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Low resolution meets high: towards a resolution continuum 
from cells to atoms 
Timothy S Baker* and John E Johnson  

During the past five years, strategies have been developed 
for generating pseudo-atomic-resolution models of 
macromolecular complexes by combining the data from 
high-resolution structures of components with lower-resolution 
data for the entire complex. 
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Abbreviations 
3D three-dimensional 
CTF contrast transfer function 
EM electron microscopy 
HRV human rhinovirus 
FHV Flock House virus 
TI=M transmission electron microscopy (microscope) 

I n t r o d u c t i o n  
Developments in modern biology have been judged on 

their ability to provide a quantitative description of the 
complex and coordinated chemical processes that define 
living systems. The goal in most of these efforts has been 
to develop detailed models that allow structure-function 
relationships to be recognized and tested with molecular 
genetics. By far the most successful approach in this 
area has been the reduction of complex processes into 
components that have been analyzed in great detail 
by high-resolution structural techniques and modern 
biochemical and biophysical methods. A few enzymes and 

some macromolccular complexes have been analyzed with 
sufficient resolution and insight that good agreement has 
been achieved between experiment and predictions based 
on chemical principals. 

Although, in many cases, the 'pieces' are understood in 
detail, it has been known for decades that biological events 
are usually more than the sum of their parts. The area 
of structural cell biology, in which attempts are made to 
develop detailed models for megastructures, is emerging 
as a stimulating new domain for biophysics. Because it 
is unlikely that methods for directly imaging very large 
cellular complexes at atomic resolution will be available 
soon,  the current challenge for structural cell biology 
is to establish the organization of the components of 
a complex biological process by combining data from a 
variety of biophysical methods. Such a synthesis requires 

high-resolution structural methods (e.g. X-ray crystal- 
lography and NMR spectroscopy) to generate atomic 
models of the modules, and methods for imaging the 
whole complex, at lower resolution, such as cryo-electron 
microscopy (cryoEM) and three-dimensional (3D) image 
reconstruction to assemble them. The development of 
such an association can be likened to a 3D jigsaw puzzle, 
where pieces of known shapes and sizes are assembled 
within a defined border. 

During the past five years, a number of valuable, 
pseudo-atomic model structures of macromolecular sys- 
tems have been developed using this hybrid approach. 
In some cases, these structures have lead to detailed 
chemical descriptions of biological phenomena. Reviews 
of such studies involving viruses [1-5] and actin-myosin 
complexes [6-9] provide a clear indication of the value 
of this approach. Critical assessments of the methods 
involved [10,I1] and of the overall context of these 
techniques in structural biology [12] have also been 
published. 

We will not attempt to review the literature here, but 
instead seek to provide a foundation for critical discussion. 
An extensive table that lists the methodologies used with 
the various biological systems is provided. We also identify 
key papers that describe the important milestones in this 
area, and others that represent recent contributions to the 
field. 

The recent reports of projects that have utilized the 
combined methodologies can be fitted into two broad 
categories. 'High resolution meets low' is a comparative 
method wherein high-resolution structures or complexes 
are created from individual modules and imaged at lower 
resolution to validate the interpretation of a low-resolu- 
tion structure. This approach may be subcategorized as 
qualitative, in which images of the model and observed 
structures are only presented for comparison by eye, and 

quantitative, in which a statistical comparison between 
the two structures is made. 'Low resolution meets 
high', on the other hand, refers to the approach in 
which high-resolution models are fitted to low-resolution 
density maps to derive pseudo-atomic resolution models. 
Table 1 categorizes the primary literature referenced 
herein by biological system and by method of resolution 
combination. 

What are the criteria that define a successful marriage of 
structures derived at high and low resolution? First, the 
components of the complex structure should be placed 
in their proper relative positions within the envelope of 
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Table 1 

Macromolecules at low and high resolution. 

Qualitative Quantitative Model Pseudo 
Structure comparison* comparison* fitting* model* 

Chaperones 
Enzymes 

Catalase 
Glutamine synthetase 
Gyrase B 
HIV-1 reverse transcriptase 
Protein kinase C 

Membrane-associated proteins 
Acetylcholine-Fab 
Annexin 
Bacteriorhodopsin 
Cholera toxin 
F 1 -ATPase 
Influenza hemagglutimn 
Influenza hemagglutinin-Fab 
Light-harvesting complex II 
OmpF porin 
Photosystem II 
Proaerolysin 
Signal sequence binding protein SRP54 

Muscle and muscle-related proteins 
Acrosomal bundle 
Actin filament 
Actin-myosin filament 
Actin-o~-actinin 
Actin-brush border myosin filament 
Actin-gelsolin filament 
Actin-tropomyosin thin filament 
Actin-Fab 
Myosin filaments 
Sl-decorated thin filament 
Tropomyosin 

Respiratory proteins 
Hemocyanin 
Hemocyanin-Fab 

Ribosome 
Streptavidin 
Viruses 

Adenovirus 
Alphavirus 
Alphavirus-Fab 
Bacteriophage ~X174 
Cowpea chlorotic mottle virus 
Cowpea mosaic virus-Fab 
Cowpea mosaic virus-lgG 
Human rhinovirus-ICAM-1 
Human rhinovirus-2-Fab 
Human rhinovirus-14-Fab 
Nodavirus 
Parvovirus-Fab 
Parvovirus-globoside receptor 
Rotavirus 

[5O] 

[51] 

[53] 
[54] 
[55] 

[28,56] 

[58] 
[591 
[6o] 
[61] 
[62.] 
[63-] 

[65] 

[67"1 
[8,70-73] 

[70,71 ] 

[32"'] 

[39"] 

[66] 

[68,69] 
[71] 

[35"°,70,71] 
[74] 

[34"]  
[75] 

[95] 
[28,56] 

[62"] 
[63 ° ] 
[64] 
[65] 
[66] 

[67",68] 

[35"'] 
[74] 

[34"] 
[751 
[76"] 
[77] 
[78] 
[79] 

[52] 

[57] 

[8O] 

[81,82] [81] 
[83,84"] [83] 

[42,43,44",45--,85] 

[3] 

[86"] 
[29"] [29 ° ] 

[30"1 [30"] 
[2,87,88] 

[87] 
[31 ] [31,41,89] [41,89] 

[90"'] [90"] 
[91 "'] [4,38,92] 

[31] [5,24,31 ] 
[27] [311 [27] 
[93"] [93"] [93"] 
[94 °] [94"] 

[91 " ]  

*Abbreviations: Qualitative comparison, qualitative comparison of EM density and X-ray structure; quantitative comparison, quantitative comparison 
of EM density and X-ray structure; model fitting, fit of atomic model to EM density map; pseudo model, build pseudo-atomic model of large structure. 

the low-resolution structure, and they  should be properly 
or iented so that the correct intermolecular  interfaces are 
establ ished in the model.  T h e  formation of a complex  
from isolated components  may induce conformational  
changes in the component  molecules.  Second, large-scale 

changes should be detec table  in a low-resolution densi ty  
distr ibution.  T h e  model  bui lding procedure  general ly 
can not direct ly de termine  small-scale changes in the 
po lypep t ide  chain or side chains induced by associations, 
but  an approximation to these movements  may be 
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predicted by computational chemistry. Finally, the fidelity 
of such predictcd fine structure must be tested by 
mutation studies of residues at the interface. 

Although there are numerous ways to correlate and 
combine structural data from T E M  with that from 
other methods (small- or large-angle X-ray or neutron 
scattering; X-ray fiber diffraction; etc.) at a variety of 
resolution levels, we shall focus strictly on studies in which 
high resolution structural information derived from X-ray 
crystallography has been combined with low-resolution 
information derived from transmission electron microscopy 
(TEM). 

Low-reso lu t ion  densi ty  m a p s  f rom 
t ransmiss ion  e lect ron microscopy  
For over 30 years T E M  and image-reconstruction tech- 
niques have provided useful tools for exploring the 
structures of biological macromolecules ranging from small 
( < 5 0 a  diameter) protein subunits up to large (> 1000/k) 
macromolecular complexes. T E M  has provided important 
first glimpses of the structures of molecules that could 
not be crystallized in a form suitable for high-resolution 
diffraction studies or that were simply too large at the 
time to be studied by high-resolution diffraction or NMR 
spectroscopy techniques. 

Until recently, most T E M  structural studies have been 
performed with specimens encased in a thin layer of a 
negative stain, such as uranyl acetate. Negative stains 
dramatically enhance the contrast of otherwise 'invisible' 
biological molecules, and yield images that reveal the 
gross morphology of molecules and also the arrangement 
and disposition of subunits in oligomeric structures. 
However, because staining only reveals those surfaces of 
the specimen exposed to, and thereby contrasted with, 
stain molecules (5-8,~. diameter), the details of biological 
structures are typically visualized only at relatively low 
resolution (20-30/~.). With rare exceptions, it has not been 
possible to examine in proteins structural features such as 
ot helices or [3 sheets, which require resolutions exceeding 
10/k. Nonetheless, staining techniques are still widely 
used because negatively stained samples are relatively 
easy to prepare and the images obtained continue to 
provide valuable structural information. 

The  classic study by Henderson and Unwin [13] in 1975 of 
the purple membrane structure in three dimensions at 7 
resolution marked a turning point in high-resolution bio- 
logical TEM.  In this and subsequent studies (e.g. [14-17]), 
the advent of methods to prepare and image unstained, 
hydrated biological samples made it possible, in principle, 
to study the native structure o f  any macromolecule at 
atomic or near-atomic resolution. Unstained, crystalline 
specimens are usually prepared by one of two methods: 
(a) they are embedded in a thin layer of a sugar (such as 

glucose) and subsequently imaged in the microscope at 
room temperature or after being cooled to liquid-nitrogen 
temperature; or (b) they are vitrified in a thin layer of 
water at near liquid-nitrogen temperature and kept cold for 
cryomicroscopy (cryoTEM). This latter, 'frozen-hydrated', 
preparation technique has been the method of choice for 
examining unstained, non-crystalline specimens, though 
both procedures appear, on the basis of electron-diffraction 
measurements, to preserve the hydrated structure of 
biological specimens in the vacuum of the T E M  to atomic 
resolution. 

The  low inherent contrast of unstained biological spec- 
imens and the high sensitivity of these specimens to 
the electron beam (1-5 electrons.~-e critical dose) ne- 
cessitated the development of low-irradiation and defocus 
(phase-contrast) imaging procedures [13]. The  resultant 
micrographs yield magnified specimen images that are 
quite noisy and are also 'distorted' by electron optical (e.g. 
chromatic and spherical aberration of the electromagnetic 
lenses; image astigmatism and defocus) and other effects 
(image blurring attributable to specimen movements and 
specimen charging; beam-induced specimen damage; etc). 
Consequently, these images must be digitized at a step 
size of 25btm or finer and analyzed with computer- 
processing procedures to produce high signal-to-noise 
averaged images and ultimately to reconstruct a 3D 
density distribution ( 'map')  of the specimen structure. 

Not withstanding the inherent complexities of preparing, 
imaging, and analyzing unstained specimens, the number 
of different macromolecules now being studied using this 
technology has dramatically increased in recent years. 
This burst of activity can be traced to the realization 
that with cryo-EM techniques: the details of the entire 
macromolecular structure are accessible, and not just those 
surfaces in contact with stain; the preservation of 3D 
structure is excellent and, for most specimens, probably 
extends to atomic resolution; and conformational changes, 
t ime-dependent events, and environmental influences on 
structure are all accessible using this technique. 

In practice, high-resolution (<4/~.) 3D density maps have 
only been determined for a limited number of highly 
ordered membrane proteins (e.g. [18,19]). Even some he- 
lical structures have yielded approximately 10.~ resolution 
in cryoEM studies (e.g. [20-23]), clearly indicating that 
dedicated efforts are likely to extend these as well as other 
classes of molecules, including asymmetric particles such 
as the ribosome, to much higher resolutions. 

High-resolution structural information provided by X-ray 
crystallography and NMR spectroscopy is seldom ques- 
tioned. The  validity of structural details revealed by TEM, 
and especially cryoTEM, is rapidly improving as the 
numbers of macromolecular structures being studied with 
both X-ray diffraction and electron microscopy increases. 
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The icosahedral nodavirus Flock House virus (FHV) is 
one example for which X-ray and EM structures have 
been extensively compared [24]. An initial, qualitative 
comparison was made by reducing the resolution of the 
FHV atomic model to that of the cryoTEM structure 
(Fig. 1). This was done by computing structure factors, 
based on the atomic model, to a resolution comparable 
with the EM density (-20~). A high temperature factor 
(B = 2000.~2) was applied to the structure factors to avoid 
severe Fourier termination effects when the Fourier 
electron-density map was computed. 

The similarities in the surface features of the two 
structures are obvious (Figs la,c). Comparison of the 
internal density of the two structures revealed even more 
striking similarities (Figs lb,d). Of particular note was a 
small cavity (16/it) within the protein shell that appeared 
in both structures. The internal density of the X-ray 
and cryoTEM structures revealed the complimentary 
nature of the two types of data. Because the X-ray 
structure contained few data below 18A resolution, it 
shows little density interpretable as bulk RNA and 
the interior of the X-ray model is empty. The EM 
reconstruction, which contains complete low-resolution 
data, clearly shows RNA density in the center of the virus. 
The presence of internal features (cavity and RNA) lead 
to a quantitative comparison of EM and X-ray structures 
by means of difference, electron-density analysis. The 
correlation coefficient between the protein shell portions 
of the two density maps was maximized by adjusting an 
overall, radial scale factor and a single scale factor equating 
the averaged densities of the two structures. 

A difference electron-density map (Figs le,2) was com- 
puted with coefficients: (Feic~)EM-(Feia)X_ray. With one 
exception, the map revealed only RNA density, indicating 
the near identity of the protein densities. The region 
within the protein shell that appeared as positive density 
in the difference map was consistent with density 
observed on the fivefold axes of the particle in the X-ray 
map but was not modeled or used in the X-ray-based, 
structure factor calculation. At comparable resolutions, 
the maps displayed near perfect agreement. An internal 
control was included in the comparison by intentionally 
not including the model for ordered RNA observed 
in the X-ray map. This corresponds to the density 
observed near the twofold axes of the virus, and was the 
highest density in the difference map. Figure 2 shows 
comparisons of the FHV cryoEM map and difference map 
with the high-resolution X-ray model. This comparison 
is representative of a number of similar studies, all of 
which have demonstrated the remarkable quality of the 
reconstructed EM density (e.g. [25-28,29°,30°,31,32"]). 

A t o m i c  m o d e l i n g  and r e f i n e m e n t  
The docking of atomic models into EM density maps 
provides a means of identifying potential, intersubunit 
interfaces at 'pseudo-atomic' resolution [1]. Further ex- 

periments (e.g. mutagenesis) can be devised to test for 
the presence of specific interactions. The reliability of 
cryoEM density maps provide a firm basis for docking 
atomic models with a precision that exceeds by four to five 
times the nominal resolution of the EM data. Hence, an 
atomic model can be docked to within 4-5 ~, of the correct 
position in a 20 ~ resolution cryoEM map. 

The docking results may be invalid if the molecule adopts 
significantly different structures in the crystal and large 
complex. Indeed, a reliable EM density map may be 
proof that a particular molecule has changed conformation 
(e.g. [33,34"°,35"']). Ideally, molecular-fitting procedures 
should utilize the atomic structures of exactly those 
components in the complex for which the EM structure 
is known. An atomic model of the desired molecule 
is however often unavailable; the structure of a closely 
related molecule may be substituted with appropriate 
caution. 

CryoTEM and 3D image reconstruction studies of antibody- 
mediated neutralization of viruses and the attachment 
of viruses to cellular receptors have benefited greatly 
from atomic modeling experiments (Table 1). Studies 
of various human rhinovirus (HRV) serotypes complexed 
with different neutralizing antibodies and with cellular 
receptor molecules illustrate clearly how atomic models of 
the virus and of the complexed molecules can be fitted 
and refined in a 3D EM density map of the complex to 
generate a pseudo-atomic model of the complex. 

The 3D cryoTEM structure of the complex that forms 
when saturating amounts of a neutralizing-antibody, Fab 
fragment (Fab-17IA) are mixed with HRV14 was solved 
to -25 ~ resolution [36]. In this study, the high resolution 
crystal structures of both the whole virus [37] and of 
Fab-17IA [38] were known. The 3D reconstruction served 
as a constraint for docking of the Fab atomic model onto 
the surface of HRV. The icosahedral symmetry of the 
virus in the X-ray map and of the virus-Fab complex 
in the cryoTEM map coincided, thus fixing the absolute 
position and orientation of both structures. The scale 
(magnification) of the EM map was adjusted to match 
best a 25 ~ version of the X-ray map (by maximizing the 
cross-correlation of scaled EM maps to the HRV capsid 
X-ray structure). The two maps corresponded even better 
after the EM map had been corrected for the effects 
of the microscope contrast transfer function (CTF) [24]. 
The CTF-corrected HRV14/Fab-171A density map also 
permitted more precise docking of the Fab atomic model 
into the EM density. Furthermore, the HRV X-ray model 
provided a constraint for defining the appropriate contour 
level to display the EM density map for the docking 
procedure. 

The resolution of the HRV14/Fab-17IA density map 
was sufficient to permit accurate visual docking of 
the Fab-17IA atomic model as a rigid body into the 
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defined and the reasonableness of the interface can be 
examined. On this basis, a number of complementary, 
electrostatic interactions in the HRV-Fab complex were 
recognized as contributing to the binding affinity of the 
Fab for the virus. Mutagenesis experiments confirmed the 
importance of such interactions [38]. 

The study of the binding of the cellular receptor 
molecule intercellular adhesion molecule (ICAM)-I, to the 
major group of rhinoviruses [40,41], represents the more 
typical example of an atomic modeling experiment. A 
cryoTEM reconstruction of the HRV16/ICAM-1 complex 
was computed. Atomic models for HRV16 and ICAM-1 
were not available so X-ray models of HRV14 and CD4 
(the HIV-1 receptor) were used as substitute structures for 
docking experiments [40]. The receptor molecule binds 
into a depression on the virus referred to as the 'canyon' 
in a manner quite similar to that proposed years earlier 
[37]. It was, however, considered inappropriate to extend 
this qualitative analysis and attempt to define detailed 
molecular interactions between ICAM and HRV. Similar 
caution may be appropriate when attempts are made 
to interpret pseudo-atomic models derived from an EM 
density map of a macromolecular complex that lacks one 
or more of the modeled components (e.g. [42,43,44",45••]. 

Low resolution leads to high 
A significant development in modern molecular and 
structural biology has been the ability to crystallize 
large, complicated structures such as the ribosome [46] 
or antibody-virus complexes [47]. These crystals will 
lead to high-resolution structures that will require only 
limited modeling and interpretation to establish authentic 
complex structures. The phase problem for such structures 
may be daunting, particularly when the non-crystallo- 
graphic symmetry is limited as in the ribosome. It is 
likely that the hybrid atomic resolution models discussed 
above will play a pivotal role in phasing such complexes. 
Carefully collected, low-resolution crystallographic data, 
together with sophisticated, moderate-resolution models, 
should provide a molecular-replacement phase solution at 
low resolution. Such a solution will probably make possible 
the determination of heavy-atom sites that can then 
be used for multiple, isomorphous-replacement phase 
determination. In the case of symmetric particles such as 
viruses, even crude initial models can be adequate to allow 
direct extension of phases to high resolution with the use 
of non-crystallographic symmetry-averaging (e.g. [48,49]). 

Conclusion 
Only a few years ago it was not clear how a continuum 
in resolution of biological structures could be achieved. 
The superb light microscopy of cellular biology merged 
smoothly with cytological electron microscopy but a 
distinct gap was evident between these studies and 
those of molecular EM, X-ray crystallography, and NMR 
spectroscopy. It is now apparent that a way exists of 

bridging this gulf, with the long-term goal of providing 
a 'zoom lens' for visualizing biological structures from 
cells to atoms. The major obstacle that currently limits 
the use of this method is the production of soluble, 
crystallizable forms of the individual proteins comprising 
the megastructures. Because they are designed to make 
homo- or heteromeric associations, they are generally, at 
best, marginally soluble in the isolated, non-denatured 
form. Because this property may result from a limited 
number of residues on the protein surface, a genetic 
approach for the introduction of random, single or limited 
site mutations into the component protein gene, coupled 
with an assay for the solubility of the expressed protein, is 
needed to render the approach generally applicable. 
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