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Abstract 

Like scientists, children must find ways to explain causal 
systems in the world. The Bayesian approach to cognitive 
development holds that children evaluate explanations by 
applying a normative set of statistical learning and 
hypothesis-testing mechanisms to the evidence they 
observe. Here, we argue for certain supplements to this 
approach. In particular, we demonstrate in two studies that 
children, like adults, have a robust latent scope bias that 
conflicts with the laws of probability. When faced with two 
explanations equally consistent with observed data, where 
one explanation made an unverified prediction, children 
consistently preferred the explanation that did not make 
this prediction (Experiment 1). The bias can be overridden 
by strong prior odds, indicating that children can integrate 
cues from multiple sources of evidence (Experiment 2). We 
argue that children, like adults, rely on heuristics for 
making explanatory judgments which often lead to 
normative responses, but can lead to systematic error. 

Keywords: Cognitive development; causal reasoning; 
explanation; evidence; probability; philosophy of science. 

Beauty is truth, truth beauty,—that is all 
Ye know on earth, and all ye need to know. 
            -John Keats, “Ode on a Grecian Urn” (1819) 

Introduction 
Children are often characterized as budding scientists. In 
the first years of life, young children perform inductive 
feats befitting of a Newton or a Darwin, managing to 
learn the vocabulary and grammar of one or more natural 
languages, to carve the world up into useful categories, 
and to increase their understanding of the causal structure 
of the physical and social worlds. These accomplishments 
are all the more remarkable because, unlike mature 
scientists, children must induce this knowledge without 
the benefit of formal education or scientific training. 

If children truly approach the world like little scientists, 
gathering evidence and inferring regularities, then perhaps 
their inferential practices are also similar to those of 
actual scientists. In order for scientists to make sense out 
of the world, they must perform abduction—inferring the 
best explanation for a given set of observations (Lipton, 
2004). However, within philosophy of science, there is 
considerable disagreement about what criteria scientists 
use for evaluating hypotheses or explanations. According 
to Bayesian confirmation theory (e.g., Jeffrey, 1965), 
scientists are concerned with inferring the likeliest 
explanation—the hypothesis that has maximum posterior 

probability after observing the evidence. On the 
reasonable assumption that seeking the truth requires us to 
seek the most probable explanation, scientists certainly 
seem to aspire to this goal. 

However, scientists may not always directly consider 
which explanations are most likely, but may instead 
search for the loveliest explanation, in the hope that their 
instinctual sense of explanatory virtue can be a guide to 
truth. There is much anecdotal support for the importance 
of explanatory elegance to the work of scientists. For 
example, Hermann Bondi describes his experience 
meeting Albert Einstein (quoted in Zee, 1999): 

What I remember most clearly was that when I put 
down a suggestion that seemed to me cogent and 
reasonable, Einstein did not in the least contest this, 
but he only said, “Oh, how ugly.” As soon as an 
equation seemed to him to be ugly, he really rather lost 
interest in it and could not understand why somebody 
else was willing to spend much time on it. He was 
quite convinced that beauty was a guiding principle in 
the search for important results in theoretical physics. 

Numerous other great scientists and mathematicians have 
echoed Keats’ refrain, that “beauty is truth, truth beauty.” 

Psychologically, we can think of the “likeliness” 
strategy as using normative probability theory to evaluate 
explanations, selecting the explanation that is made most 
probable by the evidence (Pearl, 1988). In contrast, we 
can think of the “loveliness” strategy as a heuristic 
strategy, selecting the explanation that scores highest on a 
set of “explanatory virtues” such as simplicity, scope, and 
generality (Lipton, 2004; McGrew, 2003). This more 
heuristic view, while potentially leading to error at times, 
has the advantage of being computationally much 
simpler—it does not require explicit calculations of prior 
probabilities, likelihoods, or posteriors. 

Unfortunately, these views are difficult to 
disambiguate, because lovely explanations often are 
likelier. Take simplicity, for instance. Adults (Lombrozo, 
2007), children (Bonawitz & Lombrozo, 2012), and 
scientists (Zee, 1999) all prefer explanations invoking 
fewer causes to explanations invoking more causes. Yet, 
it is unclear whether this simplicity preference is driven 
by an attempt to maximize the likelihood that an 
explanation is true, or by a more course-grained heuristic 
(e.g., “simpler is better”) that often approximates 
normative inferences. All else being equal, simpler 
explanations have higher prior probabilities than more 
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complex explanations. If Disease A can explain all of a 
patient’s symptoms but Diseases B and C would need to 
act in conjunction to account for her symptoms, then 
Disease A is the best explanation not merely because it is 
simpler or lovelier, but also because a person is far 
likelier to acquire one disease than two diseases. 

If scientists and other humans prefer lovelier 
explanations, it is fortunate that they are usually more 
likely to be true—but a preference for simpler 
explanations would also be consistent with people 
performing direct probability calculations rather than 
using a heuristic. There is, however, some evidence 
favoring the heuristic view, at least for adults. People’s 
simplicity bias goes beyond what is normatively justified, 
as people require approximately four times more evidence 
than they normatively should before abandoning a simple 
explanation in favor of a more complex one (Lombrozo, 
2007). Thus, people seem to use simplicity as a heuristic 
for estimating prior probability. Similarly, people use 
complexity in the opposite way, as a heuristic for 
estimating likelihood (i.e., the probability of the evidence 
given each hypothesis; Johnson, Jin, & Keil, 2014). 

But how do these explanatory heuristics arise? Perhaps 
adults learn to use these heuristics because they 
approximate normative calculations. In other words, 
adults might develop a preference for explanations that 
are lovelier simply because they have learned that they 
are, on average, likelier. Yet, if explanatory heuristics are 
such critical sense-making tools, then perhaps they are 
foundational to our cognitive machinery and guide our 
explanation evaluations from very early on. If this is the 
case, then we should expect even young children to use 
the same explanatory heuristics as adults. 

Although even infants can carry out some reasoning in 
a manner consistent with probability theory (Gweon, 
Tenenbaum, & Schulz, 2010), it is less clear whether 
young children also use some of the same explanatory 
heuristics as adults. That said, some preliminary evidence 
was provided by Bonawitz and Lombrozo (2012), who 
found that young children, like adults, require 
disproportionate evidence before abandoning a simple 
explanation in favor of a more complex one. In their 
study, 4- to 6-year-old children encountered a toy that had 
a light and a fan. Children were taught that putting red 
coins in the machine caused the light to turn on, putting 
green coins in the machine caused the fan to turn on, and 
putting blue coins in the machine caused both the fan and 
the light to turn on. Then, the experimenter ‘accidentally’ 
tipped a bag of coins over, so that either one or two coins 
fell in, causing both the light and fan to activate. Even if 
there were many red and green coins but only one blue 
coin in the bag, so that it was actually more probable that 
both a red and a green coin fell into the machine, children 
nonetheless favored the simple explanation. Thus, like 
adults, children appear to use a simplicity heuristic for 
estimating the prior probability of an explanation. 

One limitation of the research on simplicity is that some 

degree of simplicity preference is normatively justified, 
making it more difficult to distinguish the probabilistic 
and heuristic views. In the current studies, we capitalized 
on a non-normative explanatory bias shown by adults—
the latent scope bias (Johnson, Rajeev-Kumar, & Keil, 
2014; Khemlani, Sussman, & Oppenheimer, 2011). For 
example, imagine that your car smelled like antifreeze, 
and this could be due to one of two problems—a problem 
with the cooling system or a problem with the exhaust. 
Suppose that a cooling problem would activate the “check 
engine” light, but an exhaust problem would not. Clearly, 
the thing to do is to check the light. But alas, the light is 
useless, because the bulb has burned out! In this situation, 
the light is in the latent scope of the cooling system 
explanation—that is, the light would count as evidence in 
favor of a cooling problem if it were observed, but the 
prediction is unverified. Normatively, both explanations 
are equally likely. Yet, in situations like this, adults prefer 
explanations with narrower latent scope—that is, 
explanations that make fewer unverified predictions 
(Khemlani et al., 2011). That is, adults would say that the 
exhaust explanation—which does not predict any 
additional effects—is more satisfying and more probable. 

This non-normative inference appears to result from a 
combination of two heuristics (Johnson, Rajeev-Kumar, 
& Keil, 2014). First, when confronted with an explanation 
that makes an unverified prediction, people apply an 
inferred evidence heuristic to resolve this ignorance, 
effectively guessing whether the evidence would be 
observed if they were able to look. In doing so, people 
rely on the base rates of the unverified effect, even if the 
prior probabilities are explicit in the problem (this is what 
makes the inference non-normative). Second, they apply 
an explanatory scope heuristic, preferring explanations to 
the extent that they account for as many actual and as few 
non-actual observations as possible (Johnson, Johnston, 
Toig, & Keil, 2014; Read & Marcus-Newhall, 1993). 

Putting these two heuristics together yields a latent 
scope bias. Most effects in the world (e.g., check engine 
lights switching on) have low base rates. Therefore, 
people typically infer that an unverified effect likely 
would not have occurred, and count this inferred evidence 
against the explanation that would predict it. This leads to 
a preference for narrow latent scope. (Indeed, for cases 
where the unverified effect has a high base rate, people 
infer that it probably would be observed, and have a wide 
latent scope bias; Johnson, Rajeev-Kumar, & Keil, 2014). 
Although in this experimental situation, this heuristic 
leads to error, it is a generally adaptive strategy to try to 
make inferences about unobserved evidence to maximize 
one’s evidential basis for reasoning.  

Given that children are also generally reluctant to 
accept epistemic ignorance (i.e., ignorance residing in 
their own mind, rather than in the world; Robinson et al., 
2006), it is plausible that they would tend to use an 
inferred evidence heuristic when evaluating explanations 
and, thus, show the same, non-normative, latent scope 
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bias as adults. However, if children have not yet acquired 
the inferred evidence heuristic, then they might respond in 
accordance with Bayesian norms, and, ironically, 
outperform adults. Normatively, there is no evidence in 
favor of either the wide or narrow latent scope 
explanation, regardless of how high or low the base rates 
are for the unobserved effect. This is because knowledge 
of the base rates of potential explanations “screens off” 
information about the effect base rates. A Bayesian child 
would ignore the base rates of the effects and instead (1) 
calculate the prior probabilities of both explanations and 
their ratio (i.e., the prior odds), (2) calculate the 
likelihoods of both explanations and their ratio (i.e., how 
probable the data would be under each hypothesis; when 
all that varies across explanations is latent scope, this ratio 
is 1, because the known evidence is predicted by both 
hypotheses), and then (3) multiply these two ratios (Pearl, 
1988). Although this process is in general much more 
complex than the heuristic process, it ironically leads to a 
more straightforward answer in one special case: when 
the likelihood ratio and prior odds both equal one. In this 
case, the Bayesian computation, indicating that both 
explanations are equally probable, is at least as simple as 
the heuristic computation that leads to a latent scope bias. 

In Experiment 1, we tested for a latent scope bias in 
children, capitalizing on this special case by (1) holding 
the base rates of competing explanations constant 
(making the prior probability ratio equal one) and (2) 
manipulating only the unobservable evidence across 
explanation (i.e., making the likelihood ratio equal one). 
Thus, to the extent that the task would be too demanding 
for children, this would make them look like Bayesians 
rather than like heuristic reasoners. In Experiment 2, we 
varied the base rates of the explanations to make the wide 
latent scope explanation more probable, testing whether 
the latent scope bias, like simplicity (Bonawitz & 
Lombrozo, 2012), can be overridden by strong prior odds. 

Experiment 1 
In Experiment 1, children encountered a toy that, like 
Bonawitz and Lombrozo’s (2012), had a fan and a light. 
Children learned that one color coin turned on the fan (the 
one-effect coin) and that the other color coin turned on 
both the fan and light (the two-effect coin). After several 
familiarization trials with these coins (in which various 
parts of the toy were occluded), children were presented 
with one test trial in which the light was occluded so that 
they could not tell whether it was on or not. Then, one 
coin was randomly and covertly put into the machine and 
children were asked to infer which coin was placed inside. 
The coin was drawn from a bag containing 5 coins of 
each color, to ensure that the prior probabilities were 
equal. If children respond normatively, they should guess 
at chance, because the fan is not diagnostic (it is 
consistent with either explanation), and the key piece of 
information (the light) is unavailable. In contrast, if 
children show a latent scope bias like adults (Khemlani et 

al., 2011), they should indicate that the one-effect coin is 
more likely, since it does not make the additional, 
unverified prediction that the light would be on. 

Method 
Participants Thirty-one 4 and 5-year-old children (M = 4 
years, 11 months; range = 4 years, 0 months – 6 years, 0 
months) participated in Experiment 1. An additional 14 
children (11 4-year-olds and 3 5-year-olds) participated 
but were replaced because they failed the familiarization 
check questions (see below). 
Materials The materials included a machine toy (see 
Figure 1), constructed from white cardboard. On the top 
of the machine, facing the child, were a fan that could 
rotate and a light that could turn on. A slot at the front of 
the machine was used to drop coins in, which purportedly 
caused the fan or light to operate. In fact, the fan and light 
were covertly operated by the experimenter using 
switches wired to the back of the box, out of view of the 
child. No child voiced suspicion over the operation of the 
machine; in fact, a senior museum staff member at one of 
our testing sites was surprised to learn that the coins did 
not control the machine. 
Procedure The procedure involved three phases: The 
introduction, familiarization, and test phases. 

In the introduction phase, the experimenter explained 
the function of the blue and red coins. One coin (the one-
effect coin) made just the fan turn, while the other coin 
(the two-effect coin) made both the fan and light turn on. 
The color of the coins was counterbalanced, such that the 
one-effect coin was blue for some children and red for 
others. For each coin, the experimenter put the coin in the 
slot so the child could witness what the coin caused the 
box to do. The experimenter then said, “See! The blue 

Figure 1: Machine toy used in Experiments 1 and 2, 
including the coins that operated the machine and their base 
rates across experiments. The light was occluded on test 
trials so that children could not observe whether it was on. 
The toy was oriented so that the child faced the coin slot. 
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[red] coin makes the fan [both the fan and the light] go.” 
After introducing each coin, the experimenter gave a card 
to the child depicting the coin’s color and its effects to 
reduce the task’s memory load. The order in which the 
experimenter introduced the coins was randomized. 

Next, in the familiarization phase, the child made six 
predictions—two in which both parts of the toy were 
visible and four in which one part was occluded—about 
what would happen if coins were put into the toy. If a 
child required more than one correction on the same 
familiarization trial (either visible or occluded), that child 
did not proceed to the test phase and was excluded from 
data analysis. On the first set of familiarization trials (i.e., 
the two visible trials), the child was asked to predict what 
would happen when the red and blue coins were put into 
the slot. These trials were intended to make sure that the 
children remembered or could rely on their diagrams to 
understand how the machine worked. If the child 
answered incorrectly, the experimenter put the coin in to 
show the child the correct answer, and the trial was 
repeated. The order of the two visible trials (for the red 
and blue coins) was randomized. 

On the second set of familiarization trials (i.e., the four 
occluded trials), either the fan or the light was covered up 
using an opaque cardboard cover, and the child was asked 
to predict what would occur when each color coin was 
placed in the slot. These trials were framed as a guessing 
game, wherein parts of the machine were sometimes 
covered. This was done in order to break any pedagogical 
or pragmatic inferences children might be making about 
what the experimenter was communicating by covering 
the fan and light, and to ensure that children understood 
that unobserved effects could still occur. If the child 
answered incorrectly, the experimenter lifted the cover, 
and the trial was repeated. The order of the four invisible 
trials (for the red and blue coins, and with either the fan or 
light covered) was randomized. 

Finally, in the test phase, the light was occluded. The 
test trial was continuous with the familiarization trials, so 
that from the child’s perspective, covering the light on 
this trial was no different than covering parts of the 
machine on the previous familiarization trials. The 
experimenter showed the child a transparent plastic bag 
containing five red coins and five blue coins and said: 

We’re going to use this bag of coins! See, there are 5 
red coins and 5 blue coins in this bag. I’m going to 
close my eyes and pull one out. Then, I’ll put it in the 
box, and I want you to guess which color went in. 

Then, the experimenter and child both closed their eyes, 
and the experimenter selected a coin at random from the 
bag, so that the child could not see what coin was 
selected. The experimenter then placed the coin in the slot 
and the appropriate effects occurred (i.e., the fan always 
turned on, and the occluded light did or did not turn on, 
depending on the coin color). Then, the experimenter 
asked, “Which color do you think went in?” If children 
are averse to latent scope, they should choose the one-

effect option (the light should be off), but if they prefer 
latent scope explanations, they should choose the two-
effect option (the light should be on). Alternatively, if 
children are indifferent to latent scope and respond 
normatively, they should choose the coins equally often. 

Results and Discussion 
As shown in Figure 2, children preferred the explanation 
with narrow latent scope—the coin that caused only the 
fan to turn on. Specifically, on the test trials, 24 out of 31 
children (77%) chose the narrow latent scope coin (p = 
.003, sign test). This preference was equally strong among 
4- and 5-year-olds (p = 1.00, Fisher’s exact test). These 
results demonstrate that children as young as age 4 have a 
robust latent scope bias, suggesting that even very young 
children are swayed by some of the same non-normative 
explanatory preferences as adults. 

Experiment 2 
Children have surprisingly sophisticated probabilistic 
reasoning skills, starting from infancy (Gweon et al., 
2010). In particular, children use the base rates of 
explanations to calibrate their preference for simpler over 
complex explanations (Bonawitz & Lombrozo, 2012). 
Specifically, when the base rates of the simple and 
complex explanations are made equal by varying the 
number of colored coins, children (like adults; Lombrozo, 
2007) prefer the simple explanation. But when the 
complex explanation is much more probable than the 
simple explanation (a 1:6 ratio), children are able to 
override their simplicity preference and choose the more 
probable explanation. Would children similarly be able to 
override their latent scope bias when the base rates favor 
the wide latent scope explanation? 

To test how children integrate explanatory scope and 
base rates in their explanatory inferences, we manipulated 
the prior odds using the method of Bonawitz and 
Lombrozo (2012). Instead of drawing a coin at random 
out of a bag with 5 two-effect and 5 one-effect coins as in 
Experiment 1, the bag contained 8 two-effect and 2 one-
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Figure 2: Results of Experiments 1 and 2. Dashed line 
indicates chance responding, and bars represent 95% CIs. 
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effect coins. That is, the wide latent scope explanation 
had a prior probability that was 4 times as high as the 
narrow latent scope explanation. If children can override 
their latent scope bias by using probabilistic information, 
they should choose the more probable two-effect coins. 
But if overwhelming prior odds are still insufficient to 
override the latent scope bias, then they should continue 
to choose the one-effect coins with narrow latent scope. 

Method 
Participants Thirty-two 4- and 5-year-old children (M = 
4 years, 11 months; range = 3 years, 11 months – 5 years, 
10 months) participated in Experiment 2. An additional 6 
children (all 4-year-olds) participated but were replaced 
because they failed the same familiarization trial at least 
two times (the same criterion used in Experiment 1). 
Materials and Procedure The materials and procedure 
were identical to those for Experiment 1, except for the 
test trial. On that trial, the experimenter used a bag of 
coins with 8 two-effect coins (i.e., wide latent scope) and 
2 one-effect coins (i.e., narrow latent scope), in contrast to 
Experiment 1 where 5 of each type of coin were used.  

Results and Discussion 
As shown in Figure 2, the results of Experiment 2 differed 
dramatically from those of Experiment 1. Whereas 24 out 
of 31 children (77%) in Experiment 1 chose the narrow 
latent scope coin when the coins were equally probable, 
only 11 out of 32 children (34%) chose the narrow latent 
scope coin in Experiment 2 where the narrow latent scope 
coin was more probable. Thus, children in Experiment 2 
chose the narrow latent scope explanation less often than 
children in Experiment 1 (p < .001, Fisher’s exact test), 
and, if anything, showed a preference for the wide latent 
scope explanation (p = .11, sign test), a preference that 
was equally strong among 4- and 5-year-olds (p = .46, 
Fisher’s exact test). 

These results show that young children are able to 
combine information about an explanation’s scope and its 
prior probability. Like the simplicity bias, the latent scope 
bias can be overridden by strong prior odds. Explanatory 
heuristics therefore are not used blindly, but in concert 
with other sources of evidence in a flexible manner.  

General Discussion 
Children may be scientists, but what kind of scientists are 
they? Do they search for the likeliest explanations, like 
good Bayesians, or do they search for the loveliest 
explanations, as some philosophers of science recommend 
(Lipton, 2004) and many scientists actually do in practice 
(Zee, 1999)? In two experiments, we demonstrated that 
children, like adults, have a non-normative preference for 
narrow latent scope explanations—explanations that 
make few unverified predictions. The early emergence of 
this bias constitutes further evidence that explanatory 
heuristics are not merely quirks of adult cognition, but a 
fundamental component of explanatory reasoning that 

may undergird later, more sophisticated behaviors. 
In Experiment 1, children preferred narrow latent scope 

explanations over wide latent scope explanations, even 
when their probabilities were matched. Experiment 2 was 
an exact replication of Experiment 1, except that the prior 
probabilities favored the wide latent scope explanation. 
This change eliminated the latent scope bias (actually 
reversing it), showing that the bias can be overridden by 
strong prior odds. This speaks to the flexible manner in 
which explanatory heuristics can be integrated with other 
sources of evidence. 

However, one possible concern is that children’s latent 
scope bias is not due to adult-like heuristic processing, but 
instead to a different, lower-level process. Perhaps 
children chose the one-effect coin merely because that 
coin corresponded to the one effect they could observe (a 
perceptual matching bias). However, this interpretation is 
unlikely to be correct for two reasons. First, this bias was 
overridden by probabilistic evidence in Experiment 2, 
meaning that children could integrate multiple sources of 
evidence rather than blindly perceptually matching. 
Second, if the results were due to perceptual matching, 
one would expect stronger effects at younger ages. 
However, there was no age difference in either 
Experiment 1 or 2. Further, we conducted an additional 
test of children’s latent scope bias using a different 
method with 5- to 8-year-olds (Johnson, Johnston, Koven, 
& Keil, 2015). Not only was the latent scope bias 
replicated using a different method, but there were once 
again no age differences even across this wider age range. 

The non-normativity of the latent scope bias—as well 
as the underlying heuristic mechanisms (Johnson, Rajeev-
Kumar, & Keil, 2014)—can help to distinguish between 
probabilistic (“likeliest”) and heuristic (“loveliest”) 
accounts of explanatory reasoning. According to Bayesian 
confirmation theory (e.g., Jeffrey, 1965), the best 
explanation of a phenomenon is the explanation that is 
likeliest to have caused it. This idea has been refined by 
advances in statistics and machine learning (Pearl, 1988), 
which use Bayesian networks to model the conditional 
independence assumptions that vastly simplify the 
computational problem of causal learning and reasoning. 
Psychological versions of these theories have seen great 
success in modeling human causal reasoning in children 
(Gopnik et al., 2004), adults (Steyvers, Tenenbaum, 
Wagenmakers, & Blum, 2003), and even rats (Blaisdell, 
Sawa, Leising, & Waldmann, 2006). Thus, explanatory 
inferences often approach normative ideals—a consistent 
finding across studies that accrues support for the view 
that children and adults infer the likeliest explanation. 

However, in many cases, it may be sufficient to rely on 
heuristics that typically approximate normative 
inferences, rather than going through the more cognitively 
demanding task of explicit probability calculations. 
Heuristics such as simplicity (i.e., preferring explanations 
invoking fewer causes, all else equal) and scope (i.e., 
preferring explanation that explain more of the evidence, 
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all else equal) are normatively grounded, in that following 
them will lead to rational inferences, yet they are more 
computationally straightforward than explicit probability 
calculations. In fact, several studies suggest that children 
and adults rely on simplicity to estimate prior 
probabilities heuristically (Bonawitz & Lombrozo, 2012; 
Lombrozo, 2007) and that adults rely on complexity to 
estimate likelihood (i.e., the probability of the evidence 
given each hypothesis; Johnson, Jin, & Keil, 2014). 

The current results provide even more powerful 
evidence for the heuristic approach, in documenting a 
non-normative behavior by Bayesian standards. In our 
Experiment 1, 77% of children preferred an explanation 
that did not posit an unobservable piece of evidence, even 
though the children could clearly see that the two 
explanations had equal base rates (i.e., the same number 
of red and blue coins in the bag from which the coin was 
randomly selected). Further research could explore 
whether this bias might extend to even younger ages to 
further rule out the possibility that it is a learned heuristic. 

Though the probabilistic and heuristic views may 
appear to be competitors, they need not be. Although 
people do not appear to be Bayesians at an algorithmic 
level, it is equally clear that people often make 
sophisticated inferences that are more-or-less normative at 
the computational level. Since most Bayesian theories are 
posed at the computational level, the heuristic account 
need not be in tension with such probabilistic approaches. 
Rather, heuristics can allow us to implement reasoning 
that can approximate Bayesian norms, in a way that is 
tractable given our cognitive limits. 

Thus, children’s latent scope bias may be best viewed 
not as an inferential failure, but as one part of a grander 
method—an arsenal that may contain many explanatory 
heuristics, working in concert—that we can use to 
understand our environment, to explain what happens, 
and to make sense of the world. Contra Keats, beauty may 
not be the very essence of truth—but the explanatory 
virtues may suffice to get by, most of the time. 
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