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Abstract

Rationale: Genetic variation has a substantial contribution to chronic obstructive pulmonary disease (COPD) and lung function
measurements. Heritability estimates using genome-wide genotyping data can be biased if analyses do not appropriately account for
the nonuniform distribution of genetic effects across the allele frequency and linkage disequilibrium (LD) spectrum. In addition, the
contribution of rare variants has been unclear. Objectives: We sought to assess the heritability of COPD and lung function using whole-
genome sequence data from the Trans-Omics for Precision Medicine program. Methods: Using the genome-based restricted maximum
likelihood method, we partitioned the genome into bins based on minor allele frequency and LD scores and estimated heritability of
COPD, FEV1% predicted and FEV1/FVC ratio in 11 051 European ancestry and 5853 African-American participants. Measurements and
Main Results: In European ancestry participants, the estimated heritability of COPD, FEV1% predicted and FEV1/FVC ratio were 35.5%,
55.6% and 32.5%, of which 18.8%, 19.7%, 17.8% were from common variants, and 16.6%, 35.8%, and 14.6% were from rare variants. These
estimates had wide confidence intervals, with common variants and some sets of rare variants showing a statistically significant
contribution (P-value < 0.05). In African-Americans, common variant heritability was similar to European ancestry participants, but
lower sample size precluded calculation of rare variant heritability. Conclusions: Our study provides updated and unbiased estimates
of heritability for COPD and lung function, and suggests an important contribution of rare variants. Larger studies of more diverse
ancestry will improve accuracy of these estimates.
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Introduction
Chronic obstructive pulmonary disease (COPD), one of
the leading causes of death worldwide, is diagnosed by a
decrease in two key measurements of spirometry, forced
expiratory volume in one second (FEV1) and its ratio
to forced vital capacity (FEV1/FVC). Genetic factors are
important risk factors for the development of COPD (1).
Genome-wide association genomic studies (GWAS) for
COPD and lung function measurements have identified
hundreds of associated regions with common variants,
with relevant effects in functional assays identified in
genes such as IREB2, CHRNA3/5, HHIP, FAM13A, DSP,
HTR4, LRP1 and CYP2A6 (2–10). Rare variants also affect
COPD and related phenotypes as demonstrated in alpha-
1 antitrypsin deficiency (1). Recent large-scale whole-
genome sequencing (WGS) data from the National
Heart, Lung and Blood Institute (NHLBI) Trans-Omics
for Precision Medicine (TOPMed) program have enabled
us to identify a subset of rare variants with putative
associations to COPD and related phenotypes, including
ARHGEF17 and CRISP1 (11).

Heritability is a measure that can provide relative
estimates of the contribution of genetic versus environ-
mental factors. Accurate determinations of heritability
are important to determine the relative contribution of
genetic variants, the potential performance of genetic
risk scores and the contribution of rare variants. In prior
twin studies and family studies, estimates of family-
based heritability of COPD-related phenotypes ranged
from 38% to 66% (12–14). Estimates in unrelated subjects
can be obtained from genome-wide array data, and a
recent study estimated heritability for COPD-related phe-
notypes using array data of ∼35% (15). In another study
using array data in the Framingham Heart Study (FHS),
single nucleotide variant (SNV)-based heritability was
estimated to be between 50% and 65% using SNVs with
minor allele frequency (MAF) > 0.5% (14), with some of
family-based heritability recovered from low-frequency
SNVs (0.5% < MAF≤1%).

However, these previous studies have some limitations.
First, heritability captured by rare variants has not been
systematically assessed. Most low-frequency and rare
variants are not captured by most genotyping arrays
(16–18). In general, SNP arrays do not perform well for
detecting, or imputing, rare variants (19,20). Determining
the contribution of rare variants requires large subject
sizes and WGS data. Second, prior estimates of heri-
tability of lung function and COPD have used a single
genetic relationship matrix (GRM). A GRM is calculated
based on genetic variants to quantify genetic similarities
between distantly related individuals. It has previously
been shown that a single GRM approach can lead to
biased estimates of heritability when causal variants
have a different MAF or linkage disequilibrium (LD) prop-
erties than variants used in the analysis. Specifically, if
causal variants are rarer (or more common) than variants
used in the analysis, the estimate of heritability is biased

downward (or upward) (21,22). This can be solved by
using MAF-stratified GRMs in a model. In addition, if
causal variants are enriched in genomic regions with
lower (or higher) LD than average, the heritability esti-
mate is downward (or upward) biased. Similar to the
uneven MAF spectrum of causal variants, bias of heri-
tability estimates can be solved by stratifying variants by
their LD scores. To address these issues, Yang et al. (21)
proposed a statistical method, termed the LD and MAF
stratified genome-based restricted maximum likelihood
(GREML-LDMS) approach, that creates bins of variants in
different allele frequencies and LD thus reducing the bias
of heritability estimates.

The recent advent of large-scale WGS data from the
NHLBI TOPMed program enables an updated and more
comprehensive assessment of the contribution of rare
variants (11). Here we report SNV-based heritability
of COPD and related phenotypes (FEV1% predicted
and FEV1/FVC) using GREML-LDMS in nearly 12 000
unrelated individuals from high-coverage WGS data.
Study participants were from four studies including
three population-based studies and one COPD-enriched
study as part of the TOPMed program. We also leveraged
high-coverage WGS data to assess the proportion of
phenotypic variance of COPD and related phenotypes
explained by rare variants.

Results
Heritability estimates using a single GRM
We first calculated heritability using the standard
method of a single component genetic relationship
matrix (GREML-SC) (23). We estimated GRMs for rare
variants (MAF < 0.01) and common variants (MAF≥0.01),
then conducted GREML-SC analysis using each GRM. In
European ancestry participants (N = 11 501), for variants
with MAF < 0.01, none of heritability estimates were
statistically significantly >0 (Table 1). For variants
with MAF≥0.01, we estimated heritability to be 23.3%
[standard error (SE) = 3.6%, P-value = 4.5×10−11] for
FEV1% predicted, 17.9% (SE = 3.2%, P-value = 8.7×10−9)
for FEV1/FVC and 18% (SE = 5%, P-value = 1.6×10−4) for
COPD. The heritability estimates of height and body mass
index (BMI) were 54.8% (SE = 3.6%, P-value = 8.2×10−52)
and 21.1% (SE = 3.6%, P-value = 1.5×10−9), respectively.

In African-American participants (N = 5853), for
common variants, the estimated heritability was 21.6%
(SE = 7.8%, P-value = 0.003) for FEV1% predicted, 25.3%
(SE = 7.1%, P-value = 1.8×10−4) for FEV1/FVC, 69% (SE =
7.4%, P-value = 7.9×10−21) for height and 27.7% (SE = 7.8%,
P-value = 2.1×10−4) for BMI (Supplementary Material,
Table S1). Heritability estimation for COPD, and for
rare variant analysis of height and FEV1/FVC, did
not converge because of smaller sample size among
African ancestry participants; thus, subsequent analyses
using the GREML-LDMS methods (21) were restricted to
European Ancestry.

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac117#supplementary-data
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Table 1. Heritability estimates and SE using GREML-SC in European ancestry

Phenotype Estimates Rare variants Common variants

FEV1 % predicted h2 (SE) 0.031 (0.041) 0.233 (0.036)
95% CI One-sided (−0.037,∞) (0.173, ∞)

Two-sided (−0.05, 0.112) (0.162, 0.303)
P-value 0.225 4.47 ×10 –11

FEV1/FVC h2 (SE) −0.003 (0.032) 0.179 (0.032)
95% CI One-sided (−0.057, ∞) (0.126, ∞)

Two-sided (−0.067, 0.06) (0.117, 0.241)
P-value 0.54 8.74 ×10 −9

COPD h2 (SE) −0.141 (0.029) 0.18 (0.05)
95% CI One-sided (−0.189, ∞) (0.098, ∞)

Two-sided (−0.198, −0.083) (0.082, 0.278)
P-value 1 1.55 ×10 −4

Height h2 (SE) 0.071 (0.044) 0.548 (0.036)
95% CI One-sided (−0.001, ∞) (0.488, ∞)

Two-sided (−0.015, 0.157) (0.477, 0.619)
P-value 0.052 8.20 ×10 −52

BMI h2 (SE) −0.026 (0.036) 0.211 (0.036)
95% CI One-sided (−0.086, ∞) (0.152, ∞)

Two-sided (−0.097, 0.046) (0.141, 0.281)
P-value 0.758 1.52 ×10 −9

Estimates for FEV1% predicted and FEV1/FVC were adjusted for ascertainment bias. Rare and common variants stand for variants with MAF < 1% and
MAF≥1%, respectively. Bold indicates statistically significant under the significance level of 0.05. One-sided 95% CI means 95% confidence interval for the
alternative hypothesis, H1 : h2 > 0. Two-sided 95% CI means 95% confidence interval for the alternative hypothesis, H1 : h2 �= 0.

Aggregated heritability estimates using WGS
in European ancestry participants
Multiple studies have demonstrated a reduction in bias
when variants are partitioned by MAF and degree of
LD (21,22,24). Thus, we stratified all variants by eight
bins based on their MAF in the dataset (0≤MAF < 0.0001,
0.0001≤MAF < 0.001, 0.001≤MAF < 0.01, 0.01≤MAF < 0.1,
0.1≤MAF < 0.2, 0.2≤MAF < 0.3, 0.3≤MAF < 0.4, 0.4≤MAF
≤0.5). Each of the eight MAF bins were further stratified
into a low-LD bin and a high-LD bin based on the median
value of LD scores of each MAF bin. Finally, we gener-
ated GRMs for 16 variant bins and performed GREML-
LDMS using GCTA software. To get heritability estimates
of rare and common variants, we aggregated heritabil-
ity estimates for GRMs with MAF < 0.01 and MAF≥0.01,
respectively.

The aggregated estimates of SNV-based heritabil-
ity using GREML-LDMS are displayed in Table 2 and
Supplementary Material, Table S2. To first confirm that
our approach in this dataset yielded similar esti-
mates to prior reports, we applied GREML-LDMS to
height and BMI, and estimated a heritability of 82.4%
(SE = 16.7%, P-value = 3.9×10−7) for height and 51.7%
(SE = 15.3%, P-value = 3.5×10−4) for BMI. These esti-
mates are slightly higher than the previously reported
estimates (56–79% for height and 22–40% for BMI,
Supplementary Material, Table S3) (21,22,24) that did not
include the rarest variant bin.

For lung function measurements, after adjusting
for ascertainment bias, we estimated the heritabil-
ity of FEV1% predicted to be 55.6% (SE = 17.2%, P-
value = 6.1×10−4), and rare variants and common
variants accounted for 35.8% (SE = 17.4%, P-value = 0.02)
and 19.8% (SE = 6%, P-value = 5.3×10−4), respectively.

The largest contributor to heritability was from rare
variants in the low-LD group, though with large SEs
(h2 = 30.8%, SE = 15.2%, P-value = 0.021). When we
aggregated the heritability by LD groups, 43% (SE = 15.2%,
P-value = 0.002) and 12.5% (SE = 4.6%, P-value = 0.003) of
heritability were accounted for by variants in the low-LD
group and high-LD group, respectively.

The overall heritability of FEV1/FVC was estimated
to be 32.5% (SE = 16%, P-value = 0.021). A total of 14.6%
(SE = 16.2%) and 17.8% (SE = 5.7%, P-value = 8.5×10−4) of
the heritability were contributed by rare variants and
common variants, respectively. In terms of LD structure,
variants in low-LD group and high-LD group explained
21.9% (SE = 14.2%) and 10.5% (SE = 4%, P-value = 0.005) of
the heritability, respectively.

For COPD, the heritability estimate was 35.5% (SE =
20.8%, P-value = 0.044) and of those, 16.6% (SE = 21.1%)
and 18.8% (SE = 8.6%, P-value = 0.014) were explained
by rare variants and common variants, respectively.
Similar to the lung function measurements, heritability
was mostly contributed by variants in the low-LD group
(low-LD: h2 = 25.7%, SE = 18.8%, P-value = 0.086; high-
LD: h2 = 9.8%, SE = 5.2%, P-value = 0.03). These estimates
showed higher SEs compared with lung function mea-
surements due in part to a reduction in sample size
from excluding participants who were neither cases nor
controls.

Significant heritability estimates of individual
MAF and LD bins in European ancestry
participants
The heritability estimates for individual MAF and LD
bins are shown in Supplementary Material, Table S4 and
Figure 1. For FEV1% predicted, variants with 0.001≤MAF

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac117#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac117#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac117#supplementary-data
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Table 2. Aggregated heritability estimates and SE for FEV1% predicted, FEV1/FVC and COPD using GREML-LDMS in European ancestry

Phenotype LD Estimates Rare variants Common variants Total

FEV1 % predicted High-LD h2 (SE) 0.05 (0.041) 0.075 (0.023) 0.125 (0.046)
95% CId One-sided (−0.018, ∞) (0.037, ∞) (0.049, ∞)

Two-sided (−0.03, 0.13) (0.029, 0.121) (0.035, 0.215)
P-value 0.111 6.62 ×10 −4 0.003

Low-LD h2 (SE) 0.308 (0.152) 0.122 (0.061) 0.43 (0.152)
95% CI One-sided (0.058, ∞) (0.021, ∞) (0.18, ∞)

Two-sided (0.011, 0.605) (0.002, 0.242) (0.133, 0.727)
P-value 0.021 0.023 0.002

Total h2 (SE) 0.358 (0.174) 0.197 (0.06) 0.556 (0.172)
95% CI One-sided (0.071, ∞) (0.098, ∞) (0.272, ∞)

Two-sided (0.017, 0.699) (0.079, 0.316) (0.219, 0.892)
P-value 0.02 5.28 ×10 −4 6.06 ×10 −4

FEV1/FVC High-LD h2 (SE) 0.046 (0.035) 0.06 (0.022) 0.105 (0.04)
95% CI One-sided (−0.012, ∞) (0.023, ∞) (0.039, ∞)

Two-sided (−0.023, 0.115) (0.016, 0.103) (0.026, 0.185)
P-value 0.097 0.003 0.005

Low-LD h2 (SE) 0.101 (0.142) 0.119 (0.058) 0.219 (0.142)
95% CI One-sided (−0.133, ∞) (0.023, ∞) (−0.015, ∞)

Two-sided (−0.177, 0.379) (0.005, 0.232) (−0.059, 0.498)
P-value 0.239 0.02 0.061

Total h2 (SE) 0.146 (0.162) 0.178 (0.057) 0.325 (0.16)
95% CI One-sided (−0.121, ∞) (0.084, ∞) (0.061, ∞)

Two-sided (−0.171, 0.464) (0.067, 0.29) (0.012, 0.638)
P-value 0.183 8.54 ×10 −4 0.021

COPD High-LD h2 (SE) 0.073 (0.042) 0.024 (0.033) 0.098 (0.052)
95% CI One-sided (0.003, ∞) (−0.03, ∞) (0.012, ∞)

Two-sided (−0.01, 0.156) (−0.04, 0.088) (−0.004, 0.199)
P-value 0.042 0.229 0.03

Low-LD h2 (SE) 0.093 (0.187) 0.164 (0.087) 0.257 (0.188)
95% CI One-sided (−0.215, ∞) (0.02, ∞) (−0.053, ∞)

Two-sided (−0.273, 0.459) (−0.007, 0.336) (−0.112, 0.626)
P-value 0.309 0.03 0.086

Total h2 (SE) 0.166 (0.211) 0.188 (0.086) 0.355 (0.208)
95% CI One-sided (−0.182, ∞) (0.047, ∞) (0.011, ∞)

Two-sided (−0.248, 0.581) (0.02, 0.357) (−0.054, 0.763)
P-value 0.215 0.014 0.044

Estimates for FEV1% predicted, FEV1/FVC were adjusted for ascertainment bias. Heritability estimates were aggregated by MAF (rare variants and common
variants) and LD (high-LD versus low-LD) groups. Rare and common variants stand for variants with MAF < 1% and MAF≥1%, respectively. Bold indicates
statistically significant under the significance level of 0.05. One-sided 95% CI means 95% confidence interval for the alternative hypothesis, H1 : h2 > 0.
Two-sided 95% CI means 95% confidence interval for the alternative hypothesis, H1 : h2 �= 0.

< 0.1 showed the largest contribution to the phenotype
among MAF bins (h2 = 23.8%, SE = 13%, P-value = 0.033).
In the high-LD group, heritability estimates of the
variants with 0.2≤MAF < 0.3 and 0.4≤MAF≤0.5 were
significantly larger than zero (h2 = 2.4%, SE = 1.1%, P-
value = 0.017 and h2 = 1.9%, SE = 1%, P-value = 0.023,
respectively). In the low-LD group, heritability estimates
of the variants with 0.3≤MAF < 0.4 was statistically
significant (h2 = 6.8%, SE = 2.8%, P-value = 0.008). For
FEV1/FVC, we found two significant heritability esti-
mates of the variants with 0.2≤MAF < 0.3 in the high-
LD group (h2 = 2.5%, SE = 1.1%, P-value = 0.013) and
0.3≤MAF < 0.4 in the low-LD group (h2 = 5.7%, SE = 2.7%,
P-value = 0.016). For COPD disease status, a substantial
fraction of heritability was captured by the rarest
MAF bin (0≤MAF < 0.0001) with estimates of 32.6%
(SE = 13.6%, P-value = 0.008), and heritability estimates
for its LD-stratified bins were also statistically signif-
icant (high-LD: h2 = 6.4%, SE = 3.2%, P-value = 0.021;
low-LD: h2 = 26.2%, SE = 11%, P-value = 0.008). We

observed significant heritability estimates of 9.7%
among rare variants (0.001≤MAF < 0.01) in the high-LD
group (SE = 4.1%, P-value = 0.009). Compared with the
heritability estimates using GREML-SC, the SC method
did not capture heritability of rare variants.

Discussion
A genetic contribution to COPD and lung function has
been recognized for decades, based on family-based and
twin studies and more recently, from genome-wide geno-
typing data, widely available in population-based sam-
ples. However, these methods relied on the assumptions
of a normal distribution of genetic variant effect sizes
independent of LD and inversely proportional to the MAF.
In addition, despite examples of rare variant contribu-
tions to complex disease, many studies have not been
able to identify and replicate rare variants of statistically
significant effect (25–27). Prior studies in COPD and lung
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Figure 1. Heritability estimates stratified in 16 bins (eight MAF bins and two LD bins) in European ancestry. The bars display SEs.

function have either not identified statistically signifi-
cant variants, or identified variants that have not been
consistently replicated (28–33).

Our study sought to use comprehensive WGS data
available in four cohorts to provide unbiased estimates
of heritability and to examine the contribution of
rare variants on COPD and lung function. Compared
with prior estimates in a COPD-enriched study (15),
comprised of smokers with and without COPD, our study
of population-based and COPD-enriched participants
resulted in a smaller heritability estimate from common
variants than the previous study. Compared with a prior
study of low-frequency variants (0.5%≤MAF < 5%) in the

UK Biobank, our heritability estimates of rare variant
(MAF < 1%) for FEV1/FVC were larger (34) suggesting
nonzero contribution of rare variants to these pheno-
types. Our heritability estimates of common variants
based on GREML-LDMS and GREML-SC indicate that bias
of common variants because of heritability partitioning
was negligible. However, we identified substantial
differences in the estimates of rare variants depending
on stratification of GRMs. Although the estimates based
on the GREML-SC approach were nearly zero, 35.8%,
14.6% and 16.6% of heritability of rare variants were
recovered for FEV1% predicted, FEV1/FVC and COPD by
using GREML-LDMS, respectively. Therefore, rare causal
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Figure 1. Continued

variants may lie within specific MAF or LD bins, whereas
common causal variants may spread among multiple
MAF and LD bins. Another possible explanation is that
the genetic similarity between individuals modeled by
different common variant bins are more similar to each
other than when using rare variant bins. This finding may
be because of chance or because of a selection process
that we do not model.

For all phenotypes, heritability estimates were pre-
dominantly explained by rare variants in low-LD bins
with some, but not all, statistically significant estimates
of heritability. These findings are consistent with other

studies demonstrating that, in general, rare variants
with lower levels of LD have higher levels of heritability
(35). These variants also are more enriched in regions
of functional annotation. We note that the majority of
identified variants in this study, as in other sequencing
studies are rare. These findings are consistent with the
effects of selection in reducing deleterious alleles over
time (35,36).

Heritability is defined between 0 and 1 but its estimate
can exceed these values, following the normal distribu-
tion. Thus, to get an unbiased estimate, we allowed the
heritability estimate to be negative. Indeed, we observed
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Figure 1. Continued

negative estimates with wide confidence interval in sev-
eral individual MAF and LD bins. We kept negative esti-
mates to obtain unbiased estimates of total heritabil-
ity, although negative heritability has no meaning in
itself and should be interpreted as zero heritability. In
practice, we are likely to observe a negative estimate in
two situations. First, when the sample size is small, the
estimate has a chance to be out of the parameter space
because of a large SE. Second, when the true heritability
is very small, then we also have a certain probability
to see negative estimate even though the sample size is
large. Although our sample sizes were large for WGS data
for COPD and lung function, the SEs of our estimates
are large, resulting in only nominally (P-value < 0.05)
significant P-values unadjusted for multiple testing, indi-
cating that even larger sample sizes are needed to accu-
rately identify the contribution of rare variants generally
and also to determine the relative contribution of spe-
cific rare functional regions. Nevertheless, the estimates
of the overall heritability were reliable. In our study,
heritability estimation using GREML-LDMS was limited
to European ancestry because heritability estimates in
African ancestry were imprecise or did not converge
because of sample size. Estimating and interpreting SNV-
heritability is challenging in diverse populations (37) and
GCTA-GREML that is the method estimating heritability
from individual-level genetic data can generate biased
estimates in the presence of population stratification
(38). Our study thus further emphasizes the need to
increase the number of participants of non-European
ancestry. Finally, heritability is a measure that is specific
to a population and set of environmental conditions.
We studied lung function and disease status pheno-
types available in our sample. In addition, the relative

contribution of rare variants to other COPD-related phe-
notypes, such as those obtained from imaging studies, is
unknown.

Overall, our results provide an updated estimate of
heritability, in the largest cohort for lung function and
COPD to undergo WGS to date. We find evidence for
a contribution of rare variants to lung function and
COPD and an enrichment in low-LD regions. These find-
ings support the ongoing investigation of rare variants
in COPD.

Materials and Methods
Study participants
We selected 11 849 European ancestry participants
and 7167 African-American participants from four
population-based cohorts [the Atherosclerosis Risk in
Communities (ARIC) Study, the FHS, the Multi-Ethnic
Study of Atherosclerosis (MESA) and Jackson Heart
Study (JHS)] and one COPD-enriched study [the Genetic
Epidemiology of COPD (COPDGene) Study] as a part of
NHLBI TOPMed program. The ancestry was defined by
genetic data. The study descriptions for each cohort are
provided in the Supplementary Material, Text S2.

Genetic variants were extracted from the Freeze 5b
version of WGS data in the TOPMed program (39).
Details on sequencing method of TOPMed are found
at https://www.nhlbiwgs.org/topmed-whole-genome-
sequencing-project-freeze-5b-phases-1-and-2. Briefly,
joint-subject variant calling identified ∼ 470M genetic
variants for 54 499 participants which is a subset of
TOPMed participants on human genome assembly
GRCh38 with deep coverage (∼30×). Among these
variants, we only considered genetic variants carried by

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac117#supplementary-data
https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-project-freeze-5b-phases-1-and-2
https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-project-freeze-5b-phases-1-and-2
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Table 3. Descriptive statistics of study participants after quality control

Phenotype Ancestry Study

European African COPD-enriched Population-based

Number of subjects 11 051 5853 8397 8507
COPD subjects 3234 930 3120 1044
Gender (F/M) 5460/5591 3025/2828 3907/4490 4578/3929
Age 61.64 (9.65) 57.61 (10.43) 59.5 (9.08) 60.98 (10.99)
Pack-years 32.04 (29.58) 22.28 (24.47) 44.36 (25) 13.17 (22.16)
Height 169.03 (9.54) 169.14 (9.8) 170.2 (9.47) 167.95 (9.65)
BMI 28.18 (5.63) 30.07 (6.69) 28.88 (6.26) 28.79 (5.91)
FEV1 % predicted 80.24 (24.55) 86.13 (22.27) 72.86 (25.58) 91.57 (17.88)
FEV1/FVC 0.68 (0.14) 0.75 (0.12) 0.65 (0.16) 0.75 (0.09)

We counted the number of subjects, COPD subjects and each gender. For continuous variables, mean and standard deviation were shown.

at least one participant in the cohorts included in this
analysis.

Quality control
The TOPMed callset includes extensive quality control,
detailed at https://www.nhlbiwgs.org/topmed-whole-
genome-sequencing-project-freeze-5b-phases-1-and-2.
We additionally excluded SNVs with missingness rate > 5%
in our subsample, or a P-value of the Hardy–Weinberg
equilibrium test < 1×10−5. We considered only biallelic
SNVs on the autosomes. We also excluded any partic-
ipants whose genotype missingness rate was >5%. To
include only unrelated participants, we estimated kin-
ship coefficients of every pair of participants using PC-
Relate (40) and we randomly excluded one of each pair of
participants with estimates of kinship coefficient > 0.05.
After filtering, we retained 11 501 European ancestry
participants and 5853 African ancestry participants
with ∼123M and ∼112M SNVs, respectively (Table 3
and Figure 2). We confirmed that there were no related
participants on the reported pedigree after quality
control of the samples. All participants that were not
European-ancestry or African-American were excluded
from the analysis because of sample size. As expected,
the COPD-enriched study (COPDGene) showed lower
mean values of lung function and higher pack-years than
the population-based studies in both ancestries.

Phenotypes
We estimated the heritability of spirometry measures,
COPD affection status, as well as anthropometric values
(the latter as ‘positive controls’). For lung function, we
used percentage of predicted value of FEV1 (FEV1%
predicted) and FEV1/FVC ratio as continuous phenotypes.
To ensure harmonized phenotypes across multiple
TOPMed population studies, we used phenotypes derived
from the protocol of the NHLBI Pooled Cohorts Study
(Supplementary Material, Text S3) (41). We calculated
percent predicted values of FEV1 using Hankinson’s
reference equations (42). We also examined the her-
itability of height and BMI within our participants,
as these measures have been estimated previously in
larger samples. Similar to a previous approach (24), to

Figure 2. Quality control for the SNVs and participants. Multiple standard
quality controls were performed for the raw data to exclude outlier SNVs
and participants.

adjust for age, we regressed all continuous phenotypes
on age within each sex and study, and residuals were
standardized by sex-specific standard deviations. We
then pooled the standardized residuals together and
applied a rank-based inverse normal transformation
to the standardized residuals. For the dichotomous
phenotype, we defined COPD status of each participant
using GOLD criteria for moderate-to-severe obstruction
(43) as follows: (i) cases: FEV1% predicted <80% and

https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-project-freeze-5b-phases-1-and-2
https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-project-freeze-5b-phases-1-and-2
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac117#supplementary-data
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Figure 3. Workflow of statistical analysis for the heritability estimation of COPD-related phenotypes. Overview of the statistical analysis to estimate
heritability of the phenotypes is illustrated.

FEV1/FVC < 0.7, (ii) controls: FEV1% predicted ≥80% and
FEV1/FVC≥0.7. In addition to age and sex, we included
pack-years of smoking as a covariate for all phenotypes
except for height, as well as sequencing center, and first
10 principal components of genetic ancestry scores as
fixed effects.

Statistical methods for estimating heritability
The overview of the workflow for the statistical analysis
is illustrated in Figure 3. GREML, which is implemented
in the GCTA software, is a statistical method to estimate
genetic and environmental variance components using a
linear mixed model (21,23). For a quantitative trait Y, the
model of GREML is given by

Y = Xβ +
∑T

t=1
gt + ε

where β is a vector of coefficients of the covariates X such
as age, sex or principal component scores, gt is a random
effect of tth SNV-set with a corresponding GRM At, which
follows N(0, σ 2

t At) and ε is a vector of residual effects
following ε ∼ N(0, σ 2

ε I). For the tth GRM, At, the genetic
relationship between individuals i and j was calculated
as follows,

Atij = 1
mt

∑mt

k=1

(
xik − 2pk

) (
xjk − 2pk

)

2pk
(
1 − pk

)

where mt is the number of SNVs, xik is a minor allele
count of kth SNV for individual i and pk is an MAF of kth

SNV in the dataset. The variance–covariance matrix of
a quantitative trait Y is var(Y) = ∑T

t=1σ
2
t At + σ 2

ε I and
we estimate variance components, σ 2

t and σ 2
ε , using

the restricted maximum likelihood approach (44). The
proportion of phenotypic variance explained by the tth

set of SNV and by all the SNVs are defined as h2
t =

σ 2
t /(

∑T
t=1σ

2
t + σ 2

ε ) and h2 = ∑T
t=1h2

t , respectively.
Because our study includes a COPD-enriched popu-

lation, study participants had lower values of FEV1%
predicted or FEV1/FVC than the general population on
average. To estimate heritability of FEV1% predicted and
FEV1/FVC in the general population, we adjusted the
heritability estimates in the ascertained participants by
using their relationship expressed as a function of pro-
portions of participants at the specific threshold value
of the phenotype in both the general population and the
ascertained participants, and the population mean and
variance of the phenotype. To adjustment ascertainment
bias, we expressed heritability in the participants as a
function of the heritability in the population given that
the phenotype and genetic factor are jointly normally
distributed; the heritability in the population can be
obtained by inverting the equation. The detailed deriva-
tion is provided in the Supplementary Material, Text S4.

Similarly, heritability for a dichotomous phenotype,
COPD status in our case, needs to be adjusted when
cases and controls are not a random sample from the
general population (45). Here, we assume that cases and
controls are determined by the unobserved continuous
liability score L and the threshold t. Under the assump-
tion, participants are considered as a case if their liability
scores are larger than the threshold t; otherwise, they
are considered as a control. The threshold t is chosen to
maintain the assumed prevalence q. In the absence of
case–control ascertainment, the heritability of a dichoto-
mous trait on the liability scale, h2

l , can be expressed
with the heritability on the observed 0–1 scale, h2

occ , as
follows:

h2
l = ˆh2

occ

K (1 − K)

z2

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac117#supplementary-data
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Figure 4. MAF distribution of variants in WGS data. Values indicate MAF and the proportion of variants in the MAF groups (%).

where K the population prevalence and z the value of
the probability density function for the standard normal
distribution at the threshold t.

Under the liability threshold model, the heritability of
a dichotomous phenotype on the liability scale, h2

l , can be
expressed with the heritability on the observed 0–1 scale,
h2

occ , as follows:

h2
l = ˆh2

occ

K (1 − K)

z2

K (1 − K)

P (1 − P)

where K the population prevalence, P the proportion of
the cases in the sample and z the value of the probability
density function for the standard normal distribution at
the threshold t. We assumed a 10% prevalence of COPD
in the population and the same prevalence was assumed
for all studies (46).

Partitioning heritability
To assess the heritability of COPD and lung function
using methods comparable to prior studies and to serve
as a baseline to examine the effects of partitioning
on heritability, we estimated heritability using single-
component GREML analysis (GREML-SC) in GCTA soft-
ware for common variants (MAF≥0.01) and rare variants
(MAF < 0.01) with the same fixed effects in the GREML-
LDMS analysis.

According to previous studies demonstrating a reduc-
tion in bias when variants are partitioned by allele
frequency and degree of LD (21,22,24), we stratified all
variants by eight bins based on their MAF in the dataset
(0≤MAF < 0.0001, 0.0001≤MAF < 0.001, 0.001≤MAF < 0.01,
0.01≤MAF < 0.1, 0.1≤MAF < 0.2, 0.2≤MAF < 0.3, 0.3≤MAF
< 0.4, 0.4≤MAF≤0.5). We then calculated LD score of the
variants on a sliding window of 10 Mb within each MAF

bin as follows:

LD score = 1 + μr2 × M

where μr2 is a mean r2 between the target variant and
all other variants in the window and M is the number
of variants in the window. Here, LD score is defined as
the sum of r2 between a variant and all the variants
in a window. We used the GCTA software for the LD
score calculation (23). On each chromosome, we further
stratified each of the eight MAF bins into a low-LD bin
and a high-LD bin based on the median value of LD
scores of each MAF bin, and combined all variants in
the same MAF and LD bin across chromosomes. The
actual median LD scores in MAF bins were provided in
Supplementary Material, Table S5. In total, we generated
16 GRMs and performed GREML-LDMS using GCTA soft-
ware. To estimate aggregated heritabilities of rare and
common variants, we summed up all heritability esti-
mates for GRMs with MAF < 0.01 and MAF≥0.01, respec-
tively, and its SE was approximately derived based on the
Delta method (Supplementary Material, Text S5).

Among ∼ 123M SNVs in 11 502 unrelated Euro-
pean ancestry participants, 93.53% were rare vari-
ants (MAF < 0.01) and 6.47% were common variants
(MAF≥0.01). SNVs with MAF < 0.001 consisted of 89.38%
of all variants. The remaining MAF bins (0.001≤MAF < 0.01,
0.01≤MAF < 0.1, 0.1≤MAF < 0.2, 0.2≤MAF < 0.3, 0.3≤MAF
< 0.4 and 0.4≤MAF≤0.5) each accounted for <5% of total
SNVs, with a decreasing proportion of total SNVs with
increasing MAF (Fig. 4).

Code Availability

The analysis is readily applicable in other diseases. The
code used in the study is provided at https://github.
com/wonjikim11/RV_h2_COPD. Detailed information

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac117#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac117#supplementary-data
https://github.com/wonjikim11/RV_h2_COPD
https://github.com/wonjikim11/RV_h2_COPD
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and additional options for GCTA-GREML analysis can
be found in the GCTA online manual. (https://yanglab.
westlake.edu.cn/software/gcta/#Overview).

Supplementary Material
Supplementary Material is available at HMG online.
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