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Abstract 

When asked to assess the deductive validity of an argument, 
people are influenced by their prior knowledge of the content. 
Recently, two competing explanations for this belief bias 
effect have been proposed, each based on signal detection 
theory. Under a response bias explanation, people set more 
lenient decision criteria for believable than for unbelievable 
arguments. Alternatively, believable and unbelievable 
arguments may differ in subjective argument strength for both 
valid and invalid items. Two experiments tested these 
accounts by asking participants to assess the validity of 
categorical syllogisms and rate their confidence. Conclusion-
believability was manipulated either within- or between-
groups. A two-step signal detection model was applied to 
examine the effects on the relative location of the decision 
threshold and the distributions of argument strength. 
Equivalent belief bias effects were found when believability 
was manipulated within- and between-groups, supporting the 
view that the belief bias effect is due to response bias.  

Keywords: belief bias; deductive reasoning; signal detection 
theory; response bias 

Introduction 

An important phenomenon for theories of reasoning is that 

people show a belief bias when asked to assess the logical 

validity of arguments. The tendency to accept or reject a 

conclusion as valid is not based purely on logical structure 

but is also swayed by its compatibility with prior knowledge 

(e.g., Evans, Newstead, & Byrne, 1993; Markovits & 

Nantel, 1989; Shynkaruk & Thompson, 2006). Table 1 

shows typical stimuli – categorical syllogisms – in which 

the validity of the argument is crossed with the believability 

of the conclusion. In the validity discrimination task, 

participants are asked to judge whether the conclusion 

below the line necessarily follows from the premises above 

the line. Key findings based on arguments like these are that 

people are more likely to endorse valid than invalid 

arguments, but they are also more likely to endorse 

arguments with believable than with unbelievable 

conclusions. In many cases these factors also interact; for 

example, the difference between the acceptance rates of 

valid and invalid arguments is often greater for unbelievable 

than for believable arguments (e.g., Dube, Rotello, & Heit, 

2010; Evans, Barston, & Pollard, 1983; Newstead, Pollard, 

Evans, & Allen, 1992; Roberts & Sykes, 2003). 

 

Table 1: Sample syllogisms. 
 

 Believable  Unbelievable 

Valid No beers are krabbers.  No drinks are krabbers. 

 

Some krabbers are 

drinks. 

 Some krabbers are 

beers. 

 

Some drinks are not 

beers. 

 Some beers are not 

drinks. 

Invalid No drinks are krabbers. 
 

No beers are krabbers. 

 

Some krabbers are 

beers. 

 Some krabbers are 

drinks. 

 

Some drinks are not 

beers. 

 Some beers are not 

drinks. 

 

Such effects are often seen as evidence that believability 

affects the quality of deductive reasoning – people’s ability 

to distinguish valid from invalid arguments (see Dube et al., 

2010 for a review). Theoretical accounts such as the 

selective scrutiny model (Evans et al., 1983), misinterpreted 

necessity model (e.g., Markovits & Nantel, 1989; Newstead 

et al., 1992) or the mental models approach (e.g., Oakhill, 

Johnson-Laird, & Garnham, 1989) propose explanations in 

which believability affects how validity is evaluated.  

However, deciding whether an argument is valid also 

involves response bias – the willingness to endorse the 

argument, regardless of one’s ability to discriminate valid 

and invalid forms. Controversially, recent work has used 

confidence ratings and signal detection theory to show that 

belief bias only reflects changes in response bias. That is, 

people are more willing to respond “valid” for believable 

arguments (Dube et al., 2010; Trippas et al., 2014). In this 

view, believability does not change one’s subjective 

evaluation of argument validity. 

In reaction to this response bias account, it has been 

suggested that data patterns consistent with changes in 

response bias can also be explained by believability 

affecting the subjective strength of both valid and invalid 

arguments (Klauer & Kellen, 2011; Singmann & Kellen, 

2014). Under this alternative argument strength account, if 

an argument has a believable conclusion (whether valid or 
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invalid) then it will be viewed as more logically valid and 

thus garner more endorsements. 

In adjudicating between these accounts, a key 

consideration is that believability is usually manipulated 

within a single experimental session. The argument strength 

account is consistent with evidence that response bias is 

unlikely to change from trial to trial (e.g., Stretch & Wixted, 

1998). However, to our knowledge it is currently unknown 

how believability affects performance if instead it is 

manipulated between different groups of participants, where 

response bias is free to differ. As we explain below, we 

hypothesized that if the response bias account is correct then 

the same belief bias effects on model parameters should 

appear when believability is manipulated within groups and 

between groups (i.e., equivalent ordinal effects on response 

bias and no effects on discriminability).  

Given the important implications for theories of 

reasoning, we aimed to extend the investigation of response 

bias in deductive reasoning. We took three key steps. First, 

we sought to replicate the within-group findings of Dube et 

al. (2010) – including confidence ratings – that they used to 

support the response bias account. Second, we applied an 

extended signal detection model that was specifically 

tailored to the two-step task in which participants first make 

a binary valid/invalid decision, then rate their confidence. 

Our goal was to confirm whether such a model would still 

suggest that believability does not affect accuracy, but that 

the response bias or argument strength accounts are 

required. Third, to avoid the issue of whether response bias 

can change trial-by-trial, in a second experiment we 

manipulated believability between groups. Our goal was to 

examine whether the key effects generalized to this design, 

which would support the response bias account. 

To this end, in the following sections, we outline (a) how 

signal detection theory can be applied to deductive 

reasoning, (b) the novel two-step signal detection model, 

and (c) two experiments that manipulate believability within 

or between groups, to which we apply the model. 

Signal Detection Theory and Belief Bias 

Signal detection theory (SDT) is a useful framework to 

examine belief bias because it allows us to separate changes 

in discriminability (i.e., differentiating valid and invalid 

arguments) versus response bias (i.e., the “decision stage”; 

cf. Dube et al., 2010; Rotello & Heit, 2009). In this 

framework, arguments fall along a continuum of subjective 

argument strength, with distinct Gaussian distributions for 

valid and invalid arguments, as shown in Figure 1. The 

distance between the means of these distributions reflects 

how well people can distinguish valid and invalid 

arguments. People also set a response threshold along the 

continuum, endorsing any argument that exceeds it in 

strength (i.e., the tallest “Invalid”/”Valid” threshold in the 

figure). Thus the hit rate (endorsement rate for valid 

arguments) is given by the area under the valid distribution 

to the right of the threshold, and the false alarm rate 

(endorsement rate for invalid arguments) is given by the 

area under the invalid distribution to the right of the 

threshold. Two important ways that performance can change 

is by the threshold shifting (i.e., changes in response bias), 

and/or the valid distribution shifting relative to the invalid 

distribution (i.e., changes in discriminability or sensitivity).  
 

 
 

Figure 1: Standard signal detection model. 

 

Adding confidence judgments to the validity 

discrimination task allows for a more fine-grained analysis 

of changes in signal detection parameters. It is assumed that 

people set a response threshold for n-1 response options on 

the confidence scale – five are shown in Figure 1 for a six-

point confidence scale. Performance can then be examined 

using receiver operating characteristic (ROC) curves, which 

plot hit rates against false alarm rates at different confidence 

levels (see examples in Figure 2). Evidence for a difference 

in the discriminability of valid and invalid arguments would 

be suggested by points from two conditions falling on 

different curves. Better discrimination is suggested by ROC 

curves that fall further from the diagonal, towards the upper 

left – hit rates are higher relative to false alarm rates. In 

contrast, conventional evidence for a difference in response 

bias is suggested by points from two conditions falling on 

different positions along the same curve. A more lenient 

threshold is suggested by points sitting further towards the 

right, corresponding to both higher hit rates and higher false 

alarm rates. Signal detection models can be fit to ROC 

curves to test for changes in argument discrimination or 

response bias, which would be supported by reductions in fit 

due to constraining either the relative location of the valid 

distribution or the criteria, respectively. 
 

 
 

Figure 2: ROC curves from Dube et al. (2010). 
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An important but controversial result was reported by 

Dube et al. (2010), who compared and fit ROC curves for 

believable and unbelievable syllogisms like those in Table 

1. Their ROC model fitting showed that argument 

believability affected response bias but did not affect 

discriminability. Participants were simply more willing to 

endorse believable arguments (see Figure 2). This response 

bias account of belief bias is illustrated in the top panel of 

Figure 3. Here there are two distributions – one for invalid 

and one for valid arguments – but two sets of decision 

thresholds – a more lenient set for believable arguments, 

and a more conservative set for unbelievable arguments 

(only three criteria per set are shown, to avoid clutter). A 

similar account has been proposed for belief bias in causal 

conditional arguments such as modus ponens (Trippas et al., 

2014). 

However, this is not the only way to interpret overlapping 

ROC curves. The response bias interpretation has been 

contested because an alternative argument strength account 

is possible, as illustrated in the bottom panel of Figure 3 

(Klauer & Kellen, 2011; Singmann & Kellen, 2014). This 

approach assumes a single fixed set of decision thresholds, 

but four different distributions – distinct invalid and valid 

distributions for both unbelievable and believable 

arguments. Discriminability is assumed to be the same for 

believable and unbelievable arguments, but the believable-

valid AND believable-invalid distributions are shifted to the 

right (i.e., they are stronger on average). 

 
Figure 3: (a) The response bias account. There are fixed 

invalid (I) and valid (V) distributions. Criteria are shifted to 

the left for believable arguments (black lines) relative to 

unbelievable arguments (grey lines). (b) The argument 

strength account. There are fixed criteria. Invalid-believable 

(IB) and valid-believable (VB) distributions are shifted to 

the right, relative to the invalid-unbelievable (IU) and valid-

unbelievable (VU) distributions. 

Resolving this debate has been difficult because in many 

of the key studies (e.g., Dube et al., 2010; Trippas et al., 

2014), believability has been manipulated within a block of 

arguments. The response bias account assumes that people 

will shift their criteria on a trial-by-trial basis, depending on 

whether an argument is believable or unbelievable. 

However, this assumption is controversial. In the 

recognition memory literature, although trial-by-trial shifts 

in criteria are possible, it appears that often this does not 

occur (Rotello & Macmillan, 2007; Starns & Olchowski, 

2015; Stretch & Wixted, 1998). One way to address this 

issue is to manipulate believability between participants. 

Uncontroversially, different groups are then free to set 

different response criteria.  

In order to resolve whether belief bias is driven by 

changes in response bias or argument strength, we carried 

out two experiments and tested a new signal detection 

model of reasoning. Experiment 1 confirmed that we could 

replicate the ROC shifts found by Dube et al. (2010), with 

believability manipulated within-participants. In Experiment 

2, we investigated whether the same effects appeared when 

believability was manipulated between groups. If the 

response bias account is correct, then the same distributions 

of response strength for valid and invalid arguments should 

apply to those seeing only believable or unbelievable 

arguments (because there are only two distributions), but the 

groups will differ in response criteria. Therefore, we would 

see different hit rates and false alarm rates for the believable 

and unbelievable argument groups, replicating the Dube et 

al. (2010) ROC shifts and differences in the response 

criterion parameter based on model fitting.  

Alternatively, if the argument strength account is correct, 

then the pair of invalid and valid distributions would be in 

different locations for believable and unbelievable groups. 

However, each group would be free to set criteria relative to 

the locations of their invalid and valid distributions – each 

group has no reason to adopt criteria that are in different 

locations relative to their distributions. Therefore, we would 

see the same hit and false alarm rates for both groups, with 

no ROC shifts nor differences in the criterion parameter. 

Accurately testing the competing accounts of belief bias 

requires model fitting with a model that properly captures 

the task. Therefore, we extended the signal detection model 

developed by Dube et al (2010), to treat the valid/invalid 

decision and confidence judgments as two separate steps. 

As outlined below, this kind of model is more appropriate 

for the two-step task than a traditional signal detection 

model (Moran, Teodorescu, & Usher, 2015). We first 

present the model. We then report experiments using 

within- and between-participant manipulations of 

conclusion believability and fit the model to these data.  

Two-Step Signal Detection Model 

In the two-step validity discrimination task that we use, 

participants make a “valid”/”invalid” decision, and then rate 

their confidence. Despite the sequential nature of these 

judgments, in the standard procedure for generating 
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empirical ROC curves, data from the response categories are 

recoded to form a single scale with judgments that range 

from high-confidence “valid” to low-confidence “valid”, 

then low-confidence “invalid” to high-confidence “invalid” 

(e.g., Dube et al., 2010; Trippas et al., 2014). Typically, 

these ROC curves are then fit using the standard single-step 

SDT model that we outlined above, with a criterion 

parameter separating each adjacent pair of recoded 

confidence levels. However, visual inspection of these 

empirical ROC curves suggests that they differ from the 

smooth concave curve typically found – they instead exhibit 

a “hinge” or “elbow” where valid and invalid response 

categories join, as apparent in Figure 2, particularly for the 

unbelievable-ROC. In order to successfully model this 

feature, the standard SDT model was extended to 

incorporate changes in evidence accumulation and 

variability in the period between the initial validity 

judgment and the subsequent confidence judgment.   

The two-step SDT model is similar to a standard SDT 

model with the exception that confidence judgments are 

based on a noisy version of the evidence value on which the  
 

validity judgment was made. Let 
 ~ ,x N  

 be the 

strength of given argument. Let c be a decision criterion 

such that if x c , respond “valid”, else respond “invalid”. 

We propose that a confidence judgment is based on x*, a 

noisy memory trace of argument strength, x. That is,  
 

*x x x  , for 
 ~ ,x N  

. If 0   then additional 

argument strength is accumulated in the interval between 

the two decisions (cf., Moran et al., 2015). Suppose, there 

are k confidence categories labeled, in sequence, from most 

confident to least confident. Then, associated with these 

category labels is set of points on the strength continuum, 
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 then respond with the ith category label.  

The hypotheses of interest were primarily tested by 

comparing the fits of nested versions of this model using the 

likelihood ratio test. Although the response bias and 

argument strength accounts are formally identical for a 

traditional signal detection model, this is not strictly true for 

the two-step model. Therefore, both accounts can be tested 

when believability is manipulated within-participants. 

Experiments 

In two experiments, participants evaluated the validity of 

categorical syllogisms, which included logically valid and 

invalid arguments with believable or unbelievable 

conclusions in a 2x2 design. Experiments 1 and 2 

manipulated believability within- and between-groups, 

respectively. 

Method 

Participants. One-hundred-and-seventeen students (30 

males) at the University of New South Wales, Sydney, 

participated for course credit. Mean age was 18.8 years (SD 

= 2.3). Participants were randomly allocated to Experiment 

1 (N = 38) or one of the groups in Experiment 2 (believable 

N = 40, unbelievable N = 39).  

 

Stimuli. In Experiment 1, participants evaluated 64 

arguments across two blocks of 32 trials, with 16 believable 

and 16 unbelievable arguments per block – half of which 

were valid in each case. In Experiment 2, participants 

evaluated either 32 believable or 32 unbelievable arguments 

(half valid). 

Example stimuli are shown in Table 1. The arguments 

were based on those of Experiment 2 by Dube et al. (2010), 

and were constructed using their 16 syllogistic problem 

frames (e.g., All X are Y; Some Z are not Y; Therefore some 

Z are not X). Half were valid and half were invalid. Each 

problem frame had the conclusion structure, Some Z are not 

X (or Some X are not Z), and was assigned content involving 

a category-exemplar relationship (e.g., drinks-beers, dogs-

poodles, plants-weeds).  

Conclusion believability was manipulated by simply 

reversing the order of the category and exemplar (e.g., Some 

drinks are not beers vs. Some beers are not drinks). We 

verified the believability of the conclusion statements in a 

separate study by 34 people drawn from a similar population 

to the main experiments. Based on ratings on a 5-point scale 

(1 = unbelievable, 3 = neutral, 5 = believable), the 32 

statement pairs with the most extreme average ratings were 

selected from a set of 38 pairs (Believable: M = 4.95, SD = 

0.09; Unbelievable: M = 1.59, SD = 0.35). To minimize the 

effects of premise believability, the premises included a 

nonsense term (e.g., krabbers, junids). 

The semantic content was split into four subsets of eight 

category-exemplar pairs, so the content could be assigned to 

all four believability-by-validity conditions, 

counterbalanced across participants. Experiment 1 

participants (believable and unbelievable within-

participants) saw the category-exemplar content once per 

block and the 16 problem frames twice per block (once as 

believable and once as unbelievable versions), forming the 

64 arguments over two blocks. Content assignment was 

controlled for this group so that in the second block, each 

participant saw the same content in the same problem 

structures as in their first block, but with conclusion 

believability reversed. At the start of the second block, these 

participants were warned that there would be similar content 

but the specific arguments would be different. Experiment 2 

participants (believable-only and unbelievable-only groups) 

saw each category-exemplar content once and the 16 

problem frames twice, forming the 32 arguments.  

Before beginning the experiment, all participants received 

two valid and two invalid practice problems with abstract 

content (e.g., “All M are P…”) and different structures that 

were not included in the main task. 
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Procedure. Participants were shown the set of arguments in 

random order, presented one-by-one on a computer, with a 

line separating the conclusion from the premises. The 

instructions asked participants to assume that the premises 

were true and assess whether the conclusion logically 

followed from them. Valid arguments were defined as those 

for which the sentence below the line was necessarily true, 

given that the information above the line was true (and 

invalid = not necessarily true). Participants were told that 

the arguments would contain a nonsense word. A trial 

counter was presented at the top left corner of the screen. 

Participants clicked on either the “Valid” or “Invalid” 

button presented underneath a given argument, then rated 

their confidence on a scale that appeared, ranging from 50 

(Guessing) to 100 (Certain) in increments of ten.  

Results 

Both experiments replicated previously observed argument 

endorsement patterns and belief bias effects (see Table 2; 

e.g., Dube et al., 2010; Evans et al., 1983; Newstead et al., 

1992). Analysis of variance (ANOVA) revealed that 

participants endorsed (i.e., responded “valid”) valid 

arguments more often than invalid arguments: Experiment 

1, F(1, 37) = 64.28, p < .001, η2 = .35; Experiment 2, F(1, 

77) = 127.24, p < .001, η2 = .40. Participants endorsed 

believable arguments more often than unbelievable 

arguments: Experiment 1, F(1, 37) = 38.59, p < .001, η2 = 

.12; Experiment 2, F(1, 77) = 19.92, p < .001, η2 = .13. 

Notably, as shown in the Table, there was a larger 

difference between the acceptance rates of valid and invalid 

arguments for unbelievable than for believable arguments: 

Experiment 1, F(1, 37) = 5.50, p = .02, η2 = .01; Experiment 

2, F(1, 77) = 9.81, p = .002, η2 = .05.  

 

Table 2: Performance in Experiments 1 and 2. Hit rate is 

p(“Valid”|Valid); False alarm rate is p(“Valid”|Invalid). 
 

Experiment Condition Hit rate False alarm rate 

1 Believeable 0.83 0.56 

 Unbelievable 0.71 0.37 

2 Believeable 0.82 0.58 

 Unbelievable 0.75 0.34 

 

The ROC curves for each experiment are presented in 

Figure 4 (unfilled points). Both show effects that are 

consistent with shifts in response criteria and comparable to 

Dube et al. (2010; cf. Figure 2), although we used more 

confidence response options. In each experiment, the points 

for believable and unbelievable arguments fall on similar 

curves, though the believable points are shifted further to 

the top-right corner than the unbelievable points.  

We first fit an unconstrained two-step signal detection 

model to each experiment. As shown by the filled points in 

Figure 4, the predicted ROC points correspond reasonably 

well with the empirical results for both experiments, though 

there are some small departures for Experiment 1: 

Experiment 1, G2(12) = 22.54, p = .03; Experiment 2, 

G2(12) = 15.83, p = .20.  

 
 

 
 

Figure 4: Observed ROC curves (Obs) and expected scores 

from the unconstrained model (Exp), for Experiments 1 and 

2 (panels a and b, respectively). 

 

We compared this unconstrained model against two 

nested models: a constant discriminability model and a 

constant criterion model in which (respectively) 

discriminability or the “valid”/”invalid” decision criterion 

for the initial binary judgment was constrained across 

believable and unbelievable conditions. For both 

experiments, the fit of the constant discriminability model 

did not significantly differ from that of the unconstrained 

model: Experiment 1, G2(1) = 0.23, p = .63; Experiment 2, 

G2(1) = 0.001, p = .97. This shows that, in line with Dube et 

al. (2010), discriminability did not differ between 

believability conditions.  

The constant criterion model led to a reduction in fit 

compared to the unconstrained model: Experiment 1, G2(1) 

= 47.89, p < .001; Experiment 2, G2(1) = 77.75, p < .001. 

This indicates that, in line with the response bias account, 

the “valid”/“invalid” decision threshold differed between 

believability conditions. Importantly, this was true both 

when believability was manipulated within-groups 

(Experiment 1) and between-groups (Experiment 2). 

When a (non-nested) variant of the two-step model was 

applied to Experiment 1 that allowed the believable 

distributions to shift (i.e., the argument strength account), 

we found that it also provided a satisfactory fit to the data: 

G2(20) = 30.18, p = 0.07. In other words, an argument 
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strength account of belief bias could also explain the 

Experiment 1 data. Such a model cannot sensibly be applied 

to Experiment 2. Nevertheless, as we argued above, the 

response bias account can more readily explain belief bias 

effects that occur between-groups. 

Discussion 

We investigated whether belief bias effects in deductive 

reasoning could be explained as a response bias effect. 

Experiment 1 replicated the belief bias effects of Dube et al. 

(2010), with conclusion believability manipulated within-

block. We applied a new two-step signal detection model to 

better suit the two-step task, and confirmed that belief bias 

effects are consistent with a shift in response bias, rather 

than discriminability. Experiment 2 extended the same 

results to an equivalent task with believability manipulated 

between-groups. 

Under the response bias account (Dube et al., 2010; 

Trippas et al., 2014), this pattern is explained by a shift in 

decision threshold, such that there is a more lenient criterion 

for believable conclusions. Under the argument strength 

account (Klauer & Kellen, 2011; Singmann & Kellen, 

2014), the belief bias effect reflects higher mean strength for 

believable-valid and believable-invalid arguments than for 

unbelievable-valid and unbelievable-invalid arguments. 

It could be argued that participants in Experiment 1 were 

unlikely to change their criteria trial-to-trial for different 

levels of believability, favoring the argument strength 

account. However, this account would have difficulty with 

Experiment 2, where participants saw only believable or 

only unbelievable arguments. There, the two groups had no 

reason to position their criteria in different locations relative 

to their distributions. Thus if belief bias primarily reflects a 

change in argument strength, the belief bias effects should 

have disappeared. The fact that they did not suggests that 

the most plausible explanation of belief bias in the current 

data sets is a change in response bias.  

Therefore, addressing the debate between response bias 

and argument strength accounts of belief bias, we agree that 

believable conclusions are most likely to affect the decision 

stage, lowering the decision threshold rather than appearing 

more logically valid. Just as people may require stronger 

evidence to endorse that an unusual event occurred (Starns 

& Olchowski, 2015), it seems that people also require 

stronger evidence to endorse a syllogism with an 

unbelievable conclusion. As Dube et al. (2010) concluded, 

this is problematic for theories of reasoning that propose 

that believability affects the process of evaluating validity 

(e.g., Evans et al., 1983; Markovits & Nantel, 1989; 

Newstead et al., 1992; Oakhill et al., 1989). Future work 

should address whether the same findings generalize to 

other reasoning problems such as causal conditionals. 
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