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Abstract 

A major challenge in mass spectrometry-based phosphoproteomics lies in identifying the substrates of kinases, as currently only a small fraction 
of substrates identified can be confidently linked with a known kinase. Machine learning techniques are promising approaches f or le v eraging large- 
scale phosphoproteomics data to computationally predict substrates of kinases. Ho w e v er, the small number of experimentally validated kinase 
substrates (true positive) and the high data noise in many phosphoproteomics datasets together limit their applicability and utility. Here, we aim 

to de v elop adv anced kinase-substrate prediction methods to address these challenges. Using a collection of se v en large phosphoproteomics 
datasets, and both traditional and deep learning models, we first demonstrate that a ‘pseudo-positive’ learning strategy f or alle viating small 
sample size is effective at improving model predictive performance. We next show that a data resampling-based ensemble learning strategy is 
useful f or impro ving model st abilit y while further enhancing prediction. Lastly, we introduce an ensemble deep learning model (‘SnapKin’) by 
incorporating the abo v e tw o learning strategies into a ‘snapshot’ ensemble learning algorithm. We propose SnapKin, an ensemble deep learning 
method, for predicting substrates of kinases from large-scale phosphoproteomics data. We demonstrate that SnapKin consistently outperforms 
existing methods in kinase-substrate prediction. SnapKin is freely available at https:// github.com/ PYangLab/ SnapKin . 
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rotein phosphorylation, one of the most pervasive cell sig-
alling mechanisms, regulates a broad range of fundamental
rocesses such as cell metabolism ( 1 ), differentiation ( 2 ) and
he cell cycle ( 3 ), and its dysregulation leads to various dis-
ases, including cancers ( 4 ). Central to phosphorylation are
he kinases that phosphorylate specific sites on their target
ubstrate proteins. Together, kinases and their substrates es-
ablish the signalling networks of cells, governing all aspects
f health and diseases. Due to the significant time and re-
ource cost in experimentally demonstrating the relationship
etween kinases and substrates, computational methods have
een key workhorses for prioritizing phosphorylation sites
hat are promising candidates prior to experimental verifica-
ion. While many methods have been developed for predicting
he cognate kinases of phosphosites, only a subset could per-
orm kinase-specific predictions ( 5 ). Among the kinase-specific
ethods, most identify potential phosphorylation sites based
n static information such as the amino acid sequences and
eatures derived from them and other sources such as protein–
rotein interaction (PPI) databases. For example, Musite com-
ines sequence similarity to known phosphosites with pro-
ein disorder scores ( 6 ); Predikin uses both crystal structure
nd molecular modelling for predicting kinase substrates ( 7 );
hosphoPICK incorporates PPIs in their prediction procedure
eceived: May 29, 2023. Revised: September 18, 2023. Editorial Decision: Octob
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hich permits unrestricted reuse, distribution, and reproduction in any medium, 
( 8 ); GPS 5.0 curates experimentally identified phosphosites
and uses a position weight determination regression model for
prediction ( 9 ); and NetworKIN uses information from frank-
ing sequence of residues, evolutionary phylogeny and a net-
work proximity score, based on PPIs from STRING database
for kinase-substrate prediction ( 10 ). 

With recent major advances in mass spectrometry-based
phosphoproteomics technologies, especially with the adoption
of data-independent acquisition mass spectrometry ( 11 ,12 ),
large numbers of phosphosites can now be quantified in a sin-
gle experiment ( 13 ). These phosphoproteomics data provide
a rich information resource that can be used for modelling the
dynamics of each phosphorylation site in cells and tissues. Yet,
very few computational methods utilize quantitative phospho-
proteomics data for kinase-substrate prediction ( 14 ). A few
examples include CoPhosK, which uses co-phosphorylation
patterns and interaction networks ( 15 ), and PUEL, an en-
semble of support vector machine (SVM) models that pre-
dicts kinase substrates based on both kinase recognition mo-
tifs and phosphoproteomics dynamics ( 14 ). While compre-
hensive lists of kinase–substrate relationships have been cu-
rated [e.g. ( 16 )], a key challenge in using phosphoproteomics
data for kinase-substrate prediction has been the relatively
small proportions of known substrates that are profiled in
a phosphoproteomics dataset. Given the potential utility of
er 23, 2023. Accepted: October 25, 2023 
enomics and Bioinformatics. 

ons Attribution License (http: // creativecommons.org / licenses / by / 4.0 / ), 
provided the original work is properly cited. 

https://doi.org/10.1093/nargab/lqad099
https://orcid.org/0000-0003-1818-2183
https://orcid.org/0000-0002-2666-9744
https://orcid.org/0000-0003-1098-3138
https://github.com/PYangLab/SnapKin


2 NAR Genomics and Bioinformatics , 2023, Vol. 5, No. 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

phosphoproteomics in capturing the dynamics of signalling in
cells, tissues and complex diseases such as metabolic diseases
and cancers ( 17 ), there is a growing need and opportunity
for developing advanced computational methodologies that
leverage phosphoproteomics data to predict kinase–substrate
relationships ( 18 ). 

Here, we aim to develop advanced machine learning mod-
els for kinase-substrate prediction by addressing several key
challenges in learning from large-scale phosphoproteomics
datasets. Specifically, (i) to overcome the relatively small
number of experimentally validated kinase substrates in a
phosphoproteomics dataset, we introduce a ‘pseudo-positive’
learning strategy for increasing the size of training datasets
during model building; (ii) to increase the model stability and
usage of training data, we implement a data resampling-based
ensemble learning strategy for classification models; and (iii)
to improve the model performance, we utilize a snapshot
ensemble learning strategy ( 19 ) and incorporate additional
learning features extracted from amino acid sequences. To
evaluate the models, we collect published large phosphopro-
teomics datasets. Using this collection and a panel of classifi-
cation algorithms including both traditional and deep learn-
ing models, we first demonstrate the effectiveness of pseudo-
positive and data resampling-based ensemble learning strate-
gies in improving model prediction and stability. Consistent
with our expectation, we show that the ensemble of deep
learning models generally leads to better performance than
the ensemble of traditional models ( 20 ). We next demonstrate
that employing the snapshot ensemble learning techniques
for creating ensemble deep learning neural networks and in-
corporating CKSAAP (composition of k -spaced amino acid
pairs) learning feature leads to further improvement in model
performance. We propose the resulting ensemble deep learn-
ing model, called ‘SnapKin’, as a useful method for kinase-
substrate prediction. 

Materials and methods 

Phosphoproteomics data processing and learning 

feature extraction 

Seven public phosphoproteomics datasets generated from var-
ious cell types and tissues under experimental perturbations
were used for model evaluation (Table 1 ). 

Each dataset was preprocessed by phosphosite filter-
ing, missing value imputation and batch correction using
the PhosR package as described in detail in ( 21 ,26 ). Log 2 fold
changes relative to controls in each dataset were calculated
and normalized using min–max scaling. This processed phos-
phoproteomics quantification was then used as learning fea-
tures. To incorporate motif information, for each phospho-
proteomics dataset, we scored the amino acid sequences of
all phosphosites in the datasets based on the known kinase
recognition motifs using the frequencyScoring function in the
PhosR package ( 26 ). In particular, these motif scores convert
the sequence into a numeric feature based on the frequency
of amino acids appearing at each location on the sequence
of a phosphosite. The number of amino acids included in
the sequence window was 31 by default as output from the
MaxQuant software ( 27 ). After these calculations, the motif
scores were min–max scaled and combined with the phospho-
rylation dynamics (i.e. normalized log 2 fold change) to form
the input data for training each learning model. Furthermore,
we assessed the utility of additional learning features extracted 

from phosphosite sequences using methods in listed in Ta- 
ble 2 ( 28 ). These features were subsequently combined with 

both the phosphorylation dynamics and the motif scores for 
kinase-substrate prediction. Finally, we also explored the po- 
tential utility of PPI as a learning feature. In particular, PPI 
scores were extracted from the STRING database ( 29 ). These 
scores were assigned to their respective phosphosites based 

on the PPI between the host proteins of phosphosites and ki- 
nases. As with prior steps, this learning feature was combined 

with phosphorylation dynamics and motif scores for kinase- 
substrate prediction. The 5-fold cross-validation was used for 
assessing model performance using above different combina- 
tions of learning features. 

Pseudo-positive strategy 

Data augmentation is a common strategy for machine learn- 
ing tasks that deal with small datasets ( 36 ). Due to the limited 

positive training examples in our kinase-substrate prediction 

task (Table 3 ), we propose the following steps for creating ad- 
ditional positive training examples [i.e. phosphosites that are 
curated in the PhosphoSitePlus database ( 37 ) as being phos- 
phorylated by a specific kinase] with a matching number of 
negative examples (i.e. phosphosites that are not annotated 

as substrates of a given kinase within the PhosphoSitePlus 
database): 

1. Separate the phosphosites in the training dataset into the 
positive sites ( P) and the remaining sites that exclude the 
positive sites ( S \ P). 

2. For the n p phosphosites in the positive set denoted by 
P = { x 1 , . . . , x n p } , construct a list consisting of every 
unique pair of positive sites given by 

F = 

{
( x 1 , x 2 ) , ( x 1 , x 3 ) , . . . , 

(
x n p −1 , x n p 

)}
. 

3. For each pair in F , generate a pseudo-positive site using 
the following equation: 

x pseudo = 

a + b 

2 

, 

where ( a, b ) ∈ F . The pseudo-positive site can then be ex- 
pressed as 

P 

′ = 

{
x 

′ 
i | x 

′ 
i = 

a + b 

2 

}
, 

where ( a, b ) ∈ F . 

4. The negative set N is a subsample of S \ P of the 
same size as the combined number of observations in P
and P 

′ . That is, N = { x 1 , . . . , x n n } ⊆ S \ P, where n n = 

|P| + | P 

′ | . 
5. The final training set is then the combined positive,

pseudo-positive and negative site set P ∪ P 

′ ∪ N . 
This pseudo-positive strategy, schematically summarized in 

Figure 1 , is able to generate at most n p ( n p − 1 ) / 2 pseudo- 
positives due to the possible overlap between pseudo-positive 
sites and positive sites, meaning the subsequent adapted train- 
ing dataset uses an additional at most n p ( n p − 1 ) / 2 negative 
sites. This is particularly useful for supervised learning ap- 
proaches that perform poorly with small sample sizes. Since 
substrates for a particular kinase typically exhibit similar 
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Table 1. The phosphoproteomics datasets used in this study for evaluating kinase-substrate prediction performance 

Dataset (perturbation) Abbreviation # Phosphosites # Features Accession Publication 

C2C12 (differentiation) C2C12 10 495 18 PXD023413 ( 21 ) 
ESC (differentiation) ESC 17 866 50 PXD010621 ( 2 ) 
L1 (FGF) L1-F 6864 14 PXD003631 ( 22 ) 
L1 (insulin) L1-I 12 110 14 NA ( 23 ) 
L1 (redox) L1-R 17 857 26 PXD011525 ( 24 ) 
Liver cell lines (insulin) LCL 13 330 26 PXD001792 ( 25 ) 
Mouse liver (insulin) Liver 9687 93 PXD001792 ( 25 ) 

Table 2. Protein sequence encoding methods 

Method Abbreviation Category Reference 

Amino acid composition AAC Amino acid composition ( 30 ) 
Composition of k -spaced amino acid pairs CKSAAP Amino acid composition ( 31 ) 
Grouped amino acid composition GAAC Grouped amino acid composition ( 31 ) 
Normalized Moreau–Broto NMBroto Autocorrelation ( 32 ) 
Quasi-sequence-order descriptors QSOrder Quasi-sequence order ( 33 ) 
Amphiphilic PAAC APAAC Pseudo-amino acid composition ( 34 ) 
Binary—20 bit Binary Residue composition ( 35 ) 

Table 3. The number of known substrates in each dataset for each kinase 

Dataset AKT1 CDK1 CDK5 CSNK2A1 GSK3B MAPK1 MAPK14 MAPK3 MAPK8 mTOR PRKA C A PRKCA 

C2C12 17 11 7 15 15 36 19 15 8 38 19 15 
ESC 21 25 10 7 18 62 20 19 10 52 22 7 
L1-F 15 7 3 5 4 24 13 10 4 24 29 11 
L1-R 33 15 14 11 14 80 26 37 13 49 37 24 
L1-I 9 4 4 10 6 18 7 16 7 11 21 16 
LCL 16 7 4 7 11 30 19 13 6 27 24 9 
Liver 19 18 6 9 11 51 17 15 9 39 16 7 

Figure 1. The framework of SnapKin. Schematic representation of ‘pseudo-positive’ strategy and data resampling procedure implemented in SnapKin. 
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emporal profiles ( 38 ), the pseudo-positive examples gener-
ted using this strategy make biological sense and have similar
hosphorylation patterns to known phosphosites of a kinase,
nd hence can help improve the performance of the supervised
earning approaches. Note that both the dynamic phospho-
roteomics profile and the motif feature extracted from se-
uences are numeric and can be averaged for creating pseudo-
ositive sites. 
Data resampling-based ensemble strategy 

The data resampling-based ensemble strategy is well known
for its effectiveness in alleviating small sample size and
has been demonstrated to enhance the robustness of the
model and its generalizability to unseen data ( 39 ). To fur-
ther improve the model performance in our kinase-substrate
prediction task, we implement a data resampling procedure to
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generate multiple training datasets and compute a final pre-
diction score from their collective predictions through model
averaging. This framework involves choosing the number of
models within the ensemble denoted by n e (set as 10 in this
study) and is implemented in the following steps: 

1. Separate the phosphosites in the training dataset into the
positive sites ( P) and other sites that are not the positive
sites ( S \ P). 

2. Generate n e separate training datasets denoted by
T 1 , . . . , T n e , where each dataset T i = P ∪ N i involves
generating a new negative set N i by repeated subsam-
pling from ( S \ P), requiring | N i | = |P| . 

3. For each training dataset, train a separate model f i ( x | T i )
for a total of n e models. 

4. To compute the prediction of a phosphosite x , compute
the prediction probability from each model f i and take
the average of the prediction probabilities. Denote F to
be the prediction from the ensemble model. The predic-
tion is then defined by 

F ( x ) = 

1 

n e 

n e ∑ 

i =1 

f i ( x | T i ) . 

This framework allows for an increased usage of S\P in
training a model since 

∣∣⋃ n e 
i =1 N i 

∣∣ ≥ | N i | for each i . Addition-
ally, by also including set P 

′ in the above pseudo-positive pro-
cedure for each training set, the ensemble procedure can be in
conjunction with the pseudo-positive procedure where each
N i will have a size of |P| + | P 

′ | . 

Classification models 

We implemented a variety of classification models for test-
ing their performance on kinase-substrate prediction. These
include five traditional models and a deep learning model.
For the traditional models, we implemented naive Bayes (NB),
fitted using the discrim R package; logistic regression (LR)
using the glm R package; SVM with a radial basis function
using the kernlab R package; random forest (RF) with 500
trees using the ranger R package; and XGBoost (XG) with
1000 trees using the xgboost R package. For the deep learn-
ing model, we implemented a densely connected neural net-
work (DNN) where we used fully connected neurons with
hidden neurons activated by ‘Leaky Relu’ function and output
neurons activated by a ‘Sigmoid’ function. We found the hid-
den layers of three to be sufficient and determined the width
of each layer using the following heuristic rules. We prede-
fined the widths of the DNN as 2, 4, 8, 16, 32, 64 and 128,
and the first hidden layer of the DNN has a width equal to
the largest value in the predefined width and less than or
equal to the initial input features. Then, it decreases by halv-
ing the width until the number of layers (i.e. 3) is reached.
Other hyperparameters in our DNN include the ADAM op-
timizer ( 40 ), the binary cross-entropy loss function, epochs
(150), learning rates of 0.001, 0.01 or 0.1, and batch sizes
of 32 or 64 obtained from a nested cross-validation of each
fold. 

Implementation of SnapKin 

The SnapKin model adopts the same architecture as in the
above DNN but uses the stochastic gradient descent and a
learning rate scheduler ( 19 ) defined as follows: 

λ ( t ) = 

λ0 

2 

(
cos 

(
π mod ( t − 1 , T /M ) 

T /M 

)
+ 1 

)
, 

where λ0 is the initial learning rate (set as 0.01), t is the iter- 
ation number, T is the total number of training iterations (set 
as 1000) and M is the number of snapshots of the DNN (set 
as 10 in this study to match the ensemble of DNNs). 

In addition, SnapKin adopts both pseudo-positive and data 
resampling learning strategies. Note that similar to the model 
ensemble strategy described above, a subsampling of the unan- 
notated sites in a given dataset is performed to generate a 
training set T i = P ∪ P 

′ ∪ N i prior to training ( i = 1 ) and after
each snapshot is taken ( i = 2 , . . . , M ) and therefore enables 
better usage of data without introducing further computa- 
tional time and model complexity, allowing our modification 

adhere to the ‘train 1, get M for free’ spirit of the original 
snapshot ensemble algorithm. 

Model evaluation 

We applied a stratified k -fold cross-validation procedure for 
evaluating model performance. Specifically, we used k = 5 in 

this study and repeated the cross-validation process 50 times 
to quantify the variability of model predictions. By stratify- 
ing each fold of the data, we ensure, for a given kinase, each 

fold maintains the ratio of positive and negative phospho- 
sites in the original dataset. Each method was evaluated on 

each test fold of each phosphoproteomics dataset using the 
precision–recall (PR) curve defined by the four quantities: true 
positive (TP), phosphosites that are annotated to a specific ki- 
nase in the dataset; true negative (TN), phosphosites in the 
dataset not annotated to a specified kinase; false positive (FP),
unannotated phosphosites that were predicted as a kinase sub- 
strate; and false negative (FN), known kinase substrates that 
are predicted as not a substrate of that kinase. A PR curve is 
commonly used for comparing model performance especially 
when the dataset is highly imbalanced ( 41 ). It is a trade-off 
between 

precision ( t ) = 

TP ( p ) 
TP ( p ) + FP ( p ) 

and 

recall ( p ) = 

TP ( p ) 
TP ( p ) + FN ( p ) 

, 

where p is the prediction threshold from each classifier . While 
the PR curves provide a threshold-based comparison of mod- 
els, we also used the areas under the PR curves as summaries 
and averaged them across all test folds in the cross-validation 

for quantifying the overall performance of each model on each 

phosphoproteomics dataset. This allows us to easily compare 
models using statistical testing. Specifically, we used a one- 
sided Wilcox rank sum test with the hypotheses that (i) H a1 : 
pseudo-positive strategy improves prediction of single mod- 
els; (ii) H a2 : ensemble learning improves prediction of single 
models; and (iii) H a3 : ensemble learning in conjunction with 

pseudo-positive improves prediction on a single model trained 

with pseudo-positive strategy. The areas under the PR curves 
from the 50 repeated runs of the 5-fold cross-validation were 
used as the primary statistics to compute the significance. 

Finally, we used the standard deviation in the areas under 
the PR curves from the 50 runs of the 5-fold cross-validation 

to quantify the stability of the models. We then tested whether 
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he standard deviation from using ensemble learning is signif-
cantly smaller than single models across the seven phospho-
roteomics datasets. 

haracterizing SnapKin predictions on muscle 

ifferentiation and inhibition phosphoproteomics 

atasets 

o assess the performance of SnapKin, we first evaluated the
ubstrate prediction of mTOR and MAPK1 using the time-
ourse muscle differentiation phosphoproteome dataset, and
hen evaluated the predicted MAPK1 substrates using the

APK1 inhibition muscle differentiation phosphoproteome
ataset. The time-course differentiation data were generated
uring a 5-day differentiation, which includes four time points
0, 30 min, 24 h and 5 days). The inhibition phosphopro-
eome data were collected on day 3 of differentiation with
control) and without MAPK1 inhibitor. We used iceLogo
 42 ), a visualization tool for conserved patterns in protein
nd nucleotide sequences, to generate consensus motifs from
napKin-predicted substrates ( > 0.8) for MAPK1 and mTOR,
espectively. The SnapKin-predicted substrates for MAPK1
nd mTOR were visualized for their temporal profiles using z -
core standardized log 2 fold change of phosphorylation com-
ared to the zero time point. The known substrates derived
rom PhosphoSitePlus and SnapKin-predicted substrates for

APK1 were also visualized for their inhibition profiles us-
ng z -score standardized log 2 fold change of phosphorylation
ompared to the control group. 

enchmarking with existing methods 

e benchmarked SnapKin with other four previously pub-
ished kinase-substrate prediction methods, including Net-
orKIN ( 10 ), GPS 5.0 ( 9 ), PhosphoPICK ( 8 ) and CoPhosK+

 15 ). Among these, NetworKIN, GPS 5.0 and PhosphoPICK
ely primarily on static information like sequences and PPIs;
he same dataset cannot be directly applied to train each
odel. To this end, we derived kinase-substrate prediction

cores of 12 kinases for each of the above three methods
rom a kinase-substrate prediction resource ( 43 ), and we run
he CoPhosK+ pipeline by inputting each of 7 phosphopro-
eomics datasets and obtained the prediction score of each
hosphosite in the datasets of 12 kinases. We then obtained
he prediction scores from all methods on the overlapped
hosphosites. Phosphosites were scale-ranked based on their
cores derived from each method: 

scaled rank ( x ) = 

rank 

(
prediction score ( x ) 

)
n 

, 

here n denotes the number of phosphosites that are common
n all methods. Since mTOR was not included in NetworKIN
redictions, NetworKIN was excluded from the mTOR pre-
iction comparison. 

esults 

ere, we present the findings on using pseudo-positive and
ata resampling-based ensemble learning strategies (Figure 1 )
or improving model prediction and stability. Classification
odels included in the evaluation are NB, LR, SVM, RF, XG

nd DNN. Given that most supervised learning approaches
ely on and generally perform better with more training exam-
les, we first assessed the utility of proposed learning strate-
gies and features using MAPK1 and mTOR, the two kinases
with overall the most quantified substrates across the datasets
based on the known kinase-substrate annotation in Phospho-
SitePlus database (Table 3 ). We subsequently benchmarked
the performance of the proposed SnapKin model with other
alternative methods for predicting substrates of kinases that
have more than two known substrates across all datasets.
Lastly, we analyse the predictions from SnapKin on the mus-
cle cell phosphoproteomics datasets, providing literature sup-
port for putative candidates uncovered by this computational
model. 

Pseudo-positive strategy improves model 
prediction 

A key limitation of using supervised learning models for
kinase-substrate prediction is the lack of high-quality positive
training examples, owing to the small number of experimen-
tally validated substrates for the majority of known kinases
( 44 ). Despite numerous phosphosites identified in phospho-
proteomics studies, only a fraction serve as negative train-
ing examples due to classification model sensitivities to class
imbalance ( 45 ). Since the substrates often show similar pat-
terns of changes in phosphorylation upon the perturbation
of their responsive kinases (e.g. stimulation, inhibition, dif-
ferentiation) ( 38 ), we introduce a simple strategy to gener-
ate ‘pseudo-positive’ examples by averaging phosphorylation
profiles of known substrate pairs for each kinase. This ap-
proach adheres closely to data augmentation commonly used
in machine learning tasks for learning from small datasets
( 36 ). 

The utility of these pseudo-positive examples can be as-
sessed by evaluating the prediction performance of models on
test datasets using cross-validation. Figure 2 summarizes the
prediction performance of each model with and without the
use of pseudo-positive examples. Raw numeric results are in-
cluded in Supplementary Table S1. Except for a few results
in RF and NB classifiers, we found that the use of pseudo-
positive examples resulted in significantly improved model
performance in terms of area under the PR curve on both the
substrates of MARK1 and mTOR. Especially, we observed as
high as 40% accuracy gain with the ‘pseudo-positive strategy’
with the LR classifier on dataset LCL. Note that similar con-
clusions can be obtained with other classifiers and datasets.
These results demonstrate that the pseudo-positive strategy is
effective for improving prediction across a range of classifica-
tion models. 

Data resampling-based ensemble improves model 
prediction and stability 

The data resampling-based ensemble strategy has been shown
to be effective when learning from data with sample train-
ing examples and can improve model stability and general-
izability ( 39 ). To this end, we propose a data resampling-
based ensemble learning strategy that involves generating mul-
tiple training datasets and consequently fitting multiple inde-
pendent models in order to determine a collective prediction
( 39 ). In our kinase-substrate prediction setting, the motiva-
tion for the data resampling-based ensemble learning stems
from the need to utilize more of the negative training exam-
ples, given the large number of phosphosites quantified in the
phosphoproteomics experiments, and the assumption that the
majority of these are not substrates of a given kinase. We
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Figure 2. Prediction performance assessment of models with and without using the pseudo-positive learning strategy across the seven 
phosphoproteomics datasets. Solid dots represent the mean performance of each model from a 5-fold cross-validation and error bars represent the 
standard deviation from 50 repeated trials of the 5-fold cross-validation. The green circles on top of each panel denote the cases when using the 
pseudo-positive strategy improves model performance and the red circles denote the opposite. * denotes P < 0.05 using a one-sided Wilcox rank sum 

test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

compared the performance of models trained with and with-
out using the data resampling-based ensemble learning strat-
egy and found in most cases a significant improvement in
prediction is achieved when the model is trained using the
ensemble learning strategy (Figure 3 A, Supplementary Table
S2). Another key advantage of ensemble learning is its robust-
ness to data noise, which can lead to more stable and repro-
ducible predictions ( 20 ). Indeed, by comparing the variability
in model prediction from the 50 repeated runs of the 5-fold
cross-validation, we observed a reduction of variance in most
cases across the six models when the data resampling-based
ensemble strategy is used (Figure 3 B). 

Furthermore, the data resampling-based ensemble strategy
can be used in conjunction with the pseudo-positive learn-
ing strategy and may further improve model performance. To
this end, we compared the prediction performance and sta-
bility of models trained using pseudo-positive examples and
with or without using the ensemble learning strategy. While
the traditional classification models show no ‘synergistic’ im-
provement from using both learning strategies, we found ad-
ditional improvement for the deep learning model of DNN
on both model prediction (Figure 4 A, Supplementary Table
S3) and stability (Figure 4 B). These results are in line with
the higher model complexity / flexibility of DNNs compared
to traditional models, which may allow them to benefit more 
from additional training data. 

Developing and benchmarking SnapKin for 
kinase-substrate prediction 

Our results from the above evaluation indicate that pseudo- 
positive and data resampling-based ensemble learning strate- 
gies are effective in improving model prediction and stabil- 
ity. They also demonstrate the competitive performance of the 
deep learning model (DNN) compared to traditional models,
especially when used together with the two proposed learn- 
ing strategies where additional performance gain is achieved 

mostly on DNN only. To further optimize model perfor- 
mance, we next introduced snapshot ensemble ( 19 ) wherein 

the pseudo-positive and data resampling strategies are incor- 
porated into a snapshot ensemble model. When compared 

to other models trained using pseudo-positive in conjunc- 
tion with the ensemble learning, using snapshot shows the 
best overall prediction performance across all seven phos- 
phoproteomics datasets and comparably small variability to 

the second-best model (Figure 5 A). Since in all cases the 
second-best method is DNN (trained using pseudo-positive 
and ensemble learning), which already has the smallest 
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A B

Figure 3. Performance and st abilit y analysis of models with and without a data resampling ensemble learning strategy across the seven 
phosphoproteomics datasets. ( A ) Solid dots represent the mean performance of each model from a 5-fold cross-validation and error bars represent the 
standard deviation from 50 repeated trials of the 5-fold cross-validation. The green circles on top of each panel denote the cases when using the 
ensemble strategy impro v es model perf ormance and the red circles denote the opposite. ( B ) St abilit y comparison bet ween single and ensemble models 
using the data resampling ensemble strategy. Stability is measured by the standard deviation of areas under the PR curves from the 50 repeated 5-fold 
cross-validation trials, with blue and orange boxplots representing the model results with and without this strategy, respectively. * denotes P < 0.05 
using a one-sided Wilcox rank sum test. 
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ariability compared to traditional classification models (Fig-
re 4 B), these results suggest that the snapshot approach
chieves the best prediction performance without losing
odel stability compared to DNN. Given that in our imple-
entation the DNN and snapshot approach use the same net-
ork architecture, the performance improvement of the snap-

hot approach compared to DNN indicates that the snapshot
nsemble brings further benefit on creating ensemble deep
earning models in which various near-optimal models are ex-
racted and combined in a single training process ( 46 ). 

Previous studies summarized different categories of meth-
ds for extracting information from amino acid sequences
 28 ). To this end, we next delved into methods covering each
ategory and found that the CKSAAP encoding technique
ielded the best performance in both the C2C12 and liver
atasets (Figure 5 B) and this encoding method consistently
mproved or matched the performance across most tested ki-
ases (Figure 5 C). We also evaluated the model performance
ith PPI as additional learning features and found that this
id not lead to an improvement in model prediction accu-
acy (Figure 5 B). This could be due to the transient nature
f kinase–substrate interactions that may not be captured by
PIs. We therefore included CKSAAP as an additional feature
n our model to form ‘SnapKin’ for subsequent analysis. 

Lastly, we then benchmarked SnapKin with existing pre-
iction methods, including NetworKIN, GPS 5.0, Phospho-
ICK and CoPhosK+, for each of the 7 phosphoproteomics
atasets and for each of 12 kinases. While NetworKIN, GPS
.0 and PhosphoPICK rely primarily on sequence and struc-
ural information around the residue, including evolutionary,
network and PPI information extracted from databases and
curated from the literature, CoPhosK+ uses both static motif
features and information extracted from dynamic phospho-
proteomics data. This provides an informative comparison
with our method that uses dynamic phosphorylation profiles
besides the sequence information. We found that the ranking
of known substrates of all 12 tested kinases based on the pre-
diction score from SnapKin was generally higher compared
to the other four methods in the majority of datasets (Figure
6 ). These results suggest that SnapKin in general outperforms
other methods for kinase-substrate prediction. 

SnapKin kinase-substrate predictions on 

the muscle phosphoproteomics dataset 

We next characterized the prediction results from SnapKin
on the C2C12 differentiation phosphoproteomics dataset. We
found that while most of the known MAPK1 and mTOR
substrates have high prediction scores, the majority of the
phosphosites in the dataset have close to zero prediction
scores (Figure 7 A), consistent with the high selectivity of many
kinases on their substrates ( 47 ). For the top 100 putative
MAPK1 and mTOR substrates predicted by SnapKin, the two
groups show similar proline-directed consensus motifs (Figure
7 B), which are consistent with known MAPK1 and mTOR
recognition motifs and common among many other kinases.
Nevertheless, the phosphorylation profiles clearly distinguish
the two groups with putative MAPK1 substrates showing
acute phosphorylation increase at 30 min time point and those
of mTOR showing much slower response at day 5 (Figure 7 C).
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A B

Figure 4. Performance and st abilit y analysis of single and ensemble models utilizing the pseudo-positive strategy across seven phosphoproteomics 
datasets. ( A ) Solid dots represent the mean performance of each model and error bars represent the standard deviation from 50 repeated runs of the 
5-f old cross-v alidation. T he green circles on top of each panel denote the cases when using the ensemble strategy impro v es model perf ormance and 
the red circles denote the opposite. ( B ) St abilit y analysis for single and ensemble models using the pseudo-positive strategy. Purple and light blue 
boxplots represent models with and without the data resampling ensemble strategy, respectively. St abilit y is measured by the standard deviation of 
areas under the PR curves from the 50 repeated 5-fold cross-validation trials, with each box reflecting data from all seven phosphoproteomics datasets. 
* denotes P < 0.05 using a one-sided Wilcox rank sum test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These results demonstrate that kinase recognition motifs alone
may not be sufficient to identify kinase substrates and the
phosphorylation profiles can be highly informative in distin-
guishing kinase substrates that share similar motifs. Further-
more, we characterized the MAPK1 substrates upon MAPK1
inhibition during C2C12 differentiation ( 21 ). We found that
compared to control samples, both MAPK1 known sub-
strates and putative substrates showed a reduction of phos-
phorylation level (Figure 7 D). Indeed, several identified puta-
tive substrates, such as SPEG ( 48 ), PAK1 ( 49 ) and SORBS2
( 50 ), have already been linked to muscle development. These
findings highlight the potential use of SnapKin for prioritiz-
ing kinase-substrate prediction for downstream experimental
validations. 

Discussion 

Global phosphoproteomics studies provide an unprecedented
opportunity to characterize signalling networks in health and
diseases ( 51 ). While machine learning methods and especially
deep learning algorithms can benefit from the abundant data
generated from such studies, phosphoproteomics data-specific
characteristics create various computational challenges limit-
ing their direct application. One particular issue is the class
imbalance caused by the small number of known kinase–
substrate relationships because, compared to a small set of
positive examples of a kinase, significantly more phospho-
sites can be used as negative examples for model training ( 45 ).
Since most prediction models are sensitive to class imbalance,
in this study, we have proposed various computational strate- 
gies to increase the size of the training dataset without in- 
troducing class imbalance. Nevertheless, other computational 
strategies such as cost-sensitive learning ( 52 ), which has been 

used for training classical neural networks ( 53 ), could be ex- 
plored for developing ensemble deep learning models that al- 
leviate the limit set by class imbalance, and may allow signifi- 
cantly more phosphosites to be included in training prediction 

models. 
Typically, prediction models need to be trained using both 

positive and negative examples. For a kinase, although the 
positive examples can be found from known substrates such 

as those annotated in PhosphoSitePlus database ( 37 ), the neg- 
ative examples have to be defined independently as such in- 
formation is often not available. Because only a relatively 
small number of phosphosites may be phosphorylated by each 

kinase owing to kinase-substrate selectivity ( 47 ), we treated 

the subsampled phosphosites that exclude the positive exam- 
ples as negative examples, given that the chance of includ- 
ing unknown positive sites is small. While this assumption 

may have minimum effect on the comparison of model per- 
formance, including additional learning procedures that can 

take into account uncertainty in sampling negative examples 
may provide a more precise estimate of model accuracy ( 54 ) 
and will be explored in future work. Related to this, although 

the positive examples can be curated using known kinase sub- 
strates from an annotation database such as PhosphoSitePlus,
there are various other databases [e.g. Phospho.ELM ( 55 ) and 

PhosphoPOINT ( 56 )] that can be used for such a purpose as 



NAR Genomics and Bioinformatics , 2023, Vol. 5, No. 4 9 

B

C

A

Figure 5. Perf ormance e v aluation of the snapshot ensemble and integration of sequence features. ( A ) Snapshot ensemble performance comparision. All 
models employ pseudo-positive and ensemble learning strategies, except the snapshot model, which integrates both pseudo-positive and data 
resampling approaches in each DNN snapshot. Solid dots represent the mean performance and error bars represent the standard deviation from 50 
repeated trials of the 5-fold cross-validation. Red squares denote when the standard deviation of the snapshot model is smaller than the second-best 
method (in all cases, DNN), whereas brown squares denote otherwise. * denotes P < 0.05 comparing snapshot with the second-best method using a 
one-sided Wilcox rank sum test. ( B , C ) Model performance using sequence encoding or PPIs. ( B ) Performance comparison of the snapshot model, with 
or without integrating features from various sequence encoding methods or PPI scores, for mTOR in both C2C12 and liver datasets. * denotes P < 0.05 
comparing the snapshot model with other methods using a one-sided Wilcox rank sum test. ( C ) Performance comparison of the snapshot model with or 
without using features derived from CKSAAP across 12 kinases for both C2C12 and ESC datasets. 

Figure 6. Evaluation of SnapKin prediction performance. Comparison of prediction performance of SnapKin and other kinase-substrate predictive 
algorithms, including CoPhosK+, NetworKIN, GPS and PhosphoPICK, across the 7 phosphoproteomics datasets and 12 kinases. 
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A

C D

B

Figure 7. Muscle phosphoproteomics data analysis. ( A ) SnapKin prediction score on profiled phosphosites in the C2C12 differentiation dataset. Known 
MAPK1 ( n = 36) and mTOR substrates ( n = 38) are highlighted in blue and red, respectively. ( B ) The consensus motif generated from the top 
SnapKin-predicted MAPK1 and mTOR substrates. ( C ) Phosphorylation profiles of the C2C12 differentiation phosphoproteome derived from 

SnapKin-predicted MAPK1 and mTOR substrates, where ‘putative substrates’ are those 100 top-ranked based on prediction scores. ( D ) Phosphorylation 
profiles of known MAPK1 ( n = 44) and the top 100 SnapKin-predicted MAPK1 substrates in the C2C12 inhibition phosphoproteome. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

well and the quality of the annotations may be dependent on
the types of validation experiments and the biological systems
in which they are validated. Developing methods that can take
into consideration the type of evidence in kinase-substrate val-
idation and the potential false positive examples in these data
sources during model training will likely lead to further im-
provements in prediction accuracy. 

In its current implementation, SnapKin only takes single
phosphoproteomics data for kinase-substrate prediction. A
future direction of SnapKin extension is to learn from mul-
tiple phosphoproteomics data so as to improve the confi-
dence of prediction results while also reducing the potential of
model overfitting. In particular, the ensemble learning frame-
work used can facilitate such an extension by using differ-
ent models each learning from a different phosphoproteomics
dataset. Finally, although experimental evaluation of kinase
substrates remains time consuming and labour intensive, sig-
nificant efforts have been made with the systematic mapping
of kinase and their downstream substrates ( 57 ). Such exper-
imental data resources will not only help validate putative
kinase substrate candidates from computational predictions
but also lead to the improved predictive accuracy of com-
putational models as the increasing number of experimen-
tally validated kinase substrates will enable an increasingly
larger data repertoire to be curated for training computational
models. 

Data availability 

SnapKin’s source code is available in Zenodo at https://
doi.org/ 10.5281/ zenodo.10038862 . All phosphoproteomics
datasets analysed in this study are published previously and
their publications and accessions are listed in Table 1 . 
Supplementary data 

Supplementary Data are available at NARGAB Online. 
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