
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Distributed Multi-robot Active OcTree Mapping

Permalink
https://escholarship.org/uc/item/518302b3

Author
Asgharivaskasi, Arash

Publication Date
2024
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/518302b3
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Distributed Multi-Robot Active OcTree Mapping

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Electrical Engineering (Intelligent Systems, Robotics, and Control)

by

Arash Asgharivaskasi

Committee in charge:

Professor Nikolay Atanasov, Chair
Professor Tara Javidi
Professor Sonia Martı́nez
Professor Michael Yip

2024



Copyright

Arash Asgharivaskasi, 2024

All rights reserved.



The Dissertation of Arash Asgharivaskasi is approved, and it is acceptable in

quality and form for publication on microfilm and electronically.

University of California San Diego

2024

iii



TABLE OF CONTENTS

Dissertation Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Log-Odds Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Information Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Robot Pose Representation in 3-D Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Riemannian Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Chapter 3 Bayesian Metric-Semantic Voxel Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Problem: Bayesian Metric-Semantic Voxel Mapping from RGBD Sensing . . . . . 24
3.3 Bayesian Multi-Class Voxel Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Octree Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5.1 3-D Mapping in Unity Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5.2 3-D Mapping in a Real-World Outdoor Environment . . . . . . . . . . . . . . . . 33
3.5.3 Mapping Time vs. Number of Stored Classes . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 4 Information-Theoretic Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Problem: Shannon Mutual Information between a Multi-Class Map and Range-

Category Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Semantic Shannon Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

iv



4.4 Semantic Ray-Length Encoding for Octree Representations . . . . . . . . . . . . . . . . . 48
4.4.1 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5.1 2-D Binary Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5.2 2-D Multi-Class Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5.3 SRLE Compression for 3-D Ray Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5.4 3-D Exploration in a Unity Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5.5 3-D Exploration in a Real-World Office Environment . . . . . . . . . . . . . . . . 60

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Chapter 5 Differentiable Occlusion and Collision-Aware Active Mapping . . . . . . . . . . 64
5.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Problem: Continuous-Space SE(3) Optimization of Shannon Mutual Information

between a Voxel Map and Range Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3 Differentiable Approximation of the Shannon Mutual Information . . . . . . . . . . . . 69

5.3.1 One Step Ahead Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.2 Trajectory Optimization for Active Mapping . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Active Voxel Mapping via Gradient-Ascent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5.1 2-D Active Mapping in Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.5.2 Exploration in 3-D Unity Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.5.3 Real-World Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Chapter 6 Distributed Multi-Robot Semantic Active Mapping . . . . . . . . . . . . . . . . . . . . 83
6.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Problem: Consensus-Constrained Riemannian Optimization for Multi-Agent

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3 Distributed Riemannian Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.4 Distributed Semantic Octree Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.5 Distributed Planning for Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.6.1 Implementation of ROAM for Distributed Active Mapping . . . . . . . . . . . 107
6.6.2 Simulation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.6.3 Real-World Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Chapter 7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Appendix A Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Appendix B Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Appendix C Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

v



Appendix D Proof of Proposition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Appendix E Proof of Proposition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Appendix F Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Appendix G Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

vi



LIST OF FIGURES

Figure 1.1. Overview of active mapping and the contributions . . . . . . . . . . . . . . . . . . . . 6

Figure 3.1. RGBD sensing and semantic segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 3.2. Illustration of the Bayesian multi-class mapping . . . . . . . . . . . . . . . . . . . . . . 27

Figure 3.3. Semantic octree data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.4. Multi-class mapping in a simulated Unity environment . . . . . . . . . . . . . . . . 34

Figure 3.5. Outdoor semantic octree mapping experiment . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 3.6. Mapping time vs. number of stored classes . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 4.1. Comparison between the information surfaces of binary and multi-class
map representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 4.2. Ray cast representation as semantic run-length encoding (SRLE) . . . . . . . . 49

Figure 4.3. Synthetic environments used for 2-D active mapping . . . . . . . . . . . . . . . . . . 54

Figure 4.4. Simulation results for active mapping on synthetic 2-D environments . . . . 55

Figure 4.5. Comparison of information surface between different mutual information
formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 4.6. Computation complexity comparison between regular ray-tracing and SRLE 57

Figure 4.7. Time lapse of autonomous exploration and multi-class mapping in a simu-
lated Unity environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 4.8. Simulation results for exploration in Unity 3-D environment . . . . . . . . . . . . 60

Figure 4.9. Time lapse of autonomous exploration and multi-class mapping in an
indoor office environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 4.10. Real-world experiment results for active mapping . . . . . . . . . . . . . . . . . . . . . 62

Figure 5.1. Occlusion and collision-aware active mapping . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 5.2. Differentiable SMI approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 5.3. Example of the SMI approximation using (5.13) . . . . . . . . . . . . . . . . . . . . . . 74

vii



Figure 5.4. 2-D simulated differentiable active mapping performance compared among
various methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 5.5. Time lapse of 3-D differentiable active mapping in simulated Unity envi-
ronment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 5.6. 3-D differentiable active mapping performance compared between different
methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 6.1. Overview of distributed multi-robot active mapping approach of ROAM . . 84

Figure 6.2. Application of Alg. 5 to the leading eigenvector problem . . . . . . . . . . . . . . . 94

Figure 6.3. Example of range-category sensing and semantic voxel mapping . . . . . . . . 97

Figure 6.4. Software stack for multi-robot distributed active mapping . . . . . . . . . . . . . . 108

Figure 6.5. Simulation environment for multi-robot distributed active mapping . . . . . . 111

Figure 6.6. Time lapse of the simulated multi-robot active mapping experiment . . . . . . 111

Figure 6.7. Time lapse of distributed multi-robot viewpoint planning . . . . . . . . . . . . . . . 112

Figure 6.8. Network topologies used in the simulated multi-robot exploration experiment 112

Figure 6.9. Coverage versus time and distance traveled for the simulated multi-robot
exploration experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Figure 6.10. Normalized map entropy versus time and distance traveled for the simulated
multi-robot exploration experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Figure 6.11. Multi-robot exploration performance metrics in the simulated multi-robot
exploration experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Figure 6.12. Ground robot team used in the real-world multi-robot active mapping
experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Figure 6.13. Indoor environment used in the real-world multi-robot active mapping
experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Figure 6.14. Qualitative results from the real-world multi-robot active mapping experi-
ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Figure 6.15. Coverage and normalized map entropy versus time and distance traveled
for the real-world multi-robot active mapping experiment . . . . . . . . . . . . . . 119

Figure 6.16. Multi-robot exploration performance metrics for the real-world experiment 120

viii



LIST OF TABLES

Table 5.1. Clearance from obstacles for differentiable active mapping . . . . . . . . . . . . . . 81

Table 6.1. Parameter set for multi-robot exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

ix



ACKNOWLEDGEMENTS

This dissertation would not have been possible without my advisor Nikolay Atanasov. I

started my Ph.D. journey right after finishing my Bachelor’s and hence I did not have much insight

about how to do graduate-level research, let alone robotics in particular. Nikolay’s patience

and characteristic love for mentoring were the main reasons why I was able to experiment with

different topics, find a deep interest in doing research, and eventually find my niche in robotics.

Moreover, his trust in me and the fact that he gave me a lot of independence throughout my Ph.D.

years helped me to develop much needed leadership skills. His guidance and support have been

instrumental in my professional development and my identity as a roboticist. It has been truly a

privilege to have him as my advisor.

I would also like to thank my Ph.D. committee members, Tara Javidi, Michael Yip, and

Sonia Martinez, for their interest in learning about my research, providing valuable suggestions,

and dedicating their time to attend my proposal and defense. The feedback I received from

my committee during the candidacy exam significantly influenced the direction of my research,

especially regarding extension to multi-robot systems.

During my Ph.D. research I was fortunate to collaborate with many brilliant scholars. I

want to thank my coauthors, Shumon Koga, George Pappas, Mariliza Tzes, Panagiotis Tsiotras,

Daniel Larsson, Jaein Lim, Thai Duong, Zhirui Dai, Pengzhi Yang, Fritz Girke, Shusen Lin,

and Yuhan Liu. Additionally I want to acknowledge and thank my fellow ERL members, Vikas

Dhiman, Tianyu Wang, Parth Paritosh, Qiaojun Feng, Ehsan Zobeidi, Zhichao Li, Baoqian Wang,

Kehan Long, Abdullah Altawaitan, Hanwen Cao, Yinzhuang Yi, Nikola Raicevic, Yulun Tian,

Brian Lee, Mo Shan, Dwait Bhatt, Hojoon Shin, Alexander Khoury, Jason Stanley, Tianji Tang,

and other colleagues I miss to mention. Finally, I want to thank my friends and family, for their

enduring support in every part of my journey.

Chapter 3, in part, is a reprint of the material as it appears in A. Asgharivaskasi and

N. Atanasov, “Active Bayesian multi-class mapping from range and semantic segmentation

observations,” IEEE International Conference on Robotics and Automation (ICRA), pp. 1-7,

x



2021, and in A. Asgharivaskasi and N. Atanasov, “Semantic octree mapping and Shannon mutual

information computation for robot exploration,” IEEE Transactions on Robotics (T-RO), vol. 39,

no.3, pp. 1910-1928, 2023. The dissertation author was the primary investigator and author of

these papers.

Chapter 4, in part, is a reprint of the material as it appears in A. Asgharivaskasi and

N. Atanasov, “Active Bayesian multi-class mapping from range and semantic segmentation

observations,” IEEE International Conference on Robotics and Automation (ICRA), pp. 1-7,

2021, and in A. Asgharivaskasi and N. Atanasov, “Semantic octree mapping and Shannon mutual

information computation for robot exploration,” IEEE Transactions on Robotics (T-RO), vol. 39,

no.3, pp. 1910-1928, 2023. The dissertation author was the primary investigator and author of

these papers.

Chapter 5, in part, is a reprint of the material as it appears in A. Asgharivaskasi, S. Koga,

and N. Atanasov, “Active mapping via gradient ascent optimization of Shannon mutual infor-

mation over continuous SE(3) trajectories,” IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp. 12994-13001, 2022. The dissertation author was the primary

investigator and author of these papers.

Chapter 6, in part, is a reprint of the material as it appears in A. Asgharivaskasi and N.

Atanasov, “Distributed optimization with consensus constraint for multi-robot semantic octree

mapping,” IEEE International Conference on Robotics and Automation (ICRA) workshop on

Collaborative Perception and Learning (CoPerception), 2023. Chapter 6, in part, has been

submitted for publication of the material as it may appear in A. Asgharivaskasi, F. Girke, and N.

Atanasov, “Riemannian optimization for active mapping with robot teams,” IEEE Transactions

on Robotics (T-RO), 2024. The dissertation author was the primary investigator and author of

these papers.

xi



VITA

2018 Bachelor of Science in Electrical Engineering (Communication Systems) with a
Minor in Economics, Sharif University of Technology

2021 Master of Science in Electrical Engineering (Intelligent Systems, Robotics, and
Control), University of California San Diego

2024 Doctor of Philosophy in Electrical Engineering (Intelligent Systems, Robotics, and
Control), University of California San Diego

PUBLICATIONS

A. Asgharivaskasi, F. Girke, and N. Atanasov, “Riemannian Optimization for Active Mapping
with Robot Teams”, under review.

A. Asgharivaskasi, N. Atanasov, “Semantic OcTree Mapping and Shannon Mutual Information
Computation for Robot Exploration”, IEEE Transactions on Robotics (T-RO), 2023.

Z. Dai, A. Asgharivaskasi, T. Duong, S. Lin, M. Tzes, G. Pappas, and N. Atanasov, “Optimal
Scene Graph Planning with Large Language Model Guidance”, IEEE International Conference
on Robotics and Automation (ICRA), 2024.

P. Yang, S. Koga, A. Asgharivaskasi, and N. Atanasov, “Policy Learning for Active Target
Tracking over Continuous SE(3) Trajectories”, in Learning for Dynamics & Control Conference
(L4DC), 2023.

D. T. Larsson, A. Asgharivaskasi, J. Lim, N. Atanasov, and P. Tsiotras, “Information-theoretic
Abstraction of Semantic Octree Models for Integrated Perception and Planning”, IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2023.

P. Yang, Y. Liu, S. Koga, A. Asgharivaskasi, and N. Atanasov, “Learning Continuous Con-
trol Policies for Information-Theoretic Active Perception”, IEEE International Conference on
Robotics and Automation (ICRA), 2023.

A. Asgharivaskasi, S. Koga, and N. Atanasov, “Active Mapping via Gradient Ascent Op-
timization of Shannon Mutual Information over Continuous SE(3) Trajectories”, IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2022.

S. Koga, A. Asgharivaskasi, and N. Atanasov, “Active SLAM over Continuous Trajectory
and Control: A Covariance-Feedback Approach”, American Control Conference (ACC), 2022.

S. Koga, A. Asgharivaskasi, and N. Atanasov, “Active Exploration and Mapping via Iterative

xii



Covariance Regulation over Continuous SE(3) Trajectories”, IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2021.

A. Asgharivaskasi and N. Atanasov, “Active Bayesian Multi-class Mapping from Range and
Semantic Segmentation Observations”, in IEEE International Conference on Robotics and Au-
tomation (ICRA), 2021.

A. Asgharivaskasi and N. Atanasov, “Distributed Optimization with Consensus Constraint
for Multi-Robot Semantic Octree Mapping”, Workshop on Collaborative Perception and Learn-
ing (CoPerception) at ICRA, 2023.

xiii



ABSTRACT OF THE DISSERTATION

Distributed Multi-Robot Active OcTree Mapping

by

Arash Asgharivaskasi

Doctor of Philosophy in Electrical Engineering (Intelligent Systems, Robotics, and Control)

University of California San Diego, 2024

Professor Nikolay Atanasov, Chair

Many real-world mobile robot applications, such as disaster response, military recon-

naissance, and environmental monitoring, require operating in unknown and unstructured en-

vironments. This calls for algorithms that empower robots with active information gathering

capabilities in order to autonomously and incrementally build a model of an environment. In

this dissertation, we present a novel 3-D multi-class online mapping approach using a stream of

range and semantic segmentation observations. Moreover, we derive a closed-form expression

for the Semantic Shannon Mutual Information (SSMI) between our proposed map representa-

tion and a sequence of future sensor observations. Using an octree data structure, we reduce

the memory footprint of the map storage for large-scale environments, while simultaneously
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accelerating the computation of mutual information. This allows real-time integration of new

sensor measurements into the map, and rapid evaluation of candidate future sensor poses for

exploration. Additionally, we introduce a differentiable approximation of the Shannon mutual

information between grid maps and ray-based measurements, enabling gradient-based occlusion

and collision-aware active mapping. The gradient-based active mapping in the continuous space

of sensor poses reduces the optimization complexity from exponential in the number of robots

to linear, paving the way for extension from a single agent to a team of robots. We formulate

multi-robot exploration as a combination of multi-robot mapping and multi-robot planning,

where both sub-problems are specified as an instance of multi-agent Riemannian optimization.

We propose a general distributed Riemannian optimization algorithm that solves both mapping

and planning in fully decentralized manner. Our method, named Riemannian Optimization for

Active Mapping (ROAM), enables distributed collaborative multi-robot exploration, with only

point-to-point communication and no central estimation and control unit. Lastly, we deploy our

active mapping method on a team of ground wheeled robots in both simulation and real-world

environments, and compare its performance with other autonomous exploration approaches.
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Chapter 1

Introduction

1.1 Motivation

As cyber-physical systems are delegated with real-world tasks requiring unprecedented

levels of autonomy, the necessity of enabling mobility as a core capability of said systems become

inevitable. In order to achieve reliable mobility, the autonomous system (i.e., robot) needs to

understand its environment both in terms of global knowledge of objects and regions of interest,

as well as local situational awareness of obstacles. This is, however, fundamentally different

from possessing the ability for completing a specific task (e.g., sorting a shelf), in the sense that

the robot should learn from unforeseen configurations and dynamics of the environment, and

react accordingly, all on the fly. Such observations motivate us to design methods for active

information gathering for mobile robots, with the goal of ensuring the survival of the robot and

the success of given tasks.

In particular, this thesis presents an autonomous exploration and environment mapping

method, by which a robot equipped with range and vision sensing can incrementally estimate

a probabilistic multi-class map of the environment, and actively choose trajectories that yield

maximally informative future sensor observations. The probabilistic multi-class map represen-

tation allows task planning while considering uncertain semantic information, leading to more

robust and safer robot operation. Moreover, incorporating semantics into active multi-class

mapping can itself be beneficial to the efficiency of exploration, in that objects with higher
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detection error rate can be prioritized for more fine-grained sensor measurements. Having said

that, large-scale autonomous exploration and mapping on resource-constrained robot platforms

demands effective utilization of memory and compute assets in order to enable edge deployment.

The work proposed in this thesis aims to address these challenges by using certain data structures

and derivation of a closed-form differentiable measure of observation informativeness.

Furthermore, employing a team of collaborating robots may substantially accelerate

the pace at which a given task can be accomplished, while the overall system can potentially

become more robust due to redundancy. Autonomous exploration of unknown environments

using a team of mobile robots demands distributed perception and planning strategies to enable

efficient and scalable performance. Ideally, each robot should update its map and plan its motion

not only relying on its own observations, but also considering the observations of its peers.

Centralized solutions to multi-robot coordination are susceptible to central node failure and

require a sophisticated communication infrastructure for reliable operation. Current decentralized

active mapping methods consider simplistic robot models with linear-Gaussian observations

and Euclidean robot states. We extend our proposed autonomous exploration and mapping

method to a team of robots, relying only on one-hop communication and without the need of a

centralized estimation and planning node. The presented work can empower the next generation

of collaborative robotics, with applications in search and rescue, security and surveillance, and

environmental monitoring.

1.2 Problem Statement

The main goal throughout this thesis is to design a distributed multi-robot exploration

and multi-class mapping method using streaming range and vision input. The first objective is

devising a Bayesian framework to incorporate new sensor data into a probabilistic environment

representation. In particular, we are interested to design a mapping method that receives a stream

of 3-D point clouds with semantic annotations, and incrementally estimates a probabilistic
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multi-class and multi-resolution voxel map. Secondly, the probabilistic map, alongside the

geometric and noise specifications of the sensor, are going to be utilized for extracting maximally

informative sensor poses that lead to a minimum uncertainty map estimation. Additionally, we

require such information-theoretic exploration method to be computationally efficient in a way

that it can be deployed on board of a size, weight, and power-constrained robot. This process

should take the most recent estimate of the map and robot pose, and compute a collision-free

sensing trajectory in the continuous space of 3-D poses, with the goal of minimizing map

uncertainty. Lastly, the proposed exploration and mapping method should be generalizable to

a team of collaborative robots, necessitating desirable computational complexity with respect

to the number of robots, as well as memory efficiency of the map representation to be shared

over a point-to-point communication network. This multi-robot exploration method should

be provided with the connectivity information of the robot network, where each robot locally

computes a multi-class map and an informative sensing trajectory. The objective of multi-robot

active mapping is to reach an agreement on the exploration path of the team, as well as a globally

consistent map of the environment.

1.3 Related Work

The problem of autonomous exploration and mapping is one of the most extensively

studied topics within the robotics community. In this section, we only provide a high-level

overview of the methods that are closely related to the overall proposition of this thesis. For a

more detailed review of the related works, please refer to the respective chapters in the thesis.

Active mapping for mobile robots dates back to 1990s [161], where a laser-limited sonar

sensor was used to maintain a 2-dimensional (2-D) evidence grid, later known as occupancy

grid. An occupancy grid is an array of uniform resolution cells, where each cell represents a

rectangular physical region of the environment, and stores information regarding the occupancy

of its corresponding space. Since then, advancements in algorithms, sensing, data storage,
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and computation hardware have pushed the boundaries in various aspects such as on-board

3-dimensional (3-D) range sensing [58, 94, 122, 130], low memory-footprint large-scale 3-D

mapping [70], and uncertainty-aware path planning for exploration [35, 76, 170]. The mapping

method presented in this thesis builds upon the previous works in that 3-D sensor measurements

are used to incrementally build a probabilistic multi-class extension of the octree map proposed

in [70]. Moreover, we extend the concept of uncertainty-aware path planning for exploration to

multi-class maps, such that the exploration algorithm takes into account the per-class uncertainty,

leading to more effective active mapping.

The problem of active mapping is a specific instance of active information acquisition,

which in its simplest form, can be formulated as a multi-armed bandit problem [2, 104, 105].

Despite the vast literature for the bandit problem with global optimality guarantees [101, 102],

the kinematic, dynamic, and safety constraints of mobile robots limit the usability of said

methods in the context of active mapping with limited sensor field of view. The line of works

in [12, 16, 17, 80, 81] have addressed the challenges brought up by the mobile robot constraints

via explicitly incorporating the motion and observation models of the robot. The common feature

among these works is the linear-Gaussian assumption for the robot observation model, which

results in computationally efficient open-loop active perception policies with the possibility of

extension to multi-robot scenarios [13–15]. However, this assumption is too simplistic for active

occupancy grid mapping using range sensing, limiting the usability of such methods in the cases

where the sensor field of view can be occluded. In this work, we go beyond the limitations

of linear-Gaussian perception models by presenting a range-category observation model that

simultaneously incorporates ray-based range sensing and vision-based semantic segmentation.

Our proposed model allows designing a closed-loop, collision and occlusion-aware exploration

policy for active mapping of unknown environments using a team of collaborating robots.

The topic of distributed multi-robot exploration lies in the intersection of collaborative

information acquisition, such as multi-agent linear bandits [103], and decentralized optimization,

e.g., asynchronous distributed convex optimization [108]. The work by Akbari et al. [4] extends
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the alternating direction method of multipliers (ADMM) to distributed systems, and obtains a

regret bound for individual agents. Sundaram and Ghaserifard [139] investigate the vulnerabilities

of distributed optimization algorithms in the face of non-cooperative agents, and present a solution

robust to adversarial attacks. Moreover, Ghaserifard and Smith [61] generalize distributed

optimization to submodular objective functions. Continuous-time distributed optimization with

time-varying directed networks is studied in [147], where the authors formulate distributed

optimization as dynamical system. Related to distributed coordination in non-Euclidean spaces,

Sepulchre et al. [131] uses Hilbert distance as a measure of consensus for non-commutative

spaces, which is specially useful in the context of quantum information theory. The work in [127]

formulates coordination of rigid body attitudes as a distributed optimization problem, where the

cost function is the sum of chordal distances between each pair of agents. The same problem, for

the more general context of Lie groups, have been studied in [126] and [84]. In this dissertation,

we propose a distributed multi-agent optimization algorithm where the state of each agent is

defined within a general Riemannian manifold. The proposed algorithm possesses consensus

and optimality guarantees, which enables cooperative decentralized multi-robot exploration with

only point-to-point communication.

1.4 Contributions

The overarching goal of this thesis is to develop a distributed multi-robot exploration

and multi-class mapping method that can be deployed on a team of size, weight, and power-

constrained robots without the need for a central estimation and control unit. Fig. 1.1 highlights

our contributions in this dissertation. We delineate our approach to achieve our goal in the

following chapters, each addressing one aspect of the solution.

Chapter 2

We start by briefly reviewing the background mathematical concepts that are key to

understand the contributions of this dissertation. We discuss Bayesian inference and its applica-
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Figure 1.1. Overview of active mapping and the contributions. The robot receives a sequence
of sensor measurements, and incrementally builds a map of the environment. In our work,
we present a Bayesian semantic octomap method that estimates a 3-D multi-class map from
range and semantic segmentation observations (red section). The map estimate is then used
to extract a set of future sensor poses that maximize the map accuracy and explored area. We
introduce an information-theoretic and gradient-based 3-D sensor pose optimization method that
finds the most informative sensing trajectory (green section). The robot receives the computed
sensing trajectory, calculates the corresponding motion commands, and repeats the information
gathering cycle. We also devise a collaborative multi-robot active mapping algorithm that enables
coordination in exploration as well as consistency among each robot’s map estimate (orange
section).

tion in robot mapping. Additionally, we provide intuitive descriptions for information theoretic

quantities such as entropy and the Shannon mutual information. Lastly, a short overview of

matrix Lie groups and Riemannian manifolds is presented.

Chapter 3

The first step towards information-theoretic exploration is devising a Bayesian frame-

work for incorporating sensor measurements into a probabilistic map representation. This

chapter presents a novel Bayesian mapping method that incrementally constructs a probabilistic

multi-class voxel map of an environment using a stream of range and semantic segmentation

observations. Additionally, in order to reduce the memory requirements imposed by mapping

very large environments, we employ an octree data compression algorithm with controllable data

recovery accuracy. We deploy the proposed multi-class octree mapping method on real-world

robot platforms and show the mapping performance in an assortment of experiments.
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Chapter 4

Once we are able to build an online probabilistic multi-class map, we switch our focus

to discuss how future range-category observations can lead to reduction in map estimation

uncertainty. Specifically, we use the Shannon mutual information as a quantitative measure of

uncertainty reduction. The main contribution of this chapter is a semantic mutual information

formula that takes into account per-class uncertainties. This leads to a more efficient exploration

strategy compared to traditional occupancy-based methods. Also, we show that exploiting

the octree structure of our map representation leads to significant reduction in computation

complexity when it comes to calculating the mutual information. We finish the chapter by

evaluating the performance of the exploration method in comparison with other baseline active

mapping approaches, both in simulation and in the real world.

Chapter 5

The main focus of this chapter is to generalize the idea of mutual information maximiza-

tion for active mapping from sampling-based methods to gradient-based optimization. Due to

the discrete nature of voxel maps, the Shannon mutual information between an octree map and a

sensing ray is non-differentiable with respect to sensor pose; hence only admitting sampling-

based optimization methods. We propose an approximation of the Shannon mutual information

based on spatial averaging of the information values around a given sensor pose. The averaging

kernel is differentiable, therefore it allows computing gradients of information with respect to

a sensor pose with 6-degrees of freedom. As a result, a collision- and occlusion-aware active

mapping objective function is presented that is optimized via gradient-ascent in the continuous

space of sensor poses. Unlike the sampling-based approaches, our gradient-based optimization

has linear, instead of exponential, complexity with respect to the number of exploring robots.

This makes our method suitable for extension to a team of robots, which is the focus of Chapter 6.
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Chapter 6

This chapter delivers on the ultimate objective of the thesis, namely distributed multi-

robot active multi-class mapping. The goal is design a decentralized exploration method that

only includes point-to-point communication between the robots in a team, while requiring global

consistency in the map estimation and coordination in exploration. We identify distributed

mapping and distributed planning as two main components of distributed exploration. In

particular, mapping can be formulated as maximization of sensor observation log-likelihood in

the space of multi-class map probabilities, while planning deals with maximizing the collision-

and occlusion-aware active mapping objective function of Chapter 5 in the space of robot poses.

Both optimizations are instances of multi-agent Riemannian optimization. Hence, our first

contribution in this chapter is a general distributed Riemannian optimization algorithm with

consensus and optimality guarantees. Next, we apply our proposed distributed Riemannian

optimization to both multi-robot mapping and multi-robot planning. Our complete solution

enables distributed multi-robot active multi-class mapping with consensus in both map estimates

and planned exploration paths, leading to a globally consistent map and coordination among

all robots in the team. Lastly, we demonstrate simulated and real-world deployments of our

distributed multi-robot exploration method.

Chapter 7

Finally we conclude this dissertation by providing a summary of contributions, and

exploring possible extensions for future research endeavours.
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Chapter 2

Background

The problem of active 3-D mapping of unknown environments involves concepts from

a variety of topics. In its core, probabilistic mapping is an instance of Bayesian filtering,

where new sensor measurements need to be systematically used to update a map estimate.

Moreover, computing an informative sensing trajectories requires knowledge of how to quantify

measurement information, which has been studies in the literature of information theory. Lastly,

since we are interested in 3-D mapping using a general 6-degrees of freedom sensor pose model,

we are required to use calculus and differentiation in matrix Lie groups. Hence, in order to better

understand the relevance of the proposed work within the context of robot active mapping, this

chapter reviews several theoretical concepts used in this dissertation.

2.1 Bayesian Inference

We begin our discussion of Bayesian inference by providing a short review of probability

theory. Let Ω be the space possible experiment outcomes, formally known as the sample space.

The set F of subsets of Ω that are closed under complementation and (countable) union is called

a σ -algebra. A measure on the tuple (Ω,F ) is a function µ : F → R that satisfies:

1. Non-negativity: µ(A)≥ 0, ∀A ∈ F and µ() = 0

2. Countable additivity: µ(
⋃

i Ai) = ∑i µ(Ai) for countable numbers of sets Ai ∈F such

that Ai∩A j, ∀i, j
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A probability measure P : F → [0,1] is a measure on (Ω,F ) that satisfies P(Ω) = 1. The

probability of an event A ⊂ Ω is then defined as P(A). An important concept in probabilistic

inference is conditional probability, expressed as:

P(A∩B) = P(A|B)P(B), A,B ∈F .

Moreover, the law of total probability relates conditional probabilities to the marginal probability

of an event. Let {Ai}n
i=1 be a partition of Ω, then the law of total probability states:

P(B) =
n

∑
i=1

P(B∩Ai).

Another important idea in probability theory is notion of independent events. The random events

A,B⊂Ω are considered independent if observing one does not reveal any information about the

other. Formally:

P(A∩B) = P(A)P(B).

It is worth mentioning that independent events should not be confused with disjoint events, where

observing one indicates that the other has not occurred.

A fundamental concept in probability is the notion of random variable. A random

variable is a function X : Ω→R that maps an experiment outcome ω ∈Ω to a realization r in

the realization space R. For discrete random variables X : Ω→ Z, a probability mass function

(PMF) p : Z→ [0,1] can be defined, which represents the probability measure of an outcome

x ∈ Z:

p(x) = P(X = x),

p(x)≥ 0, ∑
x∈Z

p(x) = 1.

Similarly, one can define a probability density function (PDF) p : R → R≥0 for continuous
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random variables such that:

lim
ε→0

∫ x+εδx

x
p(s)ds = P{X = x},

p(x)≥ 0,
∫

x∈Z
p(x)dx = 1.

The conditional probability and the law of total probability apply to PMFs and PDFs as well.

Now we have the preliminary tools to discuss Bayesian inference.

Bayesian inference is a statistical methodology to update the probability of a hypothesis

based on new evidence. Centered around the Bayes rule, this approach provides a framework for

incorporating prior knowledge and refining predictions as new data becomes available. Let m

and z be two random variables. The Bayes rule is expressed as:

p(m|z) = p(z|m)p(m)

p(z)
,

where each term is defined as follows.

• The prior p(m) represents the initial belief about the hypothesis before any data is observed.

This can be based on historical data, expert knowledge, or previous studies.

• The likelihood p(z|m) quantifies how probable the observed data z is, given that hypothesis

m holds true. This requires a model that describes the relationship between the hypothesis

and the data.

• The marginal probability p(z) is the total probability of observing data z under all possible

hypotheses. This is more clearly stated using the law of total probability:

p(z) =
∫

p(z|m)p(m)dm.

• The posterior probability distribution p(m|z) reflects the revised belief about the hypothesis

m after considering the new data z.

11



The posterior distribution provides a probabilistic framework for making inferences

about the hypothesis. Predictions and decisions can be made based on this updated distribution,

accounting for both prior knowledge and new evidence. Bayesian inference provides a flexible

process for incorporating various sources of prior knowledge and adapt to new data, while the

probabilistic representation allows quantifying uncertainty of any predictions. Bayesian inference

is widely used in diverse fields such as machine learning, epidemiology, finance, and engineering.

It underpins algorithms for classification, regression, and probabilistic modeling, among other

applications. In machine learning, for instance, Bayesian methods can be used to build robust

models that update predictions as more data becomes available. Overall, Bayesian inference

offers a powerful and principled approach to statistical reasoning, allowing for dynamic updating

of beliefs in light of new evidence.

2.2 Log-Odds Mapping

Log-odds occupancy mapping is a technique used in robotics and computer vision to

estimate the probability of occupancy in a given area of a map or environment. Introduced by

Moravec and Elfes [95, 106], this method is particularly useful in applications such as simul-

taneous localization and mapping (SLAM) and robot navigation. The log-odds representation

provides a computationally efficient and numerically stable way to manage and update spatial

probability distributions. Here, we provide a short introduction to the log-odds occupancy

mapping algorithm of [143, Ch. 9].

In order to perform occupancy mapping, the environment is discretized into a grid where

each cell represents a small area of the map. Each cell in the grid is associated with an occupancy

probability, indicating the likelihood that the cell is occupied by an obstacle or belongs to the

free space. The occupancy probability of each cell m is updated based on sensor observations z
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and robot position x, following the Bayes rule:

p(m|z,x) = p(z|m,x)p(m)

p(z|x) ,

where the likelihood p(z|m,x) is called the observation model. However, directly using prob-

abilities can lead to computational inefficiencies and numerical instabilities due to the need

for deriving the normalizing term p(z|x). Since each map cell m can only take one of the two

states of free or occupied, one can divide the two sides of the Bayes rule in order to remove the

normalizing term p(z|x):

p(m = occupied|z,x)
p(m = free|z,x) =

p(z|m = occupied,x)p(m = occupied)
p(z|m = free,x)p(m = free)

,

which can be re-written as:

p(m = occupied|z,x)
1− p(m = occupied|z,x) =

p(z|m = occupied,x)
1− p(z|m = occupied,x)

p(m = occupied)
1− p(m = occupied)

. (2.1)

The probability p of a cell being occupied is transformed into a log-odds value using the

logit(p) function:

logit(p) = log
p

1− p
.

Taking the logarithm of the two sides in (2.1) leads to:

logit
(

p(m = occupied|z,x)
)
= logit

(
p(z|m = occupied,x)

)
+ logit

(
p(m = occupied)

)
. (2.2)

Based on (2.2), if a sensor detects the presence of an obstacle in a specific cell, the log-odds

value for that cell is incremented. Conversely, if the cell is observed as free space, the log-odds

value is decremented. Hence, this transformation simplifies the calculation of updates and fusion

of information, and allows for straightforward integration of multiple observations. Additionally,
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the log-odds representation helps to avoid issues with very small or very large probability values,

which can cause computational instability. Once updates are applied, the log-odds value can be

converted back to a probability value for interpretation or further processing using the sigmoid

function:

p =
1

1+ exp(−logit(p))
.

2.3 Information Theory

Before delving into the main problem of this chapter, we would like to provide a review

of information theory, as it is foundational to the contribution of our work.

Information theory, founded by Shannon in 1948 [133], is a branch of applied statistics

that focuses on quantifying information. At its core, it provides a framework for understanding

the transmission, processing, and storage of information. A fundamental concept in informa-

tion theory is entropy, that quantifies the uncertainty or unpredictability of a random variable.

Intuitively, it measures the average amount of “surprise” or “newness” associated with a set of

outcomes. Formally, if m is a discrete random variable with a PMF p(m), the entropy H(m) is

defined as:

H(m) =− ∑
m∈M

p(m) log p(m),

where M is the set of possible outcomes of m. Entropy is expressed in bits (or nats if using base e

logarithms) and reflects the average information content of the random variable m. Furthermore,

conditional entropy measures the amount of uncertainty remaining about a random variable m

given that another random variable z is known. The conditional entropy H(m|z) is expressed as:

H(m|z) =− ∑
m∈M

∑
z∈Z

p(m,z) log p(m|z),

where p(m|z) is the conditional probability of m given z, and p(m,z) is the joint probability

of m and z. Conditional entropy provides insight into the residual uncertainty about m after
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accounting for the information provided by z. Most related to this chapter, the Shannon mutual

information quantifies the amount of information one random variable m contains about another

random variable z. It measures the reduction in uncertainty about m due to knowledge of z, by

representing the extent to which m and z share information. Based on its definition, mutual

information is derived as follows:

I(m;z) = H(m)−H(m|z) = H(z)−H(z|m).

This measure is symmetric, meaning I(m;z) = I(z;m), and it is always non-negative. Mutual

information provides a measure of the dependency between m and z, with higher values indicating

stronger dependencies. In summary, information theory provides key tools for understanding

and quantifying information: entropy measures uncertainty, conditional entropy measures uncer-

tainty given another variable, and mutual information measures the shared information between

variables.

2.4 Robot Pose Representation in 3-D Spaces

A pose in the 3-D space can be represented by the combination of a position and a

rotation. A position is simply a vector in the R3 vector space. Rotation corresponds to the

orientation of an object. However, unlike position, rotations do not belong to a vector space.

Specifically, two consecutive rotation operations are not commutative. As a result, rotations form

a non-commutative group. A group is a set G with an associated composition operator ⊙ that

satisfies the following four properties:

1. Closure: a⊙b ∈ G, ∀a,b ∈ G

2. Identity element: There exists a unique e ∈ G such that e⊙a = a⊙ e = a

3. Inverse element: For any a ∈G, there exists a unique a−1 ∈G such that a⊙b = b⊙a = e

4. Associativity: (a⊙b)⊙ c = a⊙ (b⊙ c), ∀a,b,c ∈ G
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Rotations and poses in the 3-D space are special cases of matrix Lie groups, called the special

Orthogonal group (SO(3)) and the special Euclidean group (SE(3)), respectively. In the following,

we provide an overview of these two matrix Lie groups. For proofs and a more in-depth analysis,

we refer the interested reader to [18, Chapter 7].

The Lie group SO(3) expresses 3-D rotations as matrices:

SO(3) =
{

R ∈ R3×3 ∣∣ RR⊤ = I, det(R) = 1
}
,

where I is the identity matrix in R3×3. The orthogonality condition RR⊤ = I removes 6 degrees

of freedom from the 9-parameter R matrix, while the positive unit determinant constraint assures

maintaining the right-hand 3-D coordinate system, i.e. no reflection. The four Lie group

properties of SO(3) are listed below:

1. Closure: If R1,R2 ∈ SO(3) then R1R2 ∈ SO(3)

2. Identity element: I3×3 ∈ SO(3)

3. Inverse element: R−1 = R⊤ ∈ SO(3)

4. Associativity: R1(R2R3) = (R1R2)R3 = R1R2R3

Similarly, the space of 3-D poses is expressed via the Lie group SE(3):

SE(3) =

X =

R p

0⊤ 1

 ∈ R4×4

∣∣∣∣∣∣∣ R ∈ SO(3), p ∈ R3

 .

The four Lie group properties of SE(3) are shown as follows:

1. Closure: If X1,X2 ∈ SE(3) then X1X2 ∈ SE(3)

2. Identity element: I4×4 ∈ SE(3)

3. Inverse element: X−1 ∈ SE(3)
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4. Associativity: X1(X2X3) = (X1X2)X3 = X1X2X3

Each Lie group has an associated Lie algebra, which is a vector space corresponding

to the tangent space of its Lie group at the identity element. A Lie algebra captures the local

structure of a Lie group, and is instrumental in defining perturbations around an element in the

group. The Lie algebra of SO(3) is given by:

so(3) =
{

θ̂ ∈ R3×3 ∣∣ θ ∈ R3} ,
where:

θ̂ =


θ1

θ2

θ3


∧

=


0 −θ3 θ2

θ3 0 −θ1

−θ2 θ1 0

 .
Similarly, the Lie algebra for the SE(3) group is defined as:

se(3) =
{

ξ̂ ∈ R4×4
∣∣∣ ξ ∈ R6

}
,

where:

ξ̂ =

ρ

θ


∧

=

 θ̂ ρ

0⊤ 1

 , ρ,θ ∈ R3.

Note that the vector ξ is an element of R6, characterizing the 6 degrees of freedom for a pose in

the 3-D space.

In general, matrix Lie groups can be related to their associated Lie algebra via the

exponential mapping for matrices, expressed as:

exp(A) =
∞

∑
n=0

An

n!
,

where A ∈ Rl×l is a square matrix. The matrix logarithm is the (non-unique) inverse of the
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matrix exponential:

log(A) =
∞

∑
n=1

(−1)n−1(A− I)n

n
.

For the cases of SO(3) and SE(3), the above definitions have closed form expressions. A rotation

R ∈ SO(3) is related to the vector θ ∈ R3 as follows:

R = exp(θ̂) = I+
(

sin(∥θ∥)
∥θ∥

)
θ̂ +

(
1− cos(∥θ∥)
∥θ∥2

)
θ̂

2,

θ̂ = log(R) =
∥θ∥

2sin(∥θ∥)
(

R−R⊤
)
, ∥θ∥= arccos

(
tr(R)−1

2

)
.

Similarly, the exponential and logarithm mappings for SE(3) are defined as:

X =

R p

0⊤ 1

= exp(ξ̂ ) = I+ ξ̂ +

(
1− cos(∥θ∥)
∥θ∥2

)
ξ̂

2 +

(∥θ∥− sin(∥θ∥)
∥θ∥3

)
ξ̂

3,

ξ =

ρ

θ

= log(X)∨ =


θ = log(R), ρ = J−1

L (θ)p, ifR ̸= I,

θ = 0, ρ = p, ifR = I,
,

where (·)∨ is the inverse of (·)∧ mapping, and the matrix JL(θ) is the (left) Jacobian matrix

discussed below.

The Jacobian matrix plays a key role in converting the translation part of an se(3) element

to its corresponding SE(3) pose. As we will see in Chapters 5 and 6, this quantity also plays an

important role when it comes to computing derivatives in the SE(3) Lie group. The Jacobians for

SO(3) are defined as:

JL(θ) = I+
(

1− cos(∥θ∥)
∥θ∥2

)
θ̂ +

(∥θ∥− sin(∥θ∥)
∥θ∥3

)
θ̂

2, JR(θ) = JL(−θ),

where JL(θ) and JR(θ) are called the left and right Jacobians, respectively. The Jacobians for
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the SE(3) Lie group can be derived based on their SO(3) counterparts:

JL(ξ ) =

JL(θ) QL(ξ )

0 JL(θ)

 , JR(ξ ) =

JR(θ) QR(ξ )

0 JR(θ)

 ,
with QL(ξ ) and QR(ξ ) defined as:

QL(ξ ) =
∞

∑
n=0

∞

∑
m=0

θ̂
n
ρ̂ θ̂

m

(n+m+2)!
, QR(ξ ) = QL(−ξ ).

2.5 Riemannian Manifolds

In the previous section, we discussed the concept of a matrix Lie group as an example of

a geometric space where vector space operations such as addition and multiplication are either

not admissible, or not commutative. It turns out the matrix Lie groups belong to a more general

set of geometries called Riemannian manifolds. This section offers the key insights related to

Riemannian manifolds that are widely used in Chapter 6. See [22, Ch.3] for a more detailed

study.

A smooth manifold M is a curved topological space that locally resembles the Euclidean

space, such that one can apply differentiation and calculus in the vicinity of each element. A

simple example of such spaces is the planet Earth; it looks like a flat plane from the perspective

of an individual living on its surface, while in reality it is close to a sphere. The associated

vector space at point x ∈M is called the tangent space TxM of M at x, in the sense that

vectors in TxM are tangent to M at x. A Riemannian manifold M is an smooth manifold that is

equipped with a smooth, symmetric, bi-linear, and positive-definite inner product, also known

as Riemannian metric. Let u,v ∈ TxM be two tangent vectors at x, the Riemannian metric is

then denoted as ⟨v,u⟩x ∈ R, which unlike the Euclidean case, depends on the choice of x. The
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Riemannian metric induces a norm ∥ · ∥x : TxM → R defined as:

∥v∥x =
√
⟨v,v⟩x, v ∈ TxM .

The above definition allows generalizing the concept of Euclidean distance to curved

spaces. Formally, let p1,p2 ∈ Rn be two points in the Euclidean space, and γ : [a,b]→ Rn be

a curve connecting the two points, i.e. γ(a) = p1 and γ(b) = p2. The length of such curve is

expressed as follows:

L(γ) =
∫ b

a
∥ ˙γ(t)∥dt.

In Euclidean spaces, a straight line is the minimizer of the above quantity, and its length is

defined as the distance between p1 and p2. In Riemannian manifolds, the distance is similarly

defined as the length of the shortest curve between two elements:

d : M ×M → R such that d(x,y) = inf
γ∈Γ

∫ b

a
∥ ˙γ(t)∥γ(t)dt,

where Γ is the set of all curves connecting x and y, i.e. γ(a) = x and γ(b) = y. The curve that

satisfies the above minimization is called a geodesic. Furthermore, if the geodesic is unique for

any pair of x and y in M , the corresponding Riemannian manifold is called geodesically convex.

Note that geodesics are not necessarily straight lines. Going back to our planet Earth example,

the shortest path between two points on the globe is an arch within the semi-circle that contains

the two points.

Similar to matrix Lie groups, Riemannian manifolds admit an exponential map that relates

vectors in the tangent space to element on the manifold. The exponential Expx (·) : TxM →M

of a tangent vector v ∈ TxM is defined to be γ(1;x,v), where γ(·;x,v) is a geodesic that satisfies:

γ(0;x,v) = x, γ̇(0;x,v) = v. (2.3)
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Intuitively, the exponential map Expx (v) starts from x, and traverses the manifold for 1 second

along the geodesic with a velocity magnitude of ∥v∥x m/s, assuming the standard metric units.

The inverse of the exponential map is denoted as Exp−1
x (·) : M → TxM , which essentially

obtains the tangent vector v ∈ TxM corresponding to the geodesic between x and Expx(v). The

exponential map and its inverse can be thought as analogues of the addition and subtraction

operations in the Euclidean space, respectively; although these mappings do not possess the same

properties such as commutativity. More so, the exponential mapping in Riemannian manifolds is

similar to the matrix exponential discussed in the previous section. In fact, the two exponential

mappings are related by the following identity:

ExpX (ξ ) = Xexp(ξ̂ ), X ∈ SE(3), ξ ∈ R6.

Relevant to this dissertation, we also need to discuss computing gradients in Riemannian

manifolds. Let f : M → R be a smooth function. The Riemannian gradient of f (x) is defined as

the unique tangent vector v ∈ TxM that satisfies:

D f (x)[v] = ⟨grad f (x),v⟩x,

where D f (x) : TxM → R is the differential of f at x defined as the linear map:

D f (x)[v] = lim
t→0

f (γ(t;x,v))− f (x)
t

,

with γ(t;x,v) described in (2.3). The notion of Riemannian gradients allow us to perform

gradient-based optimization on a Riemannian manifold.
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Chapter 3

Bayesian Metric-Semantic Voxel Mapping

Accurate modeling, real-time understanding, and efficient storage of a robot’s envi-

ronment are key capabilities for autonomous operation. Occupancy grid mapping [54] is a

widely used, simple, yet effective, technique for distinguishing between traversable and occupied

space surrounding a mobile robot. However, as we delegate increasingly sophisticated tasks

to autonomous robots, it is required to augment traditional geometric models with semantic

information about the context and object-level structure of the environment.

This chapter considers the problem of metric-semantic 3-D mapping using streaming

distance and object category observations. See Fig. 3.1 as an illustration of the sensor data

available for mapping. Our approach presented in this chapter is based on the papers [8] and [6].

The main contribution is the introduction of a Bayesian multi-class octree map estimation

procedure which maintains a probability distribution over semantic categories and updates it

via a probabilistic range-category perception model. An octree map [70] is an extension of an

occupancy grid, introducing adaptive resolution to improve the memory usage and computational

cost of generating 3-D maps of large environments. Our proposed method enables real-time

large-scale 3-D mapping via efficient octree ray-tracing and map compression. Furthermore, we

demonstrate the accuracy and scalability of our mapping method in a variety of simulated and

real-world experiments.
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Figure 3.1. A robot autonomously explores an unknown environment using an RGBD sensor
and a semantic segmentation algorithm.

3.1 Related Works

Dense volumetric environment representations such as occupancy grid maps [54, 142],

multi-resolution hierarchical models [70, 144], and signed distance fields (SDF) [113, 128],

provide valuable information to both human and autonomous robots, as evidenced by their

utility in search and rescue [69], safe navigation [111], and terrain modeling [56]. Moreover, the

inclusion of semantic information, such as in the metric-semantic SLAM methods of [123, 174,

175], allows robots to build more sophisticated world models by affording autonomous systems

the ability to not only discern occupied from free space, but also to distinguish between the types

of objects in their surroundings [136]. As evidence of their usefulness, recent frameworks have

leveraged the power of Bayesian statistics to develop algorithms that build semantic environment

representations that encode categorical (semantic) information using probabilistic methods which
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naturally capture the uncertainty robots hold regarding their world [57, 157].

The main novelty of our method is the ability to deploy large-scale probabilistic metric-

semantic maps on size, weight, and power-constrained robot platforms in real-time. This is

primarily due to the fact that our mapping does not require any model training or optimization

during robot operation, and the memory footprint is minimal thanks to the octree data structure.

Our dense voxel mapping allows directly utilizing our method in safety-critical mobile robot

applications such as navigation, while the Bayesian filtering framework for map estimation

allows quantifying the uncertainty caused by sensing noise, classification domain gap, and

localization error. Additionally, incorporating semantics in our map representation enables

more sophisticated tasks such as traversability-aware navigation, object-level reasoning, and

geometrical grounding of natural language.

3.2 Problem: Bayesian Metric-Semantic Voxel Mapping
from RGBD Sensing

Consider a robot with pose Xt ∈ SE(3) at time t:

Xt :=

Rt pt

0⊤ 1

 ,
where Rt ∈ SO(3) is the robot orientation, pt ∈ R3 is the robot position, and τ is the time step.

The robot is navigating in an environment consisting of a collection of disjoint sets Ek ⊂ R3,

each associated with a semantic category k ∈K := {0,1, . . . ,K}. Let E0 denote free space,

while each Ek for k > 0 represents a different category, such as building, vegetation, terrain (see

Fig. 3.1).

We assume that the robot is equipped with a sensor that provides information about the

distance to and semantic categories of surrounding objects along a set of rays {ηb}b, where b is

the ray index, ηb ∈ R3 with ∥ηb∥2 = rmax, and rmax > 0 is the maximum sensing range.
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Definition 1. A sensor observation at time t from robot pose Xt is a collection Zt :=
{

zt,b
}

b of

range and category measurements zt,b := (rt,b,yt,b) ∈ R≥0×K , acquired along the sensor rays

Rtηb with ηb ∈ {ηb}b at robot position pt .

Such information may be obtained by processing the observations of an RGBD camera

or a LiDAR with a semantic segmentation algorithm [97]. Fig. 3.1 shows an example where each

pixel in the RGB image corresponds to one sensor ray ηb, while its corresponding values in the

semantic segmentation and the depth images encode category yt,b and range rt,b, respectively.

Let m be a map of the environment modeled as a grid of cells i ∈I := {1, . . . ,N}, each labeled

with a category mi ∈K . In order to model noisy sensor observations, we consider a PDF

p(Zt |m,Xt). This observation model allows integrating the measurements into a probabilistic

map representation using Bayesian updates. The goal is to construct a multi-class map m based

on the labeled range measurements.

Problem 1. Let pt(m) := p(m |Z1:t ,X1:t) be the PMF of the map m given the robot trajectory

X1:t and observations Z1:t up to time t. Given a new observation Zt+1 obtained from robot pose

Xt+1, find the Bayesian update to the map PMF:

pt+1(m) ∝ p(Zt+1|m,Xt+1)pt(m). (3.1)

We assume that the robot pose is known and omit the dependence of the map distribution

and the observation model on it for brevity. In the next section, we generalize the log-odds

occupancy mapping method discussed in Chapter 2 to multi-class voxel maps. In Sec. 3.4, we

present a multi-class extension of the octomap [70] algorithm that enables real-time mapping of

large 3-D environments. Finally, in Sec. 3.5, we demonstrate the performance of our approach in

simulated and real-world experiments.
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3.3 Bayesian Multi-Class Voxel Mapping

This section derives the Bayesian update in (3.1), using a multinomial logit model to

represent the map PMF pt(m) where each cell mi of the map stores the probability of object

classes in K . To ensure that the number of parameters in the model scales linearly with the map

size N, we maintain a factorized PMF over the cells:

pt(m) =
N

∏
i=1

pt(mi). (3.2)

We represent the individual cell PMFs pt(mi) over the semantic categories K using a vector of

log odds:

ht,i :=
[

log pt(mi=0)
pt(mi=0) · · · log pt(mi=K)

pt(mi=0)

]⊤
∈ RK+1, (3.3)

where the free-class likelihood pt(mi = 0) is used as a pivot. Given the log-odds vector ht,i, the

PMF of cell mi may be recovered using the softmax function σ : RK+1 7→ RK+1:

pt(mi = k) = σk+1(ht,i) :=
e⊤k+1 exp(ht,i)

1⊤ exp(ht,i)
, (3.4)

where ek is the standard basis vector with k-th element equal to 1 and 0 elsewhere, 1 is the vector

with all elements equal to 1, and exp(·) is applied element-wise to the vector ht,i. To derive

Bayes rule for the log-odds ht,i, we need to specify an observation model for the range and

category measurements.

Definition 2. The inverse observation model of a range-category measurement z obtained from

robot pose X along sensor ray η with respect to map cell mi is a PMF p(mi|z;X,η).

The Bayesian update in (3.1) for ht,i can be obtained in terms of the range-category

inverse observation model, evaluated at a new measurement set Zt+1.

Proposition 1. Let ht,i be the log odds of cell mi at time t. Given sensor observation Zt+1, the
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Figure 3.2. Illustration of the Bayesian multi-class mapping given a range-category observation
zt+1 = (rt+1,yt+1) for an environment with object classes of white (free class), red, and blue,
encoded as y = 0, y = 1, and y = 2, respectively: (a) Portion of the map m along the observation
zt+1. Each cell has a multi-class log-odds vector ht,i ∈ R3 for i ∈ {1, . . . ,5} at time t. The cell
brightness encodes the occupancy probability, while the cell color represents the most likely
category; (b) Map estimate at time t + 1 after update with zt+1. Note how each multi-class
log-odds vector changes based on the inverse observation model li(zt+1); (c) Second and third
elements of the inverse observation log-odds vector li(zt+1) for i = 3 as a function of range r
and category y in observation zt+1. Note that the first element of li(zt+1) is always zero.

posterior log-odds are:

ht+1,i = ht,i + ∑
z∈Zt+1

(li(z)−h0,i) (3.5)

where li(z) is the inverse observation model log odds:

li(z) :=
[

log p(mi=0|z)
p(mi=0|z) · · · log p(mi=K|z)

p(mi=0|z)

]⊤
. (3.6)

Proof. See Appendix A.

To complete the Bayesian multi-class mapping algorithm suggested by (3.5) we need a

particular inverse observation model. When a sensor measurement is generated, the sensor ray
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continues to travel until it hits an obstacle of category K \{0} or reaches the maximum sensing

range rmax. The labeled range measurement z = (r,y) obtained from position p with orientation

R indicates that map cell mi is occupied if the measurement end point p+ r
rmax

Rη lies in the cell.

If mi lies along the sensor ray but does not contain the end point, it is observed as free. Finally, if

mi is not intersected by the sensor ray, no information is provided about its occupancy. The map

cells along the sensor ray can be determined by a rasterization algorithm, such as Bresenham’s

line algorithm [24]. We parameterize the inverse observation model log-odds vector in (3.6) as:

li((r,y)) :=


φ
++Ey+1ψ+, r indicates mi is occupied,

φ
−, r indicates mi is free,

h0,i, otherwise,

(3.7)

where Ek := eke⊤k and ψ+,φ−,φ+ ∈ RK+1 are parameter vectors, whose first element is 0 to

ensure that li(z) is a valid log-odds vector. This parameterization leads to an inverse observation

model p(mi = k|z) = σk+1(li(z)), which is piece-wise constant along the sensor ray. Fig. 3.2

illustrates our Bayesian multi-class mapping method.

This section described how an observation affects the map PMF pt(m). Now, we switch

our focus to proposing a multi-class version of the octomap technique, where map cells with

equal multi-class probabilities can be compressed into a larger voxel.

3.4 Octree Compression

Utilizing a regular-grid discretization to represent a 3-D environment has prohibitive

storage and computation requirements. Large continuous portions of many real environments are

unoccupied, suggesting that adaptive discretization is significantly more efficient. Octomap [70]

is a probabilistic 3-D mapping technique that utilizes an octree data structure to obtain adaptive

resolution, e.g., combining many small cells associated with free space into few large cells. An
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octree is a hierarchical data structure containing nodes that represent a section of the physical

environment. Each node has either 0 or 8 children, where the latter corresponds to the 8 octants

of the Euclidean 3-D coordinate system. Thus, the children of a parent node form an eight-way

octant partition of the space associated with the parent node. Fig. 3.3 shows an example of a

multi-class octree data structure.

We implement a SemanticOcTreeNode class as a building block of the multi-class octree

structure. A SemanticOcTreeNode instance stores occupancy, color, and semantic information of

its corresponding physical space, as shown in Fig. 3.3c. The most important data members of the

SemanticOcTreeNode class are:

• children: an array of pointers to SemanticOcTreeNode storing the memory addresses of

the 8 child nodes,

• value: a float variable storing the log-odds occupancy probability of the node,

• color: a ColorRGB object storing the RGB color of the node,

• semantics: a SemanticLogOdds object maintaining a categorical probability distribution

over the semantic labels in the form of a log-odds ratio.

For performance reasons, the SemanticLogOdds class only stores the multi-class log-odds for the

3 most likely class labels, with each label represented by a unique RGB color. In this case, the

log-odds associated with the rest of the labels lump into a single others variable. This relives

the multi-class octree implementation from dependence on the number of labels that the object

classifier can detect. Moreover, it significantly improves the speed of the mapping algorithm in

cases with many semantic categories. See Sec. 3.5.3 for an analysis of mapping time versus the

number of stored classes.

The implementation of the multi-class octree is completed by defining a SemanticOcTree

class, which is derived from the OccupancyOcTreeBase class of the octomap library [70] and uses

a SemanticOcTreeNode as its node type. Fig. 3.3b illustrates the derivation of the SemanticOcTree

29



Pruning

Leaf 
Node

Inner 
Node

(a)

OcTreeDataNode

value: T
childPtr: OcTreeDataNode<T>**

ColorOcTreeNode

color: ColorRGB

OcTreeNode

value: float

OccupancyOcTreeBase

OcTree

root: OcTreeNode*

ColorOcTree

root: ColorOcTreeNode*

OcTreeBase

root: T*

AbstractOcTree

SemanticOcTreeNode

semantics: SemanticLogOdds

SemanticOcTree

root: SemanticOcTreeNode*

Multi-class OcTree Implementation

(b)

children

SemanticOcTreeNode**float32

value

ColorRGB

colorsemantics

SemanticLogOdds

uint8 uint8 uint8

r g b

float32

others

ColorRGB ColorRGB ColorRGB

float32float32

data

 
 

label

logOdds

 
 
 

float32

 
 
 

(c)

Figure 3.3. Semantic octree data structure: (a) A white circle represents an inner node such
that its children collectively cover the same physical space as the inner node itself. A colored
square represents a partition of the 3-D space where all downstream nodes contain identical
semantic and occupancy values; therefore, they can be pruned into a leaf node. Lastly, black dots
represent unexplored spaces of the environment. (b) UML diagram showing the class inheritance
used for the implementation of a semantic octree. (c) geometric representation of the same octree
as above with an overview of the SemanticOcTreeNode class.
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Algorithm 1. Multi-Class Octree Update of Node ni

Input: octree node ni, observation z = (r,y), mixing coefficient α

1: s = ni.semantics, s.d = ni.semantics.data, s.o = ni.semantics.others
2: if z indicates free then Update s with φ−

3: else if z indicates class y then
4: if class y is among the 3 most likely classes in s then Update s with φ

++Ey+1ψ+

5: else
6: haux = s.o+ logα ▷ Derive haux as a portion α of others class
7: s.o += φ

+
others + log(1−α), sc = CONCAT(s.d,(y,haux))

8: Update sc with φ
++Ey+1ψ+

9: Perform descending sort on sc with respect to log-odds values
10: s.d = sc[0 : 2] ▷ Pick 3 most likely classes
11: s.o = log

(
exp(sc[3])+ exp(s.o)

)
▷ Combine the least likely class with others class

12: s f ←min
{

max
{

s f ,s
}
,s
}

▷ Apply thresholds s and s for log-odds values
13: ni.semantics = s
14: return ni

and SemanticOcTreeNode classes as a UML diagram.

In order to register a new observation to a multi-class octree, we follow the standard

ray-casting procedure over an octree, as in [70], to find the observed leaf nodes. Then, for each

observed leaf node, if the observation demands an update, the leaf node is recursively expanded

to the smallest resolution and the multi-class log-odds of the downstream nodes are updated

using (3.5). At the ray’s end point, which indicates an occupied cell, we also update the color

variable by averaging the observed color with the current stored color of the corresponding node.

Alg. 1 details the Bayesian update procedure for the multi-class octree.

To obtain a compressed octomap, it is necessary to define a rule for information fusion

from child nodes towards parent nodes. Depending on the application, different information

fusion strategies may be implemented. For example, a conservative strategy would assign the

multi-class log-odds of the child node with the highest occupancy probability to the parent node.

In our work, we simply assign the average log-odds vector of the child nodes to their parent node

as shown in Alg. 2. The benefit of an octomap representation is the ability to combine similar

cells (leaf nodes) into a large cell (inner node). This is called pruning the octree. Every time after
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Algorithm 2. Semantic Fusion of Two Child Nodes
Input: octree nodes ni and n j

1: si = ni.semantics, s j = n j.semantics
2: K f = UNIQUECLASS(si,s j) ▷ Non-repeating list of classes in si and s j
3: s f = SemanticLogOdds() ▷ Object instantiation for the fused semantics
4: ▷ Slice si.o into smaller probabilities
5: oi = si.o− log(1+K f .size− si.d.size), o j = s j.o− log(1+K f .size− s j.d.size)
6: for y ∈K f do
7: if y /∈ si.d.label∧ y ∈ s j.d.label then s f .d.APPEND(y, oi+s j.d[y].logOdds

2 )

8: else if y ∈ si.d.label∧ y /∈ s j.d.label then s f .d.APPEND(y, si.d[y].logOdds+o j
2 )

9: else s f .d.APPEND(y, si.d[y].logOdds+s j.d[y].logOdds
2 )

10: Perform descending sort on s f .d with respect to log-odds values
11: expOthers = exp(oi+o j

2 )
12: for i > 3 do expOthers += exp(s f .d[i].logOdds)

13: s f .d[3 : end].REMOVE(), s f .o = log(expOthers), s f ←min
{

max
{

s f ,s
}
,s
}

14: return s f

an observation is integrated to the map, starting from the deepest inner node, we check for each

inner node if 1) the node has 8 children, 2) its children do not have any children of their own,

and 3) its children all have equal multi-class log-odds. If an inner node satisfies all of these three

criteria, its children are pruned and the inner node is converted into a leaf node with the same

multi-class log-odds as its children. This helps to compress the majority of the free cells into a

few large cells, while the occupied cells usually do not undergo pruning since only their surfaces

are observed by the sensor and their inside remains an unexplored region. Due to sensor noise, it

is unlikely that cells belonging to the same class (e.g., free or occupied by the same obstacle)

attain identical multi-class log-odds. Maximum and minimum limits for the elements of the

multi-class log-odds are used so that each cell arrives at a stable state as its multi-class log-odds

entries reach the limits. Stable cells are more likely to share the same multi-class probability

distribution, consequently increasing the chance of octree pruning. However, thresholding causes

loss of information near pt(mi = k) = 1, k ∈K which can be controlled by the maximum and

minimum limits.
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3.5 Experiments

In this section, we utilize our proposed semantic octree mapping technique in simulated

and real-world scenarios in order to demonstrate large-scale environment modeling. In Sec. 3.5.1

we use a 3-D simulation environment in order to generate sensor observations, while in Sec. 3.5.2

we test our mapping in a real environment using a ground wheeled robot. Finally, in Sec. 3.5.3,

we investigate the influence of the number of stored semantic classes on mapping performance.

An open-source implementation of semantic octree mapping is available on GitHub1.

3.5.1 3-D Mapping in Unity Simulation

We evaluate semantic octree mapping in a photo-realistic 3-D Unity simulation, shown

in Fig. 3.4a. We use a Husky robot equipped with an RGBD camera and run a semantic seg-

mentation algorithm over the RGB images. We choose a voxel size of 0.5m in all experiments.

The range measurements have an additive Gaussian noise of N (0,0.1) and the semantic seg-

mentation algorithm detects the true class with a probability of 0.95 while the misclassification

happens uniformly in the pixel space. The robot autonomously navigates within the simulation

environment using an exploration algorithm detailed in Chapter 4. Fig. 3.4b shows the estimated

semantic octree map.

3.5.2 3-D Mapping in a Real-World Outdoor Environment

We deployed our semantic OcTree mapping approach on a Husky robot equipped with

an Ouster OS1-32 LiDAR and an Intel RealSense D455 RGBD camera. Our software stack is

implemented using the Robot Operating System (ROS) [120]. The LiDAR is used for localization

via iterative closest point (ICP) scan matching [31]. A neural network based on a FCHarDNet

architecture [32] and trained on the RUGD dataset [158] was used for semantic segmentation.

The RGBD camera produces color and depth images with size 640×480 at 30 frames per second.

The semantic segmentation algorithm takes a 2-D color image and outputs a semantic label for
1https://github.com/ExistentialRobotics/SSMI.
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(a) Photo-realistic Unity simulation environment (b) Estimated multi-class occupancy map

Figure 3.4. Multi-class mapping in a simulated Unity environment. The robot is equipped with
an RGBD sensor and runs semantic segmentation. Different colors represent different semantic
categories (grass, dirt road, building, etc.).

each pixel in the image, at an average frame rate of 28.7 frames per second. By aligning the

semantic image and the depth map, we derive a semantic 3-D point cloud which is utilized for

Bayesian multi-class mapping. Our implementation was able to update the semantic octomap

every 0.12 s, on average, while all of the computations where performed on the mobile robot.

The experiment was carried out in an approximately 6 acre forested area shown in Fig. 3.5a. The

environment contained various terrain features, including asphalt road, gravel, grass, densely

forested areas, and hills. Additionally, a number of buildings and other structures such as

bleachers, tents, and cars add to the diversity of the type of object categories within the locale.

The robot was manually controlled via joystick, and traveled the path shown in Fig. 3.5a (left)

while incrementally building the semantic octomap. Fig. 3.5b shows the semantic mapping result

overlaying the satellite image obtained via 2-D projection of the semantic octomap. We computed

the memory size of the semantic octomap, and compared it with the corresponding regular voxel

grid representation, where each voxel contains the same amount of data as an OcTree leaf node at

the lowest depth. Fig. 3.5c shows an almost five-fold saving in memory when using OcTree data

structure. The importance of the memory savings of the octomap representation becomes more

apparent when communication is considered. Our semantic octomap implementation resulted
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Figure 3.5. Outdoor semantic octree mapping experiment: (a) Satellite image of the experiment
locale with robot trajectory shown in yellow and corresponding locations from the ground level
point of view. (b) Semantic mapping output overlaying the satellite image. The map is obtained
via 2-D projection of the 3-D map. (c) Memory use of regular grid vs. semantic octomap.

in a network bandwidth requirement of 238 KB/s for octomap, whereas a regular grid required

1173 KB/s for map communication.

3.5.3 Mapping Time vs. Number of Stored Classes

We analyse the influence of the number of stored classes in the semantic octomap on the

mapping time. Let Ks denote the number of stored semantic classes. Alg. 1 has O(Ks) memory

and O(Ks logKs) computational complexity (due to sorting in line 9). Furthermore, let pmiss be

the misclassification probability assumed to be uniformly distributed among all incorrect classes.
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Figure 3.6. Mapping time vs. number of stored classes. Left: Robot trajectory (in green) used
for all mapping frequency evaluations. Right: Average mapping frequency as a function of the
number of stored semantic classes Ks.

Regarding accuracy, for a classifier with pmiss <
K−1

K , where K is the number of all object classes,

the true class will be always asymptotically recoverable as long as Ks ≥ 2, thanks to the auxiliary

others class that stores the accumulated probability of the K−Ks least likely classes (see line

11 of Alg. 1). In general, Ks controls how fast the true class will be detected with the cost of

additional memory use and computation. In order to quantitatively evaluate the effect of Ks on

mapping time, we consider the same simulated Husky robot as Sec. 3.5.1 with a fixed trajectory,

shown in Fig. 3.6 (left), and measure the mapping frequency as a function of Ks. Fig. 3.6 (right)

shows the decrease in average mapping frequency as Ks increases. It is important to mention that

the trajectory along which the data is collected only visits 6 object classes, which explains the

change in slope for Ks > 6.

3.6 Summary

This chapter developed techniques for Bayesian multi-class mapping of 3-D environments

using range and semantic segmentation observations. By utilizing the octree data structure, we

implement a real-time, memory efficient, and yet accurate mapping technique which is capable

of representing very large scenes. As demonstrated in simulated and real-world experiments, our

probabilistic approach for semantic map estimation provides robustness against the domain shift

caused by the difference between the classification training data and the testing environment.
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Chapter 4

Information-Theoretic Exploration

Robots are increasingly expected to operate in unknown environments, with little to no

prior information, in applications such as disaster response, environmental monitoring, and re-

connaissance. Autonomous robot operation in unstructured and unknown environments requires

efficient techniques for mapping and exploration using streaming range and visual observa-

tions. Information-based exploration techniques, such as Cauchy-Schwarz quadratic mutual

information (CSQMI) [35] and fast Shannon mutual information (FSMI) [170], have success-

fully achieved active binary occupancy mapping with range measurements. However, as we

envision robots performing complex tasks specified with semantically meaningful concepts, it

is necessary to capture semantics in the measurements, map representation, and exploration

objective. This chapter presents Semantic Shannon Mutual Information (SSMI) computation

for robot exploration, based on the papers [8] and [6]. Our main contribution is derivation of a

closed-form efficiently-computable lower bound of the Shannon mutual information between

a multi-class octomap and a set of range-category measurements using semantic run-length

encoding of the sensor rays. The bound allows rapid evaluation of many potential robot trajecto-

ries for autonomous exploration, while taking collision and visibility constraints into account.

Unlike traditional class-agnostic exploration methods such as [35, 76, 170], our multi-class

information measure captures the uncertainty of different semantic classes, leading to faster and

more accurate exploration. Furthermore, the proposed approach relies on general range and class
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measurements and general pose kinematics, making it suitable for either ground or aerial robots,

equipped with either camera or LiDAR sensors, exploring either indoor or outdoor environments.

4.1 Related Works

Frontier-based exploration [161] is a seminal work that highlighted the utility of au-

tonomous exploration and active mapping. It inspired methods [26, 63] that rely on geometric

features, such as the boundaries between free and unknown space (frontiers) and the volume

that would be revealed by new sensor observations. Due to their intuitive formulation and

low computational requirements, geometry-based exploration methods continue to be widely

employed in active perception. Recent works include semantics-assisted indoor exploration [62],

hex-decomposition-based coverage planning [77], and Laplace potential fields for safe outdoor

exploration [93]. More related to this chapter, receding-horizon “next-best-view” planning [20]

presents an active octree occupancy mapping method which executes trajectories built from a

random tree whose quality is determined by the amount of unmapped space that can be explored.

Similarly, the graph-based exploration methods of [45] and [173] use local random trees in

free space to sample candidate viewpoints for exploration, while a global graph maintains the

connections among the frontiers in the map. Cao et al. [28, 77] introduced hierarchical active

3D coverage and reconstruction which computes a coarse coverage path at the global scale

followed by a local planner that ensures collision avoidance via a high-resolution path. As

shown by Corah and Michael [42], coverage-based exploration strategies can be formulated as

mutual-information maximization policies in the absence of sensor noise. However, in many

real-world circumstances sensor measurements are corrupted by non-trivial noise, reducing the

effectiveness of geometric exploration methods that do not capture probabilistic uncertainty. For

example, due to the domain shift between the training data and the test environment, utilizing

a pre-trained semantic segmentation model in the mapping process requires accounting for

measurement uncertainty in the exploration policy.
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The work by Elfes [55] is among the first to propose an information-based utility func-

tion for measuring and minimizing map uncertainty. Information-based exploration strategies

have been devised for uncertainty minimization in robot localization or environment map-

ping [23, 100, 153]. Information-theoretic objectives, however, require integration over the

potential sensor measurements, limiting the use of direct numerical approximations to short

planning horizons. Kollar and Roy [83] formulated active mapping using an extended Kalman

filter and proposed a local-global optimization, leading to significant gains in efficiency for uncer-

tainty computation and long-horizon planning. Unlike geometry-based approaches, information-

theoretic exploration can be directly formulated for active simultaneous localization and mapping

(SLAM) [13, 29, 30, 154], aiming to determine a sensing trajectory that balances robot state

uncertainty and visitation of unexplored map regions. Stachniss et al. [138] approximate infor-

mation gain for a Rao-blackwellized particle filter over the joint state of robot pose and map

occupancy. Julian et al. [76] prove that, for range measurements and known robot position, the

Shannon mutual information is maximized over trajectories that visit unexplored areas. However,

without imposing further structure over the observation model, computing the mutual information

objective requires numerical integration. The need for efficient mutual information computa-

tion becomes evident in 3-D environments. Cauchy-Schwarz quadratic mutual information

(CSQMI) [35] and fast Shannon mutual information (FSMI) [170] offer efficiently computable

closed-form objectives for active occupancy mapping with range measurements. Henderson et

al. [68] propose an even faster computation based on a recursive expression for Shannon mutual

information in continuous maps.

The recent success of machine learning methods of perception has motivated learning

autonomous exploration policies. Chen et al. [36] attempt to bridge the sim2sim and sim2real

gaps via graph neural networks and deep reinforcement learning. This enables decision-making

over graphs containing relevant exploration information which is provided by human experts in

order to predict a robot’s optimal sensing action in belief space. Lodel et al. [90] introduce a deep

reinforcement learning policy which recommends next best view that maximizes information
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gain via defining mutual information as the training reward. Zwecher et al. [177] employ

deep reinforcement learning to find an exploration policy that plans collision-free coverage

paths, while another neural network provides a predicted full map given the partially observed

environment. Zhang et al. [166] propose a multi-agent reinforcement learning exploration

method where regions of interest, free space, and robots are represented as graph nodes, and

hierarchical-hops graph neural networks (H2GNN) are used to identify key information in the

environment. Related to multi-robot exploration, the authors in [71] utilize an actor-critic strategy

to map an unknown environment, where Voronoi partitioning divides the exploration regions

among the robots. As this chapter demonstrates, incorporating semantic uncertainty in addition to

geometric information in the exploration process can be beneficial. Additionally, using Shannon

mutual information as an objective function may help train more generalizable exploration

policies because it mitigates the need for training sensor-specific models. Hence, the techniques

proposed in our work are complementary to learning approaches and can provide robustness to

measurement uncertainty and domain shift caused by sensor and operational condition variations.

Active semantic mapping has recently attracted much attention due to the proliferation

of fast object detection and semantic segmentation algorithms implemented on mobile robot

platforms. The authors in [152] use a two-layer architecture, where the knowledge representation

layer provides a belief over the environment state to the action layer, which subsequently chooses

an action to gather information or execute a task. The work in [140] presents a semantic

exploration policy which takes an occluded semantic point cloud of an object, finds a match in a

database to estimate the full object dimensions, and then generates candidate next observation

poses to reconstruct the object. The next best view is computed via a volumetric information

gain metric that computes visible entropy from a candidate pose. The semantic map used in

this paper is a collection of bounding boxes around objects. Active semantic mapping has also

been employed to develop sample-efficient deep learning methods. Blum et al. [21] propose an

active learning method for training semantic segmentation networks where the novelty (epistemic

uncertainty) of the input images is estimated as the distance from the training data in the
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embedding space, while a path planning method maximizes novelty of future input images

along the planned trajectory, assuming novel images are spatially correlated. Georgakis et

al. [59] actively train a hierarchical semantic map generation model that predicts occupancy

and semantics given occluded input. The authors use an ensemble of map generation models

in order to predict epistemic uncertainty of the predicted map. The uncertainty is then used

to choose trajectories for actively training the model with new images that differ the most

with the training data of the current model. The work presented in this chapter distinguishes

itself from the aforementioned works by introducing a dense Bayesian multi-class mapping

with a closed-form uncertainty measure, as opposed to sampling-based uncertainty estimation.

Moreover, our information-theoretic objective function,named SSMI, directly models sensor

noise specifications, unlike volumetric information gain.

Our method distinguishes itself from the aforementioned works by introducing a closed-

form uncertainty measure over a dense Bayesian multi-class map, as opposed to sampling-

based uncertainty estimation. Moreover, our information-theoretic objective function directly

models sensor noise specifications, unlike volumetric information gain. The work presented

in this chapter is most related to CSQMI [35] and FSMI [170] in that it develops a closed-

form expression for mutual information. However, instead of a binary map and range-only

measurements, our formulation considers the multi-class octree map introduced in Chapter 3,

built from range and category observations. Since the same occupancy map can be derived from

many different multi-class maps, the information associated with various object classes will fail

to be captured if we solely rely on occupancy information, as the case in CSQMI and FSMI.

Therefore, we expect to perform exploration more efficiently by using the multi-class perception

model, and consequently, expanding the notion of uncertainty to multiple classes.
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4.2 Problem: Shannon Mutual Information between a
Multi-Class Map and Range-Category Observations

Consider a robot with pose Xt ∈ SE(3) at time t and deterministic discrete-time kinemat-

ics:

Xt :=

Rt pt

0⊤ 1

 , Xt+1 = Xt exp(τût), (4.1)

where ut := [v⊤t ,ω⊤t ]⊤ ∈ U ⊂ R6 is the control input, consisting of linear velocity vt ∈ R3

and angular velocity ω t ∈ R3. Moreover, consider the range-category observation model and

Bayesian mapping defined in Sec. 3.2 of Chapter 3, used to estimate a multi-class voxel map via

the update rule of (3.1). We consider the following problem.

Problem 2. Given a prior map PMF pt(m) at time t and a finite planning horizon T , maximize

the ratio:

max
ut:t+T−1

I (m;Zt+1:t+T |Z1:t)

J(Xt:t+T−1,ut:t+T−1)
subject to (4.1), (3.1), (4.2)

of the mutual information I (m;Zt+1:t+T |Z1:t) between the map m and future sensor observa-

tions Zt+1:t+T to the motion cost J(Xt:t+T−1,ut:t+T−1) of the control sequence ut:t+T−1.

The definitions of the mutual information and motion cost terms in (4.2) are:

I (m;Zt+1:t+T |Z1:t) := ∑
m∈K N

∫
· · ·
∫

p(m,Zt+1:t+T |Z1:t)

× log
p(m,Zt+1:t+T |Z1:t)

p(m|Z1:t)p(Zt+1:t+T |Z1:t)

T

∏
τ=1

∏
b

dzt+τ,b, (4.3)

J(Xt:t+T−1,ut:t+T−1) := q(Xt+T )+
T−1

∑
τ=0

c(Xt+τ ,ut+τ),

where the integration in (4.3) is over all possible values of all sensor beams over all times zt+τ,b,

and the strictly positive terms q(X) and c(X,u) model terminal and stage motion costs (e.g.,

distance traveled, elapsed time), respectively.
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We derive an efficient approximation to the mutual information term in Sec. 4.3. In

Sec. 4.4, we present a fast computation of mutual information over a semantic octree map

using run-length encoding. This allows autonomous exploration of large 3-D environments by

rapidly evaluating potential robot trajectories online and (re-)selecting the one that maximizes

the objective in (4.2). Finally, in Sec. 4.5, we demonstrate the performance of our approach, and

compare with state-of-the-art techniques in a comprehensive set of 2-D and 3-D experiments.

4.3 Semantic Shannon Mutual Information

Proposition 1 in Chapter 3 allows a multi-class formulation of occupancy grid mapping,

where the uncertainty of a map cell depends on the probability of each class pt(mi = k), instead

of only the binary occupancy probability 1− pt(mi = 0). Moreover, the inverse observation

model in (3.7) may contain different likelihoods for the different classes which can be used to

prioritize the information gathering for specific classes. Fig. 4.1a shows an example where the

estimated map of an environment with 3 classes, free, class1, class2, contains two regions with

similar occupancy probability but different semantic uncertainty. In particular, the red and green

walls have the same occupancy probability of 0.9, as shown in Fig. 4.1b, but the red region more

certainly belongs to class1 and the green region has high uncertainty between the two classes.

As can be seen in Fig. 4.1c, the mutual information associated with a binary occupancy map

cannot distinguish between the red and green regions since they both have the same occupancy

probability. In contrast, the multi-class map takes into account the semantic uncertainty among

different categories, as can be seen in Fig. 4.1d where the uncertain green region has larger

mutual information than the certain red region.

These observations suggest that more accurate uncertainty quantification may be achieved

using a multi-class instead of a binary perception model, potentially enabling a more efficient

exploration strategy. However, computing the mutual information term in (4.3) is challenging

because it involves integration over all possible values of the observation sequence Zt+1:t+T .
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Figure 4.1. Comparison between the information surfaces of binary and multi-class map
representations. (a) Environment with three classes free, class1, and class2 where the white
and gray regions represent free and unknown space, respectively, with pwhite(mi) = [1,0,0]
and pgray(mi) = [0.3,0.3,0.3]. The red and green regions have the same occupancy probability
of p(mi = occupied) = 0.9 but different class uncertainty, i.e., pred(mi) = [0.1,0.8,0.1] and
pgreen(mi) = [0.1,0.45,0.45]. (b) Binary occupancy map, where the intensity of each pixel is
proportional to its occupancy probability, regardless of object class. (c) Occupancy mutual
information surface. (d) Semantic mutual information surface. Each pixel in the information
surfaces shows the value of mutual information between the map and a set of range-category
observations, uniformly sampled from a 360◦ field of view at each pixel location.

Our main result in this section is an efficiently-computable lower bound on I (m;Zt+1:t+T |Z1:t)

for range-category observations Zt+1:t+T and a multi-class occupancy map m.

To compute the mutual information between an observation sequence Zt+1:t+T and

the map m, we need the PDF of a range-category measurement zτ,b ∈ Zt+1:t+T conditioned

on Z1:t . Let Rτ,b(r) ⊂ I denote the set of map cell indices along the ray Rτηb from robot

position pτ with length r. Let γτ,b(i) denote the distance traveled by the ray Rτηb within cell

mi and i∗
τ,b ∈Rτ,b(r) denote the index of the cell hit by zτ,b. We define the PDF of zτ,b = (r,y)

conditioned on Z1:t as:

p(zτ,b|Z1:t) =
pt(mi∗

τ,b
= y)

γτ,b(i∗τ,b)
∏

i∈Rτ,b(r)\{i∗τ,b}
pt(mi = 0). (4.4)

This definition states that the likelihood of zτ,b = (r,y) at time t depends on the likelihood that

the cells mi along the ray Rτηb of length r are empty and the likelihood that the hit cell mi∗
τ,b

has class y. A similar model for binary observations has been used in [35, 76, 170]. Moreover,

we select a subset Z t+1:t+T =
{

zτ,b
}t+T,B

τ=t+1,b=1 of the observations Zt+1:t+T in which the sensor
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rays are non-overlapping. Precisely, any pair of measurements zτ,b, zτ ′,b′ ∈Z t+1:t+T satisfies:

Rτ,b(rmax)∩Rτ ′,b′(rmax) = /0. (4.5)

In practice, constructing Z t+1:t+T requires removing intersecting rays from Zt+1:t+T to ensure

that the remaining observations are mutually independent. The mutual information between

m and Z t+1:t+T can be obtained as a sum of mutual information terms between single rays

zτ,b ∈Z t+1:t+T and map cells mi observed by zτ,b. This idea is inspired by CSQMI [35] but we

generalize it to multi-class observations and map.

Proposition 2. Given a sequence of labeled range observations Zt+1:t+T , let Z t+1:t+T ={
zτ,b
}t+T,B

τ=t+1,b=1 be a subset of non-overlapping measurements that satisfy (4.5). Then, the

Shannon mutual information between Zt+1:t+T and a multi-class occupancy map m can be

lower bounded as:

I(m;Zt+1:t+T |Z1:t)≥ I (m;Z t+1:t+T |Z1:t) =
t+T

∑
τ=t+1

B

∑
b=1

K

∑
k=1

Nτ,b

∑
n=1

pτ,b(n,k)Cτ,b(n,k), (4.6)

where Nτ,b := |Rτ,b(rmax)|,

pτ,b(n,k) := pt(mi∗
τ,b

= k) ∏
i∈R̃τ,b(n)\{i∗τ,b}

pt(mi = 0),

Cτ,b(n,k) := f (φ++Ek+1ψ
+−h0,i∗

τ,b
,ht,i∗

τ,b
)+ ∑

i∈R̃τ,b(n)\{i∗τ,b}
f (φ−−h0,i,ht,i),

f (φ ,h) := log
(

1⊤ exp(h)
1⊤ exp(φ +h)

)
+φ

⊤
σ(φ +h),

and R̃τ,b(n) ⊆ Rτ,b(rmax) is the set of the first n map cell indices along the ray Rτηb, i.e.,

R̃τ,b(n) := {i | i ∈Rτ,b(r), |Rτ,b(r)|= n,r ≤ rmax}.

Proof. See Appendix B.

In (4.6), pτ,b(n,k) represents the probability that the n-th map cell along the ray Rτηb

46



belongs to object category k while all of the previous cells are free. The function f (φ ,h) denotes

the log-ratio of the map PMF σ(h) and its posterior σ(φ +h), averaged over object categories in

K (see (B.3) in Appendix B for more details). As a result, Cτ,b(n,k) is the sum of log-ratios for

the first n cells along the ray Rτηb under the same event as the one pτ,b(n,k) is associated with.

Therefore, the lower bound I (m;Z t+1:t+T |Z1:t) is equivalent to the expectation of summed

log-ratios Cτ,b(n,k) over all possible instantiations of the observations in Z t+1:t+T .

Proposition 2 allows evaluating the informativeness according to (4.2) of any potential

robot trajectory Xt:t+T , ut:t+T−1. In order to perform informative planning, first, we identify the

boundary between the explored and unexplored regions of the map, similar to [161]. This can

be done efficiently using edge detection, for example. Then, we cluster the corresponding map

cells by detecting the connected components of the boundary. Each cluster is called a frontier.

A motion planning algorithm is used to obtain a set of pose trajectories to the map frontiers,

determined from the current map PMF pt(m). Alg. 3 summarizes the procedure for determining

a trajectory X∗t:t+T , u∗t:t+T−1 that maximizes the objective in (4.2), where J(Xt:t+T−1,ut:t+T−1)

is the length of the corresponding path. This kinematically feasible trajectory can be tracked by

a low-level controller that takes the robot dynamics into account.

Evaluation of the mutual information lower bound in Proposition 2 can be accelerated

without loss in accuracy for map cells along the observation rays that contain equal PMFs. In the

next section, we investigate this property of the proposed lower bound within the context of the

semantic octree representation introduced in the previous chapter. In particular, a fast semantic

mutual information formula is presented based on compression of range-category ray-casts over

octree representations.
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Algorithm 3. Information-Theoretic Path Planning

Input: robot pose Xt , map estimate pt(m)
1: F = FINDFRONTIERS(pt(m))
2: for f ∈F do
3: Xt+1:t+T ,ut:t+T−1 = PLANPATH(Xt , pt(m), f )
4: Compute (4.2) over Xt:t+T ,ut:t+T−1 via (4.6)
5: return X∗t:t+T , u∗t:t+T−1 with the highest value

4.4 Semantic Ray-Length Encoding for Octree Representa-
tions

A ray cast through an octree representation may visit several large cells within which the

class probabilities are homogeneous. We exploit this property to obtain the mutual information

between a multi-class octomap and a single ray as a summation over a subset of octree leaf nodes

instead of individual map cells. This simplification provides a significant performance gain with

no loss of accuracy. The following formulation can be considered a multi-class generalization

of the run-length encoding technique introduced by [170], using the mutual information lower

bound in (4.6) and the multi-class OcTree defined in Chapter 3.

Suppose that the map cells along a single beam Rτηb have piecewise-constant multi-

class probabilities such that the set {mi | i ∈Rτ,b(rmax)} can be partitioned into Qτ,b groups of

consecutive cells indexed by Rq
τ,b(rmax), q = 1, . . . ,Qτ,b, where:

pt(mi = k) = pt(m j = k), ∀i, j ∈Rq
τ,b(rmax), ∀k ∈K . (4.7)

In this case, the log-odds probabilities encountered by a ray cast can be compressed using

semantic run-length encoding, defined as below.

Definition 3. A semantic run-length encoding (SRLE) of a ray Rτηb cast through a multi-class

octree is an ordered list of tuples of the form [(ωτ,b,q,χ t,q)]
Qτ,b
q=1, where ωτ,b,q and χ t,q respectively

represent the width and the log-odds vector of the intersection between the ray and the cells in

Rq
τ,b(rmax). The width ωτ,b,q is the number of octree elements along the ray intersection, where
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Figure 4.2. Ray cast representation as semantic run-length encoding (SRLE). The multi-class
log-odds χ t,q are uniform within each cube. The voxel corresponding to q = 2 is unexplored,
hence its multi-class log-odds are denoted as χ0,2.

an octree element is a cell with the smallest physical dimensions.

Fig. 4.2 shows an example of SRLE over a semantic octomap. While SRLE can be

used in a uniform-resolution grid map, it is particularly effective of a multi-class octree, which

inherently contains large regions with homogeneous multi-class log-odds. Additionally, the

octree data structure allows faster ray casting since it can be done over octree leaf nodes [3, 125],

instead of a uniform-resolution grid as in [24].

SRLE ray casting delivers substantial gains in efficiency for mutual information compu-

tation since the contribution of each group {mi | i ∈Rq
τ,b(rmax)} in the innermost summation of

(4.6) can be obtained in closed form.

Proposition 3. The Shannon mutual information between a single range-category measurement
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zτ,b and a semantic octomap m can be computed as:

I(m;zτ,b|Z1:t) =
K

∑
k=1

Qτ,b

∑
q=1

ρτ,b(q,k)Θτ,b(q,k) (4.8)

where Qτ,b is the number of partitions along the ray Rτηb that have identical multi-class

log-odds and the multi-class probabilities for each partition are denoted as:


πt(q,k) = pt(mi = k)

χ t,q = ht,i

∀i ∈Rq
τ,b(rmax).

Furthermore, defining ωτ,b,q = |Rq
τ,b(rmax)| as the width of q-th partition, we have:

ρτ,b(q,k) := πt(q,k)
q−1

∏
j=1

π
ωτ,b, j
t ( j,0),

Θτ,b(q,k) := βτ,b(q,k)
1−π

ωτ,b,q
t (q,0)

1−πt(q,0)
+

f (φ−−χ0,q,χ t,q)

(1−πt(q,0))2

[
(ωτ,b,q−1)π

ωτ,b,q+1
t (q,0)

−ωτ,b,qπ
ωτ,b,q
t (q,0)+πt(q,0)

]
,

βτ,b(q,k) := f (φ++Ek+1ψ
+−χ0,q,χ t,q)+

q−1

∑
j=1

ωτ,b, j f (φ−−χ0, j,χ t, j).

Proof. See Appendix C.

In (4.8), ρτ,b(q,k) relates to the event that the partition Rq
τ,b(rmax) belongs to category

k while all of the previous partitions along the ray Rτηb are free. Analogous to the definition

of Cτ,b(n,k) in Proposition 2, βτ,b(q,k) is the weighted sum of log-ratios f (φ ,χ) for the first

q partitions along the ray Rτηb under the same event as the one ρτ,b(q,k) is associated with.

Accumulating the multi-class probabilities within the partition Rq
τ,b(rmax) yields Θτ,b(q,k), see

(C.5) for more details. Therefore, the mutual information in (4.8) is equivalent to the expectation

of accumulated log-ratios Θτ,b(q,k) over all possible instantiations of zτ,b.

Proposition 3 allows an extension of the mutual-information lower bound in Proposition 2
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to semantic octomap representations, summarized in the corollary below. The proof follows

directly from the additive property of mutual information between a semantic octomap and a

sequence of independent observations.

Corollary 1. Given a sequence of range-category observations Zt+1:t+T , the Shannon mutual

information between Zt+1:t+T and a semantic octomap m can be lower bounded as:

I(m;Zt+1:t+T |Z1:t)≥ I (m;Z t+1:t+T |Z1:t) =
t+T

∑
τ=t+1

B

∑
b=1

K

∑
k=1

Qτ,b

∑
q=1

ρτ,b(q,k)Θτ,b(q,k), (4.9)

where Z t+1:t+T is a subset of non-overlapping measurements that satisfy (4.5), and ρτ,b(q,k)

and Θτ,b(q,k) are defined in Proposition 3.

The same approach as in Alg. 3 is used for autonomous exploration over a semantic

octomap. However, we employ the information computation formula of (4.9) to quantify the

informativeness of candidate robot trajectories. The active mapping method in Alg. 3 provides

a greedy exploration strategy, which does not change subsequent control inputs based on the

updated map distribution. Greedy exploration may be sub-optimal and manifests itself as

back and forth travel between map frontiers. We alleviate this behavior by (a) computing the

information along the whole trajectory as opposed only at the frontiers or next best view, and

(b) re-plan frequently to account for the updated map distribution. Discounted by distance

traveled as the cost of a trajectory, this leads to a more accurate calculation of information gain

along a candidate path which rules out most of the back and forth visiting behaviour. It is also

important to mention that the main scope of this chapter is introduction of the mutual information

between a multi-class semantic octree representation and range-category observations. Our

method enables fast and accurate evaluation of information for any set of candidate trajectories,

likes of which can be generated by random tree methods [128, 170] or hierarchical planning

strategies [28] or, in the simplest form, a greedy approach that computes paths to each frontier.

We believe utilizing our proposed information measure to score candidate viewpoints would
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be complementary, rather than an alternative, to the state-of-the-art exploration methods that

use sophisticated optimization strategies [28, 45]. In the next two chapters, we show how our

proposed semantic mutual information formula can be employed alongside optimization-based

path planning approaches.

4.4.1 Computational Complexity

Note that the mutual information computations in both (4.6) and (4.9) can be performed

recursively. For (4.6), we have:

pτ,b(n+1,k) = pτ,b(n,k)
pt(m j∗

τ,b
= k)pt(mi∗

τ,b
= 0)

pt(mi∗
τ,b

= k)
,

Cτ,b(n+1,k) =Cτ,b(n,k)− f (φ++Ek+1ψ
+−h0,i∗

τ,b
,ht,i∗

τ,b
) (4.10)

+ f (φ++Ek+1ψ
+−h0, j∗

τ,b
,ht, j∗

τ,b
)

+ f (φ−−h0,i∗
τ,b
,ht,i∗

τ,b
),

where j∗
τ,b and i∗

τ,b correspond to the index of farthest map cell in R̃τ,b(n+ 1) and R̃τ,b(n),

respectively. A similar recursive pattern can be found in (4.9):

ρτ,b(q+1,k) = ρτ,b(q,k)
πt(q+1,k)π

ωτ,b,q
t (q,0)

πt(q,k)
,

βτ,b(q+1,k) = βτ,b(q,k)− f (φ++Ek+1ψ
+−χ0,q,χ t,q)

+ f (φ++Ek+1ψ
+−χ0,q+1,χ t,q+1)

+ωτ,b,q f (φ−−χ0,q,χ t,q).

(4.11)

This implies that the innermost summations of (4.6) and (4.9) can be obtained in O(Nτ,b) and

O(Qτ,b), respectively, where Nτ,b is the number of map cells along a single ray Rτηb up to

its maximum range, and Qτ,b is the number of groups of consecutive cells that possess the

same multi-class probabilities. In an environment containing K object classes, evaluating the
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informativeness of a trajectory composed of T observations, where each observation contains

B beams, has a complexity of O(T BKNτ,b) for a regular-grid multi-class representation and a

complexity of O(T BKQτ,b) for a multi-class octree representation.

As we demonstrate in Sec. 4.5.3, for a ray Rτηb we often observe that Qτ,b is significantly

smaller than Nτ,b thanks to the octree pruning mechanism. Since Nτ,b scales linearly with the

map resolution, the complexity of information computation over a semantic octomap grows

sub-linearly with respect to the inverse of the octree element dimensions, which is a parameter

analogous to the map resolution.

4.5 Experiments

In this section, we evaluate the performance of SSMI in simulated and real-world

experiments. We compare SSMI with two baseline exploration strategies, i.e., frontier-based

exploration [161] and FSMI [170], in a 2-D active binary mapping scenario in Sec. 4.5.1 and a

2-D active multi-class mapping scenario in Sec. 4.5.2. All three methods use our range-category

sensor model in (3.7) and our Bayesian multi-class mapping in (3.5) but select informative

robot trajectories Xt+1:t+T (ut:t+T−1) based on their own criteria. In Sec. 4.5.3, we evaluate the

improvement in ray tracing resulting from SRLE through an experiment in a 3-D simulated Unity

environment. Additionally, in Sec. 4.5.4, we use a similar 3-D simulation environment to apply

SSMI alongside Frontier, FSMI, and hierarchical coverage maximization method TARE [28]. In

this section we use our octree-based multi-class information computation introduced in Sec. 4.4

in order to demonstrate large-scale realistic active multi-class mapping. Finally, Sec. 4.5.5, we

test SSMI exploration in a real environment using a ground wheeled robot. An open-source

implementation of SSMI is available on GitHub1.

In each planning step of 2-D exploration, we identify frontiers by applying edge detection

on the most likely map at time t (the mode of pt(m)). Then, we cluster the edge cells by detecting

the connected components of the boundaries between explored and unexplored space. We plan a
1https://github.com/ExistentialRobotics/SSMI.
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Figure 4.3. Synthetic environments used for comparisons among frontier-based exploration
[161], FSMI [170], and SSMI. Different semantic categories are represented by distinct colors.
Left: An instance of procedurally generated random environment with 10 object classes. Right:
Hand-designed environment with corridor and block structures with 12 object classes.

path from the robot pose Xt to the center of each frontier using A∗ graph search and provide the

path to a low-level controller to generate ut:t+T−1. For 3-D exploration, we first derive a 2-D

occupancy map by projecting the most likely semantic octomap at time t onto the z = 0 surface

and proceed with similar steps as in 2-D path planning.

4.5.1 2-D Binary Exploration

We consider active binary occupancy mapping first. We compare SSMI against Frontier

and FSMI in 1 structured and 10 procedurally generated 2-D environments, shown in Fig. 4.3. A

2-D LiDAR sensor is simulated with additive Gaussian noise N (0,0.1). Fig. 4.4a and Fig. 4.4c

compare the exploration performance in terms of map entropy reduction and percentage of

the map explored per distance traveled among the three methods. SSMI performs similarly to

FSMI in that both achieve low map entropy by traversing significantly less distance compared to

Frontier.
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Figure 4.4. Simulation results for active mapping on the environments in Fig. 4.3, for 20
exploration iterations. Solid and dotted lines represent mean and 1 standard deviation from the
mean, respectively. (a), (b): Exploration performance averaged over 10 random environments
with 3 random starting positions for each instance. Exploration in the random environments
sometimes did not terminate before the maximum number of iterations, and therefore the
corresponding curves do not flatten. This can be attributed to the fact that random maps, with
the same size as the structured map, contain more frontiers that need to be explored in each
iteration since each scan has a higher probability of being occluded in multiple angles due to the
lack of certain patterns such as corridors. (c), (d): Exploration performance on the structured
environment averaged over 3 random starting positions. For the structured map, the exploration
terminates before reaching the maximum number of iterations, which explains the flat curves at
the end of the corresponding plots.

4.5.2 2-D Multi-Class Exploration

Next, we use the same 2-D environments in Fig. 4.3 but introduce range-category

measurements. Range measurements are subject to additive Gaussian noise N (0,0.1), while

category measurements have a uniform misclassification probability of 0.35. Fig. 4.4b and

Fig. 4.4d compare the semantic exploration performance for all three strategies. SSMI reaches

the same level of map entropy as FSMI and Frontier but traverses a noticeably shorter distance.

This can be attributed to the fact that only SSMI distinguishes map cells whose occupancy
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(a) Partially explored
semantic map

(b) Entropy surface (c) Occupancy mutual
information surface

(d) Multi-class mutual
information surface

Figure 4.5. Comparison between different mutual information formulations used for exploration.
(a), (b): A snapshot of 2-D exploration showing the map estimate and the corresponding
uncertainty, where the entropy for each pixel i is computed as (4.12). (c), (d): The mutual
information used to find the informative trajectory by FSMI and SSMI, respectively. Brighter
pixels indicate larger values.

probabilities are the same but their per-class probabilities differ from each other. To further

illustrate this, we visualize the entropy and information surfaces used by FSMI and SSMI.

Fig. 4.5a shows a snapshot of semantic exploration while Fig. 4.5b visualizes the entropy of each

pixel i computed as:

H(mi|Z1:t) =−
K

∑
k=0

pt(mi = k) log pt(mi = k), (4.12)

where Z1:t denote realized observations until time t. The task of exploration can be regarded as

minimizing the conditional entropy summed over all pixels, i.e., map entropy. However, since

the observations are not known in advance, we resort to estimate the reduction in uncertainty

by computing the expectation over the observations. Accounting for the prior uncertainty in

map, we arrive at maximizing mutual information as our objective, which is related to entropy as

follows:

H(mi)−EZ1:t{H(mi|Z1:t)}= I(mi;Z1:t). (4.13)

Therefore, the exploration performance is highly dependent upon the mutual information

formulation, since it directly dictates how the uncertainty is quantified. As shown in Fig. 4.5d and
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Figure 4.6. Variation of the visited octomap cells and octree elements denoted as Q and N,
respectively, with respect to the map resolution. Solid blue and red lines represent the average
values for Q and N over all ray castings, while the dashed lines show one standard deviation
from the average. The green curve shows the total exploration time for each map resolution. All
measurements are accumulated in the course of 5 exploration iterations.

resulted from capturing per-class uncertainties, semantic mutual information of SSMI, computed

in (4.6) provides a smoother and more accurate estimation of information-rich regions compared

to the binary mutual information formula used by FSMI (equation (18) in [170]) shown in

Fig. 4.5c.

4.5.3 SRLE Compression for 3-D Ray Tracing

In this subsection, we evaluate the ray-tracing compression resulting from SRLE through

an experiment in the same photo-realistic 3-D Unity simulation environment used in Chapter 3.

In order to remove irrelevant randomness, the sensors and the semantic segmentation are defined

as error-free. We define map resolution as the inverse of the dimensions of an octree element. For

resolutions ranging from 1.3m−1 to 6.6m−1, we run 5 exploration iterations using the semantic

octomap and information computation of Sec. 4.4 and store all ray traces in SRLE format.

Fig. 4.6 shows the change in distribution for the number of OctoMap cells Q and OcTree
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elements N visited during each ray trace, as well as the time required to execute each exploration

episode as a function of map resolution. In other words, N represents the number of cells to be

processed during mapping and information computation as if the environment was represented

as a regular 3-D grid, while Q represents the actual number of processed semantic octomap

cells. The pruning mechanism of the octree representation results in a substantial gain in terms

of the number of cells visited for each ray tracing. As opposed to the almost linear growth of

N, the distribution for Q is effectively independent of the map resolution, except for very fine

resolutions where void areas between observations rays prevent efficient pruning. However, for

map resolutions larger than 2m−1, the exploration time tends to grow larger with the increase of

map resolution. This is attributed to the recursive ray insertion method of OctoMap in which it is

required to re-compute log odds for each OcTree element along an observation ray whenever

an observation ray does not carry the same (free or object class) state as the visited cell. In the

subsequent 3-D experiments, we choose map resolution of 2m−1 in order to balance between

performance and map accuracy.

4.5.4 3-D Exploration in a Unity Simulation

We evaluate SSMI in the same 3-D simulation environment as the previous experiments,

however, this time the range measurements have an additive Gaussian noise of N (0,0.1) and

the semantic segmentation algorithm detects the true class with a probability of 0.95 while the

misclassification happens uniformly in the pixel space. Fig. 4.7 shows several iterations of

the exploration process. For comparison, we implemented a 3-D version of FSMI [170] that

utilizes run-length encoding to accelerate the information computation for a binary octomap.

Moreover, we deploy the state-of-the-art hierarchical exploration method of TARE [28] in our

3-D Unity simulation environment. Fig. 4.8a shows the change in map entropy versus distance

traveled and total elapsed time for all exploration strategies. We observe that SSMI is the most

efficient in terms of solving the trade-off between path length and information gathered along

the path. SSMI achieves the lowest entropy in the multi-class octomap. Similar to the discussion
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(a) The robot begins exploration. (b) After 16 iterations, the robot
starts to refine previously ex-
plored areas to fill partially ob-
served objects.

(c) The robot explores unknown
regions located on the boundaries
of the explored area at iteration
40.

(d) Multi-class occupancy map after 60
exploration iterations

(e) Photo-realistic Unity simulation environment

Figure 4.7. Time lapse of autonomous exploration and multi-class mapping in a simulated Unity
environment. The robot is equipped with an RGBD sensor and runs semantic segmentation.
Different colors represent different semantic categories (grass, dirt road, building, etc.).

in Sec. 4.5.2, this observation can be ascribed to the fact that, among the compared methods, the

only objective function which captures the uncertainty in both semantic classes and occupancy of

the environment is the one used by SSMI. On the other hand, SSMI and FSMI require evaluation

of mutual information along each candidate trajectory, which has the same cardinality as the

number of all frontiers in the current map estimate pt(m), whereas the hierarchical planning

method employed by TARE only requires local trajectory computation with a global coverage

path obtained at a coarse level. As a result, TARE exploration can be performed over a relatively

shorter time period compared to SSMI and FSMI in scenarios where the number of frontiers

is large, e.g. outdoor areas. Parallel computation of mutual information for each candidate
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Figure 4.8. Simulation results for exploration in Unity 3-D environment. (a) Exploration
performance compared between SSMI, Frontier, TARE, and FSMI. (b) Mapping precision for
observed semantic classes.

trajectory or using heuristics such as frontier size in order to sort candidate solutions would

improve the computation time of SSMI; however we believe these are outside of the scope of this

paper. Fig. 4.8b compares the mapping precision of various object classes for the tested methods.

SSMI exhibits higher precision for object categories that appear rarely, such as the Animal or

Tree classes while Frontier slightly outperforms SSMI when it comes to mapping the Grass and

Dirt Road categories. This can be explained by the tendency of SSMI towards achieving high

overall classification precision even if it requires slight reduction of precision for certain object

categories. Furthermore, TARE achieves the highest precision for the Building class, which can

be justified by the observation that the computed global coverage path tends to traverse near

building walls.

4.5.5 3-D Exploration in a Real-World Office Environment

We implemented SSMI on a ground wheeled robot to autonomously map an indoor office

environment. Fig. 4.9e shows the robot equipped with a NVIDIA Xavier NX computer, a Hokuyo

UST-10LX LiDAR, and an Intel RealSense D435i RGBD camera. Similar to the experiments in

Chapter 3, ROS was used for software deployment on the robot, and ICP laser scan matching

provided localization. This time, we utilized a ResNet18 [67] neural network architecture pre-
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(a) The robot begins exploration. (b) The robot visits neighboring unexplored re-
gions while trying to refine the map of visited ar-
eas.

(c) Semantic OctoMap after 20 exploration iterations.

(d) Office environment featuring corridors, furniture,
signs, and doors.

(e) Robot car used in indoor real-world
experiments.

Figure 4.9. Time lapse of autonomous exploration and multi-class mapping in the environment
depicted in (d), using the mobile robot shown in (e). The exploration is run for 20 iterations.
Different colors represent different semantic categories (floor, wall, furniture, etc.).
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Figure 4.10. Real-world experiment results for active mapping for 20 exploration iterations.

trained on the SUN RGB-D dataset [135] for semantic segmentation. In particular, we employed

the deep learning inference ROS nodes provided by NVIDIA [112], which are optimized for

Xavier NX computers via TensorRT acceleration. Due to limited computational power available

on the mobile platform, we operated the RGBD camera at a lower frame rate of 15 Hz with

color and depth image size set to 640×480. The semantic segmentation algorithm was able to

produce pixel classification images (resized to 512×400) at an average rate of 9.8 frames per

second. Our implementation was able to publish semantic octomap ROS topics every 0.34s, on

average, with all of the processing occurred on the mobile platform.

Fig. 4.9 depicts the exploration process, while Fig. 4.10 shows the performance of SSMI

compared to frontier-based over 20 exploration iterations. We observe that, similar to the

simulations, SSMI outperforms frontier-based exploration in terms of distance traveled. Also,

SSMI shows on par performance compared to Frontier in terms of entropy reduction per time.

This can be explained by the fact that large depth measurement noise and classification error

in the real-world experiments result in (a) the need for re-visiting explored areas in order to

estimate an accurate map, leading to poor entropy reduction for the frontier-based method and

(b) a small number of safe candidate trajectories, leading to fewer computations to be performed

by SSMI. Overall, our experiments show that SSMI outperforms Frontier in indoor exploration
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scenarios where the number, and length, of candidate trajectories is constrained by the size of

the environment.

4.6 Summary

In this chapter, we presented Semantic Shannon Mutual Information (SSMI) computation

for robot exploration. Our results enable efficient mutual information computation over multi-

class maps and make it possible to optimize for per-class uncertainty. Our experiments show that

SSMI performs on par with the state of the art FSMI method in binary active mapping scenarios.

However, when semantic information is considered SSMI outperforms existing algorithms

and leads to efficient exploration and accurate multi-class mapping even in the presence of

measurement noise and classification error. Experiments in both simulated and real-world

environments showed the scalability of SSMI for large-scale 3-D exploration scenarios.
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Chapter 5

Differentiable Occlusion and Collision-
Aware Active Mapping

Mapping an unknown environment using sensor-equipped mobile robots has been widely

studied motivated by many real-world applications such as search and rescue operations, plane-

tary exploration, security and surveillance. While the traditional mapping methods have been

developed for a given robot trajectory, optimizing the path to increase the accuracy of the

constructed map is significant for the operation of autonomous robots in highly unstructured

environments. Such an active mapping problem renders challenges in the computation of ob-

jective function and its reliable optimization method in terms of enhancing the performance

and computational feasibility. In particular, the problem of active mapping aims to plan an

informative sequence of sensing views given a limited budget such as distance traveled. This

chapter considers active occupancy grid mapping using a range sensor, such as LiDAR or depth

camera. State-of-the-art methods optimize information-theoretic measures relating the occupancy

grid probabilities with the range sensor measurements. The non-smooth nature of ray-tracing

within a grid representation makes the objective function non-differentiable, forcing existing

methods to search over a discrete space of candidate trajectories. Based on our work in [10],

this chapter proposes a differentiable approximation of the Shannon mutual information (SMI)

between a grid map and ray-based observations that enables gradient ascent optimization in the

continuous space of SE(3) sensor poses. Our main contributions are:
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1. a differentiable interpolation of the SMI as well as a closed-form gradient expression,

2. decomposition of the SMI into additive terms over a robot trajectory in SE(3), under

sufficient assumptions for the interpolation method.

Our gradient-based formulation of active mapping leads to more informative sensing trajectories,

while avoiding occlusions and collisions. The proposed method is demonstrated in simulated

and real-world experiments in 2-D and 3-D environments.

5.1 Related Works

One of the most common procedures for incremental estimation of occupancy grid maps

is to utilize a narrow-ray range sensor, such as Laser range finder [143, Ch. 9]. However, the

resulting observation model occurs to be a piecewise constant, namely a non-smooth function

of measurement poses due to the discrete nature of ray-tracing over a grid map [75, Ch. 5].

Consequently, the objective function is also piecewise-constant, making the pose derivatives

either 0 or undefined. In addition to the problem of non-smoothness of grid map representations,

occlusion, which is caused when a field of view intersects with objects, is a significant challenge

in sensing and planning to accomplish several tasks in robotics such as 3-D reconstruction [96],

object classification [16], and target tracking [91]. Koga et al. [80,82] has developed dense active

SLAM using iterative Covariance Regulation (iCR), which utilizes a differentiable field of view

that enables deriving an explicit gradient of an information-theoretic objective with respect to a

multi-step control sequence. Incorporating occlusion in iCR makes the field of view dependent

on the map estimate, which renders a significant challenge for sensing model formulation since it

violates the linear-Gaussian property of the mapping by Kalman Filter. Nevertheless, the current

work borrows one of the key ideas from iCR: In order to perform gradient-based optimization of

the mutual information, one needs to apply a smooth proximity operator among the elements

involved in its computation.
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The work by Rocha et al. [122] was among the first that attempted to derive a gradient-

based strategy for active mapping of occupancy grids. The authors proposed a gradient of map

entropy with respect to the robot pose at a cell center via finite difference of entropy values

at adjacent cells. Julian [75] proposed a divergent beam sensor model, where the width of a

beam increases radially as it travels farther through space. While the derived mutual information

formula was shown to be differentiable, it suffers from high computational complexity as it

requires numerical integration of the objective function. Charrow et al. [34] proposed a numerical

evaluation for the gradient of Cauchy-Schwarz mutual information (CSQMI) [35] using finite

differences of CSQMI evaluated at cell centers. Our work in this chapter is most similar to [46]

and [47], where the authors formulate the information gain as a sum of informative elements

weighted by a discount factor. In particular, [46] defines informative elements as frontier cells

between free and unexplored areas visible from a candidate pose. However, unlike the mutual

information between the map and a sensor observation, using visible frontier size as a proxy

for information gain does not take into account the effect of sensor noise which is inevitable in

real-world sensing applications [35, 134].

The present work distinguishes itself from the prior methods by proposing an active

mapping strategy that allows gradient ascent optimization of the SMI between the grid map

and a sequence of beam-based observations. As opposed to the discrete-space active mapping

methods [8, 35, 161, 170] that aim to plan an informative robot path through evaluating a finite

set of candidate trajectories, the current work finds an optimal trajectory over the continuous

space of the robot state. Moreover, gradient-based methods allow augmenting the objective

function with other differentiable terms (e.g. localization accuracy [79], path cost [99]). With the

addition of a differentiable collision penalty to the objective function, we propose an occlusion

and collision-aware robot exploration. Fig. 5.1 illustrates the proposed gradient-based active

mapping using a depth sensor.
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Figure 5.1. Occlusion and collision-aware active mapping. Left: Wheeled robot exploring an
unknown environment equipped with a depth sensor used for estimating a 3-D map. Right: Path
planning given the current map. The red trajectory is A∗ planning towards a frontier. The purple
trajectory is obtained via gradient ascent optimization of the objective function.

5.2 Problem: Continuous-Space SE(3) Optimization of
Shannon Mutual Information between a Voxel Map and
Range Observations

Consider a robot with pose Xt ∈ SE(3) at time t:

Xt :=

Rt pt

0⊤ 1

 .
The robot is navigating in an environment composed of occupied and free space. A mounted

range sensor, e.g. LiDAR or depth camera, provides the robot with a stream of beam-based

observations zt ∈ RB, where B is the number of beams in a laser scan or pixels in a depth image,

measuring the distance from the robot’s position to the closest obstacle along the beam. We

model the map m as a grid of cells mi, i ∈I := {1, . . . ,N}, where each cell can take one of the

two states: free or occupied. To model measurement noise, we consider a PDF p(zt |m,Xt) for

each observation. Let pt(m) = p(m |Ht) be the PMF of the map m given the history of robot

poses and observations Ht = {(Xτ ,zτ)}tτ=1. A new observation zt+1 made from robot pose Xt+1

can then be integrated into the map estimation process using Bayes rule:

pt+1(m) ∝ p(zt+1 |m,Xt+1)pt(m). (5.1)
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The goal is to choose a collision-free pose trajectory to obtain maximally informative

measurements for constructing an accurate map. As shown by Julian et al. [76], maximizing

the Shannon Mutual Information (SMI) between the map m and a sequence of potential future

measurements zt+1:t+T yields an efficient active mapping strategy. The SMI is defined as:

I(m;zt+1:t+T | Xt+1:t+T ,Ht) := ∑
m∈2N

∫
· · ·
∫

p(m,zt+1:t+T | Xt+1:t+T ,Ht)

× log
p(m,zt+1:t+T | Xt+1:t+T ,Ht)

p(m |Ht)p(zt+1:t+T | Xt+1:t+T ,Ht)

T

∏
τ=1

dzt+τ ,

(5.2)

where Ht represents the realized history of robot poses and observations and, hence, does not

appear as an integration variable. Throughout this chapter, we assume that the robot pose Xt is

known for all t. Note that the SMI can be considered as a function I(.) : SE(3)T → R≥0 of the

robot trajectory Xt+1:t+T parameterized by Ht .

Problem 3. Given a map PMF pt(m) obtained from prior robot poses and observations Ht and

a finite planning horizon T , find a pose trajectory Xt+1:t+T ∈ SE(3)T that maximizes the SMI

between the map m and the future observations zt+1:t+T with PDF in (5.1):

max
Xt+1:t+T∈SE(3)T

{
I(m;zt+1:t+T |Xt+1:t+T ,Ht)− γcC(Xt+1:t+T )

}
, (5.3)

where C(Xt+1:t+T ) is a penalty term capturing the cost of collisions along Xt+1:t+T and γc ≥ 0 is

the weight of the collision penalty.

In the next section, we propose a differentiable approximation of the SMI function that

can be utilized for gradient-based optimization of (5.3). In Sec. 5.4 we introduce a collision and

occlusion-aware active mapping method based on gradient of the approximated SMI. Lastly,

in Sec. 5.5 the performance of the gradient-based active mapping method is demonstrated in

simulated and real-world experiments.
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5.3 Differentiable Approximation of the Shannon Mutual
Information

5.3.1 One Step Ahead Planning

We first study the case where T = 1, i.e., the robot view is optimized only one step into

the future. The core idea is to introduce the notion of a viewpoint grid, which is a discrete set of

candidate robot poses. Then, the SMI with respect to an arbitrary robot pose is approximated as

a linear combination of the SMI with respect to the candidate poses with a differentiable function

with respect to an arbitrary robot pose.

Definition 4. A viewpoint grid G is a set of robot poses X ∈ SE(3) with position p ∈ R3 and

orientation R ∈ SO(3) such that (p,R) ∈P×R, where P is the set of all map cell centers and

R is a finite set of orientations.

We approximate the SMI at pose X as a convex combination of the SMI computed over

all poses in the view grid G . Namely, I(m;z | X,Ht)≈ Ĩ(m;z | X,Ht), and

Ĩ(m;z | X,Ht) := ∑
V∈G

αV(X)I(m;z | V,Ht),

where ∑
V∈G

αV(X) = 1, ∀V ∈ G : 0≤ αV(X),

(5.4)

and αV(X) is a differentiable function with respect to robot pose X. In practice, evaluating the

SMI for all V ∈ G during each planning phase would be computationally expensive. Therefore,

one needs to design a distance metric for αV(X) that is only non-zero in close vicinity of the robot

pose X. The idea of pulling the robot pose X out of the SMI function I(.) using a differentiable

weighting function αV(X) makes it possible to obtain non-zero derivatives for the approximate

SMI function Ĩ(.) with respect to the robot pose. Fig. 5.2 illustrates the SMI approximated from

3 viewpoints; note how each viewpoint creates a ‘field’ of information in its vicinity, while the

approximate SMI equals the net influence of all 3 viewpoints.
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𝛼V₁(X) I(m; z | V1, Ht)
𝛼V₂(X) I(m; z | V2, Ht) V1

V2

V3
𝛼V₃(X) I(m; z | V3, Ht) Ĩ(m; z | X, Ht)

Figure 5.2. The SMI approximation via 3 viewpoints, colored differently for each Vi, i∈{1,2,3}.
The field of view of each viewpoint determines their corresponding SMI I(m,z | Vi,Ht), while
the weight αVi(X) dictates the contribution of Vi to the approximated SMI Ĩ(m,z | X,Ht),
colored white.

The differentiable property of the approximate SMI enables gradient-based optimization

of the robot pose in order to generate maximally informative observations. This is done via

applying a small perturbation ψ ∈ R6 in the robot frame to the pose X along the direction of the

gradient with a step size of l:

X(k+1) = X(k) exp(lψ̂(k)),

ψ
(k) = ∇ψ Ĩ(m;z | X(k) exp(ψ̂),Ht)|ψ=0 (5.5)

= ∑
V∈G

∇ψαV(X(k) exp(ψ̂))|ψ=0I(m;z | V,Ht).

Note that the gradient is a 6-dimensional vector since the robot pose in SE(3) has 6 degrees

of freedom. In Sec. 5.4, we derive a closed form expression of the gradient for a particular

selection of the weighting function αV(X). The gradient ascent rule of (5.5) concludes our
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method proposition for finding the (locally) most informative next robot pose when the planning

horizon T is set to 1. In the following, we discuss the case where we are interested in optimizing

a multi-step sequence of robot poses, given a history of prior observations Ht .

5.3.2 Trajectory Optimization for Active Mapping

Here, we present the approximation of the SMI for a trajectory, rather than a single robot

pose. Analogous to (5.4), we define the approximated SMI for robot trajectory Xt+1:t+T as a

convex combination over all trajectories in the set G T . Namely:

I(m;zt+1:t+T | Xt+1:t+T ,Ht)≈ Ĩ(m;zt+1:t+T | Xt+1:t+T ,Ht),

Ĩ(m;zt+1:t+T | Xt+1:t+T ,Ht) := ∑
V ∈G T

AV (Xt+1:t+T )I(m;zt+1:t+T | V ,Ht),
(5.6)

where the weighting function AV (Xt+1:t+T ) for a trajectory V =Vt+1:t+T is defined as:

AV (Xt+1:t+T ) :=
T

∏
τ=1

αVt+τ
(Xt+τ). (5.7)

The terms αVt+τ
(Xt+τ) follow the same properties as in (5.4), making (5.6) a convex combination

of the SMI terms. Computing I(m;zt+1:t+T | V ,Ht) requires integration over all instances of

combined observations zt+1:t+T and should be repeated for all V ∈ G T , which is computationally

infeasible during the planning time. We aim to impose a structure on the weighting function

αVt+τ
(Xt+τ) that allows breaking down I(m;zt+1:t+T | V ,Ht) into independent additive terms.

The following conditions enable such a decomposition:

Condition 1. Given a robot pose X, αV(X) is non-zero only for a subset Ḡ (X)⊂ G of viewpoints

within a distance ξmax from X.

Condition 2. Let F ⊂ R3 be the unobstructed field of view (FOV) of the sensor in robot frame

with homogeneous representation
¯
F . Also, let U(X) := ∪V∈Ḡ (X)V ¯

F ⊂ R3 be the union of all

FOVs belonging to Ḡ (X) in the world frame. This condition states that, for any pair of robot
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poses Xi and X j (i ̸= j) in trajectory Xt+1:t+T , we have U(Xi)∩U(X j) = /0.

The above conditions are sufficient for decomposing the approximate SMI of trajectory

Xt+1:t+T to T independent additive terms, resulting in a computationally feasible trajectory

optimization formula. The main idea comes from the fact that, given the above conditions,

observations zi and z j (i ̸= j) made from viewpoints inside G (Xi) and G (X j), respectively, are

independent random variables. In practice, active sensors such as lasers have bounded FOV

which can meet these conditions. For passive sensors (e.g. cameras), it is commonplace to limit

the effective range since the estimation accuracy diminishes as we get farther from the sensor;

leading to a limited applicable FOV.

Proposition 4. Under Cond. 1 and 2, the approximated SMI can be expressed as the sum of

individual SMI approximations for each pose in the trajectory Xt+1:t+T :

Ĩ(m;zt+1:t+T | Xt+1:t+T ,Ht) =
T

∑
τ=1

Ĩ(m;zt+τ | Xt+τ ,Ht). (5.8)

Proof. See Appendix D.

The result of Prop. 4 enables computationally feasible trajectory optimization for robot

exploration in an unknown environment. Since each term in (5.8) is only dependent upon a single

pose in the trajectory, the gradient ascent rule in (5.5) can be directly employed to update each

robot pose Xt+τ , τ ∈ {1, . . . ,T}. In the following part, we introduce a practical gradient-based

solution to the problem of active mapping stated in (5.3).

5.4 Active Voxel Mapping via Gradient-Ascent

A key advantage of gradient-based optimization is the possibility of adding various

reward or penalty terms to the objective function, enabling achievement of a more complex

optimization goal. We begin by defining the collision penalty term C(Xt+1:t+T ) in the objective

function of (5.3), which is responsible for driving the optimized robot pose away from obstacles
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within the environment. However, since we do not know the map a priori, we resort to the

estimation of the map to extract the obstacles.

Definition 5. Let Ê f (pt(m)) be the maximum-likelihood estimation of the free space at time t.

For a position p ∈ R3, we define free distance as follows:

d(p, pt(m)) = min
b∈∂ Ê f (pt(m))

∥p−b∥2. (5.9)

It is important to consider that large mutual information occurs near the boundary between

the free space and the unknown parts of the map [76]. Therefore, one should seek a balance

between large clearance from obstacles and informativeness of observation made from the

resulting robot pose. We define the collision cost C(Xt+1:t+T ) as sum of the log-values of inverse

free distance for each pose Xt+τ with position pt+τ in the trajectory:

C(Xt+1:t+T ) =−
T

∑
τ=1

log(d(pt+τ , pt(m))). (5.10)

Using a logarithmic scale causes a large penalty for poses close to obstacles, while it does not

discourage approaching the unknown region from a safe distance due to its suppressed gradient

over large inputs.

In addition to the collision cost, we add a penalty term to the objective function to enforce

Cond. (2) during each planning phase, minimizing the overlap among the sensor FOVs Xt+τ ¯
F

in the candidate trajectory. We consider a pair-wise penalty term for poses within the trajectory

as follows:

q(pi,p j) = max
{

0,2δq−∥pi−p j∥2
}2

, δq = |F |+ξmax, (5.11)

where pi and p j are robot positions for poses Xi and X j, respectively, |F | is the diameter

of F , and ξmax denotes the maximum distance from robot pose X to a viewpoint in Ḡ (X)

(cf. Cond. 1). The penalty term (5.11) effectively discourages the case where the 2-norm ball

B(pi,δq) centered around pi with radius δq coincides with B(p j,δq). Since B(pi,δq) contains
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Figure 5.3. Example of the SMI approximation using (5.13). Left: Partially known environment
where black, white, and gray regions depict occupied, free, and unknown areas. The robot
equipped with a 180◦ range sensor moves along a straight line shown as the blue arrowed
segment. Right: Exact value of the SMI evaluated at each robot position alongside approximate
SMI values for various radii ξmax.

U(Xi), q(pi,p j) = 0 is sufficient to ensure Cond. (2) is not violated for a pair of poses Xi and

X j. Note that Cond. (1) is an inherent property of the weighting function αV(X) and can be

evaluated offline. Putting all the components together, the differentiable objective function for

gradient-based active mapping is expressed as follows:

f (Xt+1:t+T ) =
T

∑
τ=1

(
∑

V∈Ḡ (Xt+τ )

αV(Xt+τ)[I(m;z | V,Ht)

+ γc log(d(v, pt(m)))]− γq

2

T

∑
τ ′=1
τ ′ ̸=τ

q(pt+τ ,pt+τ ′)

)
,

(5.12)

where v, pt+τ , and pt+τ ′ are the corresponding positions of poses V, Xt+τ , and Xt+τ ′ .

So far we assumed a general definition for the differentiable weighting function αV(X)

that satisfies Cond. 1 and 2. We use the following definition for αV(X):

αV(X) =
υ(δ (ξ X,V))(1+ cosδ (ξ X,V))

∑U∈G υ(δ (ξ X,U))(1+ cosδ (ξ X,U))
, (5.13)

where δ (ξ X,V) is the distance between poses V,X ∈SE(3):

δ (ξ X,V) =
π

ξmax

√
ξ
⊤
X,VΓξ X,V, ξ X,V = log(X−1V)∨. (5.14)
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Here, Γ is a diagonal matrix containing positive coefficients and ξ X,V is the difference of two

SE(3) poses in the local frame of X. The indicator function υ(δ (ξ X,V)) in (5.13) is equal to one

only when 0≤ δ (ξ X,V)≤ π and zero otherwise, which in effect limits the SMI approximation

to the viewpoints within the radius ξmax from X, satisfying Cond. 1. Note that the discontinuity

of υ(δ (ξ X,V) occurs at the same point where 1+cosδ (ξ X,V) = 0; hence αv(X) is differentiable

with respect to all poses X ∈ SE(3). Fig. 5.3 shows an example of the accurate SMI evaluation at

different robot positions compared to the approximate SMI of (5.4) using the weighting function

of (5.13). Note that, while being differentiable, the approximations follow the occlusion-aware

behavior of the exact SMI, i.e. they peak at the positions where more of the unexplored region

is visible. With αv(X) specified as (5.13), we can compute a closed-form expression for the

gradient of the approximate SMI as follows.

Proposition 5. Using the weighting function of (5.13), the gradient of the approximate SMI with

respect to the robot pose can be obtained as follows:

∇ψ Ĩ(m;z | Xexp(ψ̂),Ht)|ψ=0 =

(
π

ξmaxη(X)

)2

J ⊤
R (ξ X) ∑

V∈Ḡ (X)

ΛV(X)ξ X,V,

ΛV(X) = [η(X)I(m;z | V,Ht)−β (X)]
sinδ (ξ X,V)

δ (ξ X,V)
J ⊤

R (−ξ X,V)Γ,

β (X) = ∑
U∈Ḡ (X)

I(m;z | U,Ht)(1+ cosδ (ξ X,U)),

η(X) = |Ḡ (X)|+ ∑
U∈Ḡ (X)

cosδ (ξ X,U),

ξ X = log(X)∨,

(5.15)

where Ḡ (X) is the subset of viewpoints V ∈ G that υ(δ (ξ X,V)) = 1, and JR(.) is the right

Jacobian of SE(3).

Proof. See Appendix E.

The objective function (5.12) can used with any Bayesian sensing model (5.1). In the
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context of occupancy grid mapping via a range sensor, the log-odds technique using a narrow

beam [143, Ch. 9] is a natural choice for the sensing model which provides a computationally

simple yet accurate representation of the environment. Using such a model, the SMI between the

grid map and a beam z can be written as a weighted sum of occlusion probabilities [8, 76, 170]:

I(m;z | X,Ht) =
NX

∑
i=1

wi(Ht)p(i |Ht) (5.16)

where NX is the maximum number of map cells that can be visited by a sensor beam emitted

from pose X and p(i|Ht) is the probability that the beam is occluded at i-th cell along its path.

Hence, the corresponding SMI expression is occlusion-aware, namely the value of the mutual

information is directly controlled by whether or not the observations are occluded.

The benefit of using the occlusion-aware SMI formulation of (5.16) comes with the

computational burden of ray-tracing during each evaluation of the SMI, since (5.16) requires

identifying the map cells along the observation beam. Going back to the objective function (5.12),

it is required to perform B∑
T
τ=1 |Ĝ (Xt+τ)| ray-tracings for a range sensor with B beams during

every evaluation of f (Xt+1:t+T ). Since all viewpoints in G are located at map cell centers, the

ray-tracing for a viewpoint V with position v and orientation R can be obtained from a ray-tracing

from the map origin with the same orientation and simply translated by v. Considering that all

viewpoints in G have a fixed set of orientations R, we skip online ray-tracing by computing

|R| ray-tracings from the origin only once and query ray-tracings by applying translation v

for each viewpoint V. To further accelerate the optimization, we avoid repeated evaluations

of I(m;z | V,Ht) by caching the values for each viewpoint V until the map is updated. For

computing the free distance d(v, pt(m)), we once again use the fact that all viewpoints are

located at map cell centers; therefore we can obtain d(v, pt(m)) from the distance transform of

Ê f (pt(m)) in Def. 5 scaled by the map resolution. This needs to be computed only once for each

planning step, since the distance transform provides values of d(v, pt(m)) for all cell centers v.

Gradient-based optimization of the objective function (5.12) allows local maximization
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Algorithm 4. Active Mapping via Gradient Ascent

Input: Xt , pt(m), T , nmax, pcrt
1: if pcrt is None then pcrt = PRECOMPUTERAYTRACING()

2: d = DISTANCETRANSFORM(pt(m))
3: k← 0
4: X(k)

t+1:t+T = INITPATH(Xt , pt(m),T )

5: while not TERMINATE( f (X(k)
t+1:t+T ),nmax) do

6: X(k+1)
t+1:t+T = GRADASCENT( f (X(k)

t+1:t+T ), pcrt,d)
7: k← k+1
8: return X(k)

t+1:t+T

of trajectory informativeness as well as the distance from obstacles. Given an initial trajectory

which can be provided by frontier-based exploration [161], we perform gradient ascent for nmax

steps or until the improvement in f (Xt+1:t+T ) is less than 0.1%. The output of this optimization

will be a kinematically feasible trajectory X∗t+1:t+T ∈ SE(3)T which can be tracked by a low-level

controller specified by the robot dynamics. Alg. 4 summarizes our procedure for occlusion and

collision-aware active mapping. We evaluate the performance of the proposed method in the

next section.

5.5 Experiments

In this section we evaluate the performance of our proposed active mapping method in

several simulated and real-world experiments in comparison to baseline exploration strategies:

frontier-based exploration (Frontier) [161], FSMI [170], SSMI [8], and optimized next best

view using RRT (O-NBV-RRT) [46]. In Sec. 5.5.1, we perform 2-D active mapping using the

proposed method alongside the baselines in a set of 10 randomly generated 2-D environments.

Sec. 5.5.2 contains large-scale active mapping using octomap representation [70] in a simulated

3-D Unity environment. Lastly, in Sec. 5.5.3 we demonstrate the performance of our method in a

real-world environment using a wheeled ground robot.

Across all experiments, each method uses the log-odds mapping from range measure-

ments [143, Ch. 9] but selects robot trajectories based on their own criteria. Moreover, during
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Figure 5.4. 2-D simulated active mapping performance compared among various methods. The
results are averaged over 10 randomly generated environments with 3 random starting positions.
The dashed lines represent ±0.25σ deviation from the mean.

each planning step for 2-D exploration, we identify the frontiers using edge detection over the

most likely map at time t, i.e. the mode of pt(m). Then, we cluster the frontier map cells by

detecting the connected components. We plan a path from robot pose Xt to the center of each

frontier using A∗ graph search to produce candidate paths for FSMI and SSMI. For Frontier, we

pick the path that maximizes the ratio between the frontier size and path length. For O-NBV-RRT,

we pick the goal of the same path used by Frontier, but instead plan an RRT path towards the goal.

Our method also uses the same path used by Frontier as the initial trajectory. For exploration

in 3-D environments, we first project the most likely octomap at time t onto the ground level

in order to derive a 2-D occupancy map and proceed with similar steps as in 2-D exploration.

We selected maximum size of neighboring viewpoints ξmax = 2, maximum number of gradient

ascent iterations nmax = 50, step size l = 10, collision penalty weight of γc = 5× 10−4, and

γq = 1. For Γ in (5.14), we use a diagonal matrix with [1,1,0.1] as the elements on the diagonal.
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(a) The robot begins
exploration.

(b) During the first 3 iterations,
the robot tries to build the map
of its immediate vicinity.

(c) The robot explores the
boundaries of the known region
at iteration 10.

(d) Octomap after 20 exploration iterations (e) Photo-realistic Unity simulation
environment

Figure 5.5. Time lapse of 3-D active mapping using the proposed method in simulated Unity
environment. The robot receives depth measurements using an RGBD camera, and incrementally
builds an octomap as it explores the unknown environment.

5.5.1 2-D Active Mapping in Simulation

Here we compare our proposed method to Frontier, FSMI, SSMI, and O-NBV-RRT.

The experiments are performed in 10 randomly generated 2-D environments with dimensions

60m× 60m and 3 random starting positions for each instance. We consider a robot equipped

with a LiDAR sensor of range 10m and 90◦ field of view where each measurement beam is

added with Gaussian noise of N (0,0.1). Fig. 5.4 shows the 2-D simulation results among all

methods. We witness superior exploration performance of our proposed method, which can be

attributed to the fact that our method applies occlusion-aware optimization for each pose in a

candidate trajectory; resulting in high utilization of information gathering opportunities. The

subpar performance of O-NBV-RRT can be caused by the fact that O-NBV-RRT does not account

for sensor noise during pose optimization. Robot trajectories obtained by Frontier, FSMI, and

SSMI are computed using A∗ search, and no further optimization is performed over single robot

poses along the trajectory; resulting in a very restricted set of candidate solutions.
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5.5.2 Exploration in 3-D Unity Simulation

In this part, we test our proposed method in a photo-realistic 3-D Unity simulated

environment, shown in Fig. 5.5e. We use a Husky robot equipped with a depth camera that

provides a 3-D point cloud used for building an octomap. Octomap [70] is occupancy grid

mapping method based on octree data structure and the log-odds technique that provides a

scalable way to store the 3-D map for large environments through compressing the map cells

with similar occupancy probability. For experiments in 3-D environments, we operate our

proposed method in two different modes. In the first mode (Exp-2D), we project both the

octomap and 3-D point clouds onto the z = 0 surface, obtaining a 2-D representation of the

map and the observations. Then we compute informative trajectories similar to the 2-D active

mapping in Sec. 5.5.1. By executing the optimal trajectory, we receive new 3-D point cloud

observations that incrementally update the octomap. The first mode of active mapping only

requires ray-tracing in a 2-D grid map, saving computation time while trading for accuracy in

evaluating mutual information. In the second mode (Exp-3D), we directly use the 3-D sensor

model for ray-tracing within the octomap. This mode of operation is expected to evaluate mutual

information more accurately since the exact sensor model and 3-D occlusion have been taken

into account. Fig. 5.5 shows several exploration iterations of active mapping process using

Exp-3D. Furthermore, we compare our method with FSMI, where run length encoding is utilized

for accelerated evaluation of the SMI over an octree. Fig. 5.6a shows simulation results for

experiments in the 3-D Unity environment for 20 exploration iterations. We observe Exp-2

finds a good balance between exploration efficiency and computation time; while Exp-3D is

slightly more efficient in terms of distance traveled, it takes longer computation time to perform

exploration compared to Exp-2D. This comes from the fact that the objects in the simulation

have a uniform profile in the z direction, hence the information in the 2-D and 3-D maps are

almost the same. Table. 5.1 (middle column) compares the average clearance from the obstacles

among different methods. Compared to Frontier, it is clear that the proposed method chooses
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Figure 5.6. 3-D active mapping performance compared between Frontier, FSMI, and our method
for 20 exploration iterations. Exp-2D uses a projected 2-D perception model for planning, while
Exp-3D performs ray-tracing directly on the octomap.

Table 5.1. Clearance from obstacles compared between Frontier and our proposed method
averaged over 20 exploration iterations.

Algorithm 3-D Unity Simulation Real World
Frontier 1.2 m 0.48 m
Exp-2D 3.9 m 1.7 m
Exp-3D 3.4 m 1.84 m

informative trajectories that avoid approaching obstacles.

5.5.3 Real-World Experiments

We deployed Exp-2D and Exp-3D on a ground wheeled robot to autonomously explore

an indoor environment. The robot was equipped with an NVIDIA Xavier NX GPU, a Hokuyo

UST-10LX LiDAR, and an Intel RealSense D435i RGBD camera. We implemented our software

stack using Robot Operating System (ROS) [120]. Robot localization was carried out using ICP

scan matching of LiDAR measurements [31]. 3-D point clouds from the depth images were used

to build an octomap. The complete implementation was able to update the octomap every 0.11s

on average. Fig. 5.6b and Table. 5.1 (right column) show the performance of active mapping for

20 exploration iterations and the average clearance from obstacles, respectively. The real-world

experiments confirm the findings in the simulations in terms of the efficiency of the proposed

method.
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5.6 Summary

This chapter developed a differentiable approximation of the Shannon mutual information

between a probabilistic occupancy grid map and range sensor measurements. Our formulation

enables gradient-based optimization of informative occlusion-aware sensing trajectories in 3-D

and allows the inclusion of additional differentiable penalty terms, such as collision cost. We

demonstrated in simulated and real-world experiments that our method outperforms the state-of-

the-art techniques due to its ability to optimize the sensing views in continuous space. In the next

chapter, we will investigate extending the proposed method to multiple agents, where we expect

gradient-based optimization to also be significantly more efficient than discrete space search.
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Chapter 6

Distributed Multi-Robot Semantic Active
Mapping

The ability to explore unknown environments and discover objects of interest is a prerequi-

site for autonomous execution of complex tasks by mobile robots. Active mapping methods [117]

consider joint optimization of the motion of a robot team and the fidelity of the map constructed

by the team. The goal is to compute maximally informative robot trajectories under a limited

exploration budget (e.g., time, energy, etc.).

Time-critical applications, such as search and rescue [119, 124] and security and surveil-

lance [65], as well as large-scale operations, such as environmental monitoring [73], substantially

benefit if exploration is carried out by a team of coordinating robots. This is traditionally done

via multi-robot systems relying on centralized estimation and control [5, 50, 53, 73, 107], where

each robot receives local sensor observations, builds its own map, and sends it to a central node

for map aggregation and team trajectory computation. The availability of powerful computation

onboard small robot platforms makes it possible to develop autonomous exploration algorithms

without the need for a central processing node [89]. Removing the central unit improves the

resilience of a multi-robot system with respect to communication-based faults and central node

failures [118] but brings up new challenges related to distributed storage, computation, and

communication. How can one guarantee that the performance of decentralized active mapping

would be on par with a centralized architecture in terms of global map consistency and team
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(a) Robot network and the communicated messages (b) Local maps become globally consistent over
time

Figure 6.1. Overview of our distributed multi-robot active mapping approach. (a) A team of
robots, denoted by vertex set V , collaboratively explores an unknown environment. Each robot
builds a local map using onboard sensor measurements and computes a local plan for the team,
with the goal of maximizing the collective information gathered by the team. The local maps and
plans are communicated over a peer-to-peer network whose connectivity is represented by the
edge set E . (b) As the robot team continues communication, the local maps stored by different
robots become globally consistent in that they store similar information about the environment.

trajectory optimality?

To address this question, in this chapter we propose ROAM: Riemannian Optimization

for Active Mapping with robot teams. Based on the papers [9] and [7], ROAM is a decentralized

Riemannian optimization algorithm that operates on a communication graph with node variables

belonging to a Riemannian manifold and ensures consensus among the node variables. The graph

nodes correspond to different robots, while the graph edges model the communication among

the robots. In the context of mapping, the node variables are categorical PMFs representing

probabilistic maps with different semantic classes (e.g., building, vegetation, terrain) at each

robot. The consensus constraint requires that the local maps of different robots agree with each

other. In the context of planning, the node variables are trajectories of SE(3) robot poses. Each

robot plans trajectories for the whole team using its local information, while the consensus

constraint requires that the team trajectories computed by different robots agree. See Fig. 6.1 for

an overview of ROAM.

We demonstrate the performance of ROAM in a variety of simulation and real-world

experiments using a team of wheeled robots with on-board sensing and processing hardware.
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Specifically, each robot gathers range and semantic segmentation measurements using an RGBD

sensor, and incrementally builds a local 3-D semantic grid map of the environment, where

each map cell maintains a probability distribution over object classes. To achieve memory and

communication efficiency, an octree data structure is employed to represent the 3-D semantic

maps [8]. The robots cooperatively find the most informative set of SE(3) paths for the team to

efficiently improve the map and explore the unknown areas while avoiding obstacle collisions.

Both multi-robot mapping and planning are performed in the absence of a central estimation and

control node and only involve peer-to-peer communication among neighboring robots.

Our gradient-based distributed Riemannian optimization approach extends the scope of

previous works in multi-robots estimation and planning to enable continuous non-Euclidean

state and control spaces, as well as non-linear and non-Gaussian perception models. Our main

contributions include:

1. a distributed Riemannian optimization algorithm for multi-robot systems using only one-

hop communication, with consensus and optimality guarantees,

2. a distributed semantic octree mapping approach utilizing local semantic point cloud

observations at each robot,

3. a distributed collaborative planning algorithm for robot exploration, where the search

domain is defined as the continuous space of SE(3) robot pose trajectories,

4. an open-source implementation,1 achieving real-time performance onboard resource-

constrained robots in simulation and real-world experiments.

6.1 Related Works

Multi-robot active mapping is in essence an optimization problem, with the goal of

finding maximally informative robot trajectories, while simultaneously maintaining globally
1Open-source software and videos supplementing this chapter are available at https://existentialrobotics.org/

ROAM webpage/.
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consistent map estimates. Thus, we begin our literature review with identifying relevant works

in distributed optimization. The algorithms introduced in [37, 60, 110, 121, 148] provide a class

of approaches for decentralized gradient-based optimization in the Euclidean space under a

variety of constraints such as time variation or communication asymmetry between agents in

the network. The survey by Halsted et al. [66] provides a comprehensive study of distributed

optimization methods for multi-robot applications. In this work, we decompose the task of

multi-robot active mapping to two consensus-constrained Riemannian optimization problems, i.e.

distributed mapping and distributed path planning. However, naive utilization of the Euclidean

optimization techniques in Riemannian manifolds might violate the structure of the optimization

domain, leading to infeasible solutions. Therefore, it is required to employ a special family of

distributed optimization methods specific to Riemannian manifolds.

Absil et al. [1] presents the foundations of optimization over matrix manifolds, giving rise

to many centralized and distributed algorithms in subsequent works. As examples, Chen et al. [39]

and Wang et al. [156] devise decentralized optimization algorithms for Stiefel manifolds where a

Lagrangian function is used to enforce consensus and maintain the manifold structure. The papers

by Sarlette et al. [84,126,127] formulate consensus (i.e. synchrony) as the objective function of a

distributed optimization problem. Our work allows inclusion of an additional objective function,

while simultaneously incorporating consensus as a constraint of the optimization. The work

in [127] formulates coordination of rigid body attitudes as a distributed optimization problem,

where the cost function is the sum of chordal distances between each pair of agents. The same

problem, for the more general context of Lie groups, have been studied in [126] and [84]

Manifold optimization also allows designing efficient learning algorithms where model

parameters can be learned using unconstrained manifold optimization as opposed to Euclidean

space optimization with projection to the parameter manifold. Zhang et al. [167] and Li et al. [87]

introduce stochastic learning algorithms for Riemannian manifolds in centralized and federated

formats, respectively. Related to our work, Tian et al. [146] present a multi-robot pose-graph

SLAM algorithm which employs gradient-descent local to each robot directly over the SE(3)
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space of poses. Our work is inspired by the distributed Riemannian gradient optimization method

introduced by Shah [132]. We develop a distributed gradient-descent optimization method for

general Riemannian manifolds, and derive specific instantiations for two particular cases, namely

the space of probability distributions over semantic maps and the space of SE(3) robot pose

trajectories.

Distributed mapping is a special case of distributed estimation, where a model of the

environment is estimated via sensor measurements. Distributed estimation techniques are

used in multi-robot localization [17], multi-robot mapping [176], or multi-robot SLAM [145].

Paritosh et al. [114] define Bayesian distributed estimation as maximizing sensor data likelihood

from all agents, while enforcing consensus in the estimates. The present work follows a

similar methodology in that we achieve multi-robot Bayesian semantic mapping via distributed

maximization of local sensor observation log-likelihood with a consensus constraint on the

estimated maps.

Regarding collaborative mapping, an important consideration is the communication of

local map estimates among the robots. Corah et al. [43] propose distributed Gaussian mixture

model (GMM) mapping, where a GMM map is globally estimated, and each robot uses this global

map to extract occupancy maps for planning. The use of GMM environment representation for

multi-robot exploration is motivated by its lower communication overhead compared to uniform

resolution occupancy grid maps. Subsequent works in [49] and [160] have similarly used

distributed GMM mapping for place recognition and relative localization alongside exploration.

Alternative techniques for communication-efficient multi-robot mapping include distributed

topological mapping [169], sub-map-based grid mapping [164], and distributed truncated signed

distance field (TSDF) estimation [51]. More recently, the work in [48] extends neural implicit

signed distance mapping to a distributed setting via formulating multi-robot map learning as a

consensus-constrained minimization of the loss function. In this case, the robots need to share

the neural network parameters to achieve consensus. In our work, we use a semantic octree

data structure introduced in our prior work [8] to alleviate the communication burden by using a
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lossless octree compression. Relevant to our work, the authors in [74] propose merging of two

binary octree maps via summing the occupancy log-odds of corresponding octree leaves. Our

work distinguishes itself from [74] through a different formulation of multi-robot mapping as a

consensus-based Riemannian optimization problem, which enables a) extension to multi-class

octree representations, and b) combination of map merging with online map updates from local

observations.

Similar to multi-robot mapping, many multi-robot planning methods utilize distributed

optimization techniques. The work in [92] outlines various trajectory planning methods used

in multi-robot systems, including graph-based, sampling-based, model-based, and bio-inspired

approaches. In particular, graph neural networks (GNNs) have been utilized in [64, 172] for

learning to extract, communicate, and accumulate features from local observations in the context

of collaborative multi-robot planning in a distributed way. Coordination and plan deconfliction

for multi-robot cooperative tasks is discussed in [159], where robots are assigned priorities in

a decentralized manner in order to reach a Pareto equilibrium. In our work, we introduce a

decentralized gradient-based negotiation mechanism to resolve SE(3) path conflicts.

Path planning for autonomous exploration has been extensively studied in the field of

active SLAM. Atanasov et al. [14] propose a distributed active SLAM method for robots with

linear-Gaussian observation models and a finite set of admissible controls. The authors exploit the

conditional entropy formula for the Gaussian noise model to derive an open-loop control policy,

called reduced value iteration (RVI), with the same performance guarantees as a closed-loop

policy. An anytime version of RVI is proposed in [129] using a tree search that progressively

reduces the suboptimality of the plan. In contrast to [14, 129], we use a probabilistic range-

category observation model that accounts for occlusion in sensing. Sampling-based solutions

to multi-robot active SLAM have been presented in [78] and [150], with asymptotic optimality

guarantees. Cai et al. [27] consider collision safety and energy as additional factors in the cost

function for active SLAM using a heterogeneous team of robots. Zhou and Kumar [171] propose

robust multi-robot active target tracking with performance guarantees in regard to sensing and
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communication attacks, however, the estimation and control are carried out centrally. Tzes et

al. [149] develop a learning-based approach for multi-robot target estimation and tracking, used

a GNN to accumulate and process information communicated among one-hop neighbors. The

works in [88, 165] aim to maintain multi-robot network connectivity and collision avoidance via

control barrier functions. Another line of research [19, 41] uses decentralized Monte-Carlo tree

search for multi-robot path planning for exploration. The interested reader is encouraged to refer

to [117] for a comprehensive survey of active SLAM methods. Our work distinguishes itself by

considering continuous-space planning on a Riemannian manifold, generalizing the previous

works in terms of the finite number of controls and the Euclidean robot states.

Related to active SLAM with continuous-space planning, Koga et al. [80, 82] introduce

iterative covariance regulation, an SE(3) trajectory optimization algorithm for single-robot

active SLAM with a Gaussian observation model. Model-based [162] and model-free [163]

deep reinforcement learning techniques have been applied to similar single-robot active SLAM

problems. Extending to a team of robots, Hu et al. [72] propose Voronoi-based decentralized

exploration using reinforcement learning, where coordination among the robots takes place via

distributed assignment of each Voronoi region to a robot, and the policy generates a 2-D vector

of linear and angular velocities. In our work, we formulate multi-robot planning for exploration

as a distributed optimization problem in SE(3) space with a consensus constraint to enforce

agreement among the robot plans.

6.2 Problem: Consensus-Constrained Riemannian Opti-
mization for Multi-Agent Systems

We begin our analysis by formulating consensus-constrained Riemannian optimization

for multi-agent systems. Consider a network of agents represented by an undirected connected

graph G (V ,E ), where V denotes the set of agents and E ⊆ V ×V encodes the existence of

communication links between pairs of agents. Each agent i ∈ V has state xi which belongs to
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a compact Riemannian manifold M . Let TxiM denote the tangent space of M at xi and let

⟨v,u⟩xi ∈ R with u,v ∈ TxiM be a Riemannian metric on M . The norm of a tangent vector

v ∈ TxiM is defined by the Riemannian metric as ∥v∥xi =
√
⟨v,v⟩xi . Additionally, let Expxi (·) :

TxiM →M denote the exponential map on M at xi, and denote its inverse as Exp−1
xi (·) : M →

TxiM .

We associate a local objective function f i(·) : M → R with each agent i ∈ V . Our goal

is to maximize the cumulative objective function over the joint agent state x = (x1, . . . ,x|V |):

F(x) =
1
|V | ∑i∈V

f i(xi). (6.1)

The global objective can be maximized using |V | independent local optimizations. However, in

many applications it is necessary to find a common solution among all agents. For example, in

multi-robot mapping, the robots need to ensure that their local maps are consistent and take into

account the observations from other robots. Therefore, the global optimization problem needs to

be constrained such that the agents reach consensus on x during optimization. For this aim, we

define an aggregate distance function φ(x) : M |V |→ R≥0:

φ(x) = ∑
{i, j}∈E

Ai jd2(xi,x j), (6.2)

where A is a symmetric weighted adjacency matrix corresponding to the graph G , and d(·) :

M ×M →R≥0 is a distance function on the Riemannian manifold M , i.e., computes the length

of the geodesic (shortest path) between pairs of elements in M . The definition of the aggregate

distance function in (6.2) implies that consensus will be reached if and only if φ(x) = 0. Hence,

adding φ(x) = 0 as a constraint to (6.1) would require feasible joint states x = (x1, . . . ,x|V |) to

satisfy xi = x j for all i, j ∈ V .

Problem 4. Consider a connected graph G = (V ,E ) where each node i ∈ V represents an agent

with state xi ∈M and local objective function f i(xi). Find a joint state x that maximizes the
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following objective function:

max
x

F(x) =
1
|V | ∑i∈V

f i(xi),

s.t. xi ∈M , ∀i ∈ V , and φ(x) = 0,

(6.3)

where φ(x) = 0 is the consensus constraint defined in (6.2).

In the next section, we develop a distributed gradient-based optimization algorithm to

solve (6.3) using only local computation and single-hop communication, with consensus and

optimality guarantees. As we discuss in Sec. 6.4 and Sec. 6.5, both multi-robot mapping and

multi-robot trajectory optimization can be formulated as consensus-constrained optimization

problems as in (6.3). In the case of mapping, the manifold M is the probability simplex capturing

map density functions while the local objective f i(xi) is the log-likelihood of the observations

made by robot i. In the case of trajectory optimization, M represents the space of 3-D pose

(rotation and translation) trajectories in SE(3), and f i(xi) is a collision and perception-aware

objective for the robot pose trajectories. Lastly, in Sec. 6.6 we evaluate the performance of our

proposed distributed multi-robot exploration in several simulation and real-world experiments.

6.3 Distributed Riemannian Optimization

The problem in (6.3) has a specific structure, maximizing a sum of local objectives

subject to a consensus constraint among all xi, i ∈ V . We develop a distributed gradient-based

algorithm to solve (6.3). The idea is to interleave gradient updates for the local objectives with

gradient updates for the consensus constraint at each agent. Alg. 5 formalizes this idea. The

update step in line 4 guides the local state xi towards satisfaction of the consensus constraint,

with a step size of ε . The gradient of φ(x) with respect to xi, denoted as gradxi φ(x), lies in

the tangent space TxiM . Hence, the exponential map is used to retract the gradient update

−ε gradxi φ(x)|x=x(k) to the manifold M . The gradient gradxi φ(x) can be expressed as a sum of
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Algorithm 5. Distributed Riemannian Optimization

Input: Network G (V ,E ) and initial state xi(0)

Output: Consensus optimal solution to (6.3)
1: for k ∈ Z≥0 do
2: for each agent i ∈ V do
3: ▷ Promote consensus with step size ε:
4: x̃i(k) = Exp

xi(k) (−ε gradxi φ(x)|x=x(k))

5: ▷ Optimize local objective with step size α(k):
6: xi(k+1)

= Exp
x̃i(k) (α

(k) grad f i(xi)|
xi=x̃i(k))

7: return xi(k)

gradients with respect to the neighbors Ni = { j|Ai j > 0} of agent i:

gradxi φ(x) = ∑
j∈Ni

Ai j gradxi d2(xi,x j) =−2 ∑
j∈Ni

Ai j Exp−1
xi (x j).

Therefore, line 4 requires only single-hop communication between agent i and its neighbors

Ni. Line 6 carries out an update with step size α(k) in the direction of the gradient of the local

objective f i(·), computed at the updated state x̃i(k). Similar to the consensus update step, the

exponential map is used in to retract grad f i(xi) and apply it to the point x̃i(k). Line 6 is local to

each agent i and does not require communication. The two update steps are continuously applied

until a maximum number of iterations is reached or the update norm is smaller than a threshold.

Example. Consider a sensor network where several agents gather data that is not supposed to be

shared over the network, due to either privacy reasons or bandwidth limitations. Our Riemannian

optimization algorithm enables distributed processing of the global data, accumulated over all

agents, without actually sharing the data. As an example, Fig. 6.2 illustrates applying Alg. 5

to compute the leading eigenvector of the covariance of data. Fig. 6.2a depicts the global data

distribution Z = [Z⊤1 Z⊤2 ]⊤, such that different segments of the data Z1 and Z2 are known to agent
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1 and agent 2, separately. This problem can be formulated as:

max
x1,x2

∑
i∈{1,2}

(Zixi)⊤Zixi,

s.t. x1,x2 ∈ S1 and arccos(x1⊤x2) = 0,

(6.4)

where the domain manifold is the unit circle S1, and cosine distance is used as the distance

function. Note that for all x1 and x2 that satisfy the consensus constraint arccos(x1⊤x2) = 0, the

objective function is equivalent to the one for the centralized leading eigenvector problem. Hence,

we expect to find the eigenvector for the covariance of the global data matrix Z by employing

Alg. 5 to (6.4). Fig. 6.2b shows an initialization of x1 and x2 over the unit circle S1. While

the Riemannian gradients of φ(·) and f i(·) are tangent vectors to S1, the consensus and local

objective function update steps keep the state on the S1 manifold thanks to the exponential map

(see the circular arcs in Fig. 6.2c):

Expxi(v) = cos(
√

v⊤v)xi + sin(
√

v⊤v)
v√
v⊤v

. (6.5)

Note that the consensus update (green arc) acts in the direction of agreement between x1 and

x2, whereas the local objective function gradient tries to steer the states xi towards the leading

eigenvector of their respective data Zi. Although each agent has only partial access to Z, both x1

and x2 eventually converge to x∗, namely the leading eigenvector of the covariance for the global

data matrix Z, as Fig. 6.2d suggests. •

Next, we study whether Alg. 5 achieves consensus and optimality. We make several

assumptions to ensure that the problem is well-posed in accordance with prior work on distributed

optimization [37, 60, 86, 108, 110, 121, 131, 137, 148].

Definition 6. A differentiable function f : M → R is geodesically convex if and only if for any

x,y ∈M :

f (x)≥ f (y)+ ⟨grad f (y),Exp−1
y (x)⟩y.
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(a) Data distribution (b) State initialization (c) Update steps (d) Convergence

Figure 6.2. Application of Alg. 5 to the leading eigenvector problem. (a) Data distribution Z =
[Z⊤1 Z⊤2 ]⊤, where Z1 and Z2 are separately known to agent 1 and agent 2. (b) State initialization,
limited to the unit circle S1 since we are only interested in eigenvector directions. (c) Consensus
and local objective function updates, shown in green and teal arcs, respectively. The exponential
mapping of S1 maintains the manifold structure of the states throughout the update steps. (d)
Convergence to the global leading eigenvector, where the level-set of the covariance matrix of
the global data Z is shown, alongside its leading eigenvector x∗.

See Sec. 2.5 of Chapter 2 for an equivalent definition of geodesic convexity. The function f is

geodesically concave if the above inequality is flipped.

Assumption 1. Assume the following statements hold for Problem 4 and Alg. 5.

• The Riemannian manifold M is compact.

• The local objective functions f i, ∀i ∈ V , are smooth, geodesically concave, and their

Riemannian gradients are bounded by some constant C:

∥grad f i(xi)∥xi ≤C, ∀xi ∈M , ∀i ∈ V .

• The weighted adjacency matrix A of the graph G is row-stochastic, i.e., ∑ j∈V Ai j = 1.

• The squared distance function d2 : M ×M → R≥0 is geodesically convex.

• The step sizes α(k) > 0 for the update step in line 6 satisfy the Robbins-Monro conditions:

∞

∑
k=0

α
(k) = ∞,

∞

∑
k=0

α
(k)2

< ∞, ∀k ≥ 0.
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In addition to the assumptions above, we require an additional condition to prove that

Alg. 5 achieves consensus, i.e., φ(x) = 0. Let T xi

yi : TyiM → TxiM denote parallel transport [22,

Ch.10] from the tangent space at yi to the tangent space at xi. For points xi,x j,y j,yi ∈M , consider

the geodesic loop xi→ x j → y j → yi→ xi with corresponding tangent vectors vi j
x ,v

i j
y ,vi

xy,v
j
xy

defined as:

vi j
x = Exp−1

xi (x j), vi
xy = Exp−1

xi (yi),

with similar definitions for vi j
y and v j

xy. Let vi j
xy ∈ TxiM be the net tangent vector transported to

TxiM :

vi j
xy = vi j

x +T xi

x j v j
xy− vi

xy−T xi

yi vi j
y . (6.6)

Assumption 2. For a ρ > 0 and any 4-tuple (xi,x j,y j,yi) ∈M , assume the norm of the net

tangent vector vi j
xy is bounded by the lengths of the opposite geodesics along the loop:

∥vi j
xy∥xi ≤ ρ min{∥vi

xy∥xi +∥v j
xy∥x j ,∥vi j

x ∥xi +∥vi j
y ∥yi}. (6.7)

In Euclidean space, the net tangent vector vi j
xy is equivalent to zero linear displacement;

hence, the assumption holds for any ρ ≥ 0. Similarly, the manifold S1 of example (6.4) satisfies

(6.7) due to zero angular displacement. For a general case, vi j
xy can be non-zero due to the

curvature of the manifold. This is dual to the fact that, for a zero net tangent vector vi j
xy, the

corresponding geodesics might not form a loop. The assumption in (6.7) essentially imposes a

condition over curvature of the manifold so that the norm of vi j
xy is limited by the length of the

geodesic loop. Based on the above assumptions, we show consensus and optimality for Alg. 5.

Theorem 1. Consider the consensus-constrained Riemannian optimization problem in (6.3) and

the distributed Riemannian optimization algorithm in Alg. 5. Suppose that Assumptions 1 and 2

hold and step size ε is chosen such that ε ∈ (0,2/L) with L = 4(1+ρ). Then, Alg. 5 provides a

solution to (6.3) with the following properties.

1. The joint state x(k) converges to x(∞) ∈M |V |, where x(∞) is a consensus configuration, i.e.,

95



xi(∞)
= x j(∞) for all i, j ∈ V .

2. Let x∗ be an optimal solution to (6.3). The optimal value F(x∗) is a lower-bound for the

maximum of F(x(k)) across all iterations:

F(x∗)≤ lim
kmax→∞

max
0≤k≤kmax

F(x(k)). (6.8)

Proof. See Appendix F.

We stress that, while the optimal solution x∗ and the convergence point x(∞) of Alg. 5 are

both consensus configurations, the optimality bound of (6.8) can potentially admit a solution x(k)

that does not satisfy the consensus constraint. For the Euclidean case, Nedić [109, Ch.5] shows

that d2(x∗,x(k)) is a Lyapunov function, and subsequently, F(x∗) = F(x(∞)) holds. However, a

similar derivation for d2(x∗,x(k)) has not been found for a general Riemannian manifold, due to

the complexity added by the curvature.

Alg. 5 establishes consensus and an optimality bound without requiring identical initial

states xi(0) = x0 for all i ∈ V or parallel transport of the gradients between neighboring agents.

Hence, our distributed Riemannian optimization provides an approach to solve multi-robot

problems with communication constraints. The main requirement to use Alg. 5 is to express a

multi-robot optimization problem in the form of (6.3), with local objectives f i(·) and distance

measure φ(·) defined as smooth concave and convex functions in M and M |V |, respectively. In

the absence of concavity for the objective functions or convexity for the consensus constraint,

Alg. 5 can still be utilized to obtain a solution with local consensus and optimality guarantees.

In the next two sections, we apply Alg. 5 to achieve simultaneous multi-robot mapping

and planning. We refer to our approach as Riemannian Optimization for Active Mapping (ROAM).

In Sec. 6.4, we apply Alg. 5 to multi-robot estimation of semantic octree maps, while in Sec. 6.5

we use Alg. 5 to achieve multi-robot motion planning for exploration and active estimation of

semantic octree maps.
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Figure 6.3. Semantically annotated point cloud (left) obtained from an RGBD sensor, where
each object category is shown with a unique color and an octree map (right) obtained from the
semantic point cloud.

6.4 Distributed Semantic Octree Mapping

In this section, we design a decentralized multi-robot octree mapping algorithm using the

results from Sec. 6.3. We consider a team of robots gathering local sensor measurements and

communicating map estimates with one-hop neighbors in order to build a globally consistent

common map. The robots are navigating in an environment consisting of disjoint sets Sc ⊂ R3,

each associated with a semantic category c ∈ C := {0,1, . . . ,C}. Let S0 represent the free space

and let each Sc for c > 0 represent a different category, such as building, vegetation, terrain.

Each robot i ∈ V is equipped with a mounted sensor that provides a stream of semantically-

annotated point clouds in the sensor frame. Such information may be obtained by processing the

measurements of an RGBD camera [97] or a LiDAR with a semantic segmentation algorithm [98].

We model a point cloud as a set zi
t = {(ri

t,b,y
i
t,b)}B

b=1 of B rays at time t, containing the distance

ri
t,b ∈ R≥0 from the sensor’s position to the closest obstacle along the ray in addition to object

category yi
t,b ∈ C of the obstacle (see Fig. 6.3).

We represent the map m as a 3-D grid of N independent cells, where each individual cell

m is labeled with a category in C . To model measurement noise, we use a PDF qi(zi
t |m) as the

observation model of each robot. The observation model qi(zi
t |m) depends on the sensor pose

as well but we assume that accurate sensor poses are available from localization and calibration

between the robot body frame and the sensor frame. We intend to perform probabilistic mapping,
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which requires maintaining a PDF of the map, and updating it based on sensor observations. For

this aim, we maximize the sum of expected log-likelihood of the measurements up to time t, i.e.

local observations zi
1:t collected from each robot i ∈ V 2:

max
p∈P ∑

i∈V
Em∼p

[
logqi(zi

1:t |m)
]
, (6.9)

where P is the space of all PMFs over the set of possible maps:

P = {p(·)|∑
m

p(m) = 1, p(m)≥ 0 ∀m ∈ C N} (6.10)

The map cell independence assumption allows for decomposing the measurement log-likelihood

as a sum over individual map cells m, as indicated in the following lemma.

Lemma 1. The objective function in (6.9) can be expressed as a sum over all map cells and all

observations:

∑
i∈V

t

∑
τ=1

(
logqi(zi

τ)+
N

∑
n=1

Em∼pn

[
log

qi(m|zi
τ)

pn(m)

])
, (6.11)

where qi(zi
τ) is the marginal density of the observation, pn(·) denotes the PMF of the n-th map

cell, and qi(m|zi
τ) is an inverse observation model that represents the sensor noise properties

(see (3.7) in Chapter 3).

Proof. See Appendix G.

The log-density term logqi(zi
τ) in (6.11) does not depend on any of the map probabilities

pn(·), n ∈ {1, . . . ,N}; hence, it can be removed from the objective without affecting the solution.

Moreover, each term in the innermost summation in (6.11) only depends on a single map cell

probability pn(·). Therefore, the maximization of the objective can be carried out separately for

2It can be shown that maximizing the sum of expected log-likelihood of the data is equivalent to minimizing the
KL-divergence between the true and the evaluated observation models. See [114] for more details.
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each cell m:

max
pn∈PC

∑
i∈V

Em∼pn

[
log

qi
t(m)

pn(m)

]
, (6.12)

where PC is the space of categorical distributions over C and

qi
t(m) =

t

∏
τ=1

qi(m|zi
τ)

1/t . (6.13)

In order to remove the constraint pn ∈PC , we utilize a multi-class log-odds ratio representation

of the categorical distribution similar to Chapter 3:

hn :=
[

log pn(m=0)
pn(m=0) · · · log pn(m=C)

pn(m=0)

]⊤
∈ RC+1. (6.14)

A PMF and its log-odds representation have a one-to-one correspondence through the softmax

function σ : RC+1→ RC+1:

pn(m = c) = σc+1(hn) :=
e⊤c+1 exp(hn)

1⊤ exp(hn)
,

where ec is the standard basis vector with c-th element equal to 1 and 0 elsewhere, 1 is the

vector with all elements equal to 1, and exp(·) is applied element-wise to the vector hn. In order

to enable distributed optimization of the objective (6.12) via the framework of Sec. 6.3, we

introduce a constraint that requires the robots to agree on a common map estimate using only

one-hop communication.

Problem 5. Let G (V ,E ) be a network of robots, where each robot i ∈ V collects semantic point

cloud observations zi
t . Construct local estimates of the map log-odds hi at each robot i that are
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consistent among the robots via the following optimization:

max
h1:|V |∈R(C+1)×|V | ∑i∈V

f i(hi),

s.t. φ(h1:|V |) = ∑
{i, j}∈E

Ai j∥h j−hi∥2
2 = 0,

(6.15)

where f i(hi) = ∑
c∈C

σc+1(hi) log
qi

t(c)
σc+1(hi)

and qi
t(c) is defined in (6.13).

The multi-robot mapping problem in (6.15) has the same structure as the general dis-

tributed optimization in (6.3). Therefore, the distributed Riemannian optimization algorithm

(Alg. 5) can be employed to perform multi-robot semantic mapping. Note that φ(·) is globally

convex because of the flatness of Euclidean space. Thus, Theorem 1 guarantees that Alg. 5 can

achieves consensus in the map estimates of all robots. The application of Alg. 5 to solve (6.15)

in a distributed manner is presented in Alg. 6. The update step in line 4 guides the local log-odds

towards satisfaction of the consensus constraint, which only requires single-hop communication

between neighboring robots j ∈Ni. Line 9 incorporates the local observations via γ i and β
i,

where ⊙ is element-wise multiplication. This step is local to each robot i and does not require

communication. Note that lines 4 and 11 resemble the log-odds equivalent of Bayes rule for

updating multi-class probabilities (see (3.5) in Chapter 3).

The distributed semantic mapping algorithm we developed assumes a regular grid repre-

sentation of the environment. To reduce the storage and communication requirements, we may

utilize a semantic octree data structure which provides a lossless compression of the original 3-D

multi-class map. In this case, the update rules in Alg. 6 should be applied to all leaf nodes in

the semantic octree map of each robot i. Refer to Alg. 1 in Chapter 3 for the semantic octree

equivalents of the update steps in lines 4 and 11.

In this section, we presented the mapping component of ROAM as distributed construc-

tion of semantic octree maps given local semantic point cloud observations at each robot. In the

next section, we introduce the multi-robot planning component of ROAM, where robots coopera-
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Algorithm 6. Distributed Semantic Mapping

Input: Local observations zi
1:t and initial multi-class map estimate hi(0)

Output: Globally consistent semantic map
1: for k ∈ Z≥0 do
2: for each cell in m do
3: ▷ Promote consensus with step size εm:
4: h̃i(k) = hi(k)+ εm ∑ j∈Ni Ai j(h j(k)−hi(k))
5: ▷ Local gradient computation:
6: ∆

i = h̃i(k)− logqi
t ▷ logqi

t = [logqi
t(c)]

C
c=0

7: γ i = (exp(h̃i(k))⊤∆
i)1

8: β
i = (exp(h̃i(k))⊤1)∆i

9: gi = (γ i−β
i)⊙ exp(h̃i(k))

(exp(h̃i(k))⊤1)2

10: ▷ Apply gradient with step size α
(k)
m :

11: hi(k+1)
= h̃i(k)+α

(k)
m gi

12: hi
1
(k+1)

= 0 ▷ hi
1
(k+1)

= log p(m=0)
p(m=0) = 0

13: return hi(k)

tively find trajectories along which their observations are maximally informative. Employing

ROAM for simultaneous distributed mapping and planning closes the loop for autonomously

exploring an unknown environment with a team of robots.

6.5 Distributed Planning for Exploration

We discussed the case where observations are collected passively along the robot trajec-

tories and used for distributed mapping. In this section, we consider planning the motion of the

robots to collect observations that reduce map uncertainty and uncover an unknown environment.

This active mapping process prevents redundant observations that may not improve the map

accuracy or increase the overall covered area.

Let Xi
t ∈ SE(3) be the pose of robot i ∈ V , at time t:

Xi
t =

Ri
t pi

t

0⊤ 1

 ,
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where Ri
t ∈ SO(3) and pi

t ∈R3 are the robot’s orientation and position, respectively. The distance

between two poses Xi
t and X j

t ′ is defined as:

d2(Xi
t ,X

j
t ′) = ξ

⊤
Xi

t ,X
j
t′
Γξ Xi

t ,X
j
t′
, ξ Xi

t ,X
j
t′
= log(Xi−1

t X j
t ′)
∨,

where the functions log(·) : SE(3)→ se(3) and (·)∨ : se(3)→ R6 denote the inverse mappings

associated with exp(·) and (·)∧, respectively. See Sec.2.4 of Chapter 2 for an overview of SO(3)

and SE(3) Lie groups. Also, Γ ∈ R6×6 is a diagonal matrix with positive diagonal entries that

account for the difference in scale between the linear and angular elements of ξ Xi
t ,X

j
t′
.

To enable gradient-based pose trajectory optimization, we introduce differentiable cost

functions to quantify the safety and the informativeness of a pose trajectory. We use a distance

field D(Xi
t , pi

t(m)) as a measure of path safety derived from the map pi
t(m) of robot i given

observations up to time t. To obtain the distance field, we extract a maximum likelihood

occupancy map from pi
t(m) and compute the distance transform. Furthermore, we use the

Shannon mutual information I(m;z|Xi
t , pi

t(m)) to quantify the informativeness of an observation

z made from pose Xi
t with respect to the current map pi

t(m) of robot i. As discussed in the

previous chapter, in the case of semantic octree mapping with a range sensor, mutual information

is not differentiable with respect to the pose Xi
t . As a solution, we use the approach in Chapter 5

to obtain a differentiable approximation of mutual information by interpolating its values at

several nearby poses V ∈ SE(3). Specifically, the collision and informativeness score of a pose

Xi
t is expressed as a convex combination of poses V on a grid X (Xi

t) inside a geodesic ball

centered around Xi
t with radius ξmax:

f(Xi
t , pi

t(m)) = ∑
V∈X (Xi

t)

λV(Xi
t)s

i(V),

si(V) = I(m;z|V, pi
t(m))+ γc logD(V, pi

t(m)),

where the safety constant γc > 0 trades off informativeness with collision avoidance and the
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convex combination coefficients λV(Xi
t) adjust the influence of the terms corresponding to V

based on distance to Xi
t :

λV(Xi
t) =

1+ cos(d̄(Xi
t ,V))

∑U∈X (Xi
t)
(1+ cos(d̄(Xi

t ,U)))
,

d̄(Xi
t ,V) =

π

ξmax
d(Xi

t ,V).

Cooperative planning requires the robots to take into account the plans of their peers in

order to avoid actions that provide redundant information. Let X= [X1
t+1:t+T , . . . ,X

|V |
t+1:t+T ]

⊤ ∈

SE(3)|V |×T be the concatenated T -length trajectories of all robots in V , where T is the planning

horizon. In the remainder of this section, we use Xi,τ as an alternative notation for Xi
t+τ , namely

the SE(3) pose of robot i at time t + τ . The function q(Xi,τ ,X j,τ ′) quantifies the observation

redundancy as the overlap between sensor field of views (FoVs) for two poses Xi,τ and X j,τ ′:

q(Xi,τ ,X j,τ ′) = max
{

0,2dq−∥Q(Xi,τ −X j,τ ′)e∥2
}2

,

where:

dq = |F |+ξmax, Q =

I3×3 03×1

01×3 0

 , e =

03×1

1

 ,
and |F | is the diameter of the sensor FoV.

The local objective function for robot i is defined using the collision and informativeness

score f and the FoV overlap q:

f i(X, pi
t(m)) =

T

∑
τ=1

[
f(Xi,τ , pi

t(m))− γq ∑
j∈V

T

∑
τ ′=1

[1−δi jδττ ′][1−
δi j

2
]q(Xi,τ ,X j,τ ′)

]
, (6.16)

where δi j is the Kronecker delta which takes value 1 if and only if i = j, and 0 otherwise. Also,

the constant γq > 0 trades off trajectory collision avoidance and informativeness with sensor FoV

overlap.
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The goal of multi-robot planning is to maximize the sum of local objective functions

f i over V . Since we intend to perform the maximization in a distributed manner, we consider

local plans Xi ∈ SE(3)|V |×T for each robot i ∈ V , representing an individual robot’s plan for

the collective trajectories of the team. Eventually, these local plans should reach consensus so

that the team members act in agreement. To quantify the disagreement among the robot plans,

we define an aggregate distance function φ(·) : SE(3)|V |×T×|V |→ R≥0 that accumulates the

pairwise distances between all local plans Xi, i ∈ V :

φ(X1:|V |) = ∑
{i, j}∈E

Ai jd2(Xi,X j), (6.17)

where d : SE(3)|V |×T×2→ R≥0 is defined via extension of the distance in SE(3) to the product

manifold SE(3)|V |×T .

Problem 6. Let G (V ,E ) be a network of robots, where each robot i ∈ V maintains a local map

pi
t(m) obtained by solving (6.15). Determine SE(3) pose trajectories for all robots that maximize

the cost function in (6.16) subject to the consensus constraint in (6.17):

max
X1:|V |∈SE(3)|V |×T×|V | ∑i∈V

f i(Xi, pi
t(m)),

s.t. φ(X1:|V |) = 0.

(6.18)

The structure of the planning problem in (6.18) is compatible with the distributed Rie-

mannian optimization method of Sec. 6.3. We formulate a version of Alg. 5 specialized for the

SE(3) manifold. Due to the positive curvature of the SE(3) manifold, the aggregate distance

function φ(·) has local minima (see Appendix A.3 in [40]). Thus, if the initial trajectories Xi(0),

i∈ V , are not similar, the algorithm may converge to a local optimum of the consensus constraint

(6.17). Furthermore, the local objective functions f i, i∈ V , are only locally concave [76]. Hence,

Theorem 1 guarantees only a locally optimal consensus solution.

Our distributed planning algorithm for solving (6.18) is presented in Alg. 7. Given its
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Algorithm 7. Distributed Planning for Exploration

Input: Local map pi
t(m) of robot i

Output: Collaborative robot team plan for exploration
1: Xi(0) = FRONTIER(pi

t(m)) ∀i ∈ V ▷ Initialization
2: for k ∈ Z≥0 do
3: ▷ Promote consensus with step size εp:
4: for every l ∈ V and τ ∈ {1, . . . ,T} do
5: X̃i(k)

l,τ = Xi(k)
l,τ exp

(
εp ∑ j∈Ni Ai j

(
J−⊤L (ξ

Xi(k)
l,τ ,X

j(k)
l,τ

)Γξ
Xi(k)

l,τ ,X
j(k)
l,τ

)∧)
6: ▷ Local gradient computation:
7: gl,τ = 0 ▷ Initialize for all l ∈ V , τ ∈ {1, . . . ,T}
8: for every τ ′ ∈ {1, . . . ,T} do
9: cset = |X (X̃i(k)

i,τ ′)|+∑
V∈X (X̃i(k)

i,τ ′ )
cos(d̄(X̃i(k)

i,τ ′ ,V))

10: gi,τ ′ += ∑
V∈X (X̃i(k)

i,τ ′ )
[(s(X)− f(X̃i(k)

i,τ ′, pi
t(m)))

sin(d̄(X̃i(k)
i,τ ′ ,V))

csetd̄(X̃i(k)
i,τ ′ ,V)

J−⊤L (ξ
X̃i(k)

i,τ ′ ,V
)Γξ

X̃i(k)
i,τ ′ ,V

]

11: for every l ∈ V and τ ∈ {1, . . . ,T} do
12: pi,τ ′ = QX̃i(k)

i,τ ′e, pl,τ = QX̃i(k)
l,τ e

13: Ri,τ ′ = QX̃i(k)
i,τ ′E, Rl,τ = QX̃i(k)

l,τ E
14: cdisp = [1−δilδττ ′][1− δil

2 ](pi,τ ′−pl,τ)

15: ctot = γqcdisp max
{

0, 2dq
∥pi,τ ′−pl,τ∥2

−1
}

16: gi,τ ′ +=

[
R⊤i,τ ′ctot

03×1

]
, gl,τ −=

[
R⊤l,τctot

03×1

]
17: ▷ Apply gradient with step size α

(k)
p

18: for every l ∈ V and τ ∈ {1, . . . ,T} do
19: Xi(k+1)

l,τ = X̃i(k)
l,τ exp(α(k)

p ĝl,τ)

20: return Xi(k)

current local map pi
t(m), each robot i∈ V computes an initial plan Xi(0) for the whole team using

frontier-based exploration [161]. In line 5, each pose in the local plan Xi(k) is guided towards

consensus with the plans of neighboring robots j ∈Ni. The update in this line is carried out

via a perturbation in the robot frame, where JL(·) denotes the left Jacobian of SE(3), and only

involves communication between neighbors. To compute the local objective function gradients

with respect to each pose in the local plan, we first initialize the gradients with zero in line 7,

and then populate them with proper values in lines 10 and 16. The gradient of the collision and
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informativeness score f(X̃i(k)
i,τ ′, pi

t(m)) is computed in lines 9-10, while lines 12-16 derive the

gradient of the sensor overlap q(X̃i(k)
i,τ ′ , X̃

i(k)
l,τ ) with respect to both inputs, where E = [I3×3 03×1]

⊤.

Note that, for the f terms, we only need to compute the gradient with respect to robot i’s own

trajectory X̃i(k)
i,τ ′ , τ ′ ∈ {1, . . . ,T}, whereas for the q terms, robot i should locally obtain gradients

with respect to both its own trajectory as well as the trajectories of all other robots in V . Since

each robot stores the trajectory of the whole team, the computation for the gradients of the q

terms does not require any communication among the robots. Lastly, in line 19, we apply the

computed gradients to each pose in the local plan, using a right perturbation in the robot frame.

Solving (6.18) via Alg. 7 leads to two types of behaviors.

1. Locally, the robots attempt to maximize information and distance from obstacles along

their trajectories. This encourages each robot to visit unvisited parts of the environment,

and corresponds to the f terms of (6.16).

2. Within each neighborhood, the robots negotiate with their peers to minimize redundant

observations. This prevents the trajectories to amass at certain regions of the map, and

corresponds to the q terms of (6.16).

We emphasize that each local plan Xi stores the paths for all robots in V , instead of only robot

i’s and its immediate neighbors. This is because storing all |V | paths in each robot allows

propagation of the mentioned behaviors on a global scale, due to the consensus constraint of

6.18. Therefore, the global solution of (6.18) corresponds to a Pareto optimum where agents find

an optimal trade-off between their own information and safety maximization on one hand and

avoiding observation overlap with their peers on the other hand.

In this section, we developed the distributed planning component of ROAM. The robot

trajectories are chosen to maximize information and safety for cooperative estimation of a

semantic octree map. Combined with the distributed mapping method of Sec. 6.4, the overall

system can be utilized for efficient multi-robot exploration of an unknown environment. In the
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next section, we demonstrate the performance of ROAM in a variety of simulation and real-world

experiments.

6.6 Experiments

This section describes the implementation of ROAM on multi-robot systems. Next, we

evaluate the performance of ROAM using several measures that quantify optimality, convergence

to consensus, and communication overhead. The evaluations are done in both simulation and

real-world.

6.6.1 Implementation of ROAM for Distributed Active Mapping

We deploy our approach on a team of ground wheeled robots, each equipped with an

RGB-D sensor. Fig. 6.4 shows an overview of the software stack, implemented using the Robot

Operating System (ROS) [120]. The RGB-D sensor provides synchronized RGB and depth

images. The RGB image is processed with a semantic segmentation algorithm to label each pixel

with an object category. The segmented image is fused with the depth image to obtain a 3-D

semantically annotated point cloud in the sensor frame of robot i.

Multi-robot localization

It is required to perform multi-robot localization in order to find the transformation

a) from robot i’s sensor frame to a static world frame Wi for point cloud registration, and b) from

Wi to W j for distributed multi-robot mapping and planning. Our implementation of multi-robot

localization in the simulation and real-world experiments is explained in Sec. 6.6.2 and Sec. 6.6.3,

respectively.

Multi-robot mapping

The semantic point cloud is used to build and update a semantic octree map for each robot

i ∈ V via lines 6-12 of Alg. 6. The semantic map of each robot i is broadcasted to its neighboring

robots Ni once every tpub
m seconds. Moreover, each robot pushes any newly received map to
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Figure 6.4. Software stack for multi-robot distributed active mapping. The blue blocks are local
to each robot, whereas the red blocks require communication with neighboring robots. The
communication links between pairs of robots are represented by violet lines.

a local buffer memory, and performs line 4 of Alg. 6 every t int
m seconds to integrate neighbors’

maps into its local map. The buffer is cleared after each successful iteration of Alg. 6.

Multi-robot viewpoint planning

To decouple low-frequency informative planning from high-frequency planning for

collision-avoidance, we perform two separate planning stages, namely on global viewpoint level

and on local trajectory level. On the viewpoint level, the distributed collaborative planning in

Alg. 7 is employed to find informative viewpoints for each robot in V . To coordinate viewpoint

planning across all robots, every robot i ∈ V maintains a ledger L composed of |V | binary

values each indicating whether the corresponding robot in the team is ready for planning. Due

to the decentralized nature of our method, each robot sends its own copy of the ledger Li to its

neighbors every tpub
p second, and updates Li using the incoming ledgers, as well as its status with

respect to the current plan. Alg. 8 details the process of decentralized ledger synchronization

for each robot i. In line 1 robot i makes a copy of the incoming ledger Linc. Then, in line 2,

the function CHECKREADY() determines whether or not the robot is ready to compute a new

plan. A robot would declare ready to plan only when it has finished its previous plan and also
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Algorithm 8. Distributed Ledger Synchronization
Input: Incoming ledger Linc
Output: Synchronized ledger

1: Li = Linc
2: if CHECKREADY() then
3: Li[i] = 1
4: if MEAN(Li)≥ threshp then
5: STARTPLANNING() ▷ Viewpoint planning via Alg. 7
6: else
7: Li[i] = ISPLANNING()
8: return Li

it is currently not planning. The global distributed planning of Alg. 7 would start only after a

minimum fraction of robots, denoted by threshp, are ready to plan. Line 7 is used to stabilize the

ledger synchronization process. During the global distributed planning of Alg. 7, each robot i

broadcasts its local plan Xi after each optimization iteration. Incoming local plans X j, j ∈Ni,

are pushed to a local buffer memory to be used during the consensus step (line 5 of Alg. 7). The

buffer is cleared after each optimization iteration. Lastly, the planning terminates after reaching

kp iterations.

Local trajectory optimization

After computing a sequence of viewpoints X1:|V |, each robot i locally computes a

trajectory to visit its portion of the viewpoints Xi
i,1:T . The separation of the viewpoint planning

from the trajectory optimization allows the robots to rapidly react to environment changes or

mapping errors via local path re-planning, without the need to coordinate with their peers in

viewpoint planning via Alg. 7. Furthermore, the two stage planning allows accounting for

dynamical constraints of each robot in heterogeneous robot teams, such that the low-level

trajectory optimizer takes the viewpoint set Xi
i,1:T and computes a dynamically feasible path. In

our experiments, each robot i projects its own semantic octree map onto a 2-D plane to obtain an

occupancy grid map of the environment. Given its viewpoint set Xi
i,1:T , the robot computes a

sequence of collision-free positions and orientations that connect its current pose to Xi
i,1, and
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Table 6.1. Parameter set for multi-robot exploration.

Planning Mapping

εp 0.1 α
(k)
p

0.1
k+1 εm 0.1

dq 20m ξmax 16m α
(k)
m

1
k+1

γc 10−3 γq 10−2 tpub
m 5

T 5 kp 20 t int
m 5

tpub
p 1sec threshp 0.4 Voxel

0.2m
Γ diag(1,1,1,0.1,0.1,0.1) side length

each Xi
i,τ to Xi

i,τ+1 for τ ∈ {1, . . . ,T − 1}. For this purpose, the trajectory optimizer uses A∗

graph search over the 2-D occupancy map. If a collision is detected during execution of the path,

the corresponding path segment is re-planned using another A∗ call. The local trajectory is then

used by a low-level speed controller to generate velocity commands.

An open-source implementation of ROAM is available on GitHub3. The rest of this sec-

tion describes the simulation and real-world experiments. Table 6.1 summarizes the parameters

used across all experiments.

6.6.2 Simulation Experiments

We carry out experiments in a photo-realistic 3-D simulation powered by the Unity

engine [151]. The environment resembles an outdoor village area with various types of terrain

(e.g., grass, dirt road, asphalt, etc.) and object classes, such as buildings, cars, and street lighting.

Our experiments utilize |V |= 6 ClearPath Husky wheeled robots, each equipped with an RGB-D

sensor. We assume known robot poses and perfect semantic segmentation over the RGB input in

the simulation experiments. Fig. 6.5 shows the simulation setup.

Each robot uses its local semantic octree map to extract traversable regions, while other

object and terrain classes are considered as obstacles. In particular, Asphalt and Dirt road classes

are selected as traversable terrain classes. Fig. 6.6 visualizes a time lapse of the distributed

multi-robot active mapping experiment. The consistency between the local map of robot 1

3https://github.com/ExistentialRobotics/ROAM.
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6

Figure 6.5. Simulation environment for multi-robot distributed active mapping. Left: A Husky
robot receiving RGB, depth, semantic segmentation images. Right: A top-down view of the
simulated environment, where the numbered circles show the starting positions of six robots.

Robot 1:

All robots:

t = 10s t = 100s t = 600s  Dirt road Asphalt  Building  Grass

25m

Figure 6.6. Time lapse of the multi-robot active mapping experiment. The local map of robot 1
(in Fig. 6.5) is compared against the combined maps of all robots. The right sub-figure shows the
estimated semantic octree map of robot 1 overlayed on the ground-truth simulation environment.
The exploration is carried out using a fully-connected network of robots.

and the combined map of all robots can be seen as a qualitative example of the map consensus

achieved by the distributed mapping method in Alg. 6. Analogously, Fig. 6.7 illustrates consensus

achieved by the distributed multi-robot planning in Alg. 7. As described in Sec. 6.5, each robot

computes its local plan based on its local map. Hence, differences in the local maps can cause

variation across the local plans, as seen in Fig. 6.7a. However, during each iteration of distributed

planning, line 5 in Alg.7 steers the local plans towards a consensus plan, as is evident in Fig. 6.7d.

The performance of ROAM is evaluated quantitatively under various robot network

configurations and planning parameters. We consider 3 different network topologies: 1. Full,

where all robots can communicate with each other in a fully-connected network, 2. Hierarchical,

where robots can only communicate with their team leaders, and 3. Ring, where each robot

has exactly 2 neighbors. Fig. 6.8 depicts the 3 network configurations. For each network
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(a) Initial local plans (b) 5th iteration (c) 15th iteration (d) 20th iteration

Figure 6.7. Time lapse of viewpoint planning for robot 1 from Fig. 6.5. Each color corresponds
to a robot j ∈ V computing a local plan X

j
1,1:T for robot 1. The planned trajectories contain both

position and orientation, however only the positions are visualized for clarity. The planning is
carried out over a fully-connected network of robots.

6 3

1 2

5 4

6 3

1 2

5 4

6

3

1 2 5

4

Full Hierarchical Ring

Figure 6.8. Network topologies used in the simulation experiments.

configuration, we perform exploration under 3 variants of Alg. 7: 1. Collaborative, which is

the original version of Alg. 7, 2. Egocentric, where each robot only maximizes its own path

informativeness and safety by choosing εp = γq = 0, and 3. Frontier, where robots perform

frontier-based exploration by choosing kp = 0.

Fig. 6.9 quantifies the coverage achieved by each network topology and planning param-

eter set. For Collaborative and Egocentric planning configurations, Full network configuration

leads to faster coverage while traveling less distance compared to Hierarchical and Ring topolo-

gies. This is expected since Full is the only network topology that allows one-hop exchange

of information between any pair of robots. On the other hand, the network configuration does

not play a significant role for Frontier exploration in terms of total covered area, since robots

usually choose a frontier that is nearby their current position, and do not utilize information
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Figure 6.9. Coverage versus time (left column) and distance traveled (right column) for the
simulation experiments. The top, middle, and bottom rows show the results for Collaborative,
Egocentric, and Frontier modes of planning, respectively. In each plot, lines with the same color
correspond to robots participating in the same multi-robot exploration experiment, while the
experiments are separated by the type of network topology in Fig. 6.8.

coming from their peers’ local maps. The most interesting takeaway from Fig. 6.9 is the similar

performance of Collaborative planning with Hierarchical and Ring topologies, compared to

Egocentric planning with Full topology. This observation suggests that effective coordination

among agents via Collaborative planning can alleviate the longer multi-hop communication

routes caused by the sparse connectivity of Hierarchical and Ring topologies.

Similar insights can be obtained from Fig. 6.10, where normalized map entropy is

measured against elapsed time and distance traveled, for each network topology and planning

mode. Normalized map entropy for robot i ∈ V is defined as the sum of Shannon entropies of all

map voxels divided by the number of voxels:

H i
norm =

−1
Ni

Ni

∑
n=1

∑
c∈C

pi
n(m = c) log pi

n(m = c),

where Ni denotes the number of voxels in the local map of robot i, and C as well as pi
n(m) are

defined in the previous sections. Note that, unlike total map entropy, normalized entropy can

increase as the robots register unvisited voxels into their map. As Fig. 6.10 shows, for each
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Figure 6.10. Normalized map entropy versus time (left column) and distance traveled (right
column) for the simulation experiments. The top, middle, and bottom rows show the results for
Collaborative, Egocentric, and Frontier modes of planning, respectively. In each plot, lines with
the same color correspond to robots participating in the same multi-robot exploration experiment,
while the experiments are separated by the type of network topology in Fig. 6.8.

planning mode, Full network topology outperforms Hierarchical and Ring configurations. Also,

Collaborative planning with Hierarchical and Ring configurations have similar performance to

Egocentric planning with Full network topology. The same reasoning used for Fig. 6.9 can be

utilized to justify these observations. However, unlike coverage, network topology plays a more

significant role in terms of normalized map entropy for Frontier planning mode. This is due to

the relatively more distributed mapping consensus steps for the Full topology that lead to more

certainty in the map estimation and, hence, smaller entropy compared to Hierarchical and Ring.

Since coverage does not take map uncertainty into account, such behavior is only noticeable in

the bottom row of Fig. 6.10 but not in Fig. 6.9.

Additional quantitative metrics specific to multi-robot active mapping are reported in

Fig. 6.11. The left column of Fig. 6.11 shows the aggregate distance φ(h1:6), which represents

the total discrepancy across all local maps. Despite robots discovering distinct unexplored

regions during exploration, which can increase the difference among the local maps, it can

be seen that the map discrepancy tends to decrease overall. The long-term value of the map

discrepancy depends on the ratio of exploration rate and information exchange rate. Hence,

114



0 100 200 300 400 500
0.0

2.5

5.0

×106

0 2000 4000 6000 8000 10000
0

2

4

Full

Hierarchical

Ring

0 100 200 300 400 500
0.0

2.5

5.0

φ
(h

1:
6 )

×106

0 2000 4000 6000 8000 10000
0

2

4

B
a
n

d
w

id
th

[M
B
/s

e
c]

0 100 200 300 400 500
Time [sec]

0.0

2.5

5.0

×106

0 2000 4000 6000 8000 10000
Average coverage [m2]

0

2

4

Figure 6.11. Multi-robot exploration performance metrics in the simulation experiments. The
left column shows evolution of the map discrepancy φ(h1:6) across the robot networks G in
Fig. 6.8 over time, and the right column displays bandwidth requirements for the distributed
mapping with respect to average coverage. The top, middle, and bottom rows show the results for
Collaborative, Egocentric, and Frontier modes of planning, respectively. The average coverage
is computed by averaging the area covered at each timestamp over all robots participating in an
experiment.

the Full topology yields the closest performance to map consensus due to its relatively faster

rate of exchanging the local maps amongst the robots. The right column of Fig. 6.11 displays

the bandwidth required for communicating the local maps within the robot network. Since the

simulation environment uses a centralized network scheme to register the broadcasted local maps,

there is no significant variation in terms of bandwidth use across different network topologies

and planning modes. Nevertheless, the results show scalability of the semantic octree mapping

for multi-robot applications, where an average 97 Bytes/sec of bandwidth is needed for each 1

m2 of covered area for voxel dimensions of 0.2×0.2×0.2 m3.

The quantitative results of Fig. 6.9 and Fig. 6.10 demonstrate the effective performance of

ROAM, while Fig. 6.11 showcases the consensus and communication properties of our method.

In the next subsection, we evaluate the distributed multi-robot active mapping in real-world

experiments.
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6.6.3 Real-World Experiments

We deployed ROAM on a team of ground robots to achieve autonomous exploration

and mapping of an unknown indoor area. The robot team was comprised of two ClearPath

Jackal robots (robot 1 and robot 2), and an F1/10 race car robot (robot 3). The Jackals were

each equipped with an Ouster OS1-32 3D LiDAR, an Intel RealSense D455 RGB-D camera,

and an NVIDIA GTX 1650 GPU. The F1/10 race car was equipped with a Hokuyo UST-10LX

2D LiDAR, an Intel RealSense D455 RGB-D camera, and an NVIDIA Xavier NX computer.

Fig. 6.12 shows the three robots participating in the experiment. We utilize a ResNet18 [67] neural

network architecture pre-trained on the SUN RGB-D dataset [135] for semantic segmentation. To

achieve real-time segmentation, we employed the deep learning inference ROS nodes provided

by NVIDIA [112], which are optimized for NVIDIA GPUs via TensorRT acceleration. The

semantic segmentation module processes the RGB image stream from the D455 camera, and

fuses the segmentation results with the depth image stream, to publish semantic point cloud

ROS topics. For localization, the Jackal robots used the direct LiDAR odometry of [38], while

the F1/10 race car used iterative closest point (ICP) scan matching [31]. In order to align the

world frames Wi, i ∈ {1,2,3}, we used AprilTag detection [155], where the estimated SE(3)

transformation between the RGB sensor frame of a robot and the detected tag is defined as

the world-to-sensor transformation. Communication was handled via a Wi-Fi network and

multi-master ROS architecture, such that each robot i runs its own ROS master, and shares its

planning ledger Li, local plan Xi, local semantic octree map mi, and estimated pose with respect

to Wi. With all the mapping and planning computations carried out using the on-board robot

computers, we obtain an average frame rate of 2.44Hz for distributed semantic octree mapping,

and an average distributed planning iteration time of 0.014s.

Our experiments took place in a basement area, consisting of a lobby room connected

to a corridor and a large laboratory, shown in Fig. 6.13. Similar to the simulation experiments,

the local semantic octree maps were utilized to analyze the terrain traversability, where in this
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(a) Robot 1 (b) Robot 2 (c) Robot 3

Figure 6.12. Ground robot team used in our real-world multi-robot active mapping experiments.

(a) Lobby (b) Corridor (c) Laboratory

Figure 6.13. Indoor environment used in our real-world multi-robot active mapping experiments.

case the Ground object class was selected as the traversable region. Exploration was performed

using the Collaborative planning parameter set. The communication network topology was Full,

however, there were intermittent disconnections due to signal attenuation and occlusion by the

walls. Fig. 6.14 shows a time lapse of the real-world multi-robot active mapping experiment.

The robots started at nearby positions, all facing the same AprilTag to align their world frames.

During the first 400s of exploration, the robots mostly explored the same areas in their immediate

vicinity. Each robot gradually separated from the others after t = 400s, and focused on a specific

part of the environment, as it can be seen in Fig. 6.14a. In particular, robot 1 explored the

corridor area, while robot 2 and robot 3 visited the laboratory and the lobby, respectively. Around

t = 500s, as the robots got farther away from each other, they temporarily lost communication.

During the disconnection period, the robots could not plan collaboratively and relied only on
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Robot 2

 Robot 1

Robot 3

(a) At t = 400s, the
robots effectively choose
different sections of the
environment to explore.

(b) At t = 900s, the
robots continue to ex-
plore the environment.

Corridor

Lobby

Laboratory

Wall

 Ground

 Furniture

(c) At t = 1450s, the
robots are back to their
initial locations and per-
form a final map ex-
change to ensure consen-
sus.

(d) First-person view of
the semantic octree map
of robot 1.

Figure 6.14. Qualitative results from the real-world multi-robot active mapping experiment.
(a)-(b): Snapshots of exploration at t = 400s and t = 900s. The explored region and the path
of each robot are identified by a distinct color (legend at the top left). (c): The final semantic
octree map of robot 1 at t = 1450s. The three sections of the environment (i.e. lobby, laboratory,
and corridor) have been marked on the map. (d) First-person views of the map overlaying the
ground-truth environment.

their local maps for planning. Nonetheless, this did not deteriorate the exploration performance

since the robots were so far away from each other that they would not revisit a region which had

already been explored by a peer. Fig. 6.14b is a good example of such situations. At t = 1200s,

the team was ordered to return to base, where the robots individually planed paths from their

current positions back to their initial positions. Communication was automatically re-established

as soon as the robots arrived near the starting locations, and distributed mapping was resumed

leading to agreement in the semantic octree maps, as shown in Fig. 6.14c. First-person views

of the semantic octree map of robot 1 overlaid on the real-world environment is illustrated in

Fig. 6.14d.

Fig. 6.15 and Fig. 6.16 show the quantitative results of the same real-world experiment.
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Figure 6.15. Coverage (top row) and normalized map entropy (bottom row) versus time (left
column) and distance traveled (right column) for the real-world multi-robot active mapping
experiment. Each color corresponds to one robot in the team.

Note the sudden jump in the map coverage plot of Fig. 6.15, corresponding to reaching map

consensus amongst the robots when network connection was re-established. This can be clearly

observed in Fig. 6.16 where the map discrepancy φ(h1:3) shrinks to zero as the robots reach

consensus. Unlike the simulation experiments, the bandwidth use of the robots can be measured

separately by probing the communication packages sent to/from each robot, reported in Fig. 6.16.

The flat lines represent the jump in map coverage due to the eventual connection after a period of

intermittent disconnections during the exploration. Overall, the real-world experiments show

the practicality of ROAM for autonomous mapping of large unstructured areas using a team of

robots and consumer-grade communication infrastructure.

6.7 Summary

In this chapter, we developed a distributed Riemannian optimization method that achieves

consensus among the variables estimated by different nodes in a communication graph. We

used this method to formulate distributed techniques for multi-robot semantic mapping and

information-theoretic viewpoint planning. The resulting Riemannian Optimization for Active

Mapping (ROAM) enables fully distributed collaborative active mapping of an unknown envi-
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Figure 6.16. Multi-robot exploration performance metrics for the real-world experiment. Top:
Evolution of the map discrepancy φ(h1:3) across the robot network G over time. Bottom:
Bandwidth requirement of each robot for the distributed mapping with respect to coverage.

ronment without the need for central estimation and control. Our experiments demonstrated

scalability and efficient performance even with sparse communication, and corroborated the

theoretical guarantees of ROAM to achieve consensus and convergence to an optimal solu-

tion. ROAM offers the possibility to generalize many single-robot non-Euclidean problems

to distributed multi-robot applications, for example formulating multi-robot control for SE(3)

robot dynamics [52]. An important future research direction involves analyzing the distance

to consensus as well as sub-optimality bounds for ROAM in the case of non-convex distance

measures and non-concave objective functions. Additionally, further research effort is needed to

study faster variants of ROAM using Nesterov accelerated [11] and second-order [115] gradient

methods.
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Chapter 7

Conclusions and Future Work

Sophisticated mobile robot tasks require knowledge of objects of interest, traversability

of terrain, restricted areas, as well as other semantic cues in the environment. Hence, robot

situational awareness would only be possible if we go beyond the limitations of binary occupancy

representations. Moreover, we require a methodology to autonomously build such high-level

semantic understanding in the face of unknown environments. This dissertation presented

techniques for autonomous construction of 3-D probabilistic multi-class maps, by computing a

maximally informative sensing trajectory for a general 6-degrees of freedom mobile robot. We

further extended our mapping and planning approach to accomodate a team of collaborating

robots with only point-to-point communication, without the need for a central estimation or

planning unit.

In Chapter 2, we reviewed the mathematical concepts that are instrumental for under-

standing the contributions of this thesis. Topics include Bayesian grid mapping, information

theory, matrix Lie groups, and Riemannian manifolds.

In Chapter 3, we introduced Bayesian semantic octree mapping from a sequence of

semantically-annotated 3-D point clouds. We first generalized the log-odds mapping technique

to multi-class cases, leading to a categorical probability distribution over different object classes

represented by a vector of log-odds values. Then, we employed an octree data structure to

significantly reduce the memory footprint of the map representation, via compressing the
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neighboring voxels with similar multi-class probabilities. The performance of the semantic

octree mapping method was demonstrated in both simulation and real-world.

In Chapter 4, the multi-class octree map of a partially explored environment was used

to compute the Shannon mutual information between the current map estimate and a sequence

of future sensor observations. The presented information measure, named Semantic Shannon

Mutual Information (SSMI), explicitly considers the per-class uncertainty of the map, as well as

both range sensing noise and image semantic segmentation error rate. Additionally, we showed

that during calculation of the mutual information, the computational complexity with respect to

the map resolution can be substantially reduced by exploiting the octree data structure of the

map representation. The SSMI was utilized for identifying informative sensor poses, used as

navigation goal for exploration planning. The resulting exploration strategy was then compared

with several active mapping baselines in simulation and real-world mobile robot experiments.

Chapter 5 addressed the issue of non-differentiability of mutual information between grid

map representations and ray-based observations. As a solution, we introduced a differentiable

approximation to SSMI, by using a convex combination of exact SSMI values sampled around

a given sensor pose. The differentiable formulation of information allows defining an active

mapping objective function that can be augmented with other reward terms such as collision

avoidance, enabling occlusion and collision-aware active mapping via gradient-ascent. The

method was deployed on a ground wheeled robot, and its performance was compared with other

autonomous exploration algorithms.

Finally, in Chapter 6, we showed how gradient-based active mapping can be extended to

a team of collaborating robots with a single-hop communication network. We decomposed multi-

robot exploration to two sub-problems, namely multi-robot mapping and multi-robot planning,

and formulated both sub-problems as instances of multi-agent Riemannian optimization. A

general distributed Riemannian optimization algorithm with consensus and optimality guarantees

was presented, and utilized to achieve mapping and planning. The resulting distributed mapping

leads to global consistency among the local map estimates for each robot, while distributed
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planning allows coordination among the robots during exploration. Lastly, we demonstrated

the performance of Riemannian Optimization for Active Mapping (ROAM) in simulation and

real-world scenarios.

We envision several directions for future research, inspired by the work presented in this

thesis.

Geometric grounding of natural language

Our 3-D semantic map representation can be used in order to identify physical coordinates

of objects involved in a natural language task specification. Using a Large Language Model

(LLM), such as the GPT [25] family of models, one can extract objects of interest from a

natural language specification, and query the corresponding voxels in the semantic octree map.

The work presented in [44] employs a given scene graph of an indoor environment for natural

language grounding. However, online and accurate construction of the scene graph for a novel

environment requires high computational power, which is usually not available on mobile robots.

On the other hand, as shown in Chapter 3, our semantic map representation can be built on

resource-constrained robots on the fly, while containing a similar type of information that scene

graphs provide for geometric grounding of natural language. Hence, one can utilize our online

multi-class mapping method in order to perform task planning with natural language mission

specification on board of a robot, without prior knowledge of the environment.

Information-theoretic abstraction for multi-robot mapping

The distributed multi-robot mapping presented in Chapter 6 utilizes the octree data

compression in order to reduce the communication bandwidth required for broadcasting the

local semantic maps. Thanks to the probabilistic representation of the multi-class map, one can

employ more sophisticated strategies in order to systematically abstract away semantic classes

that are less relevant to a particular task. The work in [85] is a step this direction, in that the

authors use an information bottleneck formulation to prune a semantic octree in an online manner.

The pruned semantic octree retains high-resolution information that is relevant to the task, while
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irrelevant information is abstracted away in the form of low-resolution octree leafs. This helps to

significantly improve the communication burden of distributed multi-robot mapping, without

sacrificing the performance, due to the selective class-aware pruning.

Learning-based approaches

With the ubiquity of GPU-accelerated computers on board mobile robots, we are moti-

vated to use deep learning as a function approximation for SSMI, presented in Chapter 4. Using

learning methods may allow predicting the mutual information beyond the limited field of view

of range sensors, by recognizing the geometric and semantic patterns seen in a large collection

of real-world scenes. See [116, 141] for examples. One of the main challenges for leaning

SSMI would be non-smoothness with respect to sensor pose, which renders neural networks as

inefficient function approximators. However, using the technique in Chapter 5 will alleviate the

non-differentiability problem using convex combination of exact SSMI values. Furthermore, it is

curious to see how using behavioural cloning could help to find more efficient exploration poli-

cies by imitating a rule-based method or an exploring human agent, similar to the work in [33].

Lastly, using GNNs can enable training novel distributed multi-robot exploration policies. The

work by Tzes et al. [149] can be considered as a suitable inspiration for this direction, however,

it is of great practical interest to extend the linear-Gaussian observation model.
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Appendix A

Proof of Proposition 1

Applying Bayes rule in (3.1) and the factorization in (3.2) to pt(m) for some z ∈Zt+1

leads to:
N

∏
i=1

p(mi|Z1:t ,z) =
p(z)

p(z|Z1:t)

N

∏
i=1

p(mi|z)
p(mi)

p(mi|Z1:t). (A.1)

The term p(z)
p(z|Z1:t)

may be eliminated by considering the odds ratio of an arbitrary category

mi = ki ∈K versus the free category mi = 0 for each cell i:

N

∏
i=1

p(mi = ki|Z1:t ,z)
p(mi = 0|Z1:t ,z)

=
N

∏
i=1

p(mi = ki|z)
p(mi = 0|z)

p(mi = 0)
p(mi = ki)

p(mi = ki|Z1:t)

p(mi = 0|Z1:t)
.

Since each term in both the left- and right-hand side products only depends on one map cell mi,

the expression holds for each individual cell. Re-writing the expression for cell mi in vector form,

with elements corresponding to each possible value of ki ∈K , and taking an element-wise log

leads to: [
log p(mi=0|Z1:t ,z)

p(mi=0|Z1:t ,z)
· · · log p(mi=K|Z1:t ,z)

p(mi=0|Z1:t ,z)

]⊤
= (li(z)−h0,i)+ht,i. (A.2)

Applying (A.2) recursively for each element z ∈Zt+1 leads to the desired result in (3.5).
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Appendix B

Proof of Proposition 2

Let Rt+1:t+T (rmax) := ∪τ,bRτ,b(rmax) be the set of map indices which can potentially

be observed by Z t+1:t+T . Using the factorization in (3.2) and the fact that Shannon entropy is

additive for mutually independent random variables, the mutual information only depends on the

cells whose index belongs to Rt+1:t+T (rmax), i.e.:

I(m;Z t+1:t+T |Z1:t) =
t+T

∑
τ=t+1

B

∑
b=1

∑
i∈Rτ,b(rmax)

I(mi;zτ,b |Z1:t). (B.1)

This is true because the measurements zτ,b ∈ Z t+1:t+T are independent by construction and

the terms I(mi;Z t+1:t+T | Z1:t) can be decomposed into sums of mutual information terms

between single-beam measurements zτ,b and the respective observed map cells mi. The mutual

information between a single map cell mi and a sensor ray z is:

I(mi;z |Z1:t) =
∫

p(z |Z1:t)
K

∑
k=0

p(mi = k | z,Z1:t) log
p(mi = k | z,Z1:t)

pt(mi = k)
dz. (B.2)

127



Using the inverse observation model in (3.7) and the Bayesian multi-class update in (3.5), we

have:
K

∑
k=0

p(mi = k | z,Z1:t) log
p(mi = k | z,Z1:t)

pt(mi = k)

= (li(z)−h0,i)
⊤

σ(li(z)−h0,i +ht,i)+ log
p(mi = 0 | z,Z1:t)

pt(mi = 0)

= f (li(z)−h0,i,ht,i),

(B.3)

where (3.7) and (3.5) were applied a second time to the log term above. Plugging (B.3) back into

the mutual information expression in (B.2) and returning to (B.1), we have:

I(m;Z t+1:t+T |Z1:t)

=
t+T

∑
τ=t+1

B

∑
b=1

K

∑
y=1

∫ rmax

0

(
p(zτ,b = (r,y) |Z1:t) ∑

i∈Rτ,b(rmax)

f (li((r,y))−h0,i,ht,i)

)
dr.

(B.4)

For zτ,b = (r,y), the second term inside the integral above can be simplified to:

C̃τ,b(r,y) := ∑
i∈Rτ,b(rmax)

f (li((r,y))−h0,i,ht,i)

= f (φ++Ey+1ψ
+−h0,i∗

τ,b
,ht,i∗

τ,b
)+ ∑

i∈Rτ,b(r)\{i∗τ,b}
f (φ−−h0,i,ht,i)

(B.5)

because for map indices i∈Rτ,b(rmax)\Rτ,b(r) that are not observed by zτ,b, we have li((r,y)) =

h0,i according to (3.7) and f (h0,i−h0,i,ht,i) = 0.

Next, we apply the definition of (4.4) for the first term in the integral in (B.4), which turns

it into an integration over p̃τ,b(r,y)C̃τ,b(r,y). Note that p̃τ,b(r,y) and C̃τ,b(r,y) are piecewise-

constant functions since Rτ,b(r) is constant with respect to r as long as the beam z lands in cell

mi∗ . Hence, we can partition the integration domain over r into a union of intervals where the

beam z hits the same cell, i.e., Rτ,b(r) remains constant:

∫ rmax

0
p̃τ,b(r,y)C̃τ,b(r,y)dr =

Nτ,b

∑
n=1

∫ rn

rn−1

p̃τ,b(r,y)C̃τ,b(r,y)dr,
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where Nτ,b = |Rτ,b(rmax)|, r0 = 0, and rN = rmax. From the piecewise-constant property of

p̃τ,b(r,y) and C̃τ,b(r,y) over the interval (rn−1,rn], one can obtain:

∫ rn

rn−1

p̃τ,b(r,y)C̃τ,b(r,y)dr = p̃τ,b(rn,y)C̃τ,b(rn,y)γ(n) = pτ,b(n,y)Cτ,b(n,y),

where pτ,b(n,y) and Cτ,b(n,y) are defined in the statement of Proposition 2. Substituting y with

k and plugging the integration result into (B.4) yields the lower bound in (4.6) for the mutual

information between m and Zt+1:t+T .
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Appendix C

Proof of Proposition 3

Consider a single beam zτ,b, passing through cells {mi}i, i ∈Rτ,b(rmax). As shown in

Appendix B, the mutual information between the map m and a beam zτ,b can be computed as:

I(m;zτ,b|Z1:t) =
K

∑
k=1

Nτ,b

∑
n=1

pτ,b(n,k)Cτ,b(n,k). (C.1)

Assuming piece-wise constant class probabilities, we have:

Nτ,b

∑
n=1

pτ,b(n,k)Cτ,b(n,k) =
Qτ,b

∑
q=1

ωτ,b,1:q

∑
n=ωτ,b,1:q−1+1

pτ,b(n,k)Cτ,b(n,k), (C.2)

where ωτ,b,1:q =∑
q
j=1 ωτ,b, j. For each ωτ,b,1:q−1 < n≤ωτ,b,1:q, the terms pτ,b(n,k) and Cτ,b(n,k)

are expressed as:

pτ,b(n,k) = πt(q,k)π
(n−1−ωτ,b,1:q−1)
t (q,0)

q−1

∏
j=1

π
ωτ,b, j
t ( j,0),

Cτ,b(n,k) = f (φ++Ek+1ψ
+−χ0,q,χ t,q)+(n−1−ωτ,b,1:q−1) f (φ−−χ0,q,χ t,q)

+
q−1

∑
j=1

ωτ,b, j f (φ−−χ0, j,χ t, j).

(C.3)
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Plugging this into the inner summation of (C.2) leads to:

ωτ,b,1:q

∑
n=ωτ,b,1:q−1+1

pτ,b(n,k)Cτ,b(n,k) =

ρτ,b(q,k)
[
βτ,b(q,k)

ωτ,b,q−1

∑
j=0

π
j

t (q,0)+ f (φ−−χ0,q,χ t,q)
ωτ,b,q−1

∑
j=0

jπ j
t (q,0)

]
,

(C.4)

The summations in (C.4) can be computed explicitly, leading to the following closed-form

expression:

βτ,b(q,k)
ωτ,b,q−1

∑
j=0

π
j

t (q,0)+ f (φ−−χ0,q,χ t,q)
ωτ,b,q−1

∑
j=0

jπ j
t (q,0) =

βτ,b(q,k)
1−π

ωτ,b,q
t (q,0)

1−πt(q,0)
+

f (φ−−χ0,q,χ t,q)

(1−πt(q,0))2

[
(ωτ,b,q−1)π

ωτ,b,q+1
t (q,0)

−ωτ,b,qπ
ωτ,b,q
t (q,0)+πt(q,0)

]
= Θτ,b(q,k).

(C.5)

Therefore, the Shannon mutual information between a semantic OctoMap m and a range-category

measurement zτ,b can be computed as in (4.8).
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Appendix D

Proof of Proposition 4

Conditions (1) and (2) state that for any pair of viewpoints V ∈ Ĝ (Xi) and U ∈ Ĝ (X j),

the two sets of map cells inside the FOVs of V and U do not intersect. This is true since the spaces

inside V
¯
F and U

¯
F are always subsets of U(Xi) and U(X j), respectively, while Cond. (2) states

that U(Xi)∩U(X j) = /0. Consequently, the observations made from V and U are independent

random variables, resulting in the following decomposition of the SMI:

I(m;zv,zu | V,U,Ht) = I(m;zv | V,Ht)+ I(m;zu | U,Ht).

Following Cond. (2), the above decomposition can be applied for any set of viewpoints V :=

Vt+1:t+T where Vt+τ ∈ Ĝ (Xt+τ), τ ∈ {1, . . . ,T}. Hence we have:

T

∑
τ=1

∑
V ∈G T

AV (Xt+1:t+T )I(m;zt+τ | Vt+τ ,Ht) =

T

∑
τ=1

Ĩ(m;zt+τ | Xt+τ ,Ht) ∑
V −Vt+τ∈G T−1

AV (Xt+1:t+T )

αVt+τ
(Xt+τ)

.

Based on the definition of AV (Xt+1:t+T ), the inner sum is equal to 1, which yields the expression

in (5.6).
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Appendix E

Proof of Proposition 5

Since the approximate SMI in (5.4) is linear with respect to αV(X) terms, the overall

gradient computation can be reduced to a weighted sum of individual gradients of αV(X) with

respect to robot pose X. Also, it is only needed to compute gradients for viewpoints where

υ(δ (ξ X,V)) = 1 since the rest of the viewpoints do not affect the derivations:

[∇ψαV(Xexp(ψ̂))]|⊤ψ=0 =

∂ cosδ (ξ Xexp(ψ̂),V)

∂ψ
η(X)− (1+ cosδ (ξ X,V))

∂η(Xexp(ψ̂))
∂ψ

η2(X)
,

where η(X) is defined in (5.15). Both partial derivations in the numerator require computing
∂ cosδ (ξ Xexp(ψ̂),V)

∂ψ
. Applying the chain rule, we have:

∂ cosδ (ξ Xexp(ψ̂),V)

∂ψ
=

∂ cosδ

∂δ

∣∣∣∣
δ=δ (ξ X,V)

∂δ (ξ )

∂ξ

∣∣∣∣
ξ=ξ X,V

∂ log(exp(−ψ̂)X−1V)∨

∂ψ

∣∣∣∣
ψ=0

.

The first two partial derivatives can be obtained via differentiation in R and R6, respectively. The

last partial derivative can be obtained via applying small perturbation ψ in the robot frame:

∂ log(exp(−ψ̂)X−1V)∨

∂ψ

∣∣∣∣
ψ=0

= JR(−ξ X,V)JR(ξ X).

Summing over all V ∈ Ĝ leads to the expression in (5.15).
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Appendix F

Proof of Theorem 1

We organize the proof into three main steps. First, we show that the aggregate distance

function φ(·) is geodesically L-smooth. Second, we show that Alg. 5 converges to a consensus

configuration. Last, optimality properties of Alg. 5 are derived.

Step 1. We begin the proof by showing that the aggregate distance function φ(·) is geodesically

L-smooth. Namely, for any pair of joint states x,y ∈M |V | we prove:

∥gφ (x)−T x
y gφ (y)∥x ≤ Ld(x,y),

with gφ (x) as a shorthand notation for gradφ(x).

For two joint states x,y ∈M |V | we have:

gradxi φ(x)−T xi

yi gradyi φ(y) =−2 ∑
j∈V

Ai j(vi j
x −T xi

yi vi j
y ),

where the vectors vi j
x and vi j

y follow the notation in Assumption 2. Using row-stochasticity of A

and the fact that M |V | is the product manifold of M leads to:

∥gφ (x)−T x
y gφ (y)∥2

x ≤ 4 ∑
(i, j)∈V 2

Ai j∥vi j
x −T xi

yi vi j
y ∥2

xi, (F.1)

Adding and subtracting tangent terms vi
xy and v j

xy as well as utilizing the Cauchy-Schwarz
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inequality in TxiM results in the following decomposition:

∥vi j
x −T xi

yi vi j
y ∥2

xi ≤ ∥vi
xy−T xi

x j v j
xy∥2

xi +∥vi j
xy∥2

xi +2∥vi
xy−T xi

x j v j
xy∥xi∥vi j

xy∥xi, (F.2)

such that the vector vi j
xy ∈ TxiM is defined in (6.6). The vector vi j

xy contains sum of 4 vectors

corresponding to a geodesic loop. Assumption 2, in addition to applying the triangle inequality,

allows finding an upper bound for (F.2) that does not involve vi j
x and vi j

y terms:

∥vi j
x −T xi

yi vi j
y ∥2

xi ≤ (ρ +1)2(∥vi
xy∥xi +∥v j

xy∥x j)2.

Plugging into (F.1) and summing over (i, j) ∈ V 2 yields:

∥gφ (x)−T x
y gφ (y)∥2

x ≤ 8(ρ +1)2
(

d2(x,y)+ ∑
(i, j)∈V 2

Ai j∥vi
xy∥xi∥v j

xy∥x j

)
,

The summation term in the above inequality is upper-bounded by the induced norm of A, i.e. its

largest eigenvalue. Using the fact that the largest eigenvalue of row-stochastic matrices is 1, we

derive the following:
∥gφ (x)−T x

y gφ (y)∥x

d(x,y)
≤ 4(1+ρ) := L. (F.3)

Therefore, the aggregate distance function φ(x) is geodesically L-smooth, with L = 4(1+ρ).

Step 2. This step proves convergence of Alg. 5 to a consensus configuration. We use the L-

smoothness of φ(·) to find a bound for the values of φ(x). Consider two points x and y in M |V |,

and the geodesic s(·) : [0,1]→M |V | connecting x to y, i.e. s(0) = x and s(1) = y. Using the

fundamental theorem of calculus for line integrals we have:

φ(y)−φ(x)−⟨gφ (x),Exp−1
x (y)⟩x =

∫ 1

0
⟨T x

s(t)gφ (s(t))−gφ (x),Exp−1
x (y)⟩x dt.
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Applying the Cauchy-Schwarz inequality and using the L-smoothness of φ(x) results in:

φ(y)−φ(x)−⟨gφ (x),Exp−1
x (y)⟩x ≤ Ld2(x,y)

∫ 1

0
t dt =

L
2

d2(x,y). (F.4)

The above bound helps to analyze the dynamics of the joint state x over the iterations of Alg. 5.

Consider line 4 of Alg. 5. Using (F.4) leads to:

φ(x̃(k))≤ φ(x(k))+ ⟨gφ (x(k)),−εgφ (x(k))⟩x(k) +
Lε2

2
∥gφ (x(k))∥2

x(k). (F.5)

Similarly, for line 6 of Alg. 5 we have:

φ(x(k+1))≤ φ(x̃(k))+ ⟨gφ (x̃(k)),α(k)gF(x̃(k))⟩x̃(k) +
Lα(k)2

2
∥gF(x̃(k))∥2

x̃(k),

where, analogous to gφ (x(k)), gF(x̃(k)) is shorthand notation for gradF(x)|x=x̃(k) . Using the

positive definiteness of the Riemannian metric ⟨v,u⟩x, we have 2⟨v,u⟩x ≤ η∥v∥2
x +∥u∥2

x/η for

any v,u ∈ TxM |V | and η > 0. Hence:

φ(x(k+1))≤ φ(x̃(k))+
η

2
∥gφ (x̃(k))∥2

x̃(k) +
α(k)2

2
(L+

1
η
)∥gF(x̃(k))∥2

x̃(k).

By adding and subtracting T x̃(k)
x(k) gφ (x(k)) from gφ (x̃(k)), and using the fact that ∥v+ u∥2

x/2 ≤

∥v∥2
x +∥u∥2

x, we have:

φ(x(k+1))≤ φ(x̃(k))+
α(k)2

2
(L+

1
η
)∥gF(x̃(k))∥2

x̃(k)

+η∥gφ (x̃(k))−T x̃(k)
x(k) gφ (x(k))∥2

x̃(k) +η∥gφ (x(k))∥2
x(k).

Using the bound for gradients of the local objective functions f i(xi) alongside utilizing the
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L-smoothness of φ(x) and plugging (F.5) into the above inequality, yields:

φ(x(k+1))≤ φ(x(k))+
α(k)2

2|V | (L+
1
η
)C2 +[ε(

Lε

2
−1)+η(1+L2

ε
2)]∥gφ (x(k))∥2

x(k).

Choosing η = ε(2−Lε)
4(1+L2ε2)

we have:

ε

2
(1− Lε

2
)∥gφ (x(k))∥2

x(k) ≤ φ(x(k))−φ(x(k+1))+α
(k)2

(
1+ ε2L2

ε(1− Lε

2 )
+

L
2
)

C2

|V | . (F.6)

Summing over kmax first iterations of Alg. 5 yields:

ε

2
(1− Lε

2
)

kmax

∑
k=0
∥gφ (x(k))∥2

x(k) ≤ φ(x(0))−φ(x(kmax+1))+
C2

|V |(
1+ ε2L2

ε(1− Lε

2 )
+

L
2
)

kmax

∑
k=0

α
(k)2

.

Because φ(x(kmax+1)) is always non-negative, we have:

ε

2
(1− Lε

2
)

kmax

∑
k=0
∥gφ (x(k))∥2

x(k) ≤ φ(x(0))+
C2

|V |(
1+ ε2L2

ε(1− Lε

2 )
+

L
2
)

kmax

∑
k=0

α
(k)2

.

As a consequence of the compactness of M , φ(x(0)) will be bounded for any choice of x(0).

Moreover, setting kmax→ ∞, due to the convergence property for the sum of the squared step

sizes α(k)2
, we have:

ε

2

(
1− Lε

2

)
∞

∑
k=0
∥gφ (x(k))∥2

x(k) ≤ φ(x(0))+
C2

|V |

(
1+ ε2L2

ε(1− Lε

2 )
+

L
2

)
∞

∑
k=0

α
(k)2

< ∞. (F.7)

Therefore, for ε ∈ (0,2/L), gφ (x(k)) shrinks to zero as k goes to infinity. Since α(k) is a decaying

sequence and ∥gF(x̃(k))∥x̃(k) ≤ C√
|V | for all k ≥ 0, Alg. 5 converges to a first-order critical point

of φ(x).

Let x(∞) be the joint state that Alg. 5 converges to. Also, let xc be a consensus state,

which can be constructed by setting all xi, i ∈ V , to an arbitrary state xc ∈M . Since the

squared distance d2(·) is geodesically convex, and the adjacency matrix A is symmetric and row
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stochastic, it is possible to show that φ(·) is also geodesically convex. Thus we have:

φ(xc)≥ φ(x(∞))+ ⟨gφ (x(∞)),Exp−1
x(∞) (xc)⟩x(∞).

Since φ(xc) is zero, φ(x(∞)) is non-negative, and (F.7) indicates that x(∞) is a first-order critical

point of φ(·), we arrive at the following for Alg. 5:

φ(x(∞)) = 0 (F.8)

Note that (F.7) and (F.8) hold even for a disconnected graph G . However, for the global

asymptotic consensus, G should be a connected graph; otherwise, consensus occurs separately

for each connected component of G .

Step 3. In the last step, we show the optimality properties of Alg. 5. We utilize the Riemannian

manifold version of the law of cosines, which can be expressed for a geodesic triangle with side

lengths a, b, and c as follows (Lemma 5, [168]):

a2 ≤ c
√
|κmin|

tanh(c
√
|κmin|)

b2 + c2−2bccos(∠bc), (F.9)

where κmin is a lower bound on the sectional curvature of the manifold. Now, consider a geodesic

triangle specified by xi(k+1), x̃i(k), and x∗, where x∗ ∈M is an element of the centralized optimal

solution of (6.3), denoted by x∗ ∈M |V |:

d2(xi(k+1)
,x∗)≤ d2(x̃i(k),x∗)+ζ α

(k)2∥g f i(x̃i(k))∥2
x̃i(k)−2α

(k)⟨g f i(x̃i(k)),Exp−1
x̃i(k)

(x∗)⟩
x̃i(k),

where ζ =
dmax
√
|κmin|

tanh(dmax
√
|κmin|)

with dmax ≥ maxx,y∈M d(x,y). Since M is compact, dmax is well-

defined. Also, the law of cosines still holds using dmax instead of side length d2(x̃i(k),x∗) due

to the strict monotonicity of the function y
tanh(y) for y ∈ R≥0. As a result of the local objective
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function concavity and gradient boundedness, we have:

2α
(k)( f i(x∗)− f i(x̃i(k)))≤ d2(x̃i(k),x∗)−d2(xi(k+1)

,x∗)+ζC2
α
(k)2

.

Summing over all agents in V yields:

2α
(k)|V |(F(x∗)−F(x̃(k)))≤ d2(x̃(k),x∗)−d2(x(k+1),x∗)+ζ |V |C2

α
(k)2

. (F.10)

Now, we repeat the same steps for the geodesic triangle specified by x̃(k), x(k), and x∗:

d2(x̃(k),x∗)≤ d2(x(k),x∗)+ζ ε
2∥gφ (x(k))∥2

x(k) +2ε⟨gφ (x(k)),Exp−1
x(k) (x

∗)⟩x(k).

Using the convexity of φ(·), the fact that φ(x∗) is zero by definition, and φ(x(k)) is always

non-negative, we have:

d2(x̃(k),x∗)≤ d2(x(k),x∗)+ζ ε
2∥gφ (x(k))∥2

x(k).

Plugging (F.6) into the above inequality yields:

d2(x̃(k),x∗)≤ d2(x(k),x∗)+
2ζ ε

1− Lε

2

[
φ(x(k))−φ(x(k+1))+

α(k)2
C2

|V | [
1+ ε2L2

ε(1− Lε

2 )
+

L
2
]
]
.

Plugging once more into (F.10) leads to:

2α
(k)|V |(F(x∗)−F(x̃(k)))≤ d2(x(k),x∗)−d2(x(k+1),x∗)

+ζ |V |C2
α
(k)2

+
2ζ ε

1− Lε

2

[
φ(x(k))−φ(x(k+1))+

α(k)2
C2

|V | [
1+ ε2L2

ε(1− Lε

2 )
+

L
2
]
]
.
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Summing over kmax first iterations of Alg. 5 yields:

2|V |
kmax

∑
k=0

α
(k)(F(x∗)−F(x̃(k)))≤ d2(x(0),x∗)+

4ζ φ(x(0))
2/ε−L

+ζC2
[ 2ε

|V |(1− Lε

2 )
[

1+ ε2L2

ε(1− Lε

2 )
+

L
2
]+ |V |

] kmax

∑
k=0

α
(k)2

.

It is straightforward to show:

min
0≤k′≤kmax

{F(x∗)−F(x̃(k
′))}

kmax

∑
k=0

α
(k) ≤

kmax

∑
k=0

α
(k)(F(x∗)−F(x̃(k))).

Therefore, we have:

F(x∗)≤ max
0≤k′≤kmax

{F(x̃(k
′))}+ 1

2|V |∑kmax
k=0 α(k)

[
d2(x(0),x∗)+

4ζ φ(x(0))
2/ε−L

+ζC2
( 2ε

|V |(1− Lε

2 )
(

1+ ε2L2

ε(1− Lε

2 )
+

L
2
)+ |V |

) kmax

∑
k=0

α
(k)2]

.

Since d2(x(0),x∗), φ(x(0)), and ∑
∞
k=0 α(k)2

are bounded and ∑
∞
k=0 α(k) = ∞, the term inside

the brackets in the right hand side of the above inequality vanishes as kmax → ∞. There-

fore, max0≤k′≤kmax{F(x̃(k′))} will be asymptotically lower-bounded by F(x∗). Moreover, since

∥gφ (x(k))∥x(k) and α(k) both shrink to zero as k→∞, we derive the same asymptotic lower bound

for F(x(k)):

F(x∗)≤ lim
kmax→∞

max
0≤k≤kmax

{F(x(k))}. (F.11)

In summary, the relations in (F.7) and (F.8) show convergence to a consensus configura-

tion for step size ε ∈ (0,2/L), where L = 4(1+ρ). Furthermore, (F.11) expresses the optimality

of Alg. 5 with respect to a centralized solution.
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Appendix G

Proof of Lemma 1

The conditional independence of observations given the map m allows decomposing the

observation model qi(zi
1:t |m) into a product of single observation models qi(zi

τ |m), τ ∈ {1, . . . , t}.

By applying Bayes rule to the decomposed observation model, the objective function in (6.9)

can be written as:

∑
i∈V

t

∑
τ=1

(
logqi(zi

τ)+Em∼p
[

log
qi(m|zi

τ)

p(m)

])
.

Using the map independence assumption, the log term inside the expectation can be expressed as

the sum of log terms with respect to single cells. The additivity of expected value yields:

∑
i∈V

t

∑
τ=1

(
logqi(zi

τ)+
N

∑
n=1

Em∼p
[

log
qi(mn|zi

τ)

pn(mn)

])
.

Since every term inside the expectation only depends on a single cell mn ∼ pn, n ∈ {1, . . . ,N},

the expectation can thus be simplified to only incorporate one cell instead of the joint distribution

m∼ p. This leads to the expression in (6.11).
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[63] Héctor H. González-Baños and Jean-Claude Latombe. Navigation strategies for exploring
indoor environments. The International Journal of Robotics Research (IJRR), 21(10-
11):829–848, 2002.

[64] Walker Gosrich, Siddharth Mayya, Rebecca Li, James Paulos, Mark Yim, Alejandro
Ribeiro, and Vijay Kumar. Coverage control in multi-robot systems via graph neural
networks. In IEEE International Conference on Robotics and Automation (ICRA), pages
8787–8793, 2022.

[65] Ben Grocholsky, James Keller, Vijay Kumar, and George Pappas. Cooperative air and
ground surveillance. IEEE Robotics & Automation Magazine, 13(3):16–25, 2006.

[66] Trevor Halsted, Ola Shorinwa, Javier Yu, and Mac Schwager. A survey of distributed
optimization methods for multi-robot systems. arXiv preprint arXiv:2103.12840, 2021.

[67] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016.

[68] Theia Henderson, Vivienne Sze, and Sertac Karaman. An efficient and continuous
approach to information-theoretic exploration. In IEEE International Conference on
Robotics and Automation (ICRA), 2020.

[69] A. Hong, O. Igharoro, Yugang Liu, Farzad Niroui, Goldie Nejat, and Beno Benhabib.
Investigating human-robot teams for learning-based semi-autonomous control in urban
search and rescue environments. Journal of Intelligent & Robotic Systems, 94:669–686,
2019.

147



[70] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram Bur-
gard. OctoMap: An efficient probabilistic 3D mapping framework based on octrees.
Autonomous Robots, 2013. Software available at https://octomap.github.io.

[71] Junyan Hu, Hanlin Niu, Joaquin Carrasco, Barry Lennox, and Farshad Arvin. Voronoi-
based multi-robot autonomous exploration in unknown environments via deep reinforce-
ment learning. IEEE Transactions on Vehicular Technology, 69(12):14413–14423, 2020.

[72] Junyan Hu, Hanlin Niu, Joaquin Carrasco, Barry Lennox, and Farshad Arvin. Voronoi-
based multi-robot autonomous exploration in unknown environments via deep reinforce-
ment learning. IEEE Transactions on Vehicular Technology, 69(12):14413–14423, 2020.

[73] Xiang Huang, Min Sun, Hang Zhou, and Shuai Liu. A multi-robot coverage path planning
algorithm for the environment with multiple land cover types. IEEE Access, 8:198101–
198117, 2020.

[74] J. Jessup, Sidney N. Givigi, and Alain Beaulieu. Merging of octree based 3D occupancy
grid maps. In 2014 IEEE International Systems Conference Proceedings, pages 371–377,
2014.

[75] Brian J. Julian. Mutual information-based gradient-ascent control for distributed robotics.
PhD thesis, Massachusetts Institute of Technology, 2013.

[76] Brian J. Julian, Sertac Karaman, and Daniela Rus. On mutual information-based control
of range sensing robots for mapping applications. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 5156–5163, 2013.

[77] Xinyue Kan, Hanzhe Teng, and Konstantinos Karydis. Online exploration and coverage
planning in unknown obstacle-cluttered environments. IEEE Robotics and Automation
Letters, 5(4):5969–5976, 2020.

[78] Yiannis Kantaros, Brent Schlotfeldt, Nikolay Atanasov, and George J. Pappas. Asymptoti-
cally optimal planning for non-myopic multi-robot information gathering. In Robotics:
Science and Systems, pages 22–26, 2019.

[79] Joseph Knuth and Prabir Barooah. Collaborative 3D localization of robots from rela-
tive pose measurements using gradient descent on manifolds. In IEEE International
Conference on Robotics and Automation (ICRA), 2012.

[80] Shumon Koga, Arash Asgharivaskasi, and Nikolay Atanasov. Active exploration and map-
ping via iterative covariance regulation over continuous SE(3) trajectories. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 2735–2741,
2021.

[81] Shumon Koga, Arash Asgharivaskasi, and Nikolay Atanasov. Active SLAM over continu-
ous trajectory and control: A covariance-feedback approach. arXiv preprint:2110.07546,
2022.

148

https://octomap.github.io


[82] Shumon Koga, Arash Asgharivaskasi, and Nikolay Atanasov. Active SLAM over con-
tinuous trajectory and control: A covariance-feedback approach. In American Control
Conference (ACC), pages 5062–5068, 2022.

[83] Thomas Kollar and Nicholas Roy. Efficient optimization of information-theoretic ex-
ploration in SLAM. In AAAI Conference on Artificial Intelligence, page 1369–1375,
2008.

[84] Christian Lageman, Alain Sarlette, and Rodolphe Sepulchre. Synchronization with partial
state feedback on SO(n). In IEEE Conference on Decision and Control (CDC), pages
1696–1701, 2009.

[85] Daniel T. Larsson, Arash Asgharivaskasi, Jaein Lim, Nikolay Atanasov, and Panagiotis
Tsiotras. Information-theoretic abstraction of semantic octree models for integrated
perception and planning. In 2023 IEEE International Conference on Robotics and
Automation (ICRA), pages 6937–6943, 2023.

[86] Husheng Li and Zhu Han. Competitive spectrum access in cognitive radio networks:
Graphical game and learning. In IEEE Wireless Communication and Networking Confer-
ence, pages 1–6, 2010.

[87] Jiaxiang Li and Shiqian Ma. Federated learning on Riemannian manifolds. arXiv preprint
arXiv:2206.05668, 2022.

[88] Jiazhen Liu, Lifeng Zhou, Ragesh Ramachandran, Gaurav S. Sukhatme, and Vijay Kumar.
Decentralized risk-aware tracking of multiple targets. In Distributed Autonomous Robotic
Systems, pages 408–423. Springer Nature Switzerland, 2024.

[89] Xu Liu, Ankit Prabhu, Fernando Cladera, Ian D. Miller, Lifeng Zhou, Camillo J. Taylor,
and Vijay Kumar. Active metric-semantic mapping by multiple aerial robots. In IEEE
International Conference on Robotics and Automation (ICRA), pages 3282–3288, 2023.
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