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ABSTRACT Small polaron formation limits the mobility and lifetimes of photoexcited carriers in 

metal oxides. As the ligand field strength increases, the carrier mobility decreases, but the effect 

on the photoexcited small polaron formation is still unknown. Extreme ultraviolet transient 

absorption spectroscopy is employed to measure small polaron formation rates and probabilities 

in goethite (α-FeOOH) crystalline nanorods at pump photon energies from 2.2 to 3.1 eV. The 

measured polaron formation time increases with excitation photon energy from 70  10 fs at 2.2 

eV to 350  30 fs at 2.6 eV, whereas the polaron formation probability (85  10%) remains 

constant. By comparison to hematite (α-Fe2O3), an oxide analog, the role of ligand composition 

and metal center density in small polaron formation time is discussed. This work suggests that 

incorporating small changes in ligands and crystal structure could enable the control of 

photoexcited small polaron formation in metal oxides. 
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The formation of small polarons in transition metal oxides limits carrier diffusion.1-6 A small 

polaron is formed when the electric field of an excess carrier interacts with an optical phonon in a 

polar lattice, distorting the lattice and trapping the carrier in a local potential well.7-9 For example, 

in the iron oxides and oxide hydroxides, small polarons form when electrons self-trap onto an iron 

center, forcing conduction to occur via phonon-mediated hops between centers.4-6 In the 

photoexcited state, it has recently been shown that small polarons form on a sub-100 fs timescale 

in hematite (α-Fe2O3).
10 Additionally, small polarons are found to form at the hematite surface in 

approximately 660 fs.11 Small polaron formation therefore may control the trapping and lifetime 

of photoexcited carriers as well as the mobility. 

The existence of small polarons is intrinsic to a material since it is governed by the polarity of 

the lattice.7 The small polaron formation energy and hopping activation energy, however, are 

sensitive to the ligand field strength and hopping center density. For example, a linear relationship 

has been found between the polaron hopping activation barrier and the ionic polarizability at 

interfaces.12 In other words, even if small polarons cannot be eliminated in a material, the small-

polaron-limited mobility may be controlled through the electronic and structural properties of the 

material. For example, while goethite (α-FeOOH) and hematite both have an octahedral 

coordination geometry of oxygen ligands about an Fe3+ center, the replacement of some O2- ligands 

with OH- ligands in goethite increases the electron density about the Fe-O bonds, creating stiffer, 

less distortable bonds with higher vibrational frequencies.13-18 In goethite, the iron atoms fill 1/2 

of the interstitial spaces in the hexagonal close-packed array of oxygens, while in hematite the 

irons fill 2/3 of the interstitial spaces.19-22 This change in iron center density corresponds to an 

increase in the Fe-Fe distance by greater than 5% in goethite with respect to hematite.6,18 These 

changes in structure and bonding have been shown to increase the polaron hopping activation 
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energies in goethite, decreasing the ground state carrier mobility compared to hematite.4-6,23 It has 

yet to be experimentally confirmed whether the same changes to structure and bonding also 

modulate the excited state small polaron localization and thus the lifetime of photoexcited carriers.  

In this study, we measure the polaron formation kinetics of goethite (α-FeOOH) crystalline 

nanorods using extreme ultraviolet (XUV) transient absorption spectroscopy at the Fe M2,3 edge. 

This pump-probe technique is sensitive to changes in the Fe oxidation state, allowing for the 

observation of small polaron formation via a signature spectral shift. The small polaron formation 

time increases with excitation energy from 70  10 fs at 2.2 eV to 350  30 fs at 2.6 eV. Excited 

electrons are measured to have an 85  10% probability of forming small polarons, and the signal 

associated with the polaron persists for over 300 ps. Comparison of these trends with hematite, in 

particular the polaron formation time (180  30 fs average time in goethite nanorods and 90  5 fs 

in hematite thin films), suggests that polaron formation may be tuned by altering the ligand 

composition and density of the iron centers, although the role of sample morphology still needs to 

be investigated. 

 



 5 

Figure 1. a) The ground state XUV absorption spectrum of goethite nanorods (black) and the 

spectrum simulated using the CTM4XAS software (red). Input parameters for the charge transfer 

multiplet calculation are summarized in the text. b) A TEM image of the goethite nanorod 

distribution, confirming the size and the rod-like shape of the particles. C) An HRTEM image of 

a single nanorod reveals that the entire rod is a single crystal. d) Powder XRD of the sample (black) 

compared to the stick spectrum of goethite from Gualtieri et al.19 (red), which confirms that the 

sample is in the goethite phase. 

XUV transient absorption spectroscopy utilizes a visible or near-IR pump and a broadband XUV 

probe to measure semicore-to-valence transitions, which are sensitive to the oxidation state and 

bonding environment of first row transition metals. The apparatus, described previously,24 utilizes 

the process of high harmonic generation to produce the XUV probe pulses, and it can measure thin 

solid state samples, such as thin films and nanoparticles, which are suspended on silicon nitride 

windows.  

The ground state XUV absorption spectrum of the Fe M2,3 edge for the goethite nanorods is 

shown in Figure 1a. The observed spectral features, shown in black, are caused by the multiplet 

splitting between the ground state (3p63d5) and the core hole excited state (3p53d6) and by the 

ligand field. The simulated spectrum, shown in dotted red, is predicted using a charge transfer 

multiplet calculation with a value for the crystal field splitting 10Dq of 1.55 eV.10,24,25 Details of 

this calculation, including all other parameters, are given in the Supporting Information. The 1.55 

eV value is obtained by performing a global fit on the experimental data with the 10Dq value as 

the fit parameter, resulting in a fit error of 0.01 eV. This crystal field splitting value differs from 

the visible light fitted value of 1.95 eV,13,26 with the discrepancy attributed to the core-hole altered 

crystal field strength of the final state in the x-ray transition.14,27 Transmission electron microscopy 
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(Figure 1b and 1c) confirms the size distribution and single-crystalline nature of the rods. Powder 

x-ray diffraction (Figure 1d) is compared to the stick spectra of several common polymorphs of 

iron oxide and iron oxide hydroxide (goethite in red, hematite and magnetite not shown) to verify 

the sample identity. 

 

Figure 2. a) The transient differential absorption of goethite for the first 300 ps after optical 

excitation, with a logarithmic time axis. The time axis is offset by 100 fs to improve the clarity of 

the plot. The solid lines (red and blue) indicate the times for the lineouts shown in panel b. b) The 

differential absorption at the times indicated in panel a (solid lines) are plotted with the predicted 

differential absorption spectra for those states (dotted lines). The differential absorption 

immediately following optical excitation (delay of 0 ps, shown at 0.1 ps in panel a due to the 100 

fs offset) matches the prediction for a charge-transfer hybridized state (blue), and the differential 

absorption at 20 ps matches the prediction for a polaron (red). Solid lines are obtained by averaging 

the nearest 6 time delays. Details of how the predicted (dotted) spectra are generated is included 

in the Supporting Information. The arrow indicates the shift of the zero-crossing from 
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approximately 56 eV to 57.5 – 59 eV, which is the most noticeable spectral feature of the polaron 

formation. 

The differential absorption after photoexcitation of the goethite nanorods with 3.1 eV light is 

shown in Figure 2a. The change in the valence charge density upon photoexcitation alters the 

multiplet splitting between the 3p core levels and valence levels, modifying the x-ray absorption 

compared to the ground state. First, when an interband transition is photoexcited in an iron oxide, 

an electron is transferred from majority O 2p hybridized orbitals to majority Fe 3d hybridized 

orbitals within 30 fs.10,24 This charge-transfer hybridized state appears in the differential absorption 

spectrum as an increase in absorption (blue) between 53 eV and 56 eV and a decrease in absorption 

(red) between 56 eV and 59 eV, crossing the zero at 56 eV as shown in Figure 2b as a solid blue 

line. The charge transfer hybridized state is modeled by setting the final state of the absorption to 

be Fe2+ in the charge transfer multiplet simulation (dotted blue line Figure 2b). 

Next, the photoexcited carriers thermalize via optical phonon emission. During the electron-

phonon scattering process, the optical phonon and electron can couple to form a small polaron. 

The small polaron can cause an anisotropic lattice expansion, resulting in a splitting of the Fe 3p 

level.9 This appears in the differential absorption as a broad increase in absorption between 54 eV 

and 58 eV, shown in Figure 2b as a solid red line. The polaron differential absorption is modeled 

as a splitting of the ground state absorption following Carneiro et al.,10 which is shown as a dotted 

red line. Briefly, this is accomplished by convolving the ground state spectrum with three delta 

functions, and further details can be found in the Supporting Information. The evolution from the 

charge-transfer hybridized state to the polaron state is noticeable by the zero-crossing shift from 

56 eV to 57.5 - 59 eV illustrated with the arrow in Figure 2b. 
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To further understand the small polaron formation dynamics in goethite, transient differential 

absorption spectra were measured at four visible pump wavelengths spanning 2.2 eV to 3.1 eV. 

All four spectra are included in Supporting Figure S1. A multivariate regression was performed to 

decompose the differential absorption spectra into the charge-transfer hybridized state (blue), 

taken at t = 0 ps, and the polaronic state (red), taken at t = 20 ps. The polaronic state was chosen 

to be 20 ps in order to minimize the error of the regression, even though the polaron population 

does not increase after approximately 5 ps. The results of the multivariate regression are shown in 

Figure 3a for an excitation energy of 3.1 eV, and in the Supporting Information (Figures S2 and 

S3) for the other excitation wavelengths. 

The resulting amplitudes are then fit with a kinetic model representing polaron formation10 

before 20 ps and a stretched exponential representing polaron hopping28 after 20 ps, as indicated 

in Figure 3a. The kinetic model for polaron formation is based on a two-temperature rate equation 

for the hot electron and hot phonon populations, in which an electron and phonon can combine via 

bimolecular kinetics to create a small polaron. Briefly, the model fits two rate constants, the 

electron-phonon scattering and the small polaron formation, and two amplitudes, the average hot 

electron population and average polaron population. The polaron formation probability shown 

below is the ratio of these population amplitudes. Further details of this model can be found in the 

Supporting Information. 

The polaron formation time and probability resulting from this fit are shown in Figure 3b and 

3c, respectively. The polaron formation time has an average value of 180  30 fs across an energy 

range of 2.2 eV to 2.6 eV and shows a significant increasing trend with pump photon energy up to 

2.6 eV, then decreases at 3.1 eV. The polaron formation probability is 85  10% on average across 

all pump photon energies. Within the experimental variance the probability exhibits a slightly 
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increasing trend with increasing excitation energy. For all excitation wavelengths, the polaron state 

lives longer than the 300 ps time delay of the measurement, with an average fitted lifetime of 800 

ns  5 μs (Figure S4). This value is unrealistic for the timescale of the measurement and the 

standard error of the fit is nonphysical, indicating that the stretched exponential fit cannot be 

trusted to analyze the polaron decay lifetime beyond the condition that the polaron lives longer 

than 300 ps. 

   

Figure 3. a) The result of multivariate regression on the transient absorption spectra of Figure 2a, 

with amplitudes of the charge-transfer hybridized state and polaron state shown as squares, and 

model fits shown as solid lines. The dotted black line indicates the split between data that are fit 

using the polaron formation kinetic model and the stretched exponential polaron decay model. 

Results here are shown with a logarithmic time axis. The results of the polaron formation kinetic 

model fits at various pump wavelengths are shown in b) for polaron formation time and c) for 

polaron formation probability. Error bars shown indicate the standard error. 

The small polaron kinetics measured here can be compared to previous measurements of 

nanocrystalline hematite thin films and to surface-sensitive measurements of polycrystalline and 

crystalline hematite. While the goethite nanorods exhibit a measured average polaron formation 
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time of 180  30 fs across an energy range of 2.2 eV to 2.6 eV, Carneiro et al.10 report an average 

polaron formation time of 90  5 fs for the hematite thin films, which is calculated for the same 

energy range and using the same kinetic model. This difference in polaron formation time can be 

first considered in terms of the chemical structure of the two materials. According to a basic kinetic 

theory for polaron formation, the formation rate should depend on both the attempt frequency and 

the energy barrier to formation,8 Г = ω𝑒−𝐸𝑎𝑐𝑡/𝑅𝑇. Here, Г is the polaron formation rate, ω is the 

attempt frequency, 𝐸𝑎𝑐𝑡 is the activation barrier, T is the lattice temperature, and R is the 

Boltzmann factor. For polaron formation, since an electron and an optical phonon must interact, 

the attempt frequency can be estimated by the LO phonon frequency ωLO. The LO phonon mode 

with the highest energy will have the fastest scattering rate, so the highest energy Eu mode is chosen 

for hematite and the highest energy Fe-O B3u mode is chosen for goethite, which have frequencies 

of 50 fs and 53 fs, respectively.15-17 The energy barrier for excited state polaron formation can be 

estimated from the activation energy for electron hopping between the Fe centers ΔEℎ𝑜𝑝, which is 

190 meV for hematite and 235 meV for goethite.4-6 The excited state formation kinetics can be 

approximated at a lattice temperature of 600 K as previously done for hematite at a similar 

excitation power density as used here.8,10  

The ratio of formation times can be estimated by 

Гg

Гh
=

ωLO
g

ωLO
h e

−(ΔEhop
g

−ΔEhop
h )

RT
⁄

  (1) 

yielding a value of 42%  9%. This predicted ratio matches the average experimental ratio of 

50%  9% for the polaron formation time measured here for goethite versus that from Carneiro et 

al.10 for hematite. Although a simplified estimate, Equation (1) suggests that the change in polaron 

formation time between hematite and goethite can be accounted for by the difference in electron 
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hopping activation energy between the Fe centers. Since the hopping activation energy is related 

to the ground state mobility via Marcus Theory,8 this means that the trends in ground state mobility 

and polaron formation time may be influenced by similar changes to the ligand field and metal 

center density. 

The above comparison of average formation times neglects the excitation energy dependence of 

the activation barrier.8 The average formation time ratio of approximately 50% differs significantly 

from the ratio of approximately 140% observed at 2.2 eV excitation, of approximately 80% 

observed at 2.4 eV excitation, of approximately 25% observed at 2.6 eV excitation, and of 

approximately 45% observed at 3.1 eV excitation. However, the fit amplitudes that relate the initial 

electron population to the final polaron formation (Figure 3c) are relatively constant over the same 

excitation energy range. This indicates that multi-phonon effects, which would change the ratio 

between photoexcited electrons and formed polarons, are not prevalent. 

Additionally, Husek et al.11 report a much longer polaron formation time in hematite surfaces 

(640  20 fs for polycrystalline, 680  30 fs for single crystal) obtained for bulk samples with an 

XUV probe at near grazing angle. Although the fitting routine and kinetic model differs from the 

model described above and used by Carneiro et al., a fit of the goethite nanorod data at the same 

excitation energy and with the model from Husek et al. reveals a similar polaron formation time 

as described above (160  25 fs at 3.1 eV excitation). This indicates that the much longer polaron 

formation times measured at the surface could be due to the differences between localization to a 

2D surface and localization to a 3D bulk site, precluding a direct comparison of the results. 

The trend in polaron formation times with increasing excitation energy is measured to be 

reversed between hematite (decreasing) and goethite (increasing). This difference could result 

from the changes in the ligands and the distances between the iron centers, or it may result from 
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the sample morphology. Specifically, the hematite transient spectra from Carneiro et al.10 were 

measured for nanocrystalline films, whereas the goethite samples measured here are 

monocrystalline nanorods. As the excitation energy is increased, the phonon bath must dissipate 

more heat. For the thin film, excess heat can be dissipated throughout the film and away from the 

localized excitation spot. This is not the case for the nanorods, as the excess heat cannot be 

dissipated spatially. The localized non-thermal phonon bath in the nanorods can lead to an increase 

in polaron hopping and polaron de-trapping, similar to an increase in the sample temperature, 

possibly explaining the increased formation times at higher excitation energies. However, 

increased crystallinity could also explain the increased polaron lifetime in the goethite nanorods, 

as fewer trap-states may be present at which excited carriers can become localized.11,29-30 A 

comparison of hematite nanorods to the goethite nanorods is therefore necessary before the change 

in polaron formation kinetics can be completely attributed to coordination or morphology effects. 

The photoexcited polaron formation kinetics of goethite nanorods has been explored with XUV 

transient absorption spectroscopy. By applying a simple kinetic model, the small polaron 

formation time is found to increase from 70  10 fs at 2.2 eV to 350  30 fs at 2.6 eV. In comparison 

to a hematite thin film, the increased formation time can be explained by considering the 

differences in ligand field strength and Fe hopping center density that lead to altered electron 

hopping activation energies. Excitation energy-dependent analysis reveals a trend in polaron 

formation times that differs from that of hematite, but this trend may be due to a variety of 

differences between the samples. Further investigations, in particular a study of hematite 

nanoparticles, are required to separate the effects of crystallinity and morphology from the bonding 

and structural changes. 

ASSOCIATED CONTENT 
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Supporting Information.  

The following files are available free of charge. 

Description of the XUV transient absorption experiment, sample fabrication and 

characterization, charge transfer multiplet modeling of the absorption spectra, description of the 

polaron formation kinetic model, and additional transient spectra with multivariate regression 

and kinetic model fits (PDF) 
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