP2.X:OOMP2, MP2.X:κ-OOMP2, κMP2.X:κ-OOMP2).



APPENDIX D. LIMITS OF MPX FOR NON-COVALENT INTERACTIONS 316

0.0 0.2 0.4 0.6 0.8 1.0
c3

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

R
M
S
D
 (
kc
a
l/
m
o
l)

MP2.X:HF
MP2.X:κ-OOMP2

MP2.X:OOMP2

(a)

0.0 0.2 0.4 0.6 0.8 1.0
c3

0.0

0.1

0.2

0.3

0.4

0.5

R
M
S
D
 (
kc
a
l/
m
o
l)

MP2.X:HF
MP2.X:κ-OOMP2

MP2.X:OOMP2

(b)

0.0 0.2 0.4 0.6 0.8 1.0
c3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
M
S
D
 (
kc
a
l/
m
o
l)

MP2.X:HF
MP2.X:κ-OOMP2

MP2.X:OOMP2

(c)

0.0 0.2 0.4 0.6 0.8 1.0
c3

0.0

0.5

1.0

1.5

2.0

R
M
S
D
 (
kc
a
l/
m
o
l)

MP2.X:HF
MP2.X:κ-OOMP2

MP2.X:OOMP2

(d)

Figure D.4: Dependence of the the root-mean square deviation on the scaling of the third-
order energy (c3) in the A24 (a), DS14 (b), HSG (c) and S22 (d) data sets; RMSD
in kcal/mol; four scaled MP2.X methods (MP2.X, MP2.X:OOMP2, MP2.X:κ-OOMP2,
κMP2.X:κ-OOMP2).
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Figure D.5: Dependence of the the root-mean square deviation on the scaling of the third-
order energy (c3) in the X40 (a), HW30 (b), NC15 (c) and AlkBind12 (d) data sets; RMSD
in kcal/mol; four scaled MP2.X methods (MP2.X, MP2.X:OOMP2, MP2.X:κ-OOMP2,
κMP2.X:κ-OOMP2).
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Figure D.6: Dependence of the the root-mean square deviation on the scaling of the third-
order energy (c3) in the CO2Nitrogen16 (a), HB49 (b) and Ionic43 (c) data sets; RMSD
in kcal/mol; four scaled MP2.X methods (MP2.X, MP2.X:OOMP2, MP2.X:κ-OOMP2,
κMP2.X:κ-OOMP2).
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Figure D.7: Dependence of the the root-mean square deviation on the scaling of the third-order energy
(c3) in the TA13 (a), HB49 (b), Bauza30 (c), CT20 (d) data sets, XB51 (e) and Orel26rad (f); RMSD in
kcal/mol; four scaled MP2.X methods (MP2.X, MP2.X:OOMP2, MP2.X:κ-OOMP2, κMP2.X:κ-OOMP2).
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Figure D.8: Box-plots of the data-sets A24: (a) MP2 methods, (b) MP3 methods; DS14: (c)
MP2 methods, (d) MP3 methods. Red lines mark the median deviation, boxes bound the
central 50% of the data, whiskers enclose all data points within 1.5 times the inter-quartile
range of the box edges, and points denote outlying data.

D.2 Box Plots
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Figure D.9: Box-plots of the data-sets HB15: (a) MP2 methods, (b) MP3 methods; HSG:
(c) MP2 methods, (d) MP3 methods. Red lines mark the median deviation, boxes bound the
central 50% of the data, whiskers enclose all data points within 1.5 times the inter-quartile
range of the box edges, and points denote outlying data.
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Figure D.10: Box-plots of the data-sets X40: (a) MP2 methods, (b) MP3 methods; HW30:
(c) MP2 methods, (d) MP3 methods. Red lines mark the median deviation, boxes bound the
central 50% of the data, whiskers enclose all data points within 1.5 times the inter-quartile
range of the box edges, and points denote outlying data.
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Figure D.11: Box-plots of the data-sets NC15: (a) MP2 methods, (b) MP3 methods; Alk-
Bind12: (c) MP2 methods, (d) MP3 methods. Red lines mark the median deviation, boxes
bound the central 50% of the data, whiskers enclose all data points within 1.5 times the
inter-quartile range of the box edges, and points denote outlying data.
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Figure D.12: Box-plots of the data-sets CO2Nitrogen16: (a) MP2 methods, (b) MP3 methods; HB49: (c)
MP2 methods, (d) MP3 methods; Ionic43: (e) MP2 methods, (f) MP3 methods. Red lines mark the median
deviation, boxes bound the central 50% of the data, whiskers enclose all data points within 1.5 times the
inter-quartile range of the box edges, and points denote outlying data.
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Figure D.13: Box-plots of the data-sets TA13: (a) MP2 methods, (b) MP3 methods; XB18:
(c) MP2 methods, (d) MP3 methods. Red lines mark the median deviation, boxes bound the
central 50% of the data, whiskers enclose all data points within 1.5 times the inter-quartile
range of the box edges, and points denote outlying data.
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Figure D.14: Box-plots of the data-sets Bauza30: (a) MP2 methods, (b) MP3 methods;
XB18: (c) MP2 methods, (d) MP3 methods. Red lines mark the median deviation, boxes
bound the central 50% of the data, whiskers enclose all data points within 1.5 times the
inter-quartile range of the box edges, and points denote outlying data.
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Figure D.15: Box-plots of the data-sets XB51: (a) MP2 methods, (b) MP3 methods;
Orel26rad: (c) MP2 methods, (d) MP3 methods. Red lines mark the median deviation,
boxes bound the central 50% of the data, whiskers enclose all data points within 1.5 times
the inter-quartile range of the box edges, and points denote outlying data.
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Appendix E

Computational Study of an
Iron(II)-Polypyridine Electrocatalyst for
CO2 Reduction: Key Roles for
Intramolecular Interactions in CO2
Binding and Proton Transfer

E.1 Comparison of Different DFT functional

Table E.1: Comparison of the crystal structure of the initital complex 5
016 with the optimized

geometries of the three functionals used in this study.

Functional ∠(py-fe-bpy) rCC rFe-O rFe-N rFe-N
(Naxial) [◦] (bpy) [Å] (OTfax) [Å] (bpyax) [Å] (pyx) [Å]

ωB97X-D 104.4 1.492 2.045 2.162 2.240
crystal data 110.2 1.485 2.087 2.109 2.169
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Table E.2: Adiabatic spin gap (∆hs/lsG = G(hs)−G(ls)) 3
015 to 3

014 using different functionals.

DFT functional ∆hs/lsG

ωB97M-V −1.5
ωB97X-D −3.6
B97-D +4.2
B3LYP/D3 −3.0

Table E.3: Key reaction of the catalytic cycle using ωB97M-V with the constraint of remain-
ing on the high spin (quintet) surface. The activation energy correspond to the intramolecular
proton transfer using H2O/OH– as a sixth ligand; The pKa values refer to the equilibria us-
ing acetonitrile as a ligand and experimental free energy for H+; L corresponds to CH3CN;
all energies is kcal/mol and reduction potentials versus the Fc/Fc+) couple.

Reaction ∆RG ∆G‡ pKa E0

5
216+e– −−→ 6

116 −1.79
6
116+e– −−→ 5

015 +L −1.94
6
116+e– −−→ 5

014 +2L −2.38
5
014+CO2 −−→ 5

025 −7.3 8.5
5
025 +H+ −−→ 5

135 - 28
5
135 +H+ + L −−→ 1

246 +H2O 10.1 16
1
246 +L −−→ 5

216 +CO −6.0

Table E.4: Adibatic quintet-triplet gap using ωB97M-V for the both 4 (014) and 5 (015)
coordinated isomers of doubly reduced complex, the doubly reduced CO2 adduct (025) and
the carboxy intermediate (035) (free energies in kcal/mol).

DFT functional ∆(G(S=5/2)−G(S=3/2))

014 −4.2
015 −1.9
025 −2.4
025 (TS) −3.2
035 14.0
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Table E.5: Key reaction of the catalytic cycle using ωB97X-D. The activation energy
correspond to the intramolecular proton transfer using H2O/OH– as a sixth ligand; The
pKa values refer to the equilibria using acetonitrile as a ligand and experimental free energy
for H+; L corresponds to CH3CN; all energies is kcal/mol and reduction potentials versus
the Fc/Fc+) couple.

Reaction ∆RG ∆G‡ pKa E0

5
216+e– −−→ 6

116 −1.76
6
116+e– −−→ 3

015 +L −1.71
6
116+e– −−→ 3

014 +2L −1.99
3
014+CO2 −−→ 3

025 −2.6 12.3
3
025 +H+ −−→ 5

135 - 26
5
135 +H+ + L −−→ 1

246 +H2O 10.1 16
1
246 +L −−→ 5

216 +CO −6.1

Table E.6: Key reaction of the catalytic cycle using B3LYP-D3. The activation energy
correspond to the intramolecular proton transfer using H2O/OH– as a sixth ligand; The pKa
values refer to the equilibria using acetonitrile as a ligand and experimental free energy for
H+; L corresponds to CH3CN; all energies is kcal/mol and reduction potentials versus the
Fc/Fc+) couple.

Reaction ∆RG ∆G‡ pKa E0

5
216+e– −−→ 6

116 −1.65
6
116+e– −−→ 3

015 +L −1.83
6
116+e– −−→ 3

014 +2L −1.91
3
014+CO2 −−→ 3

025 −0.4 9.0
3
025 +H+ −−→ 5

135 - 22
5
135 +H+ + L −−→ 1

246 +H2O 6.7 18
1
246 +L −−→ 5

216 +CO −3.8
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Table E.7: Key reaction of the catalytic cycle using B97-D. The activation energy corre-
spond to the intramolecular proton transfer using H2O/OH– as a sixth ligand; The pKa
values refer to the equilibria using acetonitrile as a ligand and experimental free energy for
H+; L corresponds to CH3CN; all energies is kcal/mol and reduction potentials versus the
Fc/Fc+) couple.

Reaction ∆RG ∆G‡ pKa E0

5
216+e– −−→ 6

116 −1.63
6
116+e– −−→ 3

015 +L −1.15
6
116+e– −−→ 3

014 +2L −1.06
3
014+CO2 −−→ 3

025 2.5 9.4
3
025 +H+ −−→ 5

135 - 14
5
135 +H+ + L −−→ 1

246 +H2O 3.7 27
1
246 +L −−→ 5

216 +CO 9.5
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E.2 Doubly Reduced Intermediates

(a)

(b)

Figure E.1: (a) Geometry of 3015 with an η2 coordinated CH3CN, for comparison: free CH3CN
r(CN) = 1.16 Å vs. in the complex r(CN) = 1.22 Å; (b) Spin density and βHOMO and
βHOMO−1 of doubly reduced complex 3

015.

In order to obtain comparable electronic energies and active spaces a loosely bound
CH3CN ligand was added to 3

014. For the initial CASSCF calculation an active space of 15
electrons in 15 orbitals for the triplet state was employed. The active space consisted of 5
metal 3d orbitals and 5 occupied and 5 unoccupied π orbitals in the ligand framework using
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Table E.8: Isomerization energy from 3
015 to 3

014 using different functionals (positive values
indicates that 3

015 is lower in energy).

DFT functional ∆G

ωB97M-V 7.7
ωB97X-D 6.5
B97-D 2.1
PW6B95 2.4
B3LYP 2.0
TPSSh 2.8
PBE 1.8

the ICE-CI algorithm. The quasi restricted orbitals of a B97-D high spin (septet) were used
as guess orbitals. All orbital with occupation numbers close to two and zero were removed
from the active space except the fifth d-orbital. Subsequently, a CAS(8,7)/NEVPT2 was
employed to account for both static and dynamic correlation using the regular CI solver.

The active space includes the five 3d orbitals, a bpy π∗ and a py π∗ in case of 3
014 and

a CH3CN π∗. The converged natural orbitals including their occupation number (NOON)
are depicted in figs. E.2 and E.3. The NOONs of both species are summarized in tab. E.9
deviation from integers (0,1 or 2) confirms a significant amount of static correlation and an
antiferromagnetic ordering. They show significant orbital entanglement of the two metal
d-orbital and the two π∗ ligand orbitals moieties.

In case of 3
014: first, a metal dxy (distorted) with a pyridine π∗ forming a π bond whereas

both bonding (1.22 fig. E.2 (g)) and anitbonding (0.78 fig. E.2 (l)) orbitals are significantly
occupied; second, a metal dxz (distorted) with a bpy π∗ forming a π bond whereas both
bonding (1.20 fig. E.2 (h)) and anitbonding (0.80 fig. E.2 (k)) orbitals are significantly
occupied.

In case of 3
015: first, a metal dyz (distorted) with a acetonitrile π∗ forming a π bond

whereas both bonding (1.62 fig. E.3 (g)) and anitbonding (0.38 fig. E.3 (l)) orbitals are
significantly occupied; second, a metal dxz (distorted) with a bpy π∗ forming a π bond
whereas both bonding (1.16 fig. E.3 (h)) and anitbonding (0.84 fig. E.3 (k)) orbitals are
significantly occupied.

This approach yields a free energy difference in the Gas phase using corrections from
DFT frequency calculations of 2.2 kcal/mol (3015). The gap is expected to shrink further
since 3

014 should have a larger solvation energy.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure E.2: MOs of 3
014 before and after the CASSCF calculation. a)–f) unrestricted natural

orbitals of the septet spin state g) NOON: 1.22 h) NOON: 1.20 i) NOON: 1.00 j) NOON:
1.00 k) NOON: 0.80 l) NOON: 0.78
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure E.3: MOs of 3
015 before and after the CASSCF calculation. a)–f) unrestricted natural

orbitals of the septet spin state g) NOON: 1.00 h) NOON: 1.62 i) NOON: 1.16 j) NOON:
1.00 k) NOON: 0.84 l) NOON: 0.36
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Complex NOON (d-orbital) NOON (delocalized)
3
014 211 1.22, 1.20, 0.80, 0.78
3
015 211 1.62, 1.16, 0.84, 0.38

Table E.9: Natural orbital occupation number (NOON) of the CASSCF calculations.
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E.3 Further Information about pKa values

Table E.10: Comparison of free energies and computed pKa values acetonitrile to experi-
mental values taken from Ref. [551] using the experimental solvation energy for H+

Reaction ∆RG pKa (comp.) pKa (exp.) pKa (exp.)
in CH3CN in H2O

PhO–+H+ −−→ PhOH −34.2 25 29 10
CH3COO–+H+ −−→ CH3COOH −27.3 20 24 5
CF3CH2O

–+H+ −−→ CF3CH2COH −43.4 32

Table E.11: The activation energies and pKa values of both protonation steps. The activation
and reaction free energies correspond to the intramolecular proton transfer using H2O/OH–

as a sixth ligand. The pKa values refer to the equilibria using acetonitrile as a ligand and
experimental free energy for H+.

Reaction ∆RG pKa

3
025 +H+ −−→ 5

135 −35.3 26
5
135 +H+ + L −−→ 1

246 + H2O −20.2 15
1
136 +H+ −−→ 1

246 + H2O −19.2 14
3
014 +H+ + L −−→ 1

146 −45.6 32
1
146 +H+ + L −−→ 5

216 +H2 −27.8 20
HCO –

3 +H+ −−→ H2CO3 −18.4 13
OH–+H+ −−→ H2O −63.5 47
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E.4 Additional Information about Intermediates in the
Cycle

Figure E.4: Spin density the doubly reduced η2 CO2 adduct 3
015.

Figure E.5: Spin density the transition state forming the doubly reduced η2 CO2 adduct 3
015.
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Figure E.6: Geometry of the κ-O CO2 adduct 3
035 (distances in Å).

Figure E.7: Geometry of 5
135 (distances in Å).

Figure E.8: Geometry of for a CO2 adduct involving metal ligand cooperation
(5025CC)(distances in Å).
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Figure E.9: Geometry of the transition state of a protonation of the activated acetonitrile
using H2O as the proton source (distances in Å). The barrier is over 30 kcal/mol.

(a)

(b)

Figure E.10: Bonding orbitals illustrating the dative σ bond of the CO2 adduct
[Fe(bpyNHEtPY2Me)(η2−CO2)]

0 (3025).
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Appendix F

Mechanistic Insights into Co and Fe
Quaterpyridine Based CO2 Reduction
Catalysts: Metal-Ligand Orbital
Interaction as the Key Driving Force for
Distinct Pathways

F.1 Additional Information on Possible Intermediates

(a)

(b)

Figure F.1: Side view of (a) the doubly reduced [Fe(qpy)]0 intermediate 2[1Fe(4)]0 and (b)
the doubly reduced [Co(qpy)]0 intermediate 3[1Co(4)]0.
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Functional % HF exchange <S2> χ(Co)

B97-D 0 0.75 0.1
PBE10 10 0.77 0.0
B3LYP 20 0.92 0.29
MN15 44 0.82 0.15
ωB97M-V 15* 1.45 0.75
ωB97X-D 22.2* 1.33 0.65
CASSCF(5,6) 100 0.75 0.33

Table F.1: Mulliken spin population of the Co center (χ(Co)) of the doubly reduced initial
complex [Co(qpy)]0 in the doublet spin state (2[1Co(4)]0) for a variety of different DFT
functionals. (*short range)

2.24
140.8°

2.32

(a)

143.3°

1.84

(b)

139.9° 1.78

(c)

Figure F.2: Geometrical parameters of all three CO2 adducts discussed in the cycle with an
explicit water added to stabilze the CO2 (a) 2[2Co(5)]0; (b) 4[2Fe(6)]+; (c) 3[2Fe(5)]0.
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Figure F.3: Geometrical parameters for a phenoxide complex after the first protonation
yielding 2[3Co(5)]+. Note that this is only a minimum when the carboxy O-H distance is
frozen and thus the frequency calculation has a negative frequency. The free energy for the
formation of this complex from 2[2Co(4)]0, H2O and PhOH is 10.6.

1.261.27 1.14

2.30
2.29

132.9°

Figure F.4: Geometrical parameters for the Transition state of the first protonation of
3[2Fe(5)]0 where the water molecule acts as a ligand.
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1.66
1.21

1.19

2.08

Figure F.5: Geometrical parameters for the Transition state of the second protonation of
5[3Fe(5)]+ where the water molecule acts as a ligand.

(a)

(b)

Figure F.6: Geometrical parameters of (a) the transition state of the first protonation step
and (b) the transition step of the second protonation step using phenol as the acid source
after two reduction steps for the Fe-catalyst ([FeII(qpy)(H2O)2]

2+).
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Figure F.7: Proposed mechanism for the a possible HER mechanism using [Co(qpy)L2]
2+;

the species 5Co corresponds to a metal hydride (Co−H); the red colored molecular moiety
indicate localization of the excess electrons; reaction in kcal/mol; reduction potentials in V
against Fc/Fc+; L = H2O.

F.2 HER
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Figure F.8: Proposed mechanism for the a possible HER mechanism using [Fe(qpy)L2]
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F.3 Full Cycles Including a Third Reduction
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Figure F.9: Proposed mechanism for the selective CO2 to CO reduction including a possible
third reduction using [Co(qpy)L2]

2+; the red colored molecular moiety indicate localization
of the excess electrons; reaction in kcal/mol; reduction potentials in V against Fc/Fc+;
L = H2O.
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Figure F.10: Proposed mechanism for the selective CO2 to CO reduction including a possible
third reduction using [Fe(qpy)L2]

2+; the red colored molecular moiety indicate localization
of the excess electrons; reaction in kcal/mol; reduction potentials in V against Fc/Fc+;
L = H2O.



APPENDIX F. MECHANISTIC INSIGHTS INTO CO-QPY AND FE-QPY CAT. 349

(a)

(b)

(c)

Figure F.11: Geometrical parameters of the transition states for the EEEC pathway (a)
the transition of the CO2 addition yielding [Co(qpy)(CO2−κC)]–1 (S=0) (after three reduc-
tions); (b) the transition step of the second protonation step using phenol as the acid source
steps yielding [Co(qpy)CO]0(S=0) (after three reduction); c) using water as the acid source
(distances in Å).
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(a)

(b)

Figure F.12: (a) Possible doubly reduced di-carbonyl (S = 0) intermediate resulting in a
partial dissociation of the qpy ligand; (b) relaxed PES scan for the doubly reduced singlet
and triplet carbonyl complexes 1[4Fe(5)]0 (purple) and 3[4Fe(5)]0 (green); energy relative to
the singlet minimum at 1.74 Å.
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F.4 Functional Dependency
For all cobalt cycles the B3LYP geometries, and for all iron cycles the ωB97X-D geometries
were used. The reduction potentials in table F.2 show that for the cobalt catalyst B3LYP-
D3 predicts the reduction potentials with good accuracy. Both ωB97X-D and TPSSh-D3
predict the reduction potentials with acceptable accuracy (within 350 mV) whereas ωB97X-
D systematically overestimates the potentials and TPSSh-D3 systematically underestimates
the potentials. The reduction potentials in table F.3 show that for the iron catalyst, both
range separated hybrids ωB97X-D and ωB97M-V reproduce experimental results with high
accuracy. The three hybrid functionals seem to systematically underestimate the reduction
potentials and predict overly large changes in redox potentials between first and second
reductions e.g B3LYP-D3: 0.49 V or PBE0-D3: 0.68 V versus experiment: 0.23 V. This
suggests that the relative stability between the first and second reduction is underestimated.

Based on the reduction potentials, ωB97X-D is most acceptable to describe both systems.
The energetics (reduction potentials, free energies and pKa values) and kinetics for both
systems are summarized in tables F.4 and F.5. The key findings from the main manuscript
remain valid: lower rate limiting barrier and lower overpotential in the Co catalyst, higher
pKa for the protonation in the Fe catalyst and similar relative pKa for the two protonation
steps in the Co cycle (compare tables F.4 and F.6). The negative reduction potentials for
the Co catalyst can be rationalized with table F.1 and the CASSCF calculations (see section
CASSCF), the ωB97X-D functional underestimates the metal ligand coupling for 2[1Co(4)]0

and thus is not optimal to describe the cobalt catalyst.
Other functionals are not satisfactory for both systems simultaneously. For instance, the

B3LYP functional describes the Co system best based on the reduction potentials and the
comparison to the CASSCF calculations (table F.1) and the cycle is summarized in table F.6.
But unfortunately B3LYP-D3 describes the iron system quite poorly (see table F.7). First,
the reduction potentials are too positive and the reduction window is too wide: 0.49 V
versus 0.23 V experimentally. Second, the predicted barrier for the CO2 addition after
the first reduction is ∆G† = 10.9 kcal/mol versus the experimentally estimated ∆G† =
15 kcal/mol. Third, the CO release after a third reduction is significantly endergonic (∆G =
+8.5 kcal/mol) which makes a fourth reduction likely whereupon CO release becomes even
more unlikely (∆G = 15.1 kcal/mol). This is in contrast to the experimental observation that
suggest a three electron pathway. Since B3LYP-D3’s prediction of the reduction potentials
of the carbonyl intermediates deviate by more than −500 mV, this suggests that B3LYP-D3
overestimates the stability of these iron carbonyls which could rationalize the very endergonic
CO release.

Even so, we note that the comparison of both cycles with B3LYP-D3 (see tables F.6 and
F.7) shows that many conclusions from the main text hold true despite its poor performance
for the iron system: the rate limiting barrier is lower in the Co system but the pKa’s are higher
in the Fe system. However, B3LYP-D3 predicts a slightly different cycle for the iron system:
First, the addition of CO2 has almost identical barriers after the first and second reduction
and thus both pathways are feasible. The reason that the barriers are comparable is most
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likely linked to the stability of the doubly reduced intermediate 1[1Fe(0)]0. B3LYP-D3 seems
to underestimate the relative stability (dV is 0.49) of this intermediate which consequently
also results in a smaller barrier for the subsequent CO2 addition after the second reduction.
Second, a third reduction becomes a degradation pathway.

The ωB97M-V functional is one of the top performing functionals in an extensive bench-
mark study [20] and consequently was also employed in this study. It is able to accurately
predict the reduction potentials for the iron system (including the carbonyls) but slightly
underestimates the barrier for the CO2 addition after the first reduction. Furthermore, the
functional predicts the same pathway for the iron system: a larger barrier for CO2 addition
after the second reduction, similar relative pKa values and a feasible CO release after a third
reduction (see table F.9). For the Co system, the functional systematically overestimates the
reduction potentials by more than −500 mV and the reduction window is also slightly too
wide (dV = 380 mV). Similarly to ωB97X-D, the too-negative reduction potentials can be
rationalized with the predicted weak metal-ligand coupling for 2[1Co(4)]0 by ωB97M-V as
shown in table F.1 and the CASSCF calculations (see section CASSCF), and thus ωB97M-V
is not optimal to describe the cobalt system. However the comparison of both metals in
tables F.8 and F.9 shows similar conclusions to those drawn in the main manuscript: same
relative pKa values for both Co and Fe intermediates, larger pKa values for the iron system
but smaller rate-limiting barrier in the Co cycle.

In summary, this discussion has provided detailed justification for the unfortunate ne-
cessity of using different functionals for the two systems. However, both geometries and
electronic configurations are more robust to a range of DFT functionals. This is illustrated
by the spin densities of singly ( [1Fe(5)]+, [1Co(5)]+) and doubly ( [1Fe(4)]0, [1Co(4)]0)
reduced intermediates for all viable spin states. The figures F.13 to F.21 show that the
non-innocence of the qpy ligand in both reduction steps for both metal is confirmed with a
local functional (B97-D), a hybrid functional (B3LYP-D3) and a range separated functional
(ωB97X-D). The key molecular orbitals from the main text are also robust with respect to
different hybrid functionals as figure F.19 illustrates (aside from 2[1Co(4)]0). B3LYP MOs
have a slightly higher metal contribution in comparison to ωB97X-D; but the electronic
configuration is identical and the central conclusion of the main manuscript remain valid
when comparing the MOs for the same functional (aside from 2[1Co(4)]0). We employed
multi-reference wave function calculations for 2[1Co(4)]0 and 1[1Fe(4)]0 to get better insights
into their electronic structure (see section CASSCF). The binding mode of the CO2 adducts
is also not sensitive to the choice of density functional: 2[2Co(5)]0 converges to an η1-κC
binding mode with both B3LYP and ωB97X-D even when an η2 start geometry is used and
vice versa, 3[2Fe(5)]0 converges to an η2 binding mode; the final structures are depicted in
figures F.20 and F.21.
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Reaction E0

ωB97X-D
4[1Co(6)]2+ +e– −−→ 3[1Co(5)]+ +L −1.14
3[1Co(5)]+ +e– −−→ 2[1Co(4)]0 +L −1.48
B3LYP-D3
4[1Co(6)]2+ +e– −−→ 3[1Co(5)]+ +L −0.78
3[1Co(5)]+ +e– −−→ 2[1Co(4)]0 +L −1.13
ωB97M-V
4[1Co(6)]2+ +e– −−→ 3[1Co(5)]+ +L −1.34
3[1Co(5)]+ +e– −−→ 2[1Co(4)]0 +L −1.72
PBE0-D3
4[1Co(6)]2+ +e– −−→ 3[1Co(5)]+ +L −0.86
3[1Co(5)]+ +e– −−→ 2[1Co(4)]0 +L −1.42
TPSSh-D3
4[1Co(6)]2+ +e– −−→ 3[1Co(5)]+ +L −0.77
3[1Co(5)]+ +e– −−→ 2[1Co(4)]0 +L −0.95

Table F.2: Reduction potentials for [CoII(qpy)(H2O)2]
2+ using different DFT functionals;

reduction potentials in V versus the Fe+/Fc couple (experimental reduction potentials for
reference: −0.95 V & −1.18 V); L = H2O.
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Reaction E0

ωB97X-D
5[1Fe(6)]2+ +e– −−→ 4[1Fe(5)]+ +L −1.25
4[1Fe(5)]+ +e– −−→ 1[1Fe(4)]0 +L −1.58
B3LYP-D3
5[1Fe(6)]2+ +e– −−→ 4[1Fe(5)]+ +L −0.94
4[1Fe(5)]+ +e– −−→ 1[1Fe(4)]0 +L −1.41
ωB97M-V
5[1Fe(6)]2+ +e– −−→ 4[1Fe(5)]+ +L −1.39
4[1Fe(5)]+ +e– −−→ 1[1Fe(4)]0 +L −1.58
PBE0-D3
5[1Fe(6)]2+ +e– −−→ 4[1Fe(5)]+ +L −0.98
4[1Fe(5)]+ +e– −−→ 1[1Fe(4)]0 +L −1.66
TPSSh-D3
5[1Fe(6)]2+ +e– −−→ 4[1Fe(5)]+ +L −0.92
4[1Fe(5)]+ +e– −−→ 1[1Fe(4)]0 +L −1.31

Table F.3: Reduction potentials for [FeII(qpy)(H2O)2]
2+ using different DFT functionals;

reduction potentials in V versus the Fe+/Fc couple (experimental reduction potentials for
reference: −1.39 V & −1.60 V); L = H2O.
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Reaction E0 ∆RG
0 pKa ∆G‡

4[1Co(6)]2+ +e– −−→ 3[1Co(5)]+ +L −1.14
3[1Co(5)]+ +e– −−→ 2[1Co(4)]0 +L −1.48
2[1Co(4)]0 + CO2 −−→ 2[2Co(5)]0 8.5
2[2Co(5)]0 +H+ −−→ 4[3Co(5)]+ +L 16
2[3Co(5)]+ +H+ +L −−→ 2[4Co(6)]2+ +H2O 17 10.8
2[4Co(6)]2+ +L −−→ 4[1Fe(6)]2+ +CO −6.8

Table F.4: ωB97X-D: reaction of the catalytic cycle for [CoII(qpy)(H2O)2]
2+. Activation

energies (∆G‡) and Gibbs free reaction energies (∆RG
0) are reported in kcal/mol and barriers

for protonation use Phenol as a proton source; reduction potentials in V versus the Fe+/Fc
couple (experimental reduction potentials for reference: −0.95 V & −1.18 V); L = H2O.

Reaction E0 ∆RG
0 pKa ∆G‡

5[1Fe(6)]2+ +e– −−→ 4[1Fe(5)]+ +L −1.25
4[1Fe(5)]+ +e– −−→ 1[1Fe(4)]0 +L −1.58
6[1Fe(5)]+ + CO2 −−→ 4[2Fe(6)]+ 5.5 13.9
3[1Fe(4)]0 +CO2 +L −−→ 3[2Fe(6)]0 8.2 22.3
4[2Fe(6)]+ +e– −−→ 3[2Fe(5)]0 +L −1.63
3[2Fe(5)]0 +H+ −−→ 5[3Fe(5)]+ 25 1.7
5[3Fe(5)]+ +e– −−→ 4[3Fe(5)]0 −1.47
4[3Fe(5)]0 +H+ −−→ 2[4Fe(5)]+ +H2O 24 15.6
2[4Fe(5)]+ +L −−→ 4[1Fe(5)]+ +CO 2.0
1[4Fe(5)]0 −−→ 1[1Fe(4)]0 +CO 5.0
1[4Fe(6)]2++e– −−→ 2[4Fe(5)]+ +L −0.97
2[4Fe(5)]++e– −−→ 1[4Fe(5)]0 −1.45

Table F.5: ωB97X-D: reaction of the catalytic cycle for [FeII(qpy)(H2O)2]
2+. Activation

energies (∆G‡) and Gibbs free reaction energies (∆RG
0 ) are reported in kcal/mol and

barriers for protonation use Phenol as a proton source; reduction potentials in V versus the
Fe+/Fc couple (experimental reduction potentials for reference: −1.39 V & −1.60 V and
−1.17 V & −1.42 V under CO atmosphere); L = H2O.
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Reaction E0 ∆RG
0 pKa ∆G‡

4[1Co(6)]2+ +e– −−→ 3[1Co(5)]+ +L −0.78
3[1Co(5)]+ +e– −−→ 2[1Co(4)]0 +L −1.13
2[1Co(4)]0 + CO2 −−→ 2[2Co(5)]0 2.8
2[2Co(5)]0 +H+ −−→ 4[3Co(5)]+ +L 11
2[3Co(5)]+ +H+ +L −−→ 2[4Co(6)]2+ +H2O 12 11.6
2[4Co(6)]2+ +L −−→ 4[1Fe(6)]2+ +CO −1.9

Table F.6: B3LYP-D3: reaction of the catalytic cycle for [CoII(qpy)(H2O)2]
2+. Activation

energies (∆G‡) and Gibbs free reaction energies (∆RG
0) are reported in kcal/mol and barriers

for protonation use Phenol as a proton source; reduction potentials in V versus the Fe+/Fc
couple (experimental reduction potentials for reference: −0.95 V & −1.18 V); L = H2O.

Reaction E0 ∆RG
0 pKa ∆G‡

5[1Fe(6)]2+ +e– −−→ 4[1Fe(5)]+ +L −0.94
4[1Fe(5)]+ +e– −−→ 1[1Fe(4)]0 +L −1.41
4[1Fe(5)]+ + CO2 −−→ 4[2Fe(6)]+ 8.9 10.9
1[1Fe(4)]0 +CO2 −−→ 3[2Fe(5)]0 7.3 10.4
4[2Fe(6)]+ +e– −−→ 3[2Fe(5)]0 +L −1.34
3[2Fe(5)]0 +H+ −−→ 5[3Fe(5)]+ 20 2.4
5[3Fe(5)]+ +H+ −−→ 1[4Fe(6)]2+ 15 14.8
1[4Fe(6)]2+ +L −−→ 5[1Fe(6)]2+ +CO −3.2
2[4Fe(5)]+ +L −−→ 4[1Fe(5)]+ +CO 8.5
1[4Fe(5)]0 −−→ 1[1Fe(4)]0 +CO 15.1
1[4Fe(6)]2++e– −−→ 2[4Fe(5)]+ +L −0.43
2[4Fe(5)]++e– −−→ 1[4Fe(5)]0 −1.13

Table F.7: B3LYP-D3: reaction of the catalytic cycle for [FeII(qpy)(H2O)2]
2+. Activation

energies (∆G‡) and Gibbs free reaction energies (∆RG
0 ) are reported in kcal/mol and

barriers for protonation use Phenol as a proton source; reduction potentials in V versus the
Fe+/Fc couple (experimental reduction potentials for reference: −1.39 V & −1.60 V and
−1.17 V & −1.42 V under CO atmosphere); L = H2O.
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Reaction E0 ∆RG
0 pKa ∆G‡

4[1Co(6)]2+ +e– −−→ 3[1Co(5)]+ +L −1.34
3[1Co(5)]+ +e– −−→ 2[1Co(4)]0 +L −1.72
2[1Co(4)]0 + CO2 −−→ 2[2Co(5)]0 5.3
2[2Co(5)]0 +H+ −−→ 4[3Co(5)]+ +L 16
2[3Co(5)]+ +H+ +L −−→ 2[4Co(6)]2+ +H2O 16 8.4
2[4Co(6)]2+ +L −−→ 4[1Fe(6)]2+ +CO −9.8

Table F.8: ωB97M-V: reaction of the catalytic cycle for [CoII(qpy)(H2O)2]
2+. Activation

energies (∆G‡) and Gibbs free reaction energies (∆RG
0) are reported in kcal/mol and barriers

for protonation use Phenol as a proton source; reduction potentials in V versus the Fe+/Fc
couple (experimental reduction potentials for reference: −0.95 V & −1.18 V); L = H2O.

Reaction E0 ∆RG
0 pKa ∆G‡

5[1Fe(6)]2+ +e– −−→ 4[1Fe(5)]+ +L −1.39
4[1Fe(5)]+ +e– −−→ 1[1Fe(4)]0 +L −1.71
4[1Fe(5)]+ + CO2 −−→ 4[2Fe(6)]+ 3.2 11.6
1[1Fe(4)]0 +CO2 −−→ 3[2Fe(5)]0 5.3 19.6
4[2Fe(6)]+ +e– −−→ 3[2Fe(5)]0 +L −1.78
3[2Fe(5)]0 +H+ −−→ 5[3Fe(5)]+ 24 0.0
5[3Fe(5)]+ +e– −−→ 4[3Fe(5)]0 −1.51
4[3Fe(5)]0 +H+ −−→ 2[4Fe(5)]+ +H2O 19 12.8
2[4Fe(5)]+ +L −−→ 4[1Fe(5)]+ +CO −1.3
1[4Fe(5)]0 −−→ 1[1Fe(4)]0 +CO 3.5
1[4Fe(6)]2++e– −−→ 2[4Fe(5)]+ +L −1.23
2[4Fe(5)]++e– −−→ 1[4Fe(5)]0 −1.62

Table F.9: ωB97M-V: reaction of the catalytic cycle for [FeII(qpy)(H2O)2]
2+. Activation

energies (∆G‡) and Gibbs free reaction energies (∆RG
0 ) are reported in kcal/mol and

barriers for protonation use Phenol as a proton source; reduction potentials in V versus the
Fe+/Fc couple (experimental reduction potentials for reference: −1.39 V & −1.60 V and
−1.17 V & −1.42 V under CO atmosphere); L = H2O.
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Figure F.13: Spin densities for all viable spin states for both [1Co(5)]+ and [1Co(4)]0 using
ωB97X-D (isovalue:0.05).

Figure F.14: Spin densities for all viable spin states for both [1Co(5)]+ and [1Co(4)]0 using
B3LYP (isovalue:0.05).
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Figure F.15: Spin densities for all viable spin states for both [1Co(5)]+ and [1Co(4)]0 using
B97-D (isovalue:0.05).

Figure F.16: Spin densities for all viable spin states for both [1Fe(5)]+ and [1Fe(4)]0 using
ωB97X-D (isovalue:0.05).
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Figure F.17: Spin densities for all viable spin states for both [1Fe(5)]+ and [1Fe(4)]0 using
B3LYP (isovalue:0.05).

Figure F.18: Spin densities for all viable spin states for both [1Fe(5)]+ and [1Fe(4)]0 using
B97-D (isovalue:0.05).
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Figure F.19: Functional dependence of the key molecular orbitals of: (a) 2[1Co(4)]0 and
2[2Co(5)]0; (b) 1[1Fe(4)]0 and 3[2Fe(5)]0.

Figure F.20: Functional dependence of the structure of 2[2Co(5)]0.
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Figure F.21: Functional dependence of the structure of 3[2Fe(5)]0.
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F.5 CASSCF
We used the complete active space self-consistent field method (CASSCF) to get more insight
in metal ligand coupling of the doubly reduced intermediates 2[1Co(4)]0 and 1[1Fe(4)]0.
These CASSCF calculations were performed with Orca (version 4.0.0.2) [548] employing the
RI approximation along with the def2-TZVP basis and auxiliary basis set [497] (see zip file for
a sample input). The quasi restricted orbitals of a high spin (Co: S = 5/2, Fe: S = 2) DFT
B97-D[62] calculation served as initial guess orbitals. All molecular orbitals were plotted
using an isovalue of 0.03 (blue: positive, red: negative values).

We used identical active spaces for the CASSCF calculations of both doubly reduced
intermediates to probe the coupling of the ligand and metal orbitals: the two metal d-
orbtials capable of mixing with the qpy π∗ dxz and dyz; the two occupied π∗ and two more
additional π∗ resulting in a CASSCF(5,6) set-up for 2[1Co(4)]0 and CASSCF(4,6) set-up
for 1[1Fe(4)]0. We acknowledge that an in-depth analysis of these complicated electronic
structures using active space methods is involved and beyond the scope of this work.[570–
573]

The Natural orbital occupation number (NOON) of the converged CASSCF calculations
of both species are summarized in table F.10 and the natural orbitals are depicted in fig-
ures F.22 and F.23. They exhibit significant deviation from integers (0,1 or 2) which confirms
a significant amount of static correlation and an antiferromagnetic ordering. This finding
explains the broken symmetry solution observed in the DFT calculations (see main text).
The natural orbitals reveal different degrees of entanglement of the two metal d-orbital and
the two qpy π∗ orbitals for the two different metals.

In case of 2[1Co(4)]0: first, the metal dxz and a qpy π∗ are forming a π bond whereas both
bonding (1.49 figure F.22 (b)) and anitbonding (0.51 figure F.22 (c)) orbitals are significantly
occupied. The interaction is net bonding and shows a delocalization of the electrons onto
both ligand and metal. Second, a doubly occupied metal dyz (1.96 figure F.22 (a)) and singly
occupied qpy π∗ (1.01 figure F.22 (d)).

In case of 1[1Fe(4)]0: first, a metal dxz and a qpy π∗ forming a π bond whereas both
bonding (1.34 figure F.23 (a)) and anitbonding (0.66 figure F.23 (d)) are occupied. The bond
is weaker in comparison to the 2[1Co(4)]0 which implies more localization of the electrons
on the metal and ligand, respectively. Second, two non-bonding mixed metal dyz and qpy π∗
orbitals (1.16 fig. F.23 (b) and 0.84 fig. F.23 (c)) implying essentially an uncoupled d-electron
and qpy π∗ electron.
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(a) (b)

(c) (d)

Figure F.22: Natural Orbitals of 2[1Co(4)]0: a) NOON: 1.96 b) NOON: 1.49 c) NOON: 1.01
d) NOON: 0.51.

(a) (b)

(c) (d)

Figure F.23: Natural Orbitals of 1[1Fe(4)]0: a) NOON: 1.34 b) NOON: 1.14 c) NOON: 0.86
d) NOON: 0.66.
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Complex NOON
2[1Co(4)]0 1.96 1.49 1.01 0.51
1[1Fe(4)]0 1.34 1.14 0.86 0.66

Table F.10: Natural orbital occupation number (NOON) of the CASSCF calculations of the
two doubly reduced intermediates.
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Appendix G

Influence of Overpotential on an Iron
Terpyridine Complex for CO2 Reduction:
A Combined Experimental and
Computational Investigation

Density functional theory calculations for spin gaps, redox potential and the LOBA analysis
were performed with the Q-Chem package [108] (version 5.2.0) using the ωB97X-D [68]
functional. Geometries were optimized in the gas phase with no constraints. The structures
were verified as minimum with the vibrational frequencies. The geometry optimization and
frequency calculations were performed with ωB97X-D and a mixed basis (def2-SVP basis
for all main group elements, def2-TZVP basis set for Fe). [247] The electronic structure was
refined with the def2-TZVPP basis [247] single point calculations. The solvation energies
were calculated using the C-PCM model (acetonitrile, ε = 37.5) as implemented in Q-
Chem [119]. The numerical integration of the XC functional was on a (75, 302) grid (75
radial shells with 302 Lebedev points).
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Figure G.1: Geometry of key intermediates of the low overpotential mechanism: a) CO2
adduct 1[Fe−CO2]

0 including a counterion; b) pyridinium intermediate 1[Fe−NPYH]
1; car-

boxy intermediate 1[Fe−CO2H]
1; d) transition state for the second protonation
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Figure G.2: Transition states for the second protonation: a) after a third redcution; b) with
Cl-PhOH after two reductions; c) with Cl-PhOH after three reductions.
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Figure G.3: Transition states for the formation of a hydride: a) directly from the acid source
(PhOH); b) an intramolecular via a pyridinium.

Figure G.4: Key intermediate for the OH substituted pyridine: a) CO2 adduct; b) transition
state for the second protonation.
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Figure G.5: Complete mechanistic pathways investigated for the first catalytic regime (low overpotential;
bottom half) and the second catalytic regime (high overpotential; top half). For the low overpotential regime
we probed: (1) a CO2 binding first pathway (blue arrows), (2) protonation first pathway (magenta arrows),
and (3) CO2 binding to the singly reduced complex, 2[Fe]+ (purple arrows). For the high overpotential
regime, catalysis turns over from 2[Fe]+. Single-electron reduction of 2[Fe]+ gives the catalytic resting state,
1[Fe]0 highlighted in yellow. Following formation of 1[Fe]0, the pathway diverges in three directions. CO2
binding can occur first followed by protonation to give 1[CO2H]

+ (blue arrows) or protonation-first can occur
followed by CO2 coordination (red arrows). The 1[Fe−CO2H]

+ intermediate can then be further reduced
to 2[Fe−CO2H]

0 and following the final protonation step and loss of water generates the carbonyl complex,
2[Fe−CO]+ which regenerates 2[Fe]+ following ligand exchange. We additionally explore the possibility of
overcoming the high energy barriers associated with either Co2 binding or protonation of 1[Fe]0 by undergoing
a PCET pathway to generate 2[Fe−NPYH]

0 (green arows). All reaction and activation energies are given in
units of kcal/mol and all reduction potentials are referenced to the computed Fe/Fe+ couple.
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