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Broadband infrared and Raman probes of excited-state vibrational molecular
dynamics; Simulation protocols based on loop diagrams

Konstantin E. Dorfman,∗ Benjamin P. Fingerhut,† and Shaul Mukamel
Department of Chemistry, University of California, Irvine, California 92697-2025, USA

(Dated: May 24, 2013)

Vibrational motions in electronically excited states can be observed by either time and frequency
resolved infrared absorption or by off resonant stimulated Raman techniques. Multipoint correlation
function expressions are derived for both signals. Three representations for the signal which suggest
different simulation protocols are developed. These are based on the forward and the backward
propagation of the wavefunction, sum over state expansion using an effective vibration Hamiltonian
and a semiclassical treatment of a bath. We show that the effective temporal (∆t) and spectral
(∆ω) resolution of the techniques is not controlled solely by experimental knobs but also depends
on the system dynamics being probed. The Fourier uncertainty ∆ω∆t > 1 is never violated.

I. INTRODUCTION

The excited state vibrational dynamics of molecules
plays a key role in many photophysical and photochemi-
cal processes and has attracted considerable experimen-
tal and theoretical attention [1–4]. Real time structural
information about rearrangement of atoms in complex re-
actions can be inferred directly from time resolved vibra-
tional spectroscopy [5–7]. Typically an ultrashort laser
pulse in the visible or the UV excites the molecule to a
bright valence excited state, launching a photoreaction
or non-adiabatic relaxation process. The vibrational dy-
namics can then be probed either by the absorption of
a delayed IR probe pulse [8–13] or by a spontaneous or
stimulated Raman process [14].

Unique marker bands in UV pump/IR probe signals
serve as fingerprint of the excited state evolution allow-
ing to resolve transient reaction [2, 15], intermediates
structural details [16] and reveal the reaction mechanism.
Such investigations helped identify the real time reaction
mechanism leading to the formation of photolesions in
DNA nucleobases [2, 6, 7, 17], to monitor isomerization
reactions in protein environments [18], to resolve the con-
secutive steps in proton transfer reactions [15], to identify
the participating ion pairs upon photoinduced bimolecu-
lar electron transfer [19] and to follow light-induced elec-
trocyclic reactions [20, 21]. Frequency shifts of IR marker
bands have also been used to monitor the response of
the local environment [22–25] and molecular energy re-
distribution [26]. More elaborate pulse sequences allow
to spread the IR signal in two dimensions, resolving the
couplings between localized vibrations [27–29].

Spontaneous Raman [30] has long been used as an
alternative probe. Recent stimulated Raman measure-
ments that employ a femtosecond and a picosecond pulse
had generated considerable excitement [4, 5, 31–41]. A
rich pattern of narrow (10 cm−1) vibrational lines has

∗ kdorfman@uci.edu
† bfingerh@uci.edu

been reported in 25 fs intervals. Applications were made
to pNA, pDNA [42], rhodopsin [1], carbon dioxide [43],
bacterial endospores [44], and other systems. Frequency
domain stimulated Raman has proven validity in cell
imaging [45].

In this paper we focus on two techniques, both start-
ing with an optical pump pulse but followed by a differ-
ent detection: frequency - dispersed broadband infrared
probe (FDIR) or off resonant stimulated Raman spec-
troscopy (SRS) [5]. We show how both techniques can
be described and interpreted with minor modifications
using very similar vibrational correlation functions . The
signals are intuitively described by loop diagrams which
connect them to forward and backward propagation of
the wavefunction.

We present a general analysis and derive closed expres-
sions that can be used for microscopic quantum simula-
tions of both infrared and Raman signals. Three repre-
sentations for these correlation functions are presented
each suggesting a different simulation strategy. The first
is based on the numerical propagation of the wavefunc-
tion which includes all relevant electronic and nuclear (in-
cluding bath) degrees of freedom explicitly. This is the
most general, expensive and accurate method [46, 47]. A
second protocol uses a Sum Over States (SOS) expan-
sion of the signals. Here we must diagonalize an effective
vibrational hamiltonian. This offers a numerically more
tractable algorithm when it is possible to truncate the rel-
evant phase space. The third approach is semiclassical.
A small vibrational system is treated quantum mechani-
cally and a classical bath which causes a time dependent
modulation of the system Hamiltonian is added. This
is the simplest theory to implement by e.g. assuming
that the vibrational frequencies change with time. This
change can be either introduced phenomenologically or
by using atomistic molecular dynamics simulations.

The time and frequency in these experiments are con-
trolled by independent knobs. We can formally define
uncertainties ∆t and ∆ω associated with the pulse du-
ration and the frequency resolution of a spectrometer.
This suggests that there is no lower bound to the product
∆ω∆t; the measurement can apparently be interpreted in
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FIG. 1. (Color online) FDIR: Level scheme - (a), closed-time
path-loop diagrams - (b).

terms of instantaneous snapshots with high spectral res-
olution. For example recent experiments [1, 5] use pulses
(< 50 fs) and reported spectral features (< 10 cm−1) such
that ∆ω∆t ∼ 0.5 ps cm−1 which is an order of magni-
tude smaller than the Fourier uncertainty for Gaussian
pulses. An additional goal of this paper is to provide
a proper definition of ∆ω and ∆t and show that they
are not purely instrumental but depend on the system
as well. We find that the simple snapshot interpretation
is false. We discuss the limitations of the spectral and
temporal resolutions of these techniques and how they
can be manipulated.

II. LOOP DIAGRAM REPRESENTATION OF
FREQUENCY-DISPERSED STIMULATED

SIGNALS

Stimulated optical signals are defined as the energy
change of the electromagnetic field

S =

∫ ∞
−∞

d

dt
〈E†(t)E(t)〉dt. (1)

The radiation-matter interaction Hamiltonian in the ro-
tating wave approximation (RWA) is

H ′(t) = V (t)E†(t) +H.c., (2)

where V (t) + V †(t) is a Heisenberg dipole operator and
the electric field operator E(t) = E(t) + E†(t). Both are
separated into positive (non dagger) and negative (dag-
ger) frequency components (lowering and raising photon
operators, respectively). The dipole operator is given by
the sum of the electronic and nuclear dipole moments
V (t) = Ve(t) + Vn(t).

The Heisenberg equation of motion for the field oper-
ator E(t) then gives for the above integrated signal

S =
2

~

∫ ∞
−∞

dt′ I〈P (t′)E†(t′)〉

=
2

~

∫ ∞
−∞

dω′

2π
I〈P (ω′)E†(ω′)〉, (3)

where where I denotes the imaginary part,

P (ω) =

∫ ∞
−∞

dtP (t)eiωt (4)

with P (t) = 〈V (t)〉 representing the nonlinear polar-
ization that arise from the interaction with the pump
and the probe pulses. The angular brackets denote
〈...〉 = Tr[ρ(t)...] with the density operator ρ(t) defined
in the joint field-matter space of the entire system. In
practice, the temporal or spectral range of the integra-
tions in Eq. (3) is restricted by the response function of
the detector. If the detector contains a narrow time gate
with nearly δ function response δ(t′ − t), Eq. (3) yields

STG(t; Γ) =
2

~
I〈P (t)E†(t)〉, (5)

where Γ denotes a set of parameters that characterize the
various laser pulses. Similarly if the detector consists of a
spectrometer with narrow frequency response δ(ω′ − ω),
we obtain the frequency-gated signal

SFG(ω; Γ) =
2

~
I〈P (ω)E†(ω)〉, (6)

Note that the two signals Eqs. (5) and (6) carry differ-
ent information and are not related by a simple Fourier
transform. A Wigner spectrogram representation [48–
50] was used in [51] for the integrated pump probe sig-
nals Eq. (3). Here we use loop diagrams to describe the
more detailed frequency- or time-gated signals (6) and
(5), respectively. For clarity in the following we focus on
the frequency-gated expressions, the corresponding time-
gated signals are given in the Appendix A.

III. FIRST PROTOCOL; NUMERICAL
PROPAGATION OF THE WAVE FUNCTION

We start with the visible-pump/IR-probe signal as
sketched in Fig. 1a. FDIR is somewhat simpler than
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FIG. 2. (Color online) SRS: Level scheme - (a), closed-time
path-loop diagrams - (b).

SRS since it only involves four rather than six radiation-
matter interactions. The pump pulse centered at time
τ3 = 0 promotes the system from its ground electronic
state g to the vibrational state a of an excited electronic
state and launches the vibrational dynamics. The IR
probe pulse centered around τ3 = T can then either
stimulate emission that couples the vibrational state a
and lower vibrational state d or an absorption to higher
vibrational state c. The signal is defined as the change
in probe intensity and is either time-gated (Eq. (5) or
frequency-gated (Eq. (6)). Both can be represented by
the loop diagrams shown in Fig. 1b which contain the
four field-matter interactions -two with each pulse. Dia-
gram rules are given in Ref. [52]. Note that the signals
(5) and (6) are expressed in terms of E† which makes the
arrow corresponding the the last interaction pointing to
the left. We further choose the last interaction to occur
on the left branch. This choice removes any ambiguity
in the diagrams rules without loss of generality.

The electric field operator consists of the pump field 1
and a probe field 2

E(t) = E1(t) + E2(t− T ), (7)

where T represents the delay of the probe pulse relative to
the pump. The signal is given by the two loop diagrams
shown in Fig. 1b, plus their complex conjugates. These
give for the frequency-gated signal (6)

SIR(ω, T ) = I
∫ ∞
−∞

d∆

2π
E∗2 (ω)E2(ω + ∆)S̃IR(ω, T ; ∆),

(8)

where the ∆-dispersed signal is given by the two diagrams

S̃IR(ω, T ; ∆) = S̃
(i)
IR(ω, T ; ∆) + S̃

(ii)
IR (ω, T ; ∆) and

S̃
(i)
IR(ω, T ; ∆) =

2

~

∫ ∞
−∞

dt

∫ t

−∞
dτ1

∫ t

−∞
dτ3

∫ τ3

−∞
dτ5E∗1 (τ5)E1(τ1)

× 〈VeG†(τ3, τ5)V †nG
†(t, τ3)VnG(t, τ1)V †e 〉eiω(t−τ3)−i∆(τ3−T ), (9)

S̃
(ii)
IR (ω, T ; ∆) =

2

~

∫ ∞
−∞

dt

∫ t

−∞
dτ1

∫ t

−∞
dτ3

∫ τ3

−∞
dτ5E1(τ5)E∗1 (τ1)

× 〈VeG†(t, τ1)VnG(t, τ3)V †nG(τ3, τ5)V †e 〉eiω(t−τ3)−i∆(τ3−T ). (10)

S̃(ω, T ; ∆) represents the contribution of the ω and ω+∆
frequency components of E2 to the signal, where ω is the
detected frequency. The signal is obtained by integration
over ∆. Here G(t1, t2) = (−i/~)θ(t1 − t2)e−iH(t1−t2) is
the retarded Green’s function. Even though this Green’s
function only depends on the difference of its two time
arguments, we retain both arguments and write G(t1, t2)

rather than G(t1 − t2). This is done since in the re-
duced (semiclassical) description to be developed later
when the system is coupled to some stochastic bath de-
grees of freedom, time translational invariance is lost and
G then depends on both arguments. The corresponding
time-gated signal (5) is given by Eqs. (A2) - (A3). Eqs.
(9) - (10) may be simplified further when the first pulse
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is impulsive. We can then set E1(τ) = E1δ(τ) and the τ1
and τ5 integrations can be eliminated.

Diagram (i) (Eq. (9)) can be understood using a for-
ward and backward time evolving vibronic wave packet.
First, the pulse E1 electronically excites the molecule via
V †e . The wavefunction then propagates forward in time
from τ1 to t. Then the IR probe pulse E2 deexcites the
vibrational transition to the lower vibrational level via
Vn which then propagates backward in time from t to τ3.
Pulse E2 excites the vibration via V †n and the wavefunc-
tion propagates backward in time from τ3 to τ5. The final
deexcitation by pulse E1 returns the system to its initial
state by acting with Ve. Diagram ii Eq. (10) can be in-

terpreted similarly. Following initial electronic excitation
the wavefunction propagates forward in time from τ5 to
τ3. At this point a vibrational excitation promotes it to
the higher vibrational state and the wavefunction prop-
agates forward in time from τ3 to t. After vibrational
deexcitation it then propagates backward from t to τ1
where an electronic excitation brings the system back in
its initial ground state.

In Eqs. (9) - (10) the matter correlation function is
given in the time domain. Alternatively one can read the
signal (8) from the diagrams when both field and matter
correlation functions are given in the frequency domain

S
(i)
IR(ω, T ) = I 4π

~

∫ ∞
−∞

dω′

2π

dω1

2π

dω′1
2π
E∗2 (ω)E2(ω′)E∗1 (ω1)E1(ω′1)δ(ω − ω′ + ω1 − ω′1)

×〈VeG†(ωg + ω1)V †nG
†(ωg + ω1 − ω′)VnG(ωg + ω′1)V †e 〉, (11)

S
(ii)
IR (ω, T ) = I 4π

~

∫ ∞
−∞

dω′

2π

dω1

2π

dω′1
2π
E∗2 (ω)E2(ω′)E∗1 (ω1)E1(ω′1)δ(ω − ω′ + ω1 − ω′1)

×〈VeG†(ωg + ω1)VnG(ωg + ω′ + ω′1)V †nG(ωg + ω′1)V †e 〉. (12)

Here G(ω) = h−1/[ω − H/~ + iε], δ(ω − ω′ + ω1 − ω′1)
represents the energy conservation that follows from time
translation symmetry of all four field-matter interactions.
One can separate the preparation pulse E1 and break the
δ-function as follows

δ(ω − ω′ + ω1 − ω′1)

=

∫ ∞
−∞

d∆δ(ω − ω′ + ∆)δ(ω1 − ω′1 −∆), (13)

where ∆ defines the spectral bandwidth of the incoming
pulse which translates into the spectral bandwidth of the
relevant matter degrees of freedom. Eqs. (11) - (12) then
yield

S
(i)
IR(ω, T ) = I 2

~

∫ ∞
−∞

d∆dω1E∗2 (ω)E2(ω + ∆)E∗1 (ω1)E1(ω1 −∆)

×〈VeG†(ωg + ω1)V †nG
†(ωg + ω1 − ω −∆)VnG(ωg + ω1 −∆)V †e 〉, (14)

S
(ii)
IR (ω, T ) = I 2

~

∫ ∞
−∞

d∆dω1E∗2 (ω)E2(ω + ∆)E∗1 (ω1)E1(ω1 −∆)

×〈VeG†(ωg + ω1)VnG(ωg + ω + ω1)V †nG(ωg + ω1 −∆)V †e 〉. (15)

We now turn to the electronically off-resonant SRS sig-
nal shown in Fig. 2a,b, which is completely analogous
to the FDIR signal. Even though these signals repre-
sent different physical processes and even involve differ-
ent number of field-matter interactions they can be de-

scribed using very similar diagrams where we simply re-
place Vn → αn and ω by ω − ω3. In SRS the pump
pulse initiates the vibrational dynamics in the excited
electronic state. Pulse 3 and the probe then induce the
Raman process (see. Fig. 2a). The relevant diagrams
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are shown in Fig. 2b (plus their complex conjugates).
An electronically off-resonant Raman process induced by
pulses 2 and 3 is instantaneous since by Heisenberg uncer-
tainty the system can only spend a very short time in the
intermediate state. The Raman process is thus described

by an effective field/matter interaction Hamiltonian

H ′(t) = αnE†2(t)E3(t) + E†1(t)Ve(t) +H.c., (16)

where αn = α̃n + α̃†n is the excited state polarizabil-
ity that couples fields 2 and 3 parametrically via a Ra-
man process. It is symmetric (real) operator. The time-
domain signal (5) can be read directly from diagrams (i)
and (ii). Assuming that pulse 3 is narrow band (picosec-
ond) and set E3(t − T ) = E3e−iω3(t−T ). We obtain the
frequency gated Raman analogues of Eqs. (9) - (10)

S̃
(i)
SRS(ω − ω3, T ; ∆) =

2

~

∫ ∞
−∞

dt

∫ t

−∞
dτ1

∫ t

−∞
dτ3

∫ τ3

−∞
dτ5|E3|2E∗1 (τ5)E1(τ1)

× 〈VeG†(τ3, τ5)αnG
†(t, τ3)αnG(t, τ1)V †e 〉ei(ω−ω3)(t−τ3)−i∆(τ3−T ), (17)

S̃
(ii)
SRS(ω − ω3, T ; ∆) =

2

~

∫ ∞
−∞

dt

∫ t

−∞
dτ1

∫ t

−∞
dτ3

∫ τ3

−∞
dτ5|E3|2E1(τ5)E∗1 (τ1)

× 〈VeG†(t, τ1)αnG(t, τ3)αnG(τ3, τ5)V †e 〉ei(ω−ω3)(t−τ3)−i∆(τ3−T ). (18)

The corresponding time-gated signals are given by Eqs. (A4) - (A5). Similarly to Eqs. (11) - (12) we can recast (17)
- (18) using frequency domain matter correlation functions

S
(i)
SRS(ω − ω3, T ) = I 4π

~

∫ ∞
−∞

dω′

2π

dω1

2π

dω′1
2π
|E3|2E∗2 (ω)E2(ω′)E∗1 (ω1)E1(ω′1)δ(ω − ω′ + ω1 − ω′1)

×〈VeG†(ωg + ω1)αnG
†(ωg + ω1 − ω′ + ω3)αnG(ωg + ω′1)V †e 〉, (19)

S
(ii)
SRS(ω − ω3, T ) = I 4π

~

∫ ∞
−∞

dω′

2π

dω1

2π

dω′1
2π
|E3|2E∗2 (ω)E2(ω′)E∗1 (ω1)E1(ω′1)δ(ω − ω′ + ω1 − ω′1)

×〈VeG†(ωg + ω1)αnG(ωg + ω′ + ω′1 − ω3)αnG(ωg + ω′1)V †e 〉. (20)

Breaking up the δ-function according to Eq. (13) we get

S
(i)
SRS(ω − ω3, T ) = I 2

~

∫ ∞
−∞

d∆dω1|E3|2E∗2 (ω)E2(ω + ∆)E∗1 (ω1)E1(ω1 −∆)

×〈VeG†(ωg + ω1)αnG
†(ωg + ω1 − ω + ω3 −∆)αnG(ωg + ω1 −∆)V †e 〉, (21)

S
(ii)
SRS(ω − ω3, T ) = I 2

~

∫ ∞
−∞

d∆dω1|E3|2E∗2 (ω)E2(ω + ∆)E∗1 (ω1)E1(ω1 −∆)

×〈VeG†(ωg + ω1)αnG(ωg + ω − ω3 + ω1)αnG(ωg + ω1 −∆)V †e 〉. (22)

The simulation protocol based on these equations re-
quires the full forward (G) and backward (G†) propaga-
tion of the wavefunction retaining all electronic and nu-
clear degrees of freedom. This task can be accomplished
by numerically exact propagation techniques, based on
the split-operator Fourier-transform, the short iterative
Lanczos method or a Chebyshev expansion [46, 53],
where the wavefunction is commonly expanded in the

set of orthogonal eigenstates of H. Non-adiabatic ef-
fects can be conviniently be accounted for either in a
diabtic or adiabatic basis of the participating electronic
states [54]. The major drawback of this numerically ex-
act treatment is that the computational effort and stor-
age requirements grow exponentially with the number of
degrees of freedom considered which limits their applica-
tion to molecular systems with less than six degrees of
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freedom (4 atoms). The change to a nonorthogonal rep-
resentations of the time-dependent wavefuntion allows to
evaluate the Trotter expansion analytically and thus to
avoid the unfavourable scaling behaviour which is accord-
ingly not an intrinsic property of the powerful propaga-
tors [47, 55]. The approximate multiconguration time-
dependent Hartree (MCTDH) method [56] formally still
scales exponentially but superior scaling and less memory
requirements compared to the exact propagation meth-
ods can be achieved if the number of degrees of free-
dom and contraction coefficients is large. A major draw-
back of all propagation methods is that the global multi-
dimensional potential energy surface has to be known
a priori. Approximate direct quantum dynamical ap-
proaches like e.g. the variational multi-configuration
Gaussian wavepacket method [57] or ab initio multiple
spawning [58, 59] which rely on Gaussian functions as
basis set circumvent this shortcoming as the potential
energy surface is only sampled in the actual fraction of
space where it is actually required. In some applications
it may be desirable to only consider a few vibrational
modes explicitly and treat the rest classically. Even in
this case we may use the Green’s functions expressions
(9) - (10) propagated forward and backward along the
loop under an effective time dependent Hamiltonian [60].

IV. SECOND PROTOCOL; SUM OVER STATES
EXPANSION

One can evaluate the matter correlation functions in
Eqs. (9) - (10) by expanding them in the eigenstates of
the total system. Again in this approach all bath degrees
of freedom cannot be separated and must be included
explicitly. The resulting SOS expansion provides use-
ful insights and a convenient computational algorithm.
Starting with Eqs. (9) - (10). A frequency-gated signal
can be expressed

S
(i)
IR(ω, T ) = −I 2i

~4

∑
a,a′,d

µga′µ
∗
agµ
∗
a′dµade

−(iωaa′+γaa′ )T

ω − ωad + iγad

× E∗2 (ω)E2(ω − ωaa′ + iγaa′)E∗1 (ωa′ + iγa′)E1(ωa − iγa)
(23)

S
(ii)
IR (ω, T ) = −I 2i

~4

∑
a,a′,c

µga′µ
∗
agµ
∗
a′cµace

−(iωa′a+γa′a)T

ω − ωa′c + iγa′c

× E∗2 (ω)E2(ω − ωa′a + iγa′a)E∗1 (ωa′ + iγa′)E1(ωa − iγa).
(24)

The corresponding time-gated signals are given by Eqs.
(A6) - (A7).

So far we had expanded the density operator starting
with the ground state and including the preparation pulse
E1. Alternatively we can avoid the explicit treatment of
preparation and simply assume that the system has been

initially prepared in non stationary state represented by
the density operator ρaa′ . Elaborate pulse sequences can
be used in this preparation. We can then evaluate the
matter correlation function that corresponds to the last
two interactions with the probe pulse for the i contribu-
tion:

〈V̂nL(t)V̂ †nR(τ3)〉 = Tr
[
V̂ †n (τ3)ρV̂n(t)

]
=
∑
a,a′,d

ρa,a′〈d|V̂n(t)|a〉〈a′|V̂ †n (τ3)|d〉

=
∑
a,a′,d

ρaa′µadµ
∗
a′de

−[iωad+γad]te[iωa′d+γd−γa′ ]τ3 , (25)

The ∆ - dispersed signal (9) - (10) then yield

S̃
(i)
IR(ω, T ; ∆) =

− 4πi

~2

∑
a,a′,d

µ∗a′dµadρaa′δ(∆− ωa′a + iγa′a)ei∆T

ω + ∆− ωa′d + i(γd − γa′)
, (26)

S̃
(ii)
IR (ω, T ; ∆) =

− 4πi

~2

∑
a,a′,c

µ∗a′cµacρa′aδ(∆− ωaa′ − iγaa′)ei∆T
ω + ∆− ωa′c + i(γc − γa′)

. (27)

The delta function arises from the time translation in-
variance of correlation functions: ∆ = ωaa′ + iγaa′ that
involves two frequencies of the probe field and the fre-
quency band of the nonequilibrium preparation state aa′.
Time translational invariance is maintained provided we
treat the preparation explicitly via interaction with pulse
E1(ω1) and E∗1 (ω′1) as in Eqs. (23) - (24). This implies
that ω1 − ω′1 + ω + ∆− ω = 0. We can then write

δ(ω′1 − ω1 −∆) =

∫ ∞
−∞

dω0δ(ω
′
1 − ω1 − ω0)δ(ω0 −∆).

(28)

The probe pulse by itself does not obey this symmetry
as ∆ 6= 0. Thus, a description that excludes the prepara-
tion (actinic) pulse 1 does not have this symmetry. In this
case, for a narrowband preparation pulse ω1 ' ω′1 results
in ∆ = 0 which means that the signal has low frequency
resolution limited only by state lifetimes. The prepara-
tion pulse launches the vibrational dynamics, which re-
sults in high frequency resolution due to joint field plus
matter bandwidth as shown in Eqs. (26) - (27).

When both the pump and the probe pulses are ul-
trashort, i.e. E1(τ) = E1δ(τ) is centered at τ = 0 and
E2(τ) = E2δ(τ − T ) is centered at τ = T , we can neglect
the frequency dispersion of the pulse envelopes. Eqs. (23)
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- (24) then give

SIR(ω, T ) = −I 2i

~4

∑
a,a′

µga′µ
∗
ag|E1|2|E2|2×[∑

d

µ∗a′dµade
(iωa′a−γa′a)T

ω − ωad + iγad
+
∑
c

µ∗a′cµcae
(iωaa′−γaa′ )T

ω − ωa′c + iγa′c

]
.

(29)

One can derive similar SOS expressions for the frequency-
gated SRS signals. Eqs. (23) - (24) are then recast as

S
(i)
SRS(ω − ω3, T ) =

− I 2i

~4

∑
a,a′,d

µga′µ
∗
agαa′dαade

−(iωaa′+γaa′ )T

ω − ω3 − ωad + iγad
|E3|2E∗2 (ω)

× E2(ω − ωaa′ + iγaa′)E∗1 (ωa′ + iγa′)E1(ωa − iγa), (30)

S
(ii)
SRS(ω − ω3, T ) =

− I 2i

~4

∑
a,a′,c

µga′µ
∗
agαa′cαace

−(iωa′a+γa′a)T

ω − ω3 − ωa′c + iγa′c
|E3|2E∗2 (ω)

× E2(ω − ωa′a + iγa′a)E∗1 (ωa′ + iγa′)E1(ωa − iγa), (31)

As we did for FDIR, we shall express the signals (30) -
(31) in a form that reveals the broken time translational
symmetry. For the general pulse envelope of the pump
field E3(ω3) that enters twice in the signal, e.g. E∗3 (ω3)
and E3(ω′3), the overall translational symmetry for all six
interactions yields

δ(ω′1 − ω1 + ω′3 − ω3 −∆)

=

∫ ∞
−∞

dω0δ(ω
′
1 − ω1 − ω0)δ(ω0 + ω′3 − ω3 −∆), (32)

where the product of two delta functions reveals the bro-
ken symmetry for the pump/probe fields when the prepa-
ration pulse is excluded. Assuming a narrowband pump
E3(t) = E3e−iω3(t−T ) Eqs. (26) - (27)

S̃
(i)
SRS(ω − ω3, T ; ∆) =

−4πi

~2
|E3|2

∑
a,a′,d

αa′dαadρaa′δ(∆− ωa′a + iγa′a)ei∆T

ω − ω3 + ∆− ωa′d + i(γd − γa′)
,

(33)

S̃
(ii)
SRS(ω − ω3, T ; ∆) =

−4πi

~2
|E3|2

∑
a,a′,c

αa′cαacρa′aδ(∆− ωaa′ − iγaa′)ei∆T
ω − ω3 + ∆− ωa′c + i(γc − γa′)

.

(34)

Finally for a broadband probe E2 the SRS signal (30)

- (31) reduce to

SSRS(ω − ω3, T ) = −I 2i

~4

∑
a,a′

µga′µ
∗
ag|E1|2|E2|2|E3|2×[∑

d

αa′dαade
(iωa′a−γa′a)T

ω − ω3 − ωad + iγad
+
∑
c

αa′cαcae
(iωaa′−γaa′ )T

ω − ω3 − ωa′c + iγa′c

]
.

(35)

In the SOS protocol the basis set expansion has to
cover the complete vibrational dynamics under investiga-
tion, which can be tedious for complex reactive systems
and the diagonalization of the resulting Hamiltonian is
non-trivial. Model Hamiltonians may be used to trun-
cate the system size and provide an affordable simulation.
For example exciton hamiltonians are commonly used to
describe multiple excitations in chromophore aggregates
[61]. Once the exact eigenstates are obtained, this pro-
tocol allows for the straightforward interpretation of the
signals.

V. THIRD PROTOCOL; COUPLING TO A
CLASSICAL BATH

A simpler and often more intuitive description can be
developed by treating some (bath) degrees of freedom as
classical. We start with the ultrafast visible pump and
IR probe of the excited vibrational states. We assume
that probe pulse is impulsive and set E1(t) = E1δ(t), and
further evaluate the remaining time integrals using Eqs.
(B10) and (B11). The resulting semiclassical ∆ - dis-
persed signal (9) - (10) reads

S̃IR(ω, T ; ∆) = − 2i

~4

∫ ∞
−∞

dτ3

∫ ∞
τ3

dt×

|E1|2eiω(t−T )e−i(ω+∆)(τ3−T )
∑
a

|µag|2e−2γat×[∑
c

|µac|2e−i
∫ t
τ3
ωac(t

′)dt′
+
∑
d

|µad|2ei
∫ t
τ3
ωad(t′)dt′

]
,

(36)

where ωαβ ≡ |ωα−ωβ |. Ensemble averaging 〈...〉e over the
classical set of trajectories is performed on the signal level
SIR(ω, T ). Similarly one can derive the corresponding
SRS result when the extra pump pulse is narrow band
and can be approximated as E3(t) = E3e−iω3(t−T ). The
signal (17) - (18) then reads
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S̃SRS(ω − ω3, T ; ∆) = − 2i

~4

∫ ∞
−∞

dτ3

∫ ∞
τ3

dt×

|E1|2|E3|2ei(ω−ω3)(t−T )e−i(ω+∆)(τ3−T )
∑
a

|µag|2e−2γat×

×
[∑

c

α2
ace
−i

∫ t
τ3
ωac(t

′)dt′
+
∑
d

α2
ade

i
∫ t
τ3
ωad(t′)dt′

]
.

(37)

Eqs. (36) and (37) involve a path integral over the
stochastic vibrational frequency ωac(t) and ωad(t). The
signal depends not only on the initial and final value of
the vibrational frequency ωνν′ , but rather on the entire
pathway from time T to the time when the polarization
decays to zero. The time dependent frequency ων,ν′(t)
can be calculated by running classical MD trajectories.

In the semiclassical protocol of Eqs. (36) - (37) the
system is partitioned into a classical bath retaining only
the quantum character of a few vibrational modes. For
non-reactive systems (i.e. no chemical bonds are broken
or formed) evolving on a single adiabatic potential en-
ergy surface (i.e. the Born-Oppenheimer approximation
remains valid) common molecular dynamics simulations
can be used which scale by N2 if all pair-wise electro-
static and van der Waals interactions are explicitly ac-
counted for. The computational cost can be further re-
duced to linear scaling by suitable cutoffs. The quantum
character of the vibrations under investigation can be re-
tained by collective solvent coordinates which allow to
map the classical dynamics onto ab initio derived elec-
trostatic maps [62, 63].

If the process under investigation is characterized by
ultrafast relaxation in the vicinity of conical intersec-
tion as commonly observed in photoreactions the break-
down of the Born-Oppenheimer approximation requires
to treat the system by non-adiabatic on-the-fly molecu-
lar dynamics [64]. Based on the independent trajectory
approximation the nuclear wavepacket is represented by
a swarm of independently evolving trajectories where,
within the framework of Tullys fewest switches trajec-
tory surface hopping [65, 66], relaxation between differ-
ent electronic states is induced by the non-adiabatic cou-
pling (NAC). Here the numerical effort of the dynam-
ics is shifted to the calculation of excited state gradients
and NACs between electronic states on an appropriate
quantum chemical level but the construction of global
potential energy surfaces is avoided as only the relevant
configuration space is explored during the dynamics. The
quantum character of vibrations is reconstructed by eval-
uating the excited state Hessian. The restriction on a few
vibrational degrees of freedom allows for an efficient algo-
rithm for the calculation of the semiclassical signal which
is based on a mode tracking procedure [67], only the de-
sired frequencies and normal mode vectors are obtained.
As the construction of the complete Hessian matrix is
avoided linear scaling with the number of considered vi-
brational modes can be achieved [68].

Rather than calculating the path integral numerically
we can expand the integral in the exponent into the cu-
mulant series and extract the mean ensemble averaged
time dependent frequency ω̄νν′(t) and approximate the
remaining nuclear motion by harmonic Gaussian fluctu-
ations. The signal calculated in Appendix B may be then
expressed in terms of the spectral density of the harmonic
bath

S̃IR(ω, T ; ∆) =− 2i

~4

∫ ∞
−∞

dτ3

∫ ∞
τ3

dt|E1|2eiω(t−T )e−i(ω+∆)(τ3−T )
∑
a

|µag|2e−2γat

×
[∑

c

|µac|2e−i
∫ t
τ3
ω̄ac(t

′)dt′−gac(T,t) +
∑
d

|µad|2ei
∫ t
τ3
ω̄ad(t′)dt′−g∗ad(T,t)

]
, (38)

S̃SRS(ω − ω3, T ; ∆) = − 2i

~4

∫ ∞
−∞

dτ3

∫ ∞
τ3

dt|E1|2|E3|2ei(ω−ω3)(t−T )e−i(ω+∆)(τ3−T )
∑
a

|µag|2e−2γat

×
[∑

c

α2
ace
−i

∫ t
τ3
ω̄ac(t

′)dt′−gac(T,t) +
∑
d

α2
ade

i
∫ t
τ3
ω̄ad(t′)dt′−g∗ad(T,t)

]
. (39)

where the Gaussian fluctuations are manifested via the two point linewidth function g∗aj(T, t), j = c, d given by

gac(T, t) =
4λacT

β~Λ
+

(
2λac
β~Λ2

− iλac
Λ

)
×
[
e−Λt + (Λ(t− T )− 1)e−ΛT

]
, (40)
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where λac represents the reorganization energy and Λ
corresponds to the fluctuation time scale. Note that,
the linewidth function depends on both initial and final
times, not only the difference. This is a consequence of
the non stationary vibrational dynamics.

VI. THE GENUINE TEMPORAL AND
SPECTRAL RESOLUTION OF

FREQUENCY-GATED SIGNALS

The picture emerging from our theory is that the effec-
tive temporal and spectral resolution of FDIR and SRS
signals is affected by, but not solely controlled by, experi-
mental knobs. Achieving ultrafast resolution requires the
active involvement of the entire probe bandwidth. This
is eroded when a narrower slice of the pulse is selected
by the system. Below we discuss how the Fourier uncer-
tainty relation between spectral and temporal resolution
∆ω∆t > 1 is always satisfied once ∆ω and ∆t are prop-
erly defined.

The combined spectral and the temporal resolution of
these IR and Raman techniques stem from two interac-
tions with a single device: the probe pulse. Nonlinear
multidimensional spectroscopy signals depend on several
time intervals and there is no conceptual problem in hav-
ing simultaneous high temporal and spectral resolutions
in different independent dimensions [69, 70]. This is not
the case when both dimensions are associated with the
same probe pulse. The issue was addressed for Raman
detection in [71] using a semiclassical treatment of bath
coordinates.

Below we present a more general analysis and elabo-
rate on this point for the three protocols and identify
the factors that determine the genuine resolution. In the
first protocol, the signals (9) - (10) and (17) - (18) are
given by a sum over paths spanning both branches of the
loop. Naively one can argue that a short pulse must in-
teract impulsively with the system at a precisely defined
time. This is not necessarily the case for the following
reason: a pulse is a superposition of modes with well de-
fined phases. The broader the bandwidth, the shorter can
the pulse be. Eqs. (9) - (10) and (17) - (18) show that the
relevant range of frequencies that actually contribute to
a given signal is spanned by the variable ∆. Thus, only
some of the probe modes contribute to a given signal, and
the full bandwidth of the pulse may become immaterial
in some cases. A superposition of the relevant modes
has a narrow bandwidth and is necessarily less impulsive
than the original pulse, thus reducing the temporal res-
olution. The number of contributing modes is governed
by the width of the relevant spectral features of the sys-
tem and can be easily understood by the selection of the
relevant pathways in the joint field plus matter space.
Therefore, the resolution is controlled by the pulse, the
measuring device as well as the system in Eqs. (9) - (10)
and (17) - (18). The relevant range of the τ3 integra-
tion is controlled by the effective bandwidth of ∆, ∆ = 0

implies a CW probe. In both diagrams (i) and (ii) the
probe is frequency - dispersed in the detection. If only
a single mode is selected for detection one can ask why
does the probe duration matter at all? This is apparent
from the diagrams which show that the signal involves
two interactions with the probe. Frequency - dispersed
detection only selects the frequency of the last interac-
tion E∗2 (ω) whereas the other interaction E2(ω + ∆) can
still involve many modes, making the signal depend on
the probe bandwidth. The time resolution is diminished
only if the second interaction also selects a single mode
so that ∆ = 0.

Turning now to the second protocol, we first note that
the time gated measurements (A6) - (A7) and (A8) -
(A9) are given by E∗2 (t)E2(τ) which are peaked around
t = τ = T . This means that in a time-gated measure-
ment the signal represents a snapshot of the dynamics
taken at fixed time t coming from the flat frequency dis-
tribution of the probe pulse. Thus, in the joint field
plus matter space, a time-domain measurement selects
quantum pathways corresponding to the fixed time mea-
surement that is infinitely broad in frequency. However,
the frequency - dispersed signals (23) - (24) and (30) -
(31) depend on the product E∗2 (ω)E2(ω − ωa′a + iγa′a).
This creates an uncertainty in the interaction time with
the probe which is governed by the vibrational dynamics
time scale (spectral width of ωa′a) and bath dephasing
γa′a. Therefore, the quantum pathways selected by the
dynamics of the system yield the effective bandwidth of
the probe pulse that interacts with the system. This in-
troduces uncertainty to the interaction time τ3 in Figs.
1b and 2b stemming the finite bath dynamics time scale.
The corresponding measurement cannot be viewed as a
snapshot of the system, but is determined by the vi-
brational dynamics that is represented by the coherence
between a and a′. The bandwidth of the pump pulse
which prepares the system in the density matrix ρaa′ is
crucial. The energy spread of ωaa′ is controlled by the
pump bandwidth and is also a measure of the inverse time
scale of the matter dynamics initiated by the pump. If
a single state is selected (ρaa) then there is no dynamics
and the same signal can be generated by a CW pump
tuned generally to level a. The pump duration then be-
comes immaterial. A broad distribution of vibrational
states will result in fast dynamics that is affected by the
pump duration. The broadband technique amounts to
multiple two-mode experiments in parallel, which is ex-
perimentally convenient since it does not require to scan
the frequency, but reveals no additional information be-
yond the two mode experiment. With initiation, which
prepares a wave packet with different a, a′ pairs, the tech-
nique may be viewed as many four-wave-mixing (FWM)
experiments done in parallel. This is essentially a broad
band FWM which only has three modes. For comparison
CARS is a four-mode process.

SRS that combines a long picosecond pump with a
femtosecond probe has low temporal resolution if treated
as a 4-field interaction starting with state a = a′ simi-
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lar to Eqs. (26) - (27) and replacing ω → ω − ω3. In
this case, in order to have a highly resolved frequency
gated signal, the energy conservation law which follows
from the time translational invariance enforces ω 6= ω3.
In the more general case of a broader pump pulse, we
have two interactions with E2(ω3) and E∗2 (ω′3). The sym-
metry breaking then involves four modes of the field
and bandwidth of the non stationary preparation state:
∆− ω3 + ω′3 = ωaa′ + iγaa′ .

Finally we turn to the third protocol. It is clear that
in a frequency gated measurement the probe pulse band-
width must be broader than the inverse timescale of the
vibrational dynamics. The latter is given by the spread
of ωa′a and the dephasing rate γa′a. Even if the probe
pulse is impulsive and delayed by T , the fact that it is an
infrared pulse requires to explicitly take into account the
pulse shape of E2(τ) and the pulse may not be simply re-
placed by δ function, since it may not be shorter than the
infrared period. The optical pulses used in the Raman
process in contrast can be shorter than the vibrational
period and can be truly impulsive. An infrared pulse
can be at most “semi impulsive” (i.e. short compared to
vibrational relaxation process but not compared to high
frequency vibrations >300 cm−1). In the case of the Ra-
man signal this large bandwidth can be easily realized
for visible frequencies, and the δ-function approximation
is well justified. However, this is not as obvious in the
case of an IR probe since the bandwidth of the IR pulses
are naturally smaller than in the visible range. There-
fore, one must keep the probe pulse envelope and the
δ-function approximation is not justified.

To better illustrate the resolution, we examine the ∆ -
dispersed time-domain signal (A1) dressed by the probe
pulse

S̄(t, T ; ∆) =

∫ ∞
−∞

dτE2(τ − T )S̃(t, T ; τ)ei(ω+∆)τ . (41)

and its variation with ∆. For simplicity in the following
we omit the subscript for τ3. Note that in contrast with
the τ - dispersed signal S̃(t, T ; τ), S̄(t, T ; ∆) depends on
the probe pulse envelope. As discussed above ∆ may be
broadened due to finite timescale of the bath dynamics.
The relevant frequency domain (8) signal can be calcu-
lated using Eq. (41)

SIR(ω, T ) =I
∫ ∞
−∞

d∆

2π

∫ ∞
−∞

dτ

∫ ∞
0

dteiω(t−T )−i∆τ

× E∗2 (ω)S̄(t+ τ, T ; ∆). (42)

We first consider a simple example for the bath and cal-
culate the effective bandwidth ∆ within the semiclassi-
cal approximation. We assume linear time variation of
the matter transition frequency (linear “matter” chirp):

ωac(t) = ω
(0)
ac + αt, where α is a chirp rate. Taking into

account Eq. (38) and assuming a harmonic potential
with single states a, c and d such that ωac = ωad, setting

µad = µac we obtain for the Eq. (41)

S̄(t, T ; ∆) = θ(t)

∫ t

0

E2(τ − T )ei∆τ−γa(t+τ)

× |µag|2|µac|2|E1|2
[
eiω

(0)
ac (t−τ)+ i

2α(t2−τ2) + c.c.
]
.

(43)

Assuming a gaussian probe pulse centered around τ = T

E2(τ − T ) = E2e
− (τ−T )2

2σ2
pr
−iω0τ

, (44)

where ω0 is the central frequency and σpr is the duration
of the pulse we obtain

S̄(t, T ; ∆) ∼ e
− (∆−∆0)2

2σ2
eff (45)

where ∆0 = ω0 − ω
(0)
ac + α(T − σ2

prγa) and σ2
eff =

σ−2
pr + α2σ2

pr. Note, that effective range for ∆ given by
σeff contains two contributions. One is the inverse du-
ration of the pulse, and the second is governed by α -
a characteristic timescale of the matter dynamics. This
effect is similar to the broadening of a chirped pulse com-
pared to the transform-limited pulse with the chirp added
by the matter, instead.

We would like to capture the matter dynamics at a
given time scale α−1. For a long pulse the dominant con-
tribution to σeff comes from the matter which ensures
high frequency resolution. In the limit of resonant CW

excitation (ω0 = ω
(0)
ac ) Eqs. (45) gives δ(∆). The latter

implies that the original ∆ - dispersed signal (38) has
no time resolution with respect to τ . This result is in-
dependent of time delay of the probe pulse T . In the
opposite limit when the pulse duration is small the lead-
ing contribution comes from the pulse and σeff ' σ−1

pr .
Therefore, high temporal resolution is accompanied by
poor spectral resolution and vice versa. In both limits,
the time and frequency resolution are not independent
or solely controlled by external manipulation of pulse pa-
rameters. Rather they are governed by a combination of
pulse and matter parameters. This simple example pro-
vides some basic intuition. However in this linear matter
chirp model the transition frequency is changing in an
unbounded fashion. We next consider a more realistic
model where the transition frequency switches between
two values during a finite time interval. For instance

ωac(t) = ω(0)
ac +

1

2
α

[
F
(
t0
σm

)
−F

(
t0 − t
σm

)]
, (46)

where F(t) = 2√
π

∫ t
0
dxe−x

2

is the error function. The

transition matter frequency switches from its initial ω
(0)
ac

to its final value ω
(0)
ac + α during time interval σm in the

vicinity of t0. Fig. 3a depicts Eq. (46) with ω
(0)
ac = 2000

cm−1, α = 200 cm−1, σm=20 fs, t0=500 fs. Fig. 3c
shows the Fourier transform of the ∆ - dispersed signal

S̃(ω, T ; τ) =

∫ ∞
−∞

d∆

2π
S̃(ω, T ; ∆)e−i(ω+∆)τ (47)
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FIG. 3. (Color online) Frequency profile [Eq. (46)] - (a) and corresponding 2D the Fourier transform of the ∆ - dispersed

signal S̃(ω, T = 500 fs, τ) in Eq. (47) - (c) for ω
(0)
ac = 2000 cm−1, α = 200 cm−1, σm = 20 fs. (b) and (d) - same as (a) and (c),

respectively with σm = 200 fs.

vs ω and τ . For T = 500 fs one can see how the pat-
tern evolves with dominating emission peak at initial

frequency ω
(0)
ac = 2000 cm−1 for short times τ < 500

fs turning into the final frequency ω
(0)
ac + α = 2200 cm−1

for longer times τ > 500 fs. The oscillatory region of
the plot for times shorter than γ−1

a = 1 ps shows the
frequency beating and matter chirp. At longer times the
signal decays exponentially ∼ e−γaτ . For slower dynam-
ics, σm = 200 fs (see Fig. 3b) the ∆ - dispersed sig-
nal (47) plotted in Fig. 3d is similar to Fig. 3c but is
stretched according to the longer time scale σm.

In order to determine the time and frequency reso-
lution for the system dynamics given by Eq. (46) with
σm = 20 fs and σm = 200 fs, we plotted the ∆ - dispersed
time-domain signal (41) for different values of the probe
pulse duration σpr in Fig. 4a-d. For long probe σpr = 400
fs Fig. 4a shows that the slow matter dynamics results

in a single peak at the final frequency ω + ∆ = ω
(0)
ac + α,

whereas fast dynamics gives two peaks which correspond
to the initial and final frequencies. Further increase of
the pulse duration [not shown] does not change the fast
dynamics case while for slow dynamics the two peaks
become narrower. It means that the high frequency res-
olution is accompanied by poor time resolution in this
case. For a shorter pulse σpr = 200 fs both fast and
slow dynamics give a single emission peak centered at

final frequency ω
(0)
ac + α. However fast dynamics yields

a larger bandwidth due to combined pulse and matter
bandwidths (see Fig. 4b). Further decrease of the pulse
duration for σpr = 50 (Fig. 4c) and 20 fs (Fig. 4d) shows
that the fast dynamics converges and becomes indistin-
guishable from the slow dynamics at σpr ' σm = 20 fs
(Fig. 4d). In this case the spectrum does not carry any
matter information and looses its frequency resolution.
It simply gives the Fourier transform of the probe pulse.
Therefore, for long pulse, the spectrum has perfect fre-
quency and poor time resolution. This corresponds to
the CW experiment, when the initiation pulse prepares
the system in equilibrium population state described by
ρaa. In this case time translation invariance via (13)
yields ω1 = ω′1 and consequently ω = ω′. In the oppo-
site limit of the short pulse, the perfect time resolution is
accompanied by poor frequency resolution. The result-
ing spectrum will not contain any relevant matter infor-
mation and will be given by a Fourier transform of the
probe pulse. In both limits the time and the frequency
resolution are not independent and are governed by a
combination of matter and field parameters.

VII. DISCUSSION

We have employed a superoperator diagrammatic tech-
niques to derive similar expressions for stimulated sig-
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FIG. 4. (Color online) The ∆ - dispersed signal Eq. (41) vs ∆ for fast (σm = 20 fs, blue) and slow ( σm = 200 fs, red) switchover

of the vibrational frequency as depicted in Fig. 3 (a) and (b), respectively. We assume resonant excitation ω0 = ω
(0)
ac . Various

panels represent different values of the pulse duration σpr = 400 fs - (a), 200 fs - (b), 50 fs - (c), and 20 fs - (d).

nals detected by frequency - dispersed transmission of a
broadband IR probe and stimulated Raman signals fol-
lowing the broadband visible pump pulse. The resolution
is determined by both field and matter degrees of free-
dom and cannot be solely controlled by the experimental
apparatus. The time and frequency resolution was ana-
lyzed using three representations and the corresponding
computational protocols for the signal. Loop diagrams
provide a convenient compact tool for computing and in-
terpreting these signals in terms of the evolving vibronic
wavepacket. The vibrational resonances are generated
during a single time interval in this diagram where the
wave function propagates backward from the observation
time corresponding to the ket interaction with the probe
field and further to the previous bra interaction with the
same probe which is close to the delay time T relative
to the preparation field. Note that t − T is a time in-
terval between two successive interactions along the loop
but not in real time. A completely time ordered descrip-
tion based on ladder diagrams will separate the loop into
several terms [52].

The SRS signals may be obtained from the FDIR ex-
pressions by the substitution Vn → αn and E2(t) →
E2(t)E∗3 (t). Note that due to the additional narrow band
field 3 in frequency domain SRS the infrared frequency
ω must be replaced by the Raman shift ω − ω3. Both
SRS and FDIR are given by two diagrams which repre-

sent different physical processes. Diagrams (i) and (ii) in
Fig. 1b correspond to emission and absorption, respec-
tively of the IR probe pulse, whereas in the case of Fig.
2b each diagram contains both emission and absorption
(Stokes and anti-Stokes process). In FDIR we can make
the rotating wave approximation (RWA) for the radiation
matter coupling and obtain Eq. (2) where V , V † are non
Hermitian operators. The RWA does not apply for off
resonant Raman where we have for the Raman part of
Eq. (16)

H ′(t) = α[E∗2 (t)E3(t) + E2(t)E∗3 (t)], (48)

where α is a real (Hermitian) operator α = α†. Both
E∗2 (t)E3(t) and E2(t)E∗3 (t) can excite or de-excite the vi-
brations (Stokes and anti-Stokes process) as permitted
by their bandwidths whereas in the FDIR case (Eq. (2))

E2 excites and E†2 de-excite the vibrations. This is an
important distinction, especially in the case of CARS
signals (diagram ii in Fig. 2b), which involve four field
modes with different wave vectors where the spatial phase
matching becomes crucial [72].
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Appendix A: Time-gated signals

Below we present the time gated signals correspond-
ing to the frequency gated expressions given in the main
text. We first read off the FDIR signal from the diagrams
similar to Eqs. (9) - (10) and introduce the τ - dispersed
signal in time domain analogues to Eq. (8)

SIR(t, T ) = I
∫ t

−∞
dτE∗2 (t− T )E2(τ − T )S̃IR(t, T ; τ),

(A1)

where S̃IR(t, T ; τ) = S̃
(i)
IR(t, T ; τ) + S̃

(ii)
IR (t, T ; τ) where

S̃
(i)
IR(t, T ; τ) =

2

~

∫ t

−∞
dτ1

∫ τ

−∞
dτ5E∗1 (τ5)E1(τ1)

× 〈VeG†(τ, τ5)V †nG
†(t, τ)VnG(t, τ1)V †e 〉,

(A2)

S̃
(ii)
IR (t, T ; τ) =

2

~

∫ t

−∞
dτ1

∫ τ

−∞
dτ5E1(τ5)E∗1 (τ1)

× 〈VeG†(t, τ1)VnG(t, τ)V †nG(τ, τ5)V †e 〉.
(A3)

S̃(t, T ; τ) is the signal at time t resulting from interac-
tion with E2 at time τ − T . The signal is obtained by
integration over τ . The corresponding SRS signal reads

S̃
(i)
SRS(t, T ; τ) =

2

~

∫ t

−∞
dτ1

∫ τ3

−∞
dτ5E∗1 (τ5)E1(τ1)×

E3(t− T )E∗3 (τ − T )〈VeG†(τ, τ5)αnG
†(t, τ)αnG(t, τ1)V †e 〉,

(A4)

S̃
(ii)
SRS(t, , T ; τ) =

2

~

∫ t

−∞
dτ1

∫ τ3

−∞
dτ5E1(τ5)E∗1 (τ1)×

E3(t− T )E∗3 (τ − T )〈VeG†(t, τ1)αnG(t, τ)αnG(τ, τ5)V †e 〉.
(A5)

Eqs. (A4) - (A5) are analogue of (17) - (18).
The time-domain FDIR signals Eqs. (A2) - (A3) can

be recast using SOS expansion

S̃
(i)
IR(t, T ; τ) =

2

~
θ(τ)θ(t)

∑
a,a′,d

µga′µ
∗
agµ
∗
a′dµad×

E∗1 (ωa′ + iγa′)E1(ωa − iγa)e−(iωad+γad)t+(iωa′d+γd−γa′ )τ .
(A6)

S̃
(ii)
IR (t, T ; τ) = −2

~
θ(τ)θ(t)

∑
a,a′,c

µga′µ
∗
agµ
∗
a′cµca×

E∗1 (ωa′ + iγa′)E1(ωa − iγa)e−(iωa′c+γa′c)t+(iωac+γc−γa)τ ,
(A7)

that are analogues to Eqs. (23) - (24). The corresponding
SRS signal reads

S
(i)
SRS(t, T ) = I 2i

~4
θ(τ)θ(t)

∑
a,a′,d

µga′µ
∗
agαa′dαad

× E∗1 (ωa′ + iγa′)E1(ωa − iγa)|E3|2

× e−iω3(t−τ)−(iωad+γad)t+(iωa′d+γd−γa′ )τ , (A8)

S
(ii)
SRS(t, T ) = −I 2i

~4
θ(τ)θ(t)

∑
a,a′,c

µga′µ
∗
agαa′cαca

× E∗1 (ωa′ + iγa′)E1(ωa − iγa)|E3|2

× e−iω3(t−τ)−(iωa′c+γa′c)t+(iωac+γc−γa)τ , (A9)

For the ultrafast probe E2(t− T ) = E2δ(t− T ) the τ -
dispersed signal Eq. (A6) - (A7) then results in the full
signal (A1)

SIR(t, T ) = I 2i

~4
θ(t)δ(t− T )

∑
a,a′

µga′µ
∗
ag|E1|2|E2|2

×
[∑

d

µ∗a′dµade
(iωa′a−γa′a)T −

∑
c

µ∗a′cµcae
(iωaa′−γaa′ )T

]
.

(A10)

The corresponding SRS signal reads

SSRS(t, T ) = I 2i

~4
θ(t)δ(t− T )

∑
a,a′

µga′µ
∗
ag|E1|2|E2|2|E3|2

×
[∑

d

αa′dαade
(iωa′a−γa′a)T −

∑
c

αa′cαcae
(iωaa′−γaa′ )T

]
.

(A11)

Appendix B: Coupling to a classical bath

We assume that the system is coupled to a harmonic
bath. The molecule is represented by the Hamiltonian

H =
∑
α=g,b

|α〉Hα〈α|+ |a〉Ha(q)〈a|+ |c〉Hc(q)〈c|, (B1)

where Hβ(q), β = a, c is an operator in the nuclear
Hilbert space, that is given by

Ha(q) =
∑
j

[
p̃2
j

2mj
+

1

2
mjω

2
j (q̃j)q̃

2
j

]
, (B2)
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Hc(q) = ~ω(0)
ac +

∑
j

[
p̃2
j

2mj
+

1

2
mjω

2
j (q̃j)(q̃j + d̃j)

2

]
,

(B3)
where ωj(q̃j) represents the time dependent frequency
profile of the isomerization process. Introducing the
dimensionless coordinate qj = (mjωj/~)1/2q̃j , dis-

placement dj = (mjωj/~)1/2d̃j and momentum pj =

(mjωj~)1/2p̃j , Eqs. (B2) - (B3) read

Ha(q) =
1

2

∑
j

~ωj [p2
j + q2

j ], (B4)

Hc(q) = ~ω(0)
ac +

1

2

∑
j

~ωj [p2
j + (qj + dj)

2]. (B5)

We next define the vibrational frequency ~ωac = ~ω(0)
ac +

1
2

∑
j d

2
jωj(qj) and potential energy

Uac = Hc −Ha − ~ωac = ~
∑
j

ωj(qj)djqj . (B6)

The dipole operator is given by

V =
∑
α,α′

µαα′ |α〉〈α′|, (B7)

where the summation runs over α, α′ = g, a, c, b, and α 6=
α′. Note that at this point we neglect any nuclear of the
dipole operators µαα′ (Condon approximation).

Following the definition of the frequency dispersed sig-
nal (6) we note that the angular brackets 〈...〉 in (6) now
represent the average over the bath degrees of freedom.
Nuclear dynamics can be approximated by a combination
of classical dynamics and additional phases. Introducing
the reference Hamiltonian [73]

Href (τ) =

{
Hg, if τ < τ1, τ5,

Ha, if τ ≥ τ1, τ5
(B8)

The Green’s function can then be recast with respect to
the reference Hamiltonian

Gα(t1, t2) = θ(t1 − t2) exp+

[
− i
~

∫ t1

t2

dτHref (τ)

]
× exp+

[
− i
~

∫ t1

t2

dτUα(τ)

]
, (B9)

where the “+” subscript correspond to the positive time
ordering. We assume in Eq. (B1) the nuclear dynamics
occurs only in the singly excited manifold (states a and
c). Therefore for α = a, b

Gα(t1, t2) = θ(t1 − t2)e−(iωα+γα)(t1−t2), (B10)

while

G†c(t, τ3) = θ(t− τ3)eiωa(t−τ3) exp−

[
i

~

∫ t

τ3

dτUac(τ)

]
,

(B11)

where

Uac(τ) = e
i
~Haτ [Hc −Ha − ~ωac]e−

i
~Haτ . (B12)

Substituting this in Eqs. (A2) - (A3) and (A4) - (A5) we
then get Eqs. (36) and (37), respectively.

In the reduced description when we treat bath degrees
of freedom separately signals (9) - (10) and (17) - (18)
contain in principle two averaging operations. First is
averaging over statistical ensemble of classical trajecto-
ries 〈...〉e. For a fixed trajectory one has to evaluate the
average over the bath degrees of freedom 〈...〉b. In or-
der to evaluate the correlation function one has to con-
sider the microscopic stochastic dynamics of the nuclei.
For a fixed trajectory we evaluate the bath averaging
〈Uνν′(τ)〉b = ~ωνν′(τ) and obtain Eqs. (36) - (37). We
then note that the frequency averaging over trajectories
〈ωνν′(τ)〉e = ω̄νν′ . One can further add a harmonic fluc-
tuations around the mean value ω̄νν′ via cumulant expan-
sion. Note that for gaussian fluctuations this expansion
is same for all trajectories. We thus obtain〈〈

exp−

(
i

~

∫ t

T

dτUac(τ)

)
ρg

〉
b

〉
e

= ei
∫ t
T
ω̄ac(τ)dτ×[

1 + T−
(
i

~

)2 ∫ t

T

dτ1

∫ τ1

T

dτ2〈Uac(τ1)Uac(τ2)ρg〉b + ...

]
(B13)

Note that the linear term in expansion (B13) does not
depend on time 〈Uac(τ)ρg〉 = 〈Uacρg(τ)〉 = 〈Uacρg(0)〉.
We further obtain the cumulant expansion by postulat-
ing that expansion (B13) can be written as exponenti-
ated in terms of power of Uac. Introducing the two-time
linewidth function

gac(t1, t2) =

∫ t2

t1

dτ1

∫ τ1

t1

dτ2Cac(τ2), (B14)

where Cac(τ2) = ~−2〈Uac(τ2)Uac(0)ρg〉 represents the
spectral density that contains all the microscopic in-
formation necessary for calculating the optical response
functions within the second order cumulant approxima-
tion. We first note that C(−t) = C∗(t). We next sepa-
rate it into real and imaginary part C(t) = C ′(t)+C ′′(t).
Using the fluctuation-dissipation and detailed balance
theorem one may show that

C̃(ω) = [1 + coth(β~ω/2)]C̃ ′′(ω), (B15)

where C̃(ω) =
∫∞
−∞ dteiωtC(t) and β = 1/kBTa with

the ambient temperature Ta and Boltzmann constant kB .
For the continuous spectrum of harmonic fluctuations one
can use the overdamped Brownian oscillator model, i.e.

C̃ ′′(ω) = 2λ
ωΛ

ω2 + Λ2
, (B16)

where λ represents the reorganization energy and Λ cor-
responds to the fluctuation time scale. In this case the
linewidth function is given by Eq. (40).
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