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According to complementary learning systems theory, integrating new
memories into the neocortex of the brain without interfering with what is
already known depends on a gradual learning process, interleaving new
items with previously learned items. However, empirical studies show
that information consistent with prior knowledge can sometimes be inte-
grated very quickly. We use artificial neural networks with properties like
those we attribute to the neocortex to develop an understanding of the
role of consistency with prior knowledge in putatively neocortex-like learn-
ing systems, providing new insights into when integration will be fast or
slow and how integration might be made more efficient when the items to
be learned are hierarchically structured. The work relies on deep linear net-
works that capture the qualitative aspects of the learning dynamics of the
more complex nonlinear networks used in previous work. The time course of
learning in these networks canbe linked to the hierarchical structure in the train-
ing data, capturedmathematically as a set of dimensions that correspond to the
branches in thehierarchy. In this context, a new item to be learned canbe charac-
terized as having aspects that project onto previously known dimensions, and
others that require adding a new branch/dimension. The projection onto the
known dimensions can be learned rapidly without interleaving, but learning
the new dimension requires gradual interleaved learning. When a new item
only overlaps with items within one branch of a hierarchy, interleaving can
focus on the previously known itemswithin this branch, resulting in faster inte-
gration with less interleaving overall. The discussion considers how the brain
might exploit these facts to make learningmore efficient and highlights predic-
tions about what aspects of new information might be hard or easy to learn.

This article is part of the Theo Murphy meeting issue ‘Memory
reactivation: replaying events past, present and future’.
1. Introduction
A large body of research supports the view that learning in the brain relies on
complementary learning systems. One of these systems, based primarily in the
hippocampus and related structures, allows the rapid acquisition of new knowl-
edge; the other, based primarily in neocortex, supports the acquisition of
structured knowledge that generally builds up over relatively long time scales.
The primary evidence for this view comes from the effect of extensive bilateral
lesions of the hippocampus and related structures in patient HM and sub-
sequently in other neuropsychological patients and animals. In humans, these
lesions profoundly impair the acquisition of arbitrary new memories, while
leaving intact previously acquired knowledge and skills, as well as the ability
to gradually acquire new skills and often-repeated factual information.

The investigation of computational models based on multi-layer artificial
neural networks provided one possible answer to the question, why do we have
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complementary learning systems in the brain? Early after their
introduction, research with these models showed that they
could gradually acquire structured knowledge through an
interleaved learning process, such that experience with each
item occurred repeatedly, interleaved with experience with
other items. Several models of this kind were presented in
the late 1980s and early 1990s, demonstrating how the mastery
of structured bodies of knowledge of several different types
could occur in this way, including knowledge of the mapping
from spelling to sound [1,2], knowledge of the syntactic
structure of sentences [3], knowledge of themapping from sen-
tences to meaning [4], and knowledge of concrete object
semantics [5]. Yet these models had a significant deficiency:
McCloskey & Cohen [6] showed that an attempt to teach
such models new information quickly led to catastrophic inter-
ference with the knowledge previously acquired by the
network. In McClelland et al. [7], we drew on earlier ideas of
Marr [8] to propose that complementary learning systems
exist in the brain to solve this problem: according to our comp-
lementary learning systems theory (CLST), multi-layer neural
networks, thought to be similar to the neocortex of the brain,
need to be paired with a fast-learning, complementary
system inspired by the human hippocampus. Features of the
hippocampus, according to the theory, provide a specialized
type of neural learning system that could learn new things
rapidly, allowing new learning to occur without interfering
with the knowledge previously acquired in the cortex-like
multi-layered neural network. Simulations in McClelland et al.
[7] showed that if these newly learned items were reactivated
from the hippocampus-like system and used as learning experi-
ences for the cortex-like network, interleaved with ongoing
exposure to other information already known to the system,
the new information would be gradually integrated into the
neocortex-like network, without interference.

The recent explosion of research in artificial intelligence
using deep neural networks strongly reinforces and supports
the ideas laid out above. These networks have achieved tremen-
dous success in building up systems of structured knowledge,
providing breakthroughs in machine vision, language proces-
sing, and mastery of the most challenging human-invented
strategy games, including go and chess. These networks
achieve this success through massively interleaved learning,
gradually acquiring their abilities over hundreds of millions
of experiences in some cases. Catastrophic interference is
an important problem for such networks, and developing
methods to allow them to acquire newknowledge quicklywith-
out interfering with existing knowledge is an open and
important research question for artificial intelligence as well
as for understanding biological neural systems [9]. Further-
more, many of the solutions that are being explored (e.g. [10])
rely on complementary learning system-like solutions.

Here, we build on recent developments in the neurobiology
of learning and in the mathematical analysis of learning in
multi-layer neural networks to advance our understanding of
the acquisition of new knowledge and of resulting interference
with what is already known. We begin by reviewing recent
research demonstrating that new knowledge can sometimes
be integrated very rapidly into cortex-like systems, with very
little interference with prior knowledge, both in biological
and artificial learners. We then present new work drawing
on a recently developed mathematical theory of learning in
deep neural networks to provide a mathematically explicit
characterization of some of the observations from previous
work, and to address two additional questions about what
happens when we learn something new after building up
prior knowledge. Specifically, we will address these questions:

— Are all aspects of new learning integrated into cortex-like
networks at the same rate?

— Is it possible to avoid replaying everything one already
knows when one wants to learn new things?

The answers to these questions should contribute to our
understanding of how biological and artificial learning systems
work. In addition, aswe shall see, the answers to these questions
have practical implications, suggesting experience presentation
regimes that could make new learning more efficient in both
natural and artificial learners. Specifically, we will explore
when new learning can proceed rapidly, building efficiently
on what has already been learned; and when it must proceed
slowly to avoid interference. We will see that some but not all
aspects of items to be learnedmight be integratedwithout inter-
ference, andwewill identifyways inwhich interleaved learning
might be optimized using similarity-weighted interleaved learning
to speed the integration of harder-to-integrate aspects of
new information into cortex-like networks, while avoiding
catastrophic interference.

(a) New cortical learning can be fast or slow
A very important development in the literature on the neuro-
biology of learning occurred with the demonstration of rapid
integration of new knowledge into neocortical neural networks
in the research reported in two major articles by Tse et al.
[11,12]. The work clearly demonstrates the key point that
such integration depends on the prior establishment of a struc-
tured body of knowledge that the authors called a schema,
building on the classical ideas of Bartlett [13]. A considerable
body of recent work in human cognitive neuroscience also
investigates the learning of structured bodies of knowledge
and the role of schema consistency [14–17]. Here, we focus
on the work of Tse et al., returning to issues arising in the
human literature in the general discussion.

In these studies, animals were exposed to a flavour-place
associative learning task in a specific, previously unfamiliar
spatial setting consisting of a 2 × 3 metre arena with distinc-
tive intra-maze cues within the arena and extra-maze cues
outside the arena. On each training day, each animal received
one training episode with each of six arbitrary flavour place
associations (figure 1). Within each episode, the animal
received a small pellet of food in a start box that could be
placed along any of the four walls of the arena, and then
was allowed to forage in the arena, where it could find a
food well containing three larger pellets of the same flavour.
Animals tended to retrieve one pellet at a time and return
with it to consume it in the start box before proceeding out
into the arena to retrieve the next pellet, so that each episode
provided several training trials with the same flavour-place
association. Over several weeks, animals gradually acquired
the ability to restrict their search preferentially toward the
correct place in the environment. Then, animals participated
in a single session in which two new flavour-place associations
were introduced. While the flavours were completely arbitrary,
each of the new assigned places was chosen to be adjacent to
the location of one of the food wells associated with a pre-
viously learned flavour (see figure). Half of the animals
received bilateral lesions to the hippocampus within 48 h of
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Figure 1. The results of test assessments after different learning experiences as reported in Tse et al. [11]. (a) Rats tendency to dig in the correct location when cued with
one of the six initially learned flavours associated with the six locations shown in the inset (uncued trials serve as controls) after different numbers of learning sessions (PT
1 = 1 session; PT 2 = 7 sessions and PT 3 = 13 sessions). (b) Retention of two new flavour place associations (locations 7 and 8 on inset) 1 day after one training trial with
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place pairs or the new pairs, indicating retention of the new pairs was not hippocampus-dependent. (d ) Complete failure to learn two further pairs (locations 9 and 10)
after hippocampal lesion, while controls showed robust learning as expected. From fig. 2, panels B-E [11, p. 78]. Reprinted with permission from AAAS.
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the flavour-place learning trial, while the other half received
sham lesions. After a period for recovery from surgery, animals
in both groups were tested on both the original and the novel
flavour-place associations. Remarkably, both groups not
only retained knowledge of the original flavour-place associ-
ation, but both groups demonstrated learning of the new
flavour-place associations; performance was indistinguishable
between the two groups, and did not differ from performance
with the original six associations. Importantly, the lesioned
group could not acquire a second new pair of flavour-place
associations rapidly, while the sham lesioned group acquired
the second new pair as well as they had learned the first.
Thus, an intact medial temporal lobe was required to support
rapid new learning, but integration into neocortical networks
(as evidenced by retained knowledge after hippocampal
removal) occurred within 48 h. This rapid acquisition of
schema-consistent knowledge contrasted with the perform-
ance of the same animals in a new arena with different
intra- and extra-maze cues, where they were exposed to six
new flavour-place associations in a novel spatial arrangement.
Here, the control animals learned just as gradually as they did
in the first environment, while the animals with hippocampal
lesions failed to show any progress in learning the new
flavour-place associations. Thus, the findings indicate that ani-
mals required a preexisting schema for rapid flavour-place
association even with an intact hippocampal network.

Inspired by these findings and their relevance to CLST,
McClelland [18] used the neural network previously used [7]
to show that an analogue of the Tse et al. findings could be
observed in a neural network thought to capture properties
of the neocortex. We describe this network and several of its
characteristics because it provides the basis for much of the
new work we describe later in this article.

The network, based on one introduced by Rumelhart &
Todd [5], demonstrates howknowledge stored in the connection
weights of amulti-layered neural network is gradually acquired
through interleaved learning. We had previously used this
network [7] to capture the gradual differentiation of conceptual
knowledge that occurs over the course of early through middle
childhood as children learn more and more about objects in the
world and their properties. Subsequent work [19,20] showed
how this model could account for many aspects of the develop-
mental progression of semantic knowledge acquisition, as well
as the disintegration of such knowledge as a function of brain
damage, thought to reduce the fidelity of the learned represen-
tations of concepts through the random destruction of neurons
as a result of neuro-degenerative disease [21].

The network (shown in figure 2) was initially conceived by
Rumelhart & Todd [5] as a way of learning knowledge that
might be expressed through propositional statements such as
‘a canary can fly’, ‘a tree is a plant’, ‘a rose is red’ and ‘fish
have fins’. The network possessed two pools of input units,
the first of which contained a separate input unit for each of
eight items (two birds, two fish, two trees and two flowers),
while the second contained a unit for each of four possible
semantic relations (ISA, IS, CAN and HAS). The network
acquired knowledge of the set of propositions true of each of
the eight items by learning froma set of 32 training experiences,
one for each item-relation pair. When given the item-relation
pair as input, the network’s task was to activate the correct
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Figure 2. (a) The multi-layer neural network model introduced in Rumelhart & Todd [5] and used in simulations reported in previous papers [7,18]. The full back-
ground training set consisted of 32 training items, one for every combination of each of the eight indicated items with each of the four indicated contexts. The
network was trained to activate the correct set of output units corresponding to each item-context pair. For example, for robin can the network was trained to
activate grow, move, fly. (b) An explicit hierarchical tree representing the taxonomic hierarchy or the items used and the set of facts included in the training examples.
Facts true of a node higher up the tree (e.g. animal) propagate down to the specific items at the bottom of the tree (e.g. can grow, can move, and can fly propagate
down to robin from the living thing, animal, and bird nodes respectively). Adapted with permission from fig. 2 [18, p. 1194] American Psychological Association.
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corresponding output units, indicating all of the completions
that were true for that item and relation. For example, when
given ’robin CAN’ as input, the network’s task was to activate
the ‘grow’, ‘move’ and ‘fly’ output units. Training occurred
through repeated epochs in which each experience occurred
once. After presentation of each item, activation propagated
forward through the network, producing activations of units
at the representation, integrative hidden, and output or attri-
bute layers of the network. The back propagation learning
algorithm [22] was then used to make small adjustments to
the connection weights. This is the algorithm still used today
in deep learning research to train most deep neural network
models in AI and machine learning [23].

As previously demonstrated [7], the network gradually
acquires knowledge of the objects and their properties, in a pro-
gressive manner, capturing the progressive differentiation of
conceptual knowledge exhibited by children. First, the net-
work learns to distinguish the plants from the animals, and
at this time in its development, it treats all plants as essentially
one kind of thing with one set of properties, and all animals as
another kind of thing with another set of properties. Next, it
differentiates the birds from the fish, and then the trees from
the flowers. Finally, it learns the distinctions among specific
items within each of these categories, correctly indicating, for
example, that it is only the canary, and not the robin, that can
sing. (See [20] for evidence of similar patterns in young children
as well as other characteristic patterns exhibited both by
developing children and the network.)

Once this learning has occurred, the network can be said
to have acquired a structured body of knowledge, or in
the terminology of Tse et al. [11], a schema. Specifically, follow-
ing previous work [18], we define a schema as a structure that
organizes a body of knowledge so that each item has a well-
defined place. The idea is that the rats in the Tse et al. exper-
iment learned a spatial schema for the arena in which each of
the flavoured foods they learned about had a specific place.
Likewise, the neural network learned a schema—in this case,
a taxonomic hierarchy—in which each learned item also had
a specific place. Following this logic, we can define a schema-
consistent item to be an item that could be added to an existing
schema without requiring alterations or extensions to it.
Examples of schema-consistent items include an unfamiliar,
but typical bird (labelled a cardinal) and an unfamiliar, but
typical fish (labelled a trout). While the real cardinal and
trout both have unique differentiating features, the items
used in McClelland [18] did not; instead, their properties
matched those of one of the known birds (a robin) and one of
the known fish (the salmon). We see this as corresponding to
the situation with the new schema-consistent flavour-place
associations in Tse et al. since each of the places used corre-
sponded closely to one of the places used in one of the
previously learned flavour-place associations.

To illustrate the importance of consistency with the pre-
viously learned schema in the neural network, McClelland
[18] also considered an item previously used in McClelland
et al. [7]. This item, called a penguin, shared the same ISA prop-
erties with the known birds, but had the same CAN attributes
as the known fish. Crucially, this information is not fully
schema consistent, in that it prevents the penguin from being
slotted into an existing spot in the learned taxonomic hierarchy.

For each of the new items, McClelland [18] conducted the
following simulation experiment. Beginning with the network
that has already acquired the structured knowledge system for
the eight initial items, a new input unit was added for the new
item. The network was then trained with two training experi-
ences involving the new item, one using the ISA relation and
one using the CAN relation. Thus, for the trout, the two new
items specified trout ISA LivingThing-Animal-Fish and trout
CAN Grow-Move-Swim, and for the cardinal, the two new
items specified cardinal ISA LivingThing-Animal-Bird and
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cardinal CAN Grow-Move-Fly. For the partially schema-incon-
sistent penguin, the two new items specified penguin ISA
LivingThing-Animal-Bird and penguin CAN Grow-Move-Swim,
crossing the ISA properties of the birds with the CAN proper-
ties of the fish. In each of the three simulations, only the two
experiences involving one of the new items were presented,
without interleaving, making each simulation analogous to
the situation in Tse et al. in which learning of new flavour-
place associations occurred without interleaving with ongoing
exposure to the previously learned flavour-place associations.

The results were very similar for the case of the cardinal
and the trout, so they are averaged together in figure 3,
where they are contrasted with the results for the experiment
with the penguin. On figure 3a, we show the time course of
learning to activate the correct outputs, as measured by the
mean squared error across all of the network’s output units
for both item-relation pairs used in the experiment. For
both the cardinal and the trout, the error is eliminated very
rapidly, indicating that the network very rapidly acquired
the ability to learn each of these two items. It should be
noted that the network could not have known which set of
output units to map the input to—the correct outputs in
the case of the trout are not the same as in the case of the car-
dinal. Thus, in a sense, the network is learning an arbitrary
association in each of these two cases, analogous to the arbi-
trary linking of a specific, previously unfamiliar flavour onto
an arbitrary location in the arena. At the same time, however,
both the network and the animals in Tse et al. [11] are learn-
ing something entirely schema consistent, in that both are
assigning the new item to an existing place in the previously
acquired schema. Indeed, after these learning experiences, the
network can infer appropriate fish-like IS and HAS properties
for the trout and appropriate bird-like IS and HAS properties
for the cardinal when probed for such information.

On figure 3b, we show the time course of interference
with other items that results from this rapid learning of the
schema-consistent cardinal and trout items. It will be seen
that this learning occurs with only the slightest of interference
with the existing items. This result is consistent with the find-
ing in Tse et al. that learning the two new flavour-place
associations did not interfere with previously acquired
flavour-place associations in the same environment.

The very rapid learning of the new schema-consistent items
by the network might correspond to learning that occurs in the
animals through a combination of direct, within-experience
learning and replay-based learning both within the in-arena
learning episode and during subsequent off-line waking and
resting periods, and the likelihood of this replay may depend
on the prior existence of a schema for the environment. Based
on the results from the somewhat analogous spatial learning
studiesofPfeiffer [24],weknowthat animals engage inextensive
preplayofneural representations of planned trajectories through
space as they search for food at previously learned locations, and
that animals also engage in off-line replay during rest and sleep
during subsequent off-line periods after spatial learning [25]. Of
course, from available evidence, the extent of this replay-based
learning cannot be known. We can suggest, however, that
the failure of animals lacking a hippocampus to acquire new
schema-consistent associations within the familiar environment
might be a consequence of the unavailability of a representation
in the hippocampus that would support replay of the correct
route back to the target location. We conjecture that these
replay events are crucial for allowing the animal to return
to the correct location once found, allowing the animal to learn
efficiently within the learning episode and allowing for amplifi-
cation of neocortical learning opportunities through replay both
during and after the episode.

Before leaving our consideration of the learning of new
schema-consistent items, we can consider how it is that these
items can be learned so rapidly, and why it is that this learning
produces so little interference. There are basically two points
that are essential for understanding these findings. First, the
back-propagated error signals arising from the two experiences
with each of these items provide strong, coherent, convergent
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learning signals, driving the input-to-representationweights in
figure 2 coherently toward values that treat the item either as a
bird-like animal (in the case of the cardinal) or as a fish-like
animal (in the case of the trout). Since (as we will discuss in
the theory section of this article below) the learning signals
depend on the knowledge already built up in these weights
during schema acquisition, they are far stronger after schema
acquisition than they would be earlier in learning. This
allows the network to exhibit a readiness to learn that depends
crucially on the prior acquisition of the relevant schema.
Second, because the changes build up so quickly, the error at
the output layer is very quickly eliminated, so that there is
very little need or opportunity to adjust the connections that
are shared among the different concepts in theweights forward
of the representation layer in the network.

We now turn attention to the experiment with the penguin.
The penguin was the example used in the simulation of
interference with previous learning to motivate the CLST in
McClelland et al. [7]. There, when the network was trained
onlywith the ISAandCANexperiences involving the penguin,
this resulted in substantial interferencewith previously learned
items – particularly, the birds and fish. Indeed, we replicate this
finding here, as shown in figure 3. Looking first on the left of
the figure, we see that learning proceeds substantially more
slowly for the penguin than it does for the trout and the cardi-
nal, and correspondingly, on the right, the penguin produces
far more interference with the previously learned birds and
fish. The reasons for these effects can be understood in terms
of the ideaswe already considered to explain the faster learning
and lackof interference for the schema-consistent trout and car-
dinal items. First, the back-propagated error information now
partially cancels out, driving the connection weights in one
case towards weights that would work for a bird and in the
other toward weights that would work for a fish. The result
is slower acquisition of connection weights from the input to
the hidden layer that assign the penguin a representation inter-
mediate between a fish and a bird. Second, the connection
weights forward from the representation layer to the output
for this compromise representation will partially activate bird
and fish in the ISA context and swim and fly in the CAN con-
text. Adjusting these weights to correctly activate bird for the
ISA context and swim for the CAN context will result in a ten-
dency to call all the animals birds (interfering with the known
fish) and to say they all can swim and not fly (interfering with
the known birds).

It is useful to note that the results we observe with the
penguin are not as extreme as the results we might observe
if we trained the network with a pair of examples that are
completely inconsistent with the learned schema based on
the original eight items. Consider the case in which the
input X-ISA is paired with three units randomly selected
across all the output units of the network, and similarly for
the input X-CAN. This would radically disrupt the schema
acquired by the network, in which all ISA outputs come
from one subset and all CAN outputs come from another,
while also cross-pairing features that may never have
occurred together in any items. Learning of such items
would be very slow, and, as in the simulations reported in
early work in McCloskey & Cohen [6], this learning would
drastically interfere with the networks knowledge of all
items previously acquired (for details, see [18]).

The work reviewed above reflects the complexity of the
issues that arise when we consider new learning in deep
neural networks—issues that may have analogues in new
learning in biological learning systems such as humans and
non-human animals. It would be an oversimplification to
characterize new learning in a cortex-like neural network
as inherently fast or slow—instead, as discussed before [18],
such learning has to be seen as prior knowledge dependent.
Furthermore, it would be wrong to state that rapid learning in
a cortex-like network always produces interference, or that
the interference is necessarily completely catastrophic. Such
effects are matters of degree, and depend on the consistency
of the new information to be acquired with pre-existing
knowledge.
2. Towards a theory of learning in deep neural
networks

The analysis we have provided thus far is largely qualitative
and intuitive. It has been helpful in clarifying when learning
can be fast and slow and when learning can result in interfer-
ence. However, many questions remain, and the qualitative
principles we have described may not provide a sufficient
guide to allow predictions about when we will observe
rapid learning and/or interference with previously acquired
knowledge. In this section, we build on the theory presented
by Saxe et al. [26] to provide a mathematically explicit charac-
terization of some of the ideas we have been discussing, and
to address the two additional questions raised in the intro-
duction: ‘Are all aspects of new learning integrated into
cortex-like networks at the same rate? Is it possible to avoid
replaying everything one already knows when one wants to
learn new things?’

We begin by presenting the basic theory, applying it to
understand the dynamics of learning in simplified versions
of deep neural networks, including initial learning of a
domain of information, and learning something new once
initial domain learning is complete. We then return to our
two questions after presenting the basic features of the theory.

(a) Statistical structure and dynamics of learning
In the theory, we rely on a beautiful relationship between a
statistical characterization of the structure of the knowledge
in a set of experiences and the dynamics of learning this
structure in a deep, linear neural network.Wewill first describe
how the theory allows us to characterize the time course of
learning from tabula rasa—a completely uninformed initial
state—as it was developed in Saxe et al. [26]. Then, we can pro-
ceed to apply it to understand the learning of new items, once
some prior knowledge has already been acquired. The theory
relies on mathematical ideas that may be unfamiliar to many
readers. Tomake it as accessible as possible,we adopt a tutorial
approach, in hopes of enhancing engagement between theor-
etical and experimental research in the neurobiology of
learning and memory.

We begin by characterizing the statistical structure in a
body of experiences and then proceed to discuss the dynamics
of learning this structure in a deep linear neural network.

(i) Statistical structure in a set of learning experiences
In characterizing the statistical structure in a set of learning
experiences, we focus on datasets that are hierarchically struc-
tured as in the dataset of living things we have already been



sparrow

salmon
hawk

sunfish
oak

rose
maple

daisy

S

s1u1v1T
s5u5v5T

s2u2v2T
s6u6v6T

s3u3v3T

s4u4v4T

Â4
1sauavaT

Â8
1sauavaT

s7u7v7T

s8u8v8T

item-property matrix =

USVT= Â
a  sauavaT

vT

U

(a)

(b) (c)

Figure 4. (a) Hierarchical structure in a synthetic dataset. The item-property matrix associated with the new dataset used in our new simulations. Each row corresponds to
an item, and each column corresponds to a feature (e.g. has eyes or can fly); black indicates that the item has the feature, white indicates that it does not. (b,c) Singular
value decomposition of the item-property covariance matrix. (b) The item-property matrix is shown again without labels, indicating how it can be decomposed into a set
of singular dimensions, each with its own separate strength. Red is used for positive numbers, and blue for negative, with darker shades corresponding to larger values. (c)
Each component of the sum in the equation at the bottom of (b) is displayed separately above the dashed line (first four components on the left, last four on the right). The
sum of the first four components is shown below the dashed line on the left, and the sum of all eight, which corresponds to the item-property matrix, is shown below the
last line on the right. Note: In the matrices U and V T in (b) and in all matrices in (c), the darkest red corresponds to 1, the darkest blue corresponds to −1, and white
corresponds to 0. In the S matrix, the darkest red corresponds to the largest S value, which is about 4.56, and white corresponds to 0. (Online version in colour.)

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

375:20190637

7

considering, although the mathematical theory applies more
generally, and can be used to capture a wide range of different
types of structure [26]. Specifically, we will focus on sets of
items that can be generated by a process that starts at a root
node, and then successively branches. Features that appear in
the items can be introduced at any node and can occur
within any of the node’s children but cannot occur in children
of nodes in other branches. The domain of real living things is
generally thought of as hierarchically structured in this way,
but not as strictly as in the datasetwe focus on here, since some-
times dimensions of variation (for example, gender) can cut
across branches of a hierarchical tree. We discuss deviations
from the strict hierarchical structure explored here in the
general discussion.

For the purpose of our analysis, it is useful to display the
items in our dataset in the form of an item-property matrix, in
which each item occupies a row in the matrix and each prop-
erty corresponds to a column (figure 4a). If an item has a
property there is a 1 in the corresponding cell of the matrix
(shown as black in the figure); otherwise, the cell contains a
0 (shown as white).

What one should see in this matrix is that there are two sets
of four items, each consisting of features with no overlap at all
with the features of the other set of four items. Within each set
of four items, there are two sets of two items that share some
features but differ on others, and within each pair of items,
there are further differentiating features. Although the statisti-
cal structure in the matrix can be characterized in completely
abstract terms, we support intuition by considering the items
to be two birds, two fish, two trees and two flowers, and con-
sider the properties to be attributes like those we have been
considering for such items above. The dataset is simpler than
the one we have used up to now: we now treat attributes of
different types like can fly and has wings homogeneously, so
that each item maps onto a single vector of features.

We have arranged the properties of the items for ease of
perusal, placing the features shared by all of the animals on
the far left and the features shared by all of the plants on the
far right. Proceeding leftward from the shared animal features
(which could be attributes like can move and has eyes), we next
have features that are present for birds and not for fish (such as
can flyand haswings), then the reverse.Next,we see pairs of fea-
tures that apply to the sparrow only, the hawkonly, and each of
the two fish only. For example, we think of the hawk as large
and fierce and the sparrow as small and meek. We then encounter
four more features, each of which only occurs in one item. We
might think of this as a feature that might differentiate it from
all other items or that might correspond linguistically to the
item’s name. Further to the right, we see a set of unique identi-
fying features, one for each plant, then features that apply only
to flowers, features that apply only to trees, and finally the
previously mentioned features that apply to all of the plants.
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To characterize the structure in the item property matrix,
we rely on the singular value decomposition (SVD), an analytic
method related to principal components analysis (PCA).1 The
SVD decomposes the item-property matrix into a set of dimen-
sions indexed by i. Each dimension is characterized by an item
classifying vector u i, a feature-synthesizing vector v iT and a
positive scale factor called the singular value si.

2 In the figure,
the u i appear as the columns of the matrix U; the v iT appear
as the rows of the matrix VT, and the si appear as the diagonal
entries in the matrix S as shown for our dataset in figure 4b.
Rather than display numbers in these matrices, we use red
for positive values, blue for negative values and white for
0. Darker red or blue colour corresponds to greater magnitude.
For the singular values, the darkest red corresponds to the
strongest singular value, about 4.56; otherwise, the darkest
red and blue correspond to 1 and −1, respectively.

The dimensions are all mutually orthogonal, and the u i and
v i all have unit length, allowing each si to correspond to the
overall strength of the corresponding dimension. The first
dimension is defined as the dimension that captures the largest
possible portion of the total variance (sum of the squares of the
values in all of the cells) in the item-property matrix in another
matrix that can be constructed by taking the outer product of
two vectors—this is the best we can do with just one item clas-
sifying vector and one feature synthesizing vector. Each
successive dimension is then the one that captures the largest
possible amount of the remaining variance after all of the pre-
vious dimensions has been removed (there can be ties, as here,
and in that case, the choice ofwhich to remove first is arbitrary).
In this context, a useful aspect of the SVD is that the scale factor
si corresponds to the square root of the variance in the data that
the dimension explains.

It is important to see that the SVD captures the hierarchical
structure in the data. That is, each dimension is a matrix that
captures information about items within a particular branch
of the hierarchy. The matrix for each dimension is formed by
taking the outer product of its item-classifying vector u i and
its feature-synthesizing vector v iT, and scaling this by the
singular value si, written as siu

iv iT. We have shown the
matrix for each of the eight dimensions in our dataset in
figure 4c. We can see the first dimension as telling us the aver-
age values of the features of the animals; they all share the first
four features so the average value for these features is 1; two of
the four have each of the next four features so the average value
for these is 0.5; and one of the four has each of the remaining
features, so the average value for these is 0.25.

Thus far, we have seen that designating the first half of the
items as members of the same class and assigning all of them
the average of their feature values captures more of the var-
iance in our dataset than we could capture with any other
choice of one item-classifying vector and one feature-synthesiz-
ing vector. If we look at the matrix for the next dimension,
s2u

2v2T, we see that designating the second-half of the items
as members of a different class and assigning all of them the
average of their feature values is the best we can do to capture
the remaining variance in our dataset with one item classifying
vector and one feature synthesizing vector. Taking the first two
dimensions together, we see that just knowing how to split the
items into two sets, and knowing the average feature values of
the items in each of the two sets, already captures quite a lot of
what there is to capture about our dataset.

The remaining dimensions serve to capture the successive
branching structure of our hierarchy. The third dimension
captures the split among the animals into two birds and two
fish. This dimension, s3u

3v3T, has positive and negative
values that produce offsets from the mean values averaged
over all four animals as reflected in the first dimension. To
see how this works, note that the third item-classifying
vector u3 is positive (red) for the birds but negative (blue) for
the fish, while the feature-synthesizing vector v3T is positive
(red) for the properties true of birds and not fish, and negative
(blue) for properties true of fish but not birds. The outer pro-
duct of these two vectors, when scaled by the third singular
value, produces the matrix s3u

3v3T, and when this matrix is
added to the s1u

1v1T matrix, the result is a matrix containing
the average features of the birds in its top two rows and the
average features of the two fish in the next two rows. The
fourth dimension captures the corresponding offsets from the
matrix of average plant values for the two flowers and the
two trees in a similar way. We show the sum of the first four
dimensions in figure 4b below the individual matrices for
dimensions 1–4. Once again, this is the best we can do in cap-
turing the variance in the data with four dimensions, each
consisting of one item-classifying vector and one feature-
synthesizing vector. With these four dimensions, we can clas-
sify the items into four groups of two items, capturing the
average properties of the items in each of these four groups.

We are still missing out on the ways in which the individ-
ual items differ from each other within each of the four
mid-level categories. For that, we need four additional
dimensions. The fifth and sixth equal strength dimensions
capture the offsets to the two average bird vectors needed
to fully capture the features of the sparrow and the hawk
and the offsets to the two average fish vectors to capture
the salmon and sunfish. The remaining dimensions play the
same roles for the four plants.

We display the sum of the eight matrices below the individ-
ual matrices for dimensions 5–8, and we see that we have
exactly reconstructed our original item-propertymatrix. In gen-
eral, for hierarchically structured datasets, where the same
number of new features is added with each categorical split,
the successive dimensions will capture average values starting
from the highest level, and one dimension is required to capture
each pairwise categorical split (for an N-way split at the
same categorical level, N− 1 new dimensions are required; see
[26], for details and boundary conditions). In our case, the
dimensions on the animal side are stronger because more
features (each adding variance) lie on the animal side.
(ii) Dynamics of learning from a random initial state
Thus far, we have simply characterized the structure in our
item-property matrix, but have not yet considered how this
structure is learned in a neural network. We next consider
what happens when this structure is acquired in the deep,
linear neural network shown in figure 5. This network can be
seen as a simplified version of the Rumelhart network shown
previously in figure 2, with the relation units removed, so
that the network contains a single input unit for each item
and a single output unit for each feature. We call this network
linear because the output of each unit at a given layer is just a
linear function of the activations of the units at the preceding
layer (that is, it is simply the sum across all of the units at the
preceding layer of the product of the activation of the unit
times the corresponding connection weight). We call the
network deep, because it includes a layer of hidden units
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between the input and the output layer, and because the
characteristics we describe are also exhibited when there are
more hidden layers. Although the computations that can be
performed by a deep linear network can also be performed
by an equivalent network that directly links input units to
output units with a single layer of connection weights, the
dynamics of learning in deep linear networks are surprisingly
nonlinear and very different from those of a network without a
hidden layer [26]. The key insight here is that the signals
required to drive learning in the weights to the hidden layer
from the input layer depend on the existing knowledge in the
weights to the output layer from the hidden layer, and vice
versa. For mathematical precision, these relationships are cap-
tured in the vector-matrix equations shown in figure 5. Here,
we convey the crux of the idea while avoiding heavy reliance
on the conventions of the linear algebra. First, note that accord-
ing to the back-propagation learning rule, the change to each
weight is given by the learning rate λ times the activation on
the input side of the weight, times the error signal on the
output side of the weight. For the hidden to output weights
W2, the error signal is the vector of differences y0 between the
network’s output ŷ and the target vector y, and the activation
signal on the input side is the hidden layer activation pattern
h, which depends on the input to hidden weights W1. If
these input to hidden weights were all zeros, the hidden
layer activations would all be 0, so there could be no change
to the hidden-to-output weights. For the input to hidden
weights, the activation on the input side is just the input pattern
x, and the error signal on the output side of theseweights is the
learning signal y0 back-propagated through (i.e. multiplied
by) the hidden-to-output weights. So, if these hidden-to-
output weights were all 0, there would be no change to the
input-to-hidden weights.

More generally, the learning in each weight matrix
depends on the knowledge already stored in the other
matrix. If the weights in either matrix are very small, learning
in the other matrix will proceed slowly. As the weights in
each matrix begin to build up, learning will proceed more
quickly in the other, resulting in an acceleration of learning
that eventually slows down as all of the error in the mapping
from input to output is eliminated. When there are more than
two layers of weights, learning in each layer depends on all of
the other layers of weights. A further important point is that
the dynamics of learning we shall be exploring in our
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simplified network are qualitatively similar to the dynamics
of learning in the highly nonlinear deep network we first
explored in McClelland et al. [7] and reviewed above.
Indeed, the analysis we describe here was developed in
Saxe et al. [26] to provide a theoretical understanding of pat-
terns that had previously only been observed in simulations.

The truly remarkable fact about the dynamics of learning in
a deep linear network is that it is completely characterized by
the SVD, subject to an influence of the initial values of the con-
nection weights at the beginning of the learning process. That
is, if the training of the network proceeds as in our earlier simu-
lations with the original Rumelhart network, such that each
item is presented once in each training epoch, the network’s
input–output (IO) matrix at a particular time t measured in
epochs will be characterized by the two equations below and
the corresponding curves presented in the top panel of figure 6.

IO(t) ¼ Siai(t)uiviT, (2:1)

where

ai(t) ¼ sie2sit=t

e2sit=t þ (si=ai(0)� 1)
: (2:2)

Let us understand what these equations mean. The matrix
IO(t) is the set of output vectors produced by the network
where each row vector corresponds to the output produced
for one of the inputs to the network. If each ai(t) value was
equal to the corresponding si, then the network’s output
would correspond to the item-property matrix. What the first
equation expresses, then, is that the output of the network at
time t can be described as the weighted sum of the dimensions
of the SVD of the training data. What the second equation cap-
tures is the fact that the weight on each dimension follows a
sigmoid curve starting from an initial value ai(0) to its
asymptotic value si.

Figure 6 shows the values computed from the theory for
these equations as a function of t for the choice si(0) = 0.001
and for a value of τ dependent on the network learning rate,
as described in electronic supplementarymaterial, §SI.We rep-
resent t in normalized time units corresponding to the number
of epochs, or complete sweeps through the training set, times
the learning rate, which we choose very small to produce a
faithful approximation to the continuous learning equations.
This allows us to capture the continuous nature of the learning
and to highlight that the choice of the actual learning rate
simply determines the time scale of the process. These curves
are superimposed on a plot of the actual dynamics of learning
in a simulation of a network like the one shown in figure 5. For
the simulation, we employ a network with 32 hidden units,
initializing the weights with small random values such
that their SVD can be characterized by 32 random initial
dimensions with an average initial strength of 0.001. The
observed values of the ai(t) are then determined by actually
applying the SVD to the network’s output at each time t and
plotting the corresponding simulated values in the figure.
The small deviations between network model and theory are
due to effects of the random initial values of the connection
weights, which affect the true values of the ai(0), which are
approximated by fixed constant values in equation (2.2).3

For our purposes, the most important fact to come out of
this analysis is the observation that the learning proceeds
according to the hierarchical structure of the training data, as
captured by the SVD. The time course of learning of each
dimension of the SVD follows a sigmoidal curve whose
parameters depend only on the overall strength of the dimen-
sion si and its initial value ai(0). Three specific points are
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relevant here. First, the time required to learn about a particular
hierarchical split in the data (as characterized, say, by the time
required to reach 1/2 of the corresponding dimension’s final
value), depends primarily on the strength of the dimension,
or the amount of variance in the data the dimension accounts
for. Second, the sigmoidal character of the learning of each
dimension can have the consequence of producing a highly
stage-like process, so that the network can have mastered
some dimensions fully (in our case, for example, the distinc-
tions between plants and animals, captured in the strongest
two dimensions in the SVD) before it exhibits any appreciable
sensitivity to details of the differences among particular items
(captured in the weakest dimensions). Taking these two points
together, we see that detailed information about particular
items captured by weaker dimensions in the training data is
learned much more slowly than general information that is
shared across many items. This pattern is also exhibited in
human development and, as previously mentioned, in the
dynamics of the deep nonlinear networks we first explored
in McClelland et al. [7]. These networks progressively differen-
tiate hierarchies like the hierarchy of plants and animals,
starting with the highest level categorical splits (for results
comparable to those in figure 6a, see fig. 4c of [19] or fig. 3.4
of [20]). Our analysis of deep linear networks thus seems rel-
evant to understanding the dynamics of learning in more
complex real and artificial neural networks.

The final point is that the time course of learning about each
dimension depends on what is already known about this
dimension at the timewe begin to observe the process of learn-
ing, as reflected in the quantity ai(0). That is, the time required
to learn about each dimension depends on what we already
know about it at the time we start to measure learning. This
observation is particularly relevant to our purpose in the next
section,which is to characterize the time course of new learning
from any given point we might choose to define as the refer-
ence time t=0, as we shall see after a brief consideration of
extensions of the domain of the theory.

(iii) Extending the theory to experiences with other forms of
inputs

A feature of the simulations we have considered thus far is
that they rely on a ‘one-hot’ input representation of each item
such that each item is represented by a single neuron. If this
were a real limitation of these networks it would be deeply dis-
appointing, since it seems unlikely that biological systems
would actually rely on single, grandmother-cell neurons. Hap-
pily, it turns out that this is not a real limitation.Here,we briefly
consider three alternative cases. The first is the case in which
the input vectors are not one-hot vectors, but instead are
multi-dimensional orthogonal vectors, each of equal magni-
tude (where the magnitude is the square root of the sum of
the squares of the values in the vector). The theory is comple-
tely unchanged in this case, although the actual input-
classifying vectors will not be as transparently identifiable
with the conceptual identity of each of the items. Indeed the
one-hot version of the theory can simply be seen as a
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convenient transformation of the input patterns into a basis
that allows the item classification vectors to be rendered
more interpretable than they would be if they remained in
the actual input coding space. Thus, for example, if the
neural representations of the odour stimuli used in the Tse
et al. experiments were approximately orthogonal high-dimen-
sional vectors, then this input representation would be a useful
way of modelling how they function as input to a deep neural
network that maps them onto a structured system of internal
representations of corresponding places in an arena.

The second case we consider is one in which the patterns
correspond to vectors that may have some degree of corre-
lation, or similarity, to each other. Such correlations will
induce a tendency for what is learned about one input to
transfer to similar items, and this is likely to be helpful if, as
is often the case, items that appear similar share other charac-
teristics, or if the very same item appears slightly differently
to the senses on different occasions. The situation can be
more problematic if similar items must be mapped to comple-
tely different outputs, as could be the case if, for example, two
very similar flavours in the Tse et al. experiment had to be
mapped to two distinct places in the environment. The
theory can address the effects of such correlations (and can cap-
ture differences in strength of input activations, capturing
aspects of differences among features in their perceptual
salience) as long as the set of patterns to be mapped to distinct
outputs are linearly separable. (In cases where the inputs them-
selves are not linearly separable, the brain may employ
conjunctive encoding schemes to help ensure that the patterns
that are input to cortical learning systems are linearly separ-
able; however, the theory does not address the process of
learning to form such a linearly separable code.)

Third,we consider the case inwhich the neural network is a
deep linear auto-associator, i.e. a linear neural network that
simply associates each pattern with itself, via a layer of
hidden units (rather than relying on direct unit-to-unit connec-
tions). The auto-associative case is interesting because this form
of learning is entirely driven by the distribution of experiences,
without requiring separate input and target patterns to be pro-
vided by the environment, and indeed without requiring the
experiences to be labelled as falling into distinct categories in
any way. Instead of having one-hot input units for each item,
the patterns corresponding to the items in the training set
serve both as inputs to and targets for learning in the network,
and the task of the network is to learn an input connection
weight matrix W1 that maps from the input to the hidden
layer and an output connection weight matrix W2 that maps
from the hidden layer to reproduce the input on the output.
Nonlinear networks of this type have been used extensively
in deep learning research, where the hidden layer represen-
tations are thought of as providing a compressed, invertible
representation of the input [28]. The auto-associator is also
interesting because it can perform pattern completion,
a general form of memory in which any fragment or approxi-
mation of an input pattern can be thought of as serving as a
potential cue for the reconstruction of all aspects of the pattern.
Our linear auto-associator is also interesting in that it can be
considered to capture one step of a recurrent computation in
which the output of the auto-associator is repeatedly fed
back into itself, allowing the learned states in the network to
function as attractors.

When we train such a network with our dataset, the time
course of the development of the IO matrix (as before, the
matrix of outputs produced by each of the eight input items)
is characterized by the curves shown in the bottom panel of
figure 6. Learning is still completely characterized by the singu-
lar value decomposition, but now with a much stronger
dependence on the strength of the singular values: the rate of
acquisition of each dimension is now proportional to the
square of the singular value as reflected in the exponential
terms in the revised learning dynamics equation below

ai(t) ¼ sie2si
2t=t

e2si2t=t þ (si=ai(0)� 1)
: (2:3)

Thus, for example, a dimension 5 times stronger than another
would be learned in 1/25 of the time required to learn the
weaker dimension. This is reflected in the fact that the learning
curves for the strongerdimensions aremuch steeper in the auto-
associative case than in the case with one-hot inputs, as can be
seen by comparing the top and bottom panels of figure 6.

In summary, while details of the dynamics of learning
depend on details of the neural network architecture, the
training patterns, and the formulation of the learning task,
the general characteristics of the time course of learning we
observed with the analytically tractable deep linear network
are conserved under a wide range of variations, supporting
the view that the patterns of learning we have observed in
our deep linear network are relevant to understanding learn-
ing in a wider range of cases. We therefore now return to the
simple and analytically tractable deep linear case to explore
its implications for learning new things in a network that
has already learned the structure of a hierarchical dataset.
(b) Learning something new building on prior
experience

Wenow turn to applying our understanding of deep linear net-
works to the acquisition of a new item, once the content of a set
of experiences has been learned. We focus on the case of the
network with one-hot inputs as shown in figure 5, using the
previously unused input unit shown in the figure for the new
item. We have chosen an item that clearly belongs with other
items already known within a specific category—in our case,
the category of birds—but that, like the penguin in our earlier
explorations, is not completely compatible with any specific
already known bird. In particular, we consider an item we
call the sparrowhawk, shown in figure 7a. It has one of the fea-
tures of the hawk (fierce) and one of the sparrow (small),
and it has its own unique distinguishing feature, as all of the
items in the environment do.

To begin our analysis, we apply SVD to the new complete
dataset, as shown in figure 7b. Comparing this with figure 4b,
we see that the SVD of the new dataset is similar to, but both
alters and extends, the SVD of the original dataset. In particu-
lar, the first and third dimensions of the original dataset have
been slightly altered, and a new dimension has been added
(direct comparisons of differences between the SVD’s can
be found in figure 8, where they are linked to dynamics we
will explore below). The first dimension now reflects the
altered overall feature probabilities for the animals and the
third dimension reflects adjustments to these probabilities
needed to capture the average properties of the full set of
birds and fish. Dimensions 1 and 3 are now a bit stronger
than before, due to the added item participating in them, a
fact most easily seen in figure 8. The new dimension reflects
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how the individual bird representations must be adjusted to
compensate for the adjustments to the other dimensions
and to accommodate the sparrowhawk together with the
existing birds accurately and without error. (By convention,
the software that computes the SVD arranges the dimensions
in descending order of strength, but we have rearranged
them so that the sparrowhawk, and the new dimension
associated with it, remain at the bottom in the diagram to
make comparisons of other dimensions across the two data-
sets easier.) The inset in figure 7 shows the actual singular
dimension strengths, indicating that the new dimension is
somewhat stronger than the existing weak dimensions that
separate the individual trees and the individual plants from
each other. These dimensions are weak because these items
differ only by a single item-specific differentiating feature.

It will be useful first to consider what happens if we now
train a network we have previously trained on the eight orig-
inal items, using focused training of the new item—that is,
presenting the new item repeatedly without any interleaving
with other items. As before, time in the simulation is rep-
resented in normalized time units corresponding to the
number of epochs times the learning rate. It is crucial to under-
stand that an epoch consists of a sweep through the training
set now in use, which in the current case is just one item,
the sparrowhawk.

The results of this simulation are illustrated in the top row
of panels of figure 9. In this and subsequent figures, we show
separately the dynamics of the network error when tested on
the new item (the sparrowhawk, leftmost panel), along with
the dynamics of any error occurring on the other types of
already known items (next three panels). In these panels, we
have inverted the vertical axis so that progress in learning is
reflected by an upward trajectory while interference results in
a downward trajectory. The fifth panel shows the strengths
of the dimensions of a SVD of the network’s output with all
nine items in the full nine-itemdataset,measuredwith learning
turned off so that we can seewhat the network knows without
changing it, and the sixth panel shows the total summed error
across all nine items (without inverting the vertical axis, in
accord with standard conventions in reporting this measure).
The top left panel of the figure shows that the network reduces
its squared error on the sparrowhawk to about 2.5 in a small
fraction of a normalized time unit, corresponding to only a
handful of presentations with a moderate learning rate. This
outcome occurs because the sparrowhawk projects strongly
onto the first and third existing dimensions of the dataset,
and much of the information about the sparrowhawk is
captured quickly as the network exploits these projections.
Concretely, this rapid improvement occurs because the
output weights of the network already contain a dimension
that captures what birds have in common with all animals
and another that captures how the birds differ from the
known fish, and the sparrowhawk projects strongly onto
these dimensions, as shown in the SVD in figure 7. Thus, the
network quickly learns to map the sparrowhawk onto these
two dimensions, capturing how it shares the average proper-
ties of the known birds, without any adjustment of the
connection weights between the hidden and the output
level—the existing weights from the hidden to the output
units strongly propagate learning signals to the weights from
the sparrowhawk input unit to the hidden units so that these
input weights come to capture this average pattern very
quickly, and these adjustments alone can reduce the sum
squared error for the sparrowhawk from its original value of
9 (below the range of the four left panels in figure 9) to 2.5.
This point is demonstrated in figure 10, where we have
frozen the output weights (i.e. prevented them from changing)
for the first normalized time unit, so that all of the learning is
occurring in the weights from the sparrowhawk input unit to
the hidden units. The remaining discrepancies at the output
level require adjustments to the hidden-to-output weights, to
allow the network to reproduce the sparrowhawk’s output
features exactly. This, however, produces considerable interfer-
ence with the existing birds and, to a smaller extent, with the
existing fish, since these items also project onto the same
dimensions. Essentially, when tested with the existing birds
or fish, the output will be distorted in the direction of the spar-
rowhawk. Critically, however, no interference occurs with the
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network’s knowledge of the four existing plants; performance
on these items remains completely unaffected since the
sparrowhawk is completely orthogonal to all of these items.

In summary, the network has learned about the new item
by adjusting existing dimensions encoded in its connection
weights. The essential problemwith this is that, to fully accom-
modate the sparrowhawk together with the existing birds and
fish, the network must learn the new dimension shown in
figure 7b. The network can learn the new dimension, accom-
modating all of the items perfectly, if it is trained using
interleaved learning, as we now discuss.

Specifically, we now consider what happens if we con-
tinue learning from where we left off with the original
eight items, but now with the sparrowhawk as an added,
ninth item, so that one epoch now corresponds to the presen-
tation of all nine items. The results of this simulation are
shown in the bottom row of panels of figure 9, and detailed
visualizations of the changed and new dimensions are pro-
vided in figure 8. For several of the dimensions, nothing
has changed, and their initial values already correspond to
the full values of si. Therefore, no further adjustments occur
to these dimensions. For dimensions 1 and 3, the projections
are quite strong, and so the starting point is already quite far
along the eventual learning curve. Learning thus proceeds
immediately for these dimensions, as it did in the case of
focused training with the sparrowhawk. This corresponds to
the fact that aspects of the new item that are consistent with
what is already known can be rapidly assimilated. As before,
within a fraction of a normalized time unit, the aspects of the
sparrowhawk that map onto dimensions 1 and 3 are learned.
Over the rest of the first half of the first time unit, the network
findsweights that represent a compromise of the first and third
dimensions so that the other aspects of the sparrowhawk are
partially accommodated (reducing the error on the sparro-
whawk to about 1, as shown in the leftmost panel of the
bottom row of figure 9) at some small cost to the existing
birds (as shown in the second panel of the bottom row). Only
later, well into the second normalized time unit, does the net-
work begin to learn the new dimension, so that it is fully
assimilated partway through the third time unit.

Importantly, we find that the time it takes to learn the new
dimension that fully allows all three birds to be effectively
represented without compromise is just as long as the time
it would have taken to learn this dimension had the network
learned the whole dataset all at once from scratch. This is
documented in figure 9, row 2, panel 5, which shows that
the learning curve for this dimension as calculated using
equation (2.2) (shown as a dashed blue line) corresponds
very closely to the observed learning time for this dimension
(plotted as a solid line coinciding with and therefore largely
hidden by the dashed line).

These observations have important implications for our
general understanding of new learning of items in familiar
domains. In one sense, the sparrowhawk is highly schema con-
sistent, to use the terminology of Tse et al. That is, it shares all of
the properties of animals in general and all of the shared prop-
erties of birds, and even has two properties that have already
occurred in other birds. It is not, however, fully predictable
from knowing that it is a bird. It has one unique property,
and it combines variable properties found within birds differ-
ently than they have previously been combined. In general, this
situationmust apply to nearly every new thing we learn about.
Something new will generally share some properties with pre-
viously known items, but some of its properties are likely to be
unpredictable. Thus, in general, new itemswill have properties
that are consistent with prior knowledge and others that are
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not, and, at least in the presentmodel, the aspects of a new item
that can be assimilated easily are only those that are consistent
with what is already known.

Before continuing, we consider both specific and general
implications of the finding that the aspects of a new item that
it shares with other items may be easier to learn than its more
idiosyncratic aspects. Specifically, let us apply this observation
to a consideration of the findings of Tse et al. [11,12]. They
found rapid neocortical consolidation of schema-consistent
information in that their animals learned to map a new flavour
onto a place in a familiar environment. Importantly, we note
that the places animals had to associate with these new flavours
were immediatelyadjacent toplaces alreadyassociatedwithpre-
viously learned flavours. For all practical purposes, the animals
could have mapped the new flavours exactly onto the familiar
adjacent places since they would have effectively reached the
new places by navigating to the already familiar ones. Thus,
only the very easy part of neocortical consolidation may have
been necessary in their study. Further research is needed to
understandwhether neocortical consolidation of a new location
within an existing environment would occur equally rapidly; it
could be that locations less similar to those already learned
would require more gradual, interleaved learning.

More generally, the observation that some aspects of a new
item can be integrated into a deep network quickly and with-
out interference while others require extensive interleaving is
worth exploring in a wider range of paradigms. We will
consider empirical evidence related to this issue aswell as poss-
ible future experimental tests in the general discussion.
3. Learning arbitrary aspects of new things
efficiently

Wenow turnourattention to a set of issues that go to theheart of
questions about the role of experience replay in neocortical con-
solidation, starting from an issue that we raised in McClelland
et al. [7]. There we considered the fact that integration of new
knowledge without interference into a neocortex-like network
required interleaving with items previously learned, and we
have just illustrated this point again in our new simulations
with the sparrowhawk. We have refined the analysis to make
clear that some aspects of information about a new item can
be integrated quickly andwithout interference, but to fully inte-
grate the new item may require extensive interleaved learning.
A pressing problem then arises: interleaved learning in all of
our existing simulations has involved interleaving the new
item with the full corpus of other items previously learned.
This could be impractical at least for adult humans, since the
totality of a human’s knowledge would be very extensive
indeed. This raises the question whether it is really necessary
to be re-exposed to all of prior experience when learning some-
thing new, or whether, instead, more selective re-exposure to
specific relevant experiences would be sufficient.
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Our explorations with the sparrowhawk already hint at
this possibility, since we have observed that the interference
that occurs with focused learning of the sparrowhawk is
greatest for the existing birds, only moderate for the existing
fish, and absent for the known trees and flowers, as shown in
the top row of panels of figure 9. We, therefore, considered
whether focusing interleaving on the items that are similar
to the new to-be-learned item could allow integration
of knowledge of the sparrowhawk without requiring full
interleaving with all previously learned items (figure 11).

Accordingly, we conducted additional simulations. In one
of these, we employed similarity-weighted interleaved learn-
ing (SWIL). Here, each training epoch involved 1
presentation of the sparrowhawk and each of the previously
known birds, 0.2 presentations of the previously known fish,
and no presentations of any of the trees or flowers, leading to
a total presentation rate of 3.4 items per epoch.4 In the other uni-
form interleaving condition, the new sparrowhawk item was
also presented once per epoch, but now the other eight items
were each presented at a uniform rate of 0.3 presentations
per epoch, resulting in the same total presentation rate of 3.4
items per epoch. The results, shown in figure 11, indicate that
the similarity-weighted regime results in virtually identical
results on a per epoch basis compared to full interleaving,
but each epoch now includes less than 40% as many pattern
presentations. Thus, we can achieve the same results we
obtained with full interleaving, using 2.5 times fewer presenta-
tions. In contrast, the uniform interleaving condition is far less
efficient, slowing down the acquisition of the new dimension
required for full integration of the sparrowhawk with existing
knowledge. The amount of slowdown corresponds nearly
exactly to the extent of the reduction in exposure to the relevant
patterns (the three birds). This correspondence is indicated by
the coincidence of the observed learning time for the new
dimension, indicated by the solid curve rising from 0 starting
part-way through the third normalized time interval in the
singular value plot for the control condition, and the learning
time that would be expected due simply to the reduced
exposure to the three birds, indicated by the dashed curve.
The dashed curvewas obtained by scaling the theoretical learn-
ing curve for the new dimension already shown in figure 8 by
the ratio of the average bird presentation rate (1.0) in the full
and similarity-weighted conditions to the bird presentation
rate in the control condition ((1+2 * .3)/3, or 0.5333). Essentially,
then, the control condition just slows learningdownproportion-
ally to the amount of exposure to thepatterns contributing to the
new, to be learned dimension, whereas the SWIL condition
results in full integration without unnecessary exposure to
completely unrelated aspects of existing knowledge.
(a) New learning in the deep linear auto-associator
As we have previously discussed, our analysis of the
dynamics of learning in deep linear networks also extends
to the deep linear auto-associator, a network architecture
that is interesting for reasons considered earlier. We already
saw how gradual learning within a deep linear auto-associa-
tor results in the gradual differentiation of representations at
different hierarchical levels. In electronic supplementary
material, §SII, we consider the process of acquiring a new



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

375:20190637

17
distinct dimension corresponding to the sparrowhawk in a
deep linear auto-associative network. These simulations
demonstrate corresponding patterns of learning and interfer-
ence over the same range of regimes considered in the pattern
associator case. The main difference is that, after learning the
eight patterns in the base training set, the network already
knows how to capture most of the content of the sparro-
whawk pattern. Presenting the sparrowhawk pattern on the
input to the auto-associator after it has been trained on the
original eight item training set results in the output pattern
corresponding to the average of the existing birds (the same
pattern that was produced in the pattern associator after
learning about the sparrowhawk with frozen output weights,
as shown in the last row at the bottom of figure 10), giving
rise to a sum squared error of 2.5 between the correct sparro-
whawk output and the average bird pattern. This happens
because the input features of the sparrowhawk project fully
onto dimensions 1 and 3 of the knowledge already in the net-
work, and these dimensions together capture the average
properties of the existing birds. As before, to integrate the
sparrowhawk into the network’s weights, a new dimension
must be learned. Focused training with the sparrowhawk
alone produces interference with the existing birds, while
either full or similarity-weighted interleaving, as in the pat-
tern associator case, results in the gradual acquisition of the
new dimension that accommodates the sparrowhawk along
with the other previously known birds.
(b) Pre-training effects in deep neural networks
The observations we have made in the above sections allow us
to relate our analysis to some issues that have been raised in
previous research on the role of auto-associative pre-training
in deep neural networks. Such pre-training is often called
unsupervised pre-training, because only the items, without
labels, are used during pre-training. Prior research (e.g. [29])
has demonstrated that such pre-training of a deep nonlinear
neural network speeds later learning of an IO mapping, and
the theory of deep linear networks has been applied to this
case [30]. In terms of our example, consider what would
happen after training our linear auto-associator with our
eight-itemdataset ifwe then added a newoutput layer contain-
ing a one-hot classification unit for each of the eight items. If we
now train this network to map from the input to these one-hot
output units, the input-to-hidden weights would already cap-
ture all of the relevant dimensions of the input, and so it would
only be necessary to adjust the output weights to learn to
classify each item correctly. This point was demonstrated in
simulations with the MNIST classification dataset in Saxe
et al. [30], which also showed that the properties of deep
linear networks that we have reviewed here are largely con-
served regardless of the number of layers in the neural
network. Extrapolating from the findings reported in Saxe
et al. [30], we expect that learning to classify the items in our
simpler plant-and-animal dataset would occur very quickly
and would not require any change to the input weights as
long as the pre-training spans all of the relevant dimensions. Note
that pre-training on the original eight items would result in a
representation that does not span the new dimension required
to learn to accommodate the sparrowhawk. More gradual,
interleaved learning and adjustment of the input-to-hidden
weights would be required to learn the added dimension
needed to correctly identify this item without interference or
confusion with the other birds, just as it has been in the
simulations we have reported above.

We hope that this brief section helps to suggest the relevance
of the theory of deep linear networks to a wider range of deep
neural network applications forbothmachine learningand com-
putational neuroscience. The theory does not cover all aspects of
the phenomena observed in networks with nonlinearities, a
point we return to under Future Directions below.
4. General discussion
(a) Summary and implications for complementary

learning systems theory
In the preceding sections of this article, we have observed sev-
eral aspects of learning in simulated deep neural networks, and
we have offered a formal theory of learning in deep linear net-
works that captures and extends many observations made in
earlier publications. We view these networks as capturing
aspects of cognitive and conceptual development explored in
more detail elsewhere [20], and as providing a framework
that has helped inspire our initial investigation of complemen-
tary learning systems [7]. Throughout this work, we have used
deep networks to model the structure-sensitive learning pro-
cess that appears to take place within the neocortex, helping
us to understand what the complementary, hippocampus-
dependent learning system must do to complement this
structure-sensitive learning system.

A central outcome of our earlier work was the observation
that deep neural networks learn to capture the structure in a
domain of experiences in a gradual, progressive, and stage-
like fashion. While they could learn new things quickly by
making large connection weight changes, such large changes
would lead to interference with existing knowledge. The hip-
pocampus-dependent system complements this system by
supporting rapid learning of new knowledge without interfer-
ence. This new knowledge can then be gradually integrated
into neocortical structures through interleaved learning with
ongoing exposure to items that had previously been learned.

Challenged by the important findings of Tse et al. [11,12],
and with the benefit of further simulations, an important
qualification of these points was introduced in McClelland
[18]. There it was noted that new knowledge highly consist-
ent with what is already known can be integrated rapidly
into neocortex-like deep neural networks, providing a start
toward a computational understanding of rapid neocortical
consolidation of schema-consistent knowledge, as demon-
strated by Tse et al. The work presented here has further
extended this work, leading to several additional key
observations.

Perhaps the most important new observation is that differ-
ent aspects of experiences might not always be equally easy or
hard to learn, either by biological learners or deep neural net-
works. The sparrowhawk example we have considered here
exemplifies properties of many of the new things that we
learn about. New things often share properties with things
we already know, but like the sparrowhawk, they are not
fully predictable from those prior experiences in two ways.
New items can have their own idiosyncratic content, rep-
resented by unique features not shared with other items, and
they may recombine aspects of known items in novel ways.
New types of things (like a new species of bird) or new
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individual persons, places or things, generally have many
properties that are typical of their super-ordinate category,
while also having unique properties or combinations of prop-
erties. Though our observations with the sparrowhawk were
implicit in earlier work, the present work has brought out
more clearly that it may be possible to learn some aspects of
new things very quickly and without interference. It is not
everything about something new that is hard to learn in a
deep neural network, it is the aspects of it that differ from other
things that can be hard to learn.

Another important observation is that the interferencewith
existing knowledge that arises from learning something new is
also not completely general. As we have seen, new learning
about the sparrowhawk interferes only with knowledge of
similar things, and even then, the interference is restricted to
those aspects of the similar items that are in conflict. There is
no interference with knowledge of completely unrelated
things at all, and no interference with knowledge of aspects
of similar items that the new item shares with others it is
similar to.

These observations are captured in our simulations with a
simple hierarchically structured dataset learned by a simple
version of a deep neural network. Our analysis, building on
previous work [26], reveals that learning in these networks
must be understood in terms of learning the structure in the
ensemble of items from which the network learns, rather
than simply in terms of such matters as the frequency of
exposure to the individual items themselves. The dimen-
sional structure of the ensemble of items—as captured by
the SVD—dictates the learning time needed to acquire
knowledge, both when that information is being learned
from scratch, and when it is being added to a body of knowl-
edge already known. We can rapidly integrate the projection
of the sparrowhawk onto existing knowledge structures.
However, the novel features and novel combinations of fea-
tures require a new dimension to be integrated into the
structured representation in the weights of the network and
thus require interleaved learning if they are to be learned
without interference with other similar items.

It is important to acknowledge that the networks we have
focused on here are far less complex than the real neural net-
works in the brain. We have analysed networks that are
completely linear and contain only two layers of modifiable
connection weights, and the neural networks in the brain
surely containmore layers and exploit nonlinear computations.
While our simple networks capture many properties of learn-
ing in the deeper, nonlinear network we used in previous
work, greater depth and nonlinearities add computational
capabilities that our networks do not have. Thus it is important
to be cautious in extrapolating what we have learned to deeper
and more nonlinear networks or real biological systems, and
further work is needed to explore the limits of any such extra-
polation. Nevertheless, it seems worthwhile to consider the
implications of our findings for understanding the roles of
replay and interleaved learning in our understanding of the
neural basis of learning and memory.
(b) Implications for replay and interleaved learning
To our knowledge, the idea of memory replay originated in the
theoretical speculations of Marr [8], who proposed that the
hippocampus stores in the order of 10 000 experiences every
day, and replays them overnight to allow the cortex to sort
them into categories and to adjust these category represen-
tations. Inspired by this, Wilson & McNaughton [25],
building on Pavlides & Winson [31], were able to demonstrate
that correlated patterns of neural activity occurring during
waking behaviour were subsequently recapitulated during
subsequent sleep episodes. Our extension of Marr’s ideas, as
elaborated first in McClelland et al. [7], offers a different take
on the role of replay, however. In our theory, it is not just
new information that needs to be re-experienced for integration
into neocortical structures. Instead, the integration of newly
encountered items or experiences with unique properties or
novel combinations of properties requires interleaving with
existing knowledge if this integration is to occur without
interference.

One view worth keeping under consideration is that much
of the interleaving that is required for integration of new
knowledge may come from ongoing experience. For example,
if we acquired a new pet, we would experience it every day,
and as we continue to go about our daily routine, we would
continue to be exposed to many other things. The hippo-
campus could play an important role in initial formation of a
memory for the new pet. Some aspects consistent with existing
knowledge would be easy for the cortex to learn, while others,
such as remembering the name of a new pet or its particular
proclivities would remain hippocampus-dependent for a
longer period of time. Gradually, the cortex would learn
through repeated exposure, so that the hippocampus would
no longer be necessary. Meanwhile, we would have ongoing
exposure to other things including other people’s pets and
other animals, avoiding the problem of catastrophic interfer-
ence. A question arises here: what, in this view, would be the
role of replay of new information during off-line periods
shortly after initial exposure to new information? While this
replay is often thought to begin the process of integration
into the neocortex, another important possible role would be
to help stabilize the plastic changes within the fast-learning
hippocampal system, ensuring that the new learning remains
available for use and replay over an extended time period. If
such replay events were selective for repeated and/or highly
salient aspects of our recent experience, they would help con-
serve limited synaptic resources in both hippocampal and
neocortical circuits, reserving them for material likely to be of
use in the future.

We have also explored a factor that could potentially speed
the integration of arbitrary new information into neocortex,
namely hippocampus-dependent replay of recent experience
interleaved with selective replay of similar already known
information. We observed that learning arbitrary new aspects
of things without interference with existing knowledge does
not require ongoing exposure to all existing knowledge; instead
it can be enough to focus only on related items, relying on an
experience protocol we have called SWIL. Similarity-based
reactivation of pre-existing knowledge could occur, in part,
during direct experience with new things. Returning to the
example of a new pet, when we have an experience with it,
that experience may trigger memories of other pets—our
own or those of our friends and acquaintances. Thus, it is
possible that similarity-weighted exposure to related things
we already know about may be a natural concomitant of
experience with new things.

While ongoing experience may play a role in promoting
interleaved learning, some studies support the idea that
replay without ongoing exposure can also lead to neocortical
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consolidation. In one study showing this pattern, Kim& Fanse-
low [32] exposed rats to highly aversive tone-shock pairings in
a single session in a novel environment. They found that
removal of the hippocampus one day after the experience
resulted in little or no expression of fear when the animals
were returned to the environment, but leaving the hippo-
campus intact for a period of one to four weeks after this
experience resulted in gradually increasing expression of fear
after a subsequent hippocampal lesion. The increase in fear
memory occurred while the animals were retained in their
home cages, with no re-exposure to the fear-inducing environ-
ment. While there are many studies that have failed to
show increasing retention after a longer period prior to a
hippocampal lesion [33], there are other sources of evidence
of gradual integration into the neocortex. For example,
Takehara-Nishiuchi & McNaughton [34] demonstrated the
emergence of neural activity in deep layers of the medial
prefrontal cortex over a period of several weeks without
ongoing task exposure, also supporting the idea of gradual
integration of initially hippocampus-dependent learning into
non-HC-dependent structures through off-line replay.

In the context of the evidence for gradual integration of new
knowledge into the cortex without ongoing exposure from the
environment, it is intriguing to consider the possibility that
SWIL might occur during off-line periods based on infor-
mation already stored in the brain. In ongoing work, we are
exploring the possibility that a hippocampus-dependent
replay of a recent newmemory would activate the correspond-
ing representation in the neocortex, providing a learning trial
for the cortex based on the new memory. The initial cortical
activation during the novel experience might also leave a
residual trace within the cortex that may bias the cortex, so
that spontaneous neural activity would tend to reactivate
memories stored in the neocortical connection weights with
neural activity patterns that overlap with the one that rep-
resents the new experience. In future work, we hope to
explore this possibility through computer simulations relying
on more biologically grounded simulated neural networks
than the ones we have employed in the work presented here.
(c) Open questions for future research
While the work reported here demonstrates that similarity-
weighted interleaving can allow new information to be fully
integrated with less ongoing exposure to existing knowledge
than might otherwise have been thought, we have not found
a similar advantage for similarity weighting with some other
datasets and neural network architectures. In ongoing work,
we are exploring this issue. It should be clear from our simu-
lations that degree of overlap with other patterns is a
relevant factor that influences the efficacy of similarity weight-
ing, and future work should explore whether sparse coding
schemes that reduce overall pattern similarity might enhance
the advantage of similarity weighting. Perhaps, if each pattern
to be learned only overlaps with a small fraction of the other
patterns, then interleaving might only be required for the
items in this small set. On the other hand, excessive sparsity
can reduce a network’s ability to capture relevant similarity
structure and thereby to generalize in useful ways, and cortical
networks may, therefore, exploit an intermediate level of spar-
sity that balances the need to capture generalizations while
minimizing interference [35]. In summary, the extent of the
advantage of similarity weighting is likely to depend on the
details of the similarity relationships among the patterns to
be learned, and future work is needed to explore more fully
the advantages that similarity weighting might provide in a
wider range of situations and to explore how the represen-
tations of items to be learned might be tailored to promote
the effectiveness of similarity weighting.

More broadly, it should be noted that our work does not
fully address the broader literature on learning structured
bodies of knowledge and the roles of schema consistency and
inconsistency in new learning. In particular, much of the
work in humans highlights an important role for novelty as
well as schema consistency in driving memory replay, and a
role for the medial pre-frontal cortex in this process [14], and
other evidence suggests that less consistent information may
be prioritized for replay [17,36]. A complete theory of new
learning will require a fuller understanding of these important
aspects of the memory formation and replay process [37].

(d) The role of models in cognitive and systems
neuroscience

Before closing, a comment may be in order about the relation-
ship between computer simulations and experimental
investigations of real neural systems. The role of models is
not to capture reality in all of its complexity, but to simplify it
so that some of its key properties may be understood [38,39].
The simple simulations we present here do not fully capture
what really happens in the brain during learning. We strongly
believe that further progresswill still require simplification, but
that any consideration of what is observed in the behaviour of
simulation models must also be viewed as providing a limited
perspective that needs to be complemented by consideration of
the properties of the real neural system. It is only though such
interplay that real progress will be made.
5. Conclusion
In spite of many years of progress in the psychology, neuro-
biology, and computational analysis of learning and memory,
there remains a great deal we still have to learn. Real brains
are far more complex than the simple networks we have con-
sidered here, and so is real experience. The discovery of the
medial temporal lobe amnesic syndrome, the invention of
methods that allow us to study neural activity during experi-
ence and during later offline periods, and the exploration of
artificial neural networks that allow aspects of learning and
memory to be captured in simulations have provided a start-
ing place, and the findings from the research that has ensued
in the wake of these developments constitutes real progress.
Yet, they still leave us with only a partial understanding of
how experiences and their replay contribute to learning and
memory. We hope that the ideas and findings we have pre-
sented here will contribute to the ongoing exploration of
these issues, and we expect that a full understanding will
require ongoing research of all of the types we have
mentioned for many years to come.
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Endnotes
1The quantities computed by PCA can be derived from the SVD and
vice versa, if the column means are first subtracted from the item
property matrix before calculating the SVD. In that case, the singular
values in the SVD are proportional to the square roots of the
eigenvalues in PCA. See [27] for more details. The quantities cap-
tured in the SVD without subtracting the column means are
directly related to the dynamics of learning in our model, and so
are more useful for present purposes.
2We follow the mathematical convention in which a bold lowercase
letter such as x corresponds to a column vector and a bold uppercase
letter such as X corresponds to a matrix. The superscript T stands for
the transpose operation, which turns columns into rows and vice
versa. To better support intuition, we transpose the data matrix
employed in [26]; this swaps the roles of the u i and v iT.
3The adequacy of the approximation depends on having enough
hidden units to make it likely that there is a dimension embedded
in the initial weights such that each to-be-learned dimension projects
reasonably strongly onto it. A perfect match to the equation can be
obtained by initializing the network with weights that exactly cap-
ture the to-be-learned dimensions scaled down to align with the
chosen value of ai(0).
4The fractional presentations of items are obtained by scaling down
the learning rate. We also ran simulations in which fractional presen-
tation rates are implemented by presenting items probabilistically.
Those simulations produced results (not shown) that jittered
around the smooth curves obtained by scaling down the learning
rate.
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