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Abstract 

Making judgments by relying on beliefs about causal relations 
is a fundamental aspect of everyday cognition. Recent 
research has identified two ways that human reasoning seems 
to diverge from optimal standards; people appear to violate 
the Markov Assumption, and do not to “explain away” 
adequately. However, these habits have rarely been tested in 
the situation that presumably would promote accurate 
reasoning – after experiencing the multivariate distribution of 
the variables through trial-by-trial learning, even though this 
is a standard paradigm. Two studies test whether these habits 
persist 1) despite adequate learning experience, 2) despite 
incentives, and 3) whether they also extend to situations with 
continuous variables. 

Keywords: Causal Reasoning, Markov Assumption, 
Explaining Away 

Introduction 
In the last decade there has been a surge of interest in causal 
reasoning, particularly whether people reason in line with 
Causal Bayesian Networks. One question is how people 
learn causal structures (Steyvers, Tenenbaum, 
Wagenmakers, & Blum, 2003). Another questions is, once 
one has knowledge of a causal network, how well can he or 
she make inferences. For example, What are my chances of 
developing Sickle Cell disease given that my mother and 
grandmother have it; the causal structure is [Grandmother 
→ Mother → Daughter]? Or what are my chances of getting 
an A on an exam if I study for 2 more hours but get 2 fewer 
hour of sleep; [Study Time → Exam Grade ← Sleep]?  

Though people are often accurate at making probabilistic 
causal inferences, two habits deviate from rationality 
(Rottman & Hastie, 2014). First, people often use cues that 
are statistically irrelevant for a given inference, a violation 
of the “Markov Condition.” Second, when there are two 
causes of one effect, people often have difficulty correctly 
inferring the probability of one cause given knowledge of 
the other two variables, known as “explaining away.” 

However, these habits have rarely been tested under 
circumstances in which participants receive all the 
information required to perform optimally. Making a 
quantitative probabilistic judgment requires having 
knowledge of the statistical covariation between the 
variables. For example, without knowledge of the precise 
statistical relations, a reasoner could predict that exam grade 
will increase with study time and decrease with less sleep, 

but would not be able to predict how exam grade would 
change with 2 hours more study time and 2 hours less sleep.  

Giving participants knowledge of the covariation between 
variables through trial-by-trial learning is a common 
paradigm for studying causal reasoning and is known to 
improve judgment compared to verbal descriptions 
(Christensen-Szalanski & Beach, 1982). But surprisingly, 
these two reasoning habits have rarely been tested in 
situations when participants have knowledge of this 
covariation. Thus, the goal of the current studies is to test 
whether these habits persist despite experience. This 
research also provides the first systematic test of causal 
reasoning with Gaussian as opposed to binary variables. 

The Markov Condition 
Consider estimating the probability that a daughter will have 
sickle cell disease given that her mother has it. Because 
sickle cell is a simple autosomal recessive disease, whether 
the grandmother has sickle cell disease has no influence on 
whether the daughter has it above and beyond that her 
mother has it, which can be summarized with the following 
causal structure [Grandmother → Mother → Daughter]. 
The mother is a perfect mediator.  

More generally, for chain [X→Y→Z] and common cause 
structures [X←Y→Z], the Markov condition asserts that 
when inferring the state of X, the state of Z is irrelevant if 
the state of Y is known. This implies, for example, that 
P(z=1|y=1,x=1) equals P(z=1|y=1,x=0). However, people 
tend to violate this assumption. In situations in which all 
variables are presented as binary (1 or 0), people tend to 
infer that P(x=1|y=1,z=1) >  P(x=1|y=1,z=0). The Markov 
condition can also be applied with continuous rather than 
binary variables (e.g., daughter’s height is independent of 
grandmother’s height given knowledge of mother’s height).  

A number of theorists have proposed different 
explanations for this effect (Park & Sloman, 2013; Rehder, 
2014a), and we believe it is likely that multiple explanations 
apply, likely in unison. However, only one study has tested 
violations of the Markov assumption after participants 
experienced the covariation between all three variables 
(Park & Sloman, 2013 Experiment 3). All the other studies 
told participants about the causal relations verbally.  

However, a problem with verbal descriptions is that it is 
likely not clear to participants whether a description like “X 
causes Y, which causes Z” implies that X has no indirect link 
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on Z. Giving participants trial-by-trial experience would 
allow them, to examine whether there is any effect of X on Z 
above and beyond Y. The current study serves to replicate 
this single experiment testing whether people still violate 
the Markov assumption after obtaining multivariate 
experience, and extend the results from binary variables to 
learning about Gaussian-distributed variables. 

Explaining Away on Common Effect Structures 
The second non-rational inference habit is a violation of 
“explaining away”. Explaining away has long been viewed 
as an underlying principle in social attribution (Kelley, 
1972), legal exoneration, and medical diagnosis.1 For 
example, consider two diseases, flu and asthma, both of 
which can cause a cough [flu→ cough ← asthma]. A patient 
presents with a cough and has a history of asthma; because 
of the history of asthma, it is unnecessary to infer that the 
patient also has the flu to explain the cough, so 
P(flu=1|cough=1,asthma=1) should be fairly low. However, 
if it is unknown whether the patient has asthma 
P(flu=1|cough=1), then flu becomes more likely, and if it is 
known that the patient does not have asthma 
P(flu=1|cough=1,asthma=0), flu becomes even more likely. 
More generally, in common effect structures [X→Y←Z], the 
normative pattern of reasoning is P(X=1|Y=1,Z=1) < 
P(X=1|Y=1) < P(X=1|Y=1,Z=0). 

A similar pattern of reasoning should occur with 
continuous variables. Consider if X represents the IQ of a 
father, Z represents the IQ of a mother, and Y represents the 
IQ of their child. Further, suppose that Y is the average of X 
and Z. (In reality Y is not a perfect average because there is 
noise involved, but even with noise the same basic pattern 
demonstrated here occurs.) Knowing the IQ of the mother 
(Z=120) does not help us infer the IQ of the father (X). 
However, suppose that it is known that Z=120 and Y=100. 
We can easily calculate that X=80. That is, once the value of 
Y is known, X and Z become negatively dependent; the 
higher Z is holding Y constant, the lower X must be.  

The most thorough exploration of these judgments had 
participants make forced choice decisions of which would 
be higher, P(X=1|Y=1,Z=0) vs. P(X=1|Y=1)  and P(X=1|Y=1)  
vs.   P(X=1|Y=1,Z=1) (Rehder, 2014a). These studies 
revealed a tendency in the opposite direction of explaining 
away, P(X=1|Y=1,Z=0) < P(X=1|Y=1) < P(X=1|Y=1,Z=1), or 
ambivalent; there was not a robust explaining away pattern. 
This study implemented a number of novel 

                                                             
1 We use the term “explaining away” because an alternate label, 

“discounting”, has many informal meanings and has been used in 
psychology to refer to other phenomena. In particular, 
“discounting” has often been used to refer to lowering one’s 
estimate of the strength of one cause when one learns of a second 
cause that is strong, which is related to both rational and irrational 
forms of “cue competition,” “blocking,” and “conditioning.” The 
judgments assessed here are probability estimates, not causal 
strength judgments.	  

counterbalancing and control features, and presents the 
strongest evidence to date on explaining away.  

However, like the few others before it, this study did not 
present participants with experience by which they could 
actually learn the correlations between the variables; the 
reasoning was solely based upon a verbal description of the 
causal structure. The problem with just a verbal description 
of the structure (“X and Z both cause Y”) is that it does not 
convey the strength of the causal relations. If in fact X and Z 
are both weak causes of Y, then the normative amount of 
explaining away is quite small. Additionally, explaining 
away normatively varies by exactly how the two causes 
combine to produce the effect. Explaining away should 
occur if either cause is sufficient to produce the effect (e.g., 
flu and asthma for cough), but not when both causes are 
necessary (e.g., spark and oxygen for fire) (Rehder, 2014b), 
which may not be fully conveyed verbally.  

Thus, in the current studies we gave participants 
experience that instantiates the multivariate distribution 
among the three variables, from which normatively correct 
inferences can be calculated. This also allows us to test not 
just the qualitative predictions but also whether the 
judgments are quantitatively on target. We also test the 
explaining away habit with both binary and Gaussian 
variables. One other study examined explaining away with 
continuous variables (Sussman, Abigail & Oppenheimer, 
2011), and found insufficient explaining away; however, in 
that task participants again did not have experience or 
knowledge quantifying the strength of the causal relations. 

Study 1: Binary Variables 
In Study 1 participants learned about three causal structures, 
with binary variables. Afterwards they made a judgments 
predicting the state of one variable given knowledge of one 
or two of the other variables to test whether their judgments 
violated or upheld the Markov condition and whether they 
demonstrated explaining away appropriately. 

Methods 
Participants Fifty-one undergraduates at the University of 
Chicago were paid $12 per hour to participate; the study 
lasted 17 minutes on average. For further motivation they 
were also paid 8 cents for each correct inference. 
Stimuli and Design Participants reasoned about three 
scenarios involving a chain [X→Y→Z], a common cause 
[X←Y→Z], and a common effect [X→Y←Z] structure. The 
variables (X, Y, and Z) were framed as physiological 
variables in the human body that could be either high 
(represented as + or 1) or low (represented as – or 0). There 
were three cover stories, one about neurotransmitters 
(amounts of Serotonin, Epinephrine, and Dopamine), 
another about how the digestive tract absorbs chemicals 
from food (amounts of Water, Protein, and Fructose 
Absorption), the last one about components of blood (Red 
Blood Cell, White Blood Cell, and Platelet Concentration). 
These variables were chosen so that they could plausibly be 
causally related to one another probabilistically in any 
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possible combination, but participants would be unlikely to 
have prior beliefs about how they were causally related. The 
order of the three causal structures, the cover-stories, the 
assignments of the three labels to variables (X, Y and Z), the 
position of the three variables on the computer screen, and 
the order of the learning trials were all randomized.  

The sets of learning trials (Table 1) were generated in the 
following way: For the chain and common cause structure, 
the chosen parameters produced identical sets of learning 
trials. When a cause was present it produced its effect with a  
probability of .75. When a cause was absent its effect still 
occurred with a probability of .25. The base rates of 
exogenous causes were .50. For the common effect 
structure, the base rates of the two causes, P(x=1) and 
P(z=1) were also .50. The two causes combined through a 
Noisy-OR gate with strengths of .50, and thus 
P(y=1|x=0,z=0) = 0, P(y=1|x=1,z=0) = P(y=1|x=0,z=1) = .50, 
and P(y=1|x=1, z=1)=.75.  

The normative point estimate inferences can be computed 
directly from Table 1. For example, P(X=1|Y=1,Z=1) can be 
computed by dividing the sum of all the rows in which X=1, 
Y=1, and Z=1 by the sum in all the rows in which Y=1 and 
Z=1 (e.g., [6]/[6+4] = .60 for the common effect). 
Alternatively, if people learn the parameters of the causal 
model from experience the normative inferences can be 
derived from the parameters (Rottman & Hastie, 2014). 
 

Table 1: Learning Trials in Experiment 1. 
 

X Y Z Chain and  
Common Cause 

Common  
Effect 

1 1 1 9 6 
1 1 0 3 4 
1 0 1 1 2 
1 0 0 3 4 
0 1 1 3 4 
0 1 0 1 0 
0 0 1 3 4 
0 0 0 9 8 

 
Procedures The general procedure followed a standard 
trial-by-trial, case-by-case causal learning paradigm in 
which participants were first told a causal cover-story, then 
learned the probabilistic relations between the variables 
from experience, and finally made a series of inferences. 
Participants were asked to pretend that they were 
physiologists studying biological processes in the human 
body. They were told that they would perform studies in 
which they would bring healthy people into a laboratory and 
would measure three physiological variables. They were 
told how to interpret pictures like the ones in Figure 1, 
where arrows represented causal relations between the three 
physiological variables and pointed from causes to effects. 
A “+” sign signified a high amount of the variable and “–” a 
low amount of the variable. Participants were also told not 
to use any prior knowledge about physiology and to assume 

that these three variables are the only ones that mattered 
within this biological system.  

Next, participants completed a learning phase for each of 
the three causal scenarios in a randomized order, involving a 
chain, common cause, and common effect. Participants were 
shown a graphical representation of the causal relationships 
and they observed whether each of the variables was high or 
low in a sample of 32 cases (“healthy people”). The cases 
were presented in a sequential trial-by-trial format (Figure 
1a) in a randomized order and the positions of the three 
variables, X, Y, and Z on the screen were randomized. 

After the learning phase participants made a series of 
inferences; the order of the questions was randomized. 
Participants made inferences about each variable, given that 
the states of the other two variables were high, low, or 
unknown. Figure 1b shows one of the inferences involved in 
explaining away. The questions were presented to 
participants using both a visual diagram and corresponding 
text. When the state of a variable was unknown it was 
denoted visually with an X and participants were told that 
the machine used to test for that variable was broken. 

Underneath the variable to be inferred was a gray box that 
participants used to input their estimates. Following the 
practice of Waldmann and Hagmayer (2005), we used a 
frequency format (number of people out of 20) for the 
question rather than a probability format.  

At the end of the study, participants were paid for their 
time and a bonus for the number of questions that they 
answered correctly; an answer on the 21-point scale was 
considered correct if it was the closest response to the 
normative calculation. Participants were not given feedback 
during the experiment. 
 

 
 
Figure 1: Example Stimuli in Experiment 1 for the Common 
Effect Structure. Note. Panel A shows an example of one 
trial in the learning phase. Panel B shows an example of the 
judgment P(water=1 | fructose=1). 
 
Analyses 
All responses were converted to a probability scale of 0-1. 
Because a common cause [X←Y→Z] is symmetric, 
inferences like P(z=1|y=1,x=1) and P(x=1|y=1,z=1) are 
essentially duplicates or repeated measures. For the chain 
[X→Y→Z], we looked and did not find systematic 

Water
Absorption

Protein
Absorption

Fructose
Absorption

Water
Absorption

Protein
Absorption

Fructose
Absorption

Suppose that 20 new people come into your laboratory 
all of whom have a high amount of Fructose Absorption 
and an unknown amount of Protein Absorption. How 
many of these 20 people would have a high vs. low 
Amount of Water Absorption?

a b
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differences for the inferences going down versus up the 
chain, thus we treat inferences like P(z=1|y=1,x=1) and 
P(x=1|y=1,z=1) as repeated measures. Additionally, on the 
chain and common cause the normative value for 
P(z=1|y=1,x=1)=.75 and the normative value for 
P(z=1|y=0,x=0)=.25. These inferences showed the same 
patterns regardless of whether Y=1 or Y=0, so we converted 
inferences in the bottom half of the scale to the top half so 
they could be analyzed together.  

Results and Discussion 
The Markov Assumption The Markov Assumption implies 
that pairs of inferences such as P(x=1|y=1,z=1) and 
P(x=1|y=1,z=0) on the chain and common cause should be 
equivalent. To test whether the average judgments were 
reliably different for the P(x=1|y=1, z=0) vs. P(x=1|y=1, 
z=1) judgments, we used mixed linear regressions. When 
appropriate, we used a negative square root transformation 
on the dependent variable to transform the data to rough 
normality. All confidence intervals reported were back-
transformed so that they can be interpreted on the 
probability scale. 2 For one participant in Experiment 1a the 
participant’s responses were very similar within a scenario, 
likely reflecting disengagement from the task. Thus, we 
threw out those observations. 
 

Table 2. Markov Assumption Results in Study 1. 
 

Inference Norm. X→Y→Z X←Y→Z 
P(x=1|y=1,z=1) .75 .78 .77 
P(x=1|y=1,z=0) .75 .59 .65 
95% CI of Difference 0 [.13, .22] [.07, .16] 

 
We ran three mixed effects regressions for the three 

structures, to test whether the inferences were higher when 
the screened-off variable (z in Table 2) was 1 instead of 0. 
By-subject random effects were included for the intercept 
and for the slope (the difference between the two 
inferences). See Table 2 for 95% confidence intervals on the 
size of the Markov violation. There were significant 
violations of the Markov assumption for both the chain and 
common cause.  

The Markov Assumption also has a role in the common 
effect [X→Y←Z] structure; X and Z are independent of each 

                                                             
2 Because it was not always possible to transform the data to 

normal distributions, all analyses were also run using mixed effect 
logistic regressions using median splits. For example to compare 
the inferences P(x=1|y=1,z=1) and P(x=1|y=1,z=0), we took the 
median judgment across both types of inference, recoded 
inferences above the median as 1, below as 0, and then used a 
logistic regression with the same random effects structure as above 
to test whether P(x=1|y=1,z=1) was more likely than 
P(x=1|y=1,z=0) to have 1s. These two methods produced very 
similar results, if anything the median split analysis tended to 
produce cleaner results. However, we report the normal regressions 
because they can be back-transformed onto the probability scale 
which aids interpretability. 

other when the state of Y is not known, which means that 
P(x=1|z=1) = P(x=1|z=0). In this study, both of these two 
judgments should be .50, and indeed they were very close; 
the mean for  P(x=1|z=1) was .52, and for P(x=1|z=0) was 
.51, 95% CI of difference = [-.02, .05]  

We also assessed whether a small minority of participants 
were responsible for the Markov violations, or whether 
violating the Markov Assumption was a common habit. 
Each participant made 12 inferences relevant to the Markov 
Assumption (across the three structures, the symmetrical 
judgments, and when y=1 vs. y=0 for the chain and common 
cause). For each participant we conducted a t-test comparing 
the 6 inferences when the irrelevant variable was 1 against 
the six inferences when the irrelevant variable was 0. Out of 
a total of 51 participants, 44 gave higher inferences when 
the irrelevant variable was 1 than 0, and for 19 participants 
this effect was significant (despite the fact that each t-test 
was computed with only 12 judgments). If there really is no 
overall tendency to violate the Markov Assumption, given a 
bidirectional α=.05, with 51 subjects only 1 or 2 participants 
should have a significant positive Markov violation merely 
due to chance. Only 7 had averages that went in the opposite 
direction, and none of those were significant. In sum, the 
habit to violate the Markov assumption is common. 
Explaining Away The left side of Table 3 shows the 
normative calculations and empirical means for the three 
inferences pertinent to explaining away. The right side 
shows confidence intervals of the difference between the 
two inferences such as P(x=1|y=1,z=0) - P(x=1|y=1,z=1)  
that provide the crucial tests of explaining away. The 
confidence intervals were calculated using mixed linear 
regressions with by-subject random effects on the intercept 
and the slope (the difference between the two judgments) to 
account for repeated measures. The lower bound of the 
confidence interval identifies whether the amount of 
explaining away is significantly higher than zero and the 
upper bound identifies whether the amount of explaining 
away is significantly lower than the normative amount.  

The inferences for P(x=1|y=1) were on average lower 
than the inferences for P(x=1|y=1,z=1), not higher as 
implied by the normative model. The inferences for 
P(x=1|y=1,z=0) and P(x=1|y=1,z=1) were not significantly 
different; normatively P(x=1|y=1,z=0) should be higher. 

 
Table 3. Explaining Away Results in Study 1. 

 
 Raw 

Inferences 
Explaining Away 

Comparisons 
Inference Norm. Empi- 

rical 
Norm 95%CI of 

Difference 
P(x=1|y=1,z=1) .60 .70 - - 
P(x=1|y=1) .71 .59 .11 [-.16, -.06] 
P(x=1|y=1,z=0) 1 .69 .40 [-.08,  .06] 
 

In summary, Study 1 found that even when participants 
experience learning data that instantiates the statistical 
relations among the variables, people still commit violations 
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of the Markov assumption and still do not show a tendency 
towards explaining away. We have also run another version 
of this study with more extreme parameters, which shows 
that people are sensitive to the parameters (they are paying 
attention to the learning data), yet they still show violations 
of the Markov assumption and they show better but still 
suboptimal explaining away. 

Study 2: Continuous Variables 
The purpose of Study 2 is to test the same phenomena but 

with Gaussian-distributed variables. Very little research on 
causal inference has investigated variables on an ordinal, 
interval, or ratio scale generally. The normative model we 
use is linear regression. 

It is not possible to directly compare reasoning with 
binary vs. Gaussian data because the multivariate 
distributions imply different inferences. However, one study 
that allowed for close comparisons revealed a shift from 
exemplar memory (binary) to cue abstraction (continuous) 
(Juslin, Olsson, & Olsson, 2003). In our studies, both for 
binary and continuous variables, both exemplar and cue 
abstraction processes lead normative inferences. Still, 
evidence of different reasoning processes raises the 
possibility that the Markov violations and insufficient 
explaining away may not generalize to Gaussian variables. 
Markov Assumption  One reason people might violate the 
Markov Assumption is because they believe that the 
variables are not perfectly observed when they are presented 
in a “coarse” binary manner (Rehder & Burnett, 2005, 
called this the “uncertainty model”). Consider the chain X→
Y→Z. Suppose you are told that Y is present but Z is absent 
and you are asked to infer X. Suppose further that you 
believe that X, Y, and Z can actually assume any state from 
0-100, and “present” refers to a value greater than or equal 
to 50 and “absent” refers to a value less than 50. Given that 
the binary states of Y and Z conflict (y=present, but 
z=absent), one might presume that both Y and Z are close to 
50. In that case one might infer that X is also fairly close to 
50. However, if you are told that y=present and z=present, 
you might assume that they are both strongly present (e.g., 
maybe somewhere near 75), and then infer that X is strongly 
present. In summary, if people view binary variables as 
coarse simplifications of variables that are actually 
magnitudes, one plausible hypothesis is that people will be 
more likely to respect the Markov Assumption when 
reasoning about magnitude variables.  
Explaining Away  It is possible that explaining away might 
be easier to understand with Gaussian variables. Going back 
to the example in the introduction in which Y is the average 
of X and Z, it should be fairly obvious that X and Z must be 
on opposite sides of Y. This heuristic that X and Z tend to be 
on the opposite sides of Y captures the basic idea that X and 
Z are negatively dependent given Y.3 In fact, Nisbett and 
Ross suggested that a simple “hydraulic heuristic” was 

                                                             
3 This heuristic would not produce perfect responses in our 

study, but would capture the fundamental idea of explaining away. 

relied on in some circumstances, “as if causal candidates 
competed with one another in a zero-sum game” (1980, p. 
128), though this was not empirically tested. In sum, 
explaining away might be easier with Gaussian variables. 

Methods 
Participants Fifty undergraduates were paid $12 per hour; 
the study lasted 32 minutes on average. They were also paid 
10 cents for each judgment accurate within 3 points on 
either side of the correct response. 
Stimuli and Design and Procedure. Study 2 was similar to 
Study 1 except in the following ways. The learning data 
comprised 32 trials, but the three variables were integers on 
the scale [0-100]. The three variables were normally 
distributed with a mean of 50 and a standard deviation of 20 
(constrained such that the minimum and maximum were 0 
and 100). For all three causal structures rXY = rYZ = 2/3.  

During the test phase the values of the known variables 
were chosen randomly from a multivariate normal 
distribution with the same parameters as in the learning 
phase. Participants entered in a response on a scale 0-100. 
The parameters in the learning data mean that for the chain 
and common cause, a linear regression X~Y+Z on the 
learning data would produce a regression weight of  2/3 for 
Y and 0 for Z (due to the Markov assumption). For the 
common effect structure, a linear regression X~Y+Z would 
produce regression weights of 6/5 for Y, and -4/5 for Z (the 
negative captures the explaining away). These regression 
weights are taken as the normative answers. 

Results 
Markov Assumption For the chain and common cause, the 
Markov Assumption was tested by running regressions to 
test whether Z had any effect on the inference of X when the 
state of Y is known E(X|Y=y,Z=z). The regression was fit 
with by-subject random effects on the intercept and random 
effects on the slopes of Y and Z to account for the repeated 
measures within subjects. Table 3 shows the 95% CIs for Y 
and Z. Even though the regression weight for Z should have 
been 0 – it should have had no influence at all above and 
beyond Y, it had a positive influence for the common cause. 
The influence of Y was trending in the positive direction but 
was not significant for the chain. For the common effect 
structure, a regression was used to test whether Z had any 
influence on X when the state of Y was not known, and it did 
have a significantly positive effect. 

 
Table 4. Regression Weights for Markov Assumption in 

Study 2. 
 

Weight Norm. X→Y→Z X←Y→Z X→Y←Z 
Y 0.66 [.48, .75] [.32, .61] - 
Z 0.00 [-.06, .20] [.06, .31] [.23, .48] 

 
Explaining Away Explaining away was tested with a 

linear regression with the cues Y and Z as predictors of X for 
the common effect. The 95% confidence intervals were 
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[0.87, 1.20] for Y,  and [-0.42,-0.14] for Z. The fact that the 
confidence interval for Z is entirely less than zero implies 
that there was a significant explaining away effect. 
However, the lower end of the confidence interval, -0.42, is 
only about half as low as the normative value of -0.80.  

Figure 9 shows a histogram of coefficients for Z when 
separate regressions are run for each participant. There is 
considerable variance and skew, but the distribution 
supports a more optimistic view of participants’ adherence 
to normative explaining away principle than the overall 
regression with random effects on the slope. That is, the 
mode of the distribution is around -0.50 and the median was 
-.44. Still, only 5 out of the 50 participants had regression 
weights less than the normative value of -0.80, though the 
coefficients should be centered on -0.80 if participants were 
following the normative principle. 

 
Figure 2. Explaining Away in Study 2. The vertical bar is 

the normative regression weight and the horizonal bar is the 
95% confidence interval. 

General Discussion 
Two experiments tested whether people could ignore 
statistically irrelevant variables when making causal 
predictions (Markov assumption) and whether they could 
accurately predict the state of one cause given knowledge of 
its effect and an alternative cause (explaining away). These 
experiments are unique in that they 1) gave participants 
learning data that instantiated the statistical relations, 2) 
incentivized participants for correct responding with 
monetary rewards, and 3) tested both binary and Gaussian 
variables. Additionally, even though trial-by-trial learning is 
one the most common paradigms for studying causal 
reasoning, it has only been used once previously to examine 
Markov violations with binary variables (Park & Sloman, 
2013 Experiment 3), not for Gaussian variables or 
explaining away. For the most part, our participants 
continued to violate the Markov assumption and did not 
explain away sufficiently, if at all. 

Despite the insufficient explaining away observed here, 
explaining away may occur in other situations. First, it may 
appear when reasoning about very rare and or very strong 
causes, parameters not tested here. Second, it might be 
facilitated by reasoning about concrete mechanisms (Ahn & 
Bailenson, 1996). Third, it may arise due to domain-specific 

heuristics. For example, a doctor might conceptualize two 
rare diseases as essentially mutually exclusive.  

These studies imply that even with experience with the 
multivariate distribution people still have difficulties 
making accurate judgments. In the future it will be 
important to identify ways to facilitate normative inference. 
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