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Optical spectroscopy of molecular junctions: Nonequilibrium

Green’s functions perspective

Yi Gao and Michael Galperin

Department of Chemistry and Biochemistry,

University of California San Diego, La Jolla, CA 92093, USA

Abstract

We consider optical spectroscopy of molecular junctions from the quantum transport perspec-

tive when radiation field is quantized and optical response of the system is simulated as photon

flux. Using exact expressions for photon and electronic fluxes derived within the nonequilibrium

Green function (NEGF) methodology and utilizing fourth order diagrammatic perturbation theory

in molecular coupling to radiation field we perform simulations employing realistic parameters.

Results of the simulations are compared to the bare perturbation theory (PT) usually employed in

studies on nonlinear optical spectroscopy to classify optical processes. We show that the bare PT

violates conservation laws, while flux conserving NEGF formulation mixes optical processes.
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I. INTRODUCTION

The interaction of light with molecules is an important field of research due to its ability

to provide information on molecular structure and dynamics, and to serve as a control tool

for intra-molecular processes. Tremendous progress of laser technologies combined with ad-

vances in fabrication techniques opened the way to perform optical experiments on molecular

conduction junctions. In particular, current induced fluorescence [1], Raman scattering [2–

4], single-molecule imaging [5], and optical probing of quantum charge fluctuations [6] were

reported in the literature. Optical read-out of junction response to fast voltage pulses was re-

cently utilized to enable access to transient processes at nanosecond timescale [7]. Currently

experiments are being developed to access molecular dynamics in junctions on the sub-

picosecond timescale within pump-probe measurements [8, 9]. These advancements bring

the fields of molecular electronics and optical spectroscopy together indicating emergence of

molecular optoelectronics [10].

Theory of nonlinear optical spectroscopy has been developed [11] and widely utilized in

studies of optical response of molecules [12–20]. In most spectroscopic applications radi-

ation field is treated classically (with exception made in treatment of spontaneous emis-

sion processes), and the treatment relies on bare perturbative theory (PT) expansion in the

molecule-field coupling which conveniently allows to classify different optical processes based

on description of evolution of the system density matrix propagation in time while interacting

with external field (both bra and ket interactions are distinguished by the treatment) [11].

Application of these standard tools to description of optical response in molecular junctions

was done in a number of publications [21–24] Radiation field was treated semi-classically in

these works, hybridization between molecular and contacts states was disregarded. Optical

spectroscopy of isolated molecules involving quantum description of the field was put for-

ward in Refs. [25, 26]. These studies consider optical processes from the viewpoint of the

matter, where optical signals are recast in terms of transition amplitudes which represent

the isolated molecule wave function. It was demonstrated that interference between optical

paths involving different orders of the field must be taken into account in order to properly

reproduce the flux of populations between different molecular states.

Biased molecular junctions are open quantum systems which exchange energy and par-

ticles with the contacts, and quantum description of optical field is often desirable in these
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systems (see, e.g., Ref. [27] for recent review of quantum electrodynamics experiments at

nanoscale). Indeed, quantum effects in nanoplasmonics recently started to attract atten-

tion of both experimentalists [28–32] and theorists [33–36] Since optical measurements in

junctions rely on surface enhancement of the signal by plasmonic field, quantum effects in

the latter will have direct impact on measurements. Besides, strong exciton-plamon cou-

pling characteristic of molecules chemisorbed on metallic surfaces also requires quantum

description of plasmon field [33, 37].

Nonequilibrium Green function (NEGF) formulation treating both quantum transport

and optical response on the same footing was formulated in a set of publications [38–48].

These studies allow an accurate treatment of the coupling with electrodes and treat radi-

ation field quantum mechanically. Following the standard nonlinear optical spectroscopy

formulation they rely on bare PT expansion of the molecular coupling to radiation field.

Note that perturbative treatment of the coupling is reasonable, because a realistic estimate

of the interaction with the field is ∼ 10−3−10−2 eV [49], while for a molecule chemisorbed on

metallic surface electronic escape rate, which characterizes the molecule-contact interaction,

is ∼ 0.01− 0.1 eV [50].

Here we discuss applicability of the standard nonlinear optical spectroscopy formulation to

problems of optical response in current-carrying molecular junctions with the field treated

quantum mechanically. We simulate electron and photon fluxes utilizing a simple model

and employing realistic parameters. Our results show that violation of conservation laws by

FIG. 1. Optical spectroscopy in molecular junctions. Shown is a sketch of the model.
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bare PT may be quite visible within realistic range of parameters. The conserving NEGF

(diagrammatic perturbation theory) formulation [51] involves resumming infinite series of di-

agrams which makes separation of the photon flux into contributions of different order in the

field impossible. We stress that while below we consider steady-state and employ perturba-

tion theory up to fourth order in molecule-field coupling, our conclusions are not limited by

this choice. Indeed, requirement of self-consistency (resumming diagrams to infinite order)

in constructing conserving approximations equally applicable to time-dependent processes,

while any finite order subset is non-conserving [52, 53]. We stress that the restrictions on

application of standard tools of nonlinear optical spectroscopy to molecular junctions are

relevant only for radiation fields treated quantum mechanically. Studies utilizing classical

description of the field are qualitatively correct.

Structure of the paper is as follows. In Section II we introduce a junction model and

discuss a way to calculate its transport and optical response within diagrammatic pertur-

bation theory. Section III compares this formulation to the bare PT treatment and shows

similarities and differences of the two formulations. Numerical illustrations are presented

and discussed in Section IV. Section V summarizes our findings.

II. MODEL

We consider a junction consisting of molecule M coupled to two metallic contacts L and

R each at its own equilibrium. The junction is subjected to external radiation field which

is treated quantum mechanically. We model the molecule as a three-level system with the

levels corresponding to, e.g., two ground (ε1 and ε3) and one excited (ε2) electronic states

(see Fig. 1). Within the model level ε1 is coupled to L contact only, while ε3 - to R only. This

may be viewed as a representation of states with strong charge-transfer transition [54, 55].
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Hamiltonian of the model is (here and below e = ~ = kB = 1)

Ĥ =Ĥ0 + V̂ (1)

Ĥ0 =
∑
m∈M

εmd̂
†
md̂m +

∑
k∈L,R

εkĉ
†
kĉk +

∑
α

ωαâ
†
αâα (2)

+
∑
m∈M

∑
k∈L,R

(
Vmkd̂

†
mĉk +H.c.

)
V̂ =

∑
m1,m2∈M

∑
α

(
Uα,m1m2 â

†
αD̂m1m2 +H.c.

)
(3)

Here Ĥ0 is the quadratic part of the Hamiltonian, while V̂ characterizes coupling to radiation

field. d̂†m (d̂m) and ĉ†k (ĉk) create (annihilate) electron in the molecular level m or level k

of the contacts, respectively. D̂m1m2 ≡ d̂†m1
d̂m2 is the molecular de-excitation operator. â†α

(âα) creates (annihilates) photon in the mode α of the radiation field. Contacts L and R are

considered to be equilibrium reservoirs of electrons characterized by their electrochemical

potentials, µL and µR, and temperature T common to both contacts. Radiation field is

considered as continuum of modes. In the incoming field a mode around frequency ω0 is

assumed to be populated with N0 photons, all other modes of the field are empty.

We will be interested in calculating electron and photon fluxes in the junction. Within

the NEGF the fluxes are defined as rates of change in the bath populations [56, 57] (see also

Appendix A for derivation)

IK(t) ≡ d

dt

∑
k∈K

〈ĉ†k(t)ĉk(t)〉 (4)

= 2 Re

∫ t

−∞
dt′Tr

[
Σ<
K(t, t′)G>(t′, t)− Σ>

K(t, t′)G<(t′, t)

]
Ipt(t) ≡

d

dt

∑
α

〈â†α(t)âα(t)〉 (5)

= 2 Re

∫ t

−∞
dt′Tr

[
Π<(t, t′)F>(t′, t)− Π>(t, t′)F<(t′, t)

]
where Tr[. . . ] is trace over electronic levels in M in (4) and radiation field modes in (5).

G≷ and F≷ are greater/lesser projections of electron and photon Green functions (Tc is the

Keldysh contour ordering operator)

Gmm′(τ, τ ′) ≡− i〈Tc d̂m(τ) d̂†m′(τ
′)〉 (6)

Fαα′(τ, τ ′) ≡− i〈Tc âα(τ) â†α′(τ
′)〉 (7)
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which satisfy the Dyson equations [56]

Gmm′(τ, τ ′) = G
(0)
mm′(ττ

′) +
∑
m1,m2

∫
c

dτ1

∫
c

dτ2

G(0)
mm1

(τ, τ1) Σpt
m1m2

(τ1, τ2)Gm2m′(τ2, τ
′) (8)

Fαα′(τ, τ ′) = F
(0)
αα′(τ, τ

′) +
∑
α1,α2

∫
c

dτ1

∫
c

dτ2

F (0)
αα1

(τ, τ1) Πα1α2(τ1, τ2)Fα2α′(τ2, τ
′) (9)

Here G(0) and F (0) are the Green functions propagated by the Hamiltonian Ĥ0, Eq. (2).

In Eqs. (6)-(9) ΣK , Σpt and Π are the electron self-energy due to coupling to the contact

K (L or R), electron self-energy due to coupling to radiation field, and photon self-energy

due to coupling to electron-hole excitations in the molecule, respectively. ΣK is known

exactly

[ΣK(τ, τ ′)]mm′ =
∑
k∈K

Vmk gk(τ, τ
′)Vkm′ (10)

Here gk is the Green function of free electrons in contact K. Thus coupling to the contacts,

represented by second row in Eq.(2), is treated exactly. Σpt and Π can be derived only

approximately. These approximations should be conserving, i.e. fulfill conservation laws for

physical quantities (charge, momentum, energy, etc.). A way of formulating such approxima-

tions was established in the works by Kadanoff and Baym [52, 53]. Standard diagrammatic

procedure requires construction of the Luttinger-Ward functional, Φ - the collection of all

connected skeleton diagrams (i.e. diagrams that have no self-energy insertions) [58, 59].

Expressions for self-energies are obtained as functional derivatives [51, 60, 61]

Σpt
mm′(τ, τ

′) =
δΦ[G,F ]

δGm′m(τ ′, τ)
(11)

Παα′(τ, τ ′) =− δΦ[G,F ]

δFα′α(τ ′, τ)
(12)

Figure 2a shows diagrams for Φ up to fourth order in electron-photon interaction V̂ , Eq.(3).

Corresponding diagrams for electron and photon self-energies are shown in Figs. 2b and

c, respectively. Explicit expressions for the self-energies are given in Appendix B. Note that

the self-energies, Eqs. (11) and (12), are expressed in terms of the full (or dressed) Green

functions, Eqs. (6) and (11). The latter are obtained from the Dyson equations, Eqs. (8)

and (9), which in turn depend on the self-energies. Thus, solution becomes a self-consistent
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FIG. 2. Diagrammatic perturbation theory. Shown are dressed skeleton diagrams of (a) the

Luttinger-Ward generating functional, Φ, and corresponding (b) electron, Σ, and (c) photon, Π,

self-energies. Left diagrams correspond to second and right to fourth order contributions. Directed

solid line (black) represents the electron Green function G, Eq. (6). Wavy line (blue) is the photon

Green function F , Eq. (7); both directions are implied here. Empty and solid circles indicate outer

and inner vertices. Summation over all degrees of freedom and integration over contour variables

is done in the latter.
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procedure, and any conserving approximation requires resummation of an infinite number

of diagrams.

FIG. 3. A contribution to photon flux Ipt(t), Eq.(5), within fourth order bare PT expansion. Shown

are (a) Diagrams contributing to the perturbative expression, (b) the Keldysh contour projections

(physical time increases from left to right) and (b) corresponding double-sided Feynman diagrams

(physical time increases from bottom to top). Straight lines in panel (a) indicate bare electron

propagators, G(0). Wavy lines in panels (a) and (b) indicate bare photon propagators, F (0); Arrows

in panel (c) indicate creation (â†α, pointing to left) or annihilation (âα, pointing to right) photon

operators.

III. THE BARE PERTURBATIVE EXPANSION

Traditionally treatment of system’s response to quantum field relies on calculating rate

of change of a field mode occupation number (see Chapter 9 of Ref. [11]). This is the same

definition of the photon flux within NEGF, Eq. (5). The rate is simulated utilizing bare
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PT in coupling to the field, Eq.(3), with second order contribution (called linear response)

yielding absorption of a quantum field and fourth order contribution (called third order pro-

cess) describing spontaneous light emission (SLE) spectroscopy [11]. Perturbative expansion

yields set of terms characterized by form of electronic correlation functions (evaluated in the

absence of the field) which includes set of times indicating interaction with optical field.

It is customary to represent each term as a double-sided Feynman diagram. The diagram

shows times and side of the contour (bra or ket), where interaction with the field takes place

(see Ref. [11] for details; examples of the double-sided Feynman diagrams are presented in

Fig 3c).

We now consider the bare PT expressions for electron and photon fluxes, Eqs. (4) and

(5), from the diagrammatic perturbation theory point of view [62, 63]. Fourth order per-

turbation theory (PT) contributions to photon flux, Eq.(5), are shown in Fig. 3a. Following

classification of the diagrammatic perturbation theory the expansion contains contributions

which can be divided into three groups: 1. disconnected diagrams, 2. reducible diagrams

(2nd diagram in Fig. 3a), and 3. irreducible diagrams (diagrams 1, 3-5 in Fig 3a). Accord-

ing to diagrammatic technique the disconnected diagrams should be disregarded, because

by the linked cluster theorem they cancel by corresponding contributions from the denom-

inator (renormalization of the partition function) [60, 62, 64]. The reducible diagrams cor-

respond to partial resummations of the photon Dyson equation. For example, utilizing∑
α1,α2

∫
c
dτ1

∫
c
dτ2 F

(0)
αα1(τ, τ1) Πα1α2(τ1, τ2)F

(0)
α2α′(τ2, τ

′) instead of second term in the right of

Eq.(9) (i.e. taking one of infinite number of terms in the Dyson equation) in expression for

the photon flux, Eq.(5), will result in contribution to the flux corresponding to a reducible

diagram (2nd diagram in Fig. 3a). The irreducible diagrams come from partial resumma-

tions of the electron Dyson equation and from expressions for the photon self-energy with

Green functions G and F substituted with their bare counterparts G(0) and F (0). For ex-

ample, utilizing bare photon Green function F (0) in expression for the photon flux, Eq.(5),

and substituting in place of two electron Green functions in the expression for photon self-

energy Π(2), Eq.(B5), one bare Green function G(0), and bare version of second term Eq.(8),

leads to bare irreducible diagrams in the SLE signal (third and fourth diagrams of Fig. 3a).

Similarly, perturbative expansion of electron and photon Green functions G and F will enter

also expressions for charge and energy currents (see Eqs. (13)-(18) below).

Absorption (linear response) is obtained by substituting bare photon Green function F (0)
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and bare version of Π(2), Eq.(B5), into (5). SLE signal (third order process) is a sum of many

contributions (fourth order bare diagrams) in (5), each of which contains two physical times,

t and t′, and two contour variables, τ1 and τ2. The former are the times in the flux expression,

Eq.(5), while the latter come either from bare version of second term in the Dyson equations,

Eqs. (8) and (9) or bare versions of self-energies Σpt (2) and Π(4), respectively Eqs. (B3) and

(B6). Physical times t and t′ are fixed on the Keldysh contour with time t (time of the flux)

being the latest time. Contour variables τ1 and τ2 are projected (i.e. become physical times

t1 and t2) by considering all possible placements (orderings) of the variables on the contour.

Fig. 3b shows an example of all possible orderings for a contribution to the first term in

Eq.(5).

The standard formulation [11] deals with the same problem of ordering variables τ1 and

τ2 between the two times t and t′. However this time the ordering is performed along the real

time axis (i.e. not only relative position of times on the contour but also relative position on

the real time axis is tracked). Thus, number of different orderings, the double-sided Feynman

diagrams, is larger here. It is customary to indicate each photon process by separate arrow

in these orderings, rather than consider contractions representing free photon propagation.

The agreement is that arrow pointing to the left corresponds to creation operator of the

photon in quantum mechanical description of the field (or factor eiωαt for classical treatment

of the field), while arrow pointing to the right represents operator of annihilation of the

photon (or factor e−iωαt) [11]. Fig. 3c shows all possible double-sided Feynman diagrams

corresponding to the Keldysh contour projection of Fig. 3b. Note that word ‘diagram’

has different meanings in the diagrammatic perturbation technique (particular combination

of Green functions - see Fig. 3a) and in the bare PT expansion (particular ordering of

contour times τ1 and τ2 - see Fig. 3b or c). In particular, each of many Green function

arrangements will be characterized by the same set of time orderings. Note also that (as

discussed in Section II) construction of a conserving approximation requires resummations

of infinite series of diagrams of Fig. 3a. The latter will mix different bare orders making

it impossible to distinguish between, say, absorption and SLE or introduce double-sided

Feynman diagrams in a meaningful way (see also discussion in Ref. [65]). The total photon

flux, Eq.(5), remains the only characteristic of optical response.
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IV. NUMERICAL RESULTS

Here we present numerical simulations illustrating discussion in sections II and III. Sim-

ulations are performed for the molecular junction model of Fig. 1 performed at steady-state

conditions. We compare the diagrammatic and bare PT approaches. At steady-state ex-

pressions for particle (electron and photon) fluxes, Eqs. (4) and (5), become

IK =

∫ +∞

−∞

dE

2π
iK(E) (13)

Ipt =

∫ +∞

−∞

dω

2π
ipt(ω) (14)

where iK(E) and ipt(ω) are energy resolved electron and photon particle fluxes

iK(E) ≡Tr

[
Σ<
K(E)G>(E)− Σ>

K(E)G<(E)

]
(15)

ipt(ω) ≡Tr

[
Π<(ω)F>(ω)− Π>(ω)F<(ω)

]
(16)

We will also calculate corresponding energy fluxes (energy exchanged between molecule and

environment by electron and photon fluxes)

JK ≡
∫ +∞

−∞

dE

2π
E iK(E) (17)

Jpt ≡
∫ +∞

−∞

dω

2π
ω ipt(ω) (18)

Expressions for the fluxes within the bare PT expansion are obtained from those above along

the lines discussed in Section III.

Clearly, at steady state one expects conservation of charge

IL = −IR (19)

and energy

JL + JR + Jpt = 0 (20)

to be fulfilled. Below we illustrate that bare PT simulations violate these conservation laws.

Strength of the molecule-contacts interaction is characterized by the dissipation matrix

ΓKmm′(E) ≡ 2π
∑
k∈K

VmkVkm′δ(E − εk) (21)
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Lesser and greater projections of the self-energy (10), which yield respectively in- and out-

scattering of electrons, are given by

[Σ<
K(E)]mm′ =iΓKmm′(E) fK(E) (22)

[Σ>
K(E)]mm′ =− iΓKmm′(E) [1− fK(E)] (23)

Lamb shift and dissipation are given by real and imaginary parts of the retarded projection

[Σr
K(E)]mm′ = Λmm′(E)− i

2
Γmm′(E) (24)

which are related by the Kramers-Kronig expressions (i.e. either of the parts defines the

other) [63]. Here fK(E) = [e(E−µK)/kBT + 1]−1 is the Fermi-Dirac thermal distribution in

contact K (characterized by temperature T and electrochemical potential µK). In what

follows we disregard cross-terms of the dissipation matrix ΓKmm′(E), Eq.(21) and consider

only its diagonal terms ΓKm ≡ ΓKmm (see Fig. 1). The latter are electronic escape rates. This

is a reasonable assumption, when inter-level distance is much bigger than strength of the

molecule-contacts coupling. Moreover, for simplicity we adopt the wide band approximation,

which neglects the lamb shift, Λ = 0, and assumes electronic escape rates to be energy-

independent. Zero-order electronic Green functions projections are

G
(0)<
mm′ (E) =δm,m′

∑
K∈L,R

iΓKmfK(E)

(E − εm)2 + (Γm/2)2
(25)

G
(0)>
mm′ (E) =δm,m′

∑
K∈L,R

−iΓKm[1− fK(E)]

(E − εm)2 + (Γm/2)2
(26)

G
(0) r
mm′(E) =

δm,m′

E − εm + iΓm/2
(27)

where Γm ≡
∑

K=L,R ΓKm is the total escape rate from level m of the molecule.

Strength of molecular coupling to radiation field is described by the radiation dissipation

tensor

γm1m2,m3m4(ω) ≡ 2π
∑
α

Um1m2,αUα,m3m4δ(ω − ωα) (28)

Within the model the tensor has four non-zero elements (see Fig. 1): 12, 12; 12, 32; 32, 12;

and 32, 32. For simplicity we assume all the elements to be the same and given by the

following expression

γ(ω) = γ0

(
ω

ωC

)2

e2(1−ω/ωC) (29)
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where γ0 is parameter characterizing strength of molecular coupling to radiation field and

ωC is cutoff frequency. Instead of the photon GF Fαα′ for each pair of modes α and α′,

Eq. (7), in the simulations we consider Green function characterizing the whole radiation

field

Sm1m2,m3m4(τ, τ
′) ≡

∑
α,α′

Um1m2,α Fαα′(τ, τ ′)Uα′,m3m4 (30)

One can easily see that it satisfies the same Dyson equation, Eq. (9), with obvious modifi-

cations of the self-energy definitions. Its zero-order projections are

S(0)<
m1m2,m3m4

(ω) =− iNpt(ω) γm1m2,m3m4(ω) (31)

S(0)>
m1m2,m3m4

(ω) =− i[1 +Npt(ω)] γm1m2,m3m4(ω) (32)

S(0) r
m1m2,m3m4

(ω) =− i

2
γm1m2,m3m4(ω) (33)

where Npt(ω) is the laser induced mode population. Following Ref. [37] we consider

monochromatic laser characterized by its frequency ω0, intensity N0 and bandwidth δ, so

that

Npt(ω) = N0
δ2

(ω − ω0)2 + δ2
(34)

As discussed above for simplicity we assume the Green function to be the same for each of

four non-zero tensor elements.

In simulations below we utilize arbitrarily chosen unit of energy E0. Unless stated oth-

erwise parameters of the simulations are (energy in units of E0; see Fig. 1): kBT = 0.25,

ε1 = −5, ε2 = 5, ε3 = −2, ΓL1 = ΓR3 ≡ Γ0 = 1, ΓL2 = ΓR2 = 0.1, γ0 = 0.05 Γ0, ωC = 10,

δ = 0.1, and N0 = 1. Laser frequency is chosen at resonance of the transition between levels

2 and 3, ω0 = ε2− ε3 = 7. Fermi energy is taken as the origin, EF = 0, and bias is assumed

to be applied symmetrically, µL/R = EF ± |e|Vsd/2. Simulations were performed on energy

grid spanning region from −30 to +30 with step 0.001. Self-consistent NEGF simulation

was assumed to converge when levels populations difference at consecutive steps is less than

10−10. Results for particle and energy fluxes are presented in terms of flux units I0 ≡ 1/t0

and J0 ≡ E0/t0, respectively. Here t0 ≡ ~/E0 is unit of time.

While results of simulations below depend only on ratio of parameters, we note that one

can choose realistic absolute values of the parameters. Indeed, with characteristic molecular

dipoles ∼ 10 D [66] and incident laser fields ∼ 108 V/m [67] reasonable bare molecular

coupling to radiation field is U ∼ 2 · 10−2 eV. Assuming cavity volume of 100 Å3 and
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radiation frequency of 1 eV we get for the radiation field density of modes ρ ∼ 2 ·10−8 eV−1.

Hence parameter γ0 characterizing coupling to the radiation field in our model becomes

γ0 ∼ 2πU2ρ ∼ 5·10−11 eV. Finally taking into account surface enhancement of bare signal by

factor of 1014−1015 [68] we arrive at final estimate γ0 ∼ 10 −3 eV. Thus for realistic estimate

of electron escape rate for a molecule chemisorbed on metallic surface, Γ0 ∼ 0.01−0.1 eV [50],

our choice of molecular coupling to radiation field is within reasonable range.

Figure 4 shows results of the self-consistent (diagrammatic) and bare PT simulations.

Optical flux coincides in the two approaches in the region of high positive biases, and differs

in other regimes (see Fig. 4a). The effect is due to our choice of resonant optical transi-

tion between levels 2 and 3 of the molecule and the fact that for the choice of simulation

parameters this transition defines the current through the junction at high biases. Indeed,

Fig. 4b shows that current at the right interface calculated within the bare PT approach

(dotted line, squares) coincides with the self-consistent diagrammatic result (solid line, cir-

cles) in the high bias region. However, charge conservation law, Eq. (19), is violated by the

bare PT approach (compare dashed line, triangles and dotted line, squares). Also value of

the charge flux is different between the two approaches at, e.g., negative biases. Similarly,

energy conservation law, Eq. (20), is violated by the direct PT simulation (see Fig. 4c).

Figure 5 shows that (as expected) violation of the conservation laws in the bare PT

simulation diminishes with the strength of molecular coupling to radiation field. We stress

that the results are presented in the parameter range where diagrammatic perturbation

treatment of molecular coupling to radiation field is applicable, γ0 � Γ. It is the improper

version of the perturbation theory (the bare PT), which leads to inconsistencies in predictions

of molecular junction responses.

Results of self-consistent calculation of optical spectrum of the junction is presented in

Fig. 6 at the region of maximum discrepancy between the two approaches, |e|Vsd = 0 (see

Fig. 4a). Two peaks in the spectrum correspond to two electronic transitions in the model:

ε2− ε1 and ε2− ε3. The spectrum scales with the strength of molecular coupling to the field

(the latter correspond to intensity of the radiation), i.e. the junction operates near linear

scaling of its optical response. However this seemingly linear behavior does not allow bare

PT implementation as is demonstrated in Fig. 4.

Finally, we note that violations of conservation laws appear in the bare PT only for

quantum radiation fields. Indeed, for classical fields (and within the rotating wave approx-
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imation) one always can formulate effective time-independent problem by transforming to

the rotating frame of the field (see e.g. Ref. [69]). For the classical analog of the model

(1)-(3) this transformation results in effective non-interacting model with fluxes defined by

usual Landauer expressions. The latter are conserving by construction (see Appendix C for

details).

V. CONCLUSIONS

We consider diagrammatic perturbation theory formulation for transport and optical

spectroscopy of molecular junctions. Transport and optical response are characterized by

electron and photon fluxes, respectively. Diagrammatic perturbation theory is known to

impose a set of restrictions on the considered diagrams and involves resummation of infinite

number of diagrams to assure conserving character of the resulting approximation [52, 53].

We then compare the formulation with the bare PT treatment of the molecule-field coupling,

which is usually employed in the studies on nonlinear optical spectroscopy [11]. We show that

the finite order bare PT expansion violates the conserving character of the approximation.

Results of model simulations within a reasonable parameter range demonstrate that the

violation may be significant. We note that the self-consistent character of the diagrammatic

perturbation approach (i.e. requirement of resummation of infinite number of diagrams)

mixes elementary optical processes, which forbids utilization of the double-sided Feynman

diagrams in molecular junctions (or for molecules chemisorbed on metal surfaces) when

radiation field is treated quantum-mechanically.

We note that while our findings are illustrated with numerical examples employing

simple junction model treated within fourth order perturbation in molecule-field coupling

and at steady state, the conclusions are completely general. Indeed, requirement of self-

consistency (resumming diagrams to infinite order) in constructing conserving approxi-

mations equally applicable to time-dependent processes, while any finite order subset is

non-conserving [52, 53]. Moreover, presented analysis is equally applicable to quasiparticle

(molecular orbital) [52, 53, 58, 59] or many-body states [70–72] formulations.
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Appendix A: Derivation of fluxes expressions

Expression for electron current, Eq. (4) is a well known result (see, e.g., Ref. [56]), so we

will focus on derivation of the photon flux. We start from definition of the flux as rate of

change of population in the bath (radiation field)

Ipt(t) ≡
d

dt

∑
α

〈
â†α(t) âα(t)

〉
= i

d

dt
Tr [F<

αα(t, t)] (A1)

where

F<
α1α2

(t1, t2) = −i
〈
â†α2

(t2) âα1(t1)
〉

(A2)

is lesser projection of the photon Green function (7).

We then write differential forms of the Dyson equation, Eq. 9, which for the lesser pro-

jection are (
i
∂

∂t1
− ωα1

)
F<
α1α2

(t1, t2) =

∫ +∞

−∞
dt′ (A3)(

Π<
α1α′(t1, t

′)F a
α′α2

(t′, t2) + Πr
α1α′(t1, t

′)F<
α′α2

(t′, t2)

)
(
− i ∂

∂t2
− ωα2

)
F<
α1α2

(t1, t2) =

∫ +∞

−∞
dt′ (A4)(

F<
α1α′(t1, t

′) Πa
α′α2

(t′, t2) + F r
α1α′(t1, t

′) Π<
α′α2

(t′, t2)

)
Here superscripts r and a indicate retarded and advanced projections. Note that

F a
α1α2

(t1, t2) = [F r
α2α1

(t2, t1)]∗ and F<
α1α2

(t1, t2) = −[F<
α2α1

(t2, t1)]∗ (and similar relations for

projections of the self-energy Π).

Setting α1 = α2 = α and t1 = t2 = t, and utilizing (A3) and (A4) in (A1) leads to

Ipt(t) = (A5)

2 Re

∫ +∞

−∞
dt′Tr

[
Π<(t, t′)F a(t′, t) + Πr(t, t′)F<(t′, t)

]
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Finally, using

F a(t′, t) =θ(t− t′)
[
F<(t′, t)− F>(t′, t)

]
(A6)

Πr(t, t′) =θ(t− t′)
[
Π>(t, t′)− Π<(t, t′)

]
(A7)

where θ(x) is the Heaviside step-function, leads to Eq. (5).

Appendix B: Expressions for self-energies

Expressions for the self-energies (11) and (12) are derived following diagrammatic pertur-

bation theory [62, 63, 73], which for the model (1)-(3) leads to set of even in the interaction

contributions

Σpt
mm′(τ, τ

′) =
∞∑
n=1

Σ
pt (2n)
mm′ (τ, τ ′) (B1)

Παα′(τ, τ ′) =
∞∑
n=1

Π
(2n)
αα′ (τ, τ ′) (B2)

Explicit expressions for second and fourth order are

Σ
pt (2)
mm′ (τ, τ ′) =i

∑
α1,α2

∑
m1,m2

Gm1m2(τ, τ
′)

(
Um1m,α1Fα1,α2(τ, τ

′)Uα2,m2m′ + Um′m2,α2Fα2α1(τ
′, τ)Uα1,mm1

)
(B3)

Σ
pt (4)
mm′ (τ, τ ′) =−

∑
α1,α2
α3,α4

∑
m1,m2,m3
m4,m5,m6

∫
c

dτ1

∫
c

dτ2Gm1m2(τ, τ1)Gm3m4(τ1, τ2)Gm5m6(τ2, τ
′)

×
(
UM1m,α1Fα1α4(τ, τ2)Uα4,m4m5 + Um5m4,α4Fα4α1(τ2, τ)Uα1,mm1

)
(B4)

×
(
Um′m6,α2Fα2α3(τ

′, τ1)Uα3,m2m3 + Um3m2,α3Fα3α2(τ1, τ
′)Uα2,m6m′

)
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for the electron self-energy, and

Π
(2)
αα′(τ, τ

′) =− i
∑
m1,m2
m3,m4

Uα,m1m2 Gm2m4(τ, τ
′)Gm3m1(τ

′, τ)Um3m4,α2 (B5)

Π
(4)
αα′(τ, τ

′) =
∑
α1,α2

∑
m1,m2,m3,m4
m5,m6,m7,m8

∫
c

dτ1

∫
c

dτ2 Uα,m1m2Um3m4,α1Fα1α2(τ1, τ2)Uα2,m7m8Um5m6,α′

(B6)

×
(
Gm2m4(τ, τ1)Gm3m6(τ1, τ

′)Gm5m7(τ
′, τ2)Gm8m1(τ2, τ)

+Gm2m7(τ, τ2)Gm8m5(τ2, τ
′)Gm5m4(τ

′, τ1)Gm3m1(τ1, τ)

)
for the photon self-energy.

Appendix C: Classical treatment of radiation field

Analog of the model (1)-(3), when radiation field is treated classically, is

Ĥ(t) =
∑
m∈M

εmd̂
†
md̂m +

∑
k∈L,R

εkĉ
†
kĉk

+
∑
m∈M

∑
k∈L,R

(
Vmkd̂

†
mĉk +H.c.

)
(C1)

+

(
U12d̂

†
1d̂2 + U32d̂

†
3d̂2

)
eiω0t +H.c.

Transforming the Hamiltonian into the rotating frame of the field

Ĥ → ˆ̄H = i

(
∂

∂t
eŜ(t)

)
e−Ŝ(t) + eŜ(t)Ĥe−Ŝ(t) (C2)

S(t) = i
ω0

2
t

(
n̂1 + n̂3 − n̂2

)
(C3)

(n̂m = d̂†md̂m) leads to

Ĥ(t) =
∑
m∈M

ε̄md̂
†
md̂m +

∑
k∈L,R

εkĉ
†
kĉk

+
∑
m∈M

∑
k∈L,R

(
Vmk(t)d̂

†
mĉk +H.c.

)
(C4)

+

(
U12d̂

†
1d̂2 + U32d̂

†
3d̂2

)
+H.c.
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Here ε̄1,3 = ε1,3 + ω0/2, ε̄2 = ε2 − ω0/2, Vmk(t) = Vmke
−iω0t/2 for m = 1, 3 and Vmk(t) =

Vmke
+iω0t/2 for m = 2.

In the model we disregard contact-induced coupling between levels 1, 3 and level 2, ΓKm2 =

0 (m = 1, 3), which is a reasonable assumption for levels separated by ∼ 1 eV gap, thus

time-dependence in coupling parameters Vmk(t) will result in shift of the zero of energy

compensating for shift of the levels ε̄m. For example, after the transformation Eq.(22)

becomes [
Σ̄<
K(E)

]
mm′

= iΓKmm′(E ± ω0/2)fK(E ± ω0/2) (C5)

with ‘+’ for m = m′ = 2 and ‘−’ for m,m′ = {1, 3}. Alternatively (in a more general

model), one can drop ΓKm2 (m = 1, 3), utilizing the rotating wave approximation.

Thus the transformation leads to an effective time-independent model. Starting from

general expressions for steady-state fluxes[56]

IK =

∫
dE

2π
Tr

[
Σ̄<(E) Ḡ>(E)− Σ̄>(E) Ḡ<(E)

]
(C6)

JK =

∫
dE

2π
E Tr

[
Σ̄<(E) Ḡ>(E)− Σ̄>(E) Ḡ<(E)

]
(C7)

one derives expressions for charge and energy fluxes in the form of Eqs. (13) and (17),

respectively, with

iK(E) = (C8)∑
m1,m2
m3,m4

={1,3}

ΓKm1m2
(E − ω0

2
) Ḡr

m2,m3
(E) ΓKm3m4

(E − ω0

2
) Ḡa

m4m1
(E)

[
fK(E − ω0

2
)− fK̄(E − ω0

2
)

]

+ ΓK22(E +
ω0

2
)Gr

2,2(E) ΓK22(E +
ω0

2
)Ga

22(E)

[
fK(E +

ω0

2
)− fK̄(E +

ω0

2
)

]
+

∑
m1,m2={1,3}

ΓKm1m2
(E − ω0

2
)Gr

m2,2
(E) ΓK22(E +

ω0

2
)Ga

2m1
(E)

×
[
fK(E +

ω0

2
) + fK(E − ω0

2
)− fK̄(E +

ω0

2
)− fK̄(E − ω0

2
)

]
Here K = L (R) and K̄ = R (L),

Ḡr(E) =

[
EI− H̄M − Σ̄r(E)

]−1

(C9)

is the retarded Green function, H̄M is molecular part of the Hamiltonian, and Ḡa(E) ≡

[Ḡr(E)]† is the advanced Green function. Structure of the energy resolved particle current
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ik(E), Eq.(C8), assures conservation of both particle and energy currents, IL = −IR and

JL = −JR.

We note that main difference between classical and quantum fields (with respect to con-

serving character of approximation) is ability of the latter to mediate photon supported

effective electron-electron interaction. Technically this interaction comes in the form of elec-

tronic self-energy due to coupling to radiation field, Eq.(B1), which being approximated in

an inappropriate way (e.g., within bare PT) leads to violation of charge and energy con-

servation laws. Classical fields do not produce self-energies, rather they enter the system

Hamiltonian as driving forces and require time-dependent consideration of the problem.

As shown above, in the simple case of single populated mode and within the RWA, time-

dependent classical problem can be transformed (by going into rotating frame of the field)

into effective time-independent one.
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FIG. 4. Transport and optical response of the molecular junction, Fig. 1, under applied bias

Vsd. Steady-state self-consistent diagrammatic simulations (circles, solid blue line) are compared

with bare PT results (triangles, dashed red line and squares, dotted red line). Shown are (a)

Optical flux Ipt, Eq.(14); (b) current IK , Eq.(13); and (c) deviation from conservation of energy,

∆J ≡ JL + JR + Jpt. In panel (b) IL is shown with triangles and −IR with squares for the bare

PT approach (IL = −IR in the self-consistent simulation). See text for parameters.
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