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Asymptotic Pseudotrajectories and Chain 
Recurrent Flows, with Applications 

Michel  Bena'/m ~ and Morris  W.  I-lirsch 2 

Received December 16, 1994 

We present a general framework to study compact limit sets of trajectories for 
a class of nonautonomous systems, including asymptotically autonomous dif- 
ferential equations, certain stochastic differential equations, stochastic approxi- 
marion processes with decreasing gain, and fictitious plays in game theory. Such 
limit sets are shown to be internally chain recurrent, and conversely, 

KEY WORDS: Asymptotically autonomous systems; dynamical systems; 
chain recurrence; game theory; reaction diffusion; stochastic approximation. 

0. I N T R O D U C T I O N  

A semiflow q~ on a metr ic  space (M,  d)  is a con t inuous  m a p  

r M x R +  ~ M ,  (x , t )~-~r  

such that  

~o  = Ident i ty ,  ~bt + �9 = gst ~ ~ s  

for all  (t, s ) e R +  x R + .  Replacing R +  by  R defines a flow. 
A con t inuous  funct ion X: R +  --* M is an  asymptotic pseudotrajectory 

for r if 

lira d(X(t + T), CT(X(t)) --- 0 
t ' .-} ~O 
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142 Benaim and Hirsch 

locally uniformly in T~R p. Thus for each fixed s >  0, the curve 

[0, s] --, M:t~-- ,X(t+ T) 

shadows the ~-trajectory of the point X(T)  over the interval [0, s] with 
arbitrary accuracy for sufficiently large T. By abuse of language we call X 
precompact if its image has compact closure in M. All our results concern 
precompact asymptotic pseudotrajectories. 

The limit set L{X}  of an asymptotic pseudotrajectory X, defined in 
analogy to the omega limit set of a trajectory, is the set of limits of con- 
vergent sequences X( tk), tk --' 00. 

A great deal of research has gone into methods for determining omega 
limit sets of trajectories of a flow or semifiow; this could well be considered 
the goal of dynamical systems theory. But asymptotic pseudotrajectories, 
occurring in many applications, are also important. They are curves in the 
state space M which differ from true trajectories in a controlled way, with 
errors tending ~ to zero, and it is often possible to describe their asymptotic 
behavior in terms of the dynamics of ~. As we show, asymptotic pseudo- 
trajectories arise not only in many dynamical settings, but also in fields 
seemingly unrelated to differential equations, such as game theory and 
stocha.~tic approximation. 

In this paper we treat limit sets of asymptotic pseudotrajectories in a 
unified topological framework. It turns out that that with considerable 
generality, limits sets of precompact asymptotic pseudotrajectories are con- 
nected and internally chain recurrent. If the dynamics of the flow are not 
too complicated, this makes it possible to identify all possible limits sets of 
asymptotic pseudotrajectories and to give quantitative conditions ensuring 
that an asymptotic pseudotrajectory is asymptotic with a true trajectory. 

The main results are stated below: proofs are postoned to Sections 7, 
8, and 9. Several useful dynamical results are presented in Section 1. 
Applications are made to asymptotically autonomous differential equations 
(Section 2), reaction-diffusion systems (3), stochastic differential equations 
(4), stochastic approximation (5), and game theory (6). 

Main Results 

We use the following notation. For any function a(q) defined on N 
(the natural numbers) or R+ (the set C0,oo) of nonnegative reals), and 
taking values in R+, set 

~(  a ) = ~tq_, ~ a( q ) = lira sup a( q ) l/q 
q,-* oO 
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4 denotes a semiflow (or flow) on a metric space M, and X: 
[ 0, oo) --} M is a precompact asymptotic pseudotrajectory for 4.  The limit 
set of X is 

L{X} = N x[t, 
t;~0 

Theorem 0.1 characterizes L{X} in terms of its dynamic properties. 
Theorem 0.3 shows that, fairly generally, every compact limit set of an 
asymptotic pseudotrajectory embeds dynamically as an omega limit set of 
some flow. 

Theorem 0.4 gives a sufficient condition for X to be exponentially 
asymptotic with a trajectory of 4;  Corollary 0.5 states that under this con- 
dition, the limit set is not merely an internally chain recurrent set for 4 ,  
but the omega limit set of some 4-trajectory. In certain applications this 
can be used to show that X(t) converges to a fixed point of 4. 

If K c M . i s  an invariant set ( 4 t = K  for all t), we say K is internally 
chain recurrent if 4 1 K  is chain recurrent in the sense of Conley (1978) or, 
equivalently, if 4 1 K  has no proper attractor (see Section 1). 

Theorem 0.1. L { X} is 4-invariant, connected, compact, and internally 
chain recurrent. 

A partial converse is the following. 

Theorem 0.2. Let L ~-M be a connected, compact internally chain 
transitive set, and assume M is locally path connected. Then there exists an 
asymptotic pseudotrajectory X such that L{ X} = L. 

The following result generalizes theorems of Bowen (1975) and Franke 
and Selgrade (1976). It says that when M is locally path connected, (M, 4 )  
embeds equivariantly in a flow on a larger space A~, in such a way that 
every internally chain recurrent continuum in M is an omega limit set for 
the flow in ~r. 

Theorem 0.3. Let M be locally connected and 4 a flow (respectively, 
semiflow) on M. Then there exists a flow ~ on a metric space 3~I, a closed 
~-invariant set S~ c ~ and a homeomorphism H: M--* S~ such that 

(a) S$ attracts all fo[ward trajectories of  ~. 

(b) H o 4 t =  ~ t[ (S ,  oH) for all t e R  (respectively, for all t r  

(c) H maps each compact connected internally chain recurrent sets for 
4 homeomorphically onto a compact omega limit sets for ~. 



144 Bena/m and Hirseh 

The asymptotic error rate of X is the number e(X) defined by 

e(X) = sup ~,_. 0o d(X(s+ T), OrX(s)) 
2">0 

If e(X) ...<A < 1 we call X a A-pseudotrajectory. 
We say that a point u e M, or its J-orbit,  A-shadows X if 

~t-. ood(Otu, X(t + to)) ~< A 

for some to >t0. This means that as t--, oo, X(t + to) tracks the J-trajectory 
of u with error going to zero like A t. 

To each compact O-invariant set K we associate a number 
0,.<e(O, K) ~< ~ called:the expansion rate of �9 at K (see Section 9). When 
�9 is a smooth flow, 

e(O, K) = sup min liDO_,(O,(x))lt-1/' 
t > 0  xGK 

When �9 is the gradient flow of a C 2 function u on a Riemannian manifold 
M, then e(4, K) = e p, where p is the minimum eigenvalue of the Hessian of 
u at critical points of u in K. 

For the following theorem we assume that for any z > 0 and any ball 
Bp(x)cM,  there exists a common Lipschitz constant for the maps 
Ot [Bp(x), 0 <~ t <~ 3. This holds for C 1 flows, and for the solution flows of 
the semilincar parabolic equation in Section 3. 

Theorem 0.4. Let K c  M be a compact invariant set containing the 
limit set L { X}. Assume 

e(X) < A <rain{ 1, e(O, K)} 

Then there there is a unique J-orbit that A-shadows X. 

Corollary 0.5. Under the assumptions of  Theorem 0.4, L{X} is an 
omega limit set of  4. 

1. DYNAMICS OF ASYMPTOTIC PSEUDOTRAJECTORIES 

Theorem 0.1 and its applications in later sections show the importance 
of understanding the dynamics and topology of internally chain recurrent 
sets (which in most dynamical settings are the same as limit sets of 
asymptotic pseudotrajectories). Many of the results which appear in the 
literature on asymptotically autonomous equations and stochastic 
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approximation can be easily deduced from properties of chain recurrent 
sets? While there is no general structure theory for internally chain 
recurrent sets, much can be said about many common situations. Several 
useful results are presented in this section. 

We continue to assume that X: R+ ---, M is a precompact asymptotic 
pseudotrajectory for a flow or semiflow �9 in a metric space M. 

Attractors 

A subset A c M is an attractor for �9 provided that 

(i) A is nonempty, compact, and invariant (~t A ----~A); and 

(ii) A has a neighborhood W c M  such that dist(~tx, A ) ~ 0  as 
t ~ oo uniformly in x r W. 

The basin of A is the positively invariant open set comprising all points x 
such that dist(~tx, A) ~ 0  as t ~  oo. If A # M ,  then A is called a proper 
attractor. A global attractor is an attractor whose basin is all the space M. 
An equilibrium (=stat ionary point) which is an attractor is called 
asymptotically stable. 

Theorem 1.1. Let e be a asymptotically stable equilibrium with 
basin of attraction W. I f  X(tk)e W for some sequence tk ~ o0, then 
limt_, ~ X(t)=e. 

This was proved by Thieme (1992, Theorem 4.1) for asymptotically 
autonomous equations, generalizing a theorem of Markus (1956). In the 
context of stochastic approximations this result was proved by Kushner 
and Clark (1978). It is an easy consequence of Theorem 8.2 because e is the 
only chain recurrent point in its own basin. 

More generally we have the following. 

Theorem 1.2. Let A be an attractor with basin W. I f  X(tk)6 W for 
some sequence tk-" 00, then L{ X} = A. 

Proof. Follows from Theorem 0.1 and Lemma 8.1. QED 

Simple Flows, Cyclic Orbit Chains, and Liapunov Functions 

A flow is called simple if it has only a finite set of alpha and omega 
limit points (necessarily consisting of equilibria). This property is inherited 
by the restriction of r to invariant sets. 

3 Some of our hypotheses are stronger. 

865/s/lqo 
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A subset F c  M is an orbit chain for �9 provided that for some natural 
number k 1> 2, F can be expressed as the union 

s  ..... ek} u ~ l u  "" uT/ ,- i  

of equilibria {e~ ..... ek} and nonsingular orbits 71 ..... 7k- ~ connecting them: 
this means that 7i has alpha limit set  {e,} and omega limit set {e,+~}. 
Neither the equilibria nor the obits of the orbit chain are required to be 
distinct. If et = ek, F is called a cyclic orbit chain. A homoclinic loop is an 
example of a cyclic obit chain. 

Concerning cyclic orbit chains, Benaim and Hirsch ( 1994, Theorem 3.1) 
noted the following useful consequence of the important Akin-Nitecki-Shub 
lemma (Akin, 1993). : 

Proposition 1.3. Let L c M be a compact internally chain recurrent 
set. I f  r [ L is simple, then every nonstationary point of  L belongs to a cyclic 
orbit chain in :L. 

From Theorem 0.1 we thus get the following. 

Corollary 1.4. Assume that r is simple. Then every point of 
L{ X} "is an equilibrium or belongs to a cyclic orbit chain in L{ X}. 

A continuous function V: M--* R is called a strict Liapounov function 
for �9 if V(~t(x)) is strictly decreasing along nonconstant forward trajec- 
tories of r It is not difficult to prove directly that a semiflow with a strict 
Liapunov function and isolated equilibria cannot be chain recurrent on any 
compact invariant set containing nonequilibrium points. This can also be 
deduced from Corollary 1.3, because a flow with a strict Lyapounov func- 
tion and only isolated equilibria is simple and has no cyclic orbit chain. As 
a consequence we obtain the following. 

Corollary 1.5. Assume that �9 admits Liapunov function and that equi- 
libria in L{ X} are isolated. Then X(t) converges to an equilibrium as t--, ~ .  

Ball (1976) obtained essentially this result under considerably broader 
hypotheses on the flow; see also Artstein (1976) for further results on 
Liapunov functions. 

Planar Systems 

The following result of Benaim and Hirsch (1964) goes far toward 
describing the dynamics of internally chain recurrent sets for planar flows 
with isolated equilibria. 
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Theorem 1.6. Assume �9 is a flow defined on R 2 with isolated equi- 
libria. Let L be an internally chain recurrent set. Then for any p ~ L one of 
the following holds: 

(i) p is an equilibrium. 

(ii) p is periodic (i.e., ~T (p )=p  for some T>O). 

(iii) There exists a cyclic orbit chain l ' c L  which contains p. 

Notice that this rules out trajectories in L which spiral toward a 
periodic obit, or even toward a cyclic orbit chain. 

In view of Theorem 0.1 we obtain the following. 

Corollary 1.7. Let ~ be a flow in R 2 with isolated equilibria. I f  X is a 
bounded asymptotic pseudotrajectory of  ~, then L( X) is a connected union of 
equilibria, periodic orbits, and cyclic orbit chains of  ~. 

The following corollary can be seen as a Poincar~Bendixson result 
for asymptotic pseudotrajectories. 

Corollary 1.8. Let �9 be a fiow defined on R:, K c R  2 a compact subset 
without equilibria, X an asymptotic pseudotrajectory of  ~. I f  there exists 
T > 0  such that X( t )~K for t>~ T, then L(X) is either a periodic orbit or a 
cylinder of  periodic orbits. 

O f  course if X(t) is an actual trajectory of ~, the Poincar6-Bendixson 
theorem precludes a cylinder of periodic orbits. But this can easily occur 
for an asymptotic pseudotrajectory. 

The following consequence of Theorem 1.6 generalizes the special case 
proved by Thieme (1994, Theorem 1.3) for asymptotically autonomous 
differential equations. 

Theorem 1.9. Let ~ be a flow defined on R 2 and X a bounded 
asymptotic pseudotrajectory of  ~. I f  L{ X} contains a nonstationary periodic 
orbit as a proper subset, then it contains an annulus of  periodic orbits. 

Proos  Let L be any internally chain recurrent for a planar flow, and 
let P c L  denote the set of nonstationary periodic points. Previously 
(Benaim and Hirsch, 1994) we proved (Theorem 4.1) that each component 
of P which is not a single orbit is homeomorphic to an annulus. The 
theorem follows by applying this to L = L{ X}. QED 

The next result extends Dulac's criterion for convergence in planar 
flows having negative divergence. 
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Theorem 1.10. Let  tO be a flow in an open set in the plane, and assume 
that tOt decreases area for t > O. Then 

(a) L{X} is a connected set o f  equilibria which is nowhere dense and 
which does not separate the plane. 

(b) I f  tO has at most countably many stationary points, then L{X} 
consists of  a single stationary point. 

Proof.  The proof is contained in that of Theorem 1.6 (Benaim and 
Hirsch, 1994); here is a sketch. The assumption that tO decreases area 
implies that no invariant continuum can separate the plane. A generaliza- 
tion of the Poincar~Bendixson theorem (Hirsch and Pugh, 1988) shows 
that an internally chain recurrent continuum (such as L{X}), which does 
not separate the plaxie consists entirely of stationary points. Simple 
topological arguments complete the proof. Q E D  

Remark 1.1. A result similar to Theorem can be proved for the case 
/ 

where tO is a~volume decreasing flow of a cooperative ( = quasimonotone) 
vector field in R 3, using results of Hirsch (1989). 

Remark 1.12. The conclusion of Theorem l.10(b) can also be 
obtained for flows of a cooperative or competitive vector field in R 2 using 
results of Hirsch (1982). 

Remark 1.13. The classical structural stability theorems of Andronov 
and Pontryagin (1937) and de Baggis (1952) imply that for generic C 1 
vector fields in R 2, L{X} is a periodic (possibly stationary) orbit. The 
same applies to dynamics on compact odentable surfaces, using the general 
density theory of Peixoto (1962, 1973). 

2. ASYMPTOTICALLY AUTONOMOUS DIFFERENTIAL 
EQUATIONS 

Let g: R " - ,  R" and f :  R +  x R ~--,  R ~ be continuous maps. The 
ordinary differential equation 

dx 
- ~ = f ( t ,  x) (1) 

is called asymptotically autonomous with limit equation 

dx 
(2) 

if lim,.. +.of(t, x )=g(x)  locally uniformly in x. 
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Asymptotically autonomous equations were introduced by Markus 
(1956) is a seminal paper which has significantly influenced the develop- 
ment of the qualitative theory of nonautonomous differential equations. 
Several of Markus's results have been recently generalized by Thieme in a 
series of papers (1992, 1994). Some of Thieme's results are discussed and 
extended in the present paper. Closely related to our work is a paper by 
Mischaikow et al. (1995) which also considers asymptotically autonomous 
equation in relation to chain recurrence. Earlier work by Artstein (1976) 
and Ball (1976) contains results close to some of ours. 

Consider the asymptotically autonomous system (1) with limit Eq. (2). 
When g is locally Lipschitz, a standard application of Gronwall's inequality 
yields proves the following. 

Proposition 2.1. Let X be any bounded solution to (1). Let ~ be the 
flow generated by (2). Then X is an asymptotic pseudotrajectory of  ~. 

In fact this h61ds more generally as follows. 

Theorem 2.2. Assume that f is continuous and that g has unique 
integral curves. Then the conclusion of  Proposition 2.1 holds. 

This is proved as Corollary 7.3. 
These asymptotic pseudotrajectories coincide with the notion of a 

trajectory of an "asymptotically autonomous semiflow" introduced by 
Thieme (1992). 

In his work on planar asymptotically autonomous systems, Thieme 
(1992, 1994) proves a Poincarg--Bendixson type theorem similar to 
Theorem 1.9 and asks the following question: Let X(t), t >I 0 be a bounded 
solution of an asymptically autonomous planar system (I). Suppose 
equilibria of the planar limit Eq. (2) are isolated. Then is L{X} necessarily 
the union of periodic orbits, equilibria, and orbits connecting equilibria 
of g? 

To answer Thieme's problem we use the fact (Proposition2.1) that 
X(t) is an asymptotic pseudotrajectory for (2). Therefore Thieme's question 
is answered affirmatively by Theorem 1.6. 

The following result gives a sufficient condition that a solution X(t) to 
an asymptotically autonomous differential equation be exponentially 
asymptotic to some solution ~t(x) of the limit equation. 

For any continuous function h: R+ x R ' ~  R" and any compact set 
KcR" ,  we define a functiofl t ~---~ IIh(t, ")llx by 

Ilh(t, -)llx= sup Ilh(t, x)ll 
xc~K 
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Theorem 2.3. Let X: [0, oo) ~ R n be a bounded solution to 

dx 
~ f  =f ( t ,  x) (3) 

where f is continuous in (t, x) and locally Lipschitz in x. Let K c R "  be a 
compact positively invariant set for the solution flow �9 of  

Assume 

dx 
-d-~-=g(x) (4) 

lira dist(X(t), K) = 0  (5) 
t---~ O0 

Let  u = e( r ) .  

(a) Assume 0 <~ 2 < 1 is such that 

Then e( X) <~ 2. 

(b) Assume, also, 

~,-.oollf(t, . ) - g ( ' ) l l r ~  < 2  (6) 

Then there exists a solution u: [0, oo) ~ K to (4) such that 

~,...,~ t lu(t)- X(t)ll <<.2 

and any two such solutions extend to the same maximally defined 
solution to (3). 

Proof. X is an asymptotic pseudotrajeetory for �9 by Proposition 2.2, 
whose limit set lies in K by (5). Fix a compact neighborhood N of K. 

Fix any 21 such that 2<2~.  By (6) we can then fLx t l > 0  and a 
compact neighborhood N of K such that for x r N, t t> tl we have 

II f ( t ,  x) -g(x)ll  < 2~ 

Let L > 0  be a Lipscliitz constant in x e N  for f ( t ,  x). Let tl > 0  be so 
large that X(s )~N for all s>~to. Then from a standard application of 
Gronwall's inequality, we obtain, for t + T>_. t I> to: 

2 < rain(l,/~) (7) 
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I[X(T+ t ) - r  <~e Lr I[f(s, X(s))--g(X(s))l] ds 

t . t +  T 

<~ e Lr | 2 t ds 
" t  

where C =  Ilog 2~1 e zr. Therefore the error rate e(X) of X is bounded above 
by 21. Since this holds for all ,~1 >;t, part (a) follows. If 2 < # ,  part (b) 
follows from Theorem 0.4. QED 

An Example  

The following example (Ball, 1976, p. 240) illustrates the use of these 
theorems. Consider asymptotically autonomous planar systems given in 
polar coordinates by 

dr 
~-~= - r ( r -  l) 2 (8) 

dO cos20+h(t) (9) 
dt 

where h: R -~ R is continuous and h(t )  ~ 0 as t -~ oo. 
Notice that every solution of the limiting autonomous system 

dr 
- - =  - - r ( r - -  1) 2 (10) 
dt 

~ = c o s 2 0  (11) 

converges to one of the three equilibria: r=O, (r, 0)=(1,7~/2), (r, 0)= 
(1, - ~r/2). 

From Theorem 2.2 we see that any solution X(t) = (r(t), O(t)) to (8), 
(9) is an asymptotic pseudotrajectory of (10), (11). Therefore by 
Theorem 03, X has for its limit set a connected, compact, internally chain 
recurrent set for the flow ~ of (10), (11). There are four such sets: the three 
equilibria and the unit circle S ~. 

Suppose fast that 

h(s) >>. 0 (12) 

~o ~ d s -  ~ (13) 
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Then any solution to (8), (9) starting on S ~ has as limit .~et the whole 
of S 1, because 

O(t) >i O(to) + h(s) ds 
0 

Now in place of (12), (13), suppose that 

lira sup Ih(s)l = 2 < 2 (14) 
$ ---I" OO 

In this case the error rate e(X) of any solution X(t) to (8), (9) is ~<2 by. 
Theorem 2.3(a). Now the expansion rate e(r S I) is easily computed to 
be 2: this follows from (i), (ii), or (iii) in Section 9, the key fact being that 
the derivative of cos 2 0 is hounded in absolute value by 2. Therefore from 
Theorem 2.3(b) we see that (12), (13), and (14) imply that every solution 
to (8), (9) is asymptotic with some solution of (I0), ( l l) ,  and it therefore 
converges to one of the three equilibria of ~. 

3. REACTION DIFFUSION EQUATIONS 

Let ~ c R  m be a smooth (i.e., C 1) compact m-dimensional sub- 
manifold with interior f2. 

Consider PDEs of the following kind, to be satisfied by continuous 
functions 

u = (ul(x,  t) ..... u . (x ,  t)),  t >1 O, x ~ 

with values in R": 

~u 
- - = B d u + g ( u ) ,  t > 0  (15) 
Ot 

~u 
0-~=0 (16) 

Here d is the Laplacean in the spatial variable x, operating on each com- 
ponent of u, B is a diagonal n • n matrix with positive diagonal entries bj, g 
is a smooth vector field on R n, and v is the inward-pointing unit vector 
field normal to the boundary of ~. 

Hale (1986) and Conway et al. (1978), for more general equations, 
give conditions ensuring that solutions to (15), (16) decay to spatially 
homogeneous solutions, which are interpreted as trajectories of g. Hale 
considers solutions having initial values in the basin of an attractor for g, 
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while Conway et al. take initial values to be in an invariant region for the 
PDE. In both cases they conclude that u(x, t) is asymptotic with the solu- 
tion of a certain asymptotically autonomous equation with limit equation 
dy/dt = g( y ). 

We show that under slightly more stringent conditions, u(x, t) is 
exponentially asymptotic with a trajectory of g. 

Let E ~ C(~, R") be a linear subspace endowed with a norm making 
the inclusion continuous. A (local) semiflow S in E is a solution semiflow 
to (15), (16) in case the solution with initial value u(x, O)= v(x) is given by 

u(x, t) = (S tv)x  

Hale (1986) assumes that g is C 2 and m ~< 3 and states that solutions 
to (15), (16) form a 16cal semiflow S={St} ,~ ,o  in the fractional power 
space X ~ corresponding to the operator - ,4  with Neumann boundary con- 
ditions with dense domain W2"2(fl, R") = X =  L2(fl, R") ~ X =  L2(Q, R"), 
�88 < a < 1. In this case X ~ = W1"2(s R") ta L~~ R") with continuous 
inclusion (Hefiry, 1981, p. 75). 

On the other hand, Conway et aL, allowing g to be merely C ~ and 
placing no restriction on m, obtain a solution semiflow S in Hl(fl,  R"). 

W.e first consider Hale's result. Let K = R "  be a compact attractor 
(Secti6n 8) for the flow ~ of the vector field g. Identifying R" with the sub- 
space of X ~ comprising constant maps fl ~ R", we consider K as a compact 
invariant set in X ~ for the solution semiflow S. 

Define b=max{bt , . . . ,b , }  >0. Let 2 > 0  denote the smallest positive 
eigenvalue of -z l  operating on functions in fl having Neumann boundary 
conditions. 

We take the stance that fl (and hence 2), g, and K are fixed, whereas 
b is a parameter governing diffusion, 

Hale (1986) proves that K is an exponential attractor for S, at 
rate e -r provided b is sufficiently large. Precisely: 

Theorem 3.1 (Hale, 1986). Let K = R "  be an attractor for  the f low �9 
o f  the C 1 vector field g on R". Assume 1 ~ rn <<. 3, ~ < a < 1. Let ~ = R",  
B=diag{  b l ..... b,}, b>0 ,  2 > 0  be as above. Given 0 < o ' < 2 ,  there exists a 
number b .  > 0 (depending on tr, f2, g, and K) with the following property. 
Assume 

b > b .  (17) 

Then there is a neighborhood V c X ~ o f  K and a constant C >  0 such that for 
any v ~  V, the solution u(., t ) - - S t y  to (15), (16)  satisfies 

Ilu(-, t ) -  R(t)llx~ ~< Ce -r t >~O (18) 
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where 

12(t) = I01 -~ f,~ u(x, t) dx 

Moreover, a( t) satisfies an equation 

d~ 
-~ = g(u(t))  + h,(t)  

Bena[m and Hirsch 

(19) 

where h~: R+ ~ R satisfies 

Iho(t)l ~< Ce -~', t>~O (20) 

Thus a(t) satisfies an asymptotically autonomous system (19) with 
limit system 

Y-=g(y) 
t 

Fixing v and setting f ( t , y )=g(y)+ho( t ) ,  we see that (20) means that 

~t- .  ~o I I f ( t , - ) - g ( . ) l l ~ < e  -'r (1) 

From Theorem 2.3 we see that if(t) is an asymptotic pseudotrajectory for 
the flow of g, with asymptotic error rate bounded by o'. Therefore from 
Theorem 3.1 and the fact that we can take a arbitrarily close to 2, we 
obtain the following. 

Theorem 3.2. Assume the hypotheses of  Theorem 3.1. Let it =e( 4, K) 
denote the expansion rate at K of  the flow ~ of  g. Suppose 

e -a <It (22) 

Then there exists b .  > O, e > O, with the following property. Assume 

b > b .  

Let Stv=u(x,  t), t>>.O be a solution to (18), (19) with initial value 
u(., O)-~ v e X = lying in the 8-neighborhood of  K in X =. Then there exists 
y ~ K and t o >i 0 such that 

gt,_.| l I S , + , o V - ~ , y l l ~ e  -~ 

and the J-orbit o f  such a y is unique. 
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Remark 3.3. A similar result can be obtained for functional differen- 
tial equations, using Theorem 4.1 of Hale (1986). 

Remark 3A. Hale's choice of b .  is deeply entwined with the 
dynamics of the PDE (15), (16); there is no obvious formula for such a b .  
given solely terms of 2 and b. This is why, in our statement of Theorem 3.1 
and 3.2, we allow b,  to depend on all the data of the PDE. 

It is interesting to contrast these results with those derived from 
Conway et al. (1978). These assume that the PDE has a compact invariant 
region F c  R", meaning that Sty(H) c F provided v(H) c F. 

As Hale points out, an invariant region is not as robust as an 
attractor, and postulating one severely restrictis the class of PDEs under 
consideration. 

Conway et al. take the solution flow S to be in H~(H, R'). Set 

M =  max IIDg(Y)II 
y e t  

Notice that in the following result, the data of the PDE and the ODE enter 
the determination of a only in the combination b 2 -  M. 

Theorem 3.5 (Conway et al., 1978). Suppose b 2 - M = a > O .  Then 
for any v ~ HI(H, R ~) taking values in F, the solution u(., t) = Sty to (15), 
(16) with initial value v satisfies 

Ilu(., t)-~(t)ll~co.R.) <~ f e  -~', t >~O 

where 

ti(t) = IHI -~ f u(x, t )dx  

Moreover, a( t) satisfies an equation 

da 
-~ = g(u(t))  + h~(t) 

where hv: R+ ~ R satisfies 

b ~ ~ a t  
Ihv(t)l ~ Ce , t~>0 

By applying Theorem 0.4 we obtain the following. 
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Theorem 3.6 (Hirsch, 1994). Let lZ = e( 4, F). Suppose I~2- M fi o < IZ. 
Then for any v f Hl(~,  R n) taking values in F, there exists y E F and to >~O 
such that 

~ , _  ~ IlSt+,0v- O, Yll ~<a.n,,) ~< e - r  

and the J-orbit of  such a y is unique. 

4. STOCHASTIC DIFFERENTIAL EQUATIONS 

Let g: Rn-- ,R n be a Lipschitz map, and a: R n x R - - , R  ~• a con- 
tinuous map, Lipschitz in x ~ R ~ uniformly in t r R, where R" • denotes the 
space of n x p  real matrices. Consider the stochastic differential equation 
in Rn: 

dX= g( X) dt + a( X, t) dS t (23) 

where B =  (B t )o~ t< ~ is a standard Brownian motion on R ~' defined on a 
probability space (12, ~' ,  ~) .  

The normal definition of (23) requires stochastic integration. For  an 
introduction see, for example, Friedman (1975). An intuitive notion of  (23) 
is to imagine a pollen grain in a river. The grain is subject to the current 
force (the "drift" given by g(x)) and is bombarded by water molecules (the 
"diffusion force" given by a(x, t)). Solutions of (23) are (with probability 
one) continuous but nowhere differentiable. 

Proposition 4.1. Assume that IIo(x, t)]] ~8(t)  for some nonincreasing 
function e(. ) such that 

for all fl > 0. 4 Then any solution of  (23) is (with probability one) an 
asymptotic pseudotrajectory o f  the flow induced by g. 

The proof  is given in Section I0. 
Let �9 be the solution flow of dx/dt fig(x); set # = e(O). The following 

result gives conditions ensuring that a solution X(t) be asymptotic to a 
trajectory of the vector field g: R n --, R n. 

4 For example, e(t) ffi= O(ll(log(t)) ~) with a > �89 
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Proposition 4.2. Let X be a solution to (23). Assume, 

(a) 

(b) 

(c) 
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admits a global attractor A. 

There exist 1> 0 such that solutions to (23) with initial value 
X(O) =Xo satisfy P(supt~o IlY(t)ll ~<1)= 1. 

~lt_,~e(t) < min(1, /,t ), where I~ = e ( ~ ,  A). 

Then there exists a random vector Y~ R ~ such that 

( i)  Almost surely limt.., oo IIX(t) - ~,(  Y)tl = 0. 

(ii) ~t.-.oo IIX(t)-r <min(1,1z) 

where II" I1~ denotes the L 2 norm on the space o f  R"-valued random variables. 

The proof of this result is obtained by an application of Theorem 9.2 
to a convenient flow in Banach space of L 2 functions on the underlying 
probability space. This is carried out in Section 10. 

5. STOCHASTIC APPROXIMATION AND U R N  PROCESSES 

In this section and the following we describe applications of asymp- 
totic pseudotrajectories which a priori have nothing to do with differential 
equations. 

Stochastic Approximation 
Let h: R n--, R" be a continuous function. Consider the following dis- 

crete time stochastic process: 

X k  + I - -  X k  ~- ~k  + l ( g ( X k )  "~ Uk+l) (24) 

where { ?k} is a given sequence of nonnegative numbers such that 

(a) Ek rk = oo, 

(b) Ek y~+6 < oo for some J > 0. 

and { Uk} is a sequence of random variables uniformly bounded defined on 
a filtered probability space (12, ~' ,  @, (~k)k;,0), which satsfies the so-called 
Robbins-Monro condition: 

E(Uk+, I~ )=0  

Formula (24) can be considered to be a noisy version of a variable- 
step size Cauchy-Euler approximation scheme for numerically solving 
dx/dt =g(x):  

Yk + 1 --Yk = ~'k + 1 g(xk) 
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It is thus natural to compare the set of limit points of a sample path { x,} 
with limit sets of the vector field g. To this end, we set 

k 
ro = 0; Zk = ~'. 7,, k >i 1 

i ~ l  

and define the interpolated continuous process X: R + --* R" as follows: 

(i) X('Ck)-.~Xk, 
(ii) Xis  affine o n  [ 'Ck ,~ 'k+l ] .  

The precise connection between X and trajectories of g is the following. 

Proposition 5.1. Assume the sequence { Xk} is bounded with probability 
one. Assume g is Lipschitz. 5 Then the interpolated continuous process X is 
almost surely an asymptotic pseudotrajectory of  the flow �9 induced by g. 

This follows from BenaLm (1996) and Benaim and Hirsch (1993). The 
proof is in the same spirit as that of Proposition 4.1. 

It is easy to see that because 3'k--' 0, the limit set of X coincides with 
the limit set L{xk} of {Xk}. Thus the results of Section 8 are applicable to 
the process {Xk}. Therefore we obtain the following. 

Corollary 5.2. Almost surely L{xk} is an internally chain recurrent 
invariant continuum for 4. 

Generalized Polya Urn Processes 

Let 

~ " =  {v~R"+': v,~>O, ~ v , =  I} 

denote the unit n-simplex. Consider an urn which initially (i.e., at time 
k=O)  contains k0>O balls of colors l,..., n +  I. Assume that at each time 
step a new ball is added to the urn and its color is randomly chosen as 
follows. 

Let Xk, i be the proportion of balls having color i at time k and denote 
by Xk ~ Z[" the vector of proportions: Xk----(Xk,1 ..... Xk,, +l). The color of the 
ball added at time k + I is chosen to be i with probability f~(xk), where the 
f t  are the coodinates of a function f :  zf" ~ zl ~. 

Such processes, known as generalized Polya urns, have been con- 
sidered by Hill et al. Sudderth (1980), Arthur et al. (1983), Pemantle 

5 If g is only continuous with a unique flow, Proposition 5.1 remains true. 
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(1990), and Benaim and Hirsch (1993) among others. Arthur (1988) and 
Auriol and Bena'/m (1994) use such processes to model competing 
technologies. 

Let 

1 
7i=ko + i 

It is easy to verify that {xk} satisfies a recursion of the form (24), where 
g(x) = f ( x ) - x .  Thus from Proposition 5.1 we obtain the following. 

Corollary 5.3. Let g be the vector field on zl ~ defined as g (x )= 
f ( x )  - x .  Assume f is Lipschitz. Then almost certainly 

(a) the interpolated continuous process X is an asymptotic pseudotra- 
jectory of  the flow �9 induced by g; 

(b) L{xk} is an internally chain recurrent invariant continuum for ~. 

6. FICTITIOUS PLAY IN GAME THEORY 

We show here that the notion of asymptotic pseudotrajectory is well 
suited to analyze a class of repeated noncooperative games with infinite 
horizon considered by many authors including (Robinson, 1951; Smale, 
1980; Cowan, 1992; Fudenberg and Kreps, 1993). More details and 
examples will be given elsewhere (Benaim and Hirsch, 1994). 

For notational convenience we restrict attention to a two-players 
game; extension to any finite number of players is straightfoward. The 
players are labeled i = 1, 2. 

To player i there is associated a measure space At called the action 
space, an information space R% and a measurable observation map 

~t: A =At  xA2 ~ R "~ 

These functions may include information about the one or both players' 
past payoffs Pt: A - ,  R (if any), actions, etc. 

The observable space St c R"  of player i is the closure of the convex 
hull of ~r It contains all possible averages of observations made by 
player i. 

The state space S c R " x  R '~ is the closure of the convex hull of 
~(A) = ~ ( A )  x ~2(A). Notice that S c  S~ x $2. 

Consider now the repeated play of the game. At round t of play, 
player i chooses an action in ai(t)~ A, (independently of the other player), 
based on her past observations, and then observes the outcome through 
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~i. At time k ~ N, the history of  the game is represented bY the sequence 
{(at(t), a2(t)), t = I,..., k} of actions taken by both players between times I 
and k. 

A behavior rule for player i gives the probability distribution of her 
next action based on all her past observations. We now make the key 
hypothesis that player i's action probabilities at time k + 1 are based only on 
the average < ~i)k of  her past observations, where 

1 k 
( ~ , ) k  =~ ~. ~,(al(t), a2(t)) 

t m l  

We call < ~ > k  the average observation at time k. Denoting the set of 
probability measures on A~ by ~(A~), we define a behavior rule for player 
i as a map 

//~: Sj--, ~(A~) 

x~ ~ / / ' ( x , ,  �9 ) 

whose interpretation is as follows: For any measurable subset YcA~,  
ll~(x~, II) is the probability that player i chooses her action in Y at time 
k +  1,. given that ( 7r 

Example 6.1. Assume the action spaces are finite sets: 

A1 = { 1, 2,..., k,}, A2 = { 1, 2,..., k2} 

Suppose the observable function is given by 

~ :  A ~ R "t • R 'n, (1, m) ~ (e 2 ,  e~) 

where ej denotes the j th  standard basis vector in R' .  Each player observes 
the action of the other and chooses her next action based solely on the 
empirical frequencies of the action choices of the other in the past. In this 
ease the observable space S, of player i is the unit simplex of R" and the 
state space is S = S, • $2. A common approach is to attempt to maximize 
expected payoff, assuming that the empirical frequencies will govern the 
other players next action. This is eaUed fictitious play. 

For the general ease of behavior rules/-/'i based on the average past 
observation < ~,>k, it is easy to calculate the expected value hs(x~, x2) of 
< ~a>k+ l, given that (< ~l)k, < ~2>1,) = (Xl, X2). We obtain 

h~: Sl x $2"* R"r R 'n 

(xl, x2) ~ [...~.~A ~,(a~, a2) ll~(x~, dal) 1"12(x~, da2) 
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A computation shows that the sequence of random vectors 
x(k) = (xx(k), x2(k)) satisfies a recursion of type (24) with h ( x ) = g ( x ) - x  
and yk= 1/k. We therefore obtain the following from Proposition 5.1 and 
Corollary 5.2. 

Proposition 6.2. Assume the vector fieM g ( x ) = h ( x ) - x  is Lipschitz 
on S. Then almost surely L{xk} is an invariant internally chain recurrent 
continuum for the flow induced by g. 

Example 6.3 (Smale Play). Smale (1980) proposed a solution to cer- 
tain cases of the symmetrical Prisoner's Dilemma in which each player has 
access to the average payoffs of both the players. Thus each player's 
observable function is the payoff function to both players, and each player 
has the space of pairs of average payoffs as her observable space. 

Smale considers only deterministic strategies. This fits into our frame- 
work if we choose Dirac measures for the strategies: II~(x~,. )= Jg,(x,)('). 
Proposition 6.2below has not been proved in this generality, however. 

Benaim and Hirsch (1994a) use Theorem 8.2 to prove an analogue to 
Theorem 1 of Smale (1980), for stochastic behavior rules yielding a 
Lipschitz game vector field. 

7. CHARACTERIZATION OF ASYMPTOTIC 
PSEUDOTRAJECTORIES 

Let C~ M) denote the space of continuous M-valued functions 
R-+ M endowed with the topology of uniform convergence on compact 
intervals. If X: R+ ~ M is a continuous function, we consider X as an 
element of C~ M) by setting X(t) = X(0) for t < 0. The space C~ M) 
is metrizable. Indeed, a distance is given by: for all f, g ~ C~ M), 

d ( f , g ) =  E l n ~ ( 1 ,  dk(f,g)) 
k e n  Z 

where dk(J. g)= supx~[_k.k] d( f ( x ), g( x ) ), 
The translation flow O: C~ M) x R --, C~ M) is the flow defined 

by 

O,(X)(S) = X( t + s) 

Let ~ be a flow or a s,mfiflow on M. For each p E M, the trajectory 
�9 P: t ~ ~ t P  is an element of C~ M) (with the convention that 
�9 P(t) = p  if t<O and r is a semiflow). The set of all such r defines a 
subspace S.. 

s65/8/i-11 
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It is easy to see that S~ is a closed set invariant under O. Define the 
retraction ~: C~ M) --, S~ as 

r = ~,(X(O)) 

Lemma 7.1. A continuous function X: R+ - ,  M is an 
pseudotrajectory of  �9 i f  and only i f  

Ikn d(O'(X), ~ o o'(x)) -- o 

asymptotic 

Proof .  Follows from definitions. QED 

Roughly speaking, this means that an asymptotic pseudotrajectory of 
r is a point of C~ M) whose Coward trajectory under O is attracted 
by S, .  We also have the following result. 

Theorem 7.2. Let X: R+ --* M be a continuous function whose image 
has compact closure in M. Then X is an asymptotic pseudotrajectory o f  �9 i f  
and only i f  X is uniformly continuous and every limit point 6 of  {O'(X)} is in 
S~ (i.e., a fixed point o f  ~). 

Proof .  Let K denote the closure of {X(t): t~>0}. Let e>0.  By con- 
tinuity of the flow and compactness of K, there exists a > 0 such that 
d(~,(x) ,x)<e/2 for all Is[ ~<a uniformly in x~K.  Therefore there exists 
T > 0  such that d(~,(X(t), X(t))<e/2 for all t >  T, Isl ~<a. 

If now X is an asymptotic pseudotrajectory of 4, T can be chosen 
large enough such that d(~,(X(t), X ( t+s ) )< t /2  for all t > T ,  Isl<~a. It 
follows that d(X(t + s), X(t)) < e for all t > T, [s[ ~< a. This proves uniform 
continuity of X. On the other hand, the above discussion shows that any 
limit point of {or(x)} is a fixed point of ~. 

Conversely, if {X(t): t~>0} is relatively compact and X is uniformly 
continuous, {Ot(X)} is relatively compact and equicontinuous. Hence by 
the Ascoli theorem, { Ot(X)} is relatively compact in C~ M). Therefore, 
fim,_.~ d(Ot(X), ~(O'(X)) =0, QED 

The following corollary illustrates the use of Theorem 7.2. 

Corollary 7.3. Consider the asymptotically autonomous system (1) 
with limit Eq. (2), but instead of  assuming f and g Lipschitz, assume only 
that the vector field g is continuous with unique integral curves and f is con- 
tinuous. Let X be a bounded solution to (1). Then X is an asymptotic 
pseudotrajectory of  the flow induced by g. 

e By a limit point of {O'(X)}, we mean the limit in C~ M) of a convergent sequence 
O'*( X), tk-* oo. 
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Proof. It is easy to see that X is uniformly continuous (in fact X(-) 
is Lipschitz because t~-*f(X(t), t) is bounded). On the other hand, a 
simple computation shows that 

O'(X) = L~(Ot(X)) + A, 

where Lg: C~ R n) --, C~ R n) is the continuous function defined as 

= X(O) + I* g(X(u)) du L~( X) ( s ) 
ao 

and 

A,(s)=J, 

Hence limt _. oo At = O. 

[f(X(u), u)-g(X(u)) ] du 

Let X* denote a limit point of {O'(X)}. Then 

X* = Lg(X*) 

By uniqueness of integral curves, this implies 

X* = r 

Therefore Theorem 7.2 shows that X is an asymptotic pseudotrajectory 
of 4. QED 

8. LIMIT SETS OF ASYMPTOTIC PSEUDOTRAJECTORIES 

Chain Recurrence 

We first briefly review the notion of chain recurrence. For the general 
theory we refer the reader to Bowen (1975), Conley (1978), and Akin 
(1993). 

Let r be a flow or semiflow on the metric space (M, d). Let 0>0 ,  
T> O. A (~, T)-pseudo-orbit from a ~ M to b ~ M is a finite sequence of 
partial trajectories 

{ ~t(y~): O<~t<<.ti}; i = 0  ..... k--  1; ti~> T 
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such that 

d(yo, a) < 6 

d4~(yj), yj+ ~) < ~, 

Yk = b 

j=O ..... k - 1  

We write a ~, b if for every ~ > 0, T >  0, there exists a (d, T)-pseudo- 
orbit from a to b. If a ,-~ a, then a is a chain recurrent point. If  every point 
of M is chain recurrent, then 4 is a chain recurrent semiflow (or flow). 

If  a --} b for all a, b ~ M, we say the flow 4 is chain transitive. When M 
is compact this is equivalent to chain recurrence plus connectedness of M. 

If  M is compact, chain recurrence of 4 is equivalent to the condition 
that there are no proper attractors. 

We denote by R(4)  the set of chain recurrent points for O. This is a 
closed invariant set which contains the nonwandering set of 4. 

Let A c .-M be a nonempty invariant set. 4 is called chain recurrent on 
A if every point p r A is a chain recurrent point for 41 A, the restriction of 
4 to A. In other words, A = R ( 4 f A ) .  

Conley (1978) proved that a flow 4 is chain recurrent on R ( 4 )  if M 
is compact and that 4 is chain recurrent on any compact alpha or omega 
limit set for 4. Mischaikov et al. (1995) show that the same holds for a 
semiflow (with also follows from the proof of 8.20) below). 

A compact invariant set on which 4 is chain recurrent (or chain transi- 
tive) is called an internally chain recurrent (or internally chain transitive) 
set. 

1.emma 8.1. f f  an internally chain transitive compact set K meets the 
basin of  an attractor A, it is contained in A. 

Proof. By compactness, K n A is nonempty, hence an attractor for 
the O[K. Since O[K has no proper attractors, being chain transitive, it 
follows that K ~ A .  QED 

Limit Sets 

Here we prove Theorems 0.1, 0.2, and 0.3. Recall that the limit set of 
an asymptotic pseudotraj~tory X: R+ --} M is 

z{x} -- N x([t, 
t~O 
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TheoremS2. 

(i) Let X ~'~ .~ grecompact asymptotic pseudotrajectory of  ~. Then 
L{ ~t~ ~ ~ennected, compact, and internally chain transitive. 

(ii) Let L : . l l  be a connected, compact internally chain transitive set, 
and ~ M is locally path connected. Then there exists an 
asyn~z~'~ ~ g~eudotrajectory X such that L{ X} = L. 

Proof. Si~'e ~X(t}: t>~0} is relatively compact, TheoremT.2 
shows that {Oq.l~: t eR}  is relatively compact in C~ M) and 
limt.., ~ d(Ot(X}.  S#$ =0. Therefore the omega limit set of X for O, denoted 
by ogo(X), is a nonempty compact connected subset of S~, and the restric- 
tion of O to a)~4.~t3 is chain recurrent. 

The homeomorphism H: M--*Sa,, defined by H(x)(t)= ~t(x), maps 
L{X} onto o~e(.~t3, and conjugates OIS~ and ~: 

(O' IS~)oH=Ho@, 

where t i> 0 for a semiflow ~, and t e R for a flow. Since chain recurrence 
is defined in terms of the maps ~,,  t >/0, assertion (i) follows. 

I n  order to prove (ii) we use compactness of L, and the hypothesis 
that M is locally path connected and compact to obtain a family of paths 

{J(x, y): [0, 1 ] ~ M: (x, y) ~ L x L} 

such that 

J(x, y): O~--~ x, l ~-~ y 

and the diameter of the image of J(x, y) goes to zero with d(x, y). 
Fix T >  1. Let {X,}n,N be a sequence of points dense in L. Since L is 

internally chain transitive, there exists a (2- ' ,  T) pseudo-orbit from x, to 
x,,+ t in L. Putting together these pseudo-orbits we get a sequence of points 
{ Yi} i, N, Y," ~ L, and a sequence of times { t/} ~ N, 2T >/t~ > T, such that 

(a) {Yi} J,N is dense in L. 

(b) d(~t,+~yi, y~+l)~O as i - - -~ .  

Define numbers 

~n = ~, ti 

s, (1 . ~  ~ t i +  1 
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and denote by Ji: [0, 1] ~ M  the path J(~,~Yi, Yt+I). Define Z: R+--*M 
as follows: 

Z ( t ) = ~ t y  o if O<<.t<~T o 

=(15t_tiy I if zi<~t<~r~+sj 

= J i ( ( t - r : - s i ) / s i )  if z:+sl<<.t<~ Z:+l 

Straightforward estimates based on (a), (b) show that Z is an asymptotic 
pseudotrajectory whose limit set is L. QED 

Remark&3. Mischaikow et al. (1995) proved that any compact 
internally chain recurrent set for an autonomous differential equation 
dx/dt=g(x)  is the limit set of a solution of some asymptotically 
autonomous equation dx/d t=h( t ,x )  having the autonomous equation as 
its limit. 

This result can be compared with a theorem of Bowen (1975) and 
Franke and Selgrade (1976). Bowen proved that any compact chain transi- 
tive set for a homeomorphism can be seen as an omega limit set for an 
extension, of the homeomorphism to some a larger space. This was 
extended to flows by Franke and Selgrade. As a consequence of 
Theorem 8.2 we get the following embedding theorem. 

Corollary 8.4. Let M be locally path connected and �9 a flow (respec- 
tively, semiflow ) on M. There exists a flow ~' on a metric space M, a closed 
~-invariant set S~ c M and a homeomorphism H: M ~ S~ such that 

(a) S~ attracts all forward trajectories of  ~. 

(b) H o t ' t =  ~t[ (S~oH) for all t ~ R  (respectively, for all t e R + ) .  

(c) H maps compact connected internally O-chain recurrent sets onto 
compact omega limit sets for ~. 

Proof. We use the notations introduced in Section 7. 
Let ~ r =  {X~ C~ M); lim,_.~ d((gt(X), S~) =0} with the metric 

induced by C~ M). Since ~ is O-invariant, we can define the flow 
~ =  O I M. The homeomorphism H is given by H(x)(t) = ~,(x). Let L c M 
be a compact connected internally ~-chain recurrent set. Theorem 8.2(ii) 
shows that H(L) is the omega limit set for ~ o f a  point X~.~  r. QED 

9. EXPONENTIALLY ASYMPTOTIC PSEUDOTRAJECTORIES 

As the asymptotic behavior of an asymptotic pseudotrajectory X for a 
flow r is evidently related to the asymptotic behavior of ~, it is natural to 
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ask, under what conditions is X(t) asymptotic with some trajectory 4t(x) 
- - tha t  is, when does there exist x such that that lim,_. ~ d(X(t), 4t(x)) = 0? 
When this happens, the limit set L{X} is not an arbitrary internally chain 
transitive set of 4, but an omega limit set. In many cases omega limit sets 
are much more restricted than internally chain recurrent sets. For example, 
suppose that each trajectory of 4 converges to some stationary point. Then 
every omega limit set is a stationary point; but there may also be uncoun- 
tably many homoclinic loops or, more generally, cyclic obit chains, which 
are necessarily internally chain transitive sets. 

A sufficient condition that L{X} be an omega limit set of 4 is that it 
admit a hyperbolic structure (Guckenheimer and Holmes, 1983): If 4 is a 
smooth flow and L is a connected hyperbolic set which is internally chain 
transitive, then it is known that L is an omega limit set (see Franke and 
Selgrade, 1976). Therefore as a consequence of Theorem 8.2(i) we have the 
following. 

Theorem ~9.1. Let 4 be a smooth flow and X a relatively compact 
asymptotic pseudotrajectory fo 4. I f  L{,Y} is hyperbolic, then L{X} is 
omega limit set. 

I r is  usually very difficult, however, to prove that L{X} is hyperbolic. 
In the following section we give some practical conditions ensuring that an 
asymptotic pseudotrajectory is asymptotic with an actual trajectory at an 
asymptotic rate, and the obit of the latter is unique. These conditions are 
stated in terms of the expansion constant of a flow, which we now review. 

Expansion Rates 

Let (M, d) be a complete metric space. B(x, p) or Bp(x) denotes the 
closed ball centered at x with radius p, and N6(J) denotes the closed 
J-neighborhood of a subset J c M. 

Let h: Mo ~ M be a map defined in an open subset Mo c M. For any 
subset J c  M o the expansion constant EC(h, J) of h at J is the largest/~/> 0 
having the following property: For any 0 ~< v </~ there exists p * >  0 such 
that 

B(h(x), vp) c h(B(x, p)) 

provided 0 ~< p ~< p*. 
If J is positively invariant [i.e., h(J)~J], it is easy to see that 

EC(h k, ~) >i EC(h, I )  k 
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Suppose M is either a Banach space or a Riemannian manifold and h 
is a C ~ diffeomorphisms. If K ~' M is compact, then it is nt difficult to show 
that 

EC(h, K) = rain ItDh(x)-~ll -~ (25) 
x 6 K  

where Dh(x) denotes the derivative of h at x e M and IIAII denotes the 
operator norm of a linear operator A. In this case continuity of Dh implies 

EC(h, K) = lim EC(h, N6(K) 
J.-* O+ 

= sup EC(h, N6(K) 
6 > 0  

If r is a semiflow in the metric space M, the expansion rate of #i at 
the compact positively invariant set K is defined as 

~(~, K) = sup EC(~,, K) l/' 
t > 0  

I f .~  admits a global attractor A, we define the expansion rate of �9 as 

~(~) =8(~,.4) =~(~, L) 

where L denotes the closure of all alpha and omega limit points for 4.  
W h e n ~  is a smooth flow, 

D ~  , ( x )  - ' = D ~  _ , ( r  

and according to (25) we therefore have 

e(~, K) = sup [rain IID~_,(~t(x))[I-v,] 
t>O x ~ K  

Several properties of the expansion rate are given by Hirsch (1994). We 
review some of these properties. 

(i) Assume r is the flow generated by a smooth vector field g on 
R". Let fl(g, x) denote the smallest eigenvalue of the symmetric 
matrix �89 + Dg(x)r], where T denotes the transpose of a 
matrix. Let fl =fl(g, K) =minx~xfl(g, x). Then 

e(#,K)~>eP 
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(ii) Another estimate is obtained by noticing that 

I/~1 <. M =  M( G, K) = max IIDG(x)II 
x G K  

(iii) 
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(using the Schwarz inequality) so that fl t> --M. This yields the 
estimate 

o~( ~5, K )  >I e - u (  o'zO (26) 

If L ~ K is a compact set containing all alpha and omega limit 
points of K, then 

e(~, K) -- e(~, L) 

If follows that if all forward and backward trajectories in K are 
attracted to hyperbolic periodic orbits (possibly stationary), and 
the �9 parts of the Floquet exponents of these periodic orbits 
are' all >i ? ~ R, then 

#(~,  K) I> e r (27) 

(iv) If K is contained in the basin of attraction of an attractor A, 
then 

,Cab K) = e(a~, A) 

Shadowing 

We return to the map h: Mo--, M considered above. Let {y~} ~ N  be 
a sequence in M. 

Let 0~<2<1. A sequence {Yk}k ,N in ~ is called a 2-pseudo-orbit 
forh if 

#~k-- oo d(yk+ ~, h(yk)) <<. 2 

A point u e M o  is said to 2-shadow {y~} provided 

~tk_.o o d(hk(u), Yk +,~) <<.2 

for some m 1> 0. 
The following exponential shadowing theorem, from which all the 

results of this section will be deduced, is a slight variation on Theorem 3.2 
of Hirsch (1994), replacing a compactness condition with uniformity 
assumptions. The proof is similar. 
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Theorem 9.2. Let MI c M o c M be closed sets that dist(M1, M \ M o )  
> O. Assume EC(h, Mo) =la > O. Let { Yk} k tN be A-pseudo-orbit for h in Ml  
such that 

0 <A < min(1,/z) 

Then 

(a) 

(b) 

(c) 

There exists x E M o which A-shadows { Yn} ~ ~ N" 

I f  X, Z ~ Mo both k-shadow { y~} , then x and z belong to the same 
orbit o f  h. 

I f  all the { Yk} lie in a closed invariant set J c Mo, then x e J. 

Now let �9 denote a semiflow (or flow) on the complete metric space 
M. For Theorem 9.3 we assume that for any r > 0 and any ball Bp(x) c M, 
there exists a common Lipschitz constant for the maps O, I Bp(x), 0 <~ t <~ r. 
This holds for C ~ flows and for the solution flows of standard semilinear 
parabolic evolution equations. 

Let X: R+ ~ M be a precompact asymptotic pseudotrajectory. We say 
u ~ M, or its orbit, A-shadows X if 

~1 t_. ~ d( O tu, X( t + to) ) <~ A 

for some to >I 0. 
Define the asymptotic error rate o f  X to be 

e(X) = sup[lim sup d(X(s + Y), OrX(s))  l/s] 
T>O s--.~ oo 

If e(X) ~< 2 < ~ ,  we call X a A-pseudotrajectory. 

Theorem 9.3. Let X: R + ~ M be a precompact pseudotrajectory for O. 
Let K c M be a compact invariant set containing the limit set L{ X}. Assume 

e(X) < A = rain { 1, e( O, K) } (28) 

Then there exists a unique O-orbit which A-shadows X. 

Proof. By the second inequality in (28), we fix T > 0  and a 
neighborhood M0 c M of K such that 

, EC(OT, Mo) >A r (29) 

Let MI t i n t  Mo be a compact neighborhood of K. Since L{X}  ~ K ,  we 
can choose So>0 such that X ( t ) ~ M I  for all t>~so. 
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By the first inequa~ty in (28), there exists s~ >So such that if S~SI, 
then 

d(X(s+ T), ~tX(s)) <M 

Now set h = # r ,  yk=X(so+kT) .  Then for all k~N,  

d(yk + 1, h(yk) ) = d( X([ so + kT] + T), ~rX(so + kT) ) 
< ,~  +kr 

(30) 

by (30). Therefore 

lim sup d(yk+],  h(yk))  1/k <~ 2 T 
k-- ,  oo 

< EC(q~r, Mo) 

by (29). 
Therefore Theorem 9.2 implies that there exists which 2r  shadows 

{Uk}k~N for the r e ape r .  The uniform Lipschitz constants for the 
maps q~tlV, 0 <~ t ~ T and continuity of �9 can now be used to show 
that X is. 2-shadowed by u. The uniqueness statement follows from 
Theorem 9.2(b). QED 

10. PROOF OF PROPOSITIONS 3.7 AND 3.8 

We assume given a complete probability space (I2, ~-, ~). We let E 
denote the mathematical expectation defined by E(X)= Ja X(to)dP(og) for 
any integrable function X. We let L p, p > 0, denote the space of R n valued 
random variables X such that E( IIXII ~) < oo. LP is a Banach space for the 
n o r m  IIXll~, = E(IIXIIP)  lip. 

Proof of Proposition 3.7 

We have 

�9 ~ h ( X ( t ) ) - X ( t + h ) =  [ g ( ~ ( X ( t ) ) ) - g ( X ( t + s ) ) ]  ds 

+ f(+*~(X(s),s)dB~ 

Let L be the Lipschitz cofistant of g. From Gronwall's inequality we get 

sup tl~h(X(t))-X(t+h)ll<~e Lr sup [IZt+h-Ztl[ (31) 
O~h~T O~h~T 
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Since 
lemma implies 

where Z is the continuous time martingale: 

Z, = fo a( X(s), s) dB 

To estimate I[Zt+h-Zt[I it suffices to estimate each component of the 
vector Zt+h -Z t .  Therefore if suffices to consider the case where n -- 1. We 
shall use the following inequality (Friedman, 1975, p. 93, Theorem 7.5). 

Lemma 10.1 (Exponenaal Martingale Inequality). Let x>0, fl>0. 
Then 

f r rt+h [ ~(X(s),s)2ds I >fl} ~<e_~ a P~ sup / /  a(X(s),s)dB,-~/2 t+h 
L O ~ h ~ T L ' t  r 

Using this inequality, we get 

P{ sup t Z t + h - Z t ] > ~ }  
O ~ h , ~ T  

e t+h  ' 2 

} > p -  ~/2 e2(s) ds 

<exp (-otfl +ot2/2 f[+ re2(s) ds)) 

Choosing x =,B/(lt e + r e2(s) ds) gives 

P{ Sup [Z t+h-Z , ]  >~} ..<exp - ft§ ) ds 
O ~ h ~ T  Jt  

Therefore 

P{ sup ]Zt+,-Zt[>fl} 
O ~ h ~ T  

f 
~<2exp( f12 ds)~<2exp( Te2(t+ J:+re2(s) T)) (32) 

by assumption Y'.k;,oexp(-fl2/Ts2(kT))<oo, the Borcl-Cantelli 

lira sup [Zkr+h--Zkr[ffiO 
k-~oo O ~ h ~ T  
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Let kEN,  k T ~ t < ( k + l ) T ,  and O<~h<.T. We have Z t + h - - Z r  = 

(Zt+h -- Zkr) -- (Zt -- Zkr)- Then 

Thus, 

sup lZ,+h--Z,I ~<2 sup IZkr+h--Zkr l  
O ~ h ~ T  O ~ h ~ 2 T  

l im( sup IZ t+h- -Z t [ )=O 
t--,oo O ~ h ~ T  

It then follows from (31) that X is an asymptotic pseudotrajectory 
of O. QED 

Proof of Proposition 3.8 

Let A be a global attractor for g. Let r > l be such that A c B(0, r), ]~ 
a smooth bump function which is 1 on B(0, r +  1) and zero outside 
B(0, r+2) .  

Firs t ,  by multiplying g by fl we assume that g is zero outside 
B(0, r +  2). We let �9 denote the flow of g(x). Since every O-trajectory 
spends all but a finite amount of time in any neighborhood of 
A u (R n - B(0, r + 2)), we have 

8(0, R n) >i min(t(O, R n - B(0, r + 2)), e(O, A)) = min( 1, p) 

As �9 is assumed to be the identity outside B(0, r + 2), the image by Ot of 
any L p random variable is in L p. Therefore �9 induces a flow �9 p on L p 
defined as O~(X)=OtoX. 

Lemma 10.2. Let ~l > O. There exists T >  0 such that 

EC(O~,  L p ) l/r >t rain( 1,/z) - ~/ 

Proof. As e(O, R " ) = s u p t > o E C ( O t ,  R~) t/', there exists T>O such 
that 

Thus 

EC(#r, Rn) 1/T ~ > mi l l ( l , /~ )  - r/ 

rain Il D ~ -  T( X ) ll - I / T ~  miD.( I ,  ].,/) - -  ?] 
X~R m 

From (33) we deduce that '  

1 
It ~ -  r ( x )  - �9 _ T(Y)II ~ (ra in(  1, /z )  - t/) r II x - y II 

(33) 
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for all x, y ~ R n. Therefore by "integration we get 

1 
I I ~ r ( x )  - a~_ r( Y)llp ~< (rain(l,/z) _~/)r I lX- YIIp 

and consequently, 

E C ( ~ . ,  L p) l/r t> rain( 1,/z) QED 

Let now X denote a solution of (23) with initial condition X(0)=Xo. 
Set p =~ t - .  ~e(t). By assumption (c) of Proposition 4.2, there exists ~/> 0 
such that p <min(1,/z)-37. Choose T as in Lemma 1.2. 

From inequality (31) and Doob's inequality for continuous mar- 
tingales (Friedman, 1975, p. 87, Corollary 6.4), we obtain 

/ e t + T  \ 
E( sup I [ ~ h ( X ( t ) ) - X ( t  +h)ll2)<<.eLrCE ~J, g(s)2 ds) 

0 ~ 6 ~ T  

for some constant c > 0. 
Define y~ = X((nT)  and h = ~ 2 .  

(35), we obtain 

<~ errcTe2(t + T) 

(34) 

(35) 

~,_.~[l(y,+~--h(yn)ll2<<.pr<<.(min(1,1z)--~l)r<<.EC(h,L 2) (36) 

It then follows from Theorem 9.2 that there exists a random variabe Y~ L 2 

such that 

R,, _ ~ Il y~ - hn( Y) ll 2 <<. min(1, /z ) T 

Therefore, using the continuity of the flow and inequality (35), we obtain 

R,_.  ~ II X( t )  - r II 2 ~ min(  1, /z)  

This proves assertion (ii) of Proposition 4.2. As Rt- .  ~ [J ~ t ( Y )  - X(t)[[ 2 < 1, 
the Bor~Cantelli lemma implies the almost sure convergence of 
�9 ,( Y ) -  X(t)  to zero, proving assertion (i). 
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