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ABSTRACT OF THE DISSERTATION

Design Automation of Microfluidics

by

Junchao Wang

Doctor of Philosophy, Graduate Program in Bioengineering

University of California, Riverside, September 2017

Dr. William H. Grover, Chairperson

What can microfluidics do? For the past decades, researchers from physics, chem-

istry, biotechnology, and other fields have used microfluidics to design numerous chips for

different applications. As new microfluidic chips keep emerging, we ask ourselves, “what

else? Could we develop any microfluidic chips that human beings cannot design or imagine?

Can we design better microfluidic chips with the help of computer algorithms?”

This thesis presents several projects that demonstrate the potential that computer

algorithms, simulations, and conventional microfluidics together will help researchers find

better microfluidic chips, better design methods, and help us explore new phenomena. In

Chapter 1, we start with a small review of how microfluidic chips are designed in the past

decades and discuss the advantages and disadvantages of the conventional design method.

In Chapter 2, we present a “random design” method to design a function microfluidic solute
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generator, which is able to generate three arbitrary concentrations at the same time. In

Chapter 3, we present a microfluidics-optimized particle simulation algorithm (MOPSA)

that simulates the trajectories of cells, droplets, and other particles in microfluidic chips

with more lifelike results than particle tracers in existing commercial software. In Chapter

4, we present a microfluidic simulation method that can simulate the behavior of fluids and

particles in typical microfluidic chips instantaneously (in around one second), which is able

to accelerate the simulation of microfluidic chips. In Chapter 5, we present a microfluidic

particle sorter which is designed by the three algorithms in Chapter 2 - 4. In Chapter 6,

we automated designed and optimized a microfluidic mixer using Non-dominated Sorting

Genetic Algorithm II (NSGA-II). In Chapter 7, we discuss the potential impacts of the

projects presented in this thesis and the future directions of computer algorithms that can

help microfluidics evolve into the next generation.
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Chapter 1

Introduction

1.1 Background: Current microfluidics design method

Since the appearance of microfluidics devices in late 1970s [1], microfluidics have

found a wide variety of applications, including cell analysis [2], PCR amplification [3], cell

separation [4] and so on. [5]. However, while new applications of microfluidic devices keep

emerging, the techniques used for designing and optimizing these devices have remained

relatively unchanged since the 1970s. Virtually all researchers design microfluidic chips

using computer assisted design (CAD) software, and the design represents the best guess of

the researcher to reach their desired functionality. The chip is then fabricated and tested.

If the performance of chip is not good enough, the design process will start over again

(see Figure 1.1). Thus, this method is mainly depended on the experience of the designer,

which makes it labor-intensive and time consuming. At the same time, this process only

explores a small fraction of possible designs for functional microfluidic devices. Therefore, a

better method is needed to help design different microfluidic chips for the purpose of various
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applications in a faster and more accurate way. Figure 1.2 shows how researchers translate

a single transistor to a modern CPU. In a modern CPU, there are more than 700 million

transistors on it, and obviously human beings cannot imagine how we should organize so

many transistors. Thus, software becomes an essential part to help researchers to design a

CPU.

Figure 1.1: How a microfluidic chip is designed?

In contrast, to overcome the obstacle and help microfluidics become a useful tool in

different fields, we need design automation tools to simplify the designing process, improve

the performance of microfluidic chips, and reduce the time and cost of the designing process.
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How a CPU is designed? 
World first transistor A CPU for desktop

Software

……773 million

Figure 1.2: How a modern CPU is designed? Software!

1.2 What will the software look like?

In this thesis, we tried to answer this question in several aspects. In Chapter

2, we will discuss a “random design” method. We accomplished this by first generating

a library of thousands of different random microfluidic chip designs, then simulating the

behavior of each design on a computer using automated finite element analysis. The sim-

ulation results were then saved to a database which a user can query via a public website

(http://random.groverlab.org) to find chip designs suitable for a specific task. To demon-

strate this functionality, we used our library to select chip designs that generate any three

desired concentrations of a solute. We also fabricated and tested 16 chips from the library,

confirmed that they function as predicted, and used these chips to perform a cell growth

rate assay. This is one of many different applications for randomly-designed microfluidics;

in principle, any microfluidic chip that can be simulated could be designed automatically
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using our method. Using this approach, individuals with no training in microfluidics can

obtain custom chip designs for their own unique needs in just a few seconds.

Computer simulation plays a growing role in the design of microfluidic chips. How-

ever, the particle tracers in some existing commercial computational fluid dynamics software

are not well suited for accurately simulating the trajectories of particles such as cells, mi-

crobeads, and droplets in microfluidic systems. To address this issue, in Chapter 3, we

present a microfluidics-optimized particle simulation algorithm (MOPSA) that simulates

the trajectories of cells, droplets, and other particles in microfluidic chips with more lifelike

results than particle tracers in existing commercial software. When calculating the velocity

of a particle, MOPSA treats the particle as a two-dimensional rigid circular object instead

of a single point. MOPSA also checks for unrealistic interactions between particles and

channel walls and applies an empirical correcting function to eliminate these errors. To val-

idate the performance of MOPSA, we used it to simulate a variety of important features of

microfluidic devices like channel intersections and deterministic lateral displacement (DLD)

particle sorter chips. MOPSA successfully predicted that different particle sizes will have

different trajectories in six published DLD experiments from three research groups; these

DLD chips were used to sort a variety of different cells, particles, and droplets. While some

of these particles are not actually rigid or spherical, MOPSA’s approximation of these par-

ticles as rigid spheres nonetheless resulted in lifelike simulations of the behaviors of these

particles (at least for the particle sizes and types shown here). In contrast, existing com-

mercial software failed to replicate these experiments. Finally, to demonstrate that MOPSA
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can be extended to simulate other properties of particles, we added support for simulating

particle density to MOPSA and then used MOPSA to simulate the operation of a microflu-

idic chip capable of sorting cells by their density. By enabling researchers to accurately

simulate the behavior of some types of particles in microfluidic chips before fabricating the

chips, MOPSA should accelerate the development of new microfluidic devices for important

applications.

Microfluidics researchers are increasingly using computer simulation in many dif-

ferent aspects of their research. However, these simulations are often computationally in-

tensive: simulating the behavior of a simple microfluidic chip can take hours to complete on

typical computing hardware, and even powerful workstations can lack the computational

capabilities needed to simulate more complex chips. This slows the development of new

microfluidic chips for new applications. In Chapter 4, we present a microfluidic simula-

tion method that can simulate the behavior of fluids and particles in typical microfluidic

chips instantaneously (in around one second). Our method decomposes the chip into its

primary components: channels and intersections. The behavior of fluid in each channel

is determined by leveraging analogies with electronic circuits, and the behavior of fluid

and particles in each intersection is determined by querying a database containing nearly

100,000 pre-simulated channel intersections. While constructing this database takes a non-

trivial amount of computation time, once built, this database can be queried to determine

the behavior of fluids and particles in a given intersection in a fraction of a second. Using

this approach, the behavior of a typical microfluidic chip can be simulated in just one second

5



on a standard laptop computer, without any noticeable degradation in the accuracy of the

simulation. As a proof of concept, we show that our simulation method can instantaneously

simulate the paths followed by particles in both simple and complex microfluidic chips, with

results that are essentially indistinguishable from simulations that took hours or even days

to complete using conventional approaches.

Microfluidic chips that can sort mixtures of cells and other particles have important

applications in research and healthcare, but designing a sorter chip for a given application

is a slow and difficult process. In Chapter 5, we created microfluidic sorter chips without

actually designing them. We accomplished this by simulating the paths followed by particles

through 10,513 different random microfluidic chip designs. We then defined an application—

sorting 1 µm and 10 µm particles—and mined the database of simulations to find 1,061

designs that could perform this application. Finally, we fabricated and tested four of these

designs and found that one of the designs can successfully sort the specified particles. Our

work shows that by searching libraries of pre-simulated chip designs, researchers with no

experience in microfluidics can find chip designs for particle sorters quickly and easily.

Additionally, since these sorters were designed at random, we do not know exactly how

they function. This suggests that entirely new and useful microfluidic phenomena could be

discovered in random chip designs using automated techniques like ours, phenomena that

might have never been discovered otherwise.

The ability to thoroughly mix two fluids is a fundamental need in microfluidics.

While a variety of different microfluidic mixers have been designed by researchers, it remains

6



unknown which (if any) of these mixers are optimal (that is, which designs provide the most

thorough mixing with the smallest possible fluidic resistance across the mixer). In Chapter 6,

we automatically designed and rationally optimized a microfluidic mixer. We accomplished

this by first generating a library of thousands of different randomly designed mixers, then

using the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to optimize the random

chips. After 200 generations of evolution, the Pareto-optimal front was found. We examined

designs at Pareto-optimal front and found several design criteria that enhance the mixing

performance of a mixer while minimizing its fluidic resistance; these observations provide

new guidance on how to design microfluidic mixers. We also compared the designs from

NSGA-II with some popular microfluidic mixer designs from the literature and found that

designs from NSGA-II have a lower fluidic resistance with similar mixing performance.

7



Chapter 2

Random design of microfluidics

Reprinted with permission from “Random design of microfluidics.” by Junchao Wang, Philip

Brisk, and William H. Grover. Lab on a Chip 16.21 (2016): 4212-4219.

2.1 Introduction

Since the emergence of the first lab-on-a-chip devices in the late 1970s, [1] mi-

crofluidic chips have found applications in a variety of fields. But while the range of possible

applications for microfluidics has blossomed, the process of designing microfluidic chips has

remained relatively unchanged since the 1970s. Researchers still design new microfluidic

chips by hand, drawing on a computer a design that represents a “best guess” of the de-

sired functionality, then fabricating and testing the chip. If the chip does not perform as

intended, the researcher alters the chip design and fabricates and tests the new chip. This

iterative design process can take months or even years to yield a functional microfluidic

chip. The inefficiency of this process slows the development of new microfluidic chips for

important applications in research and healthcare. It also creates a significant barrier to
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entry for researchers who may wish to create custom microfluidic chips but are not mi-

crofluidics experts. Finally, the current design process only explores a tiny fraction of the

many possible designs for microfluidic chips. It is reasonable to assume that there are many

microfluidic chip designs that are better than our current designs, but these better designs

will never be discovered simply because our design process is too slow and inefficient.

Computers can help with the process of microfluidic chip design, but they have not

yet completely automated the design process. For example, finite element analysis (FEA)

software is sometimes used to simulate the behavior of a microfluidic chip before fabricating

it. However, to use FEA software, a researcher still needs to create a chip design first; the

software does not design the chip for them. Additionally, the cost of FEA software ($7995

for a single-user license to the popular simulation tool COMSOL Multiphysics) is a practical

barrier to widespread use of this software in microfluidics. Recently, software and algorithms

from computer science and electrical engineering have been applied to microfluidic chip

design with encouraging results. For example, the principles of semiconductor electronic

design automation (EDA) can be leveraged to automatically design microfluidic chips for

some tasks. [6, 7] However, some physical phenomena in microfluidics do not have clear

analogies in electrical circuits. Laminar flow, solute diffusion, sound, [8] light, [9] magnetism,

[10] and gravity [11] all affect microfluidic chips in ways that are difficult to model using

EDA techniques.
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Figure 2.1: Surveying the library of “all possible microfluidic chip designs.” (A) For a
microfluidic chip with two inlets (dark blue), two outlets (green), four channel intersections
arranged in a square (red), and four possible channels connecting those intersections (light
blue), there are 24 = 16 different chip designs. If solutions of concentrations 100% and
0% flow into the inlets at a constant volumetric flow rate, these 16 chip designs generate
solutions with seven different specific concentrations at the outlets (0%, 6%, 26%, 50%,
74%, 95%, and 100%), and some designs generate no fluid (marked with “X”). (B) An 8 ×
8 grid supports 2112 = 5×1033 different chip designs that can generate essentially any three
desired concentrations at the three outlets. One of these chip designs is shown in (C) and
fabricated and photographed in (D); this specific design generates concentrations of 83%,
5.5%, and 0% at its outlets.
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In this work we were motivated by the question, is it possible to create functional

microfluidic devices without actually designing them? More precisely, what if we had a

library of all possible designs for microfluidic chips, and creating a chip for a new application

was as simple as searching through the library for the appropriate design? In this thought

experiment, every possible application for microfluidics—from diagnosing diseases [12] to

searching for life on Mars [13]—would have a suitable design in this library. If the behavior

of each chip design was stored with the design in the library, then a researcher could merely

search the library for chips with the desired behavior and fabricate and use these chips

immediately, without actually designing the chips.

Obviously this hypothetical library of “all possible microfluidic chip designs” would

be astronomically large. But it also raises some interesting possibilities. This library would

undoubtedly contain chip designs that are far better than the designs created by humans

for the same application. Microfluidics researchers have explored such a small fraction

of this library of all possible designs—could there be entirely new and useful microfluidic

phenomena waiting to be found in this hypothetical library?

While we cannot yet build a full library of “all possible chip designs,” we can still

explore parts of this library. Specifically, by imposing constraints that limit the number of

possible chip designs, we can in some cases actually test all possible chips, or at least explore

enough random designs to catch a glimpse of the library of all possible chips. In this work

we constrained our microfluidic chips to a rectilinear grid of channels shown in Figure 5.2.

We simulated the performance of over ten thousand different random chip designs based
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on this grid using FEA software, then created a database of the simulation results. We

then queried this database to find chip designs suitable for given tasks. As a demonstration

task, we instructed our software to select chip designs that take two fluids as inputs (one

fluid, a solution with a known concentration of a solute; and the other fluid, water) and

generate three output fluids with user-specified concentrations of the solute (like 92%, 66%,

and 23%). We then fabricated and tested several of the chips selected by our software and

used them to perform a cell growth rate assay. A graphical overview of our random design

process is shown in Figure 2.2. Despite not having been “designed” for any specific purpose,

the selected chips successfully performed the desired tasks. This proof-of-concept is just

one of many different applications for randomly-designed microfluidics; in principle, any

microfluidic chip that can be simulated could be designed automatically using our method.

2.2 Results

2.2.1 Grid design

In this work we constrained our microfluidic chip designs to the rectilinear grid

patterns shown in Figure 5.2. An n×n grid has n2 possible channel intersections and 2n2−2n

possible channels connecting those intersections. If each of these connecting channels can

be either present or absent in a given design, then the total number of different possible chip

designs is 22n
2−2n. If the size of the grid is small, it is feasible to generate all microfluidic chip

designs that are possible within that grid. For example, the simplest grid we considered, a

2 × 2 grid, has only 22×2
2−2×2 = 16 different designs (Figure 5.2A).
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Initial simulation 
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Design selection via website
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Control Return results
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(e.g. 87%, 48%, 5%)

Top 10 design 
candidates

Inquiry

Return results

Input 
specifications

Results

Details of 
selected design
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Figure 2.2: Overview of the random microfluidics design process. During the three-week
initial simulation phase, a MATLAB program generated 10,513 random chip designs from
the grid shown in Figure 5.2B, simulated the performance of each design using the finite
element analysis software COMSOL Multiphysics, and saved the simulation results to a
MySQL database. This database of random chip designs was then transferred to a web
server (http://random.groverlab.org) where a user can specify three desired solution con-
centrations. Within seconds, the website then returns the top ten chip designs that generate
those concentrations, including simulation results and downloadable computer-assisted de-
sign (CAD) files for use in fabricating the chips.

As a demonstration of randomly-designed microfluidics, we set out to find chips

that are capable of generating any three desired concentrations of a solute. Each chip design

contains two inlet channels, one containing a 100% solution of a solute and one containing

water (0% solute), flowing into the chip at a constant volumetric flow rate. As these fluid

streams split and merge inside the chip, different mixtures of the two fluids are created. We

then used finite element analysis (described below) to predict the concentrations of solute

in each of the three outlet channels for each chip design.

In the 16 possible designs for the 2 × 2 grid in Figure 5.2A, four designs (7, 14,

15, and 16) have no connections between the inlets and outlets and thus output no fluid;

four designs (1, 4, 5, and 6) output solute concentrations that are unchanged from the input
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concentrations (still 100% and 0%); two designs (10 and 13) output only 0%; two designs (11

and 12) output only 100%, two designs (8 and 9) output only 50%, one design (2) outputs

solute concentrations of 74% and 6%; and one design (3) outputs solute concentrations of

95% and 26%. Thus, seven different specific solute concentrations (0%, 6%, 26%, 50%,

74%, 95%, and 100%) can be generated using chips from the 2 × 2 library. If these seven

concentrations are adequate for a given microfluidic application, then a user may select

chip designs from this library and use them. However, if a user requires concentrations that

are not generated by chips in the 2 × 2 library, then a larger and more complex grid is

necessary.

As the size of the grid grows larger, there are more opportunities for channel

splits and merges that create different mixtures. We hypothesized that an 8× 8 grid would

support a large enough variety of chip designs to ensure that any three desired mixtures will

be generated by at least one design in the library. The 8× 8 grid in Figure 5.2B supports

22×8
2−2×8 = 5, 192, 296, 858, 534, 827, 628, 530, 496, 329, 220, 096 different chip designs, so

clearly we will not be able to study every possible design. However, by randomly selecting

thousands of designs from the 8× 8 grid and simulating their behavior, we can explore the

variety of designs supported by this grid. And by fabricating and testing several of these

designs, we can confirm that our technique of randomly-designed microfluidics can be used

to select chip designs with desired behaviors.
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2.2.2 Generating random microfluidic chip designs

A custom MATLAB program was written that generated 21,564 different random

chip designs within the constraints of the grid design shown in Figure 5.2B. Each of the 112

variable channels (light blue in Figure 5.2B) has a 90% chance of being present in any given

design. This value was chosen as a balance between two practical limits. If the probability

of a channel being present is too low, many chip designs many not have a continuous path

for fluid to flow between the inlets and outlets, rendering them nonfunctional. If the channel

probability is too high, most chips will have nearly all variable channels present, leading

to low diversity in the library of random designs. A 90% probability that each variable

channel will be present seems to provide a good balance between encouraging functional

devices and exploring a large fraction of the chip design space. Of the 21,564 different

random chip designs, 10,513 designs have continuous paths for fluid between both inputs

and all three outputs; these designs were retained for use in this study. 11,058 designs

have paths for fluid between both inputs and two of the three outputs and were not used

(although they could be used for applications requiring only two different concentrations of

fluids).

2.2.3 Building the library of chip simulations

The behavior of each of the 10,513 random chip designs was simulated using the

finite element analysis software COMSOL Multiphysics (COMSOL Inc., Burlington, MA).

We used the software’s MATLAB API [14] to automate this process and performed all
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simulations necessary to construct the library without human assistance. The results of

each simulation included plots of fluid velocity, fluid pressure, and solute concentration at

each point in the chip, as well as a COMSOL model file containing the simulation results.

The two-dimensional simulations used 200 µm channel widths, 1.5 mm channel lengths

between vertices, 1× 10−6 relative repair tolerance, and triangular meshes containing from

5×104 to 5×105 elements. In the Laminar Flow physics module in COMSOL Multiphysics,

each inlet was assigned an inlet boundary condition of 10 mm/s normal inflow velocity, and

each outlet was assigned an outlet boundary condition of 0 Pa pressure. The remaining

boundaries were walls (no-slip boundary condition), and the material filling the channels

was water under incompressible flow. In the Transport of Dilute Species physics module,

Inlet 1 is assigned an inflow of 1 mol/m3 and Inlet 2 is assigned an inflow of 0 mol/m3. The

three outlets were assigned as outflows. Each chip design was simulated using the diffusion

coefficients for sodium ions, fluorescein, and bovine serum albumin, as described below.

Two stationary solvers were used in COMSOL Multiphysics: the first solved for laminar

flow, and the second solved for transport of diluted species. After each simulation, the linear

flow rates and solute concentrations at each of the three outlets were saved to a MySQL

database. Additionally, the COMSOL model file, velocity profile, concentration profile,

pressure profile, and a computer-assisted design (CAD) file containing the design of the chip

in the standard DXF format [15] were saved to local storage. Users can query this database

and download chip designs for specific applications at http://random.groverlab.org.
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2.2.4 Role of diffusion in randomly designed chips

Solutes with different diffusion coefficients may result in different output concen-

trations in the same chip. To assess the role of diffusion and enable our library to support a

wider variety of solutes, each chip design was simulated three times, once for each of three

model solutes: sodium ions (diffusion coefficient Dc = 1.33×10−9 m2/s), fluorescein (Dc

= 4.25×10−10 m2/s), and bovine serum albumin (BSA; Dc = 6.38×10−11 m2/s). These

solutes were chosen to be representative of ions, small molecules, and proteins, respectively.

The complete library of solute-specific simulations contains 31,515 simulation results and

took three weeks to complete on a desktop computer.

2.2.5 Analyzing the random chip library

Before using our library of simulation results to generate chip designs for specific

applications, we first analyzed the entire library to ascertain the range of microfluidic func-

tions it supports. Figure 3 shows the solute concentrations and fluid velocities at each of the

three outlets for all 10,513 random chip designs (using the diffusion constant of fluorescein).

The distribution of solute concentrations in Figure 3 confirms that the library contains chip

designs suitable for generating essentially any desired solute concentration.

Outlet 2 supports the widest variety of solute concentrations; designs yielding

concentrations from 0% to 100% at Outlet 2 are present in the library. Concentrations

around 50% are most common at Outlet 2, and 80% of the designs generate concentrations

between 28% and 72% at Outlet 2. These results make intuitive sense: as the middle outlet
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Figure 2.3: Fluid velocity vs. concentration for each outlet in each of the 10,513 chip
designs in our simulation library. While this data was obtained using the diffusion coefficient
of fluorescein (4.25 × 10−10 m2/s), the results are essentially identical for solutes with
larger or smaller diffusion coefficients (see online Supplementary Information). The wide
distributions of concentrations and velocities confirm that our proof-of-concept library can
provide chip designs that generate any desired fluid concentrations at any desired flow rates
up to approximately 10 mm/s.
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located halfway between Inlet 1 (100%) and Inlet 2 (0%), Outlet 2 is well suited to yield a

range of mixtures centered at 50%.

Outlet 1 yields a narrower range of solute concentrations (from 50% to 100%).

The average concentration at Outlet 1 is 95%, the median concentration is 98%, and 90%

of the designs yield concentrations between 86% and 100%. These higher concentrations

can be explained by the close proximity of Outlet 1 to Inlet 1 (which contains 100% solute);

this close proximity favors designs in which most of the fluid from Inlet 1 to flows to Outlet

1 (and therefore increases the solute concentration at Outlet 1).

Outlet 3 also yields a narrower range of solute concentrations (from 0% to 50%),

with an average concentration of 5%, a median concentration of 2%, and 90% of the designs

yielding concentrations between 0% and 15%. Again, the close proximity of Outlet 3 to Inlet

2 (which contains 0% solute) explains the preference for lower concentrations at Outlet 1.

There is no obvious mathematical relationship between the fluid velocity and so-

lute concentration at each of the three outlets in Figure 3. Consequently, velocity and

concentration can be considered as independent variables when selecting designs from the

library: a user could specify any desired concentration and any desired velocity and a suit-

able design is likely to exist within the library (at least over the ranges shown in Figure

3).

We then identified which factors are most significant in determining the solute

concentrations at the outlets. Specifically, fluids could be mixed by any of three different

processes on-chip: the chip design (the various splits and merges fluids undergo in the chip),

19



diffusion (mixing between adjacent streams of fluid in the chip), and turbulence (chaotic

processes that also might mix fluids in the chip). At low flow rates, diffusional mixing would

dominate, resulting in identical 50% concentrations at each outlet. At moderate flow rates,

the effect of diffusion is reduced, and the mixing ratios would be determined by the channel

network and the fluidic resistance of each channel segment. Finally, at high flow rates, the

breakdown of laminar flow and emergence of turbulence could affect the mixing ratios in

unpredictable ways. The dimensionless Peclet (Pe) and Reynolds (Re) numbers are used to

determine in which of these regimes a microfluidic chip is operating:

Pe =
Lu

D
(2.1)

Re =
ρLu

µ
(2.2)

where L is a characteristic dimension like channel width, u is the linear fluid flow rate,

D is the solute diffusion constant, ρ is the density of the fluid, and µ is the viscosity of

the fluid. If Pe < 1, diffusion may have an effect on the mixing behavior of a chip, and

if Re > 300, turbulence may have an effect on the mixing behavior. We calculated Re

and Pe for each of the 10,513 random chip designs in our library. Values for Re at each

location in each chip ranged from 0 to 6 and were all much lower than 300, indicating

that no turbulent mixing is occurring in the chip designs. Typical values of Pe were 4500

for channels containing solutions of Na+, 14,000 for fluorescein, and 94,000 for BSA; these

are all much greater than 1 and indicate that diffusional mixing has a negligible effect
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on the outlet solute concentrations. These calculations suggest that chip design (and not

turbulence or diffusion) is the primary determinant of the output solute concentrations over

the range of flow rates we considered.

Finally, to determine if our library of chip designs can be used with a wide variety

of solutes (not just the three whose behavior we simulated), we compared simulation results

from the two solutes with the greatest difference in diffusion constants: Na+ and BSA.

Even through the diffusion coefficient of Na+ is about 20 times larger that that of BSA, the

average difference in outlet concentrations between Na+ and BSA for the 10,513 different

designs in our library was only 1.02 percentage points, and the largest single difference

in outlet concentrations was only 2.76 percentage points. Additionally, versions of Figure

2.6 containing the simulation results for all three solutes (Na+, fluorescein, and BSA) are

provided in online Supplementary Information; they are essentially indistinguishable from

each other. This further supports our claim that chip design (not diffusion) dominates the

mixing behavior of the designs in our library over the range of flow rates we studied (from 0

to 10 mm/s at the outlets), and our library contains designs that are suitable for generating

solutions of any desired concentration using a wide variety of different solutes.

2.2.6 Selecting randomly-designed chips for specific tasks

We then transferred our database of 10,513 different random chip designs to a web

server and created a website that allows users to search this database to find chips with de-

sired behaviors. The website is available for public use at http://random.groverlab.org.
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After the user specifies the three desired solution concentrations, the website returns the

design and simulation results for each of the top ten chip designs that will generate these

concentrations. Note that this server does not run COMSOL or perform any simulations;

it simply queries a database populated with simulation results.

To confirm that the chip designs selected by our website actually function as

predicted, we chose 16 chip designs at random and fabricated glass microfluidic chips based

on those designs. The only modification we made to the computer-generated designs was

the deletion of all dead-end channels, which might trap bubbles during use and will have no

effect on the mixing behavior of the chips. Conventional photolithography and wet etching

were used to etch the randomly-designed chip designs into glass wafers to a depth of 50 µm,

inlet and outlet holes were drilled using diamond-tipped drill bits, and glass-glass thermal

fusion bonding (668◦C for 6 hours) or anodic bonding to silicon (350◦C and 400 V for

approximately 30 minutes) were used to create finished microfluidic devices.

The simulation results for these 16 designs (labeled A–P) are shown in Figure

2.4, and a photograph of a chip fabricated using Design L is shown in Figure 5.2D. After

fabricating chips for each of the 16 random designs in Figure 2.4, we tested the performance

of each chip by flowing a solution of 1.0 × 10−5 M fluorescein in 0.1 M Tris buffer (pH

= 8.0) in Inlet 1 and an identical solution without fluorescein in Inlet 2. A two-channel

syringe pump was used to provide a constant flow rate of 6 µL/min at each inlet (this

corresponds to a linear flow rate of 10 mm/s). After 10 minutes, fluid from each of the

three outlets was collected for analysis. The fluorescein concentration of fluid from each
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outlet was measured using a FlexStation microplate reader (Molecular Devices, Sunnyvale,

CA) using an excitation wavelength of 490 nm and an emission wavelength of 514 nm.

Figure 2.5A-D compares our experimental results with the values predicted by our

simulation library. The average percent difference between the predicted and experimental

values of concentration at each outlet was 2% for Outlet 1, 4% for Outlet 2, and 0.3% for

Outlet 3. The greatest single difference between predicted and experimental values was at

Outlet 2 on Chip P (9% difference). These differences between predicted and experimental

results compare favorably with other microfluidic mixers [16] and are low enough for many

microfluidic applications.

Finally, we also used our randomly-designed microfluidic chips to automatically

generate five different concentrations of cell media for use in a cell growth assay. We selected

three chips (A, G, and H) that generated 5%, 10%, 57%, 83% and 99% concentrations of

yeast growth media. On each chip, Inlet 1 received 100% yeast extract peptone dextrose me-

dia (YPD; Thermo Fisher Scientific, Waltham, MA USA) and Inlet 2 received water. 10 mL

of media from each outlet was collected into test tubes that were then inoculated with iden-

tical amounts of Saccharomyces cerevisiae yeast and cultured at 25◦C for 24 hours. Growth

curves for each culture were obtained by periodically measuring the optical absorbance at

600 nm using an UV-Vis-NIR spectrophotometer (V-670, Jasco, Easton, MD).

Yeast growth curves (Figure 2.5E) show that while the initial growth rates were

fairly comparable for all five media concentrations generated by our randomly-designed
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Figure 2.4: Simulation results for 16 chip designs (A–P) selected at random from our library
of 10,513 random chip designs, using the diffusion coefficient of fluorescein (4.25 × 10−10

m2/s). As the channels split and merge in the random designs, the constant solute con-
centrations (100% and 0%) and constant fluid flow rates (6 µL/min) at the inlets translate
into a variety of different concentrations and flow rates at the outlets.
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Figure 2.5: (A–D) Comparisons between the predicted and experimentally-determined per-
formance of each of the 16 randomly-designed test chips shown in Figure 2.4. The solute
concentrations predicted by our library (blue) agree well with the measured concentrations
(red) for each chip at Outlet 1 (A), Outlet 2 (B), and Outlet 3 (C). When combined (D),
all 48 solute concentrations generated by these 16 chips are consistent with the library pre-
dictions over the full range of concentrations from 0% to 100%. (E) To demonstrate that
randomly-generated microfluidic chips can perform real-world biological applications, three
chips were used to automatically generate five different concentrations of cell culture media
(5%, 10%, 57%, 83% and 99% of yeast extract peptone dextrose). The optical absorbance
at 600 nm was measured to obtain growth curves of Saccharomyces cerevisiae yeast in each
media concentration generated by the randomly-designed chips. As expected, yeast cultures
with lower media concentrations reached steady state earlier and with a smaller number of
cells than cultures with higher media concentrations.
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chips, yeast in the lowest-concentration media (5% and 10%) exhausted their nutrients

and entered stationary phase earlier and with fewer cells than the yeast in the higher-

concentration media. Growth curves like these play an important role in studies of human

conditions like aging and cancer, [17] and our randomly-designed chips could replace manual

labor or expensive computer-controlled valves and pumps in an instrument for automated

measurement of growth curves. These results suggest that randomly-generated microfluidic

chips can support real-world research applications.

2.3 Discussion

We demonstrated how to create functional microfluidic chips for specific applica-

tions without actually designing the chips. We accomplished this by generating a large

library of random chip designs, simulating their behavior using finite element analysis, and

saving the results in a database that can be queried by users via a website. Using this web-

site, researchers with no experience in designing microfluidics can easily find chip designs

that satisfy their own unique needs.

As a proof-of-concept, we created a library of 10,513 random chip designs that

can generate three solutions of any desired concentrations. These random chips have sev-

eral unique properties compared to existing chips for generating solutions with different

concentrations. First, while most existing chips rely on diffusion to create a range of dif-

ferent solute concentrations, [18, 19, 20] our randomly-designed chips use only the series of

channel splits and merges in the chip to generate different concentrations. Consequently,
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our randomly-designed chips can be operated over a wider range of flow rates than chips

that rely on diffusion, and users can specify both the desired concentration and the desired

flow rate at each outlet. Additionally, while microfluidic valve- and pump-based serial di-

luters generate waste fluids with undesired concentrations during operation, [21, 22] our

randomly-designed chips generate only fluid with the desired concentrations and create no

waste fluid. These differences show that randomly-generated microfluidic chips can have

unexpected and useful advantages over their human-designed counterparts.

Finally, our technique can be used to find microfluidic chip designs that do more

than simply generate solutions with user-specified concentrations. Any microfluidic phe-

nomenon that can be simulated could be the basis for a library of chip designs and simula-

tions that could subsequently be queried by users for a wide variety of different applications.

For example, a library of random chip designs whose simulations include two-phase flow (oil

and water) could be used to automatically design microfluidic droplet generators, and a li-

brary whose simulations include particle tracing could be used to automatically design cell

sorters. Generating these libraries may require a non-trivial amount of computation time:

our proof-of-concept library required three weeks to complete. However, that library was

generated using an ordinary desktop computer, and higher-performance hardware could

speed up library generation considerably. As libraries of random chip designs proliferate

in the future, even complex lab on a chip devices for important research and healthcare

applications could be created in seconds without actually designing them.
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2.4 Supplementary Materials

2.4.1 Role of diffusion constant in chip behavior

To determine whether solutes with different diffusion coefficients still behave as

predicted in our randomly-designed microfluidic chips, we simulated each of the 10,513

random chip designs using three different model solutes: Na+ (representative of ions), fluo-

rescein (representative of small molecules), and bovine serum albumin (BSA; representative

of proteins). The simulation results from all three solutes are summarized in Supplemen-

tary Figure 2.6. The similarity of the results from each solute confirm that our library of

randomly-designed chips can be used to predict the behavior of a wide range of different

solutes from ions to proteins.
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Figure 2.6: Fluid velocity vs. concentration for each outlet in each of the 10,513 chip
designs in our simulation library, using the diffusion coefficients of three different solutes:
Na+ (1.33× 10−9 m2/s), fluorescein (4.25× 10−10 m2/s), and bovine serum albumin (BSA;
6.38 × 10−11 m2/s). Each solute behaves similarly in each chip design, meaning that our
randomly-designed chips will still function as predicted regardless of the specific solute used.
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Chapter 3

MOPSA: A microfluidics-optimized

particle simulation algorithm

Reprinted with permission from “MOPSA: A microfluidics-optimized particle simulation

algorithm” by Junchao Wang, Philip Brisk, and William H. Grover. Biomicrofluidics 11,

034121 (2017).

3.1 Introduction

The field of lab-on-a-chip and micro total analysis devices has been growing rapidly

for nearly 40 years, [1] and microfluidic chips have found important applications in biological

and chemical analysis. Many of these chips contain particles such as cells, microbeads, or

droplets. For example, microfluidic cell sorters are emerging as powerful tools for point-of-

care testing and biological research.[23, 24]

As the variety of microfluidic devices increases, computer-based simulations of

microfluidics have become more important.[25, 26, 27] Microfluidics researchers are increas-
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Figure 3.1: Results from using the commercial finite element analysis software COMSOL
Multiphysics to simulate the behavior of two sizes of cells flowing through a deterministic
lateral displacement (DLD) microfluidic cell sorter chip containing an array of triangular
posts. While this DLD chip was designed to separate cells based on size, in this simulation
the small cell (3 µm diameter; green) and large cell (10 µm; red) follow exactly the same
trajectory and are not separated. Additionally, the simulated cells sometimes impossibly
overlap the chip’s triangular posts (A) or stick permanently (B). Deficiencies like these
make it difficult to accurately simulate flowing cells and other particles in microfluidics
using existing commercial software tools.
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ingly using finite element analysis (FEA) software such as COMSOL Multiphysics (COM-

SOL Inc., Burlington, MA), Autodesk CFD (Autodesk Inc., Venice, CA), and Fluent (AN-

SYS Inc., Canonsburg, PA) to simulate and optimize their microfluidic chip designs. These

software tools excel at calculating the fluid velocity field in a chip. However, these tools are

not well suited for simulating the behavior of particles like cells, beads, and droplets flowing

in microfluidic chips. For example, Figure 3.1 shows the results from using COMSOL Mul-

tiphysics to simulate the behavior of a deterministic lateral displacement (DLD) cell sorter.

DLD sorters use arrays of micron-scale posts to sort cells based on their size. As cells flow

through the chip and interact with the posts, large and small cells follow different paths

and are therefore separated by the chip.[28, 29] However, in the simulation results from

COMSOL Multiphysics in Figure 3.1, the larger 10 µm cells (red) and smaller 3 µm cells

(green) follow exactly the same trajectory. If the simulation were accurate, the cells would

have followed different trajectories. Additionally, by zooming in to the simulation results in

Figure 3.1A, we see that the 10 µm cell actually overlaps with the wall of a triangular post

(an impossible situation). These observations confirm that the particle tracing algorithm in

COMSOL Multiphysics treats the particle as a mathematical point with no area or volume,

an assumption that can be acceptable in macro-scale physics but not in microfluidics. This

assumption leads to additional problems: if the simulated single-point particle in COMSOL

Multiphysics is located on a mesh node with a fluid velocity magnitude of zero, the particle

will remain stuck at that location forever (Figure 3.1B). This sticking behavior remains
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regardless of which boundary condition is chosen for the wall in COMSOL Multiphysics

(freeze, stick, bounce, disappear, or reflect diffusely).

The lack of commercial software tools that accurately simulate particles in mi-

crofluidics has profound consequences. For example, researchers developing new cell sorters

like the DLD cell sorter shown in Figure 3.1 typically have to fabricate and test these chips

to determine whether they sort the desired cells. While some empirical models for predicting

the sorting behavior of DLD chips do exist for chips with cylindrical posts,[30] these models

do not easily extend to posts with arbitrary shapes like the triangles shown in Figure 3.1.

And with each chip design iteration requiring fabrication and testing in the lab, it can take

months for researchers to develop a functional device. This slows the progress of research

and keeps valuable research tools and lifesaving medical diagnostics out of the hands of the

people who need them.

To address this problem, we developed a microfluidics-optimized particle simula-

tion algorithm (MOPSA) that is capable of simulating lifelike trajectories for some particles

in situations where existing software tools fail. MOPSA treats a particle as a 2D rigid cir-

cular object instead of a single point when calculating the particle’s velocity. MOPSA

also checks whether the particle overlaps a solid object (a post or channel wall) at each

simulated time step. If overlap is detected, MOPSA applies an empirical correcting func-

tion, wallEffect, to shift the particle to a new position where it will not overlap walls. By

providing researchers with accurate simulations of some types of particles in microfluidic de-
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vices, MOPSA should accelerate the development of new microfluidic devices for important

applications in biological research, medical diagnostics, and beyond.

Assuming that a particle is a rigid circle means that MOPSA cannot directly sim-

ulate the deformability or non-spherical shapes of some particles. In spite of this limitation,

by assuming that the particles are rigid circles, MOPSA nonetheless predicts particle tra-

jectories that are consistent with the experimentally observed behavior of published DLD

chips sorting some types of deformable and non-spherical cells and droplets. However, un-

doubtedly there are particles that cannot be approximated as rigid circles and simulated

successfully using MOPSA; for these particles other simulation approaches may be neces-

sary and could even be incorporated into future versions of MOPSA (as discussed in the

Conclusions).

3.2 Simulation

Simulating a microfluidic chip using MOPSA requires two steps:

1. Calculate the fluid velocity field in the chip using conventional finite element analysis

software

2. Calculate the trajectory followed by a particle through the chip using MOPSA

In this proof-of-concept demonstration, we used COMSOL Multiphysics to calculate the

fluid velocity field and MATLAB to implement MOPSA. We used this approach to simulate

three different microfluidic chip models:
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1. The cross channel model is a typical microfluidic cross-shaped intersection with 200

µm channel widths. Junctions like this are extremely common in microfluidic chips,[31,

32, 33, 34] so assessing the performance of MOPSA in these intersections is very im-

portant.

2. The triangular DLD model was chosen because of its complexity. Arrays of hundreds

of triangular posts offer many opportunities for interactions between particles and the

posts and challenge the robustness of MOPSA.

3. The cylindrical DLD model enables comparisons between MOPSA and published ex-

perimental results. The vast majority of DLD chips in the literature use arrays of

cylindrical posts, and we use MOPSA to simulate the paths followed by particles in

six published DLD experiments by three different research groups.[28, 35, 36]

While we chose these three models for this proof-of-concept demonstration, we note that,

in principle, MOPSA can simulate virtually any microfluidic chip design containing flow-

ing particles, as long as the chip can be modeled in two dimensions (MOPSA is currently a

two-dimensional simulation, although it could easily be extended to three dimensions as dis-

cussed in the Conclusions) and as long as the particles can be approximated as rigid circles

or spheres. Finally, to compare MOPSA to existing commercial software tools for parti-

cle simulation in microfluidics, we also simulated these chip models entirely in COMSOL

Multiphysics (without using MOPSA).
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3.2.1 Calculating fluid velocity field in COMSOL

For each microfluidic chip model simulated here, the fluid velocity fields were

calculated using finite element analysis software (COMSOL Multiphysics). For accuracy,

we used the Laminar Flow physics module and a customized free triangle mesh with a

maximum mesh size that was equal to or less than the diameter of the smallest particle

that would be simulated using that mesh. In the cross channel model, the maximum mesh

size was 8 µm (for simulating a particle diameter of 50 µm). Inlets were assigned an inlet

boundary condition of 5 mm/s normal inflow velocity. In the triangular DLD models, the

maximum mesh size was 1 µm (for simulating particle diameters of 1, 3, 10, and 12 µm).

In the cylindrical DLD models, the maximum mesh size was a quarter of the difference

between two simulated particles’ diameters (e.g., for simulating a DLD chip separating 8

and 9 µm beads, the maximum mesh size was 0.25 µm). Inlets were assigned an inlet

boundary condition of 1 mm/s normal inflow velocity. In all models, outlets were assigned

an outlet boundary condition of 0 Pa pressure, the remaining boundaries were walls (no-slip

boundary condition), and the material filling the channels was water under incompressible

flow. A stationary solver was used for calculating the fluid velocity field.
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Algorithm 1 Main MOPSA algorithm

Input: Velocity profile in x and y direction of model (x.csv, y.csv), diameter of parti-
cle (Dp), initial position of particle (positioni), model geometry file (geometry.dxf),
resolution of generating streamlines (resolution), vxpre, vypre, β.

Output: Simulated particle trajectory (trajectory)
1: polylines← geometry.dxf . Load microfluidic chip geometry from DXF file.
2: x← x.csv . Load pre-simulated fluid velocity profiles.
3: y ← y.csv
4: node← x.csv . Load mesh information from x.csv.
5: nodesorted ← sortrows(node) . Sort nodes based on x-direction.
6: geometryboundary[xmin xmax ymin ymax]← [min(node(:, 1)) max(node(:, 1)) min(node(:
, 2)) max(node(:, 2))] . Define region of interest.

7: positionc ← positioni . Initialize current position of particle.
8: trajectory ← positioni . Initialize trajectory of particle.
9: while positionc ∈ geometryboundary do

10: nodescovered ← findCoveredNodes(Dp, positionc, nodesorted, node)
11: vx ← getMean(nodescovered, x) . Set particle velocity to average fluid velocity of

covered mesh nodes.
12: vy ← getMean(nodescovered, y)
13: vy ← vy · β . Scale lateral (y) component of particle velocity by β if necessary.
14: if vx = 0 and vy = 0 then . If particle has zero velocity (is stuck)...
15: vx ← vxpre . ...use the particle’s velocity from the previous time step instead.
16: vy ← vypre
17: end if
18: positionn ← positionc + resolution · [vx vy] . Calculate position of particle at next

time step.
19: positionn ← wallEffect(Dp/2, positionn, polylines) . Apply wallEffect (see

Algorithm 2).
20: trajectory ← [trajectory; positionn]
21: positionc ← positionn . Record new particle position.
22: vxpre ← vx . Record new “previous” particle velocity for use in next iteration.
23: vxpre ← vy
24: end while

3.2.2 Simulating particle trajectory with MOPSA

The MOPSA algorithm is summarized in pseudocode in Algorithm 1. We im-

plemented MOPSA in MATLAB to leverage MATLAB’s strengths in matrix calculation.

Using the built-in MATLAB function INPOLYGON significantly simplifies the MOPSA

code. In principle, the pseudocode shown here could be implemented in any programming

language.
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MOPSA first imports the geometry of the microfluidic chip (the design of the chip

in DXF format [15]), the fluid velocity field calculated by COMSOL Multiphysics, and the

description of the mesh used by COMSOL (lines 1–4 of Algorithm 1). Instead of treating

the particle as a single mathematical point, MOPSA uses the average velocity of all of the

mesh nodes covered by the particle to determine the particle’s velocity profile (lines 11–12).

vx represents the magnitude of the velocity vector in the x direction, and vy represents the

velocity in the y direction. As shown in Algorithm 1 line 13, MOPSA uses an empirically-

obtained parameter β to “weight” the components of the particle velocity vector in direction

orthogonal to fluid flow (the y direction). For the cross channel model, β = 1 (meaning

that the velocities calculated by COMSOL are used as-is). For the triangular and cylindrical

DLD models, β = 1.45. Details on how this value was determined are provided in Results

and Discussion.

MOPSA next considers the possibility of particles with zero velocity. In theory,

as long as there is fluid flow in a microfluidic channel, mesh nodes with zero fluid velocity

should exist only at channel walls. However, in practice, finite mesh size makes it possible for

software like COMSOL Multiphysics to predict that nodes near channel walls may also have

zero fluid velocity. A particle located at a mesh node with zero fluid velocity can become

permanently trapped. To detect this situation, MOPSA utilizes a conditional statement

(line 14 in Algorithm 1) to determine if the velocity of the particle in the time step will be

zero. If so, MOPSA uses the particle’s non-zero velocity from the previous time step for

the current time step calculation (lines 15 and 16). As long as the amount of time between
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steps (resolution, defined in Equation 3.1 below) is sufficiently small, this substitution does

not seem to affect the accuracy of the simulation. In this manner, MOPSA ensures that

the particle will not get permanently stuck. Alternatively, for applications in which particle

sticking is desired (for example, using antibody-coated posts to capture cells of interest

in a microfluidic chip [37]), a threshold can be added to allow particle sticking below a

user-specified particle velocity.

MOPSA then uses Equation 3.1 to calculate the particle’s position at the next

time step:[38]

positionn = positionc + resolution · [vx vy] (3.1)

where positionc (µm) is the current position of the particle, positionn (µm) is the position

of the particle in the next time step, resolution (s) is the amount of time between each

calculation step, and vx and vy (µm/s) are the average fluid velocities of the mesh nodes

covered by the particle, as defined earlier. The variable resolution is a parameter that

can be customized by the user. A smaller resolution makes the simulation more accurate

but also more time consuming. If the flow through a chip is relatively fast, then a small

value for resolution is needed to accurately predict the path followed by a particle in the

fluid. If the flow is relatively slow, then a larger resolution can be used without sacrificing

simulation accuracy. To find an optimal value for resolution, a MOPSA simulation can be

repeated with successively smaller values for resolution. Eventually the predicted particle
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trajectories will converge to a single trajectory that will not change with additional decreases

in resolution; this is the optimal value for resolution for a given application.

Equation 3.1 assumes that:

1. The density of the particle is the same as its surrounding fluid.

2. The net force applied to the particle is always zero.

3. Particles do not interfere with each other or channel walls.

4. Particles have smooth surfaces, so friction between fluid and particle surfaces is neg-

ligible.

5. The material of the particle is homogeneous.

If these assumptions are unsuitable for a particular application, MOPSA can be modified

by replacing Equation 1 with a more complicated drag law such as Stokes’ Law [39] or the

work of Haider and Levenspiel [40] (we demonstrate a modification of MOPSA later in this

work).
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Algorithm 2 function wallEffect

Input: microfluidic chip wall geometry information (polylines), radius of particle (Rp),
current position of particle (positionc), particle mapping parameter (k)

Output: shifted position of particle (positions)
1: function wallEffect(Rp, positionc, polylines)
2: xp ← Rp · cos (0 : (2π/k) : 2π) + positionc(1, 1)
3: yp ← Rp · sin (0 : (2π/k) : 2π) + positionc(1, 2)
4: for i = 0→ totalpolylines do
5: polylinec ← polylines[i]
6: if polylinec(1, :) = polylinec(end, :) then
7: xpolyline ← polylinec(:, 1)
8: ypolyline ← polylinec(:, 2)
9: in← inpolygon(xp, yp, xpolyline, ypolyline)

10: countin ← 0
11: pointsin ← []
12: for j = 0→ totalin do
13: if in(j) = 1 then
14: countin + +
15: pointsin ← [pointsin;xp yp]
16: end if
17: end for
18: if countin > k or countin = 0 then
19: positions ← positionc
20: else . However, if the particle does overlap with the wall:
21: pointmiddle ← [mean(pointsin(1, :), pointsin(end, :))]
22: direction← norm(positionc − pointmiddle)
23: positions ← positionc + direction · (countin/k) ·Rp · w
24: break()
25: end if
26: end if
27: end for
28: return positions
29: end function

After the particle’s position at the next time step has been calculated, MOPSA’s

wallEffect function (Algorithm 2) determines if the particle will collide or overlap with solid

walls. As shown in Figure 2, wallEffect uses a large number of points (k = 200) to map

the boundary of the particle located at position a. If any of these k points are located

inside a solid wall (e.g., a triangular post, a channel wall, or any other device feature),

then the algorithm recognizes that the particle is overlapping the wall and compensates by

shifting the particle’s position away from the wall to a new location a′. The direction of
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Shifted position
Problematic position
Solid wall

a’

Flow

Figure 3.2: Function of the wallEffect algorithm. A particle centered at point a (positionc
in Algorithm 2) has its boundary represented by 200 points (depicted as small red points).
If any of these points overlap with a solid chip feature, such as the triangular post shown
(blue), the algorithm shifts the particle to a new location a′ (green boundary; positions in
Algorithm 2) in a direction perpendicular to the midpoint d of line bc (defined by the cyan
×-shaped points on the intersections between the particle boundary and the edges of the
post). The distance of the shift is determined by Equation 3.2. In this illustration, the
area of overlap between the particle and post and the distance of the shift are intentionally
exaggerated for clarity. In practice, choosing a properly small value of resolution (Equation
1) will ensure that the overlap and shift distance are small and the shift direction will be
approximately perpendicular to the edge of the post.
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this shift is determined by first identifying the two points of contact between the particle

perimeter and the wall (b and c), then defining a line segment bc between these two points,

and finally computing the midpoint d of the line segment. The direction of the particle shift

is perpendicular to line bc (roughly pointing in the opposite direction of the fluid flow) and

is calculated using Equation 3.2:

positions = positionc + direction · countin
k

·Rp · w (3.2)

where positions is the shifted position of the particle, positionc is the initial (wall-overlapping)

position of the particle, direction is a normal vector describing the shifting direction, k is

the total number of points used to map the perimeter of the particle, countin is the number

of those perimeter mapping points located inside the solid wall, Rp is the radius of the

particle, and w is a weight factor that can be adjusted for different models (w = 1 was used

in this work). Once this algorithm has corrected the overlapping position of the particle,

MOPSA moves on to the next simulation time step.

The parameters resolution in Equation 1 and w in Equation 2 provide a mech-

anism for fine-tuning the wallEffect algorithm. For example, if the algorithm predicts an

unrealistically-large shift distance, reducing resolution will decrease the amount of overlap

between the particle and wall (and thus decrease the amount of correction applied by wall-

Effect. If the algorithm predicts an unrealistically-small shift distance, increasing w will

increase the shift distance. Finally, if the geometry of a wall has concave features, wallEf-

fect may yield unexpected results because the particle perimeter could intersect with the
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wall in more than two points. In this case, changing w could compensate for unexpected

results from concave wall geometries. In any case, w = 1 was used for all of the simulations

presented here.

3.2.3 Comparison with existing commercial particle tracers

To compare the performance of MOPSA to an existing commercial particle tracer,

we repeated all of our particle simulations using the built-in Particle Tracing for Fluid

Flow physics module in COMSOL Multiphysics. The simulations used a time-dependent

solver, and a “drag force” boundary was added into the physics to use Stokes’ Law for

particle trajectory calculation. For the triangular DLD model, the inlet was assigned an

inlet boundary condition of 100 particles per release with a uniform distribution. The

particles were assigned diameters of 1, 3, 10, or 12 µm (although, as described above, these

diameters do not seem to affect the simulation results in COMSOL Multiphysics). The

outlet was assigned an outlet boundary condition of freeze wall. The six cylindrical DLD

model chips we simulated used the same conditions as the triangular DLD model but with

10 particles per release and the particle diameters shown in Table 3.1. We also tested

a range of boundary conditions for the post walls in the DLD models, including bounce,

diffuse scattering, and general reflection. Finally, for the cross channel model, the inlet was

assigned an inlet boundary condition of 10 particles per release (50 µm particle diameter)

with uniform distribution and the outlet was assigned an outlet boundary condition of freeze

wall.
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3.3 Results and discussion

3.3.1 Simulating the cross channel model

The fluid velocity field of the cross channel model was solved using COMSOL

Multiphysics and is shown in Figure 3.3A. This model simulates a cross-channel with fluid

200 μm

COMSOL

MOPSA

A B

Figure 3.3: (A) Fluid velocity field of the cross channel model obtained from COMSOL
Multiphysics (dimensions in µm and velocity in m/s). (B) Simulated trajectories of a 50 µm
diameter particle traveling through the cross channel model. In the trajectory calculated by
the particle tracer in COMSOL Multiphysics (red outlines) the particle overlaps with the
channel wall (an impossibility). However, in the trajectory calculated by MOPSA (green
outlines) the particle remains separate from the channel wall and exits the intersection offset
18 µm from the COMSOL-predicted trajectory (a significant difference for a particle this
size).

entering from the left and exiting out the top, right, and bottom. For rigid spherical

particles originating at many locations across the left-hand entrance channel, COMSOL’s

particle tracer and MOPSA predict very similar particle trajectories. However, for particles

that start close to a channel wall, MOPSA’s simulation is more realistic than COMSOL’s.

Figure 3.3B shows trajectories predicted by COMSOL (red) and MOPSA (green) for a
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50 µm diameter particle flowing adjacent to the channel wall. In the trajectory predicted

by COMSOL, the particle overlaps with the channel wall as it goes around the corner.

In contrast, MOPSA detects these channel walls and keeps the particle from overlapping

them. The realistic wall interactions simulated by MOPSA result in a particle trajectory

that is 18 µm (36% of the particle’s size) farther to the right than the trajectory calculated

by COMSOL. For simple microfluidic chips with a single intersection, the particle tracing

errors introduced by software like COMSOL Multiphysics may be acceptable and may not

affect the overall accuracy of the simulation. However, for microfludic chips with hundreds

of intersections in parallel (like the hydrodynamic filter of Yamada et al. [31]), small errors in

each intersection could combine to form a large net error associated with the path followed

by particles flowing across the entire chip. In these cases, MOPSA should provide a much

more accurate particle trajectory than existing software tools.

3.3.2 Simulating deterministic lateral displacement (DLD)

We also tested MOPSA on the triangular deterministic lateral displacement (DLD)

model cell sorter to determine how the algorithm performs in a chip with more complex

geometry. Figure 3.4 shows the predicted particle trajectories for a 10 µm diameter rigid

spherical particle flowing through an array of triangular posts, calculated using COMSOL

Multiphysics (red) and MOPSA (green). In both simulations the particle starts at the same

location. Since COMSOL treats the particle as a mathematical point, COMSOL’s trajec-

tory allows the particle to overlap with a triangular post, which is physically impossible.
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COMSOL

MOPSA

Flow

Figure 3.4: Predicted trajectories for a 10 µm diameter particle traveling through an array
of triangular posts, obtained using either COMSOL Multiphysics (red) or MOPSA (green).
While the COMSOL trajectory allows the particle to overlap with solid posts and stick
permanently, the MOPSA trajectory does not. Additionally, the trajectory predicted by
MOPSA exhibits the lateral particle displacement expected in DLD chips like this one.

Additionally, later in the COMSOL simulation the particle encountered a zero-velocity mesh

node and permanently stopped. In contrast, the trajectory calculated by MOPSA is much

more consistent with the known mechanism of DLD. Repeated interactions with triangular

posts laterally displace the particle, and no overlapping or sticking with posts is observed

(even after repeating the simulation shown in Figure 3.4 hundreds of times with different

starting locations for the particle). The design of this chip in DXF format, fluid velocity

field, and particle trajectory data are all available for download in online Supplementary

Information.

The goal of DLD is to separate different cells and other particles based on their

size: smaller particles follow the fluid streamlines straight through the device, while larger

particles are “bumped” laterally by the posts and follow a diagonal path through the device.
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12 μm
10 μm

1 μm

Flow

Figure 3.5: Using MOPSA to predict the trajectories of 1 µm (red), 10 µm (purple), and 12
µm (green) diameter particles flowing through a DLD chip containing an array of triangular
posts. The simulation predicts that the smallest particle will flow straight through the array
and the largest particle will be displaced laterally by interactions with the posts. This is
consistent with the known operation of DLD devices. The mid-sized particle (10 µm; purple)
is initially displaced laterally but then follows a straight path; this suggests that this particle
may be close to the critical diameter for this DLD chip design.

To confirm that MOPSA can simulate the particle sorting capabilities of a DLD chip, in

Figure 3.5 we used it to simulate the trajectories of 1, 10, and 12 µm diameter rigid spherical

particles flowing through an array of triangular posts. Although particles of all three sizes

start in the same location, MOPSA predicts that the particles will exit the chip in different

locations: the small 1 µm particle follows the fluid streamlines and moves straight through

the chip, and the large 12 µm particle is “bumped” by each post and moves diagonally

through the chip. The mid-sized 10 µm particle initially follows a diagonal path but then

switches to a straight-through path, leading to a trajectory that lies between the other two

particles’ trajectories. This suggests that the critical diameter for this DLD chip design

(the size of the smallest particle that is laterally displaced in the chip) is close to 10 µm. In

contrast, particles of different sizes follow exactly the same trajectory in COMSOL’s particle
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tracer (Figure 3.1). These results confirm that MOPSA can successfully simulate size-based

DLD separations that are difficult or impossible to simulate using existing commercial

software, at least for rigid spherical particles. The design of this chip in DXF format,

fluid velocity field, and particle trajectory data are all available for download in online

Supplementary Information.

3.3.3 Simulating published DLD experiments

G

G

λ

λ

Δλ

Flow

Figure 3.6: Illustration of the key dimensions in a traditional cylindrical-post-based DLD
chip: spacing between posts (λ), gap between posts (G), and offset between rows of posts
(∆λ).

We next used MOPSA to predict the paths followed by different sized particles

in several published DLD chips. We identified six experiments in three published papers
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  9 μm beads
  8 μm beads

10 μm beads
  9 μm beads

 10 μm white blood cells
   6 μm red blood cells

  6 μm red blood cells
  2 μm platelets

   1 μm beads
0.4 μm beads

 30 μm droplets
 11 μm droplets

A B

C D

E F

Figure 3.7: Using MOPSA to predict particle trajectories in six published deterministic
lateral displacement (DLD) experiments from three research groups.[35, 28, 36] These sim-
ulations are based on (A) a chip that separates 8 µm and 9 µm beads,[35] (B) a chip
that separates 9 µm and 10 µm beads,[35] (C) a chip that separates 2 µm platelets and 6
µm red blood cells,[35] (D) a chip that separates 6 µm red blood cells and 10 µm white
blood cells,[35] (E) a chip that separates 0.4 µm and 1.0 µm beads,[28] and (F) a chip
that separates 11 µm and 30 µm droplets.[36] In each case, MOPSA’s prediction that the
different-sized particles follow different paths is consistent with the experimentally-observed
particle sorting behavior of these DLD chips. [35, 28, 36]
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[28, 35, 36] in which the chip designs and experimental conditions are described in sufficient

detail to allow us to simulate them using MOPSA. These chips use arrays of cylindrical

posts with dimensions defined in Figure 3.6 and summarized in Table 3.1.

We first simulated the DLD chip described by Li et al.[35] who used this chip to

sort 8 µm and 9 µm diameter rigid spherical beads. We found that with a value of β = 1.45,

MOPSA predicts that the 8 µm and 9 µm beads will follow different paths through the DLD

chip (Figure 3.7A); this is consistent with the observed bead sorting behavior of this DLD

chip.[35]

We then left the value of β = 1.45 unchanged as we used MOPSA to predict the

paths followed by particles through five additional published DLD chips from three research

groups (Figure 3.7B–F). In their original publications,[28, 35, 36] these chips were used to

sort a wide variety of particle sizes (from 0.4 µm to 30 µm diameters) and types (beads,

droplets, red blood cells, white blood cells, and platelets). Some of these particles are

not rigid or spherical—droplets are not rigid, and red blood cells, white blood cells, and

platelets are neither rigid nor spherical—so one may rightly expect that MOPSA (which

assumes rigid spherical particles) may not be able to accurately simulate the trajectories

of these particles. However, MOPSA nonetheless successfully predicted that the different-

sized particles follow different paths through the chip. This prediction is consistent with the

particle-sorting behavior reported by the creators of these chips. In contrast, the built-in

particle tracer in COMSOL Multiphysics predicted no differences in the paths followed by

the different particles (see Supplementary Figures 2–7). Undoubtedly there are some parti-
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cles whose deformability and non-spherical shapes will render MOPSA unable to accurately

simulate the behavior of these particles, but at least for the particle types and sizes we

studied, MOPSA’s assumption of rigid and spherical particles did not seem to adversely

affect the quality of the simulation results. The chip design DXF files, fluid velocity pro-

files, and predicted particle trajectories from both MOPSA and COMSOL for each of the

six simulations in Figure 3.7 are available in Supplementary Information.

In some of the DLD chip simulations in Figure 3.7, MOPSA predicted that the

smaller particles will follow a somewhat jagged path when the particles flow vertically

between two rows of posts. For example, in Figure 3.7C the 2 µm diameter platelets seem

to make two sharp turns as they pass from above the third row of posts to below the row.

This behavior was unexpected; to determine its source, we examined the fluid velocity fields

calculated by COMSOL for these DLD simulations. Close inspection of the gaps between

columns of posts (Supplementary Figure 8) reveals that COMSOL predicted asymmetric

fluid velocity fields in these gaps in the cases where the MOPSA-predicted particle paths

were most jagged. For example, the fluid velocity field calculated by COMOSL for the

chip in Figure 3.7C (shown in Supplementary Figure 8C) has a diagonal region of low

flow between every two pillars; when MOPSA uses this fluid velocity field to predict the

path followed by a particle between the pillars, the asymmetry in the field results in a

jagged predicted particle path. These particle trajectories do not seem to affect the overall

simulation results (that different-sized particles follow different paths through the DLD

chips).
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Why was it necessary to increase β to successfully simulate DLD chips in MOPSA?

One explanation could be our assumption that the presence of the particle will not affect

the fluid velocity profile in the chip. In actuality, the presence of a particle could increase

the hydrodynamic resistance of the DLD chip.[41] This could reduce the fluid velocity in the

direction of flow (the x direction) and make the fluid velocity in the direction perpendicular

to flow (the y direction) more significant. Increasing β from 1 to 1.45 adds additional

weight to the y component of the fluid velocity and enables MOPSA to accurately simulate

particles in DLD devices, at least for the particle sizes and types considered here. While

this value of β may not be suitable for all DLD devices or particle sizes and types, it is

noteworthy that all six previously-published DLD chips we replicated in this work were

successfully simulated using the same value for β (1.45).

3.3.4 Extending MOPSA to simulate particles with different densities

In its current form, MOPSA is capable of simulating rigid spherical particles in a

variety of different microfluidic applications. However, in some cases it may be necessary

to add additional physics modules to MOPSA to simulate certain particle properties. For

example, microfluidic chips have been demonstrated that sort cells and other particles by

their densities.[42, 43] Since the current MOPSA assumes that all particles have the same

density (and the particles’ density equals the density of the fluid around the particles),

MOPSA cannot currently be used to simulate the behavior of these density sorter chips.
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Figure 3.8: Using a modified version of MOPSA to simulate the behavior of a microfluidic
chip for sorting cells and other particles by their densities. The chip simulated is based on
published results[42, 43] and consists of two inlets that merge into a single horizontal channel
before splitting into two outlets. The chip is oriented on its edge relative to Earth’s gravity.
(A) Fluid velocity field for the density sorter chip, obtained using COMSOL Multiphysics.
(B) After modifying MOPSA using the approach of Haider and Levenspiel,[40] MOPSA
predicts the paths followed by four rigid spherical particles of different densities as they
enter from the lower input and travel through the chip. As expected, particles with density
greater than the fluid density of 1.0 g/cm3 exit the lower outlet, and particles with density
less than the fluid density exit the upper outlet. This demonstrates that additional particle
properties (like density) can be added to MOPSA when necessary.
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To demonstrate that additional particle properties can be readily added to MOPSA

when needed, we added support for particle density to MOPSA. Our approach uses the work

of Haider and Levenspiel[40] to predict the effects of buoyancy on particles. We then used

our modified MOPSA to predict the paths followed by rigid spherical particles of four

different densities (0.8, 1.0, 1.2, and 1.5 g/cm3) in a microfluidic chip filled with water (1.0

g/cm3) and oriented on its edge relative to Earth’s gravity. In Figure 3.8, all four particles

start at the same location in a lower inlet. As the particles flow along the horizontal

channel, our modified MOPSA correctly predicts that the particles with density greater

than the fluid density will sink downward and exit via the lower outlet, and the particles

with density greater than the fluid density will float upward and exit via the upper outlet.

Since different cell types often have different densities,[44] our modified MOPSA may be

used to help design chips for sorting cells by their type, an important capability in biological

research and medical diagnostics.

3.4 Conclusions

In this work we presented MOPSA, an algorithm for optimized particle simulation

in microfluidic chips. By treating particles as two-dimensional objects instead of single

points and applying corrections when particles interact with channel walls, MOPSA can

accurately simulate particle behaviors that particle tracers in existing commercial software

tools cannot. Consequently, adopting MOPSA into the design process for microfluidic chips

that contain cells, droplets, and other particles should be beneficial.
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Limitations of MOPSA and future directions

MOPSA makes several assumptions about the particles it simulates: the particles

are circular or spherical, they have the same density as the fluid around them, they have

smooth surfaces, they do not interact with other particles, and so on. These assumptions

may limit the utility of MOPSA for some applications. For example, in its current form,

MOPSA cannot simulate effects of inertia on either the particles or the fluid in a chip; these

effects have been used as the basis for particle sorting and focusing in microfluidics.[45]

However, for at least some particle sizes and types, MOPSA’s assumption of rigid spheres

seems to still yield results that are consistent with experimental observations.

For particles that cannot be assumed to be rigid spheres, a number of modeling

techniques have been proposed for simulating the behavior of these particles.[46] For exam-

ple, dissipative particle dynamics [47, 48, 49] has been successfully applied to simulate the

deformation of red blood cells in DLD chips.[46, 50] Zhu et al. [51] modeled deformable

cells as fluid-filled capsules enclosed by neo-Hookean membranes. [?] Kruger et al. [52] used

the immersed-boundary method [53] to model membrane dynamics during cell deformation.

These and other models can be used in situations where MOPSA fails to accurately predict

the behavior of a non-rigid, non-spherical particle; some of them could even be incorporated

into future versions of MOPSA.

We also demonstrated that MOPSA can be easily extended to simulate other par-

ticle properties like particle density. This same approach can be used to enable MOPSA
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to support other important properties of particles. For example, by altering the wallEffect

algorithm to allow cells to stick to channel walls, one could simulate the behavior of mi-

crofluidic devices that intentionally capture cells in this manner.[37] Additionally, to include

the effects of other forces such as electrostatics and acoustics on a particle’s trajectory, ad-

ditional equations can be added to Line 18 in Algorithm 1. To simulate particle-particle

interactions that may be important in applications with high particle concentrations, it

may be necessary to periodically recalculate the fluid velocity vector field while including

particle positions (and particle-induced drag) in the finite element analysis calculation. In

our experience, including particle positions in this manner has a negligible effect on simu-

lation accuracy but significantly increases the required computational time, but it may be

necessary for some applications.

Finally, MOPSA is currently a two-dimensional simulation technique and cannot

be used to simulate three-dimensional microfluidic channel networks. However, nothing

about MOPSA precludes extending the algorithm to three dimensions. This would enable

MOPSA to simulate particle trajectories in emerging 3D-printed microfluidic chips that can

have channels in all three spatial dimensions.[54]

3.5 Supplementary Materials

The supplementary files described in this section are available for free download

from the authors’ website at http://groverlab.org/mopsa.
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3.6 Supplementary figures

Figure 3.9: Fluid velocity field used in Figures 4 and 5. Flow was from left to right.
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(A) Velocity field (B) 8 μm particle trajectory (C) 9 μm particle trajectory

Figure 3.10: Supplementary information for the experiment simulated by MOPSA in Figure
7A. Fluid velocity field (A) and simulated particle trajectories for 8 µm (B) and 9 µm (B)
particles obtained using COMSOL Multiphysics. In contrast to the MOPSA simulation in
Figure 7A, in the COMSOL simulation the different particle sizes follow identical trajectories
(no DLD separation) and occasionally overlap with posts (an impossible occurrence) or
become permanently stuck.

(A) Velocity field (B) 9 μm particle trajectory (C) 10 μm particle trajectory

Figure 3.11: Supplementary information for the experiment simulated by MOPSA in Figure
7B. Fluid velocity field (A) and simulated particle trajectories for 9 µm (B) and 10 µm (B)
particles obtained using COMSOL Multiphysics. In contrast to the MOPSA simulation in
Figure 7B, in the COMSOL simulation the different particle sizes follow identical trajectories
(no DLD separation) and occasionally overlap with posts (an impossible occurrence) or
become permanently stuck.
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(A) Velocity field (B) 2 μm particle trajectory (C) 6 μm particle trajectory

Figure 3.12: Supplementary information for the experiment simulated by MOPSA in Figure
7C. Fluid velocity field (A) and simulated particle trajectories for 2 µm (B) and 6 µm (B)
particles obtained using COMSOL Multiphysics. In contrast to the MOPSA simulation in
Figure 7C, in the COMSOL simulation the different particle sizes follow identical trajectories
(no DLD separation) and occasionally overlap with posts (an impossible occurrence) or
become permanently stuck.

(A) Velocity field (B) 6 μm particle trajectory (C) 10 μm particle trajectory

Figure 3.13: Supplementary information for the experiment simulated by MOPSA in Figure
7D. Fluid velocity field (A) and simulated particle trajectories for 6 µm (B) and 10 µm (B)
particles obtained using COMSOL Multiphysics. In contrast to the MOPSA simulation in
Figure 7D, in the COMSOL simulation the different particle sizes follow identical trajectories
(no DLD separation) and occasionally overlap with posts (an impossible occurrence) or
become permanently stuck.
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(A) Velocity field (B) 0.4 μm particle trajectory (C) 1 μm particle trajectory

Figure 3.14: Supplementary information for the experiment simulated by MOPSA in Figure
7E. Fluid velocity field (A) and simulated particle trajectories for 0.4 µm (B) and 1 µm (B)
particles obtained using COMSOL Multiphysics. In contrast to the MOPSA simulation in
Figure 7E, in the COMSOL simulation the different particle sizes follow identical trajectories
(no DLD separation) and occasionally overlap with posts (an impossible occurrence) or
become permanently stuck.

(A) Velocity field (B) 11 μm particle trajectory (C) 30 μm particle trajectory

Figure 3.15: Supplementary information for the experiment simulated by MOPSA in Figure
7F. Fluid velocity field (A) and simulated particle trajectories for 11 µm (B) and 30 µm (B)
particles obtained using COMSOL Multiphysics. In contrast to the MOPSA simulation in
Figure 7F, in the COMSOL simulation the different particle sizes follow the same trajectories
(no DLD separation) and occasionally overlap with posts (an impossible occurrence) or
become permanently stuck.
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Figure 3.16: Supplementary information for the experiment simulated by MOPSA in Figure
7. Closeups of fluid velocity fields (A–F) corresponding to each MOPSA simulation in Figure
7 (A–F).
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Chapter 4

Instantaneous simulation of fluids

and particles in complex

microfluidic devices

4.1 Introduction

Computer-based simulation is becoming increasingly important in the design of

microfluidic devices. Finite element analysis (FEA) software enables researchers to study

microfluidic phenomena in their chips [55, 56], optimize existing chip designs [57], and even

automate the design of new devices [58]. However, existing simulation tools suffer from

several notable drawbacks which have unnecessarily raised the barrier to entry and slowed

widespread adoption of these tools in the microfluidics community. First, existing software

tools for FEA are complex multi-purpose tools with significant “learning curves” and little

customization for microfluidics. Second, the computational requirements of performing the

FEA simulation can be prohibitive, leading to exorbitant runtimes. For example, a recent
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numerical simulation of the acoustic viscous torque effect on the rotation of a single particle

took several days to complete using a quad-core Intel Xeon X5570 CPU workstation with

48 GB of RAM [59]. This is tremendously costly, especially during early-stage design space

exploration, when chip designers need to rapidly consider a large number of variations in chip

designs. Fast simulation times could also be particularly beneficial for emerging computer-

based tools that automatically design application-specific custom microfluidic chips [58].

This work presents a new technique to reduce microfluidic simulation times com-

pared to conventional techniques. This technique is inspired by memoization, a method

for solving complex problems by breaking them into pre-solved sub-problems [60]. We first

decompose a microfluidic chip into two types of components: channels and channel inter-

sections. The behavior of fluid in the channels is determined using fluid flow models like

the Hagen-Poiseuille equation and simple analogies from electronic circuits like Kirchhoff’s

Laws. The behavior of fluid and particles in the intersections is determined by querying a

database containing tens of thousands of pre-simulated intersections. By combining inter-

section simulations retrieved from the database with channel calculations obtained using

electrical circuit analogies, we construct a complete simulation of the behavior of fluids

and particles in a typical microfluidic chip in around one second on a conventional laptop

computer, yielding results that are virtually identical to those obtained in hours or days

using conventional software.
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4.2 Theory of instantaneous microfluidic simulation

The analogy with electronic circuits has long been used to model fluid flow in

microfluidic channels [61, 62]. For example, a voltage difference between two points in an

electronic circuit is analogous to a pressure difference ∆P between two points in a microflu-

idic chip; likewise, the electrical current and resistance of a wire are respectively analogous

to the fluid flow rate Q and hydrodynamic resistance Rh of a microfluidic channel. The flow

rate in a channel is proportional to the applied pressure drop and inversely proportional

to the hydrodynamic resistance of the channel; this is the microfluidic equivalent of Ohm’s

Law:

Q =
∆P

Rh
(4.1)

Also like electronic resistors, microfluidic channels with hydrodynamic resistancesRh1, Rh2, . . . Rhn

arranged in series have an equivalent hydrodynamic resistance Rh of

Rh = Rh1 +Rh2 + · · ·+Rhn (4.2)

and microfluidic channels with hydrodynamic resistances Rh1, Rh2, . . . Rhn arranged in par-

allel have an equivalent hydrodynamic resistance Rh of

1

Rh
=

1

Rh1
+

1

Rh2
+ · · ·+ 1

Rhn
(4.3)

For microfluidic chips containing a complex network of microfluidic channels, Kirchhoff’s

laws (which are ordinarily used to calculate currents and voltages in electrical circuits) can
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be used to determine the flow rate and pressure at each point in the chip. Specifically,

the fluidic analog of Kirchhoff’s current law predicts that the sum of the flow rates of fluid

flowing into a channel intersection equals the sum of flow rates of fluid flowing out of the

intersection, and the fluidic analog of Kirchhoff’s voltage law predicts that the sum of all

of the pressure drops in a loop of channels equals zero.

The non-negligible viscosity of fluid causes the analogy between electronics and

microfluidics to break down. For example, while the current-carrying capacity of a wire is

simply proportional to its cross-sectional area, the flow-carrying capacity of a microfluidic

channel is a complex function of the cross-sectional size and shape of the channel, as well

as the viscosity of the fluid in the channel. The hydrodynamic resistance Rh of a channel

with a rectangular cross section (a common channel shape in microfluidics) is

Rh =
12ηL

wh3F
(4.4)

where η is the viscosity of the fluid, L is the length of the channel, w is the width of the

channel, h is the height of the channel, and F is the rectangular geometric form factor of the

device [63]. Other expressions for Rh are available for channels with other cross-sectional

shapes.

By treating the channels in a microfluidic device as a network of resistors and using

Equations 4.1–4.4 and Kirchhoff’s laws, it is possible to calculate the average flow rate in

each channel in a microfluidic chip. Alternatively, electronic circuit simulation software

such as SPICE [64], PSpice (Cadence Design Systems, Inc., Rochester, NY) or Simulink
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(MathWorks, Natick, MA) can be used to model the chip as a network of resistors and

calculate the current (the average flow rate) in each channel.

This analogy between electronic circuits and microfluidic chips cannot predict the

behavior of microfluidic channel intersections, where the merging and splitting of different

fluid streams in these intersections (and the paths followed by particles in these streams)

share no obvious analog in electronic circuits. The behavior of fluids in these intersections

is nonetheless very important. For example, merging streams of fluids in intersections can

generate new solute concentrations, and changes in streamline width in intersections can be

used to sort particles like cells by their size [31, 32, 34]. Computational finite element anal-

ysis (FEA) software can predict the behavior of fluids and particles in channel intersections,

but the computational time required to simulate the behavior of these intersections slows

down the design process. In summary, there is an unmet need for simulation approaches

that combine the speed of the electrical-fluidic analogy (for simulating channels) with the

accuracy of finite element analysis (for simulating intersections).

Our proposed solution is to create a database of pre-characterized microfluidic

channel intersections. We first introduced a generic Unit Intersection model, shown in Fig

4.1, which has up to four channels (labeled North, East, South, and West), any of which

can be an inlet or an outlet with varying inflow or outflow rates. For example, intersection b

in Fig 4.1 has a 1 cm/s inlet at North, a 2 cm/s inlet at South, a 3 cm/s outlet at East, and

no connection (i.e., a 0 cm/s inlet) at West. We then populated our database with nearly
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Figure 4.1: Using instantaneous simulation of a microfluidic chip to predict the paths
followed by fluids and particles flowing through the chip. A basic “H” channel chip (top) is
first separated into nine units (a− i). Units a, c, d, e, f , g, and i are simple channels; the
flow of fluid in these channels is akin to the flow of electricity in a network of resistors and
therefore can be modeled using principles of electrical circuit analysis (Equations 1–4 and
Kirchhoff’s laws). Units b and h are channel intersections where multiple fluid inlets and
outlets come together; the paths followed by particles through these intersections cannot
be predicted using analogies with electric circuits. Instead, each unit is described in terms
of a prototype intersection (the “Unit Intersection,” bottom left) with different boundary
conditions. For example, unit b has two inlets (1 cm/s at North, and 2 cm/s at South),
one outlet (3 cm/s at East), and one unused connection (West). By querying a database
containing nearly 100,000 pre-simulated unit intersections, suitable simulation results for
units b and h are retrieved. Particle trajectories from these unit intersections (red lines in b
and h) are then expanded through the rest of the chip using streamline theory [65, 66]. In
this manner, the paths followed by fluids and particles through the entire chip are predicted
in around one second.
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100,000 different randomly-generated instances of our Unit Intersection, each of which has

a different random assignment of Inlets and Outlets and different flow rates at each of the

four channels. We then used commercial finite element software to simulate the behavior of

fluids and particles in each intersection and stored the results in the database. To determine

the behavior of a specific intersection in a given microfluidic chip, one can simply query the

database to find the pre-simulated intersection that is the closest match in terms of inlets,

outlets, and flow rates, then retrieve that intersection’s simulation results and use them in

the overall chip simulation.

Fig 4.1 shows how our instantaneous microfluidic simulation method is applied to

predict the paths followed by particles in a simple “H” channel microfluidic device. Our

method first separates the whole chip into nine units (marked a − i) and then determines

whether each unit is a channel or an intersection. Units a, c, d, e, f , g, and i are channels,

so we can use the electronic-fluidic analogy (Equations 1–4 and Kirchhoff’s laws) to predict

the rate of fluid flow through these units. The remaining two units, b and h, are channel

intersections, so we query our database nearly 100,000 pre-simulated channel intersections

to find similar intersections and retrieve their simulation results. Since intersection units

b and h have only three channels, the unused fourth channel in the Unit Intersection is

specified to have a flow rate of 0 cm/s. After obtaining fluid streamlines for units b and h

from our database, we then expand these streamlines throughout the rest of the chip based

on streamline theory, which predicts that at low Reynolds number, a massless particle will
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follow fluid streamlines through these channels [66, 65]. In this manner, we can predict the

paths followed by fluids and particles in this chip in under one second.

4.3 Materials and Methods

The overall process for instantaneous simulation of microfluidic chips is illustrated

Fig 4.2. We implemented this proof-of-concept demonstration in MATLAB (MathWorks,

Natick, MA) using the LiveLink API to automate the simulation of microfluidic intersections

in COMSOL Multiphysics and saving device designs and simulation results into a MySQL

database [67]. All experimental data was collected on a typical laboratory workstation with

a 6-core 3.5 GHz Intel Xeon CPU and 32 GB RAM.

4.3.1 Step 1: Constructing the database of Unit Intersection instances

Each of the four channels in the generic Unit Intersection shown in Fig 4.1 can

be configured as an inlet or outlet, leading to 16 different possible configurations. The

law of conservation of mass (and the fluidic analog of Kirchhoff’s current law) forbids

configuring all four channels as inlets or all four channels as outlets, so only 14 of the

intersection configurations are actually feasible. When generating random instances of the

Unit Intersection, we randomly vary the fluid inflow rates from 0 to 2 cm/s (a typical range

of flow rates in microfluidic devices). For an intersection with N = 1, 2, or 3 outlets, we

randomly vary the outflow rate of N − 1 of the outlets from 0 to 2 cm/s. The outflow rate

of the remaining outlet is set to be the total inflow rate minus the total outflow rate to
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Figure 4.2: Graphical overview of the instantaneous microfluidic simulation method. In
Step 1, MATLAB was used to generate 92,934 unit intersections with different random
assignments of inlets and outlets and different random flow rates at each of the four con-
nections North, East, South, and West (see also Fig 1). The resulting unit intersections
were generated in 10 seconds and saved into a MySQL database. In Step 2, MATLAB was
used to control COMSOL Multiphysics to calculate the fluid velocity fields and particle tra-
jectories of each unit intersection and save the simulation results to the MySQL database.
A total of 92,934 fluid velocity fields and 5,321,944 particle trajectories were calculated;
the entire simulation process took one month to complete, but this step only needs to be
performed once. In Step 3, our method is used to predict the path followed by a particle
in a given microfluidic chip. First, the fluid velocity profile and particle information of the
chip design are imported into MATLAB. Then MATLAB matches each intersection in the
chip design with the closest pre-simulated intersection in the MySQL database and returns
the corresponding fluid velocity profile and particle trajectory. Finally, the entire path of
the particle through the chip is expanded and generated. Simulating a given chip using this
approach takes around one second.
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ensure conservation of mass. Using this approach, we used MATLAB (MathWorks, Natick,

MA) to generate 92,934 different random instances of the Unit intersection, each of which

has a channel width of 200 µm and an overall intersection size of 1.6 × 1.6 mm.

4.3.2 Step 2: Simulating the behavior of each Unit Intersection instance

The LiveLink API for MATLAB was used to automate the simulation of each of the

92,934 microfluidic intersections in COMSOL Multiphysics. The fluid velocity field for each

intersection was solved using the Laminar Flow physics module with a customized mesh

(1 µm maximum mesh size); we confirmed that finer meshes do not alter the simulation

results (thus demonstrating mesh independence). The boundary conditions of the inlets and

outlets were defined as described in Step 1 above; the remaining boundaries were specified

as walls (no-slip boundary condition) and the material filling the channels was water under

incompressible flow. A stationary solver was used for calculation.

We then used the Particle Tracing for Fluid Flow physics module in COMSOL

Multiphysics to calculate the paths followed by particles through each intersection in our

database. A “Drag Force” boundary condition was added to each channel, and a particle

“inlet” boundary condition with “Uniform distribution” of initial positions was added to all

inlets (10 particles per release). The remaining channels were assigned “Outlet” boundary

conditions, and the “Freeze” boundary condition was applied to the walls (meaning that

particles in contact with the channel walls will stick there, a realistic assumption in many

microfluidic chips). This process was repeated for each intersection using a range of particle
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diameters from 1 µm to 20 µm. The resulting 5,321,944 simulated particle trajectories were

stored in the simulation database. This approach assumes that the entrance lengths of

the channels in each intersection (the distance required for a fully-developed flow profile to

emerge) is smaller than the lengths of the channels in the simulated intersections.

4.3.3 Step 3: Simulating the behavior of a given chip

Our code for using our instantaneous technique to simulate a given chip is written

entirely in MATLAB; it does not use COMSOL Multiphysics or any other FEA simulation

because all necessary FEA results for simulating the chip are available in the MySQL

database. The software first loads the fluid velocity profile of the chip, which is used to

provide the boundary conditions for each intersection. This fluid velocity profile can be

obtained manually (using Equations 1–4 and Kirchhoff’s laws), using circuit simulation

software like SPICE or PSpice, or using computational fluid dynamics simulations obtained

from software such as COMSOL Multiphysics. The user then provides the diameter and

starting location for each particle to simulate. As simulation proceeds, the software uses

streamline theory to project the current position of the particle to the entrance of the next

junction. When the software encounters an intersection, it queries the MySQL database

to find the pre-characterized unit intersection in the library that most closely matches the

boundary conditions of the given intersection. The software retrieves the pre-simulated

particle trajectory of the best-matching unit intersection and uses it to predict the path

taken by the particle through the intersection. This process repeats until each particle
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reaches an outlet of the chip, and the software then provides the user with the complete

path followed by the particle through the chip. The overall process for simulating the

behavior of a given chip takes around one second to complete.

4.3.4 Comparisons with existing simulation software

To compare the computation time and accuracy of the results of our instantaneous

simulation method with existing software tools, we also simulated microfluidic chips using

only COMSOL Multiphysics. We compared our technique with COMSOL Multiphysics

using two chip designs: a simple chip with three inlets and two outlets shown in Fig 3, and

a more complex randomly-designed microfluidic chip [58] shown in Fig 4.

For the simple chip in Fig 3, the fluid velocity field of the chip was solved using the

Laminar Flow physics module in COMSOL Multiphysics and a stationary solver. Each inlet

was assigned a boundary condition of 10 Pa absolute pressure and each outlet was assigned

a boundary condition of 0 Pa absolute pressure. The simulation used the default mesh

size setting, “Extremely Fine.” The Particle Tracing for Fluid Flow physics module was

then used to predict particle trajectories across the entire chip. A “Drag Force” boundary

condition was added to the entire chip, and a particle “Inlet” boundary condition with

initial position “Uniform Distribution” and 1.0 µm particle diameter was added to all inlets

in the Laminar Flow module. The outlets in the Laminar Flow module were assigned

“Outlet” boundary conditions, and the remaining boundaries were walls (“freeze” boundary
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condition). The number of particles per release was set to three, meaning that one particle

was released in each of the three inlets.

For the randomly designed microfluidic chip in Fig 4, we attempted to solve the

fluid velocity field of the chip was again modeled using the Laminar Flow physics module in

COMSOL Multiphysics as described above, but the simulation failed after five days (details

below in Results and Discussion). Each inlet was assigned an inlet boundary condition of

0.01 m/s normal inflow rate and each outlet was assigned an outlet boundary condition of

0 Pa absolute pressure. The maximum mesh size was 20 µm.

4.4 Results

Generating the library of 92,934 unit intersection simulations (92,934 fluid velocity

fields and 5,321,944 particle trajectories; Step 2 in Fig 2) took approximately one month

of continuous computation on a desktop workstation. Each intersection took an average

of 27 s to simulate: 5 s to generate mesh coordinates, 2 s to calculate the fluid velocity

field, and 20 s to trace the trajectories of particles through the intersection. The resulting

database is about 2.1 TB in size (600 MB for the fluid velocity field data, and 1.5 TB for

the particle trajectory data). To the best of our knowledge, mesh coordinate generation and

particle trajectory calculation in COMSOL Multiphysics is not amenable to parallelization

on multiple processors, which limits the performance benefits that can be accrued by using

multi-core CPUs in this step. Consequently, the time required to generate the MySQL
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Figure 4.3: Comparison of results from simulating a simple microfluidic chip design using
existing commercial software (COMSOL Multiphysics) and our instantaneous simulation
method. In the COMSOL Multiphysics simulation (A), the fluid velocity field is calculated
using finite element analysis (Step 1) and the Particle Tracing for Fluid Flow physics module
is used to calculate the paths followed by particles (Step 2). In our instantaneous simulation
(B), the flow rates in the channels were calculated using Equations 1-4 and fluidic analogs
of Kirchhoff’s circuit laws, then simulation results for the channel intersections (dashed red
boxes) were found by searching for similar intersections in our database of nearly 100,000
pre-simulated intersections (Step 1). The software retrieved the corresponding particle
trajectories from these intersection simulations (blue points in Step 2) and expanded them
into whole-chip particle trajectories (yellow points in Step 2). Our instantaneous simulation
method was 45 times faster than COMSOL Multiphysics, and the predicted locations of
each particle at the exit channels agree to within about 1 µm in a 200 µm wide channel.
Raw data of these simulations are available for download (S1 File).

77



database depends primarily on CPU clock speed. Memory consumption during library

construction did not exceed 4 GB.

Fig 4.3 presents results using both COMSOL Multiphysics (Fig 4.3A) and our in-

stantaneous method (Fig 4.3B) to simulate a simple microfluidic chip with 3 inlets, 2 outlets,

and 3 intersections. We simulated the paths followed by 1 µm diameter particles originating

at the center of each inlet. The COMSOL-based simulation took 135 s to complete: 15 s to

solve the fluid velocity field, and 120 seconds to calculate the particle trajectories. For the

instantaneous simulation, Equations 1–4 and fluidic analogs of Kirchhoff’s laws were used

to determine the flow rate boundary conditions of intersections a, b, and c; these boundary

conditions are are 3.5 mm/s for the East and West inlets and 7 mm/s for the South outlet

of intersection a; 7 mm/s for the North inlet, 3.5 mm/s for the East inlet, and 10.1 mm/s

for the South outlet of intersection b; and 10.1 mm/s for the North inlet, 3 mm/s for the

East outlet, and 7.1 mm/s for the South outlet of intersection c. We then queried the

MySQL database to identify the best matches for each of these three intersections, then

expanded the pre-simulated particle trajectories from the database (blue dots) into trajec-

tories that extend through the entire chip (yellow dashes). The entire process of simulating

the chip using the instantaneous method took 3 s to complete: 2 s for determining the

boundary conditions of the three intersections and obtaining simulation results from the

MySQL database, and 1 s to generate the whole-chip particle trajectories. In addition to

being 45 times faster than COMSOL Multiphysics, our instantaneous method’s results were
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Inlet 1 Inlet 2

Outlet 1 Outlet 2 Outlet 3
Figure 4.4: Results from using instantaneous simulation to predict the paths of two 1
µm particles traveling through a randomly-designed microfluidic chip [58], with close-ups
of some channel intersections (black circles). The red lines/circles indicate the particle
trajectories obtained from the database of pre-simulated intersections, and the gaps between
the red lines are regions where no calculation of particle trajectory is necessary because the
channels have no intersections in these regions. This simulation was completed in around
one second by our instantaneous simulation method. In contrast, the same simulation
failed after five days of computation when using an existing simulation tool (COMSOL
Multiphysics). Raw data of these simulations are available for download (S1 File).
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virtually identical to COMSOL’s results: the exit locations of the three particles predicted

by the two simulations differ by only 0.18, 1.21, and 0.11 µm in a 200 µm wide channel.

To demonstrate instantaneous microfluidic simulation on a more complex chip

design, we used the method to predict the paths followed by particles on the large randomly

designed microfluidic chip [58] shown in Fig 4.4. In this simulation, two 1 µm diameter

particles start in the center of each inlet channel. The instantaneous simulation method

was able to predict the paths followed by the particles in around 1 s of computational

time. We attempted to replicate this simulation using COMSOL Multiphysics, but the

simulation took five days just to generate the coordinates of each mesh node in this design;

the subsequent calculation of the fluid velocity field failed, so we were unable to calculate

particle trajectories using COMSOL alone.

4.5 Conclusions

We have presented a method to instantaneously simulate the behavior of microflu-

idic chips using common computing hardware. The efficiency of our method arises from

two key innovations: leveraging existing electrical-fluidic analogies to efficiently compute

fluid velocity wherever possible, and querying a database of pre-simulated intersections

when necessary. By enabling researchers to simulate microfluidic chip designs in seconds

instead of hours or days, our simulation method should accelerate the development of new

microfluidic chips.

80



In its current form, our instantaneous simulation method has some limitations.

For example, our current database of intersection simulations only supports intersections

with up to four channels and assumes that all channels in the intersection have the same

width. These limitations could be alleviated by creating a larger database that includes

intersections with more than four channels and various channel widths. While generating

this larger database would require significant computational resources, it would only need to

be generated once, and using specialized computing hardware could accelerate the process.

As the database of pre-simulated chip features grows, more and more microfluidic chips

could be simulated in seconds using this technique.
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Chapter 5

Automated design of microfluidic

particle sorters

5.1 Introduction

Tools for sorting mixtures of particles play important roles in many different fields.

In biological research and healthcare, cell sorters are routinely used to sort cells by their

type. Fluorescence-activated cell sorters (FACS) are particularly powerful, but these sorters

typically require a fluorescent tag or label that is specific to the cells of interest [68, 69]. Tech-

niques that sort particles by their intrinsic properties—like size and density—are attractive

because all particles have these properties, and a number of microfluidic sorters have been

developed that sort cells and other particles by their physical properties [70, 71, 72, 24, 73].

However, designing a microfluidic sorter for a given task is currently a slow and labor-

intensive process. Typically, researchers select an existing particle sorting principle (such

as pinched flow fractionation [74] or deterministic lateral displacement [28]), tailor the de-

sign to suit their given application, and then fabricate and test the chip. If the chip does
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not function as intended, the researchers must identify the problem and repeat the design,

fabricate, and test process. This may continue through several iterations (and months of

work) before a suitable sorter chip design is found (if one is found at all).

At the beginning of this work, we were motivated by the question, “is it possible

to create a custom sorter chip for a given application without actually designing the chip?”

Specifically, what if we had a library of all possible microfluidic chip designs? This hypothet-

ical library would contain chips that perform previously-demonstrated sorting techniques,

like pinched flow fractionation and deterministic lateral displacement. Perhaps more inter-

estingly, the library might also contain new sorting techniques that have not been previously

demonstrated. By searching through this library to find a chip that performs the desired

sorting operations, a researcher with no experience in microfluidics could quickly and easily

find a custom chip for their particular application.

Obviously, this hypothetical library of all possible microfluidic chip designs would

be astronomically large. But by applying some constraints on the variety of possible chip

designs, one can reduce the universe of “all possible chips” to a more manageable size.

Recently, we generated a library of 10,513 different random chip designs, all of which are

constrained within an 8 × 8 grid of fluid channels [75]. We then simulated the flow of fluids

through these random chips and saved the results in database with a publicly-accessible

website front-end (random.groverlab.org). Using this database, a user can specify three

desired concentrations of a solute, and the website will select the random chips from the

library that can generate solutions with those three concentrations. This work confirmed
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that functional microfluidic chip designs for a given application can be found by mining a

database of random chip designs, at least for one type of application (generating solutions

with different concentrations). But can random chips do anything else?

In this work, we searched our library of 10,513 random microfluidic chip designs to

find chips that can sort particles by their size. We initially doubted that we would find any

functional sorters in the random library—only a handful of different techniques exist for

sorting particles by their size, and sorter chips are always carefully designed by hand—so it

seemed unlikely that a functional sorter could appear at random. But after simulating the

paths followed by particles through all 10,513 random designs, we found 1,061 candidate

designs that in principle could sort particles. We then fabricated and tested four of these

designs and found that one of the four random chips can successfully sort particles based

on their size. Thus, we showed that a library of random microfluidic chips that was created

for one purpose can actually provide functional chip designs for a completely different

purpose. This suggests that libraries of pre-simulated microfluidic chips can be used as

general-purpose sources for designs for a wide variety of applications.

5.2 Materials and methods

This work was performed on an HP workstation with a E5-1650v2 CPU and 32GB

RAM, using MATLAB 2014b [76] to control COMSOL Multiphysics 4.4 [77, 14] and MySQL

5.4 [67]. COMSOL Multiphysics used the Laminar Flow module to model the physics of fluid
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flow in chips and a stationary solver to calculate the results. MOPSA [78] was implemented

in MATLAB and used to predict particle trajectories.

After candidate particle sorter designs were found in our library of random chips,

two modifications were made to the designs before fabricating the chips. First, all dead-end

channels were deleted (these channels can trap bubbles or particles during use and have

no effect on the velocity profile or particle trajectories of the chips, so it is safe to delete

them; compare Figs. 5.2B and C for an example). Second, we added additional inlets and

channels to flow focus beads to the center of the inlet channels (visible in Fig. 5.2C, Part

1) because in our particle trajectories simulations, all particles started at the centers of the

inlet channels. The fluorescence micrograph of Node 1 in Fig. 5.4B shows the flow focusing

channels in operation.

Conventional photolithography and wet etching were used to etch the randomly-

designed chip designs into glass wafers to a depth of 80 µm and a width of 200 µm, and

glass-glass thermal fusion bonding (668◦C for 6 hours) was used to create finished microflu-

idic devices. 1 µm red fluorescent polystyrene beads (Magsphere Inc.) and 10 µm green

fluorescent polystyrene beads (Magsphere Inc.) were used to test the performance of se-

lected chips. We diluted 500 µL 1 µm and 10 µm beads in the 20 ml water and mixed with

one droplet of TWEEN-20. The volumetric flow rate of four inlets was 0.05 ml/min and

provided by two 2-channel syringe pumps (Harvard Apparatus Inc.). A fluorescence micro-

scope (Eclipse Ti-S, Nikon, Japan) was used to image the trajectories of fluorescent beads.

Fluorescent beads were also collected from three outlets and counted with hemocytometer.
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5.3 Results

A graphical overview of our process for finding functional microfluidic chips in a

library of random chips is shown in Fig. 5.1.
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Figure 5.1: Overview of process for automated design of microfluidic particle sorters. In Step
1, MATLAB was used to generate 10,513 random microfluidic chip designs, and COMSOL
Multiphysics was used to calculate the velocity fields of fluids inside each random chip. In
Step 2, the microfluidics-optimized particle sorting algorithm (MOPSA; [78]) instantaneous
simulation of microfluidic devices (ISMD; [79] were implemented in MATLAB to simulate
the trajectories followed by 1 µm and 10 µm diameter particles through all 10,513 random
chips. In total, 42,052 particle trajectories were predicted and saved into a MySQL database.
In Step 3, MATLAB was used to mine the database for designs in which the different
particle sizes exited through different outlets (that is, the designs that can sort particles).
Of the resulting 1061 candidate particle sorters, 4 designs were fabricated in glass and tested
experimentally.
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5.3.1 Generating random microfluidic chip designs

In Step 1 of Fig. 5.1, we used a custom MATLAB program to generate a large

number of random microfluidic chip designs. The resulting library of 10,513 chip designs is

the same library we used to find chips for creating solutions with three user-specified solute

concentrations [75].

We constrained our possible microfluidic chip designs to the rectilinear grid pat-

terns shown in Fig. 5.2A. An 8 × 8 grid has 82 possible channel intersections and 2×82−2×8

possible channels connecting those intersections. Each of these connecting channels can be

either present or absent in a given design, which gives us 5,192,296,858,534,827,628,530,496,

329,220,096 possible different chip designs. Obviously, it is impossible for us to simulate

all of the designs possible in the 8 × 8 grid, so we randomly selected 10,513 random chip

designs as our candidate library.

BA
Particles / Buffer

……
…

… …
…

……

…
…

Inlet 1 Inlet 2

Small / large particles  are enriched in outlet 1, 2 or 3.

C
1 & 10 μm beads Buffer

1 μm beads 
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Part 1
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Outlet 1 Outlet 2 Outlet 3 10 μm beads 

enriched

10 mm

Particles / Buffer

Figure 5.2: (A) The 8 × 8 grid constraint for our random microfluidic chips. Each light
blue channel has a 90% chance of being present in any one chip design. (B) Design of a
specific random chip (“Chip A”) that our technique identified as a likely particle sorter.
(C) Photograph of Chip A fabricated in glass using conventional photolithography and wet
etching. The structures added in Part 1 focus the flow of beads to a streamline in the center
of the inlet channel, and Part 2 is the random section where sorting occurs.

87



Each random chip design has two inlets and three outlets. In our previous work,

the inlets received two solutions with different concentrations, and the outlets produced

solutions with three user-specified concentrations [75]. In this work, we planned to inject

a mixture of particles into Inlet 1 and buffer into Inlet 2 (or vice versa). If particles with

different sizes exit the chip through different outlets, then that chip is deemed a functional

sorter. For example, Fig.5.2B shows a random chip that is capable of sorting 1 µm and 10

µm particles based on simulation results. The particles enter the chip through Inlet 1, and

1 µm particles will be enriched in Outlet 1 and 10 µm particles will be enriched in Outlet

2. Fig.5.2C shows a photograph of this random chip fabricated in glass using conventional

photolithography and wet etching (details in Methods below).

5.3.2 Simulating the behavior of the random chips

In Step 2 of Fig. 5.1, we simulated the behavior of all 10,513 random chips in our

library. In our previous work with this library, we simulated only the flow of fluids and the

transport of solutes in these chips [75]. In this work, since we are searching for effective

particle sorters in the random chips, we had to (A) add lifelike particle sorting simulation

results to our library, and (B) do so in a reasonable amount of computing time.

To add particle sorting simulation results to our library, one could use the built-in

particle tracing module in COMSOL Multiphysics. However, using this module would have

two major disadvantages. First, the predicted particle trajectories are unrealistic in most

cases because the particle in COMSOL is a mathematical point without mass or volume,
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which makes the particle fail to interact with channel walls. Since the particle separation

principle of random chips might be pinched flow fractionation[74, 80, 81] and hydrodynamic

filtration [31], interacting with channel walls is crucial for realistic simulation results, while

COMSOL cannot provide. Second, COMSOL is extremely computationally expensive when

solving particle trajectories. In our case, we need to find out the difference of trajectories

between 1 µm and 10 µm particles, which means that our maximum mesh size should be

smaller than 1 µm, which is the diameter of the smaller particle. If we configured 1 µm as

the maximum mesh size in a random chip, it will take us more than 24 hours to solve the

velocity filed only for a single random chip by using laminar flow module and about 2 hours

to simulate the trajectories of particles by using particle tracing for fluid flow module.

We accomplished this using the microfluidics-optimized particle simulation algo-

rithm (MOPSA) we developed previously [78]. Briefly, unlike the particle tracers built in

to simulation tools like COMSOL Multiphysics, MOPSA does not assume that the parti-

cle is an infinitely-small point. Instead, MOPSA models the particle as a circle or sphere.

MOPSA also applies an empirical correction when the particle touches or overlaps with a

channel wall. We have previously used MOPSA to accurately reproduce the observed par-

ticle trajectories in several studies [78], so we are confident that it will accurately predict

the behavior of particles flowing through our random chips.

To further accelerate the simulations, we leveraged the instantaneous simulation

of microfluidic devices (ISMD) technique we developed previously [79]. ISMD simulates the

behavior of microfluidic chips with the same accuracy as conventional techniques but in a
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fraction of the time. To simulate a given random chip, ISMD first breaks the chip down into

its component parts: channels and intersections. The flow in each channel is determined

using analogies with electronic circuits or finite element analysis (FEA), and the flow in

each intersection is determined by querying a database of nearly 100,000 pre-simulated

channel intersections. By combining conventional FEA simulation with data mining of pre-

simulated intersections, the trajectories of particles in a complete microfluidic device can be

generated in about one second on an ordinary laptop computer and yields results that are

indistinguishable from simulations that take hours or days to complete using conventional

techniques.

Overall, by applying MOPSA and ISMD, the computational time required to sim-

ulate 42,052 different particle trajectories in 10,513 different random microfluidic chips was

reduced from more than a year (about 70 min per chip when simulated by COMSOL Mul-

tiphysics alone) to only 2 weeks.

5.3.3 Analyzing the random chip library

In Step 3 of Fig. 5.1, we searched our library of simulation results to find chips

that have the ability to separate 1 µm and 10 µm particles (that is, the chips where these

particles exit through different Outlets). When a candidate sorter chip was found, our code

examined the predicted particle trajectories to identify the channel intersection where the

two particles’ paths diverged.
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Figure 5.3: Predicted trajectories of 1 µm particles (red lines) and 10 µm particles (green
lines) through random chips A, B, C, and D. While both particle sizes always start at the
same inlet (either the left Inlet 1 or the right Inlet 2), they always exit through different
outlets, indicating that these four random chip designs have the potential to be particle
sorters.
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We found that of the 10,513 random chips in our library, 485 designs (4.6%) could

separate particle mixtures originating from Inlet 1, and 576 designs (5.5%) could separate

particle mixtures originating from Inlet 2. Of the 485 + 576 = 1,061 random designs that

can sort particles from at least one input, 12 of these designs can sort particles from both

Inlet 1 and Inlet 2. From these 12 designs, we randomly selected four designs for fabrication

and experimental testing.

The simulated trajectories of the four chosen candidates (labeled A–D) are shown

in Fig. 5.3. Photographs of the microfabricated chips are shown in Fig. 5.1 (Chips A–D)

and Fig. 5.2C (Chip A).

5.3.4 Experimentally confirming particle sorting

To determine whether the four chosen random chip designs can actually sort par-

ticles as predicted, we fabricated and tested these chips. A mixture of 1 µm diameter red

fluorescent polystyrene beads and 10 µm green fluorescent polystyrene beads was pumped

into one Inlet, and buffer without beads was pumped into the other Inlet. Fluorescence

microscopy was used to visualize the paths followed by the beads in the chips, and a hemo-

cytometer was used to count the beads of each size emerging from each Outlet of the chips.

Additional details in Methods.

Of the four tested random chips, one design (Chip A) successfully sorted 1 µm

and 10 µm particles to different Outlets. The other three designs (Chips B–D) yielded
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identical mixtures of beads at each outlet (possible reasons why Chips B–D failed to sort

are considered in the Discussion below).

Fig. 5.4 compares the predicted trajectories and experiment results of particles in

Chip A. At Node 1, the simulation predicts that the 1 µm and 10 µm beads will be flow

focused to the center of channel. The fluorescence micrograph of Node 1 confirms that this

is the case. At Node 2, the simulation predicted that the 10 µm beads (green) would be

offset to the right of the 1 µm beads (red). The fluorescence micrograph of Node 2 confirms

that the 10 µm beads have been offset to the right of the red 1 µm beads (though the 1 µm

beads seem to fill most of the channel and are not as well aligned as the 10 µm beads).

To quantify the separation performance of random Chip A, the sorting experiment

shown in Fig. 5.4 was repeated three times and beads were collected from all three outlets

and counted. Fig. 5.5A shows that, of the smaller 1 µm beads that exited the chip, an

average of 68% exited through Outlet 1 and 32% exited through Outlet 2. Conversely, of

the larger 10 µm beads that exited the chip, an average of 31% exited through Outlet 1

and 68% exited through Outlet 2. One-way ANOVA confirms that there is a statistically

significant difference between the contents of Outlet 1 and Outlet 2 for both the 1 µm and

10 µm beads (p < 0.001).
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Figure 5.4: (A) Predicted trajectories of 1 µm particles (red) and 10 µm particles (green)
through random Chip A, and (B) fluorescence micrographs showing the paths actually
followed by 1 µm and 10 µm fluorescent particles at two critical nodes in the chip. At Node
1, the simulation predicts that both sizes of beads will be flow-focused to the center of the
channel, and the experimental results confirm this (the yellow color indicates that both
bead sizes are present). By the time the beads arrive at Node 2, the simulation predicts
that the 10 µm green particles will be offset to the right of the 1 µm red particles, and the
experimental results confirm that this separation by size has occurred. When the channel
subsequently splits downstream of Node 2, most of the small red particles exit through
Outlet 1, and most of the large green particles exit through Outlet 2.
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Figure 5.5: (A) Summary of results from three replicates of using Chip A to sort 1 µm (red)
and 10 µm (green) beads. Error bars indicate the standard deviation and *** indicates
p < 0.001. Fluorescence micrographs showing the trajectories of 1 µm (B; red) and 10 µm
(C; green) beads, in the key sorting intersection (Node 2 in Fig. 5.4).
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5.4 Discussion

Chip A in Fig. 5.4 is the first microfluidic particle sorter that was not designed for

that purpose (or any other purpose, for that matter). Admittedly, Chip A’s performance is

inferior to most microfluidic sorters that were designed by hand to sort. Also, Chip A was

the only one of the four random designs we tested that actually sorted as predicted. Why?

Perhaps the simplest answer is that our technique is only as good as our simula-

tions, and if our simulations do not always agree with experimental observations, then we

are more likely to find candidate chips that will not actually work as expected. For exam-

ple, while our simulations accurately predicted the locations of the green 10 µm particles

in Node 2 of Fig. 5.4, they did not predict the observed range of locations for the red 1 µm

particles. This could be attributed to Brownian motion, which will widen the range of paths

followed by the red 1 µm particles much more than the larger green 10 µm particles [82].

Since our simulations currently do not account for Brownian motion, our technique could

not have foreseen this source of error (though it would be straightforward to incorporate

Brownian motion in MOPSA and avoid these errors in the future).

Additionally, small differences between predicted and experimentally observed par-

ticle trajectories early in a chip could be magnified to large errors by the end of the chip.

For example, the key intersection after which the different particle sizes follow different

paths in Chip 1, Node 2 in Fig. 5.4, occurs after the particles have already passed through

seven other intersections. Any errors in these seven intersections could make Node 2 not
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function as predicted; this could be the reason why most (but not quite all) of the green 10

µm beads flow to the right as predicted downstream of Node 2 in Fig. 5.5C. To reduce the

impact of errors like this, we might algorithmically prefer designs in which the key sorting

intersection appears early in the chip and the paths of the sorted particles do not recombine

afterwards.

We also observed that some intersections in the random chips are more prone to

errors than other intersections. For example, the predicted path for the red 1 µm particle

in Node 1 in Fig. 5.6 comes very close to the southeast corner of that intersection before

following the channel to the south. A particle that enters Node 1 slightly to the east of

the predicted path (perhaps because of Brownian motion) could easily exit to the east, and

indeed we observed this behavior experimentally. Even though the two possible paths for

the red 1 µm particle are expected to recombine in Node 2, having multiple unintended

paths for particles only adds uncertainty to our technique. Preferring designs that avoid

particle paths near intersection corners could reduce the impact of these errors.

Finally, we found that a few simulated intersections have nonsensical behavior due

to the limited size of the intersection simulation database we use in our ISMD technique.

For example, the predicted path for the red 1 µm particle in Node 3 in Fig. 5.6 contains

a swerve to the south in a straight channel; in reality the particles follow a straight path

through this section of channel (though happily, in this case the error did not affect which

Outlet the particle used when leaving the chip) This error arose when our algorithm could
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Node 1
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Node 3

Figure 5.6: Comparisons between predicted and experimentally-observed trajectories of
particles in three nodes of Chip A.
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not find a pre-simulated intersection in our ISMD database that was similar enough to this

section of channel. Having a larger number of different intersection simulations in our ISMD

database will reduce the likelihood of these errors.

Looking at Chip A, we find ourselves in the unusual situation of having a working

microfluidic chip and not knowing how it works. The chip may sort particles using aspects of

pinched flow fractionation [74, 80, 81] or hydrodynamic filtration [31] because MOPSA can

accurately simulate those physical phenomena. Additionally, Chip A shares some structural

similarities with hydrodynamic filtration chips [31]. However, in hydrodynamic filtration,

the size of the largest particle to be separated is usually on the same scale as the channel

width. In contrast, in Chip A the channel width is 20 times larger than the diameter of

the largest separated particle. Inertial effects [83] could also be responsible for particle

separation in Chip A, since the Reynolds number in some of the channels of random chips

(∼20) is large enough for inertial effects to affect the trajectories of particles. However,

since MOPSA does not currently simulate inertial effects, it seems very unlikely that our

technique would have selected a chip that depends on inertial effects to sort particles.

Finally, it is possible that entirely new and undiscovered phenomena are responsible for the

sorting abilities of Chip A. New and useful microfluidic phenomena are discovered regularly

(e.g., [84]), and as long as our simulation tools can accurately simulate a phenomenon, it

seems reasonable that our approach can discover that phenomenon. For example, assume

that Chip A functions by pinched flow fractionation. If pinched flow fractionation had never

been discovered by Yamada et al. in 2004 [74], our software would have discovered it in this
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study. It appears to be only a matter of time before automated approaches like ours find

useful microfluidic phenomena that would have never been discovered by humans on their

own.
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Chapter 6

Automated and rational design of

a microfluidic mixer

6.1 Introduction

Mixing is one of fundamental functions in microfluidic chips. For the past decade,

different microfluidic mixers have been designed [85]. Microfluidic mixers are usually cate-

gorized as either “active” (an external energy force or an external physical field is present

to accelerate mixing phenomenon) or “passive” (mixing is accomplished only by diffusion

and is dependent only on the area of contact between the two fluids and the amount of

time the fluids are in contact). Active mixers generally outperform passive mixers, but

integrating an external force or field in the chip adds unwanted complexity and cost to the

chip. Passive mixers are simpler and more economical, but increasing the area and time

of contact between the two fluids has undesirable consequences: increasing contact area by

lengthening the channel containing the two fluids adds unwanted additional fluidic resis-

tance to the channel, and increasing contact time by slowing the flow rate decreases the
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overall throughput of the microfluidic chip. Thus, there is a need for mixer designs that

combine high mixing performance with low fluidic resistance and high flow rates.

Several studies have been conducted on the optimization of microfluidic mixers.

Li et al. optimized a chaotic microfluidic mixer using lattice Boltzmann method [86]. Three

continuous studies from Wang et al. were focused on the optimization of layout of obstacles

for enhanced mixing in microchannels using a fluid dynamics software for different appli-

cations [87, 88, 89]. Hossain et al. conducted a research of optimizing a modified Tesla

structure based on topology optimization [90]. Finally, Cortes-Quiroz et al. optimized a

grooved microfluidic mixer using a multi-objective optimization approach [91]. However,

their approaches either only optimized one parameters or the optimized designs were too

complicated and impossible to fabricated.

Obviously, different microfluidic mixers will have different performance. In this

work, we set out to answer the question, is it possible to find the most optimized mixer

in certain conditions? Specifically, are we able to explore the limitation of how good a

microfluidic mixer can possibly be within a certain limit on fluidic resistance?

In this work we developed an approach to automatically design and optimize ideal

microfluidic mixers for specific conditions. We accomplished this in two steps. First, we

generated a library of 6068 different random mixer designs and simulated the performance

of each of them. We have previously used this technique to generate designs of functional

microfluidic chips that can deliver solutes of any desired concentrations [92], so adapting

it to generating random mixer designs was relatively straightforward. Second, we used the
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Non-dominated Sorting Genetic Algorithm II (NSGA-II) [93] to optimize multiple design

parameters of our microfluidic mixer at the same time. After 200 generations of evolution,

the mixer designs converged near the true Pareto-optimal front; this allows us to explore

the fundamental performance limits of a microfluidic mixer. A user can select a design from

these optimized mixers and have confidence that the design is optimal for a given fluidic

resistance. Additionally, we identified certain design trends in the optimized mixers, hand-

designed several mixers that incorporate these trends, and compared the performance of our

hand-designed mixers to that of our automatically-designed optimal designs. Finally, we

also hand-designed versions of popular microfluidic mixers from the literature and compared

their performance to that of our optimal designs. In each case, our automatically-designed

and optimized mixers equaled or exceeded the mixing performance of hand-designed mixers.

6.2 Materials and Methods

6.2.1 Generating initial random mixer designs

We created our first generation of microfluidic mixers by generating mixer designs

at random [92]. Of course, there is an essentially limitless variety of possible mixer designs,

so we applied certain constraints to our random designs. Figure 6.1A shows the basic design

template of our random mixers. Each mixer has two inlets, two outlets, and a 500 µm x 500

µm design domain where the random mixing structures are located. In the design domain

are ten cylindrical posts with random sizes and locations. Two or more cylinder posts can
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Figure 6.1: (A) Schematic of a simulated microfluidic mixer unit. A simulated unit has two
inlets and two outlets. Between inlets and outlets is a 500 µm x 500 µm design domain. In
the design domain, each mixer has ten cylindrical posts with random sizes and locations.
Different cylinder posts were allowed to overlap to create additional structures like walls.
(B) The predicted velocity field of a typical mixer unit. This velocity field is used for
simulating the solute concentration profile in the mixer. (C) The predicted pressure profile
of the mixer unit. This pressure profile is used to calculated the fluidic resistance of the
mixer. (D) The predicted solute concentration profile of the mixer unit. This concentration
profile is used to determine the mixing performance of this mixer unit.
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overlap, which enables the mixer designs to include non-circular features as well (like walls).

In total, 6096 different mixer designs were generated and stored to a database.

In addition to randomly-generated designs, we also manually designed five mixer

units based on our experience so as to compare them with the randomly generated designs

as well as NSGA-II designs.

6.2.2 Simulating mixer performance

All simulations were performed using the finite element analysis software COM-

SOL Multiphysics (COMSOL Inc., Burlington, MA). We used the software’s MATLAB

API to automate this process and performed all simulations. The Laminar Flow physics

module and Transport of Dilute Species physics module as well as two stationary solvers

were used in COMSOL Multiphysics. In the Laminar Flow physics module in COMSOL

Multiphysics, each inlet was assigned an inlet boundary condition of 1 mm/s normal inflow

velocity, and each outlet was assigned an outlet boundary condition of 0 Pa pressure. The

remaining boundaries were walls (no-slip boundary condition), and the material filling the

channels was water under incompressible flow. In the Transport of Dilute Species physics

module, inlet 1 is assigned an inflow concentration of 1 mmol/L and inlet 2 is assigned an

inflow concentration of 0 mmol/L. The two outlets were assigned as outflows. The solute

diffusion coefficient used in simulation is 4.25× 10−10 m2/s. Figures 6.1B and C show the

calculated velocity field and pressure field of one mixer unit design, and Figure 6.1D shows

the concentration mixing field of the same design.
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6.2.3 Evolving mixer designs and finding the Pareto-optimal front

The genetic algorithm NGSGA-II [93] was used to evolve optimized versions of

our random mixers. A flow chart representation of our custom NSGA-II implementation is

shown in Figure 6.2. The fitness function for fluidic resistance (Sresistance) is

Sresistance = P2 − P1 (6.1)

where P2 is the pressure at the outlets and P1 is the pressure at the inlets. This means that

the lower the pressure drop across the mixer, the better the performance of the mixture.

The fitness function for mixing performance (Sconcentration) is

Sconcentration = (1− C1) + (C2 − 0) (6.2)

where C1 is the average concentration of Outlet 1; 1−C1 calculates the mixing performance

between Inlet 1 and Outlet 1; C2 is the average concentration of Outlet 2; C2− 0 calculates

the mixing performance between Inlet 2 and Outlet 2. This means that the closer the

concentrations of the fluids in Outlet 1 and Outlet 2, the better performance of the mixer.

The total population for each generation was 200 due to the limitation of com-

putational expense. The first generation starts with a randomly selected design. After

the non-dominant sorting operator, the typical selection, crossover, and mutation operators

were conducted so as to generate the new population. The parameters in the numerical
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Figure 6.2: A flow chart depicting our custom NSGA-II process for optimizing mixers and
finding the Pareto-optimal front. The overall goal was to minimize the pressure drop or
fluidic resistance of mixer while increasing the mixing performance. Numerical simulation
was conducted by COMSOL Multiphysics and MATLAB. Typical genetic operators were
conducted after a non-dominant sorting operator.
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simulation section were the same as the randomly generated designs in above. In total, 200

generations were calculated to find the Pareto-optimal front.

6.3 Results and discussions

Figure 6.3A plots pressure drop versus concentration score for each of the randomly-

generated designs (small blue circles), NSGA-II-evolved optimal designs (red stars), and

human-created designs (yellow stars). The NSGA-II designs distribute at the boundary of

the randomly generated designs. This means that NSGA-II successfully found the Pareto-

optimal front. To achieve a similar concentration score, NSGA-II designs always need less

pressure drop or generate less resistance of a mixer unit. In another words, within a certain

pressure drop condition, the NSGA-II designs will always have better mixing performance

than the random-design mixers.

Figure 6.3B-D are three common microfluidic mixer designs with being constrained

in the design domain and using cylinder posts to map the geometry. We also plot their

mixing performance in Figure 6.3A and we can clearly see that the yellow stars of design

B, C and D are all above the red stars. This tells us that the common mixer designs for

microfluidics still have some room to be optimized.

Figure 6.3 profiles G0–G200 are the concentration profiles of NSGA-II designs in

generations 0, 25, 50, 75, 100, 125, 150, 175 and 200. As the generation number increases,

the mixing performance improves and the geometry converges into a S-shape. The S-shape

suggests that NSGA-II selects S-shape designs as elite designs and retains the S-shape
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Figure 6.3: (A) Pressure drop vs. concentration for random microfluidic mixer designs (blue
dots) and NSGA-II-evolved mixer designs (red stars). The random designs are distributed
in the bottom-left corner while the NSGA-II designs are at the boundary of all random
designs. By connecting all the NSGA-II designs, we can draw a Pareto-optimal front.
Human-generated designs B–F (yellow stars) are above the Pareto-optimal front, which
means that their mixing performance is not as good as NSGA-II designs with a certain
pressure drop. (B) Human design B has a pressure drop 0.98 Pa and a mixing score of 0.35.
(C) Human design C has a pressure drop of 5.36 Pa and a mixing score of 0.59. (D) Human
design D has a pressure drop of 1.29 Pa and a mixing score of 0.38. (E) Human design E has
a pressure drop of 2.87 Pa and a mixing score is 0.59. (F) Human design F has a pressure
drop of 0.81 Pa and a score of 0.40. (G0 — G200) The concentration profiles of NSGA-II
designs of generation 0, 25, 50, 75, 100, 125, 150, 175 and 200. Additional concentration
profiles, pressure profiles, and velocity fields of 0–200 generations are available in Supporting
Information.
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feature into next generations. The S-shape could increase the mixing contact area as well

as minimizing the fluid resistance. The small gaps between each post also appear to be

crucial to the performance of the mixer. From the concentration and pressure profiles of

each generation (see Supporting Information), we know that each small gap allows fluid

with no chance to mix (around 0 mmol/L) to go through the S-shape and reduce the

fluid resistance. We are unaware of any similar designs that have been created by human

designers. Figures 6.3E and F are inspired by NSGA-II designs. Their performance is close

to the Pareto-optimal front but they do not have small gaps in dark blue area (around 0

mmol/L) to reduce the fluid resistance.

Since we only have 200 populations in each generation while the size and position

of cylinder posts in design domain are infinite, the Pareto-optimal front we found is only

close to the real Pareto-optimal front. Figure 6.4 shows the comparison of NGSA-II designs

between two separate evolution runs. Figure 6.4A is the first run and the results in Figure

6.3 are from this run. Figure 6.4B is the second run, and in this run we found that the

geometry converged into a Y-shape instead of a S-shape. While the concentration scores

of these two separate evolution runs are similar (around 0.68), the design from first run

has a lower pressure drop. This indicates that the Pareto-optimal front found from first

run is closer to the real Pareto-optimal front. Although the geometries resulting from the

two evolution runs are different, they do share two important similarities. First, they both

created a narrow gap near the left edge with a large cylinder post. Secondly, they used
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Figure 6.4: (A) The NSGA-II design selected at the end of the first run of evolution. (B)
The NSGA-II design selected at the end of a second run of evolution. In the second run, the
geometry converged into a Y-shape. To achieve a similar concentration score as the S-shape
design from run 1, the Y-shape design from run 2 will have a higher fluidic resistance.
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the rest of the cylinder posts to generate a wall containing small gaps in dark blue area

(around 0 mmol/L) so as to minimize the pressure drop. So, why does the design from

the first evolution run have a lower pressure drop? From the concentration profiles, we can

see that in the first run design, fluid had a longer contact time and contact area before

entering the critical gap (generated by the largest post). Additionally, it seems that the

second-evolution designs only used eight posts to create a wall instead of ten. Two upper

cylinder posts (pointed by gray arrows) seem to have no function and increase the fluidic

resistance of this design.

6.4 Conclusions

We demonstrated how to optimize a functional microfluidic mixer for two param-

eters, pressure drop and mixing performance, using NSGA-II. We accomplished this by

using MATLAB and COMSOL Multiphysics as our simulation platform and implementing

NSGA-II in MATLAB. We also first found the pressure drop versus concentration score

Pareto-optimal front. After that, we compared the designs at the Pareto-optimal front with

human-created designs and random designs. Our simulations indicate that designs from

NSGA-II have lower pressure drops while achieving a similar mixing performance (concen-

tration score) than designs by humans or random designs. Based on the NSGA-II designs,

we have better understanding about how to design a microfluidic mixer rationally: a mixer

should have a constriction to increase contact area and contact time between the fluids, as
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well as some features that are not for mixing but rather for reducing the overall resistance

of the mixer.

Our approach is not limited to optimizing only mixer performance—it should be

able to optimize additional parameters as well. For instance, the size is also crucial to a

microfluidic chip. Instead of constraining a mixer into a fixed design domain, we could try

to minimize the size of design domain as well. Additionally, microfluidic mixers are just one

one of many components in microfluidic chips [5, 94]. We are confident that our approach

can be applied to other applications of microfluidics. For example, cell sorting is a major

application in microfluidics [24]. In different sorting technologies, inertial microfluidics

shows the potential to efficiently separate different cells based on the sizes of cells [83, 95, 96,

97]. However, inertial microfluidics usually are operated at a high Reynolds number, whose

shear stress could be harmful for the target cells [98]. In this case, coupled with our previous

work (MOPSA, microfluidics-optimized particle simulation algorithm [99]), NSGA-II could

be used to optimize a inertial microfluidic chip so as to increase the separation performance

while minimizing the damage to cells from shear stress.
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Chapter 7

Conclusions

In this work, we introduced several methods on designing microfluidic chips with

the help of computational tools. These methods are:

• The random design algorithm: with the help of random design algorithm and simula-

tion platform (COMSOL and MATLAB), we are able to create thousands of microflu-

idic solute generators without actually designing them.

• MOPSA, a microfluidics-optimized particle simulation algorithm: allowing simulating

the trajectories of different types of particles in greater accuracy than commercial

software.

• ISMD, instantaneous simulation of microfluidics: allowing instantaneous simulation

of fluids and particles in complex microfluidic devices.

• A randomly designed particle sorter : by taking advantages of random design algo-

rithm, MOPSA and ISMD, we automated designed a microfluidic particle sorter which

is able to separate 1 µm and 10 µm particles.
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• An optimized microfluidic mixer by NSGA-II : NSGA-II is a multi-object genetic al-

gorithm which allows us to optimize multiple parameters of a microfluidic mixer.

With the help of NSGA-II, the Pareto-optimal front was found and the designs from

NSGA-II have better performance than designs from human being or rational designs.

In future, there will be more and more commercial microfluidic products in both

clinics and point of care testing market instead of being constrained in laboratories. To

achieve that, computer-assisted design will play an important role in this journey. The

algorithms and tools used in this thesis are fundamental in computer science. We are

confident that more microfluidics optimized algorithms will emerge in future. Microfluidics

and computer science will become a new promising field that help human beings live a

better life.

The obstacles are obvious as well. Until now, simulation is still too complicated

even for researchers. In future, we should make encourage researchers in not only related

field but also unrelated fields to try microfluidics in simulation first and then know the

beauty of microfluidics. After that, researchers in other fields can take advantages of mi-

crofluidics in their own fields. For example, we could build an Online version of MOPSA

so that researchers who are interested in MOPSA could deploy their simulation in cloud

and get simulated results in seconds. Random.groverlab.org is a good demonstration of

how an easy simulation platform could help researchers. Even a year after Random design

of microfluidics was published, we still have visitors coming to visit the website and play
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with random chips every day on average. The accelerating algorithm described in Chapter

4 could also possibly be deployed in the cloud and facilitate the cloud simulation platform.

Cell sorting is one of the important applications in biological research. Randomly

designed particle sorter presented in Chapter 5 demonstrated that after we utilized

multiple algorithms, we were able to design complex microfluidic chip for sorting purpose.

Before that, every cell sorter was designed by human being with limited computational aid.

In chapter 6, we presented an optimizing process using the genetic algorithm NSGA-II. Both

resistance and mixing performance of a microfluidic mixer are investigated and optimized

simultaneously. We are confident that Random particle sorter and NSGA optimized

mixer could be a good start for using computer algorithms to design better microfluidic

chips.
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