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CovSegNet: A Multi Encoder—Decoder Architecture
for Improved Lesion Segmentation of COVID-19

Chest CT Scans

Tanvir Mahmud
Shaikh Anowarul Fattah

Abstract—Automatic lung lesion segmentation of chest com-
puter tomography (CT) scans is considered a pivotal stage to-
ward accurate diagnosis and severity measurement of COVID-19.
Traditional U-shaped encoder-decoder architecture and its vari-
ants suffer from diminutions of contextual information in pool-
ing/upsampling operations with increased semantic gaps among
encoded and decoded feature maps as well as instigate vanishing
gradient problems for its sequential gradient propagation that
result in suboptimal performance. Moreover, operating with 3-D
CT volume poses further limitations due to the exponential in-
crease of computational complexity making the optimization diffi-
cult. In this article, an automated COVID-19 lesion segmentation
scheme is proposed utilizing a highly efficient neural network
architecture, namely CovSegNet, to overcome these limitations.
Additionally, a two-phase training scheme is introduced where a
deeper 2-D network is employed for generating region-of-interest
(ROI)-enhanced CT volume followed by a shallower 3-D network
for further enhancement with more contextual information without
increasing computational burden. Along with the traditional ver-
tical expansion of Unet, we have introduced horizontal expansion
with multistage encoder—decoder modules for achieving optimum
performance. Additionally, multiscale feature maps are integrated
into the scale transition process to overcome the loss of contextual
information. Moreover, a multiscale fusion module is introduced
with a pyramid fusion scheme to reduce the semantic gaps between
subsequent encoder/decoder modules while facilitating the parallel
optimization for efficient gradient propagation. Outstanding per-
formances have been achieved in three publicly available datasets
that largely outperform other state-of-the-art approaches. The
proposed scheme can be easily extended for achieving optimum
segmentation performances in a wide variety of applications.

Impact Statement—With lower sensitivity (60-70%), elongated
testing time, and a dire shortage of testing kits, traditional RTPCR
based COVID-19 diagnostic scheme heavily relies on postCT based
manual inspection for further investigation. Hence, automating the
process of infected lesions extraction from chestCT volumes will be
major progress for faster accurate diagnosis of COVID-19. How-
ever, in challenging conditions with diffused, blurred, and varying
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shaped edges of COVID-19 lesions, conventional approaches fail to
provide precise segmentation of lesions that can be deleterious for
false estimation and loss of information. The proposed scheme in-
corporating an efficient neural network architecture (CovSegNet)
overcomes the limitations of traditional approaches that provide
significant improvement of performance (8.4% in averaged dice
measurement scale) over two datasets. Therefore, this scheme can
be an effective, economical tool for the physicians for faster infec-
tion analysis to greatly reduce the spread and massive death toll of
this deadly virus through mass-screening.

Index Terms—Artificial intelligence (AI), biomedical imaging,
computer aided analysis, image segmentation, neural networks.

1. INTRODUCTION

ITH the recent outbreak of Coronavirus disease-2019

(COVID-19), the world has experienced an unprece-
dented number of deaths with a major collapse in the healthcare
system throughout the world [1], [2]. Early diagnosis is the
primary concern to control this global pandemic at this stage for
its extreme infectious nature [3]. Though reverse transcription-
polymerase chain reaction is considered as the gold standard for
diagnosing COVID-19, its longer time requirement, lower sen-
sitivity with a massive shortage of test-kits have already engen-
dered the extreme urgency of alternative automated diagnostic
schemes [4], [5]. Due to the wide applicability of the artificial
intelligence (AI) tools in numerous clinical diagnostic measures,
it has enormous potential to expedite the diagnostic process of
COVID-19 through automated analysis and interpretation of the
clinical record [6], [7].

Chest radiography has already been proven to be an effective
source for COVID diagnostics due to its major implications
relating to various levels of lung infections [8]. Computer to-
mography (CT) scan and chest X-ray have been extensively
explored in the literature to establish an automated Al-based
COVID diagnostic scheme [9]-[11]. Despite the easier access
to chest X-ray, CT scans are more widely accepted due to its finer
details leveraging the accurate diagnosis of COVID infections.
Precise segmentation of lung lesions in chest CT scans is one of
the most demanding and challenging aspects for faster diagnosis
of COVID-19 due to the shortage of annotated data, diverse
levels of infections, and novel types and characteristics of the
infections [12].

Processing 3-D CT volume at a whole increases computa-
tional complexity exponentially that makes the optimization and
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convergence more difficult limiting the architectural diversity of
the network. The most widely used alternative of 3-D processing
is to operate separately on 2-D slices extracted from the CT
volume [12]-[16]. However, such slice-based processing loses
interslice contextual information that results in suboptimal per-
formance. In [17]-[20], smaller subvolumes are extracted from
the original 3-D volumes to minimize the computational burden
as well as to utilize 3-D contextual information. However, such
methods suffer from intervolume contextual information loss by
considering a smaller portion of the whole set at a time as well
as increases complexity to process subvolume level prediction
into the final result.

A wide variety of approaches have been introduced in recent
years for segmenting the region-of-interest in diverse applica-
tions. In [21], a fully connected network is introduced that pro-
duces multiple scales of encoded feature maps and reconstructs
the segmentation mask utilizing these encoded representations.
In[22], Unet architecture is introduced by integrating an inverted
decoder module following the encoder module to gradually
reconstruct the mask that gains much popularity over the years.
However, several architectural limitations of Unet are identified
as follows that provides suboptimal performance.

1) The skip connection introduced in Unet generates seman-
tic gap between corresponding feature scale of encoder—
decoder modules, which mainly arises from the direct con-
catenation of two semantically dissimilar feature maps. As
the encoder module encodes the input image gradually into
more generalized feature representation, it contains richer
details compared to the corresponding decoded feature
map, which contains more information for the reconstruc-
tion of the final segmentation mask. These existing se-
mantic gaps between corresponding encoder and decoder
feature maps make the optimization process more difficult
to converge for such direct concatenations through skip
connections.

2) Contextual information loss occurs in traditional pool-
ing/strided convolution-based downsampling operations
that become more eminent with deeper architecture. Such
downsampling operations are mainly carried out for gen-
erating more generalized, sparser feature representation
with increased channels and reduced spatial resolution of
the feature map. However, these operations also lead to
loss of contextual information that greatly rises with the
increase of vertical depth of the network. Similarly, the
traditional upsampling operations fail to properly incor-
porate contextual information.

3) The vanishing gradient problem rises in a deeper structure
for sequential optimization of multiscale features. This
problem mainly arises from the difficulty of gradient prop-
agation through the deep stack of convolutional layers.
Along with the incorporation of additional levels in the
encoder and decoder stacks to make the network deeper,
it becomes increasingly difficult to backpropagate the gra-
dients through these levels for propagating through longer
sequential paths that make the optimization of the deeper
layers more difficult. Hence, this problem reduces the
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effective contributions of the deeper layers of the encoder
and decoder modules for improper optimization.
Simplistic sequential convolutional layers are integrated
into each level of encoder/decoder modules that lack
enough architectural diversity to extract features from a
broader spectrum, which is mainly caused by the lin-
ear propagation of gradients that reduces the impact of
prior convolutional layers at each level for diminishing
gradients. It lacks opportunity for the proper reuse of
extracted features in the successive convolutions and lacks
parallelism among convolutional layers required for better
optimization, which lower the diversity of features gener-
ated at different levels of the network.

Different architectural modifications have been explored in
recent years to overcome some of these limitations. To in-
crease the diversity of operations at each scale of feature maps,
numerous established network building blocks are integrated
in encoder/decoder module, e.g., residual block [23], dense
block [24], inception block [25], dilated residual block [26], and
multires block [27]. To reduce the semantic gap between a par-
ticular scale of encoder and decoder, a residual path is proposed
in MultiResUnet architecture instead of a direct skip connection
of Unet [27]. However, the semantic gap generated between
multiscale feature maps of encoder and decoder modules still
persists. In Unet++ [28], a nested stack of convolutional layers
is introduced to reduce the semantic gaps. But, it increases com-
putational complexity considerably, which makes convergence
difficult. In [19], Vnet is proposed that utilizes residual building
blocks in Unet architecture, whereas in [20], cascaded-Vnet is
presented for performance improvement that utilizes a dual-
stack of the cascaded encoder—decoder module. Nevertheless,
with existing numerous architectural limitations of traditional
U-shaped architecture in each stage, it increases semantic gaps
with the additional encoding—decoding stage as well as increases
vanishing gradient issues with contextual information loss that
open up opportunities for further optimization.

In this article, an improved, automated scheme is proposed
for precise lesion segmentation of COVID-19 chest CT volumes
by overcoming the limitations of traditional approaches with a
novel deep neural network architecture, named as CovSegNet.
The major contributions of this article are summarized as fol-
lows.

1) Along with the opportunity of vertical expansion, a hori-
zontal expansion strategy is introduced in the CovSegNet
architecture. In the vertical expansion mechanism, the
encoder and decoder modules are deepened, whereas in
horizontal expansion, several encoding—decoding stages
are integrated. As discussed earlier, loss of contextual
information occurs when the network is vertically ex-
panded through subsequent downsampling operations,
though it provides the opportunity for improved general-
ization through incorporating features from higher levels,
whereas the horizontal expansion mechanism assists to
integrate more detailed features at each level for finer
reconstruction that helps to recover the loss of contex-
tual information. As a result, it provides the opportunity

4)
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. Workflow of the proposed scheme for segmenting lung lesions of COVID-19 in CT volume. In phase-1, CovSegNet2D is trained and optimized with
extracted 2D-CT-slices. In phase-2, this pretrained CovSegNet2D (obtained from phase-1) is fine-tuned for generating the ROI-enhanced CT volume, whereas a
shallower form of CovSegNet3D is trained for more precise volumetric segmentation through the joint optimization.

to increase generalization while exploiting the available
contextual information through an optimal combination
of horizontal and vertical stages.

For further replenishing the loss of contextual information
in traditional pooling/upsampling operations, a scale tran-
sition scheme is introduced in the encoder/decoder module
by incorporating multiscale feature maps from preceding
levels. This scale transition scheme also improves the
gradient flow across different feature scales of a particular
encoder/decoder module.

For reducing semantic gaps among corresponding fea-
ture scales of the encoder—decoder modules, a multi-
scale fusion (MSF) module is introduced in between
successive encoder—decoder modules. This module fuses
multiscale feature representations, generated at preceding
encoder/decoder modules through pyramid fusion (PF)
scheme, to generate representational features with reduced
semantic gap and improved contextual information for
the following decoder/encoder module, instead of directly
connecting corresponding feature scales, such as Unet.
Moreover, this module establishes parallel linkage among
multiscale feature maps of subsequent encoder—decoder
modules that greatly improve the gradient flow across
the network and helps to reduce the vanishing gradient
problem.

A multiphase training approach is introduced for integrat-
ing the advantages of both the 2-D and 3-D data pro-
cessing scheme to reach the optimum performance. 2-D
processing provides faster processing with lower memory
consumption while losing interslice contextual informa-
tion, whereas 3-D processing exploits both the intraslice
and interslice contextual information while increasing the
computational burden. The proposed multiphase train-
ing solves this problem by integrating a deeper variant
of CovSegNet2D followed by a much shallower variant
of CovSegNet3D for exploiting all possible information
while limiting the computational burden.

The proposed CovSegNet architecture is designed in a
modular and structured way that can be adapted to its
lightweight, shallow form to reduce complicacy with

considerable performance as well as can be made very
deep to increase diversity for incorporating finer details.
This generic design provides more flexibility for tuning
the design parameters in a wide variety of applications.
Extensive experimentations have been carried out to val-
idate the effectiveness of the proposed scheme on two
publicly available datasets containing chest CT scans from
COVID-19 patients. Moreover, to validate the wide ap-
plicability of the proposed architecture, experimental re-
sults on a challenging, nonclinical, semantic segmentation
dataset are also provided.

6)

II. METHODOLOGY

The proposed scheme splits the segmentation of CT vol-
umes into two subsequent phases to reduce the computational
complexity of 3-D convolution as well as to take the advan-
tages of multiscale 2-D convolutions (see Fig. 1). In the first
phase of training, 2-D slices are extracted from the 3-D CT
volumes and these are used for the optimization of CovSeg-
Net2D (i.e., 2-D variant of the proposed CovSegNet architec-
ture) from randomized initial state. After the optimization, the
trained CovSegNet2D is capable of extracting lesions from 2-D
slices. However, slice-based processing of input CT volumes
will lead to loss of interslice contextual information resulting
in suboptimal performance. Nevertheless, 2-D processing are
computationally efficient and easy to optimize compared to the
complete 3-D processing. To introduce further optimization for
integrating the interslice contextual information of particular
CT volume, phase-2 of the training stage is incorporated. Here,
a hybrid volumetric processing scheme is introduced where
the CovSegNet2D is initialized with the pretrained weights
obtained from the phase-1 of the training. Thus, the complete
3-D CT volume is split into several 2-D slices that are processed
through the CovSegNet2D to extract the region-of-interest in
the 2-D CT-slices. Afterward, these enhanced 2-D CT-slices are
aggregated to generate the region-of-interest (ROI)-enhanced
CT volume where most of the redundant parts are suppressed.
Nevertheless, to extract the interslice contextual information
for further optimization, a lighter variant of CovSegNet3D is
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Fig. 2.

Schematic representation of the two-stage implementation of the proposed CovSegNet architecture where two sequential encoder—decoder operational

stages are employed with L subsequent levels. Three MSF modules are integrated in between subsequent modules. Generated feature maps from two decoder
modules are optimized using the fusion optimizer. These encoder, decoder, and MSF modules are composed of several operational unit cells. Each unit of the MSF
module integrates all scales of feature maps to generate the output fusion vector (see Fig. 6).

incorporated to operate on the ROI-enhanced CT volume. In the
second phase of the training, CovSegNet3D will be optimized
from scratch to extract the interslice contextual information,
whereas CovSegNet2D will be fine-tuned for better extraction of
the intraslice features. Hence, this joint optimization operation
in phase-2 is supposed to optimize a very lighter variant of
CovSegNet3D (as it operates on the ROI-enhanced volume),
which reduces the computational burden of complete 3-D pro-
cessing with very deep network. Moreover, as the CovSegNet2D
is initially pretrained in the phase-1 for efficient 2-D slicewise
processing, it greatly reduces the optimization complexity in
phase-2 through generating ROI-enhanced CT volume. Hence,
this hybrid networking scheme is capable of utilizing both the
interslice and intraslice contextual information while greatly
reducing the computational complexity of complete 3-D pro-
cessing.

A. Problem Formulation

Let consider the set of CT volumes as X, and their cor-
responding ground truths as Y, such that X; € Rhxwxsxe,
Y; € Rixwxsxe and j = {1,2,3,..., N}, where (h,w,s,c)
denote height, width, number of slices, and channels per slice,
respectively, of a particular CT volume from total /N number of
CT volumes. Moreover, let consider x; ; € R"**“*¢ as the ith
slice from total S slices of jth CT volume and y; ; € R"*w*e
as its corresponding mask, such that ¢ = {1,2,...,S}, and
j=11,2,..., N}. In the first phase of training, the objective
function for slice-based optimization of CovSegNet2D is

Phasel :argmin,%p (0, yP, y) (D

where 6 denotes the network parameter of CovSegNet2D, x, yP,
and y denote the input 2-D slice, predicted probability mask, and
corresponding ground truth mask, respectively.

In the phase-2 of training, the pretrained CovSegNet2D net-
work obtained from phase-1 is employed to generate ROI-
enhanced CT volume X', and thus

X =x0yP V¥ eX/'xeX, yPcYP 2)

where © denotes elementwise multiplication and x denotes 2-D
CT slice, x’ denotes ROI-enhanced CT-slice, and yP denotes the
predicted probability mask.

Afterward, optimization of the CovSegNet3D is carried out
utilizing ROI-enhanced CT volume, whereas CovSegNet2D is
fine-tuned to generate more accurate probability masks from
2-D slices, and the joint optimization objective function F can
be formulated as

Phase2 : argmin F{ % p(01,y?,y), %p(02, YP,Y)}

01,02
3)
where ©1 denotes the network parameters of CovSegNet2D, ©9
denotes the network parameters of CovSegNet3D, and X, YP,
and Y denote the ROI-enhanced CT volume, predicted 3-D
mask, and corresponding 3-D ground truth, respectively.

B. Proposed CovSegNet Architecture

The proposed CovSegNet architecture is a generic represen-
tation of a network with a wide range of flexibility for increasing
its applicability in different challenging conditions. This archi-
tecture can be designed for efficient operations in both 2-D and
3-D domains. Moreover, it can be made deeper/lighter according
to the requirement of the applications.

In CovSegNet architecture, multiple stages of sequential en-
coding and decoding operations are carried out along with a
fusion scheme of multiscale features in between subsequent
encoder/decoder module. Each stage of the network consists of
an encoder module and a corresponding decoder module. Hence,
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Encoder module Decoder module Multi-scale fusion module
Unit Ingredients Output Unit Ingredients Output Unit Ingredients Output
E-1 (Conv 1x1, Conv 3x3) x 4 | 512x512x16 | D-5 (Conv 1x1, Conv 3x3) x 4 | 32x32x256 Upsample(2x2,4x4,8x8,16x16)
DT-I Conv 2x2, Stride 2 256x256x32 | UT-4 Deconv 2x2, Stride 2 64x6axiog | MSEL Maxpool(22.4>4) S12x512x16
Conv 1x1, Conv 3x3
E-2 (Conv 1x1, Conv 3x3) x 4 | 256x256x32 | D-4 | (Conv Ix1, Conv3x3) x 4 | 64x64x128 Maxpool (2x2,4x4)
D12 Maxpool 2x2 8% 128x64 | UT3 Upsample 2x2 128 12868 MSF-2 Upsample(2x 2,4 x4,8%8) 256x256x32
Conv 2x2, Stride 2 Deconv 2x2, Stride 2 Conv 1x1, Conv 3x3
E-3 (Conv 1x1, Conv 3x3) x 4 | 128x128x64 | D-3 (Conv 1x1, Conv 3x3) x 4 | 128x128x64 MSE-3 Maxpool (2x2,4x4) 128 128 X 64
DT3 Maxpool (2x2, 4x4) 64%64% 128 UT-2 Upsample (2x2, 4x4) 256%256%32 N Upsample(2x2,4x)
Conv 2x2, Stride 2 Deconv 2x2, Stride 2 Conv 1x1, Conv 3x3
E-4 (Conv 1x1, Conv 3x3) x 4 64x64x128 D-2 (Conv 1x1, Conv 3x3) x 4 | 256%x256x32 MSF-4 Maxpool (2x2,4x4,8%8) 6464128
DT4 Maxpool (2x2, 4x4, 8x8) 30%32%256 UT-1 Maxpool (2x2, 4x4, 8x8) 512%512x16 Upsample(2x2,4x4)
Conv 2x2, Stride 2 h Deconv 2x2, Stride 2 Conv 1x1, Conv 3x3
Maxpool(2x2,4x4,8x8,16x16)
E-5 (Conv 1x1, Conv 3x3) x 4 | 32x32x256 D-1 (Conv 1x1, Conv 3x3) x 4 | 512x512x16 | MSF-5 Upsample(2x2, 4x4) 32x32x256
Conv 1x1, Conv 3x3

TABLE II
ARCHITECTURAL AND OPERATIONAL DETAILS OF THE ENCODER, DECODER, AND MULTISCALE FUSION MODULES OF THE PROPOSED COVSEGNET3D FOR
OPTIMUM PERFORMANCE IN INDEPENDENT SINGLE-NETWORK IMPLEMENTATION

the network ' can be represented as

N =Dn(Enm...(D1(E1(fE,),0D,),---,08,,),0p,.) 4

where E; and D; represent the encoder and decoder modules,
respectively, of ith stage from total m stages, and 0, and 0p,
represent their respective parameters. Two-stage implementa-
tion of this architecture is schematically presented in Fig. 2.

This network can be extended from level-1 to level-L to pro-
duce a deeper variant. The encoder/decoder module constitutes
of several unit cells operating at each level of the network. To
generate a deeper network, additional unit cells are integrated in
each of the encoder/decoder module to increase number of lev-
els. Here, F; ; and D; ; represent the ith unit cell of jth stage of
encoder and decoder, respectively, where i = {1,2,..., L}, and
j=1{1,2,...,m}.Hence, L number of different scales of repre-
sentative feature maps are obtained from each encoder/decoder
module. Moreover, scale transition of feature maps is carried out
in between succeeding encoder/decoder unit cells, and effective
transformation on each scale of feature maps are integrated
utilizing the generalized unit cell structure in encoder/decoder
module.

In between successive encoder/decoder modules, an MSF
module is introduced to reduce the semantic gap with pre-
ceding stages as well as to improve the gradient propagation
through parallel linkage of multiscale features. Similar to en-
coder/decoder module, each MSF module consists of several
operational unit cells operating at different levels. Let con-
sider F; represents the ith MSF module, F; ; represents the
ith unit cell of jth MSF module, such that ¢ = {1,2,..., L},
j= {172, .o, 2m — 1}, and Fi,j € F;.

Encoder module Decoder module Multi-scale fusion module
Unit Ingredients Output Unit Ingredients Output Unit Ingredients Output
E-1 (Conv 1x1x1, Conv 3x3x3) x 2 | 512x512x32x16 D-4 (Conv 1x1x1, Conv 3x3x3) x 2 64x64x4x128 MSE-1 Maxpool(2x2x2,4x4x4) 512%512%32x 16
DT Conv 2x2x2, Stride 2 256x256x16x32 | UT3 Upsample z(ixzixzzgmixz‘” 128 128X 864 Up?{’)‘;gl“l(iTif%ﬁ:f;:f:gxs)
E-2 (Conv 1x1x1, Conv 3x3x3) x 2 | 256x256x16x32 D-3 (Conv 1x1x1, Conv 3x3x3) x 2 128 x 128 x8x 64 MSF-2 Maxpool (2x2x2, 4x4x4) 256%256% 16X32
DT2 Maxpool 2x2x2 1285 128 X 8 X 64 UT2 Maxpool (2x2x2, 4x4x4, 8x8x8) 2565256 16X 32 - Upsample(2x2x2,4x4x4) - - h
Conv 2x2x2, Stride 2 Deconv 2x2x2, Stride 2 - Conv 1x1x1, Conv 3x3x3
E-3 (Conv 1x1x1, Conv 3x3x3) x 2 128 x 128 x8x 64 D-2 (Conv 1x1x1, Conv 3x3x3) x 2 256x256x16x32 MSE-3 Maxpool (2x2x2, 4x4x4) 128 % 128 X8 X 64
DT-3 Maxpool 2x2x2 64644 128 UT1 Maxpool (2x2x2, 4x4x4, 8x8x8) 512%512x32x 16 Upsample(2x2x2.4x4x4)
) Conv 2x2x2, Stride 2 Deconv 2x2x2, Stride 2 3 - Conv 1x1x1, Conv 3x3x3
Maxpool (2x2x2.4x4x4)
E-4 (Conv 1x1x1, Conv 3x3x3) x 2 64x64x4x128 D-1 (Conv 1x1x1, Conv 3x3x3) X 2 512%x512x32x16 | MSF-4 | Upsample(2x2x2,4x4x4, 8x8x8) 64 x64x4x128
Conv 1x1x1, Conv 3x3x3

Each MSF module takes all scales of feature representa-
tions as input from all preceding encoder/decoder stages, and
generates L number of different feature maps for the follow-
ing encoder/decoder stage through deep fusion of multiscale
features obtained from preceding stages. In each unit cell of
MSF module, multiscale feature aggregation and PF scheme is
employed, which can be represented as

Fm-:ﬂ(El,Ez,...,E( ~|,D1,D2,... I.%J)

J
2

Vi={1,2,....L}, j={1,2,....2m — 1} 5)

where .7 (.) represents the functional operations in the MSF
unit cell considering L scale of representations from each of the
preceding encoder/decoder module.

From final level of the sequential decoder modules, several de-
coded feature representations are obtained, which are processed
together in the fusion optimizer unit (O) to produce the final
segmentation mask, and it can be given by

O=F(D:11,D12,...,D1m)

where O(.) represents the fusion optimizer function.

All the basic building blocks of the CovSegNet architec-
ture are generic and can be designed and optimized for both
2-D and 3-D operations. In the following discussions, different
building blocks of the CovSegNet architecture are presented
in detail. For the ease of discussion, mainly 2-D operational
blocks are focused. However, for 3-D operations, all the con-
volutional kernels, pooling/upsampling windows are shifted in
dimension for operating with 3-D voxels instead of 2-D pixels.
Architectural details for the most optimized implementations
of CovSegNet2D and CovSegNet3D are presented in Tables I
and II, respectively.

(6)
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Fig. 3. Schematic representations of the proposed encoder and decoder mod-
ules in five-level implementation having five unit blocks along with associated
down transition (DT)/up transition (UT) units in between subsequent unit blocks.
Here, (h7 w, ¢) is used to denote the height, width, and channel of the feature
maps at different phase. (a) Encoder module. (b) Decoder module.

From DT (hxwxo)
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-+ To MSF
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i
From UT
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(@) (b)

(hxwxc)

Fig. 4. Structure of the encoder/decoder unit cells. Four densely intercon-
nected convolutional stages are employed in each unit. Here, “c” denotes
the channelwise concatenation of feature maps extracted from transition unit
and MSF unit. E; ;/D; ; denote the unit blocks of ith level in jth module.
(a) Encoder unit cell. (b) Decoder unit cell.

C. Proposed Encoder/Decoder Structure

The encoder and decoder modules are structurally similar that
are successively used in the sequential stages of CovSegNet.
Encoder/decoder modules are schematically presented in Fig. 3.
These encoder/decoder modules are composed of several oper-
ational unit cells with transitional dense interconnections. The
operations of encoder/decoder modules can be divided into two
categories: unit cell operations and transitional operation.

1) Encoder/Decoder Unit Cell Operation: In Fig. 4, the
unit cell structure of the encoder/decoder module is presented.
In each unit cell, two input feature map is entered, one from
the transitional unit and the other from the preceding MSF
unit, whereas the output feature map is passed through fol-
lowing transitional and MSF operations. Moreover, each unit
cell consists of four densely interconnected convolutional lay-
ers, where each convolutional layer provides two sequential
convolutional filtering with (1 x 1) and (3 x 3) kernels. Such
dense interconnection between convolutional operations has
been proven to be effective in numerous applications. No di-
mensional scaling has been carried out in each of this unit
cell as it is employed for introducing adequate transformation
in the feature space to encode/decode effective representation.
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Fig. 5. Schematic representations of the DT unit (operating between level-3
and -4) and the UT unit [operating between level-(L — 2) and level-(L — 3)].
All the feature maps generated from preceding unit blocks are made uniform
and integrated in the transition process. (a) DT unit (DT-3). (b) UT unit (UT-2).

Hence, this unit cell operations can be functionally represented
as B, D : Rhxwxe y Rhxwxe where (h,w,c) represents the
height, width, and channel of the feature map.

2) Encoder Down-Transitional Operation: During down-
transitional operations between subsequent unit cells of the
encoder module, the spatial dimension of the feature map is
reduced for generalizing the feature map, whereas the channel
depth is increased to incorporate more filtering operations in
subsequent levels for generating more sparser features. It can be
functionally presented as f : RF*wxe — R/ 2xw/2x2¢ where
spatial resolution is downscaled by 2 and channel depth is
increased by 2 from the input feature map obtained from the
previous level. However, traditional downsampling operations
using pooling/strided convolutions results in loss of contex-
tual information. Moreover, it can be more prominent while
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Fig. 6. Schematic representation of the proposed multiscale fusion module.
Detailed operations performed in an MSF unit cell are particularly focused, and
similar operations are carried out in other unit cells of the MSF module.

incorporating a deep stack of unit cells in the encoder module. To
mitigate the loss of contextual information in down-transitional
operation, a higher level of dense interconnection is proposed
among multiscale feature maps generated from different unit
cells. In Fig. 5(a), the structure of such a DT unit is schematically
presented. In each of such DT unit, encoded feature representa-
tions generated from all higher levels of unit cells are considered
for generating the down-scaled feature map. Hence, contextual
information lost in each transitional operation can be recovered
from very deep stack of unit cells as feature representations
from all preceding cells are considered during transition. To
converge multiscale feature maps from preceding levels, first,
pooling operations with different kernels are carried out to make
their spatial dimension uniform and subsequently, channelwise
feature aggregation is carried out. The aggregated feature map,
Fyes pr, generated at 7th level can be represented as

Figg,DT — EIZ o) P(2><2) (Eifl) o P(2i71X2j71)(E1) (7)

a;

where @ indicates the feature concatenation, P(2*2) represents
pooling operation with (2 x 2) window, and E‘ represents the
output of ith unit cell of the encoder.

Finally, a convolutional operation with (2 x 2) kernel is car-
ried out with a stride of (2 x 2) for generating the downscaled
feature map by filtering the aggregated feature vector.

3) Decoder Up-Transitional Operation: On the contrary, up
transitional operations are carried out in between successive
decoder unit cells to provide the dimensional shifting toward the
reconstruction of the final segmentation mask. In each of such
UT operations, spatial resolution is upscaled by 2, whereas chan-
nel depth is reduced by 2 to get closer to the final reconstruction
mask and it can be represented as f : RIxwxe — R2hx2wxe/2,
Similar to the down-transitional operation in encoder, all the
preceding representations of multiscale decoded feature maps
generated from different unit cells are taken into consideration
in the UT operation to gather more contextual information
[see Fig. 5(b)]. First, spatially uniform feature maps are cre-
ated through bilinear interpolation upsampling with different
windows, and feature aggregation is carried out to generate
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Fig.7. Proposed PF scheme utilizing diverse windows of frequent upsampling
and downsampling operations for fusing multiscale features.

aggregated feature vector Fyg, yr, Which is given by

a;

Figg7UT —_ DZ D U(2><2) (Di+1) @ U(2i71><2'i71)(DL) (8)

where U(2*2) represents bilinear upsampling operation with
(2 x 2) window and D' represents the output of ith unit cell
of the decoder.

Finally, the aggregated feature map is processed using a
deconvolution operation with (2 x 2) kernel to incorporate the
necessary dimensional up-scaling for further processing in the
following unit cell.

D. Proposed MSF Module With PF Scheme

During sequential encoding—decoding operations, a semantic
gap is generated between a similar scale of encoded and decoded
feature maps. Moreover, in the traditional architecture, the gra-
dient has to propagate sequentially that sometimes gives rise to
vanishing gradient problems for deeper encoder/decoder module
particularly. As multiple stages of encoding and decoding opera-
tions are integrated into the CovSegNet, this problem is supposed
to be more prominent if all the encoder and decoder modules
are sequentially connected. To overcome these limitations, an
MSF module is proposed that develops parallel interconnection
among different scales of feature maps of the encoder/decoder
modules utilizing a PF scheme.

As shown in Fig. 6, each MSF module consists of several MSF
unit cells where each cell considers multiscale feature maps



290

generated from different levels of preceding encoder/decoder
modules and generates feature map for the unit cell of the fol-
lowing encoder/decoder module. Here, similar scale of feature
representations generated from different levels of the preceding
encoder/decoder modules are concatenated, first, to produce L
number of multiscale feature maps. Afterward, all the L scales
of feature maps are made spatially equivalent in dimension
through pooling and bilinear upsampling with different win-
dows, and channelwise feature concatenation is carried out to
generate the aggregated feature vector. This can be represented
as

chg%SF =P (@@ PEA(f, )@

€))
(10)

ofi o UPA(fi)@---aUC (1)
fi=Eaqyp®.. . Euy ®Day & @ D1,
where Ff;gJK,ISF is the aggregated feature vector generated in
the ith level of jth MSF module, and f; represents the ith
concatenated feature map.

Afterward, the aggregated feature vector is passed through a
PF scheme to generate the output feature vector that will be fed
to the corresponding encoder/decoder unit cell of the following
module. Hence, the generated output feature map from each
MSF unit cell contains information from all preceding modules
and thus, establishes a parallel flow of optimization for efficient
gradient propagation.

E. Proposed PF Module

The PF module incorporates PF scheme into the aggregated
feature map of MSF unit cell (Fig msr) utilizing the com-
binations of sequential multiwindow pooling and upsampling
operations (see Fig. 7). First, the depth of the aggregated vector
Fige msr 1s reduced through a pointwise convolution (kernel,
1 x 1) to generate feature vector f,, and thus, Fiee mse — fas
where f, € Rhxwxe,

Afterward, the generated vector f, passes through multiple
spatial scaling-vertical scaling-inverse spatial scaling operations
in parallel with different scaling factors. Spatial scaling oper-
ation is carried out utilizing pair of pooling and upsampling
operations with different kernel windows, whereas vertical scal-
ing is employed utilizing convolutional filtering (kernel, 3 x 3)
to reduce the channel depth by one-fourth of the initial depth.
Initial reduction followed by expansion of the feature map assists
in gathering the more general feature representation, whereas
initial expansion followed by reduction of the feature map
gathers the more detailed information from a sparser domain.
These operations pave the way to extract the most generalized
representations through analyzing from diverse feature domains,
which can be represented by

P ,thwxc N Rh*rxw*rxc - Rh*rxw*rxc/zl N thwxc/4
r -

vr = {0.25,0.5,2,4} (11)

where P, denotes one of the parallel operational paths in the PF
module with a spatial scaling factor of 7.
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Fig. 8. Schematic of the fusion optimizer module optimizing the decoded
feature maps generated from two decoding stages.

Ground

CovSegNet CovSegNet CovSegNet
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Fig. 9. Visual representations of the segmentation performances obtained
using single-phase training (CovSegNet2D and CovSegNet3D) and multiphase
training (with hybrid 2-D-3-D networks) in Dataset-1. Here, “yellow” represents
the TP regions, “red” represents the FN regions, and “blue” represents the FP
regions.

Afterward, feature aggregation operation is carried out utiliz-
ing different representations generated at multiple paths along
with the input representation to generate the aggregated vector
Foge pr, Where Fioo pr € Rhxwx2e Finally, a final pointwise
convolution (kernel, 1 x 1) is carried out to generate the output
feature map fou,prs Where foupr € R¥<¢,

F. Structure of the Fusion Optimizer(Q)

The decoded feature maps generated from the top of decoder
modules are considered for final reconstruction through a fusion
optimization process. This process is schematically shown in
Fig. 8. Initially, an aggregated feature vector Fie o is created
considering all the output feature maps from different decoder

modules, which can be given by
Fogo=D11®D12®--- DDy g (12)

where S denotes the total number of stages.
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TABLE III
ABLATION STUDY OF THE EFFECT OF DIFFERENT MODULES IN THE PERFORMANCE (MEAN £ STANDARD DEVIATION)
OF THE PROPOSED COVSEGNET2D ARCHITECTURE

Network Data.set-l Dat.aset-l
Sen.(%) Spec.(%) Dice(%) ToU(%) p-Value Sen.(%) Spec.(%) Dice(%) ToU(%) p-Value
Baseline (V1) 82.7+£ 049 | 974+ 0.09 | 84.1+£0.29 | 79.8£0.21 - 71.7£0.12 | 95.840.18 | 71.940.33 | 65.8+0.27 -
Baseline+ DT (V2) 83.8+0.29 97.8+0.12 | 85.8+0.36 | 81.1+£0.08 | 0.0033 | 73.6+0.31 | 96.5+0.15 | 73.44+0.14 | 67.6+0.21 0.0023
Baseline+ UT (V3) 83.1+0.25 97.7+0.08 | 85.4+0.16 | 80.9+0.13 | 0.0017 | 73.14+0.55 | 96.3+£0.18 | 73.1£0.19 | 67.2+0.35 | 0.0044
Baseline+ DT+UT (V4) 84.9+0.41 98.1+0.11 86.7+£0.27 | 82.3+£0.32 | 0.0021 74.6+0.17 | 97.1£0.12 | 74.84£0.34 | 69.4+0.18 | 0.0012
Baseline+(MSF-w/o PF) (V5) | 86.9£0.15 98.3+0.07 | 87.3+0.28 | 82.9+0.26 | 0.0019 | 76.24+0.27 | 97.940.16 | 77.240.29 | 72.840.24 | 0.0034
Baseline+ MSF (V6) 88.4+0.28 98.7+£0.08 [ 89.2+0.32 | 84.1+£0.21 0.0041 78.840.25 | 98.4+0.11 | 79.5£0.21 | 74.1+£0.25 | 0.0048
CovSegNet2D (V7) 90.8+0.32 | 99.1£0.13 | 91.1+0.25 | 86.9+0.09 | 0.0011 81.5+0.22 | 98.940.13 | 82.7£0.08 | 77.5+0.14 | 0.0009
TABLE IV

ABLATION STUDY OF THE EFFECT OF DIFFERENT MODULES IN THE PERFORMANCE (MEAN 4 STANDARD DEVIATION) OF THE PROPOSED
COVSEGNET3D ARCHITECTURE IN DATASET-1

Afterward, PF scheme is employed on aggregated vector to
obtain the more generalized representation utilizing multiscale
decoded representations. Finally, another convolutional filtering
(kernel, 3 x 3) is carried out to generate the final segmentation
mask fiask, utilizing binary activation function, and these can
be represented as

fmask = U(COHV(PF(Fagg,O))

where o(.) denotes the nonlinear activation.

13)

G. Loss Function

Tversky index is introduced in [31] for better generalization
of the dice index by balancing out FPs and FNs, which is given
by

P
Y i1 P1igii + €

TT= =5 P P
Y i1 P1igii F o) iy Doigii + B Y i1 P1igoi +(€l4)

where go; and py, indicate, respectively, the ground truth and pre-
diction probability of pixel ¢ being in a normal region, whereas
g1; and py; indicate, respectively, the ground truth and prediction
probability of pixel ¢ being in an abnormal region, P is the total
number of pixels on a certain image, o and S are used to shift
emphasize for balancing class imbalance such that o + 5 = 1,
and €(1078) is used to avoid division-by-zero as safety factor.

To put more emphasis on hard training examples, a focal
Tversky loss function is introduced in [32] utilizing the Tversky
index, which is given by

L= (1-TIL)" (15)
where v is used to emphasize the challenging less accurate
predictions. Due to the better generalization over a large number
of datasets according to Abraham and Khan [32],« = 0.7, 5 =
0.3,and v = % are used for all experimentations in this article.

If yandyP denote slicewise mask ground truth and

corresponding probability prediction, respectively, whereas

Network Dataset-1
Sensitivity(%) | Specificity(%) | Dice Score(%) ToU(%) p-Value
Baseline3D (Vigp) 84.5+0.21 97.9+0.12 85.24+0.23 80.8+0.32 -
Baseline3D + DT (V23p) 85.7+0.31 98.240.19 86.1+£0.25 82.3+0.29 | 0.0011
Baseline3D + UT (V33p) 85.24+0.18 98.1+0.08 85.94+0.18 82.0+0.21 0.0008
Baseline3D + DT+UT (V43p) 86.7+0.22 98.740.14 88.3+0.28 83.5+0.27 0.0017
Baseline3D+(MSF-w/o PF) (V53p) 87.44+0.25 97.9+0.11 88.24+0.21 83.84+0.31 0.0032
Baseline3D+ MSF (Vé63p) 89.6+0.19 98.440.15 89.9+0.17 85.1+0.19 | 0.0021
CovSegNet3D 91.1+£0.26 99.3+0.09 92.3+0.15 87.7+0.23 0.0025
TABLE V

EFFECT OF VERTICAL EXPANSIONS (LEVELS) AND HORIZONTAL EXPANSIONS
(STAGES) ON THE DICE SCORE (MEAN + STANDARD DEVIATION) IN DATASET-1

Level CovSegNet2D CovSegNet3D
One-stage Two-stage Three-stage | O tag: T tagy Three-stag
2 49.9+40.37 | 75.34+0.13 | 78.124+0.21 | 57.3+0.18 | 79.840.18 | 82.14+0.19
3 64.840.23 | 85.8+0.32 88.5+0.15 69.3+£0.35 | 89.2£0.26 | 90.2£0.25
4 75.240.32 | 89.6+0.27 90.84+0.22 | 79.840.29 | 92.3+0.15 | 91.840.17
5 83.5+£0.19 | 91.1£0.25 | 89.9£0.12 84.5+0.43 | 90.240.34 | 89.74+0.28
6 86.7+0.27 | 90.9+0.21 89.1+0.11 89.3+0.21 | 89.84+0.41 | 87.9+0.36

Y and YP denote volumetric mask ground truth and corre-
sponding probability prediction, respectively, the objective loss
functions for separately optimizing CovSegNet2D and CovSeg-
Net3D can be represented as

Zop = L(y,yP); y,yP € RM WX
Lap = L(Y,YP); Y, YP € RMwrexe,

(16)
a7

The joint optimization objective function used in phase-2
combining slicewise and volumetric operations is given by

S
1 § i
F=x E ‘ ZZD +$3D (18)

i=1

where A denotes the scaling factor of 2-D loss term, and s denotes
total number of 2-D slices per volume. Here, A = 0.2 is used
for optimization to provide more emphasis on CovSegNet3D
in phase-2 as CovSegNet2D is pretrained in phase-1 and is
supposed to be fine-tuned in phase-2.

III. RESULTS AND DISCUSSIONS

Experimentations have been carried out on three publicly
available datasets to validate the effectiveness of the proposed
scheme on numerous segmentation tasks. Performances of Cov-
SegNet2D and CovSegNet3D have been separately studied
along with the proposed hybrid scheme of joint optimization
combining CovSegNet2D and CovSegNet3D.
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TABLE VI

PERFORMANCE COMPARISON (MEAN + STANDARD DEVIATION) OF THE PROPOSED COVSEGNET2D ARCHITECTURE WITH OTHER STATE-OF-THE-ART

APPROACHES ON 2D-CT SLICES

Network l)atflset-l I)at.aset-l
Sen.(%) Spec.(%) Dice(%) ToU(%) p-Value Sen.(%) Spec.(%) Dice(%) ToU(%) p-Value
Unet [22] 75.940.34 | 88.9£0.12 | 79.3+£0.26 | 74.9£0.18 - 52.940.29 | 86.24+0.09 | 43.3£0.34 | 38.8+0.32 -
Unet++ [28] 78.6+0.17 | 91.1+£0.18 | 81.1+0.23 | 76.2+0.21 - 57.7£0.32 | 89.2+0.11 52.340.31 | 48.1+0.37 -
MultiResUnet [27] 7724033 | 90.3+£0.24 | 82.7+0.28 | 77.4+0.15 - 56.9+0.27 | 86.9+0.15 | 50.840.28 | 45.2+0.22
Attention-Unet-2D [29] | 81.1+£0.29 | 92.240.11 85.1+£0.14 | 79.6+0.28 - 60.8+0.25 | 88.4+0.12 | 57.740.36 | 51.9+0.26 -
CPF-Net [30] 78.940.27 | 91.7+0.14 | 84.44+0.25 | 79.3£0.25 - 62.2+0.14 | 91.1+0.14 | 60.4+£0.25 | 56.1+0.21 -
Semi-Inf-Net [12] 82.7£0.26 | 94.840.21 86.9+0.34 | 81.1+0.18 - 72.94+0.44 | 95.8+0.19 | 74.1+£0.24 | 68.1£0.32 -
CovSegNet2D(Ours) 90.8+£0.32 | 99.1+0.13 | 91.1£0.25 | 86.9+0.09 0.0008 81.5+0.22 | 98.9+0.13 | 82.7+0.08 | 77.5+0.14 0.0013
T Ground Proposed Semi-Inf-  CPF-Net Unet++ Unet

Truth CovSegNet

Database-1

Database-2

Fig. 10.

Net [3] [25] [23] [22]

L g

Visual representations of the segmentation performances of different state-of-the-art networks on the CT images from Database-1 and Database-2. Here,

“yellow” represents the true positive (TP) regions, “red” represents the false negative (FN) regions, and “blue” represents the false positive (FP) regions.

TABLE VII
PERFORMANCE COMPARISON (MEAN + STANDARD DEVIATION) OF THE
COVSEGNET3D ARCHITECTURE WITH OTHER STATE-OF-THE-ART NETWORKS
ON 3-D CT VOLUMES OF DATASET-1

Network Sen.(%) Spec.(%) Dice(%) ToU(%) p-Value
Unet-3D [22] 77.1+£0.22 | 89.8+£0.18 | 84.24+0.27 | 79.440.24 -
Unet++-3D [28] 79.24+0.17 | 91.7£0.25 | 85.1+0.29 | 80.2+0.26
MultiResUnet-3D [27] 78.7+0.27 | 90.9£0.16 | 84.5+0.31 78.940.18
Attention-Unet-3D [29] 82.54+0.26 | 93.1+0.31 85.94+0.24 | 81.4+0.29
CPF-Net-3D [30] 80.1£0.23 | 92.6+0.23 | 85.2+0.18 | 80.8+0.34
‘VNet-3D [19] 84.3£0.29 | 93.9+0.17 | 85.74+0.31 81.3£0.19 -
CovSegNet3D(Ours) 91.1+£0.26 | 99.34+0.09 | 92.3+0.15 | 87.7+0.23 0.0024
CovSegNet-Hybrid(Ours) | 92.6+0.25 | 99.5+0.07 | 94.1+£0.19 | 90.24+0.27 0.0011

A. Dataset Description

Dataset-1 contains 20 CT volumes with 1800+ slices an-
notated by expert radiologist panel [33]. All the slices have
annotations for both lung and infection regions. Each slices

are of resolution (630 x 630), which are resized to (512 x
512). Dataset-2 is the “COVID-19 CT Segmentation dataset”
that contains 110 axial CT images collected by the Italian
Society of Medical and Interventional Radiology from 40
different COVID patients [34]. All the images are of res-
olution (512 x 512). Each slice contains multiclass annota-
tions of infections. Dataset-3 is the “Semantic Drone Dataset”
where the semantic understanding of urban scenes is mainly
focused to increase the safety of drone flight and landing
procedures [35]. This dataset consists of 400 images with
pixelwise annotation for 20 different classes having resolu-
tions of 6000 x 4000 and all of these images are resized to
(512 x 512). Experimentations on Dataset-3 is mainly inte-
grated to investigate the effectiveness of the proposed CovSeg-
Net architecture on other domains with challenging operating
conditions.
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TABLE VIII
EFFECT OF DIFFERENT LOSS FUNCTIONS ON THE PERFORMANCE [DICE
SCORE(%)] OF COVSEGNET ON DATASET-1

Loss function CovSegNet2D | CovSegNet3D | CovSegNet-Hybrid
ToU Loss 89.9+0.23 90.7£0.16 92.4+0.12
Dice Loss 90.2+0.13 91.1£0.21 93.3+0.09
Dice Loss+ BCE loss 90.4+0.11 91.5+0.17 93.6+0.15
Focal Tversky loss 91.1+0.25 92.3+0.15 94.1+0.19

B. Experimental Setup

Different hyperparameters of the network are chosen through
experimentation for better performance. Adam optimizer is
employed for optimization of the network during the training
phase with an initial learning rate of 10~°. The learning rate is
decayed after ever ten epochs with a decaying rate of 0.99. Intel
Xeon D — 1653 N CPU @2.80 GHz with 12 M Cache and 8
cores along with 24-GB RAM is used for experimentation. For
hardware acceleration, 2x NVIDIA RTX 2080 Ti GPU having
with 4608 CUDA cores running 1770 MHz with 24-GB GDDR6
memory is deployed. The network is trained for 1000 epochs on
each dataset. Batch size is chosen to be 32 for processing 2-D
CT slices, whereas it is chosen to be 2 for processing 3-D CT
volume.

A number of traditional evaluation metrics are used for the
evaluation of performance. These are given by

10U = e (19)
Dice Score = % (20)
Specificity = TPTi—fFP (21)
Sensitivity = T?i% (22)

where TP, FP, and FN denote true positive, false positive,
and false negative predictions, respectively. A five-fold cross-
validation scheme is carried out separately on these databases
for evaluation of the proposed scheme. Mean and standard
deviations of the evaluation metrics obtained from different
test folds are reported. For binary thresholding of the predicted
probability mask, a threshold of 0.5 is used in general. The
Wilcoxon rank-sum test is used for statistical analysis of the per-
formance improvement obtained from the proposed scheme. The
performances of the proposed schemes are statistically analyzed
and the statistical significance level is set to o = 0.01. The null
hypothesis is that no significant improvement of performance is
achieved using the proposed scheme over the other existing best
performing approaches.

C. Ablation Study

To analyze the effectiveness of different modules of the pro-
posed CovSegNet architecture, an ablation study is carried out.
The baseline model is defined as the two-stage implementations
with encoder and decoder modules only excluding the DT units,
UT units, and MSF modules. The statistical significance test is

carried out to validate the improvement of dice scores over the
baseline model.

1) Effects of the Transition Unit: Instead of proposed DT
units and UT units, traditional max-pooling and upsampling
operations are used, respectively, in the baseline model ac-
cording to the conventions of the traditional Unet architecture.
Performances with different combinations of transition units are
provided in (V2—V4) of Table III for 2-D analysis. The inclusion
of DT unit (V2) in encoder modules provides 1.7% improvement
and 1.5% improvement of dice scores in Database-1 and 2, re-
spectively, over the baseline. Moreover, the inclusion of UT unit
(V3) indecoder modules provides 1.3% and 1.2% improvements
of dice scores, whereas the inclusion of both of the transition
units (V4) provide 2.6% and 2.9% improvements of dice scores
in Database-1 and -2, respectively. Hence, both of the UT units
and DT units are contributing considerable improvements over
the baseline performance. Similar improvements can be notice-
able for 3-D variants of the transition units also (from V' 23p to
V45p) that are summarized in Table IV. All the improvements
are found to be statistically significant (p < 0.01).

2) Effects of the MSF Module: The MSF modules are pro-
posed in place of the traditional directskip connection scheme
of Unet architecture to reduce the semantic gaps between sub-
sequent encoder and decoder modules. In the baseline model,
direct skip connections are used between succeeding modules
instead of the MSF module. In Table III, the change of per-
formance with the inclusion of the MSF module in the 2-D
baseline model is provided in V6. It should be noticed that 5.1%
improvement of dice score and 4.3% improvement of IoU score
have been achieved in Database-1, whereas 7.6% improvement
of dice score and 8.3% improvement of IoU score have been
achieved in Database-2. Similar performance improvements can
be noticed for the incorporation of MSF module in the 3-D
baseline model (V63p in Table IV). These improvements are
found to be statistically significant (p < 0.01).

3) Effects of the PF Scheme in MSF Module: PF modules are
integrated into the MSF modules to operate on the aggregated
multiscale feature vector in the MSF module. Instead of the
PF module, a pointwise convolution with (1 x 1) kernel can
be performed to reduce and transform the aggregated vector
into the output vector. The performance of the 2-D baseline
model, including this simplified version of the MSF module,
is reported in V5 of Table III. It is to be noted that 2.3%
improvement of dice score is achieved in Database-1 and 3.4%
improvement is achieved in Database-2 over the baseline model
using these simplified MSF modules, and these improvements
are statistically significant (p < 0.01). However, 3.2% and 5.3%
reduction of dice scores can be noticed in Database-1 and
-2, respectively, from the baseline model with original MSF
modules (V6) incorporating PF scheme. Similarly, considerable
improvement is also achieved for the incorporation of 3-D PF
scheme in the 3-D variants of MSF module, which can be noticed
from V53p and V63p in Table IV. It justifies the effectiveness
of the PF scheme in the MSF module.

4) Effects of Vertical and Horizontal Scaling: The proposed
CovSegNet architecture is designed in a modular way with
the opportunity for both vertical and horizontal expansions for
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TABLE IX

COMPARISON OF PERFORMANCES (MEAN =+ STANDARD DEVIATION)

ON DIFFERENT TYPES OF INFECTIONS (GGO AND CONSOLIDATION)

IN DIFFERENT CT-SLICES OF DATASET-2

Network Consolidation GGO
Sen.(%) Spec.(%) Dice(%) ToU(%) p-Value Sen.(%) Spec.(%) Dice(%) ToU(%) p-Value
Unet [22] 41.14£0.26 | 96.24+0.12 | 40.3+0.28 | 35.5+0.28 - 35.1+0.27 | 98.2+0.09 | 44.1+0.27 | 39.840.25 -
Unet++ [28] 48.84+0.23 | 97.840.16 | 42.6+0.26 | 38.2+0.19 - 41.240.32 | 96.6+0.14 | 49.940.22 | 45.74+0.27 -
MultiResUnet [27] 46.6+0.28 | 97.1+0.14 | 42.1+0.19 | 37.6+0.27 - 4454028 | 97.3+0.11 | 47.74+0.18 | 43.14+0.28 -
Attention-Unet-2D [29] | 44.8+0.19 | 96.84+0.08 | 44.5+0.25 | 40.1+£0.33 - 55.340.31 | 95.4£0.08 | 52.9+0.17 | 47.6+0.35 -
CPF-Net [30] 49.940.18 | 97.440.15 | 44.1+0.23 | 39.9+0.29 - 53.5+0.22 | 96.9+0.13 | 56.9+0.26 | 51.1+0.34 -
Semi-Inf-Net [12] 50.9+0.22 | 96.7+0.11 | 45.840.31 | 41.4+0.18 - 62.24+0.34 | 96.1£0.18 | 62.7£0.22 | 58.4+0.23 -
CovSegNet2D(Ours) 63.840.17 | 98.44+0.09 | 56.84+0.24 | 51.9+0.25 0.0017 73.34+0.25 | 98.9+0.12 | 70.9+0.31 | 66.1£0.19 | 0.0028
TABLE X

COMPARISON OF PERFORMANCES (MEAN 4 STANDARD DEVIATION) ON
MULTICLASS SEMANTIC SEGMENTATION TASK OF DATASET-3

Network Dataset-3
Sen.(%) Spec.(%) Dice(%) ToU(%) p-Value

Unet [22] 56.9+0.19 | 68.6+0.23 | 42.2+0.35 | 37.7+0.28 -

Unet++ [28] 57.3+0.25 | 70.4+0.31 44.84+0.29 | 40.1+0.33 -

Attention-Unet-2D [29] | 58.7+0.22 | 71.84+0.29 48.5+0.42 43.9+£0.25 -

CPF-Net [30] 61.5+0.28 | 73.1+0.17 | 51.4£0.38 | 47.7+0.34 -

Semi-Inf-Net [12] 64.9+£0.31 | 76.3£0.27 | 50.9+0.27 | 46.440.26 -
CovSegNet(ours) 76.4+0.18 | 87.7£0.16 | 64.640.21 59.5+0.29 6e-5

Ground Proposed Semi-Inf- CPF-Net Unet++ Unet

CovSegNet  Net[3] [25] [23] [22]

Fig. 11.  Visual representations of the segmented multiclass lesions of the CT
images from Database-2 obtained using different state-of-the-art networks. Here,
“red” represents the “GGO” regions and “yellow” represents the “consolidation”
regions.

integrating more number of levels and stages, respectively. In
Table V, the performances of the CovSegNet architecture with
different numbers of levels and stages are provided. It should
be noticed that the optimum dice score of 91.1% is obtained
for CovSegNet2D with five levels and two stages. The best
performance on single-stage implementation is found to be
86.7%, which is 4.4% lower than the best of the two-stage
implementation. Similar analyses have been carried out on
CovSegNet3D using volumetric data where the highest dice
score of 92.3% is achieved with three-levels and two-stages
implementation.Moreover, when more stages are included, com-
parably higher performances are obtained in a lower number of
levels, e.g., best dice score of 90.8% in the three-stage setup
of CovSegNet2D has been achieved with four levels. With the
horizontal expansion, the model gathers more amount of contex-
tual information in a lower number of stages that result in higher
performances. However, more expansion in both directions starts

to increase the complexity that causes a decrease in performance
due to overfitting issues.

5) Effects of the Hybrid 2-D-3-D Joint Optimization Scheme
With Two-Phase Training: The proposed two-phase training
scheme exploits the advantages of both the slice-based optimiza-
tion and volumetric optimization. Quantitative performances
obtained using CovSegNet2D, CovSegNet3D, and the hybrid
scheme are provided in Tables VI and VII. Slice-based process-
ing provides the advantages of employing deeper networks for
lighter 2-D convolutions, whereas loses the interslice contextual
information that results in suboptimal performance. On the other
hand, 3-D volumetric analysis incorporates more contextual
information while increasing the computational burden of op-
timization for the expensive 3-D kernels processing. The best
variant of CovSegNet3D provides 1.2% higher dice score, and
0.8% higher IoU score over the best variant of CovSegNet2D.
Thus, the performances of the proposed CovSegNet architec-
tures are quite comparable in both 2-D and 3-D processing
with minor variations. It is to be noted that more improve-
ments can be achieved with the expensive 3-D processing if the
number of training CT volumes can be increased substantially
for exploiting the advantages of the complete 3-D processing.
However, by combining the advantages of both these schemes in
the proposed multiphase hybrid training approach, 3% and 1.8%
higher dice scores are achieved compared to the best performing
CovSegNet2D and CovSegNet3D architectures, respectively. In
the hybrid scheme, to reduce the computational burden of 3-D
data processing, only two-level and dual-stage implementation
of the CovSegNet3D is employed accompanied by the four-
level and dual-stage implementation of the CovSegNet2D that
provides the optimal performance with minimal complexity.
Since a very shallower variant of CovSegNet3D is employed
in the hybrid network compared to the best performing variant
of CovSegNet3D, the operational complexity is greatly reduced
in the hybrid network that led to the optimum performance
with the available CT volumes. This improvement signifies the
effectiveness of the hybrid networking scheme in multiphase
training (p < 0.01). Moreover, qualitative analysis of the per-
formances of the individual networks and hybrid networks are
presented in Fig. 9 with different levels of infection. It should
be noticed that both of the FP and FN regions are reduced
in the segmented mask for the hybrid scheme compared to
the individual networks. Therefore, for the proper optimization
with the hybrid networking scheme through multiphase training,
optimum performance is achieved compared to the independent
2-D/3-D data processing.
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6) Effects of the Loss Functions: In Table VIII, effects of
different loss functions are summarized on the performance
of the CovSegNet. For optimizing the hybrid network, joint
optimization objective function [see (18)] is defined incorpo-
rating losses of the CovSegNet2D and CovSegNet3D networks.
Several traditional loss functions are experimented to evaluate
the effects of loss functions on the performance of the proposed
network. It should be noticed that focal Tversky loss function
provides 0.9% improvement of dice score over traditional dice
loss function, 1.7% improvement over IoU loss, and 0.7% im-
provement over the aggregated dice loss and binary cross entropy
loss function. Despite the slight variations of performance with
different loss functions, it is to be noted that the proposed
CovSegNet-hybrid network consistently provides considerably
better performance over other traditional networks with any of
these loss functions. Since the available contextual information
are effectively exploited through the proposed hybrid learning
scheme along with numerous architectural renovations, the pro-
posed network shows very stable and comparable performance
with different loss functions. Such phenomenon signifies the
robustness of the proposed scheme for extracting the effective
feature from 3-D CT volumes to achieve optimum performance
irrespective of the loss functions.

D. Comparison With Other Existing Approaches

To compare the performances of the proposed CovSegNet
architecture, several state-of-the-art networks are considered.
To compare on a fair platform, most of these networks are
implemented using their open-source implementation, and same
train-test folds are used for performance evaluation. Infection
segmentation performances using slice-based 2-D operations
and volumetric 3-D operations are summarized in Tables VI and
VII, respectively. CovSegNet2D provides a 4.2% higher dice
score in Database-1, and an 8.6% improvement in dice score in
Database-2 compared to the second-highest score (Semi-Inf-
Net). Hence, consistent improvements in performances have
been achieved in 2-D slice based analysis using CovSegNet2D.
Moreover, in the volumetric analysis approach, CovSegNet3D
provides 8.4% higher dice score and 9.4% higher IoU score com-
pared to the next-best performing model (VNet). Thus, the 3-D
variant of CovSegNet provides consistent improvements over
other 3-D counterparts of existing networks. It should be noticed
that the proposed hybrid scheme combining CovSegNet2D and
CovSegNet3D provides the most optimum performance with
a dice score of 94.1% and IoU score of 90.2%. Some of the
qualitative visualizations of performances obtained in different
challenging conditions are shown in Fig. 10. For having the
volumetric information of the Database-1, the proposed hybrid
scheme is employed here, whereas only 2-D slice based analysis
is carried out in Database-2 using CovSegNet2D. It should be
noted that the proposed scheme performs consistently better
compared to other networks in segmenting most of the chal-
lenging diffused, blurred, and varying shaped edges of COVID
lesions. Moreover, quantitative performances on challenging
multiclass lesion segmentation, including separate ground-glass
opacity (GGO) and consolidation regions, are summarized in

Semi-Inf-  CPF-Net Unet++ Unet
Net [3] [25] [23] [22]

Proposed
CovSegNet

Ground
Truth

Input

5 /
i

Fig. 12.  Visual representations of the semantic segmentation of drone images
from Database-3 obtained using different state-of-the-art networks.

Table IX, where 8.2% improvement in dice score is obtained
in GGO segmentation and 11% improvement in consolidation
segmentation using CovSegNet architecture over the other best-
performing approaches. Additionally, from the visual analysis
of the performances shown in Fig. 11, it can be easily noted
that the proposed network considerably reduces the false pre-
dictions even in these challenging conditions compared to other
state-of-the-art approaches.

Furthermore, quantitative results obtained from nonclinical
Database-3 are summarized in Table X, which shows the sig-
nificant performance improvement with 22.4% improvement in
dice score, and 21.8% improvement in mean IoU compared to
the Unet architecture. Weighted mean performances over all
20 classes are taken for better estimation. In Fig. 12, visual
representations of some of the sample images are shown for
different networks in Database-3, which more conspicuously
signifies the better performance of the proposed architecture.
Since Database-3 is very complicated with a huge number
of classes, the performance differences between the proposed
CovSegNet and other existing networks are more prominent as
this dataset demands effective exploitation of minute, complex,
and scattered features of diversified classes.

E. Computational Efficiency Analysis
of Numerous Approaches

The proposed CovSegNet architecture ensures the proper
optimization of all the network parameters through improved
parallelization that enhances efficient gradient propagation in the
whole network. However, this improved parallelism also poses
some computational burden for the effective exploitation of the
network parameters. Nevertheless, the CovSegNet architecture
provides additional opportunity for horizontal scaling as well
as vertical scaling that facilitates the performance improvement
with much shallower variant. On the contrary, other traditional
networks solely depend on vertical scaling that exponentially
increases the computational burden with exponential increase
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TABLE XI
COMPUTATIONAL EFFICIENCY ANALYSIS OF NUMEROUS ARCHITECTURES ALONG WITH THE PERFORMANCES OBTAINED ON DATASET-1
2-D analysis 3-D analysis
Architecture Details Total GPU Inference Mean Architecture Details Total GPU Inference Mean
Parameters(M) | Usage(GB) Time(s) Dice(%) Parameters(M) | Usage(GB) Time(s) Dice(%)
Unet [22] 31.0 2.1 0.10 82.3 Unet3D [22] 90.3 13.2 1.22 84.2
Semi-Inf-Net [12] 333 6.8 0.18 86.9 Vnet3D [19] 45.1 15.1 1.16 85.7

Unet++ [28] 27.0 6.5 0.17 84.1 MultiResUnet3D [27] 18.1 12.9 1.15 84.5

CPF-Net [30] - 324 23 0.12 844 A ion Unet3D [29] - 103.5 20.9 1.13 859
CovSegNet2D-v1 (ours) | L-2, S-2 0.37 1.1 0.05 75.3 CovSegNet3D-v1 (ours) L-2,S-2 1.1 7.0 1.02 79.8
CovSegNet2D-v2 (ours) | L-3, S-2 1.60 1.8 0.07 85.8 CovSegNet3D-v2 (ours) L-3, S-2 4.6 13.7 1.21 89.2
CovSegNet2D-v3 (ours) | L-4, S-2 6.70 33 0.11 89.6 CovSegNet3D-v3 (ours) L-4,S-2 19.0 222 1.85 923
CovSegNet2D-v4 (ours) | L-5, S-2 27.0 7.0 0.20 91.1 HSI"’:;*%‘T::S) é%&i‘f;;j; 78 105 114 94.1

of the number of convolutional filters in the deeper layers. In
Table XI, the computational efficiency of different networks
are summarized, where performances of different variants of
CovSegNet is summarized based on the number of levels (1)
and stages (.5). For 2-D processing, it is to be noted that the
CovSegNet2D-v2 achieves 3.5% higher dice score compared
to the Unet while incorporating only three-levels (L-3), and
two-horizontal stages (S-2). Due to lower number of filtering
operations in the upper vertical levels, significantly lower num-
ber of parameters (reduced 94.8%) are incorporated. However,
for proper optimization of these parameter with improved par-
allelism in the network, comparatively lower gain is achieved in
terms of the GPU consumption (reduced 14.2%) and inference
time (reduced 30%) with respect to the Unet. A similarobserva-
tion can be carried out for 3-D analysis with CovSegNet3D. It
is clear that 3-D processing increases computational complexity
greatly compared to the 2-D networks. However, it should be
noticed that CovSegNet-Hybrid provides the best achievable
dice score (94.1%) while consisting of 0.09x parameters of
Unet3D with 0.08s reduction of inference time. This significant
reduction in parameter counts is mainly achieved by integrating
a shallower variant of CovSegNet3D with the CovSegNet2D.
Moreover, this hybrid processing effectively extracts both the
interslice and intraslice contextual information that are respon-
sible for the highest dice score. Therefore, this hybrid scheme
provides considerable advantages over other existing 3-D vari-
ants in terms of parameters, and dice scores with comparable
processing speed.

F. Discussions, Limitations, and Future Studies

In summary, numerous architectural renovations assist in
achieving state-of-the-art performance on COVID lesion seg-
mentation. The horizontal and vertical expansion mechanisms
provide the opportunity to incorporate more detailed features as
well as more generalized features, which improved the feature
quality considerably that is particularly effective in distinguish-
ing multiclass, scattered COVID lesions with widely varied
shapes. Moreover, the improved gradient flow throughout the
network, achieved with the introduction of MSF module and
scale transition modules, have greatly reduced the contextual
information loss in the generalization process and have also
ensured the best optimization of all network parameters that
particularly contribute to recover and distinguish the blurry,
diffused edges of COVID lesions as well as the very minute
instances of abnormalities. Furthermore, the integration of a
hybrid 2-D-3-D networking scheme exploits both the intraslice

and interslice contextual information without increasing compu-
tational burden that results in more precise, finer segmentation
performance mostly in challenging conditions.

Although consistent performances have been achieved in both
the datasets for COVID lesion segmentation, this study should
be carried on larger datasets consisting of wide variations of
subjects. However, in the current conditions of the pandemic,
it is difficult to gather a considerably higher amount of data.
The study proposed in this article will be extended with the
incorporation of diversified datasets, including patient-based
study considering age, sex, health conditions, and geographical
locations of the patients. Due to the novel characteristics of the
COVID infections, it is difficult to predict the risk and vulnera-
bility among diverse subjects that can be effective for reducing
the spread and better prevention. An in-depth, closer, patient-
specific study should be carried out for better understandings
of the nature of the infection. Moreover, generative adversarial
network-based optimization can be carried out to generate more
amount of realistic, synthetic data to overcome the limitations of
available data. Additionally, this scheme is supposed to be ex-
tended for incorporating automated segmentation-classification
joint optimization along with the severity prediction scheme of
COVID infections.

IV. CONCLUSION

In this article, an automated scheme was proposed with an ef-
ficient neural network architecture (CovSegNet) for very precise
lung lesion segmentation of COVID CT scans that provides out-
standing performances with 8.4% average improvement of dice
score over two datasets. The introduced scale transition opera-
tions were found to be very effective for replenishing contextual
information loss through repeated integration of generated mul-
tiscale features in both upscaling and downscaling operations. It
was found that horizontal expansion mechanism with multistage
encoder—decoder modules assists in further improvements for
gathering more multiscale contextual information when coupled
with the traditional vertical expansion mechanism. Moreover,
the MSF module with a PF scheme not only substantially re-
duced the semantic gaps between subsequent encoder—decoder
modules but also introduced parallel interlinking among multi-
scale features that greatly mitigates the vanishing gradient issues
for better optimization. Furthermore, the two-phase optimiza-
tion scheme with hybrid 2-D-3-D processing provides consider-
able improvement over traditional single domain approaches for
introducing more contextual information to gather finer details.
It was shown that the proposed scheme is capable of segmenting
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infected regions along with multiclass COVID-19 lesions with
unprecedented precision even in challenging conditions with
blurred, diffused, and scattered edges. Moreover, it was found
that the proposed network is not only effective in COVID lesion
segmentation but also provides state-of-the-art performance on
a nonclinical, challenging, multiclass semantic segmentation
task that proves the wide applicability of the proposed scheme.
Therefore, the proposed scheme can be easily optimized on
numerous applications that can be an effective alternative to
other state-of-the-art approaches.
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