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Summary

Treatment failure in the lethal brain tumor glioblastoma (GBM) is attributed to intratumoral 

heterogeneity and tumor evolution. We utilized 3D surgical neuronavigation to acquire samples 

representing the whole tumor from patients mapped by 3D spatial coordinates. Integrative 

tissue and single-cell analysis revealed sources of genomic, epigenomic, and microenvironmental 

intratumoral heterogeneity and their spatial patterning. By distinguishing tumor-wide molecular 

features from those with regional specificity, we inferred GBM evolutionary trajectories from 

neurodevelopmental lineage origins and initiating events such as chromothripsis to emergence of 

genetic subclones and spatially-restricted activation of differential tumor and microenvironmental 

programs in the core, periphery, and contrast enhancing regions. Our work depicts GBM evolution 

and heterogeneity from a 3D whole-tumor perspective, highlights potential therapeutic targets that 

might circumvent heterogeneity-related failures, and establishes an interactive platform enabling 
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360° visualization and analysis of 3D spatial patterns for user-selected genes, programs, and other 

features across whole GBM tumors.

Graphical Abstract

Introduction

Pathologists have long observed intratumoral heterogeneity in glioblastoma (GBM), 

coining the original name “glioblastoma multiforme” to reflect the diverse cellular 

forms they observed. Treatment failure in GBM is often attributed to intratumoral 

heterogeneity as it provides diversity upon which selection can act to foster outgrowth of 

treatment-resistant clones1–3. Intratumoral heterogeneity can occur in many forms – from 

mutations and structural variants to differences in chromatin landscapes and transcriptional 

regulation. Intratumoral heterogeneity also encompasses nonmalignant cells in the tumor 

microenvironment including neuronal, glial, and immune populations that may functionally 

interact with malignant cells and contribute to tumor evolution. The extent of intratumoral 

heterogeneity in GBM and nearly all solid tumors remains unknown as most studies, 

including those led by The Cancer Genome Atlas (TCGA)4–7, rely on evaluation of 

single tissue biopsies per patient. Intratumoral heterogeneity poses major challenges to 

interpretation of these studies as determinations of mutational frequency, transcriptional 

state, etc. are dependent upon the region sampled and unlikely to be representative of the 

whole tumor. For example, GBM molecular subtypes initially proposed for interpatient 

classification and personalized medicine6 were later found to differ amongst samples from 

the same tumor8,9 and to reflect transcriptional output not only of malignant cells, but also of 
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nonmalignant cells admixed in tissue biopsies10. While single-cell and spatial transcriptomic 

technologies distinguish malignant cells from microenvironmental cell types, they are also 

typically based on single tissue biopsies and lack context within the whole tumor. As sparse 

sequencing reads are obtained from individual cells, cells are typically grouped and assigned 

to ‘states’11–15. Intratumoral heterogeneity and capacity for evolution are evident as cells 

from the same tumor are present in different states and show ‘plasticity’ or the ability 

to transition between states12,16,17. Much remains to be learned of these states including 

their molecular drivers, the extent to which they are heterogeneous across whole tumors, 

and mechanistic underpinnings of plasticity. Moreover, despite decades of analyses, the 

truncal genetic events for each tumor are not defined beyond those commonly shared across 

patients and much is unknown regarding macro-scale patterns of epigenomic programs and 

microenvironments across whole tumors.

To directly characterize intratumoral heterogeneity in whole GBM tumors, we collaborated 

with neurosurgeons and a multi-disciplinary clinical team to design a novel 3D spatial 

sampling approach. For 10 patients with newly diagnosed, treatment-naïve IDH-wildtype 

(WT) GBM (CNS WHO grade 4), we utilized 3D surgical neuronavigation to safely 

acquire 103 spatially mapped samples representing maximal tumor diversity each mapped 

by 3D spatial coordinates. We integrated these coordinates with pre-operative MRI scans 

to generate 3D models enabling 360° visualization of sample locations in context of 

the brain and whole tumor, distinguishing contrast-enhancing (CE) regions (Fig 1A, 

Table S1). We interrogated samples with a complementary and cross-validating set of 

genomic and epigenomic sequencing assays applied to tissue and/or single cells. Integrative 

analysis provided a 3D-spatially resolved view of GBM heterogeneity, redefining current 

understanding and unveiling insights into its earliest origins, evolution, and vulnerabilities. 

Our 3D spatial map of GBM is publicly accessible on an interactive online platform (https://

3d-gbms.shinyapps.io/search/) that enables 360° visualization of user-selected features, 

enabling interrogation of their intratumoral heterogeneity and selection of pan-tumor targets 

that may avoid heterogeneity-related treatment failures.

Results

3D spatial sampling reveals patterns of GBM infiltration and clonal expansion

The infiltrative nature of GBM poses surgical challenges as malignant cells beyond resection 

margins give rise to recurrences. To examine the spatial distribution of malignant cells 

within whole tumors, we utilized WES-derived copy number data to quantify the proportion 

of malignant cells in each sample (“purity” or ψ). Sample purity spanned a full range (mean 

ψ=0.63, range 0–0.985). Although surgical resection sometimes focuses within borders of 

CE regions, we found no significant difference in purity between samples from CE and 

non-CE regions (Fig 1B). Malignant cells are thus extensively infiltrated beyond CE regions, 

providing a molecular basis for additional survival benefit from maximal resection of CE 

and non-CE regions18,19. We examined whether distribution of malignant cells followed 

a radial growth model but found no relationship between purity and relative distance (d) 

of each sample between the MRI-defined tumor centroid (0) and periphery (1) (Fig 1C). 

We also calculated inter-sample distances and found that purity differences were only 
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modestly associated with distance between samples (Fig S1A, Table S2). Thus, malignant 

and nonmalignant cells are intermixed throughout GBM tumors from centroid to periphery. 

Some samples were located at or beyond the periphery and had low purity, but detectable 

oncogene amplifications revealing malignant cell infiltration into the surrounding brain (Fig 

1D, Fig S1B). Some samples from CE regions in the tumor core also had low purity and 

contained regions of necrosis (Fig 1D, Fig S1C).

Whole-tumor sampling enables inference of evolutionary trajectories as genomic alterations 

and programs detected tumor-wide represent cell-of-origin or the initial clonal expansion 

while those with intratumoral heterogeneity represent later events (Fig 1E). We constructed 

phylogenetic trees that distinguished truncal mutations from branch mutations present in 

only one or a subset of samples and grouped mutations from each patient into putative clonal 

clusters20 (Fig S1D–E, Table S3). In several patients, multiple clonal expansions occurred 

concurrently resulting in formation of genetic subclones. Samples from P530 split into two 

genetic subclones located in distinct masses in the left temporal and frontal regions of the 

brain (Fig 1F, Fig S1F–G). P530 samples from the same subclone were 2.8cm apart on 

average while samples from different subclones were 8.4cm apart. While samples from P529 

also split into two genetic subclones, they were spatially intermixed with samples from 

the same subclone no more physically close (average 1.8cm) than samples from different 

subclones (average 1.6cm) (Fig 1G–H, Fig S1H). Our 3D spatial approach thus allows 

us to estimate physical sizes of genetic subclones and their relative orientations within 

whole tumors. We find that clonal expansions in GBM occur in divergent manners – from 

independent, spatially-restricted outgrowth into distant brain regions to concurrent growth 

and infiltration of subclones into each other in the same region.

Oncogene amplification and tumor suppressor deletion on the whole-tumor scale

Oncogene amplifications are major drivers in GBM and occur principally on 

extrachromosomal (ec) DNA on which regulatory elements are retained21–25. We detected 

oncogene amplifications by high copy-number (Fig 2A, Fig S2A) and high levels 

of accessible chromatin and physical chromatin interactions with preserved underlying 

structures (Fig 2B–C, Fig S2B). MDM4 amplifications were detected tumor-wide in two 

patients indicating they likely occurred early in tumor evolution (Fig 2A). The MDM4-
amplified region in P498 had breakpoints within OPTC and NFASC (Fig 2B) and gave rise 

to NFASC::OPTC fusion transcripts present tumor-wide (Fig 2D). EGFR was amplified in 

five patients with two showing intratumoral heterogeneity. In P529, EGFR was amplified 

only in subclone-B (Fig 1G) indicating it was not involved in early tumorigenesis but 

co-occurred with TP53 mutation to drive subclonal outgrowth. In P521, EGFR amplification 

was high in the tumor region containing samples 1–4 while amplification of another 

oncogenic tyrosine kinase PDGFRA was high in the tumor region containing samples 6–

8 (Fig 2E, S2C). MYCN was amplified in P475 and showed intratumoral heterogeneity. 

MYCN amplification is frequent in the variant of IDH-WT GBM with primitive neuronal 

component26,27, histological features of which were identified in this patient (Fig S2D). 

However, this amplification was not detected in the diagnostic biopsy sample analyzed 

by our clinical NGS panel, highlighting limitations of single tissue biopsies for clinical 

diagnostics in the context of GBM intratumoral heterogeneity.
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Tumor suppressor deletions are also critical GBM driver events. PTEN showed focal 

deletion only in P530 samples from the temporal region (Fig 2F, S2E). Interestingly, de 
novo loop formation across deletion breakpoints caused enhancer-hijacking resulting in 

upregulation of FAM35A and RNLS in the temporal region (Fig 2G–H). While CDKN2A 
underwent homozygous deletion across the whole P530 tumor, the deletion in the temporal 

region was larger (~690kbp) than the frontal region (~395kbp) (Fig 2I–J). While the larger 

deletion in the temporal region caused loss of MTAP, de novo loop formation across 

deletion breakpoints caused enhancer-hijacking and upregulation of KLHL9 (Fig 2K). 

Tumor suppressor deletion thus reshapes both the GBM genome and epigenome and can 

occur independently and concurrently in different regions of the same tumor, manifesting in 

multiple forms of intratumoral heterogeneity.

Structural variants disrupt the genome and epigenome to drive GBM evolution

As structural variants (SVs) induce de novo chromatin interactions, we utilized Hi-C 

datasets to systematically identify SVs28–30 (Table S4). We identified five cases of 

chromothripsis31,32 spanning ~3–60Mb where SVs clustered closely together. In P524, 

chromothripsis occurred at the CDKN2A locus indicating it was responsible for deletion 

of this tumor suppressor. Chromothripsis created fusion genes including SLC24A2::MLLT3 
and TESK1::TRMT10B which were in-frame and present in all samples except one with low 

purity (P524_1, ψ=0.04) (Fig 3A–B). In P529, chromothripsis occurred on chr13 and on 

chr19 (Fig 3C). The chr13 event was centered on the RB1 tumor suppressor and created out-

of-frame RB1::LINC00441 fusion transcripts while the chr19 event fused TTYH1, which is 

recurrently involved in fusions driving embryonal brain tumors33, with FOSB, a component 

of the AP-1 transcription factor. Both fusion transcripts were expressed in all P529 samples. 

Chromothripsis in P475 (chr17) and P519 (chr16) also created fusion transcripts present 

tumor-wide (Fig S3A). Thus, chromothripsis is one of the earliest driver events in GBM 

evolution. Despite their tumor-wide presence and impact on clinically important genes, 

no chromothripsis events were discovered by our clinical NGS panel presumably due to 

breakpoints in introns.

Other SVs showed intratumoral heterogeneity indicating they occurred later in tumor 

evolution or represented one of multiple early, contemporaneously evolving clonal 

expansions. In P529, CDK2NA was the breakpoint of a 110Mb inversion that spanned 

78% of chr9 (Fig 3D–E). The inversion and resulting TSC1::CDKN2B-AS1 fusion were 

detected only in subclone-A and were likely selected due to simultaneous inactivation of 

CDKN2A and TSC1, another glioma tumor suppressor34. Translocations were visible on Hi-

C contact maps as aberrant inter-chromosomal interactions. In P529, a chr1:3 translocation 

creating an EPS15::CRYBG3 fusion was present tumor-wide while a chr3:6 translocation 

creating a LACE1::TIGIT fusion was present only in subclone-A (Fig 3F, S3B–C). Thus, 

two chromothripsis events and the chr1:3 translocation occurred early in evolution of this 

tumor while the chr9 inversion and chr3:6 translocation occurred specifically in the subclone 

lacking TP53 mutation and EGFR amplification (Fig 3G). The degree of heterogeneity 

between these subclones is remarkable given their spatial intermixing and cautions against 

extrapolation from individual samples to the whole tumor. We also identified translocations 

in other patients including one specific to the frontal region of P530 (Fig S3D–E). SVs thus 
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disrupt the genome and epigenome at multiple stages of GBM evolution, driving either early 

tumorigenesis or subclonal outgrowth and intratumoral heterogeneity.

GBM structural variants create fusion transcripts and precision therapeutic opportunities

As SV-induced fusion genes are specific to malignant cells, they provide opportunities for 

therapeutic intervention35,36. We identified an in-frame translocation-induced BCR::NTRK2 
fusion can be targeted by FDA-approved kinase inhibitors larotrectinib or entrectinib (Fig 

3H). This fusion represented a tumor-wide vulnerability and therapeutic opportunity but was 

unfortunately missed by our clinical NGS panel due to breakpoints outside exons. The only 

fusion recurrently identified in our cohort EGFR::SEPT1435 was subclonal in each case, 

limiting its therapeutic potential (Fig 3I, Table S4). From an immunotherapeutic perspective, 

fusion-derived peptides or mRNA may serve as neoantigens for personalized vaccines37,38. 

To explore this potential, we identified each patient’s MHC variants and applied two 

algorithms to predict MHC-specific binding39,40. Fusions from each patient including 

validated tumor-wide fusions EPS15::CRYBG3, RB1::LINC00441 and TTYH1::FOSB from 

P529 were predicted to generate peptides presented by MHC-I (Fig 3J, Fig S3F). These 

findings suggest unrealized clinical value of searching for tumor-wide fusion transcripts 

in patients upon diagnosis as they help identify clinically important SVs and present 

therapeutic opportunities ranging from targeted inhibition of fusion oncoproteins to potential 

neoantigens for precision immunotherapies.

Transcriptomic heterogeneity in 3D spatially-defined GBM microenvironments

We sought to investigate the full diversity and spatial relationships of GBM transcriptomic 

programs in their native context within whole tumors. We first analyzed gene expression 

profiles of spatially mapped samples in context of the original molecular subtypes 

defined using the TCGA-GBM cohort6 (Fig 4A, Video S1). Although these subtypes 

were initially proposed for interpatient classification, only one patient (P500) showed 

consistent enrichment of the same subtype across samples. Samples classified as Proneural 

and Classical had high purity while samples classified as Mesenchymal and Neural had 

mixed and low purity respectively (Fig 4B). Neural and Proneural samples were located 

close to the periphery while Classical and Mesenchymal samples were located closer to 

the tumor core. The low-purity sample located outside the periphery P521_5 (ψ=0.03) 

was classified as Neural, consistent with this subtype primarily representing transcriptional 

programs of normal cell types present in the brain10. Individual genes defining each subtype 

showed variable expression across samples (Fig S4A) indicating these subtypes consisted of 

amalgamations of genes from diverse transcriptional programs and/or cell types that could 

be activated separately or in conjunction with each other.

To more precisely define GBM transcriptomic programs, we performed unsupervised 

covariation analysis as described previously in human brain tissues41. Using RNA-Seq data 

from spatially mapped samples, we derived modules (R_) each consisting of a unique 

set of co-expressed genes (Fig 4C, Table S5). We annotated modules by enrichment 

analysis and calculated correlations between average module expression and sample 

purity (Rψ) and relative sample distance between centroid and periphery (Rd). Modules 

represented both tumor and microenvironmental programs, collectively capturing extensive 
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transcriptomic heterogeneity. Programs corresponding to oligodendrocytes (R_brown, Rψ 
−0.82), astrocytes (R_plum, Rψ −0.51), and neurons (R_orangered3, Rψ −0.48) were 

expressed in low-purity Neural samples (Fig 4D). Their relative expression varied revealing 

some such as P503_2 (ψ=0.03) contained mainly astrocytes and oligodendrocytes while 

others such as P503_1 (ψ=0.00) also contained neurons (Fig 4C, S4B). Modules with strong 

spatial preference towards the tumor periphery (R_lightcoral Rd +0.44, R_darkseagreen4 
+0.40, and R_pink +0.39) were enriched for neuronal signatures and were expressed in 

neuron-containing samples such as P503_1, but also in Proneural samples containing almost 

exclusively tumor cells such as P530_6 (ψ=0.97) (Fig 4E, Fig S4C). These modules 

represent tumor cell-hijacking of neuronal programs as described in context of glioma-

neuron synaptic communication and formation of neurite-like tumor microtubes42–44. The 

top-ranked gene in R_darkseagreen4 FRRS1L is critical for biogenesis and function of 

AMPA receptors45,46, which are implicated in electrochemical communication at neuron-

glioma synapses42,44. Other R_darkseagreen4 genes including neuroligin NLGN2 and 

neurexins NRXN1, NRXN2, and NRXN3 also have roles in synapse formation (Fig S4D). 

RUSC1, the top-ranked gene for R_lightcoral, encodes a signaling adaptor that promotes 

neurite outgrowth47 and may contribute to formation of neurite-like tumor microtubes. 

We thus reveal that neuronal hijacking occurs specifically at the GBM periphery and 

delineate specific hijacked genes including novel potential contributors to glioma-neuron 

communication and microtube formation for further investigation.

Whole-tumor transcriptomic analysis revealed programs active in GBM immune 

microenvironments. R_blue was strongly enriched for signatures of microglia (Fig 4C), the 

primary innate immune cells of the brain48, containing canonical markers AIF1 (Iba1) and 

TMEM119. We also identified modules corresponding to immunologically “hot” and “cold” 

microenvironments: R_greenyellow contained interferon signaling and T cell markers (Fig 

S4E) while R_midnightblue contained canonical markers of immunosuppressive alternately 

activated ‘M2’ macrophages CD163, IL10, and MSR1. Both were enriched towards the 

tumor core (Rd = −0.30 and −0.29 respectively). Samples with high R_greenyellow 
expression such as P521_2 were infiltrated by Iba1+ microglia and CD3+ T cells 

while samples with high R_midnightblue expression such as P529_9 were infiltrated by 

immunosuppressive Iba+/CD163+ microglia (Fig 4F). Analysis of GBM single-cell RNA-

Seq data49 confirmed R_greenyellow expression in T cells and R_midnightblue expression 

in myeloid cells (Fig S4F). Importantly, these modules reveal known and many novel 

potential contributors to GBM immune activation and to creation of the immunosuppressive 

environment to which immunotherapy failure is attributed. R_greenyellow includes PD-1 

receptor PDCD1, PD-1 ligand PDCD1LG2, and butyrophilin genes which elicit T cell 

activation and are proposed immunotherapy targets50. R_midnightblue includes S100A4, 
which promotes immunosuppression and is a proposed glioma immunotherapy target49, 

SIGLEC7/9, which is implicated in tumor evasion of immune surveillance51, and LRRC25, 
which inhibits IFN and NF-kB signaling52,53 but has yet to be investigated in cancer.

Mesenchymal differentiation in GBM is associated with increased aggressiveness, 

but debate continues on whether the signature is intrinsically captured in malignant 

cells or is a byproduct of the immune microenvironment54. R_midnightblue was 

enriched for the original Mesenchymal signature from bulk RNA-Seq6 (Fig 4C) 
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indicating immunosuppressive microglia were present in regions undergoing mesenchymal 

differentiation and contributed to overall transcriptional output. R_midnightblue genes 

included OSM, which mediates immune cell-induction of mesenchymal GBM states55. 

Three other modules were also preferentially expressed in Mesenchymal samples (Fig 4G). 

R_plum2 was enriched for tumor cell-intrinsic injury response/MES1 signatures12,14 (Fig 

S4G) and was preferentially expressed towards the core (Rd = −0.23) including in spatially 

distant cores of P530 temporal and frontal regions (Fig 4H). R_plum2 genes including 

SAA1, a clinical indicator of inflammation, and SOD2, a constituent of apoptotic signaling 

and oxidative stress, were highly expressed in necrosis-containing sample P529_7 located 

close to the core. R_plum3 was enriched for the tumor cell-intrinsic MES2 signature12 and 

included markers of GBM hypoxia response and glycolysis as well as pro-angiogenic factor 

VEGFA (Fig S4H). R_plum3 was negatively correlated with R_blue (−0.45), indicating 

expression in regions depleted of microglia (Fig S4I). R_darkred contained genes involved 

in extracellular matrix organization and markers of GBM cancer-associated fibroblasts57 

(Fig S4H) including proposed therapeutic target COL1A156. R_darkred was significantly 

enriched in CE regions (Fig 4I) including in multivariable analysis controlling for purity and 

relative distance from centroid (p<5.9 × 10−8). Thus, transcriptomic programs with different 

cellular origins and spatial proclivities collectively contribute to GBM mesenchymal 

differentiation.

To study regulatory mechanisms underlying transcriptomic programs, we conducted 

motif analysis on promoter and enhancer ATAC-Seq peaks linked to genes from each 

module (Table S5). PU.1 was most enriched for R_blue, consistent with its role in 

the myeloid lineage58, while interferon-sensitive response element (ISRE) was most 

enriched for R_greenyellow. Remarkably, AP-1 was most enriched for R_midnightblue, 
R_plum2, R_plum3, and R_darkred. AP-1 is thus a critical mediator of multiple 

aspects of GBM mesenchymal differentiation including creation of an immunosuppressive 

microenvironment, tumor cell responses to injury and hypoxia, and physical reshaping of the 

extracellular matrix (Fig 4J).

Neurodevelopmental programs reflect GBM origins and contribute to heterogeneity

Transcriptomic analysis identified neurodevelopmental programs active tumor-wide that 

provided insight into GBM lineage origins. R_turquoise was strongly correlated with sample 

purity (Rψ = +0.82) indicating expression in malignant cells across all patients in our cohort 

(Fig 5A). It was also the module most strongly correlated with purity across 136 primary 

IDH-WT GBM patients in the TCGA cohort5,6(Fig S5A). R_turquoise was enriched for the 

signature of dividing intermediate progenitor (IPC) cells from the developing brain59 (Fig 

4C). Top-ranked genes included mitotic kinesin and checkpoint proteins – KIF18A, KIF14, 
TTK, SKA1, and BUB1– all of which are also expressed in dividing IPC cells59 (Fig 5A). 

The dividing IPC program thus drives unchecked proliferation in GBM. Of note, KIF18A 
is implicated as a vulnerability in chromosomally unstable cancers and targeted inhibitors 

have been tested in vivo60,61. As KIF18A and other R_turquoise genes are expressed tumor-

wide, they represent viable opportunities for therapeutic targeting with minimal risk of 

heterogeneity-related failures.
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Outer-radial glia (oRG) are neural stem cells in the outer subventricular zone that produce 

either oligodendrocyte precursor cells (OPCs) or neurons through distinct transit-amplifying 

IPCs62,63 (Fig 5B). R_brown2 and R_maroon were enriched for oRG and OPC signatures 

respectively. PTPRZ1, which is expressed through oRG differentiation to OPCs63, was a 

top-ranked gene (#5) in R_maroon along with its ligand PTN (#12). PTPRZ1, PTN, and 

other R_maroon genes were robustly expressed and in the open ‘A’ chromatin compartment 

in high-purity samples such as P524_9 (ψ=0.89) but were silenced and in the closed 

‘B’ compartment in low-purity samples such as P524_1 (ψ=0.04) (Fig S5B). Given the 

importance of chromatin architecture in differentiation64, these findings are consistent with 

GBM originating along the lineage trajectory of oRG differentiation to OPCs. oRG-like 

populations exhibiting PTPRZ1-mediated mitotic somal translocation have been described 

in human GBMs65 and PTPRZ1 is a proposed therapeutic target66,67 for which our results 

provide tumor-wide support.

Notably, R_brown2 and R_maroon expression were low in all samples from P475, the GBM 

with primitive neuronal component (Fig 5C). This GBM variant has yet to be characterized 

at the transcriptional level and little is known of the molecular basis underlying its distinct 

histological features. We identified R_ivory as specific to P475 and highly correlated with 

purity indicating activation across tumor cells (RψP475 = +0.93, Fig 5C). R_ivory genes 

included NKX2–1 (which encodes the TTF-1 marker specific to this GBM variant27), a 

network of transcription factors key for neuronal fate specification including NEUROG2 
and NEUROD4 (Fig 5D), as well as markers of IPC differentiation to neurons such as 

PPP1R17 and NHLH268. Taken together with specific absence of oRG and OPC signatures, 

these findings implicate origin in distinct neurodevelopmental lineages as a molecular basis 

of differences observed in this GBM variant. To assess generalizability of these findings, 

we analyzed a high-purity sample (ψ=0.97) from a second patient diagnosed with this 

GBM variant (P565) and found robust expression of R_ivory and absence of R_brown 
and R_maroon (Fig S5C). Immunostaining confirmed presence of TTF-1 and absence of 

PTPRZ1 protein in both P475 and P565 (Fig 5E). Our whole-tumor transcriptome analysis 

thus elucidates neurodevelopmental lineage origins of GBMs including a divergent lineage 

that gives rise to the GBM variant with primitive neuronal component.

Unexpectedly, transcriptomic analysis identified a program R_red that was enriched for 

choroid plexus and ependymal signatures. Many of its 376 constituent genes encoded 

components of motile cilia (Fig S5D), which are present on ependymal cells that line the 

choroid plexus and function in circulation of cerebrospinal fluid. Promoters and enhancers 

linked to R_red genes were enriched for the binding motif of RFX transcription factors 

(p<1 ×10−61) (Table S5) which control ciliogenesis in ependymal cells69. We considered 

the possibility that samples with high expression of R_red contained choroid plexus tissue 

but found no evidence by histology. These samples were spatially distant from brain 

ventricles (Fig S5E) and tended to be high purity (Rψ = +0.34) indicating this program 

was aberrantly expressed in malignant cells. R_red expression was also restricted to specific 

genetic subclones such as subclone-A in P529 (Fig 3G) and frontal samples in P530. Thus, 

malignant GBM cells may aberrantly activate RFX-mediated expression of choroid/cilia 

programs in the course of tumor evolution.
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As programs reflecting cell lineage and transcription factor activity are encoded in 

chromatin, we sought to directly characterize chromatin landscapes across whole GBM 

tumors. We applied unsupervised covariation analysis to ATAC-Seq data from the same 

samples focusing on the 20% most variable peaks (A_) as well as the subset of peaks 

we characterized as promoters or enhancers linked to one or more genes (L_) (Fig 5F, 

S5F). We defined modules consisting of up to several thousand co-accessible peaks, 

collectively capturing inter- and intratumoral heterogeneity in GBM chromatin landscapes 

(Fig 5G, Table S6). These chromatin analyses reinforced and extended findings from 

transcriptome analysis regarding neurodevelopmental lineage origins of GBM. ATAC signal 

at L_navajowhite1 peaks was strongly correlated with purity except in P475, the GBM with 

primitive neuronal component (Fig 5H). This module contained 1,364 peaks of which 70 

were linked to PTPRZ1 and 23 to LHFPL3, the top-ranked gene in the R_maroon OPC 

module. P475-specific modules A_thistle and A_plum showed strong motif enrichment 

for NEUROD1 (Fig 5G), a pioneer transcription factor for neuronal fate commitment that 

binds to and activates target genes even in their closed heterochromatin states70. NEUROD1 

activation is consistent with broader activation of neuronal fate specification programs 

in GBM with primitive neuronal component (Fig 5D). Interestingly, the P500-specific 

module A_darkseagreen3 was also strongly enriched for the NEUROD1 motif (Fig 5G). 

A_darkseagreen3 included peaks at the NEUROD1 promoter and an intronic NEUROD1 
enhancer, each containing NEUROD1 footprints, indicating an auto-regulatory loop (Fig 

5I, Fig S5G). NEUROD1 was highly expressed in P500 as well as in P475 and P565 (Fig 

5J). Thus, while NEUROD1 activation in GBM with primitive neuronal component reflects 

lineage origins, NEUROD1 can also become aberrantly active in GBM and contribute to 

heterogeneity (Fig 5K).

Intratumoral heterogeneity of GBM chromatin landscapes at single-cell resolution

We next sought to investigate sources of intratumoral heterogeneity in GBM chromatin 

landscapes. To distinguish microenvironmental from tumor cell programs, we generated 

single-nucleus ATAC-Seq (snATAC) data for 10 spatially mapped samples from 4 of the 

patients in our study – a total of 30,498 cells (Fig 6A, Table S7). Cells grouped by 

sample and neoplastic status on UMAP projections with non-neoplastic cells forming 

multiple groups representing distinct microenvironmental cell types (Fig 6B, S6A–C). 

We identified modules corresponding to oligodendrocytes, neurons, and microglia and 

found that differences in cell type composition between samples were readily inferred 

by differences in ATAC signal at module constituent peaks (Fig 6C, S6D). As with 

transcriptome analysis, modules most negatively correlated with sample purity represented 

oligodendrocytes (A_lavenderblush2, Rψ = −0.54, L_coral, Rψ = −0.68) (Fig 5C). While 

peaks from these modules were accessible only in mature oligodendrocytes from normal 

adult brains71, those from A_coral were also accessible in OPCs (Fig 6D). A_coral included 

8 enhancers of SOX10, which has critical roles in oligodendrocyte lineage specification and 

terminal differentiation72 (Fig S6E). SOX motifs were most enriched amongst constituent 

peaks of A_coral as well as of A_lavenderblush2 and L_coral (Fig 5G). Whole-tumor 

chromatin analysis thus reveals in situ epigenomic programs and regulatory machinery of 

microenvironmental cells present in GBM tumors. While single-cell data alone is limited 

in defining chromatin landscapes due to variability introduced during cell dissociation and 
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sparse reads from individual cells, our combination of tissue and single-cell approaches, 

cross-referenced with gene expression, establishes open chromatin landscapes of cell types 

as they are in intact tumors at the resolution of individual gene regulatory elements.

Analysis of GBM chromatin landscapes further elucidated intratumoral heterogeneity of 

tumor programs. We identified striking intratumoral heterogeneity between P521 samples 

with high EGFR versus PDGFRA amplification (Fig 2E, 5G). Single-cell analysis revealed 

that these amplifications were mutually exclusive amongst neoplastic cells (Fig 6E). EGFR-
amplified cells showed activation of A_plum3, a program normally active in astrocytes, 

while PDGFRA-amplified cells showed activation of A_yellowgreen and A_coral, programs 

normally active in OPCs (Fig 6D, 6F). Thus, EGFR and PDGFRA-amplified cells 

differentiated along diverse glial sub-lineages, creating heterogeneity evident both at 3D-

spatial and single-cell resolution. A_plum3 peaks were strongly enriched for the Nuclear 

Factor 1 motif (Fig 5G). Nuclear Factor 1A (NFIA) forms a complex with SOX9 to 

orchestrate astrocyte-specific gene expression while directly antagonizing SOX10 induction 

of oligodendrocyte-specific genes73,74. A_plum3 included clusters of peaks at SOX9 and 

at astrocyte-specific genes including ADCY2 and ADCYAP1R1 (Fig S6F). SOX9 was 

highly expressed in EGFR-amplified samples while SOX10 was highly expressed in 

PDGFRA-amplified samples (Fig S6G). Taken together, these results reveal that NFIA 

altered chromatin landscapes to specify EGFR-amplified cells to the astrocytic fate while 

PDGFRA-amplified cells differentiated towards the oligodendroglial fate (Fig 6G). As 

astrocyte (AC)-like and OPC-like GBM cell states have been identified by single-cell 

RNA-Seq12, we examined the relationship between these cell states and the chromatin 

programs we defined. Genes linked to A_plum3 and other NFIA-enriched modules were 

highly expressed in the AC-like state while genes linked to A_yellowgreen and A_coral 
were expressed in the OPC-like state (Fig S6H). Thus, we define open chromatin landscapes 

of different GBM cell states and reveal their 3D spatial distributions within whole tumors. 

Further, we implicate NFIA/SOX9 and SOX10 as potential mediators of transitions between 

the AC-like and OPC-like cell states.

We next investigated whether any chromatin programs were consistently associated with 

genomic alterations across patients. L_salmon4 was associated with EGFR-amplification 

at the sample-level (Fig 6H) and at the single-cell level for patients with intratumoral 

heterogeneity (Fig 6I). L_salmon4 included five peaks linked to ELOVL2, which supports 

EGFR signaling by regulating membrane phospholipid dynamics and is implicated as a 

glioma therapeutic vulnerability75. L_salmon4 also included four peaks linked to NOVA1, 
an evolutionarily conserved splicing regulator in the developing nervous system. ELOVL2 
and NOVA1 were located in open ‘A’ chromatin compartments specifically in EGFR-
amplified samples (Fig 6J). We thus reveal alterations in GBM chromatin landscape 

associated with EGFR amplification, providing support for therapeutic targeting the 

ELOVL2 metabolic network and unveiling additional genes epigenetically upregulated in 

EGFR-amplified regions for further investigation.

Finally, we characterized chromatin programs with differential spatial enrichment across 

tumors. L_mediumorchid was enriched towards the periphery (Rd +0.39) and contained 

regulatory elements of genes involved in neuron projections including 9 linked to ARPP21, 
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which controls dendritic branching76 (Fig S6I–J). Modules enriched towards the tumor 

core – A_lavenderblush3 (Rd −0.48), L_lightcyan1 (−0.45), L_orangered3 (−0.36), L_thistle 
(−0.36) – all showed AP-1 or its component FOSL2 as the top enriched motif (Fig 5G). 

A_lavenderblush3 had 28 constituent peaks that included two enhancers of GADD45B, 
which is upregulated in stressful conditions, and enhancers of LGALS3 and ANGPTL4, 

both of which promote treatment resistance in GBM77,78. L_orangered3 included regulatory 

elements of AP-1 components FOSL2 and JUN as well as of stress and hypoxia response 

genes HSPA5, ERFFI1, and HIF1A (Fig S6K). These modules showed heterogeneity 

amongst cells from individual samples (Fig 6K) and were enriched in cells in the MES-like 

state (Fig S6H). Whole-tumor analysis of GBM transcriptomes and chromatin landscapes 

thus independently identifies neuronal hijacking at the tumor periphery and AP-1-mediated 

mesenchymal differentiation within the tumor core. These complementary analyses reveal 

specific genes and regulatory machinery associated with each of these programs for further 

mechanistic and therapeutic investigation.

Discussion

A whole-tumor perspective of GBM

GBM treatment options remain limited and prognosis dismal despite decades of molecular 

investigation. The first landmark TCGA publication focused on GBM7 as have follow-up 

studies with expanded patient cohorts and additional data types and analyses4–6. While 

this cohort view of GBM has established genes and pathways commonly altered across 

patients, it is not designed for deciphering molecular roots of individual tumors and 

understanding evolutionary dynamics by which they become heterogeneous and treatment-

resistant. The 3D spatial sampling approach we have presented allows GBM to be studied 

from a whole-tumor perspective. By quantifying and accounting for sample purity in 

our analyses, we distinguish tumor cell-intrinsic genomic and epigenomic alterations and 

differences in program activation from differences in cell type composition. We can 

then differentiate molecular events that are tumor-wide versus heterogeneous and thus 

infer GBM evolutionary trajectories. Tumor-wide activation of specific neurodevelopmental 

programs sheds new light on the longstanding question of GBM cell-of-origin79–84. EGFR is 

expressed in cells along the lineage trajectory of oRG differentiation to OPCs63, indicating 

a plausible mechanism of tumor initiation whereby gain of chr7 containing EGFR, PTPRZ1, 
and PTN locks cells into an undifferentiated IPC/pre-OPC transit-amplifying state. Gains 

of chr7 are less frequent in GBM with primitive neuronal component27 in which we find 

activation of programs from the distinct lineage trajectory of IPC differentiation to neurons. 

The fortuitous inclusion of this GBM variant in our cohort provides a striking contrast 

that divulges its divergent origins as well as its regulatory network and master regulators. 

Cell-of-origin of other GBM histological variants or tumor types may be similarly discerned 

by whole-tumor sampling and identification of programs active tumor-wide.

By delineating genes and regulatory elements comprising programs from GBM origins, we 

discover tumor-wide therapeutic targets that may avoid heterogeneity-related failures. These 

include novel targets and those such as KIF18A and PTPRZ1 that have been evaluated to 

some extent60,61,65–67, but without knowledge of their tumor-wide activation. While most 
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GBMs share a common cellular origin, their genetic roots are deeply personalized. Our 

findings provide impetus for searching for chromothripsis and other early SVs in patients 

upon diagnosis as these massively disrupt the genome and epigenome and give rise to tumor-

wide fusions that provide opportunities for precision molecular and immunotherapeutic 

targeting.

Redefining GBM heterogeneity in 3D space

Molecular studies of GBM have classified patients, samples, and now individual cells 

to subtypes or states5,6,10,12–14. Heterogeneity has been defined by inconsistencies 

in classification and tumor evolution by transitions observed between subtypes or 

states8,12,16,17. By directly interrogating GBM evolution and heterogeneity in whole tumors, 

we find that these concepts are better understood through modular activation of specific 

tumor and microenvironmental programs occurring independently or together in different 

patients, tumor regions, and individual cells. By analyzing co-variation across GBM 

transcriptomes and chromatin landscapes, we have delineated genes and regulatory elements 

comprising distinct tumor and microenvironmental programs and have defined their inter- 

and intratumoral heterogeneity from 3D whole-tumor to single-cell resolution (Fig 7A–B). 

While many programs are independently detected by our chromatin and transcriptomic 

analyses, others are uniquely detected by one, thus underscoring the value of combining 

both to capture the full extent of heterogeneity. Low-abundance cell types such as T 

cells are detected only by transcriptomic analysis likely because individual cells can 

produce large numbers of transcripts, but only have a diploid genome on which chromatin 

accessibility can be assessed. In contrast, tumor programs driven by NEUROD1 and NFIA 

are detected only by chromatin analysis likely because they bind and alter accessibility of 

large numbers of sites throughout the genome while effects on transcription are relatively 

subtle. During development, NEUROD1 and NFIA drive differentiation towards neuronal 

and astrocytic fates respectively and their activation is under precise spatiotemporal control. 

In GBM, these programs can become aberrantly and concurrently active as in P500 in 

which we find tumor-wide activation of oRG to OPC, NEUROD1-mediated neuronal, 

and NFIA-mediated astrocytic differentiation programs (Fig 7C). Aberrant activation of 

neurodevelopmental programs can also drive intratumoral heterogeneity as in P521 in which 

NFIA-mediated astrocytic differentiation occurs only in the EGFR-amplified tumor region. 

EGFR amplification is itself associated with an epigenomic program active tumor-wide as in 

P500 or with intratumoral heterogeneity as in P521.

3D spatial analysis reveals distinct microenvironments in the GBM core and periphery, 

formation of which is attributed to differential distribution of nonmalignant cell types and 

to tumor cell-intrinsic programs that become activated in response to these nonmalignant 

cell types or other regional factors such as injury and hypoxia. Neuronal hijacking occurs at 

the GBM periphery where tumor cells functionally interact with neurons. Inside the tumor 

core, we discover either immune-hot microenvironments with interferon signaling and T 

cell infiltration or immune-cold microenvironments undergoing mesenchymal differentiation 

programs coordinately activated across tumor, immune, and stromal cell types by master 

regulator AP-1.
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A 3D spatially annotated resource

The unique 3D spatially-resolved maps of whole GBM tumors we have generated can 

be publicly accessed on our online interactive platform. Users can select any gene, 

transcriptomic or chromatin program, or other feature-of-interest to visualize its spatial 

pattering in 360° across individual tumors and generate summary figures and statistics 

showing its spatial proclivities with regards to the tumor centroid, periphery, and contrast-

enhancing lesion. The insights we have drawn from redefining GBM evolution and 

heterogeneity from a 3D whole-tumor perspective, and the insights that will follow from 

studies taking advantage of our newly established resource, have the potential to impact 

clinical care and outcomes.

Limitations of the study

In vitro and in vivo experiments are a necessary next step to test inferences on GBM 

origins, plasticity, and vulnerabilities. With regards to origins, malignant transformation in 

the specific lineage trajectories we have identified could be tested in cell and organoid 

models of human neurodevelopment63,65,85,86, potentially giving rise to new tumor models 

that more accurately recapitulate GBM. Model systems could also be used to test roles of 

NEUROD1, NFIA, and other factors in altering GBM chromatin landscapes and driving cell 

state transitions. Our analyses have revealed a wealth of tumor-wide candidate therapeutic 

targets that can avoid heterogeneity-related failures as well as novel candidate biomarkers 

and therapeutic targets associated with neuronal hijacking, formation of immune-hot and 

cold microenvironments, and other programs we have defined. For example, the top-ranked 

gene in R_midnightblue LRRC25 is a negative regulator of innate immune signaling52,53 

and may potentially be targeted to reverse the immunosuppressive state of microglia. We 

have curated a list of such genes for follow-up investigation in appropriate experimental and 

preclinical models (Table S8).

STAR Methods

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed to and 

will be fulfilled by the lead contact, Dr. Joseph Costello (Joseph.Costello@ucsf.edu).

Materials availability—This study did not generate unique new reagents.

Data and code availability

• All exome, RNA-Seq, ATAC-Seq, and Hi-C datasets have been deposited 

in the European Genome-Phenome Archive (EGA) database under accession 

number EGAS00001006785, EGAD00001005221/2, and EGAD00001009496/7. 

Processed single-cell ATAC-Seq datasets have been deposited in GEO under 

the accession number GSE226726. This paper additionally analyzes existing, 

publicly available data. These accession numbers for the datasets are listed in the 

key resources table.
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• All original R code has been deposited at https://github.com/radhikamathur/

3DSpatiallyMappedGBMs and is publicly available as of the date of publication.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Sample use was approved by the University of California San Francisco’s Committee on 

Human Research and the University of California, San Francisco’s Institutional Review 

Board. All patients provided informed written consent. The age, sex, race, and ethnicity of 

all 11 study participants is provided in Supplementary Table 1.

METHOD DETAILS

Acquisition of 3D spatially mapped GBM samples—Neurosurgeons and study 

co-authors (S.H.J., M.S.B) conducted standard-of-care surgical resections 87,88 and 

progressively harvested glioblastoma specimen at their discretion with the goal to represent 

spatially distant intratumoral regions. Intraoperative brain mapping was used to identify 

regions of functional significance, allowing safe acquisition of samples from gliomas 

in many cortical and subcortical locations including both dominant and non-dominant 

hemispheres. Stereotactic site-directed biopsies from intratumoral regions were taken and 

the location of each sample was recorded as a set of LPS coordinates registered to a 

preoperative MR image using a Brainlab pointer and Brainlab Cranial Navigation software 

(v3; BrainLAB AG). A UCSF Brain Tumor Center Biorepository staff member was present 

in the operating room to acquire blood from existing lines prior to skull opening and 

for tissue acquisition following strict standard operating procedures to optimally preserve 

the biospecimen. Once acquired, biopsies were placed on wet-ice and transported to the 

laboratory, where they were divided so that 2/3 was flash-frozen in liquid nitrogen and 

1/3 was fixed in 10% neutral-buffered formalin for 8–14 hours, processed, and paraffin-

embedded (FFPE material). Flash-frozen tissue was further divided when tissue size 

permitted for DNA/RNA extraction, ATAC-Seq (tissue and/or single-cell), and Hi-C. Sample 

information including analyses performed are provided in Supplementary Table S1.

3D modeling and spatial analysis—Image registration was performed to the pre-

operation T1-weighted post-gadolinium series using FLIRT (FMRIB’s Linear Image 

Registration Tool) package 89,90. Brain extraction from the T2-weighted FLAIR image stack 

was performed using FSL’s BET91. Volumetric tumor ROIs were drawn for each tumor 

from the T2-weighted hyperintense region and from the contrast enhancing lesion. 5mm 

spherical ROIs were generated for each sample coordinate and converted to DICOM format 

for visualization and downstream analysis. DICOM files corresponding to the extracted 

brain, tumor ROIs, and sample ROIs were imported into freely available software Slicer92. 

Volumetric 3D models of the brain, tumor, and sample ROIs were generated using Slicer’s 

Grayscale Model Maker module. The composite 3D model is viewable within Slicer or an 

exported 3D video made using the ffmpeg (https://www.ffmpeg.org/) executable. Rotating 

3D models for each patient showing sample location in context of the whole tumor and 

contrast-enhancing lesions are provided in Supplementary Video S1 in .mp4 format. For 3D 
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spatial analysis, DICOM files corresponding to tumor and sample ROIs were imported into 

R using the oro.dicom package. Distances between sample pairs and minimum distances 

from each sample to the tumor centroid (dc) and periphery (dp) were calculated using 

the Cartesian coordinate system. Frontal and temporal regions from P530 were treated 

independently for calculations of inter-sample distances and relative distances from centroid 

and periphery. The inter-sample distance matrix and related calculations are provided in 

Supplementary Table S2.

Histopathological analysis—Tumor tissue targets were fixed in 10% neutral-buffered 

formalin, processed, and embedded in paraffin. Tumor sections (5 μm) were prepared and 

stored at −20°C prior to use. Slides were stained with hematoxylin & eosin (H&E) or 

immunostained. Notes from histopathological analysis on each sample including presence of 

necrosis and blood vessel hyperplasia are provided in Supplementary Table S1. All single 

and multiplex immunostainings were performed using a Discovery XT autostainer (Ventana 

Medical Systems, Inc., USA). For signal detection, the Multimer HRP kit (Ventana Medical 

Systems, Inc., USA) followed by either DAB or fluorescent detection kits were used. 

Fluorophores with the least autofluorescence on FFPE tissue were selected to minimize 

false positives: Cyanine 5 (Cy5) (DISCOVERY CY5 Kit, Cat#760238, Roche Diagnostics 

Corporation, Indianapolis, USA), rhodamine (DISCOVERY Rhodamine Kit, Cat#760233, 

Roche Diagnostics Corporation, Indianapolis, USA), and FITC (DISCOVERY Rhodamine 

Kit, Cat#760233, Roche Diagnostics Corporation, Indianapolis, USA). Slides were then 

counterstained with DAPI (Sigma Aldrich, USA) at 5 μg/ml in PBS (Sigma Aldrich, USA) 

for 15 minutes, mounted with prolong Gold antifade mounting media reagent (Invitrogen, 

USA) and stored at −20°C prior to imaging. Positive and negative controls were included 

for each marker. Images of stained slides were acquired using either a light microscope 

(Olympus BX41 microscope using UC90 Cooled CCD 9 Megapixel camera) or Zeiss Cell 

Observer epifluorescence microscope equipped with an AxioCam 506M camera and an 

Excellitas X-Cite 120Q light source. Primary antibodies used and conditions were CD163 

(Catalog # CD163-L-CE, Leica Biosystems, USA; mouse clone 10D6; dilution 1:500); 

IBA1 (Catalog#019-19741, Wako Chemicals USA, polyclonal rabbit, dilution 1:500); 

CD204 (Catalog # KMU-MA01, Cosmo Bio USA, clone SRA-E5, dilution 1:100); CD3 

(Catalog #NCL-L-CD3-565, Leica Biosystems, clone LN10, dilution 1:100); and PTPRZ1 

(Catalog #610179, BD Biosciences, dilution 1:600).

UCSF500 Clinical NGS panel—Targeted next-generation sequencing (NGS)93 was 

conducted on a single diagnostic tissue biopsy sample from each tumor. UCSF500 Version 

2 with NimbleGen baits targeting of 479 cancer genes with select intronic and upstream 

regulatory regions of 47 genes was utilized for all patients except P529 and P530. UCSF500 

Version 3 with IDT baits targeting 529 genes with 73 select intronic and upstream regulatory 

regions was utilized for these two patients. Sequencing of captured libraries was performed 

on Illumina HiSeq 2500 or NovaSeq 6000. Sequence reads were de-duplicated to allow 

for accurate allele frequency determination and copy number calling and were aligned to 

the human reference sequence UCSC build hg19 (NCBI build 37) for variant calling. This 

test was developed and its performance characteristics determined by the UCSF Clinical 

Cancer Genomics Laboratory, which is certified by the Clinical Laboratory Improvement 
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Act of 1988 (CLIA certified). Summaries of each patient’s UCSF500 report are provided in 

Supplementary Table S3.

Exome-sequencing—Genomic DNA and RNA were simultaneously extracted from 

fresh-frozen tissue using the AllPrep DNA/RNA/miRNA Universal Kit (QIAGEN). Exome 

capture was performed using the Agilent SureSelect Target Enrichment System Protocol 

(Version 1.0, September 2009) and Nimblegen SeqCap EZ Exome v3. Sequencing 

was conducted using HiSeq4000 or NovaSeq (Illumina). Exome data was processed as 

previously described by our group94 with further filtering applied to mark “discard” variants 

from repeat or low-quality regions of the genome. For phylogenetic trees, a binary call 

matrix to calculate Manhattan distance and fasteme.ols from R package ape95 was used to 

construct rooted binary trees. Allele-specific copy-number alterations were profiled using 

the FACETS algorithm96. PyClone VI (v0.1.0)20 (https://github.com/Roth-Lab/pyclone-vi) 

was used to infer clonal structure from allele frequencies as determined by MuTect and 

copy number alterations estimated by FACETS. PyCloneVI was run a minimum of 3 times 

to assess the stability of the number of clusters estimated. Results from PyCloneVI and 

FACETS copy number analysis from each patient are provided in Supplementary Table S3.

Purity estimation—Each lane of exome sequencing reads was aligned against human 

genome reference build GRCh38 released by the Broad Institute on July 12, 2016 

using BWA-MEM2 (v2.2.1). BAM files were sorted by query name using SAMtools 

(v1.15.1)97 and then duplicated reads were marked with Genome Analysis Toolkit (GATK) 

MarkDuplicatesSpark (GATK v4.2.4.1)98. In addition, Indel realignment GATK (v3.7.0) 

was performed to process multiple tumor samples and paired normal sample together per 

patient. Then, Base Quality Score Recalibration (BQSR) was run on the realigned sample 

BAMs using GATK (v4.2.4.1). Separate normal and tumor sample BAMs were generated 

and their headers were corrected using SAMtools (v1.12). Tumor purity was inferred using 

HATCHet (v0.4.14)99. The GATK processed normal/tumor sample BAMs were jointly 

processed per patient. dbSNP build 151 was used as a reference SNP list. As recommended 

for WES by the developer, the bin size calculating for Read Depth Ratio (RDR) and B-allele 

frequency (BAF) was set at 250kb. Read-count thresholds were set at a minimum coverage 

of 20 and a maximum coverage of 5,000 based on the average coverage of the samples and 

also to allow detection of high copy number alterations. Bootstrapping for clustering was 

performed with the recommended values of `bootclustering = 20`, `ratiodeviation = 0.002` 

and `bafdeviation = 0.002`. Also, the maximum copy number for diploid and tetraploid was 

set at 25 and 50, respectively to allow detection of high copy numbers (`diploidcmax = 25`, 

`tetraploidcmax = 50`). Lastly, Gurobi solver was used to detect 2 to 8 clones (`clones = 

2,8`). Purity estimates are provided in Supplementary Table S1.

RNA-sequencing—Strand-specific transcriptome sequencing libraries were prepared 

using the KAPA Stranded mRNA-Seq Kit (KR0960-v2.14, Kapa Biosystems). Trim Galore 

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) was first used to apply 

quality and adapter trimming to raw fastq files. Trimmed reads were then mapped to 

hg19 human reference genome build using STAR program100. Genes and transcripts 

quantification were done by RSEM program101. Tpm (transcripts per million) value for 
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each gene was transformed to log2(tpm+1) and then quantile normalized across all samples. 

The normalized log2(tpm+1) values were used for further analysis and are provided in 

Supplementary Table S5.

Chromatin accessibility profiling (ATAC-Seq)—ATAC-Seq on frozen primary GBM 

tissues was conducted as described by Corces et al102 with samples from the same patient 

processed in parallel. Nuclei were isolated from frozen tissues by Dounce homogenization 

followed by density gradient centrifugation. Transposition reactions were conducted with 

Illumina Tagment DNA TDE1 Enzyme and Buffer Kits using ~50,000 nuclei per reaction. 

Reactions were carried out in duplicate for all samples except those from P530. Transposed 

fragments were amplified by qPCR with NEBNext Master Mix and SYBR Green. Libraries 

were quantified with the KAPA Library Quantification kit and nucleosomal banding patterns 

were confirmed with Agilent Bioanalyzer DNA 1000. Paired-end sequencing (PE150) was 

conducted using the Illumina Hi-Seq or Nova-Seq (for samples from P530).

Raw fastq files were trimmed by Trim Galore. Then we used the standard ENCODE ATAC-

Seq pipeline (https://github.com/ENCODE-DCC/atac-seq-pipeline) for reads mapping and 

peak calling. Reads were mapped against the hg19 human reference genome build using 

Bowtie2 aligner103. The resulting raw bam files were further filtered by mappability and 

quality. ATAC-Seq peaks were called from filtered bam files using MACS2 with default 

parameters104. For samples that have replicates (all patient samples except P530), we used 

the overlap optimal narrow peaks between replicates. We filtered the peaks using MACS2 

output −log10pvalue > 5 and −log10qvalue > 2 criteria to get confident peaks. Each ATAC-

Seq peak was trimmed to 500bp, with 250bp extended on either side of the peak summit. 

ATAC-Seq peaks of the 70 samples were merged into a merged peak set. During the peak 

merging, if multiple peaks have overlap, the peak with highest normalized peak score were 

picked. Here normalized peak score refers to the −log10pvalue of a peak normalized by 

the sum of all of the peak scores in a given sample. Reads counts within each peak of 

the merged peak set were calculated from bam files using deepTools105. Cpm value was 

then calculated using the edgeR package106 and transformed to log2(cpm+1) and quantile 

normalized across all samples. The normalized log2(cpm+1) values were used for further 

analysis.

Promoters were defined as ATAC-Seq peaks from the merged set with summits within −1KB 

and 100bp of the gene transcription start sites (TSS). Enhancers were defined as ATAC-Seq 

peaks that did not overlap with the promoter region and peak-to-gene linkage prediction was 

performed as described by Corces et al102. Correlation between log2(cpm+1) value of distal 

ATAC-Seq peaks and log2(tpm+1) value of gene expression was calculated for all distal 

ATAC-Seq peaks and genes within 0.5Mb. FDR less than 0.05 was used as cutoff to identify 

significant linkages. Peak-gene linkages and normalized log2(cpm+1) values are provided in 

Supplementary Table S6.

Single-nucleus ATAC-Seq sample preparation and analysis—Samples were 

obtained either as previously cryopreserved extracted nuclei (P519, P521) or as individually 

snap-frozen tissue fragments (P524, P529). Frozen tissue samples were processed using 

an iodixanol gradient centrifugation method adapted from Corces et al102, with dounce 
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homogenization and centrifugation. Extracted nuclei were washed 1x in 10X wash buffer 

and resuspended in 100 uL of 0.1X 10X lysis buffer for 2 minutes, followed by a second 

wash and resuspension into 10X nuclear buffer. Downstream sample processing and library 

construction was performed using the Chromium NextGEM Single Cell ATAC Kit v2 (10X 

Genomics), targeting the maximum number of nuclei per sample, up to a max limit of 8000 

nuclei.

Libraries were sequenced at the University of Calgary Centre for Health Genomics 

and Informatics (CHGI) on an Illumina NovaSeq 6000 sequencer in paired-end mode, 

targeting 50,000 reads per cell. Sequencing data was processed using the 10X pipeline 

and CellRanger ATAC-1.2.0. Downstream matrices were processed using Signac 1.6.0107. 

Samples were thresholded using the following parameters: retention of cells and features 

present in at least 10 cells, peak_region_fragments > 3000, pct_reads_in_peaks > 15, 

blacklist_ratio < 0.05, lowmapq < 30000. Samples from the same patient were merged 

together, and normalized by dividing all counts by the mean signal across 5000 randomly 

selected peaks to account for differences in transposition efficiency and sequencing depth 

between samples. Dimension reduction was performed using latent semantic indexing (LSI) 

followed by UMAP construction using LSI components 2:30 and the following parameters: 

n.neighbours=71L, min.dist=0.4, spread=1.5, repulsion.strength=1.1, and calculation of 

clusters using Louvain clustering with default parameters. Copy number inference and 

putative ecDNA detection was performed using Copy-scAT with default parameters108 

followed by calculation of consensus CNVs by taking the rounded value of the 60th quantile 

value of each CNV for each cluster. Motif analysis was performed using ChromVAR109. 

Gene activity scores were calculated using the Signac GeneActivity function using the 

Ensembl v86 database. Per-cell scores for modules, linkage modules and gene scores were 

calculated as follows. For peak-based metrics (modules, linkage modules) bulk ATAC 

peak lists were converted from hg19 to hg38, and matching peaks in the snATAC-seq 

datasets were identified using the GenomicRanges findOverlaps function. Peaks with a total 

normalized intensity of at least 100 across each merged patient sample were retained and a 

mean score across each signature was computed for each cell. A similar approach was used 

for RNA gene scores, which were cross-referenced to genes in the normalized GeneActivity 

matrix. Gene names from the GeneActivity object were converted using the HGNChelper 

package to match updated HGNC symbols in the peak lists. Information on individual cells 

including neoplastic status, gene activity scores, and read-in-peak scores are provided in 

Supplementary Table S7.

Hi-C sample preparation and data analysis—Hi-C was conducted using spatially 

mapped samples from P524, P529, and P530 and bulk tumor tissue for remaining patients. 

Tissue samples were frozen with liquid nitrogen, pulverized using mortar and pestle 

until the sample resembles a fine powder, and then cross-linked using 2% formaldehyde. 

Hi-C libraries were generated and quality-checked per manufacturer’s protocol (ARIMA 

Genomics). As per their protocol, we tested and did QC on samples and sequenced 500M–

1200M reads for each sample using Illumina’s NovaSeq platform (Illumina).

Raw fastq files were first trimmed by Trim Galore and then mapped to hg19 human 

reference genome using runHiC pipeline (based on 4DN consortium)110. Pair-end 

Mathur et al. Page 19

Cell. Author manuscript; available in PMC 2025 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sequencing data were mapped by bwa aligner111. Aligned read pairs that have PCR 

duplicates or map to the same restriction fragment were filtered out. Reads were binned 

at 5 kb resolution and the contact matrix was stored in a cool file. The run-cool2multirescool 

script from 4DN consortium was then used to generate the multi-resolution cool files (5kb, 

10kb, 25kb, 40kb, 50kb, 100kb, 250kb, 500 kb, 1Mb, 2.5Mb, 5Mb, and 10 Mb) and perform 

ICE normalization. Multi-resolution .hic files were also generated using Juicer tools112 and 

can be visualized in Juicebox directly.

Loop calling in each Hi-C sample was performed using Peakachu113, which utilizes 

Random Forest classification framework. For each sample, we calculated the total number 

of intra-chromosomal pairs and then selected the most appropriate pre-trained model for 

loop prediction. A/B compartment was calculated at 100kb resolution using cooltools114. 

Structure variations were predicted by EagleC29, which combines deep-learning and 

ensemble-learning strategies. We first used NeoLoopFinder115 toolkit to calculate the copy 

number variation profile and remove the copy number variation effects. Then we called 

SVs using EagleC with “--balance-type CNV” parameters under 5kb, 10kb, and 50kb 

resolutions. Results from the three resolutions were combined in a non-redundant manner. 

The reconstructed Hi-C map was then generated by NeoLoopFinder. Structural variant lists 

are provided in Supplementary Table S4.

Fusion gene identification and validation—Fusion genes were identified in RNA-

Seq data using Arriba software116. Validation of fusion genes was conducted by reverse 

transcription polymerase chain reaction (RT-PCR), gel extraction, and Sanger sequencing. 

RNA was isolated with the Qiagen AllPrep DNA/RNA/miRNA Universal Kit (Cat.80224) 

according to manufacturer’s protocol. Briefly, 1000 ng of DNase-treated RNA was 

converted to cDNA using the iScript cDNA Synthesis Kit (BioRad, #1708891). This 

cDNA was then diluted 1:5 using nuclease free water, and 2 μl of this diluted cDNA 

was used for PCR reactions using the Phusion Green High-Fidelity DNA Polymerase 

(Thermo Scientific, #F-534L) with HF buffer. Cycling conditions were an initial step 

of 98 °C for 30 seconds, followed by 35 cycles of 98 °C for 10 seconds, the primer 

pair specific annealing temperature for 20 seconds, and 72 °C for 30 seconds, with a 

final elongation step of 72 °C for 5 minutes. Gene fusion specific primer sets were 

designed using NCBI Primer Blast (J.Ye et al. 2012) and an M13 forward sequence (5’-

GTAAAACGACGGCCAG-3’) was added to the 5’ end of the forward primer and an M13 

reverse sequence (5’-CAGGAAACAGCTATGAC-3’) was added to the 5’ end of the reverse 

primer. A negative control PCR reaction without template was included for each primer 

pair. PCR products were separated on a 1% agarose gel, excised, and gel purified (NEB, 

#T1020). Sample concentrations were then determined via Nanodrop (Thermo Scientific) 

and were submitted for Sanger sequencing (GENEWIZ) with M13F and M13R sequencing 

primers. Primers used for RT-PCR and results from Sanger sequencing are provided in 

Supplementary Table S4.

Characterization of gene fusion-derived neoantigens and HLA presentation 
prediction—Amino acid sequences identified by Arriba-detected gene fusion events 

were partitioned into multi-mer sequences of 8, 9, 10, and 11 amino acids in length. 
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Cross validation was next performed with normal tissue-expressing amino acid sequences 

utilizing a reference human proteome dataset (UniProt, Proteome ID: UP000005640) to 

select for cancer-specific peptide sequences. OptiType was next utilized on patient-derived 

whole-exome sequencing data to identify all major and minor HLA Class I alleles117. 

To predict personalized immunogenic targets generated independently within the patient 

cohort, HLA-restricted presentation scores for all cancer-nmers were assigned based on 

the binding affinity of each patient’s corresponding HLA Class I repertoire. Peptide:HLA 

presentation was predicted using a combination of HLAthena 39and MHCFlurry 2.0118. 

Cancer-specific multi-mers along with the upstream and downstream flanking sequences 

were used as input sequences for both algorithms. HLAthena MSiC analysis was performed 

with a threshold of 0.1, aggregation by peptide, and assignment of peptides to alleles by 

rank. MHCFlurry 2.0 analysis was initiated with the models_class1_presentation baseline 

parameters. Cancer-specific multimers were independently ranked based on presentation 

scores, and multi-mers found in the upper 10th percentile of candidates in both algorithms 

are predicted neoantigens with increased likelihood for HLA presentation. These cancer-

specific multimers in conjunction with flanking upstream and downstream sequences were 

mapped back to their corresponding gene fusion events.

Transcriptome unsupervised covariation analysis—Weighted correlation network 

analysis was performed as described in our previous work on human brain tissues41. 

Genome-wide biweight midcorrelations (bicor) were calculated using the WGCNA R 

package119 on RNA-Seq data from 69 spatially mapped GBM samples from 8 patients. 

All genes were clustered using the flashClust119 implementation of hierarchical clustering 

with complete linkage and 1 – bicor as a distance measure. Each resulting dendrogram 

was cut at a static height (0.624) corresponding to the top 5% of values of the correlation 

matrix for case one and case two, respectively. All clusters consisting of at least 20 members 

were identified and summarized by their module eigengene120,121 (i.e. the first principal 

component obtained by singular value decomposition) using the moduleEigengenes function 

of the WGCNA R package. Highly similar modules were merged based if the Pearson 

correlation of their module eigengenes was >0.85. This procedure was performed iteratively 

such that the pair of modules with the highest correlation > 0.85 was merged, followed by 

recalculation of all module eigengenes, followed by recalculation of all correlations, until 

no pairs of modules exceeded the threshold. The WGCNA measure of module membership, 

kME, was calculated for all genes with respect to each module. kME is defined as the 

Pearson correlation between the expression pattern of a gene and a module eigengene and 

therefore quantifies the extent to which a gene conforms to the characteristic expression 

pattern of a module121. For downstream analyses, module definitions were expanded to 

include all genes with significant kME values, with significance adjusted for multiple 

comparisons by Bonferroni correction. If a gene was significantly correlated with more than 

one module, it was assigned to the module for which it had the highest kME value. Gene 

set enrichment analysis was performed for all modules using a one-sided Fisher’s exact 

test as implemented by the fisher.test R function. Network analysis and visualization was 

conducted using StringApp122 on Cytoscape (version3.9.1). Summary information on each 

module, lists of constituent genes ranked by significance, and signatures used for enrichment 

analysis are provided in Supplementary Table S5.
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Chromatin landscape unsupervised covariation analysis—Weighted correlation 

network analysis was conducted as above on ATAC-Seq data from the same 69 spatially 

mapped samples from 8 GBM patients. Modules were derived independently from the top 

20% most variable peaks from the merged list (ATAC modules) and from the subset of peaks 

from the merged list that were defined as promoters or enhancers linked to one or more 

genes (Linkage Modules). Static heights of 0.65 and 0.34 and minimum sizes of 20 and 

30 were used to derive ATAC and Linkage Modules, respectively. The WGCNA measure 

of module membership, kME, was calculated for all peaks with respect to each module. 

For downstream analyses, module definitions were expanded to include all peaks with 

significant kME values, with significance adjusted for multiple comparisons by Bonferroni 

correction. TF enrichment analysis was performed on constituent peaks from each module 

using HOMER123. TF footprinting analysis was performed using HINT-ATAC124. Bam 

files and peak files of each sample were provided as input. Summary information on each 

module, lists of constituent peaks ranked by significance, and top-linked genes are provided 

in Supplementary Table S6.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification and statistical analyses were conducted using the ggplot2, ggpubr (version 

0.4.0), and EnvStats R packages. Statistical significance of differences in means was 

evaluated by T-tests in Fig 1B, 1H, 2H, 2K, 4I, 6F, 6I and by ANOVA in Fig 4B. 

Linear regression models were fitted and evaluated by Pearson correlation in Fig 1C, 

4E, 5A, 5C, 5H, 6H, S1A, S2C, S4C, S5A, S6A, S6I. R code used to generate figures 

and conduct statistical analysis is available on Github (https://github.com/radhikamathur/

3DSpatiallyMappedGBMs).

ADDITIONAL RESOURCES

Interactive 3D visualization and exploration of datasets, including single-nucleus ATAC 

data, is available at http://3D-gbms.shinyapps.io/search/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank the patients and their families for consent to collect and use tumor samples. We thank the staff 
of the University of California, San Francisco’s Brain Tumor Center Tissue Bank for sample acquisition and 
histopathology services and the Center for Advanced Technology for sequencing services. This project was 
supported by a gift from the Hana Jabsheh Research Initiative and the Panattoni family. Additional support provided 
by the Brain Tumor Funders Collaborative (J.F.C.), National Institutes of Health Grants F32 1F32CA239472-01 
(R.M), T32 T32CA151022 (R.M., S.H.), R01 CA169316 (to J.F.C.), P01 CA118816-06 (to J.F.C., J.M.L, J.J.P.), 
R50 CA274229 (to C. H.), P50 CA097257 (to J.J.P., and J.F.C.), U01 CA229345 (to J.J.P.); and the Chan 
Zuckerberg (CZ) Biohub. F.Y. was supported by NIH grants R35GM124820, 1R01HG009906, and R01HG011207.

References

1. Black JRM, and McGranahan N (2021). Genetic and non-genetic clonal diversity in cancer 
evolution. Nat. Rev. Cancer, 1–14. 10.1038/s41568-021-00336-2. [PubMed: 33203999] 

Mathur et al. Page 22

Cell. Author manuscript; available in PMC 2025 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/radhikamathur/3DSpatiallyMappedGBMs
https://github.com/radhikamathur/3DSpatiallyMappedGBMs
http://3d-gbms.shinyapps.io/search/


2. Nicholson JG, and Fine HA (2021). Diffuse Glioma Heterogeneity and Its Therapeutic Implications. 
Cancer Discov. 11, 575–590. 10.1158/2159-8290.CD-20-1474. [PubMed: 33558264] 

3. Marusyk A, Janiszewska M, and Polyak K (2020). Intratumor Heterogeneity: The Rosetta Stone of 
Therapy Resistance. Cancer Cell 37, 471–484. 10.1016/j.ccell.2020.03.007. [PubMed: 32289271] 

4. Brennan CW, Verhaak RGW, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, 
Chakravarty D, Sanborn JZ, Berman SH, et al. (2013). The Somatic Genomic Landscape of 
Glioblastoma. Cell 155, 462–477. 10.1016/j.cell.2013.09.034. [PubMed: 24120142] 

5. Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA, Morozova O, 
Newton Y, Radenbaugh A, Pagnotta SM, et al. (2016). Molecular Profiling Reveals Biologically 
Discrete Subsets and Pathways of Progression in Diffuse Glioma. Cell 164, 550–563. 10.1016/
j.cell.2015.12.028. [PubMed: 26824661] 

6. Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, and Wilkerson MD (2010). 
Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized 
by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110. 10.1016/
j.ccr.2009.12.020. [PubMed: 20129251] 

7. The Cancer Genome Atlas Research Network (2008). Comprehensive genomic characterization 
defines human glioblastoma genes and core pathways. Nature 455, 1061–1068. 10.1038/
nature07385. [PubMed: 18772890] 

8. Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP, Marioni JC, Curtis C, Watts C, 
and Tavaré S (2013). Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary 
dynamics. Proc. Natl. Acad. Sci. U. S. A. 110, 4009–4014. 10.1073/pnas.1219747110. [PubMed: 
23412337] 

9. Puchalski RB, Shah N, Miller J, Dalley R, Nomura SR, Yoon J-G, Smith KA, Lankerovich M, 
Bertagnolli D, Bickley K, et al. (2018). An anatomic transcriptional atlas of human glioblastoma. 
Science 360, 660–663. 10.1126/science.aaf2666. [PubMed: 29748285] 

10. Wang Q, Hu B, Hu X, Kim H, Squatrito M, and Scarpace L (2018). Tumor Evolution of 
Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the 
Microenvironment. Cancer Cell 33, 152. 10.1016/j.ccell.2017.12.012. [PubMed: 29316430] 

11. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, and Wakimoto H (2014). Single-cell 
RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401. 
10.1126/science.1254257. [PubMed: 24925914] 

12. Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, and Rahme GJ (2019). An Integrative Model of 
Cellular States. Plast. Genet. Glioblastoma Cell, 1–37. 10.1016/j.cell.2019.06.024.

13. Garofano L, Migliozzi S, Oh YT, D’Angelo F, Najac RD, and Ko A (2021). Pathway-based 
classification of glioblastoma uncovers a mitochondrial subtype with therapeutic vulnerabilities. 
Nat. Cancer, 1–38. 10.1038/s43018-020-00159-4. [PubMed: 35121896] 

14. Richards LM, Whitley OKN, MacLeod G, Cavalli FMG, Coutinho FJ, and Jaramillo 
JE (2021). Gradient of Developmental and Injury Response transcriptional states defines 
functional vulnerabilities underpinning glioblastoma heterogeneity. Nat. Cancer, 1–40. 10.1038/
s43018-020-00154-9. [PubMed: 35121896] 

15. Ravi VM, Will P, Kueckelhaus J, Sun N, Joseph K, Salié H, Vollmer L, Kuliesiute U, von 
Ehr J, Benotmane JK, et al. (2022). Spatially resolved multi-omics deciphers bidirectional tumor-
host interdependence in glioblastoma. Cancer Cell 40, 639–655.e13. 10.1016/j.ccell.2022.05.009. 
[PubMed: 35700707] 

16. Chaligne R, Gaiti F, and Silverbush D (2021). Epigenetic encoding, heritability and plasticity 
of glioma transcriptional cell states. Nat Genet 53, 1469–1479. 10.1038/s41588-021-00927-7. 
[PubMed: 34594037] 

17. Johnson KC, Anderson KJ, and Courtois ET (2021). Single-cell multimodal glioma analyses 
identify epigenetic regulators of cellular plasticity and environmental stress response. Nat Genet 
53, 1456–1468. 10.1038/s41588-021-00926-8. [PubMed: 34594038] 

18. Molinaro AM, Hervey-Jumper S, Morshed RA, Young J, Han SJ, and Chunduru P (2020). 
Association of Maximal Extent of Resection of Contrast-Enhanced and Non-Contrast-Enhanced 
Tumor With Survival Within Molecular Subgroups of Patients With Newly Diagnosed 
Glioblastoma. JAMA Oncol. 6, 495–503. 10.1001/jamaoncol.2019.6143. [PubMed: 32027343] 

Mathur et al. Page 23

Cell. Author manuscript; available in PMC 2025 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



19. Karschnia P, Young JS, Dono A, Häni L, Sciortino T, Bruno F, Juenger ST, Teske N, Morshed 
RA, Haddad AF, et al. (2022). Prognostic validation of a new classification system for extent 
of resection in glioblastoma: a report of the RANO resect group. Neuro-Oncol. 10.1093/neuonc/
noac193.

20. Gillis S, and Roth A (2020). PyClone-VI: scalable inference of clonal population structures 
using whole genome data. BMC Bioinformatics 21, 571. 10.1186/s12859-020-03919-2. [PubMed: 
33302872] 

21. Nathanson DA, Gini B, Mottahedeh J, Visnyei K, Koga T, Gomez G, Eskin A, Hwang K, 
Wang J, Masui K, et al. (2014). Targeted therapy resistance mediated by dynamic regulation of 
extrachromosomal mutant EGFR DNA. Science 343, 72–76. 10.1126/science.1241328. [PubMed: 
24310612] 

22. Morton AR, Dogan-Artun N, Faber ZJ, MacLeod G, Bartels CF, Piazza MS, Allan KC, Mack 
SC, Wang X, Gimple RC, et al. (2019). Functional Enhancers Shape Extrachromosomal Oncogene 
Amplifications. Cell 179, 1330–1341 13. 10.1016/j.cell.2019.10.039. [PubMed: 31761532] 

23. Wu S, Turner KM, Nguyen N, Raviram R, Erb M, and Santini J (2019). Circular ecDNA promotes 
accessible chromatin and high oncogene expression. Nature, 1–24. 10.1038/s41586-019-1763-5.

24. Kim H, Nguyen N-P, Turner K, Wu S, Gujar AD, and Luebeck J (2020). Extrachromosomal DNA 
is associated with oncogene amplification and poor outcome across multiple cancers. Nat. Genet, 
1–20. 10.1038/s41588-020-0678-2. [PubMed: 31911675] 

25. Turner KM, Deshpande V, Beyter D, Koga T, Rusert J, Lee C, Li B, Arden K, Ren B, Nathanson 
DA, et al. (2017). Extrachromosomal oncogene amplification drives tumour evolution and genetic 
heterogeneity. Nature 543, 122–125. 10.1038/nature21356. [PubMed: 28178237] 

26. Perry A, Miller CR, Gujrati M, Scheithauer BW, Zambrano SC, Jost SC, Raghavan R, Qian J, 
Cochran EJ, Huse JT, et al. (2009). Malignant gliomas with primitive neuroectodermal tumor-like 
components: a clinicopathologic and genetic study of 53 cases. Brain Pathol. Zurich Switz. 19, 
81–90. 10.1111/j.1750-3639.2008.00167.x.

27. Suwala AK, Stichel D, Schrimpf D, Maas SLN, Sill M, Dohmen H, Banan R, Reinhardt A, 
Sievers P, Hinz F, et al. (2021). Glioblastomas with primitive neuronal component harbor a 
distinct methylation and copy-number profile with inactivation of TP53, PTEN, and RB1. Acta 
Neuropathol. (Berl.) 142, 179–189. 10.1007/s00401-021-02302-6. [PubMed: 33876327] 

28. Wang S, Lee S, Chu C, Jain D, Kerpedjiev P, Nelson GM, Walsh JM, Alver BH, and Park PJ 
(2020). HiNT: a computational method for detecting copy number variations and translocations 
from Hi-C data. Genome Biol. 21, 73. 10.1186/s13059-020-01986-5. [PubMed: 32293513] 

29. Wang X, Luan Y, and Yue F (2022). EagleC: A deep-learning framework for detecting a 
full range of structural variations from bulk and single-cell contact maps. Sci. Adv. 8. 10.1126/
sciadv.abn9215.

30. Dixon JR, Xu J, Dileep V, Zhan Y, Song F, Le VT, Yardımcı GG, Chakraborty A, Bann DV, Wang 
Y, et al. (2018). Integrative detection and analysis of structural variation in cancer genomes. Nat. 
Genet. 50, 1388–1398. 10.1038/s41588-018-0195-8. [PubMed: 30202056] 

31. Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, Pleasance ED, Lau KW, 
Beare D, Stebbings LA, et al. (2011). Massive Genomic Rearrangement Acquired in a Single 
Catastrophic Event during Cancer Development. Cell 144, 27–40. 10.1016/j.cell.2010.11.055. 
[PubMed: 21215367] 

32. Cortés-Ciriano I, Lee JJ-K, Xi R, Jain D, Jung YL, Yang L, Gordenin D, Klimczak LJ, Zhang 
C-Z, Pellman DS, et al. (2020). Comprehensive analysis of chromothripsis in 2,658 human 
cancers using whole-genome sequencing. Nat. Genet. 52, 331–341. 10.1038/s41588-019-0576-7. 
[PubMed: 32025003] 

33. Kleinman CL, Gerges N, Papillon-Cavanagh S, Sin-Chan P, Pramatarova A, Quang D-AK, 
Adoue V, Busche S, Caron M, Djambazian H, et al. (2014). Fusion of TTYH1 with the C19MC 
microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain 
tumor ETMR. Nat. Genet. 46, 39–44. 10.1038/ng.2849. [PubMed: 24316981] 

34. Carbonara C, Longa L, Grosso E, Borrone C, Garré MG, Brisigotti M, and Migone N (1994). 
9q34 loss of heterozygosity in a tuberous sclerosis astrocytoma suggests a growth suppressor-
like activity also for the TSC1 gene. Hum. Mol. Genet. 3, 1829–1832. 10.1093/hmg/3.10.1829. 
[PubMed: 7849708] 

Mathur et al. Page 24

Cell. Author manuscript; available in PMC 2025 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



35. Frattini V, Trifonov V, Chan JM, Castano A, Lia M, Abate F, Keir ST, Ji AX, Zoppoli P, Niola F, et 
al. (2013). The integrated landscape of driver genomic alterations in glioblastoma. Nat. Genet. 45, 
1141–1149. 10.1038/ng.2734. [PubMed: 23917401] 

36. Singh D, Chan JM, Zoppoli P, Niola F, Sullivan R, Castano A, Liu EM, Reichel J, Porrati 
P, Pellegatta S, et al. (2012). Transforming fusions of FGFR and TACC genes in human 
glioblastoma. Science 337, 1231–1235. 10.1126/science.1220834. [PubMed: 22837387] 

37. Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, Oliveira G, Giobbie-Hurder A, 
Felt K, Gjini E, et al. (2019). Neoantigen vaccine generates intratumoral T cell responses in phase 
Ib glioblastoma trial. Nature 565, 234–239. 10.1038/s41586-018-0792-9. [PubMed: 30568305] 

38. Rojas LA, Sethna Z, Soares KC, Olcese C, Pang N, Patterson E, Lihm J, Ceglia N, Guasp P, Chu 
A, et al. (2023). Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. 
Nature 618, 144–150. 10.1038/s41586-023-06063-y. [PubMed: 37165196] 

39. Sarkizova S, Klaeger S, Le PM, Li LW, Oliveira G, Keshishian H, Hartigan CR, Zhang W, Braun 
DA, Ligon KL, et al. (2020). A large peptidome dataset improves HLA class I epitope prediction 
across most of the human population. Nat. Biotechnol. 38, 199–209. 10.1038/s41587-019-0322-9. 
[PubMed: 31844290] 

40. O’Donnell TJ, Rubinsteyn A, and Laserson U (2020). MHCflurry 2.0: Improved Pan-Allele 
Prediction of MHC Class I-Presented Peptides by Incorporating Antigen Processing. Cell Syst. 11, 
42–48 7. [PubMed: 32711842] 

41. Kelley KW, Nakao-Inoue H, Molofsky AV, and Oldham MC (2018). Variation among intact tissue 
samples reveals the core transcriptional features of human CNS cell classes. Nat. Neurosci. 1–24. 
10.1038/s41593-018-0216-z.

42. Venkatesh HS, Morishita W, Geraghty AC, Silverbush D, Gillespie SM, Arzt M, Tam LT, Espenel 
C, Ponnuswami A, Ni L, et al. (2019). Electrical and synaptic integration of glioma into neural 
circuits. Nature 573, 539–545. 10.1038/s41586-019-1563-y. [PubMed: 31534222] 

43. Venkataramani V, Yang Y, Schubert MC, Reyhan E, Tetzlaff SK, Wißmann N, Botz M, Soyka SJ, 
Beretta CA, Pramatarov RL, et al. (2022). Glioblastoma hijacks neuronal mechanisms for brain 
invasion. Cell 185, 2899–2917 31. 10.1016/j.cell.2022.06.054. [PubMed: 35914528] 

44. Venkataramani V, Tanev DI, Strahle C, Studier-Fischer A, Fankhauser L, Kessler T, Körber 
C, Kardorff M, Ratliff M, Xie R, et al. (2019). Glutamatergic synaptic input to glioma cells 
drives brain tumour progression. Nature 573, 532–538. 10.1038/s41586-019-1564-x. [PubMed: 
31534219] 

45. Stewart M, Lau P, Banks G, Bains RS, Castroflorio E, Oliver PL, Dixon CL, Kruer MC, Kullmann 
DM, Acevedo-Arozena A, et al. (2019). Loss of Frrs1l disrupts synaptic AMPA receptor function, 
and results in neurodevelopmental, motor, cognitive and electrographical abnormalities. Dis. 
Model. Mech, dmm.036806. 10.1242/dmm.036806.

46. Schwenk J, Boudkkazi S, Kocylowski MK, Brechet A, Zolles G, Bus T, Costa K, Kollewe A, 
Jordan J, Bank J, et al. (2019). An ER Assembly Line of AMPA-Receptors Controls Excitatory 
Neurotransmission and Its Plasticity. Neuron 104, 680–692.e9. 10.1016/j.neuron.2019.08.033. 
[PubMed: 31604597] 

47. MacDonald JI, Kubu CJ, and Meakin SO (2004). Nesca, a novel adapter, translocates to the 
nuclear envelope and regulates neurotrophin-induced neurite outgrowth. J. Cell Biol. 164, 851–
862. 10.1083/jcb.200309081. [PubMed: 15024033] 

48. Zhong S, Zhang S, Fan X, Wu Q, Yan L, Dong J, Zhang H, Li L, Sun L, Pan N, et al. (2018). A 
single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex. Nature 
555, 524–528. 10.1038/nature25980. [PubMed: 29539641] 

49. Abdelfattah N, Kumar P, Wang C, Leu JS, Flynn WF, Gao R, Baskin DS, Pichumani K, Ijare OB, 
Wood SL, et al. (2022). Single-cell analysis of human glioma and immune cells identifies S100A4 
as an immunotherapy target. Nat. Commun. 13, 767. 10.1038/s41467-022-28372-y. [PubMed: 
35140215] 

50. Payne KK, Mine JA, Biswas S, Chaurio RA, Perales-Puchalt A, Anadon CM, Costich TL, Harro 
CM, Walrath J, Ming Q, et al. (2020). BTN3A1 governs antitumor responses by coordinating αβ 
and γδ T cells. Science 369, 942–949. 10.1126/science.aay2767. [PubMed: 32820120] 

Mathur et al. Page 25

Cell. Author manuscript; available in PMC 2025 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



51. Jandus C, Boligan KF, Chijioke O, Liu H, Dahlhaus M, Démoulins T, Schneider C, Wehrli M, 
Hunger RE, Baerlocher GM, et al. (2014). Interactions between Siglec-7/9 receptors and ligands 
influence NK cell-dependent tumor immunosurveillance. J. Clin. Invest. 124, 1810–1820. 10.1172/
JCI65899. [PubMed: 24569453] 

52. Feng Y, Duan T, Du Y, Jin S, Wang M, Cui J, and Wang RF (2017). LRRC25 Functions as an 
Inhibitor of NF-κB Signaling Pathway by Promoting p65/RelA for Autophagic Degradation. Sci. 
Rep. 7, 13448. 10.1038/s41598-017-12573-3. [PubMed: 29044191] 

53. Du Y, Duan T, Feng Y, Liu Q, Lin M, Cui J, and Wang R (2018). LRRC25 inhibits type I IFN 
signaling by targeting ISG15-associated RIG-I for autophagic degradation. EMBO J. 37, 351–366. 
10.15252/embj.201796781. [PubMed: 29288164] 

54. Kim Y, Varn FS, Park SH, Yoon BW, Park HR, Lee C, Verhaak RGW, and Paek SH (2021). 
Perspective of mesenchymal transformation in glioblastoma. Acta Neuropathol. Commun. 9, 50. 
10.1186/s40478-021-01151-4. [PubMed: 33762019] 

55. Hara T, Chanoch-Myers R, Mathewson ND, Myskiw C, Atta L, Bussema L, Eichhorn SW, 
Greenwald AC, Kinker GS, Rodman C, et al. (2021). Interactions between cancer cells and 
immune cells drive transitions to mesenchymal-like states in glioblastoma. Cancer Cell 39, 779–
792.e11. 10.1016/j.ccell.2021.05.002. [PubMed: 34087162] 

56. Comba A, Faisal SM, Dunn PJ, Argento AE, Hollon TC, and Al-Holou WN (2022). 
Spatiotemporal analysis of glioma heterogeneity reveals COL1A1 as an actionable target to disrupt 
tumor progression. Nat. Commun. 13, 3606–3623. 10.1038/s41467-022-31340-1. [PubMed: 
35750880] 

57. Jain S, Rick JW, Joshi RS, Beniwal A, Spatz J, Gill S, Chang AC-C, Choudhary N, Nguyen 
AT, Sudhir S, et al. (2023). Single-cell RNA sequencing and spatial transcriptomics reveal cancer-
associated fibroblasts in glioblastoma with protumoral effects. J. Clin. Invest. 133, e147087. 
10.1172/JCI147087. [PubMed: 36856115] 

58. Cakir B, Tanaka Y, Kiral FR, Xiang Y, Dagliyan O, Wang J, Lee M, Greaney AM, Yang 
WS, duBoulay C, et al. (2022). Expression of the transcription factor PU.1 induces the 
generation of microglia-like cells in human cortical organoids. Nat. Commun. 13, 430. 10.1038/
s41467-022-28043-y. [PubMed: 35058453] 

59. Nowakowski TJ, Bhaduri A, Pollen AA, Alvarado B, Mostajo-Radji MA, and Lullo E (2017). 
Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. 
Science 358, 1318–1323. 10.1126/science.aap8809. [PubMed: 29217575] 

60. Marquis C, Fonseca CL, Queen KA, Wood L, Vandal SE, Malaby HLH, Clayton JE, and Stumpff 
J (2021). Chromosomally unstable tumor cells specifically require KIF18A for proliferation. Nat. 
Commun. 12, 1213. 10.1038/s41467-021-21447-2. [PubMed: 33619254] 

61. Tamayo NA, Bourbeau MP, Allen JR, Ashton KS, Chen JJ, Kaller MR, Nguyen TT, Nishimura 
N, Pettus LH, Walton M, et al. (2022). Targeting the Mitotic Kinesin KIF18A in Chromosomally 
Unstable Cancers: Hit Optimization Toward an In Vivo Chemical Probe. J. Med. Chem. 65, 4972–
4990. 10.1021/acs.jmedchem.1c02030. [PubMed: 35286090] 

62. Pollen AA, Nowakowski TJ, Chen J, Retallack H, Sandoval-Espinosa C, Nicholas CR, Shuga J, 
Liu SJ, Oldham MC, Diaz A, et al. (2015). Molecular identity of human outer radial glia during 
cortical development. Cell 163, 55–67. 10.1016/j.cell.2015.09.004. [PubMed: 26406371] 

63. Huang W, Bhaduri A, Velmeshev D, Wang S, Wang L, Rottkamp CA, Alvarez-Buylla A, Rowitch 
DH, and Kriegstein AR (2020). Origins and Proliferative States of Human Oligodendrocyte 
Precursor Cells. Cell 182, 594–608 11. 10.1016/j.cell.2020.06.027. [PubMed: 32679030] 

64. Dixon JR, Jung I, Selvaraj S, Shen Y, Antosiewicz-Bourget JE, and Lee AY (2015). Chromatin 
architecture reorganization during stem cell differentiation. Nature, 1–23. 10.1038/nature14222.

65. Bhaduri A, Lullo E, Jung D, Müller S, Crouch EE, Espinosa CS, Ozawa T, Alvarado B, Spatazza J, 
Cadwell CR, et al. (2020). Outer Radial Glia-like Cancer Stem Cells Contribute to Heterogeneity 
of Glioblastoma. Cell Stem Cell 26, 48–63 6. 10.1016/j.stem.2019.11.015. [PubMed: 31901251] 

66. Fujikawa A, Sugawara H, Tanaka T, Matsumoto M, Kuboyama K, Suzuki R, Tanga N, Ogata 
A, Masumura M, and Noda M (2017). Targeting PTPRZ inhibits stem cell-like properties and 
tumorigenicity in glioblastoma cells. Sci. Rep. 7, 5609. 10.1038/s41598-017-05931-8. [PubMed: 
28717188] 

Mathur et al. Page 26

Cell. Author manuscript; available in PMC 2025 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



67. Shi Y, Ping Y-F, Zhou W, He Z-C, Chen C, Bian B-S-J, Zhang L, Chen L, Lan X, Zhang X-C, 
et al. (2017). Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling 
in glioblastoma stem cells for tumour growth. Nat. Commun. 8, 15080. 10.1038/ncomms15080. 
[PubMed: 28569747] 

68. Pebworth MP, Ross J, Andrews M, Bhaduri A, and Kriegstein AR (2021). Human intermediate 
progenitor diversity during cortical development. Proc. Natl. Acad. Sci. U. S. A. 118, 2019415118. 
10.1073/pnas.2019415118.

69. Lemeille S, Paschaki M, Baas D, Morlé L, Duteyrat J-L, Ait-Lounis A, Barras E, Soulavie F, Jerber 
J, Thomas J, et al. (2020). Interplay of RFX transcription factors 1, 2 and 3 in motile ciliogenesis. 
Nucleic Acids Res. 48, 9019–9036. 10.1093/nar/gkaa625. [PubMed: 32725242] 

70. Pataskar A, Jung J, Smialowski P, Noack F, Calegari F, Straub T, and Tiwari VK (2016). NeuroD1 
reprograms chromatin and transcription factor landscapes to induce the neuronal program. EMBO 
J. 35, 24–45. 10.15252/embj.201591206. [PubMed: 26516211] 

71. Zhang K, Hocker JD, Miller M, Hou X, Chiou J, Poirion OB, Qiu Y, Li YE, Gaulton KJ, Wang 
A, et al. (2021). A single-cell atlas of chromatin accessibility in the human genome. Cell 184, 
5985–6001 19. 10.1016/j.cell.2021.10.024. [PubMed: 34774128] 

72. Stolt CC, Rehberg S, Ader M, Lommes P, Riethmacher D, Schachner M, Bartsch U, and Wegner M 
(2002). Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription 
factor Sox10. Genes Dev. 16, 165–170. 10.1101/gad.215802. [PubMed: 11799060] 

73. Glasgow SM, Zhu W, Stolt CC, Huang TW, Chen F, LoTurco JJ, Neul JL, Wegner M, Mohila 
C, and Deneen B (2014). Mutual antagonism between Sox10 and NFIA regulates diversification 
of glial lineages and glioma subtypes. Nat. Neurosci. 17, 1322–1329. 10.1038/nn.3790. [PubMed: 
25151262] 

74. Kang P, Lee HK, Glasgow SM, Finley M, Donti T, Gaber ZB, Graham BH, Foster AE, Novitch 
BG, Gronostajski RM, et al. (2012). Sox9 and NFIA coordinate a transcriptional regulatory 
cascade during the initiation of gliogenesis. Neuron 74, 79–94. 10.1016/j.neuron.2012.01.024. 
[PubMed: 22500632] 

75. Gimple RC, Kidwell RL, Kim LJY, Sun T, Gromovsky AD, Wu Q, Wolf M, Lv D, 
Bhargava S, Jiang L, et al. (2019). Glioma Stem Cell-Specific Superenhancer Promotes 
Polyunsaturated Fatty-Acid Synthesis to Support EGFR Signaling. Cancer Discov. 9, 1248–1267. 
10.1158/2159-8290.CD-19-0061. [PubMed: 31201181] 

76. Rehfeld F, Maticzka D, Grosser S, Knauff P, Eravci M, Vida I, Backofen R, and Wulczyn FG 
(2018). The RNA-binding protein ARPP21 controls dendritic branching by functionally opposing 
the miRNA it hosts. Nat. Commun. 9, 1235. 10.1038/s41467-018-03681-3. [PubMed: 29581509] 

77. Wang H, Song X, Huang Q, Xu T, Yun D, Wang Y, Hu L, Yan Y, Chen H, Lu D, et al. (2019). 
LGALS3 Promotes Treatment Resistance in Glioblastoma and Is Associated with Tumor Risk and 
Prognosis. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. 
Soc. Prev. Oncol. 28, 760–769. 10.1158/1055-9965.EPI-18-0638.

78. Tsai YT, Wu AC, Yang WB, Kao TJ, Chuang JY, Chang WC, and Hsu TI (2019). ANGPTL4 
Induces TMZ Resistance of Glioblastoma by Promoting Cancer Stemness Enrichment via the 
EGFR/AKT/4E-BP1 Cascade. Int. J. Mol. Sci. 20, 5625. 10.3390/ijms20225625. [PubMed: 
31717924] 

79. Alcantara Llaguno SR, Xie X, and Parada LF (2016). Cell of Origin and Cancer Stem Cells in 
Tumor Suppressor Mouse Models of Glioblastoma. Cold Spring Harb. Symp. Quant. Biol. 81, 
31–36. 10.1101/sqb.2016.81.030973. [PubMed: 27815542] 

80. Holland EC, Li Y, Celestino J, Dai C, Schaefer L, Sawaya RA, and Fuller GN (2000). Astrocytes 
give rise to oligodendrogliomas and astrocytomas after gene transfer of polyoma virus middle 
T antigen in vivo. Am. J. Pathol. 157, 1031–1037. 10.1016/S0002-9440(10)64615-9. [PubMed: 
10980141] 

81. Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, and Steindler DA (2002). 
Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal 
markers in vitro. Glia 39, 193–206. 10.1002/glia.10094. [PubMed: 12203386] 

82. Ilkhanizadeh S, Lau J, Huang M, Foster DJ, Wong R, Frantz A, Wang S, Weiss WA, and Persson 
AI (2014). Glial Progenitors as Targets for Transformation in Glioma. In Advances in Cancer 
Research (Elsevier), pp. 1–65. 10.1016/B978-0-12-800249-0.00001-9.

Mathur et al. Page 27

Cell. Author manuscript; available in PMC 2025 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



83. Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, 
Zhang W, et al. (2006). Tumor stem cells derived from glioblastomas cultured in bFGF and EGF 
more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell 
lines. Cancer Cell 9, 391–403. 10.1016/j.ccr.2006.03.030. [PubMed: 16697959] 

84. Sugiarto S, Persson AI, Munoz EG, Waldhuber M, Lamagna C, Andor N, Hanecker P, Ayers-
Ringler J, Phillips J, Siu J, et al. (2011). Asymmetry-Defective Oligodendrocyte Progenitors Are 
Glioma Precursors. Cancer Cell 20, 328–340. 10.1016/j.ccr.2011.08.011. [PubMed: 21907924] 

85. Nowakowski TJ, and Salama SR (2022). Cerebral Organoids as an Experimental Platform for 
Human Neurogenomics. Cells 11, 2803. 10.3390/cells11182803. [PubMed: 36139380] 

86. Koga T, Chaim IA, Benitez JA, Markmiller S, Parisian AD, Hevner RF, Turner KM, Hessenauer 
FM, D’Antonio M, Nguyen ND, et al. (2020). Longitudinal assessment of tumor development 
using cancer avatars derived from genetically engineered pluripotent stem cells. Nat. Commun. 11, 
550. 10.1038/s41467-020-14312-1. [PubMed: 31992716] 

87. Han SJ, Morshed RA, Troncon I, Jordan KM, Henry RG, Hervey-Jumper SL, and Berger MS 
(2019). Subcortical stimulation mapping of descending motor pathways for perirolandic gliomas: 
assessment of morbidity and functional outcome in 702 cases. J. Neurosurg. 131, 201–208. 
10.3171/2018.3.JNS172494.

88. Hervey-Jumper SL, Li J, Lau D, Molinaro AM, Perry DW, Meng L, and Berger MS (2015). Awake 
craniotomy to maximize glioma resection: methods and technical nuances over a 27-year period. J. 
Neurosurg. 123, 325–339. 10.3171/2014.10.JNS141520. [PubMed: 25909573] 

89. Jenkinson M, and Smith S (2001). A global optimisation method for robust affine registration of 
brain images. Med Image Anal 5, 143–156. [PubMed: 11516708] 

90. Jenkinson M, Bannister P, Brady M, and Smith S (2002). Improved optimization for the robust 
and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841. 
[PubMed: 12377157] 

91. Smith SM (2002). Fast robust automated brain extraction. Hum Brain Mapp 17, 143–155. 
[PubMed: 12391568] 

92. Fedorov A (3D). Slicer as an image computing platform for the Quantitative Imaging Network. 
Magn Reson Imaging 30, 1323–1341.

93. Kline CN, Joseph NM, Grenert JP, Van Ziffle J, Talevich E, Onodera C, Aboian M, Cha S, Raleigh 
DR, Braunstein S, et al. (2016). Targeted next-generation sequencing of pediatric neuro-oncology 
patients improves diagnosis, identifies pathogenic germline mutations, and directs targeted therapy. 
Neuro-Oncol, now254. 10.1093/neuonc/now254.

94. Johnson BE (2014). Mutational analysis reveals the origin and therapy-driven evolution of 
recurrent glioma. Science 343, 189–193. [PubMed: 24336570] 

95. Paradis E and K. (2019). Schliep, ape 5.0: an environment for modern phylogenetics and 
evolutionary analyses in R. Bioinformatics 35, 526–528. [PubMed: 30016406] 

96. Shen R, and Seshan VE (2016). FACETS: allele-specific copy number and clonal heterogeneity 
analysis tool for high-throughput DNA sequencing. Nucleic Acids Res 19;44(16):e131. 
10.1093/nar/gkw520.

97. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin 
R, and 1000 Genome Project Data Processing Subgroup (2009). The Sequence Alignment/Map 
format and SAMtools. Bioinformatics 25, 2078–2079. 10.1093/bioinformatics/btp352. [PubMed: 
19505943] 

98. Van Der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, 
Jordan T, Shakir K, Roazen D, Thibault J, et al. (2013). From FastQ Data to High-Confidence 
Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. Curr. Protoc. Bioinforma 43. 
10.1002/0471250953.bi1110s43.

99. Zaccaria S, and Raphael BJ (2020). Accurate quantification of copy-number aberrations and 
whole-genome duplications in multi-sample tumor sequencing data. Nat Commun 11, 4301. 
[PubMed: 32879317] 

100. Dobin A (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21. [PubMed: 
23104886] 

Mathur et al. Page 28

Cell. Author manuscript; available in PMC 2025 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



101. Li B, and Dewey CN (2011). RSEM: accurate transcript quantification from RNA-Seq data with 
or without a reference genome. BMC Bioinformatics 12, 323. [PubMed: 21816040] 

102. Corces MR, Granja JM, Shams S, Louie BH, Seoane JA, and Zhou W (2018). The chromatin 
accessibility landscape of primary human cancers. Science 362. 10.1126/science.aav1898.

103. Langmead B, and Salzberg SL (2012). Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 
357–359. [PubMed: 22388286] 

104. Zhang Y (2008). Model-based analysis of ChIP-Seq (MACS. Genome Biol 9, 137.

105. Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dündar F, and 
Manke T (2016). deepTools2: a next generation web server for deep-sequencing data analysis. 
Nucleic Acids Res. 44, W160–W165. 10.1093/nar/gkw257. [PubMed: 27079975] 

106. Robinson MD, McCarthy DJ, and Smyth GK (2010). edgeR: a Bioconductor package for 
differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140. 
[PubMed: 19910308] 

107. Stuart T, Srivastava A, Madad S, Lareau CA, and Satija R (2021). Single-cell chromatin state 
analysis with Signac. Nat. Methods 18, 1333–1341. 10.1038/s41592-021-01282-5. [PubMed: 
34725479] 

108. Nikolic A, Singhal D, Ellestad K, Johnston M, Shen Y, Gillmor A, Morrissy S, Cairncross JG, 
Jones S, Lupien M, et al. (2021). Copy-scAT: Deconvoluting single-cell chromatin accessibility 
of genetic subclones in cancer. Sci. Adv. 7. 10.1126/sciadv.abg6045.

109. Schep AN, Wu B, Buenrostro JD, and Greenleaf WJ (2017). chromVAR: inferring transcription-
factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14, 975–978. 
10.1038/nmeth.4401. [PubMed: 28825706] 

110. Wang X (2016). runHiC: A user-friendly Hi-C data processing software based on hiclib. Zenodo. 
10.5281/zenodo.55324.

111. Li H, and Durbin R (2009). Fast and accurate short read alignment with Burrows-Wheeler 
transform. Bioinformatics 25, 1754–1760. [PubMed: 19451168] 

112. Durand NC (2016). Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C 
Experiments. Cell Syst 3, 95–98. [PubMed: 27467249] 

113. Salameh TJ, Wang X, Song F, Zhang B, Wright SM, Khunsriraksakul C, Ruan Y, and Yue F 
(2020). A supervised learning framework for chromatin loop detection in genome-wide contact 
maps. Nat Commun 11, 3428. [PubMed: 32647330] 

114. Open2C, Nezar Abdennur, Sameer Abraham, Geoffrey Fudenberg, Flyamer Ilya M., 
Galitsyna Aleksandra A., Goloborodko Anton, Imakaev Maxim, Oksuz Betul A., and Venev 
Sergey V. (2022). Cooltools: enabling high-resolution Hi-C analysis in Python. bioRxiv, 
2022.10.31.514564. 10.1101/2022.10.31.514564.

115. Wang X, Xu J, Zhang B, Hou Y, Song F, Lyu H, and Yue F (2021). Genome-wide detection of 
enhancer-hijacking events from chromatin interaction data in rearranged genomes. Nat Methods 
18, 661–668. [PubMed: 34092790] 

116. Uhrig S, Ellermann J, Walther T, Burkhardt P, Fröhlich M, and Hutter B (2021). Accurate 
and efficient detection of gene fusions from RNA sequencing data. Genome Res. 31, 448–460. 
10.1101/gr.257246.119. [PubMed: 33441414] 

117. Szolek A, Schubert B, Mohr C, Sturm M, Feldhahn M, and Kohlbacher O (2014). OptiType: 
Precision HLA Typing from next-Generation Sequencing Data. Bioinformatics 30, 3310–3316. 
[PubMed: 25143287] 

118. O’Donnell TJ, Rubinsteyn A, Bonsack M, Riemer AB, Laserson U, and Hammerbacher J (2018). 
MHCflurry: Open-Source Class I MHC Binding Affinity Prediction. Cell Syst. 7, 129–132 4. 
10.1016/j.cels.2018.05.014. [PubMed: 29960884] 

119. Langfelder P, and Horvath S (2008). WGCNA: an R package for weighted correlation network 
analysis. BMC Bioinformatics 9, 559. [PubMed: 19114008] 

120. Oldham MC, Horvath S, and Geschwind DH (2006). Conservation and evolution of gene 
coexpression networks in human and chimpanzee brains. Proc Natl Acad Sci USA 103, 17973–
17978. [PubMed: 17101986] 

121. Horvath S, and Dong J (2008). Geometric interpretation of gene coexpression network analysis. 
PLoS Comput Biol 4, 1000117.

Mathur et al. Page 29

Cell. Author manuscript; available in PMC 2025 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



122. Doncheva NT, Morris JH, Gorodkin J, and Jensen LJ (2019). Cytoscape StringApp: Network 
Analysis and Visualization of Proteomics Data. J Proteome Res 1;18(2):623–632. 10.1021/
acs.jproteome.8b00702.

123. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, 
and Glass CK (2010). Simple combinations of lineage-determining transcription factors prime 
cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38, 576–589. 
[PubMed: 20513432] 

124. Li Z, Schulz MH, Look T, Begemann M, Zenke M, and Costa IG (2019). Identification of 
transcription factor binding sites using ATAC-seq. Genome Biol 20, 45. [PubMed: 30808370] 

Mathur et al. Page 30

Cell. Author manuscript; available in PMC 2025 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 3D spatial sampling reveals patterns of GBM infiltration and clonal expansion
A) 3D model shows sample locations in context of the whole-tumor (yellow) and 

contrast-enhancing lesion (green). The number of samples with high-quality whole-exome 

sequencing (WES), RNA-Seq, Hi-C, and tissue and/or single-nucleus (sn-) ATAC-Seq 

datasets is shown.

B) Purity (ψ) of samples located within (n=78) or outside (n=18) contrast-enhancing (CE) 

tumor regions, colored by patient.

C) Calculation of relative distance from centroid (d) using measurements of minimum 

sample distance to tumor centroid (dC) and periphery (dp) (left) and association with purity 

(ψ) (right, legend as in 1B).

D) 3D models showing low-purity samples P521_5, (ψ=0.03), P521_6 (ψ=0.06), and 

P457_7 (ψ=0.03).

E) Schematic illustrating inference of evolutionary trajectories by whole-tumor sampling.

F) Phylogenetic tree and 3D model for P530 show that samples 1–9 (subclone-A) are located 

in the temporal region and samples 10–19 (subclone-B) in the frontal region. Samples 

marked * have purity <0.5.

G) Phylogenetic tree and 3D model for P529 show that samples 3, 4, 6, 8 (subclone-A) and 

samples 1, 2, 5, 7, 9, and 10 (subclone-B) are spatially intermixed.

H) Distances between sample pairs (mm) from the same or different genetic subclone for 

P529 and P530.
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Figure 2: Oncogene amplification and tumor suppressor deletion on the whole-tumor scale.
A) WES-derived copy number (CN) for all amplifications detected across patients. Red 

dotted line indicates CN=2 (diploid). Samples marked * have purity <0.5.

B) ATAC-Seq and Hi-C-derived copy number variant (CNV) tracks in a patient without 

MDM4 amplification (P519) and two patients with tumor-wide MDM4 amplification (P498 

and P521). The P519 ATAC-Seq track with 10X magnification is also shown.

C) Hi-C maps comparing samples with (P529_1, upper-right) and without (P529_6, lower-

left) EGFR amplification. Map with normalized signal also shown.

D) 3D model showing tumor-wide NFASC::OPTC fusion transcript in P498. RNA-Seq track 

shows increased expression of NFASC and OPTC exons included in the fusion.

E) 3D models showing EGFR versus PDGFRA amplification in P521.

F) 3D model showing loss of PTEN in temporal region of P530.

G) Hi-C map at PTEN locus comparing representative samples from P530 frontal (P530_18, 

upper right) and temporal (P530_2, lower left) regions. CNV, ATAC-Seq, and Hi-C loop 

tracks are shown below.

H) ATAC signal at PTEN promoter and expression of PTEN, FAM35A, and RNLS in 

samples from the temporal versus frontal region. Statistical significance evaluated by T-tests.

I) 3D model shows loss of CDKN2A in all P530 samples except P530_10 (ψ=0.49).

J) Same as (G) for CDKN2A locus.

K) Same as (H) for MTAP promoter and MTAP and KLHL9 expression.
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Figure 3: Structural variants massively disrupt the genome and epigenome at multiple stages of 
GBM evolution.
A) Hi-C maps show chromothripsis on chr9 in P524_9 (upper right, ψ=0.89), but not in 

low-purity sample P524_1 (lower left, ψ=0.04). RT-PCR and Sanger sequencing validate 

presence of MLLT3::SLC24A2 and TESK::TRMT10B fusion transcripts in all samples 

except P524_1 (NTC=no template control).

B) Reconstruction of Hi-C maps at MLLT3::SLC24A2 fusion junction reveals aberrant 

interactions across deletion breakpoints.

C) Hi-C maps show chromothripsis on chr13 (left) and chr19 (right) in P529_1 and P529_6. 

Fusion transcripts RB1::LINC004411 and TTYH1::FOSB (bottom band) are present in all 

P529 samples.
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D) Hi-C maps show chr9 inversion in P529_6 (arrow), but not in P529_1. TSC1-CDKN2B-
AS1 fusion transcript is present only in samples 3, 4, 6, 8 (upper band).

E) Reconstruction of Hi-C maps at both ends of chr9 inversion.

F) Inter-chromosomal Hi-C maps for P529_6 versus P529_1. The chr1:3 translocation 

creating the EPS15::CRYBG3 fusion is present in both samples while the chr3:6 

translocation creating the LACE1::TIGIT fusion is present only in P529_6.

G) Mutation-based phylogenetic tree for P529 (Fig 1G) labeled with additional tumor-wide 

and subclonal genomic alterations.

H) BCR::NTRK2 fusion transcript detected in all P503 samples except those with low purity 

(P503_1 ψ=0.00, P503_2 ψ=0.03).

I) EGFR-SEPT14 fusion transcript is detected only in two samples from P498.

J) MHC-I presentation predictions by MHCflurry and HLAthena for fusion-derived peptides 

in P529. Candidates passing both algorithms are highlighted for RT-PCR validated fusions.
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Figure 4: Transcriptomic heterogeneity in 3D spatially-defined GBM microenvironments.
A) 3D models show samples colored by subtype with highest average expression. Heatmap 

shows average expression for all subtypes with annotations for sample purity (ψ) and 

relative distance from centroid (d).

B) Purity (ψ, above) and relative distance from centroid (d, bottom) for samples classified 

by subtype.

C) Heatmap shows average expression of genes in each RNA module (R_) across samples 

annotated by purity (ψ), relative distance from centroid (d), and subtype. Variance across 

samples is shown for each module with annotations for number of constituent genes, top 

result from enrichment analysis, and correlations with sample purity (Rψ) and relative 

distance from centroid (Rd).

D) Average expression of R_brown (oligodendrocyte), R_plum (astrocyte), and 

R_orangered3 (neuron) modules across samples colored by subtype (legend as in 4C).

E) Average expression of R_lightcoral versus relative sample distance from centroid (d), 

colored by subtype.
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F) Representative images of tumor targets from P521_2 and P529_9 with immunostaining 

for T cells (CD3, red), microglia/macrophages (Iba1, green), and a marker of 

immunosuppressive alternatively activated microglia/macrophages (CD163, white). Nuclei 

are stained with DAPI (blue) and bar denotes 50 um.

G) Average expression of R_midnightblue, R_plum2, R_plum3, and R_darkred across 

samples colored by subtype.

H) 3D model for P530 shows average expression of R_plum2 across samples.

I) Average expression of R_darkred in samples from contrast-enhancing (CE) and non-CE 

regions, colored by subtype.

J) Summary figure showing AP-1-driven mesenchymal differentiation programs active in 

tumor cells, microglia, and stromal cells.
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Figure 5: Neurodevelopmental programs reflect GBM lineage origins and contribute to 
heterogeneity.
A) Average expression of R_turquoise versus sample purity (ψ) colored by patient. Venn 

diagram shows overlap of R_turquoise constituent genes with the IPC.div2 signature; top-

ranked genes within overlap are shown.

B) Schematic illustrating differentiation of radial glia (RG) and outer radial glia (oRG) 

through intermediate progenitor cells (IPCs) to oligodendrocyte precursor cells (OPCs) or 

neurons. PTPRZ1 is expressed through oRG differentiation to OPCs.
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C) Average expression of R_brown2, R_maroon, and R_ivory by sample purity (ψ) colored 

by patient. Linear model shown separately for P475 (brown) and remaining 9 patients (grey).

D) Drivers of neuronal fate specification identified by STRING network analysis of R_ivory 
constituent genes.

E) Immunohistochemical staining for TTF-1 and PTPRZ1 protein in representative tumor 

tissue sections from two patients with IDH-WT GBM with primitive neuronal component 

(P475 and P565) and one without (P530). Bar denotes 30μm.

F) Schematic showing derivation and annotation of RNA (R_), Linkage (L_), and ATAC 

(A_) modules from transcriptomic and chromatin landscape datasets.

G) Heatmap showing average ATAC-Seq signal for ATAC (A_) and linkage (L_) modules 

across samples annotated by purity (ψ), relative distance from centroid (d), and subtype. 

Variance across samples is shown for all modules annotated by number of constituent peaks, 

top result from motif analysis, and correlations with sample purity (Rψ) and relative distance 

from centroid (Rd).

H) Average ATAC signal for L_navajowhite1 by sample purity (ψ) colored by patient. 

Linear model shown separately for P475 (brown) and remaining patients (grey).

I) Transcription factor footprinting identifies NEUROD1 binding sites within 

A_darkseagreen3 peaks at the NEUROD1 promoter and an intronic NEUROD1 enhancer. 

Merged ATAC-Seq track for P500 samples is shown.

J) NEUROD1 gene expression for samples from all patients including P565.

K) Summary of distinct mechanisms of NEUROD1 activation in GBM from the common 

lineage origin (P500) versus GBM with primitive neuronal component (P475 and P565).
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Figure 6: Intratumoral heterogeneity of GBM chromatin landscapes from 3D-spatial to single-
cell resolution
A) Number of cells profiled by snATAC with UMAP projections, colored by sample.

B) Same as (A) colored by neoplastic status.

C) Cells with highest read-in-peak scores for modules associated with 

microglia (A_magenta4, A_skyblue4, L_plum2), neurons (A_thistle1; A_honeydew, 
L_mediumpurple1), or oligodendrocytes (A_lavenderblush2; L_coral, A_coral).
D) Read-in-peak scores in cell types from normal adult brain.

E) EGFR versus PDGFRA-amplified cells from P521. Proportion of EGFR v. PDGFRA 
amplified neoplastic cells also shown for individual samples.

F) Read-in-peak scores for A_plum3, A_yellowgreen, and A_coral in EGFR-amplified 

versus PDGFRA-amplified neoplastic cells from P521. Legend as in (E).

G) Summary figure showing NFIA/SOX9-mediated activation of the astrocytic program and 

SOX10-mediated activation of the OPC program in EGFR versus PDGFRA-amplified cells 

from P521.

H) Average ATAC signal of L_salmon4 versus EGFR copy number, colored by patient.

I) Read-in-peak scores for L_salmon4 in neoplastic cells with and without EGFR 
amplification from P521 and P529.

J) Hi-C-derived A/B tracks showing ELOVL2 and NOVA1 in open ‘A’ chromatin 

compartments only in EGFR-amplified samples P524_9 and P529_1.
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K) Read-in-peak scores for L_orangered3 in P519 and P529.
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Figure 7: GBM heterogeneity and evolution redefined in 3D whole-tumor space.
A) GBM chromatin and transcriptomic programs in 3D whole-tumor space. Correlations 

with sample purity (Rψ) and relative sample distance from centroid (Rd) are shown for 

individual constituent peaks of chromatin programs (left) and individual constituent genes of 

transcriptomic programs (right).

B) GBM chromatin programs at single-cell resolution. Cells are colored by chromatin 

program as in (A) for the module with most reads-in-peaks.

C) Summary table showing modular activation of GBM chromatin and gene expression 

programs in individual patients and tumor regions.
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KEY RESOURCES TABLE

REAGENT or 
RESOURCE SOURCE IDENTIFIER

Antibodies

CD163 Leica Biosystems, USA Catalog # CD163-L-CE, mouse 
clone 10D6

IBA1 Wako Chemicals USA Catalog#019–19741, 
polyclonal rabbit

CD204 Cosmo Bio USA # KMU-MA01, clone SRA-E5

CD3 Leica Biosystems Catalog #NCL-L-CD3– 565, 
clone LN10

PTPRZ1 BD Biosciences Catalog #610179

Critical Commercial Assays

Multimer HRP kit Ventana Medical Systems, Inc., USA

AllPrep DNA/RNA/
miRNA Universal Kit

QIAGEN Cat.80224

KAPA Stranded mRNA- 
Seq Kit

Kapa Biosystems KR0960-v2.14

Tagment DNA TDE1 
Enzyme and Buffer Kits

Illumina NX#-TD, NX#-TDE1

Chromium NextGEM 
Single Cell ATAC Kit v2

10X Genomics N/A

iScript cDNA Synthesis Kit BioRad #1708891

Deposited Data

Deposition of exome, 
RNA-Seq, ATAC-Seq, and 
Hi-C datasets

European Genome-Phenome Archive (EGA) EGAS00001006785, 
EGAD00001005221/2, and 
EGAD00001009496/7

Deposition of processed 
single-cell ATAC-Seq 
datasets

GEO GSE226726

Published GBM single-cell 
RNA-Seq dataset

Neftel, C. et al. An Integrative Model of Cellular States. Plast. Genet. 
Glioblastoma Cell 1–37 (2019) doi:10.1016/j.cell.2019.06.024.

GSE131928

Published GBM single-cell 
RNA-Seq dataset

Abdelfattah, N. et al. Single-cell analysis of human glioma and immune 
cells identifies S100A4 as an immunotherapy target. Nat. Commun. 13, 767 
(2022).

GSE182109

Published adult brain 
single-cell ATAC dataset

Zhang, K. et al. A single-cell atlas of chromatin accessibility in the human 
genome. Cell184, 5985–6001 19 (2021).

N/A

Published fetal brain 
single-cell RNA-Seq 
dataset

Nowakowski, T. J. et al. Spatiotemporal gene expression trajectories reveal 
developmental hierarchies of the human cortex. Science358, 1318–1323 
(2017).

N/A

Published TCGA dataset Ceccarelli, M. et al. Molecular Profiling Reveals Biologically Discrete 
Subsets and Pathways of Progression in Diffuse Glioma. Cell164, 550–563 
(2016).

N/A

Oligonucleotides

Primers for fusion gene 
validation

See Table S4 N/A

Software and Algorithms

Original R code All original R code has been deposited at https://github.com/radhikamathur/
3DSpatiallvMappedGBMs and is publicly available as of the date of 
publication.

N/A
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REAGENT or 
RESOURCE SOURCE IDENTIFIER

Brainlab Cranial 
Navigation

BrainLAB AG v3

3D Slicer Fedorov, A. Slicer as an image computing platform for the Quantitative 
Imaging Network. Magn Reson Imaging30, 1323–1341 (3D).

N/A

FACETS Shen, R. & Seshan, V. E. FACETS: allele-specific copy number and clonal 
heterogeneity analysis tool for high- throughput DNA sequencing. Nucleic 
Acids Res19;44(16):e131, (2016).

N/A

PyClone VI Gillis, S. & Roth, A. PyClone-VI: scalable inference of clonal population 
structures using whole genome data. BMC Bioinformatics21, 571 (2020).

v0.1.0

HATCHet Zaccaria, S. & Raphael, B. J. Accurate quantification of copy-number 
aberrations and whole-genome duplications in multi-sample tumor 
sequencing data. Nat Commun11, 4301 (2020).

v0.4.14

Bowtie2 Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. 
Nat Methods9, 357–9 (2012).

N/A

MACS2 Zhang, Y. Model-based analysis of ChIP-Seq (MACS. Genome Biol9, 137 
(2008).

N/A

Peakachu Salameh, T. J. et al. A supervised learning framework for chromatin loop 
detection in genome-wide contact maps. Nat Commun11, 3428 (2020).

N/A

EagleC Wang, X., Luan, Y. & Yue, F. EagleC: A deep-learning framework for 
detecting a full range of structural variations from bulk and single-cell 
contact maps. Sci. Adv.8, (2022).

N/A

NeoLoopFinder Wang, X. et al. Genome-wide detection of enhancer-hijacking events from 
chromatin interaction data in rearranged genomes. Nat Methods18, 661–668 
(2021).

N/A

Arriba Uhrig, S. et al. Accurate and efficient detection of gene fusions from RNA 
sequencing data. Genome Res. 31, 448–460 (2021).

N/A

OptiType Szolek, A. et al. OptiType: Precision HLA Typing from next- Generation 
Sequencing Data. Bioinformatics30, 3310–16 (2014).

N/A

HLAthena Sarkizova, S. et al. A large peptidome dataset improves HLA class I epitope 
prediction across most of the human population. Nat. Biotechnol. 38, 199–
209 (2020).

N/A

MHCFlurry 2.0 O’Donnell, T. J. et al. MHCflurry: Open-Source Class I MHC Binding 
Affinity Prediction. Cell Syst.7, 129–132 4 (2018).

N/A

Cytoscape Doncheva, N. T., Morris, J. H., Gorodkin, J. & Jensen, L. J. Cytoscape 
StringApp: Network Analysis and Visualization of Proteomics Data. J 
Proteome Res1;18(2):623–632, (2019).

version3.9.1

STAR Dobin, A. STAR: ultrafast universal RNA-seq aligner. Bioinformatics29, 15–
21 (2013).

N/A

RSEM Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-
Seq data with or without a reference genome. BMC Bioinformatics12, 323 
(2011).

N/A

Copy-scATAC Nikolic, A. et al. Copy-scAT: Deconvoluting single-cell chromatin 
accessibility of genetic subclones in cancer. Sci. Adv.7, (2021).

N/A

Juicer Durand, N. C. Juicer Provides a One-Click System for Analyzing Loop-
Resolution Hi-C Experiments. Cell Syst3, 95–8 (2016).

N/A
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