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Abstract

Computability in Ordinal Ranks and Symbolic Dynamics

by

Linda Brown Westrick

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Theodore Slaman, Chair

Part 1: Computability in Ordinal Ranks

We analyze the computable part of three classical hierarchies from analysis and set theory.
All results are expressed in the notation of Ash and Knight [1].

In the differentiability hierarchy defined by Kechris and Woodin [14], the rank of a dif-
ferentiable function is an ordinal less than ω1 which measures how complex it is to verify
differentiability for that function. We show that for each recursive ordinal α > 0, the set of
Turing indices of computable C[0, 1] functions that are differentiable with rank at most α is
Π2α+1-complete.

In the hierarchy defined by the transfinite process of Denjoy integration, the rank of
a Denjoy-integrable function f is defined as the ordinal α < ω1 at which the process of
integrating f terminates. We show that the set of Turing indices of computable C[0, 1]
functions of the form

∫
f , where f is Denjoy-integrable of rank 1, is Π3-complete; and that

for any recursive ordinal α > 1, the set of indices of computable C[0, 1] functions of the form∫
f , where f has rank at most α, is Σ2α-complete.

Finally, we give a new proof that for any recursive ordinal α > 1, the set of indices for
computable trees in 2<ω with no dead ends which vanish after α applications of the Cantor-
Bendixson derivative is Σ2α-complete. This result, in a different notation, was originally due
to Lempp [17].

The major contribution of Part 1 is a general theorem which lies at the core of all three
results. We introduce the limsup rank which assigns an ordinal to each well-founded tree in
Baire space. Trees of limsup rank α are seen to correspond in a computable way to objects
of rank α in each of the three contexts discussed above. For each recursive ordinal α > 0,
the theorem provides a one-one reduction from ∅(2α) to the set of Turing indices of trees of
limsup rank at most α, where ∅(α) is the canonical Σα complete set.
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Part 2: Computability in Symbolic Dynamics

We consider various questions in the intersection of computability theory as applied to sub-
shifts. In particular, we consider three subshift invariants: entropy, Medvedev degree, and
effective dimension spectrum. The last one is a new invariant. We explore these invariants
in the context of important examples of subshifts: density-r subshifts, shifts of finite type,
subshifts consisting of shift-complex sequences, and Medvedev subshifts.

Building on the work of [13, 25, 28, 32], we show that the entropy and the Medevedev
degree are independent invariants. To do this we construct subshifts with every combination
of entropy and Medvedev degree that is not immediately prohibited, in both one and two
dimensions. When the entropy is right-r.e. and the Medvedev degree is Π0

1, the subshifts we
produce are Π0

1 in the one-dimensional case, and shifts of finite type in the two-dimensional
case. When the entropy is in [0, 1), we accomplish this using an alphabet with only two
symbols.

We introduce the dimension spectrum of a subshift X as {dim(x) : x ∈ X}, where dim
is the effective dimension, and work towards a characterization of the possible dimension
spectra. By [32], every dimension spectrum has a top element. Conditions are given under
which the dimension spectrum of X is the interval [0, ent(X)], and examples are given where
the dimension spectrum is bounded away from 0. We show that the dimension spectrum of
a one-dimensional minimal subshift has a least element, and find the dimension spectrum of
the minimal subshift from [2].
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Chapter 1

Computability in Ordinal Ranks

In this chapter, we define an alternate rank on well-founded trees called the limsup rank, and
use it to analyze three hierarchies from analysis and set theory: the Cantor-Bendixson rank,
the Kechris-Woodin rank, and the Denjoy rank. All three hierarchies have, at their core, the
same descriptive difficulty which is captured by the notion of the limsup rank. In Section
1.1 we introduce notation and concepts common to all the subsequent sections. In Section
1.2 we define the limsup rank on trees in N<N and prove the main theorem of this chapter,
establishing the descriptive complexity of its initial segments. In this section we also find the
descriptive complexity of the initial segments of the Cantor-Bendixson rank as a corollary of
the main theorem about the limsup rank. This corollary was originally implicit in [17]. In
Section 1.3 we introduce the Kechris-Woodin rank as first defined in [14], and also find the
descriptive complexity of its initial segments as another consequence to the main theorem.1

Finally, in Section 1.4 we introduce Denjoy integration from the constructive perspective,
noting how this process may be naturally understood in terms of a rank function on the
indefinite integrals which result from Denjoy integration. As in the previous sections, we use
the main theorem to quantify the descriptive complexity of this hierarchy.

1.1 Preliminaries

This section provides background, essential definitions, methods previously used to construct
functions of different ranks, and corollaries that are straightforward effectivizations of argu-
ments in the literature. In Section 1.1 we establish some notation and review the basic facts
about computable C[0, 1] functions. In Section 1.1 we introduce the recursive ordinals and
use them to define Σα-completeness.

1Most of the work in Sections 1.1, 1.2 and 1.3 will also appear in the Journal of Symbolic Logic under
the title “A lightface analysis of the differentiability rank”, copyright held by the Association for Symbolic
Logic.
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Basic notions and encoding C[0, 1] functions

We use φe to denote to the eth Turing functional, and We refers to the domain of φe. We
identify subsets X ⊆ N with their characteristic functions X ∈ 2ω. The jump of X ∈ 2ω is
written X ′, and the nth jump of X is written X(n). Turing reducibility is denoted by ≤T
and one-reducibility by ≤1. We use 〈n1, . . . , nk〉 to denote a single integer which represents
the tuple (n1, . . . , nk) according to some standard computable encoding. If τ = 〈m1, . . . ,mr〉
and σ = 〈n1, . . . , nk〉, let τaσ denote 〈m1, . . . ,mr, n1, . . . , nk〉. If T ⊆ N<N is a tree, let Tn
denote {σ : 〈n〉aσ ∈ T}, the nth subtree of T . If T is well-founded, |T | denotes its rank.

We identify the computable functions with the computable subsets of N that encode
those functions. Following [14], all our functions are real-valued with domain [0, 1]. For the
encoding we use Simpson’s definition from [33] because this encoding makes it straightfor-
ward to determine the degree of unsolvability of various statements. For example, we will
observe that “φe encodes a computable C[0, 1] function” is Π2. However, the exact details of
the Simpson encoding are not needed beyond this section, and any of the many equivalent
definitions for a computable real-valued function can be safely substituted.

In the following definition, (a, r)Φ(b, s) is shorthand for ∃n((n, a, r, b, s, ) ∈ Φ), and
(a, r) < (a′, r′) means that |a − a′| + r′ < r. The idea is that (a, r)Φ(b, s) should mean
that f(B(a, r)) ⊆ B(b, s).

Definition 1.1.1. A code for a continuous partial function f from [0, 1] to R is a set of
quintuples Φ ⊆ N×Q ∩ [0, 1]×Q+ ×Q×Q+ which satisfies:

1. if (a, r)Φ(b, s) and (a, r)Φ(b′, s′) then |b− b′| ≤ s+ s′

2. if (a, r)Φ(b, s) and (a′, r′) < (a, r), then (a′, r′)Φ(b, s)

3. if (a, r)Φ(b, s) and (b, s) < (b′, s′), then (a, r)Φ(b′, s′).

This set Φ is coded as a subset of N using the standard encoding. Some important facts
can be seen from this definition. Firstly, it is Π2 to check whether a given code X ⊆ N
satisfies the above properties. Secondly, the codes satisfying the above might not represent
total functions. That is, for some points x in [0, 1] and some ε there may not be an a, r, b
such that |x − a| < r and (a, r)Φ(b, ε). However if the code does represent a total function
then, by the compactness of [0, 1], for each ε there is a finite set {(ai, ri, bi, si)}i<p such that
the (ai, ri) cover [0, 1] and for each i, si ≤ ε and (ai, ri)Φ(bi, si). Therefore, “φe encodes
a C[0, 1] function” is a Π2 statement: φe is total, and the corresponding code satisfies
Definition 1.1.1, and for all ε there is a finite cover as described above. Let fe denote the
C[0, 1] function encoded by φe. Note that any function encoded using this convention is, by
necessity, continuous.

If f is any computable C[0, 1] function and z and x any rational numbers, the statement
f(x) > z is Σ1, because f(x) > z if and only if there are δ, b and ε such that (x, δ)Φ(b, ε)
and b− ε > z.
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We will also freely make use of the fact that addition, multiplication, division, and
composition of computable functions are computable. For details we refer the reader to
[33].

Kleene’s O and the notion of a Σα-complete set

Kleene’s O is a way of encoding the recursive ordinals as natural numbers. First one defines
a relation <O on N as the least relation closed under the following properties:

1. 1 <O 2.

2. If a <O b then b <O 2b.

3. If φe(n) is total and φe(n) <O φe(n+ 1) for all n, then φe(n) <O 3 · 5e for all n.

4. If a <O b and b <O c then a <O c.

The field of this relation is called Kleene’s O. One can show that O is a Π1
1-complete set, that

<O is well-founded, and for each a ∈ O, the set {b : b <O a} is well ordered and computably
enumerable. (See [29] for details). Therefore, for each a ∈ O there is a well-defined ordinal
|a|O = ot({b : b <O a}). In this situation a is called an ordinal notation for |a|O. If an ordinal
has an ordinal notation in O, it is called a constructive ordinal. Note that there are infinitely
many ordinal notations corresponding to each constructive ordinal α ≥ ω. There are only
countably many constructive ordinals and these form an initial segment of the ordinals. The
least nonconstructive ordinal is called ωCK1 , “the ω1 of Church and Kleene”.

We will use the fact that it is computable to add ordinal notations in a way that is
consistent with their corresponding ordinals.

The constructive ordinals have an important equivalent characterization. They are ex-
actly the ranks of the recursive well-founded relations. This will be used to establish that
the differentiability ranks of the computable functions are the constructive ordinals.

We recall the arithmetical hierarchy for n < ω. A set X is said to be Σn (respectively

Πn) if X ≤1 ∅(n) (respectively ∅(n)), and X is Σn-complete if X ≡1 ∅(n) (and similarly for
Πn-completeness).

The ordinal notations provide a natural way to extend the notion of the Turing jump
through the ordinals less than ωCK1 , giving rise to the hyperarithmetical hierarchy. Define
H1 = ∅, H2b = (Hb)

′, and H3·5e = {〈x, n〉 : x ∈ Hφe(n)}. Spector [35] showed that if
|a|O = |b|O, then Ha ≡T Hb. Therefore, H2a ≡1 H2b , and thus there is a well-defined notion
of one-reducibility and completeness at the successor levels. We define the notions of Σα and
Πα for infinite ordinals following [1]:

Definition 1.1.2. Let α < ωCK1 be an infinite ordinal and let X ∈ 2ω. Then X is Σα if
X ≤1 H2a for any a such that |a|O = α, and X is Σα-complete if X ≡1 H2a for any such a.
The Πα and Πα-complete sets are defined similarly.



CHAPTER 1. COMPUTABILITY IN ORDINAL RANKS 4

Note that using this definition, (∅(ω))′ is a Σω-complete set. There is a conflicting nota-
tional convention, found in [34, pg. 259], in which (∅(ω))′ is classified Σω+1-complete, and
the symbol Σω is not defined. We prefer the notation of [1] because it is more consonant
with the definition of the rank function. As will be seen, to determine whether the core
rank-ascertaining process terminates at a limit stage, it is necessary to use a quantification
over the results of the previous stages, not merely a unified presentation of them.

We fix a particular (but arbitrary) path P through O and define ∅(α) for each α < ωCK1

by ∅(α) = Ha, where a is the unique a ∈ P such that |a|O = α. (We call P a path through
O if P ⊆ O is <O-linearly ordered and contains an ordinal notation for each α < ωCK1 .)

Because ∅(α+1) is the canonical Σα-complete set when α > ω, we follow [7] in defining

∅(α) =

{
∅(α) if α < ω

∅(α+1) if α ≥ ω

so that ∅(α) is always the canonical Σα-complete set. In addition, we identify α with the
relevant ordinal notation, which in this paper is the notation a ∈ P such that Ha = ∅(α).
(Thus infinite α are identified with the a such that |a|O = α + 1). This choice greatly
simplifies the presentation in Section 1.3 by removing the need to explicitly and constantly
deal with the non-uniformity between the finite and the infinite discussed here.

As we are in the business of establishing the Πα-completeness of various sets, we will
construct reductions to and from ∅(α) for various values of α. All of our reductions will
be either to some ∅(α) or to index sets. Since all sets of these kinds permit padding, it will
suffice to find many-one reductions, and this is what we do. We use the technique of effective
transfinite recursion which is described in detail in [29]. For our purposes it can be stated
as follows:

Theorem 1. Let I : ω → ω be a recursive function, and suppose for all e ∈ N and all x ∈ P,
if φe(y) is defined for all y ∈ P such that y <O x, then φI(e)(x) is defined. Then for some c,
φc(x) is defined for all x ∈ P, and φc(x) = φI(c)(x) for any x on which either converges.

When we use this technique, the function I will be defined only implicitly.
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1.2 A combinatorial theorem with applications to the

Cantor-Bendixson rank

In this section, we define a rank on well-founded trees, the limsup rank, whose structure
reflects the topological difficulties inherent in measuring Cantor-Bendixson rank, Kechris-
Woodin rank, and Denjoy rank in the coming sections. In Section 1.2 we prove some unsur-
prising but needed tools. In Section 1.2 we give a reduction from canonical Σ2α-complete
sets to trees of an appropriate rank. As a result we see that for all constructive α > 0,
{e : |Te|ls ≤ α} is Σ2α-complete, where Te is the eth computable tree in Baire space, repre-
sented as the set of its initial segments.

Definition 1.2.1. For a well-founded tree T ∈ N<N, define the limsup rank of the tree by

|T |ls = max

(
sup
n
|Tn|ls, (lim sup

n
|Tn|ls) + 1

)
,

if T is nonempty, and |T |ls = 0 if T is empty.

Note that reordering the subtrees does not change the limsup rank of the tree. A node
can have a rank higher than all its children in one of two situations: either there is no child of
maximal rank, or there are infinitely many maximal rank children. In the next sections, we
will see that this mechanism corresponds exactly to the mechanism for constructing functions
of increasing Cantor-Bendixson rank, differentiability rank, or Denjoy rank. Note that |T |ls
is always a successor.

Proposition 1.2.1. For all constructive α > 0, {e : |Te|ls ≤ α} is Σ2α.

Proof. We have T = ∅ if and only if it fails to contain the root, so {T : |T |ls ≤ 0} is Σ0,
under the Π1 assumption that T is actually a tree. Assuming that {T : |T |ls ≤ α} is Σ2α

uniformly in T and α, we now examine the claim for α+1. We claim that |T |ls ≤ α+1 if and
only if the set of σ ∈ T for which |Tσ|ls > α is finite. If this set is finite, then in particular
lim supn |Tn|ls ≤ α, and because |Tn|ls > α + 2 implies that there must be infinitely many σ
extending n with |Tn|ls = α+ 1, we have supn |Tn|ls ≤ α+ 1 as well. (If the set is finite, then
T must be well-founded, for none of the infinitely many nodes along an infinite path are ever
assigned a rank.) On the other hand, if the set of σ for which |Tσ|ls > α is infinite, then
either T is not well-founded (in which case by convention |T |ls =∞) or if T is well-founded,
then there must be a σ for which Tσ has infinitely many children satisfying |Tσn|ls ≥ α + 1,
in which case |Tσ|ls ≥ α + 2, and thus |T |ls ≥ α + 2. Therefore,

|T |ls ≤ α + 1 ⇐⇒ ∃σ1 . . . σN ∈ T∀σ ∈ T \ {σi}i≤N |Tσ|ls ≤ α

Therefore, under the assumption that {T : |T |ls ≤ α} is Σ2α uniformly in T and α for
constructive α, we have {T : |T |ls ≤ α+ 1} is Σ2α+2 uniformly in T and α. In the limit case,

|T |ls ≤ λ ⇐⇒ |T |ls < λ ⇐⇒ ∃α < λ|T |ls ≤ α.
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The matrix of the above is uniformly computable in ∅(λ), so the statement is Σλ = Σ2λ,
uniformly in T and λ.

In the next sections we show that this descriptive complexity is exact.

Technical Lemmas

The purpose of the next two lemmas is to specify exactly how to strip two quantifiers off
most Πα facts in a particularly nice way, a way which will be useful for the main argument
which is coming up in Theorem 2. The lemmas are surely known, but proofs are provided
for completeness.

The first lemma takes an arbitrary Πα+2 fact and rewrites it in a nice form, with unique
witnesses and stable evidence. In the process, two computable reduction functions g0 and gs
are defined which will be used in Theorem 2.

Lemma 1.2.2. For any Πα+2 predicate P(x), there is a Πα predicate R(x, z, y) such that

1. P (x) ⇐⇒ ∀z∃yR(x, z, y)

2. R(x, z, y1) ∧R(x, z, y2) =⇒ y1 = y2 (R has unique witnesses)

3. For z1 < z2, ¬∃yR(x, z1, y) =⇒ ¬∃yR(x, z2, y) (R has stable evidence)

4. R(x, z, y) =⇒ z < y

Proof. We may as well assume that P (x) is “x /∈ ∅(α+2)”. For the case α = 0, we define R
using a computable, total {0, 1}-valued function g0, and set R(x, z, y) ⇐⇒ g0(x, z, y) = 1.

Let e be a Π2 index for ∅′′, i.e. φe is total and x /∈ ∅′′ ⇐⇒ ∀v∃w[φe(x, v, w) = 1]. Define

g0(x, z, y) =


1 if y > z and for all v < z there is w < y such that

φe(x, v, w) = 1 and y is least such that this is true

0 otherwise.

One may check that four conditions on R are satisfied.
For the case α > 0, we defineR using a computable, total function gs and setR(x, z, y) ⇐⇒

gs(x, z, y) 6∈ ∅(α). The construction that defines gs uses movable markers to build Πα sets
with at most one element. At any moment there is one particular element being held which
is linked to a potential least-witness, and this element will be held for as long as that witness
seems viable.

Let e be a universal Π3 index, i.e. φXe is total for all X and

x /∈ X ′′′ ⇐⇒ ∀u∃v∀w[φXe (x, u, v, w) = 1].

The intended oracle X is an inverse jump of ∅(α), so that X ′ = ∅(α) and X ′′′ = ∅(α+2). But
the claims of the lemma also hold for an arbitrary X when we let P (x) be x /∈ X ′′′ and
R(x, z, y) be gs(x, z, y) /∈ X ′.
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Define WX
g(x,z) in stages according to the following dynamic process. At stage s = 0, let

WX
g(x,z),0 = {n : n ≤ z}, and let t1 = 0. For each s > 0, let y0s and y1s be respectively the

smallest and second smallest elements of WX
g(x,z),s−1. Check whether (∀u < z)(∃v < ts)(∀w <

s)[φXe (x, u, v, w) = 1]. If this is so, put y1s into WX
g(x,z),s, and set ts+1 = ts. If this is not so,

put y0s into WX
g(x,z),s, and set ts+1 = ts + 1.

Then define

WX
gs(x,z,y) =

{
N if y ∈ WX

g(x,z)

∅ otherwise.

This has the effect that gs(x, z, y) ∈ X ′ ↔ y ∈ WX
g(x,z).

Now let us verify the claims of the lemma, in the more general case where P (x) is x /∈ X ′′′
and R(x, z, y) is gs(x, z, y) /∈ X ′.

First we address the second claim, that R has unique witnesses. For a given x, z,X, let
us verify that there is at most one y such that gs(x, z, y) /∈ X ′. Suppose y0s does not stabilize

in the construction above. Then WX
g(x,z) does not have a smallest element, so it is empty,

so WX
g(x,z) = N. On the other hand if y0s stabilizes, then let s0 be such that for all s > s0,

y0s0 = y0s . Then for all s > s0, it must be that y1s is put into WX
g(x,z),s, so WX

g(x,z) = {y0s0}.
Thus in either case, WX

gs(x,z,y)
= N for all but at most one y, so gs(x, z, y) ∈ X ′ for all but at

most one y.
For the first claim, suppose that x /∈ X ′′′. This is true if and only if ∀u∃v∀w[φXe (x, u, v, w) = 1]

In that case, for all z, in the construction of WX
g(x,z), we see that ts stabilizes, because there

is a t for which (∀u < z)(∃v < t)(∀w)[φXe (x, u, v, w) = 1]. And conversely, if ts stabilizes for
each z, then x /∈ X ′′′. We have lims ts exists exactly when lims y

0
s exists, since they always

change together. And lim y0s = y exists exactly when WX
g(x,z) = {y}, which is equivalent to

saying gs(x, z, y) /∈ X ′. Thus x /∈ X ′′′ if and only if gs(x, z, y) /∈ X ′.
For the third claim, note that if z1 < z2 then lims ts(z1) ≤ lims ts(z2) where ts(z) refers to

the ts-values associated to the construciton of WX
g(x,z). Thus, if WX

g(x,z1)
= ∅, then WX

g(x,z2)
= ∅

as well.
Finally, for the last claim, if y ∈ WX

g(x,z) then y > z because {n : n ≤ z} ⊆ WX
g(x,z) from

the outset.

The next lemma explicitly splits up the queries to a ∅(λ) oracle that occur during the
evaluation of a Πλ question. The goal is to isolate the parts of the computation that can
be done using a weaker oracle. In the proof we define a function gl which will be used in
Theorem 2.

Lemma 1.2.3. Let λ be a limit ordinal, given as a uniform supremum λ = supn βn. For
any Πλ predicate P (x) there is a sequence of predicates Rn such that

P (x) ⇐⇒
∧
n

Rn(x)
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where Rn is Π2βn for each n. Furthermore, the Rn are uniformly computable from P and λ.

Proof. We may assume that each βn is a successor ordinal, and that P (x) is “x /∈ ∅(λ)”.
Now we define Rn by specifying a computable function gl below and letting Rn(x) ⇐⇒
gl(x, λ, n) /∈ ∅(2βn).

Uniformly in any pair of constructive ordinals α < β, there is a reduction from ∅(β) to ∅(α).
(See for example [1, Lemma 5.1].) And any standard encoding will have the property that
〈z, n〉 ≥ n. Therefore, ∅(λ) �n is uniformly computable from λ, n and ∅(βn), in the sense that
there is a partial recursive function σ(λ, n,X) which halts and returns ∅(λ) � n if X = ∅(βn).

Define g(x, λ, n) by

WX
g(x,λ,n) =

{
∅ if φ

σ(λ,n,X)
x,n (x) ↑

N otherwise.

Suppose that x /∈ ∅(λ). This is true if and only if

φ∅
(λ)

x (x) ↑ ⇐⇒ ∀nφ∅(λ)�nx,n (x) ↑ ⇐⇒ ∀n[g(x, λ, n) /∈ ∅(βn+1)].

Define gl(x, λ, n) so that gl(x, λ, n) /∈ ∅(2βn) ⇐⇒ g(x, λ, n) /∈ ∅(βn+1). (Since βn is a successor
ordinal, βn + 1 ≤ 2βn.)

Recognizing trees of limsup rank α is Σ2α-hard

The following lemma contains the heart of the reduction. Given a Πα fact, we must build a
tree of the appropriate limsup rank. Each node of this tree will be associated with a finite
set of Πβ assertions for different ordinals β. The behavior of the subtree below a node is as
follows. If all the assertions are true, then the rank of the subtree should be large, on the
order of the largest β from the set of assertions. But if some Πβ assertion is false, then the
rank of the subtree should be small, of a similar height to that β.

The node achieves this behavior by selecting which assertions should be given to each
of its child-nodes. The collection of Πβ assertions, if all true, could be viewed as having a
generalized Skolem function which covers the first two quantifiers of every assertion in the
collection. The previous two lemmas will ensure that this Skolem function, if it exists, is
unique. The children try to guess fragments of this unique Skolem function, and each child
is given a set of assertions which explore the fragment of the Skolem function that the child
provided. The previous two lemmas will ensure that if infinitely many children can correctly
guess a fragment of the generalized Skolem function, then (1) all the assertions of the parent
are true and (2) these children, having guessed all the right witnesses, will achieve high rank.

On the other hand, if some assertion was false at the level of the parent node, then since
the guesses are only fragments, finitely many children will still come up with lucky guesses
which give them a pile of true assertions, some of which could be very large compared with
the false assertion the parent had. Therefore, the children also each re-evaluate all of the
non-maximal assertions from their parent node; this damps the sup of the ranks of the
children.
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As for damping the limsup, cofinitely many children will automatically dampen down
their own ranks through exploring the false assertions generated by their Skolem guesses,
which were doomed guesses in a situation where in fact no witnesses existed. Thus the
limsup of the ranks of the children is damped. There is a subtlety here. If the limsup is
supposed to be damped below some limit ordinal, it is not enough that each child get below
that ordinal individually. They have to obey a common bound. That is why, in step (5)
below, when αi is a limit ordinal, Mi is chosen the way it is.

All of the complication that is to follow arises in order to deal with the limit case. When
a node is given only one Πα+2 assertion, each of its children is simply given a single Πα

assertion. If α is finite, the resulting tree has finite height and just one assertion per node.
On a first reading it may be helpful to have this special case in mind.

Here is another example, this one for the simplest limit case. If a node is given a single
Πω assertion, that assertion may be broken up into assertions of size Π2,Π4,Π6,Π8, and so
on, such that the original assertion is true if and only if all the sub-assertions are true. In
that case, most of the children of the node end up totally empty, but of the ones that do
not, the first one evaluates only the Π2 assertion, the second one evaluates the Π2 and Π4

assertions, and so on. If all the assertions are true, then the childrens’ ranks get bigger the
more assertions they evaluate, causing the rank of the whole tree to reach ω + 1. But if the
Π2n assertion is false for some n, then every child that evaluates that one has finite rank at
most n, and every child that does not evaluate that one has rank at most n as well (because
it only evaluates small assertions). So the tree as a whole gets rank at most n+ 1.

Theorem 2. Let α1, . . . , αk > 0 be constructive ordinals, and let x1, . . . , xk be any natural
numbers. Recursively in α1, . . . , αk, x1, . . . , xk, one may compute a well-founded tree T such
that

• |T |ls = maxi αi + 1 if xi /∈ ∅(2αi) for all i

• |T |ls ≤ αi whenever xi ∈ ∅(2αi).

Proof. In order to perform the induction we will actually prove something slightly stronger.
If xi ∈ ∅(2αi) for αi a limit, given as αi = supn βn, then by Lemma 1.2.3 there is a least z
such that gl(xi, αi, z) ∈ ∅(2βz). In this case, we will ensure that T also satisfies |T |ls ≤ βz + 1
for that least z.

Define T recursively as follows. Renumber the inputs so that α1 ≥ · · · ≥ αk. (Since all
the ordinal notations are comparable, this step is computable). The empty sequence is in T .
To compute information about the nth child of the root, decode n as n = 〈m0,m1, . . . ,mk〉
and do the following:

1. Check that m0 < m1 < · · · < mk. If it is not, Tn = ∅.

2. For any i such that αi is a limit, check that mi = mi−1 + 1. If it does not, then Tn = ∅.
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3. For any i such that αi = 1, check that g0(xi,mi−1,mi) = 1. If it does not, then Tn = ∅.

4. If α1 = 1, Tn = {∅}.

5. Otherwise, we decide the subtree rooted at 〈m0, . . . ,mk〉 according to membership in
the tree which we will now specify. Build a finite set F of ordinal-input pairs as follows.

• Let F1 = {(αi, xi) : αi < α1}

• Let F2 = {(β, gs(xi,mi−1,mi)) : αi = β + 1 where β > 0}

• For each limit αi = supn βn, let Mi ≥ mi be least such that for each (γ, x) ∈ F1 ∪
F2, if γ < αi, then γ ≤ βMi

. (Again, this Mi may be effectively computed since the
notations involved are all comparable.) For each n ≤ Mi, let (βn, gl(xi, αi, n)) ∈
F3.

Let F = F1 ∪ F2 ∪ F3. Then Tn is defined recursively as the tree computed from the
pairs in F .

This completes the construction.
Observe that the resulting T is well-founded because each time we recurse, the size of

the largest ordinal under consideration decreases. Let us verify the properties of this T . We
proceed by induction on the size of maxi αi.

For now on, consider the αi to be numbered in order, so maxi αi = α1.
In the base case, α1 = · · · = αk = 1. If g0(xi,mi−1,mi) = 0 for any i, then T = {∅} and

|T |ls = 1 which is correct. If g0(xi,mi−1,mi) = 1 for all i, step (4) is encountered infinitely
often and thus |T |ls = 2, which is correct.

Now we consider the case α1 > 1. If, when computing subtree Tn, the algorithm makes
it to step 5, then we call n a recursing child.

By induction we may always assume that for each child of the root n, |Tn|ls ≤ α1. This
follows because |Tn|ls ≤ 1 for non-recursing children n, and for recursing children n, the
ordinals considered in order to decide subtree Tn are all less than α1. Therefore it is always
true that |T |ls ≤ α1 + 1.

Case 1: The rank should be large

Suppose that for all i, xi /∈ ∅(2αi). Let us see that in this case |T |ls = α1 + 1 is attained.
Recall that a child of the root n is decoded as n = 〈m0, . . . ,mk〉. For each choice of m0, a
certain child of the root is obtained by inductively choosing mi as follows according to the
nature of αi. The functions g0 and gs are as defined in Lemma 1.2.2.

1. If αi = 1, choose mi so that g0(xi,mi−1,mi) = 1,

2. If αi = β + 1 with β > 0, choose mi so that gs(xi,mi−1,mi) /∈ ∅(2β)
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3. If αi is a limit, choose mi = mi−1 + 1.

Let nj be the child so constructed starting with m0 = j. By the definitions of g0 and gs,
each mi described above exists, is unique, and satisfies mi > mi−1.

One can check that nj is a recursing child, and so Tnj is formed using a finite set of
ordinal-index pairs (γ, z). Notice that the choices of mi above, together with the fact that
for all i, xi /∈ ∅(2αi), guarantee that z /∈ ∅(2γ) for each of these pairs (γ, z). Therefore, |Tnj |ls
will be determined by the largest ordinal under consideration in the construction of Tnj .
Now if a1 = β + 1, then one of the pairs under consideration in the construction of Tnj is
(β, gs(x1,m0,m1)), and β is maximal among ordinals considered for Tnj . Therefore by the
inductive hypothesis, for each j we have |Tnj |ls = β+1 = α1. Since there are infinitely many
child subtrees where this rank is obtained, lim supn |Tn|ls = α1 and thus |T |ls = α1 + 1 as
required. On the other hand, if α1 = supn βn is a limit, then (βM1 , gl(x1, α1,M1)) is used
when assembling Tnj , and βM1 is maximal among ordinals considered, because if αi < α1,
then βM1 ≥ αi, and if αi = α1, then Mi = M1 (since their selection algorithms are identical).
Therefore, by the inductive hypothesis,

|Tnj |ls = βM1 + 1 > βj + 1

because M1 ≥ m1 > m0 = j. Since limj βj = α1, we have

lim
j
|Tnj |ls ≥ lim

j
(βj + 1) = α1

as well. Therefore, lim supn |Tn|ls = α1 and |T |ls = α1 + 1 as required. Therefore, if for all i,
xi /∈ ∅(2αi), then |T |ls = α1 + 1.

Case 2: The rank should be small

On the other hand, suppose that xi ∈ ∅(2αi) for some i. Fix an index r at which this occurs.
We will show that |T |ls ≤ αr.

Subcase 2.1 Suppose αr = βr + 1. By Lemma 1.2.2 let zr be such that

(∀z > zr)(∀y > z)[gs(xr, z, y) ∈ ∅(2βr)]

if βr > 0, or such that (∀z > zr)(∀y > z)[g0(xr, z, y) = 0] if βr = 0. One may check that
for any child n = 〈m0, . . . ,mk〉 such that mr−1 > zr, if n is recursing, then included in
consideration for Tn is (βr, gs(xr,mr−1,mr)) where gs(xr,mr−1,mr) ∈ ∅(2βr); and if n is not
recursing, Tn = ∅. Therefore by induction, |Tn|ls ≤ βr < αr for such n.

Now let us consider recursing children n such that mr−1 ≤ zr. There are only finitely
many ways m0 < · · · < mr−1 ≤ zr to begin such children. Fix one such beginning. We claim
that for all but at most one choice of the remaining mr < · · · < mk, |Tn|ls < αr. That one
choice, if it exists, is constructed inductively as in the previous case. That is, for each i ≥ r,
choose mi to satisfy
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1. If αi = 1, satisfy g0(xi,mi−1,mi) = 1,

2. If αi = β + 1 with β > 0, satisfy gs(xi,mi−1,mi) /∈ ∅(2β), and

3. If αi is a limit, let mi = mi−1 + 1.

If these mi exist, they are unique. Suppose we deviate from this recipe in the case of αi
a limit. Then Tn is empty. Suppose we deviate from this one way in the case of αi = 1,
and let g0(xi,mi−1,mi) = 0. Then by step (3), Tn is empty. Suppose we deviate from
this one way in the case of αi = β + 1, and include (β, gs(xi,mi−1,mi)) in the assembling
of Tn, where gs(xi,mi−1,mi) ∈ ∅(2β). Then by the inductive hypothesis we are guaranteed
|Tn|ls ≤ β < αi ≤ αr. Therefore, considering all children n, there are at most finitely many
such that |Tn|ls ≥ αr. Therefore, lim supn |Tn|ls ≤ βr.

It remains to show that for each recursing child n, |Tn|ls ≤ αr. There are two possibilities.
If α1 > αr, then (αr, xr) is included in consideration for Tn, and thus by the inductive
hypothesis |Tn|ls ≤ αr. On the other hand, if α1 = αr = βr + 1, then βr is maximal among
ordinals considered for Tn, so by the inductive hypothesis |Tn|ls ≤ βr + 1 = αr. Therefore, if
αr is a successor, then |T |ls ≤ αr.

Subcase 2.2 : Suppose αr = supn βn is a limit. Using Lemma 1.2.3, let zr be least such
that gls(xr, αr, zr) ∈ ∅(2βzr ). Let us consider children n = 〈m0, . . . ,mk〉 such that mr ≥ zr.
For each of these n, the pair (βzr , gl(xr, αr, zr)) is used in assembling Tn. So for each such n,
|Tn|ls ≤ βzr .

On the other hand, there are the n such that mr < zr. There are only finitely many ways
m0 < · · · < mr < zr to begin such an n. We claim that for each such beginning, there is
at most one sequence mr+1, . . . ,mk which completes n in such a way that |Tn|ls > βzr . The
strategy is exactly the same as in the successor case. See (1)-(3) above.

In each case, if such an mi exists, it is unique. If we deviate from this plan in the case of αi
a limit or αi = 1, then one may check that Tn is empty. If we deviate in the case of αi = β+1
with β > 0, then we include (β, gs(xi,mi−1,mi)) ∈ F2, where gs(xi,mi−1,mi) ∈ ∅(2β). So
to start with, |Tn|ls ≤ β, and if β ≤ βzr then |Tn|ls is small enough. But if β > βzr , then
this bound is insufficient. In that case, recall that during the creation of F3 which was used
to assemble Tn, we defined Mr to satisfy Mr ≥ mr and βMr ≥ γ for each (γ, z) ∈ F2 such
that γ < αr. Because αi < αr, β < αr. So βMr ≥ β > βzr , so Mr > zr. So in particular,
(βzr , gl(xr, αr, zr)) was included when assembling Tn. Therefore, |Tn|ls ≤ βzr . Therefore, for
all but finitely many n, |Tn|ls ≤ βzr .

It remains to show that for each individual n, |Tn|ls ≤ βzr + 1.
We now consider two cases. Suppose α1 > αr. Then for each n, the pair (αr, xr) is

again under consideration for Tn. But the new leading ordinal is smaller, so by induction,
|Tn|ls ≤ βzr + 1 for each n. On the other hand, if α1 = αr, then α1 = α2 = · · · = αr, so
M1 = M2 = · · · = Mr, since the algorithm which selects Mi is the same for each i = 1, . . . , r.
One may check that βMr is the largest ordinal under consideration in the assembling of Tn.
If βMr ≥ βzr , then (βzr , gl(xr, αr, zr)) is included, and |Tn|ls ≤ βzr . On the other hand, if
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βMr < βzr , then since βMr is largest,

|Tn|ls ≤ βMr + 1 ≤ βzr .

Therefore, supn |Tn|ls ≤ βzr + 1. Therefore, if αr is a limit with gl(xr, αr, zr) ∈ ∅(2βzr ), then
|T |ls ≤ βzr + 1 < αr. This completes the proof.

Application to the Cantor-Bendixson rank

As a first application of the result in the previous section, we completely analyze the de-
scriptive complexity of the Cantor-Bendixson hierarchy in Cantor space.

Let T ⊆ 2<ω be a tree with no dead ends. The Cantor-Bendixson derivative D(T ) is
defined as the tree without dead ends whose paths are exactly those not isolated in T .
Formally,

D(T ) = {σ ∈ T : ∀k∃τ1 . . . τk ∈ T, σ ≺ τi and τi|τj when i 6= j}

where τi|τj means that these nodes are incompatible. Define D0(T ) = T , Dα+1(T ) =
D(Dα(T )), and Dλ(T ) = ∩α<λDα(T ) for λ a limit.

Definition 1.2.2. The Cantor-Bendixson rank of a tree T , denoted |T |CB, is the least α
such that Dα(T ) = ∅, if such exists. Otherwise we say |T |CB =∞.

For some e, the tree encoded by φe is not well-defined or has dead ends. We note that
{e : φe codes a tree in 2<ω with no dead ends} is Π2, because it can be written as “φe is
total, and codes a tree, and (∀σ ∈ T )(∃τ ∈ T )[σ ≺ τ ].” Let Te denote the tree coded by φe
whenever this is defined. We will drop the subscript when it is clear from context. If σ ∈ T ,
then Tσ denotes {τ : σaτ ∈ T}. Note that if C is any finite prefix-free collection of nodes σ
such that ∪σ∈C [σ] covers [T ], then

Dα(T ) =
⋃
σ∈C

σaDα(Tσ)

where σaT denotes {σaτ : τ ∈ T}, [σ] denotes {X ∈ 2ω : σ ≺ X}, and [T ] denotes
{X ∈ 2ω : ∀nX � n ∈ T}. In other words, since the path space is totally disconnected,
the Cantor-Bendixson derivative may be performed on a finite open partition of the space
without error.

Corollary 1.2.4. (Lempp, 1987) For each constructive α > 1,the sets

{e : Te has no dead ends and |T |CB ≤ α}

are Σ2α-complete.
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Proof. First we show that when e is restricted to the Π2 set of codes for no-dead-end trees,
“|Te|CB ≤ α” is Σ2α for all constructive α. The proof is by effective transfinite recursion.
Because checking whether a tree is empty can be accompanied by checking the root, the
statement “|Te|CB = 0” is ∆0 when the domain of e is restricted to the Π2 set of codes for
no-dead-end trees.

A tree has Dα+1(T ) = ∅ if and only if Dα(T ) has only finitely many branches. If
Dα(T ) has at least k branches, then by going up to a height n at which the branches have
separated, we may find at least k-many σ of length n such that Dα(Tσ) 6= ∅. And if there
are k incomparable σ such that Dα(Tσ) 6= ∅, then Dα(T ) has at least k branches. Thus an
equivalent condition to “Dα+1(T ) = ∅′′ is: “There is a k such that for all n, there are at least
(2n − k)-many σ of length n for which Dα(Tσ) = ∅.” Assuming Dα(T ) = ∅ is Σ2α uniformly
in α and T , this shows that Dα+1(T ) = ∅ is Σ2α+1.

If λ is a limit, a tree has Dλ(T ) = ∅ if and only if there is an α < λ such that Dα(T ) = ∅,
by compactness. Assuing Dα(T ) = ∅ is uniformly Σ2α and the set of α < λ is c.e., we have
Dλ(T ) = ∅ if and only if ∃α < λ[Dα(T ) = ∅], a Σλ statement. Note Σλ = Σ2λ for λ a limit.

Therefore, the statement “T is a no-dead-ends tree and Dα(T ) = ∅” is Σ2α for α > 1,
uniformly in T and α.

Now we use the main theorem to provide a new proof that having Cantor-Bendixson rank
at most α is Σ2α-complete.

Theorem 2 gives a reduction from the canonical Σ2α complete set to trees in Baire space
of limsup rank at most α. Here we show that the following familiar reduction f takes trees
in Baire space of limsup rank α to trees in Cantor space of Cantor-Bendixson rank α.

The intuitive idea is that each node of a tree T ⊆ N<N corresponds to a path in f(T ) ⊆
2<ω with the topological clustering of the paths provided by the hierarchical structure of T .

Define f by
f(T ) = {0n010n11 · · · 0nk10m : (n0, . . . , nk) ∈ T}.

The intention is that for all m, 0m ∈ f(T ) if and only if the empty node is in T .
We claim that |T |ls = |f(T )|CB. The proof is by induction on the usual rank of T .
If T = ∅ then also f(T ) = ∅, so |f(T )|CB = |T |ls = 0.
Suppose |T |ls = α + 1. (This is the only case because the limsup rank is always a

successor.) Then there is an N such that for n > N , |Tn|ls ≤ α. Because |S|CB = |σaS|CB
for all σ ∈ 2<ω and S ⊆ 2<ω, we have by induction that for n ≤ N , |0n1af(Tn)|CB ≤ α + 1,
and for n > N , we have |0n1af(Tn)|CB ≤ α. We have

Dα(T ) =
⋃
n≤N

0n1aDα(f(T )0n1)
⋃

0N+1Dα(f(T )0N+1)

=
⋃
n≤N

0n1aDα(f(Tn))
⋃

0N+1Dα(f(T )0N+1).

Because each member of the finite union on the left is a tree with finitely many branches,
the left side contributes finitely many branches. On the right, Dα(f(T )0N+1) has either one
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branch (0ω) or is empty. It has no branches starting 0n1 . . . because Dα(f(Tn)) = ∅ for all
n > N . Since Dα(f(T )) has finitely many paths, |f(T )|CB ≤ α + 1.

Now we need |f(T )|CB ≥ α + 1. If lim supn |Tn|ls = α, then for every β < α, there
are infinitely many n such that |Tn| > β. By induction we have that for all β < α there
infinitely many n for which |0n1af(Tn)|CB > β. Therefore, for all β < α, 0ω is not isolated
in Dβ(f(T )), so 0ω ∈ Dα(f(T )), and |f(T )|CB > α.

In the other case, |Tn|ls = α + 1 for some n. Then by induction |0n1af(Tn)|CB = α + 1,
and the result follows.
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1.3 Applications to the Kechris-Woodin rank

The set of differentiable C[0, 1] functions is not Borel, but it can be represented hierarchi-
cally as an increasing union of Borel sets. The Kechris-Woodin rank, denoted | · |KW , on
differentiable functions is defined in [14] using an ordinal rank, a mapping from differentiable
functions to countable ordinals, whose range is unbounded below ω1. It decomposes the set
D of differentiable C[0, 1] functions as

D =
⋃
α<ω1

{f : |f |KW < α}

where each constituent of the union is Borel.
Our contribution is a finer-grained, recursion-theoretic analysis of this hierarchy. The

lightface situation mirrors the boldface situation in many ways. We begin with the ob-
servation (a corollary of the work in [14]) that the set D of integer codes for computable
differentiable C[0, 1] functions is a Π1

1-complete set, and it decomposes as

D =
⋃

α<ωCK1

{c : c codes f with |f |KW < α}

where each constituent of the union is hyperarithmetic. Our results pinpoint the exact
location of each constituent set in the hyperarithmetical hierarchy.

Theorem 3. For each nonzero α < ωCK1 , the set

{c : c codes f with |f |KW < α + 1}

is Π2α+1-complete.

Here and throughout we use the notational convention of Ash and Knight [1] for a Σα

set, discussed in Section 1.1. We also analyze the limit case:

Theorem 4. For each limit λ < ωCK1 , the set {c : c codes f with |f |KW < λ} is Σλ-complete.

The study of differentiation through the lens of computable analysis has typically in-
volved restricting attention to the continuously differentiable functions. The definition of
a computable function proposed by Grzegorczyk and Lacombe, and further developed by
Pour-El and Richards and others (see [9], [16], [27]), has no notion of computability for a
discontinuous function. Therefore, restricting differentiation to the continuously differen-
tiable functions is a strategy for making questions such as “Is differentiation computable?”
meaningful. The fact that f 7→ f ′ is not computable was first demonstrated by Myhill [26],
who constructed a computable function whose continuous derivative is not computable.

At the other end of the spectrum, computable functions that are not everywhere dif-
ferentiable have been studied. Brattka, Miller and Nies (to appear) have used randomness
notions to characterize the points at which all computable almost everywhere differentiable
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functions must be differentiable. However, as far as the author is aware, the everywhere dif-
ferentiable functions with discontinuous derivatives have not yet been studied in the setting
of computable analysis.

Previously, Cenzer and Remmel [3] showed that {e : fe is continuously differentiable} is
Π0

3-complete, which is the same as the α = 1 case of our Theorem 7. They also showed
that {e : fe is continuously differentiable with f ′e computable} is Σ0

3-complete. Again, only
continuously differentiable functions were considered. By contrast, our aim is to provide a
clearer picture of the structure of the unrestricted set of everywhere differentiable functions.

In Section 1.3 we define Kechris and Woodin’s differentiability rank. In Section 1.3
we familiarize the reader with the building blocks used in [14] to construct functions of
arbitrary rank, as these essential elements are taken for granted in what follows. In Sec-
tion 1.3 we establish more notation that is used throughout the paper. Finally, in Sec-
tion 1.3 we present some necessary facts about computable differentiable functions that can
be obtained by effectivizing existing work. In Section 1.3 we redefine the differentiabil-
ity rank in a more computationally convenient way, and use this definition to demonstrate
{c : c codes f with |f |KW < α + 1} is Π2α+1. Finally, in section 1.3, we we address the
question of completeness to prove both theorems above.

Preliminaries

Kechris and Woodin’s differentiability rank

Kechris and Woodin [14] define a rank on differentiable C[0, 1] functions as follows. Let
∆f (x, y) denote the secant slope

∆f (x, y) =
f(x)− f(y)

x− y
.

They define a “derivative” operation, which is given below. This operation starts with a
closed set of points P and removes from it some points at which f seems to be differentiable.
A point x is removed if the oscillation of f ′ near x is no more than the given ε.

Definition 1.3.1. Given a closed set P , a function f ∈ C[0, 1] and ε > 0,

P ′f,ε = {x ∈ P : ∀δ > 0∃p < q, r < s ∈ B(x, δ) ∩ [0, 1]

with [p, q] ∩ [r, s] ∩ P 6= ∅ and |∆f (p, q)−∆f (r, s)| ≥ ε}

where all the quantifiers range over rational numbers.

If P is closed, then P ′ is closed as well, so for each f ∈ C[0, 1] and each ε > 0 one defines
the following inductive hierarchy:

P 0
f,ε = [0, 1]

Pα+1
f,ε = (Pα

f,ε)
′
f,ε

P λ
f,ε = ∩α<λPα

f,ε for a limit λ
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0 1 0 1

(a) (b)

Figure 1.1: (a) A continuously differentiable bump with one secant of slope zero and one
secant of positive slope. (b) Resized copies of this bump with proportions preserved.

Kechris and Woodin showed that for any f ∈ C[0, 1], f is differentiable if and only if
∀n∃α < ω1(P

α
f,1/n = ∅). Considering the supremum of all such α, they make the following

definition:

Definition 1.3.2. For each differentiable f ∈ C[0, 1], define |f |KW to be the least ordinal α
such that ∀εPα

f,ε = ∅.

For example, if f is any continuously differentiable function, then |f |KW = 1, the least
possible. To see that P 1

f,ε = ∅ for any such f and any ε, let δ be s.t. |f ′(z) − f ′(y)| < ε
whenever |z − y| < δ. Then for any x and any p < q, r < s ∈ B(x, δ/2), the Mean Value
Theorem provides y ∈ [p, q] and z ∈ [r, s] such that f ′(y) = ∆f (p, q) and f ′(z) = ∆f (r, s), so
|∆f (p, q)−∆f (r, s)| < ε and x /∈ P 1

f,ε. A common example of a differentiable function whose
derivative is not continuous is x2 sin(1/x), and this function has differentiability rank 2.

Basic building blocks

Kechris and Woodin show that for each ordinal α, there is a function with rank α, and in
order to show this they construct an explicit f with that rank. This section gives a summary
of the building blocks that they used to produce an example of a function living at each level
of their hierarchy. We will use the same building blocks in a more complicated construction
in Section 1.3.

The most natural way of constructing a function while controlling its rank is to build
it up recursively from smaller pieces. Our basic building block is a simple continuously
differentiable bump (Figure 1.1).

Observe a certain pair of secants made by the existence of the bump, one with slope
zero and one with positive slope. We build functions out of resized copies of this same
bump, always preserving the proportions to keep the corresponding slopes uniform. In
Definition 1.3.1 there is a free parameter ε, and one compares various secants to see if their
slope difference is at least ε. Therefore, by choosing a single sufficiently small value for ε,
all the secant pairs induced by the bumps are made visible for the purposes of the rank-
ascertaining process. We will sometimes refer to ε as the oscillation sensitivity because it
sets the threshold above which oscillations in the value of the derivative matter.
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0 1

y = x2

0 1
a

(a) (b)

Figure 1.2: (a) A simple differentiable function of rank 2. (b) A shifted and resized copy of
this function, which fits in a small neighborhood of the point a and keeps a alive through
the first iteration.

0 1
q sp = r 0 1

α + 1

(a) (b)

Figure 1.3: (a) Points p, q, r, s as used in Definition 1.3.1. (b) A differentiable function of
rank α + 2. The triangle represents a function of rank α + 1.

A simple rank 2 function is pictured in Figure 1.2. To keep 0 from being removed at the
first iteration, we put a bump (and thus a disagreeing pair of secants) in every neighborhood
of 0. To ensure the function remains differentiable at 0 despite all the oscillation, we make
the bumps small enough to fit inside an envelope of x2. The resulting rank 2 function can
itself be proportionally shrunk and used as a building block in functions of larger rank.

The reason 0 is removed at the second iteration, despite infinitely many pairs of disagree-
ing secants, is that P 1 contains no points which lie in the intersection [p, q] ∩ [r, s], where
p, q, r, s are the endpoints of the intervals defining the disagreeing secant pair as shown in
Figure 1.3. But if we have a rank α + 1 function to use as a building block (the rank must
be a successor for reasons discussed below), we can make 0 survive the (α + 1)st iteration.
By putting a shrunken copy of our rank α + 1 function in [p, q] ∩ [r, s] as shown in Figure
1.3, we construct a function of rank α+ 2. We say that we have put the rank α+ 1 function
in the shadow of each bump. In fact, it would suffice to put a rank α + 1 function in the
shadow of infinitely many of the bumps, and this is done later in the paper.

Next we describe how to make functions of rank λ + 1 and rank λ, where λ is a limit
ordinal. We say that an oscillation sensitivity ε witnesses the rank of a function f if |f |KW =
α and P β

ε 6= ∅ for all β < α. Note that if a function has successor rank, there is always an ε



CHAPTER 1. COMPUTABILITY IN ORDINAL RANKS 20

0 1

α2 α1

0 1

(a) (b)

Figure 1.4: (a) A function of rank λ+ 1 for λ a limit ordinal. (b) A function of rank λ.

that witnesses this, but if the function has limit rank, there cannot be a witness.
Suppose we have a sequence of functions, with ranks cofinal in λ, whose ranks are all

witnessed at a uniform sensitivity ε. As shown in Figure 1.4, a function of rank λ + 1 can
be made by putting proportionally shrunken copies of functions of increasing rank in each
neighborhood of 0. The rank of the resulting function is witnessed by the same ε.

By recursively applying the α+ 2 step and the λ+ 1 step, we can build functions of any
successor rank. To make a function of rank λ, we must start with a sequence of functions
with uniformly bounded derivatives, whose ranks are cofinal in λ. Because the derivatives
are uniformly bounded, their possible secant slope differences are also uniformly bounded
by the Mean Value Theorem. Again we use shrunken copies of functions from the sequence,
but in addition to shrinking the nth function proportionally, we also scale it vertically by a
factor of 1

n
. In the resulting function, as x approaches 0 the nearby secant slope differences

approach zero, which has the effect of ensuring that 0 is removed at the first iteration no
matter what the oscillation sensitivity.

Functions whose ranks are limit ordinals do not make good building blocks for more
complicated functions because there is no ε that witnesses their rank. If we construct a rank
λ + 1 function f , there needs to be a ε such that P λ

ε,f 6= ∅. If we used a rank λ function
g as a building block, then by compactness there would have to be some β < λ such that
P β
ε,g = ∅. So a function of rank β would have been equally unhelpful. That explains why, in

our construction of the rank α+2 function above, we needed to use a function with successor
rank α + 1 as a building block.

Notation

The following notations are used throughout.

Definition 1.3.3. For each ordinal α, let Dα denote the set of all indices e such that fe ∈
C[0, 1] is differentiable with |fe|KW < α. Define D = ∪α<ω1Dα.

For any function f ∈ C[0, 1], we write f [a, b] to denote the function which is identically
0 outside of [a, b], and for x ∈ [a, b], f [a, b](x) = (b− a)f(x−a

b−a ). Note that if f is continuous
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and f(0) = f(1) = 0, then f [a, b] is continuous; it is computable when f, a, and b are and
differentiable when f is differentiable and f ′(0) = f ′(1) = 0.

Similarly, for any real number c ∈ [0, 1] and any interval [a, b], let c[a, b] = a + c(b −
a). This notation comes in handy when talking about scaled down versions of functions,
because (b − a)f(c) = f [a, b](c[a, b]). Also, this scaling preserves a function’s proportions
(f [a, b]′(c[a, b]) = (b− a)f ′(c) 1

b−a = f ′(c)), so ||f ′|| = ||f [a, b]′|| for any interval [a, b].

Facts about D

In section 1.3, we described the major components of Kechris and Woodin’s construction of
an explicit f with |f |KW = α for each α. When α < ωCK1 , their construction by transfinite
recursion easily effectivizes. Therefore their argument also shows that for each constructive
α, there is a computable differentiable f with rank α.

On the other hand, every computable differentiable function has constructive rank. This
follows from work in the same paper by Kechris and Woodin.

Definition 1.3.4. Let D denote the set of differentiable functions in C[0, 1].

Definition 1.3.5. For each function f ∈ C[0, 1] and each ε ∈ Q+, define a tree Sεf on
A = {〈p, q〉 : 0 ≤ p < q ≤ 1 and p, q ∈ Q} as follows:

(〈p1, q1〉, . . . , 〈pn, qn〉) ∈ Sεf ⇐⇒ ∀i ≤ n(qi − pi ≤ 1/i) and ∩ni=1 [pi, qi] 6= ∅
and ∀i < n(|∆f (pi+1, qi+1)−∆f (pi, qi)| ≥ ε).

Kechris and Woodin showed that for all f ∈ C[0, 1], f ∈ D if and only if ∀ε ∈
Q+(Sεf is well-founded ). That makes possible the following alternative rank definition:

Definition 1.3.6. Let f ∈ D. Define |f |∗ = sup{|Sεf |+ 1 : ε ∈ Q+}.

Lemma 1.3.1. If f ∈ D is computable, then |f |∗ is constructive.

Proof. Note that the tree Sεf would be computable if one did not have to verify that
|∆f (pi+1, qi+1) − ∆f (pi, qi)| ≥ ε, a Π1 statement. In fact such a strong statement is not
needed, and to get around it we use a computable approximation. For any computable
g ∈ C[0, 1], rational p ∈ [0, 1], and rational δ > 0, the notation [g(p)]δ refers to a standard δ-
approximation of g(p), which is a rational number z such that |g(p)−z| < δ. (For specificity
we could say [g(p)]δ is the b component of the smallest 〈n, p, r, b, δ/2〉 in the computable code

for g.) Given a computable f , consider the following collection of trees S̃εf , which are the
same as the Sεf defined above, except for the use of a computable approximation:

(〈p1, q1〉, . . . , 〈pn, qn〉) ∈ S̃εf ⇐⇒ ∀i ≤ n(qi − pi ≤ 1/i) and ∩ni=1 [pi, qi] 6= ∅
and ∀i < n([|∆f (pi+1, qi+1)−∆f (pi, qi)|]ε/4 ≥ ε).
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The S̃εf are computable trees, uniformly in f and ε. Furthermore, for each ε, S2ε
f ⊆ S̃εf ⊆ S

ε/2
f ,

so |S2ε
f | ≤ |S̃εf | ≤ |S

ε/2
f |. Therefore, although |f |∗ is defined in terms of Sεf , it is also true

that |f |∗ = sup{|S̃εf |+ 1 : ε ∈ Q+}. Since S̃εf are defined uniformly in ε, the tree

S̃ = {〈ε〉aσ : ε ∈ Q+, σ ∈ S̃εf}

is also computable, and |f |∗ = |S̃|. Therefore |f |∗ is constructive.

Theorem 5 ([14]). Let f ∈ D. Then if f is linear, |f |KW = 1, and if f is not linear,
|f |∗ = ω|f |KW .

Therefore, for each computable f , |f |KW ∈ O. Thus

D =
⋃

α<ωCK1

Dα.

By the standard definition of differentiability, D is a Π1
1 set. Mazurkiewicz [22] gave a

reduction from well-founded trees to differentiable functions. This reduction, reproduced
in [14], easily effectivizes, and therefore also serves as a reduction from O to D. Thus we
know that D is Π1

1-complete. We will generate functions from well-founded trees using a
method similar to that of Mazurkiewicz. By constructing the trees carefully we can obtain
finer grained results.

Having differentiability rank at most α is Π2α+1

In this section, we show that “|f |KW < α + 1” is a Π2α+1 statement. This follows from a
mostly straightforward translation of the definition of differentiability rank into the formal
language. The only obstacle is that the original definition needs to be slightly optimized.
In Section 1.3 we give an equivalent definition of differentiability rank which uses fewer
quantifiers. In Section 1.3 we formalize the sentence “|f |KW ≤ α + 1”.

An equivalent rank function

In [14] the rank is defined using a “derivative operation” P ′f,ε on sets P . To prove our result
we use an almost identical operation P ∗f,ε defined below. The only difference between this
definition and the definition of P ′f,ε is that ≥ is replaced with >. This is done in order to
make the statement [0, 1]∗f,ε = ∅ a Σ2 statement (instead of Σ3), and this is necessary for the
base case of Proposition 1.3.4.

Definition 1.3.7. Given a closed set P , a function f and ε > 0,

P ∗f,ε = {x ∈ P : ∀δ > 0∃p < q, r < s ∈ B(x, δ) ∩ [0, 1]

with [p, q] ∩ [r, s] ∩ P 6= ∅ and |∆f (p, q)−∆f (r, s)| > ε}

where all the quantifiers range over rational numbers.



CHAPTER 1. COMPUTABILITY IN ORDINAL RANKS 23

It is easy to see that P ∗f,ε is a closed subset of P , so it makes sense to define a rank
function using it. We define a hierarchy of closed sets analogously to [14]:

Definition 1.3.8. (P̃α
f,ε(I) hierarchy) Fix a continuous function f , a rational ε > 0, and

a closed set I ⊆ [0, 1]. Define P̃ 0
f,ε(I) = I. Then for each ordinal α, define P̃α+1

f,ε (I) =

(P̃α
f,ε(I))∗f,ε. If λ is a limit ordinal, define P̃ λ

f,ε(I) = ∩α<λP̃α
f,ε(I).

In the special case I = [0, 1], we write P̃α
f,ε instead of P̃α

f,ε([0, 1]). Sometimes the function
f may also be omitted from the notation if it is clear from context.

The rank of a differentiable function f is defined in [14] to be the smallest ordinal α such
that for all ε, Pα

ε = ∅. The next lemma shows our P̃α
ε hierarchy is similar enough to preserve

the notion.

Lemma 1.3.2. For any differentiable f ∈ C[0, 1], ε > 0 and ordinal α,

P̃α
ε ⊆ Pα

ε/2 ⊆ P̃α
ε/4.

Proof. The proof is by induction on α. When α = 0 all these sets coincide. Next we observe
that both ′ and ∗ have the property that if P ⊆ Q, then for any ε, P ′ε ⊆ Q′ε and P ∗ε ⊆ Q∗ε.
Also it is easy to observe that for all ε and all P , P ∗ε ⊆ P ′ε/2 ⊆ P ∗ε/4. So when α = β + 1, if

we assume P̃ β
ε ⊆ P β

ε/2 ⊆ P̃ β
ε/4 we have

P̃α
ε = (P̃ β

ε )∗ε ⊆ (P β
ε/2)

∗
ε ⊆ (P β

ε/2)
′
ε/2 = Pα

ε/2

Pα
ε/2 = (P β

ε/2)
′
ε/2 ⊆ (P̃ β

ε/4)
′
ε/2 ⊆ (P̃ β

ε/4)
∗
ε/4 = P̃α

ε/4

Finally, when λ is a limit, ∩α<λP̃α
ε ⊆ ∩α<λPα

ε/2 ⊆ ∩α<λP̃α
ε/4 follows because P̃α

ε ⊆ Pα
ε/2 ⊆ P̃α

ε/4

holds for all α < λ.

From Lemma 1.3.2 it is clear that for all α,

∀εPα
ε = ∅ ⇐⇒ ∀εP̃α

ε = ∅,

and thus the notion of rank defined using the Pα
ε hierarchy coincides with the notion of rank

defined using the P̃α
ε hierarchy.

The formal statements “|f |KW ≤ α + 1”

Before we can use the previous section’s definition to formalize “|f |KW ≤ α+1”, we need the
following lemma. Briefly, the lemma holds because membership in P̃α

ε (I) is a local property.

Lemma 1.3.3. Fix f and ε. For any closed I ⊆ [0, 1], any closed interval [i, j], and any α,

[i, j] ∩ P̃α
ε (I) =

⋂
d>0

P̃α
ε ([i− d, j + d] ∩ I).
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Proof. On the one hand, suppose that x 6∈ [i, j] ∩ P̃α
ε (I). If x 6∈ [i, j] then eventually

x 6∈ [i − d, j + d]. So assume that x ∈ [i, j]. Then x 6∈ P̃α
ε (I), so x could not be in

P̃α
ε ([i− d, j + d] ∩ I) for any d, since P̃α

ε ([i− d, j + d] ∩ I) ⊆ P̃α
ε (I) for all α.

For the other direction we proceed by induction on α. The relationship certainly holds
when α = 0. Suppose α = β + 1 and suppose that x ∈ [i, j] ∩ P̃α

ε (I). We wish to show
that x ∈ P̃α

ε ([i − d, j + d] ∩ I), so fix δ, and we will proceed to find our witnesses. Since
x ∈ P̃α

ε (I), let p < q, r < s ∈ B(x,min(δ, d/2)) ∩ I be such that [p, q] ∩ [r, s] ∩ P̃ β
ε (I) 6= ∅

and |∆f (p, q) − ∆f (r, s)| > ε. Then because x ∈ [i, j], we have these same p, q, r, s ∈
B(x, δ) ∩ [i − d, j + d] ∩ I, and in fact, because p, q, r, s are within d/2 of [i, j], we have
p, q, r, s ∈ [i− d/2, j + d/2]. If we can show that [p, q]∩ [r, s]∩ P̃ β

ε ([i− d, j + d]∩ I) 6= ∅ then
we are done.

Let z ∈ [p, q] ∩ [r, s] ∩ P̃ β
ε (I). By the induction hypothesis,

z ∈
⋂
ζ>0

P̃ β
ε ([max(p, r)− ζ,min(q, s) + ζ] ∩ I).

So in particular

z ∈ P̃ β
ε ([max(p, r)− d/2,min(q, s) + d/2] ∩ I) ⊆ P̃ β

ε ([i− d, j + d] ∩ I).

This completes the proof for the successor case.
Finally, if α is a limit ordinal, we have

[i, j] ∩ P̃α
ε (I) =

⋂
β<α

[i, j] ∩ P̃ β
ε (I)

=
⋂
β<α

⋂
d>0

P̃ β
ε ([i− d, j + d] ∩ I)

=
⋂
d>0

⋂
β<α

P̃ β
ε ([i− d, j + d] ∩ I)

=
⋂
d>0

P̃α
ε ([i− d, j + d] ∩ I).

The definition of the rank of a function f uses transfinite recursion in order to calculate
Pα
f,ε for each α while holding ε fixed. Thus, knowing the expressive complexity of “|f |KW ≤ 1”

does not give us a foothold into the expressive complexity of “|f |KW ≤ 2”, because “|f |KW ≤
α” does not appear as a sub-expression of “|f |KW ≤ α+ 1”. The sub-expression which does
persist, and on which it is almost appropriate to transfinitely recurse, is “[i, j] ∩ P̃α = ∅”,
where [i, j] is some arbitrary interval. Lemma 1.3.3 lets us express this intersection in
statements of the form “P̃α([i, j]) = ∅”, and so this last expression is a useful core concept.
Its expressive complexity is Σ2α, as seen in the next proposition.
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Proposition 1.3.4. Let α > 0 be a constructive ordinal, ε, i, j ∈ Q with ε > 0 and 0 ≤ i <
j ≤ 1. The set of e such that P̃α

fe,ε
([i, j]) = ∅ is Σ2α, uniformly in α, ε, i and j.

Proof. We carry along an arbitrary index e and oscillation sensitivity ε, so to reduce clutter
we write f instead of fe, and P̃α instead of P̃α

f,ε.
In general, when α = β + 1,

P̃α([i, j]) = [i, j] \
⋃
{I : ∀p, q, r, s ∈ I(

[p, q] ∩ [r, s] ∩ P̃ β([i, j]) = ∅ ∨ |∆f (p, q)−∆f (r, s)| ≤ ε
)
}

where I ranges over intervals open in [i, j]. Since the I are closed under taking subsets, it
suffices to let I range over intervals open in [i, j] with rational endpoints. So P̃α([i, j]) = ∅
if and only if these I cover [i, j]. If the I do cover, then by compactness there is a rational δ
such that for all x ∈ [i, j], B(x, δ) ⊆ I for some I. Thus there is a δ such that for any open
interval U with rational endpoints where diam(U) < δ, U ⊆ I for some I. On the other
hand, if the I do not cover, then there cannot be any such δ. Thus if α = β + 1,

P̃α([i, j]) = ∅ ⇐⇒ ∃δ > 0∀c ∈ [i, j]∀p, q, r, s ∈ B(c, δ) ∩ [i, j](
[p, q] ∩ [r, s] ∩ P̃ β([i, j]) = ∅ ∨ |∆f (p, q)−∆f (r, s)| ≤ ε

)
where all quantifiers range over the rationals.

When β = 0, [p, q]∩ [r, s]∩P̃ β([i, j]) = ∅ ⇔ [p, q]∩ [r, s]∩ [i, j] = ∅, so the above statement
is Σ2 uniformly in e, ε, i, and j.

When β > 0, we have

[p, q] ∩ [r, s] ∩ P̃ β([i, j]) = ∅
⇐⇒ ∃ζP̃ β([max(p, r)− ζ,min(q, s) + ζ] ∩ [i, j]) = ∅.

which follows from Lemma 1.3.3 and compactness. Thus with the assumption that P̃ β([c, d]) =
∅ is Σ2β uniformly in all variables, then P̃ β+1([i, j]) = ∅ is Σ2β+2, uniformly in all variables.

Finally, suppose that α is a limit, given as a uniform supremum α = supn βn. Then by
compactness and the definition of P̃α for α a limit,

Pα([i, j]) = ∅ ⇐⇒ ∃nP̃ βn([i, j]) = ∅.

So assuming that P̃ βn([i, j]) = ∅ is uniformly Σ2βn in all variables including n, we see that
P̃α([i, j]) = ∅ is uniformly Σα, which is the same as Σ2α since α is a limit.

Proposition 1.3.5. For any constructive α > 0, Dα+1 is Π2α+1, uniformly in α.

Proof. We have
e ∈ Dα+1 ⇐⇒ fe ∈ C[0, 1] ∧ ∀ε[P̃α

fe,ε = ∅]
where ε ranges over positive rationals. Recall that “fe ∈ C[0, 1]” is Π2, and by Proposition
1.3.4, P̃α

fe,ε
= ∅ is Σ2α. Thus the right hand side is a Π2α+1 statement, uniformly in α and

e.
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Having differentiability rank at most α is Π2α+1-complete

In this section, we provide a many-one reduction in the other direction, from ∅(2α+1) to Dα+1

using Theorem 7.
To set up this step, we happen to need only a certain class of C[0, 1] functions which

can be structurally represented by well-founded trees according to a recipe reminiscent of
Mazurkiewicz’s original reduction. This allows us to construct a function of the right rank
through an intermediate step of constructing a tree with the right structure.

In Section 1.3 we construct special C[0, 1] functions which reflect the structure of well-
founded trees on N<N. In Section 1.3, we show that the limpsup rank of the tree agrees with
the differentiability rank of the functions that the tree generates, when a fixed arbitrary
value for ε is used.

Section 1.3 combines the results of the previous sections with the additional ingredient
of varying ε to obtain the final result.

Making differentiable functions out of well-founded trees

The idea of this section is to set up countably many closed disjoint intervals in [0, 1], put
the intervals in bijective correspondence with N<N, and then given a tree T ⊆ N<N, define
fT as a sum of continuously differentiable bumps supported on each of the intervals which
correspond to σ ∈ T . These functions are structurally similar to the ones described in Section
1.3. If S = {ρ : σaρ ∈ T} then a shrunken version of fS can be found in fT . Furthermore,
if τ ⊃ σ, then the bump corresponding to τ is in the shadow of the bump corresponding to
σ. The intervals are arranged so that the resulting fT has a differentiability rank which can
be computed from T in a way that is described in the next section.

In the following definition, the choices of the constants 1
2

and 1
4

and the bounds on p and
p′ are arbitrary, but consistent with each other. The requirement bn−an < (an− 1

4
)2 is what

keeps fT everywhere differentiable.

Definition 1.3.9. Let p : [0, 1]→ R be a computable function satisfying

1. p is continuously differentiable

2. p(1
2
) = 1

2

3. p(0) = p(1) = p′(0) = p′(1) = 0

4. ||p|| < 1 and ||p′|| < 2

Let {[an, bn]}n∈N be any computable sequence of intervals with rational endpoints satisfying

1. Each interval is contained in (1
4
, 1
2
)

2. bn+1 < an < bn for each n.

3. limn→∞ an = 1
4
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4. bn − an < (an − 1
4
)2 for each n

Then for any well-founded tree T ∈ N<N, define fT as follows.

1. If T is empty, fT ≡ 0.

2. Otherwise, fT = p[1
2
, 1] +

∑∞
n=0 fTn [an, bn]

Recall that f [a, b] denotes a copy of f proportionally resized to have domain [a, b], and
that Tn denotes {σ : 〈n〉aσ ∈ T}, the nth subtree of T . Now we verify that the above
definition produces well-defined computable differentiable functions.

Proposition 1.3.6. For any well-founded computable tree T ∈ N<N:

1. fT is uniformly computable in T

2. fT is differentiable

3. fT (0) = fT (1) = f ′T (0) = f ′T (1) = 0

4. ||fT || < 1 and ||f ′T || < 2

Proof. Proceeding by induction on the rank of the tree, in the base case all four properties
are satisfied. Assume they hold for all trees of rank less than |T |. Then the sequence fTn is
uniformly computable with each ||fTn|| < 1. Then on any interval whose closure does not
contain 1

4
, fT is equal to a uniformly determined finite sum of computable functions, and is

thus computable. And for ε sufficiently small, we claim that |fT
(
(1
4
− ε, 1

4
+ ε)

)
| < ε2. This

follows because ||fTn|| < 1 by induction and because the intervals [an, bn] are disjoint, so for
any x in such an interval we have the bound

|fT (x)| = fTn [an, bn](x) ≤ ||fTn||(bn − an) ≤ 1 · (an −
1

4
)2 ≤ (x− 1

4
)2 < ε2.

Therefore fT is uniformly computable in T . Similarly, assuming fTn are each differentiable
with fTn(0) = fTn(1) = f ′Tn(0) = f ′Tn(1) = 0, then each fTn [an, bn] is differentiable. Then fT
is certainly differentiable at any point x 6= 1

4
, since on some neighborhood of that point fT

is equal to a finite sum of differentiable functions. On the other hand, in the vicinity of 1
4
,

fT satisfies |fT (x)| ≤ (x − 1
4
)2, so fT is differentiable at 1

4
as well. Because fT � [0, 1

4
] ≡ 0

and p(1) = p′(1) = 0, we have fT (0) = fT (1) = f ′T (0) = f ′T (1) = 0. Finally, ||fT || < 1 and
||f ′T || < 2 by induction, because ||p|| < 1,||p′|| < 2, and ||fTn|| < 1,||f ′Tn|| < 2, for each n,
and the shrunken copies p[1

2
, 1] and fTn [an, bn] have disjoint support.

We close this section with some comments about why this fT is defined as it is, using the
concepts from Section 1.3. Note that for every nonempty S,

∆fS(0,
3

4
) =

1

3
and ∆fS(0,

1

2
) = 0.
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Now for each n, fTn [an, bn] is a proportionally shrunken copy of fTn , so unless Tn is empty,
fTn [an, bn] contributes a bump and its pair of secants with slopes 0 and 1

3
. Thus a tree with

infinitely many children of the root has infinitely many pairs of these disagreeing secants.
If we construct Tn so that fTn has a large rank, the nth disagreeing pair of secants will be
visible for many iterations of the rank-ascertaining process for fT , because Pα

fT
∩ [an,

an+bn
2

]
will be nonempty for many iterations. If we construct T so that fTn has large rank for
infinitely many n, these disagreeing pairs of secants can make a contribution to raising the
Kechris-Woodin rank of fT . This can happen in two ways: if |fTn|KW = α + 1 for infinitely
many n, then |fT | ≥ α+ 2. And if the ranks of the fTn are unbounded below a limit ordinal
λ, then |fT |KW = λ+ 1.

Th relationship between the limsup rank and the Kechris-Woodin rank

We will now show that when a function is generated from a tree in the way described above,
its Kechris-Woodin rank can be read right off the tree. Furthermore, we will see that this
function’s rank can already be witnessed at a fixed oscillation sensitivity ε = 1

4
. That is, the

rank of fT is always a successor, and when |fT |KW = α+1, then P̃α
f, 1

4

6= ∅. The limsup rank on

trees corresponds to the differentiability rank of the functions they generate, |T |ls = |fT |KW .
The following two straightforward lemmas which we will use later are woven into the

proof of Fact 3.5 in [14]. For the purposes of exposition, we state and prove them here.

Lemma 1.3.7. If U ⊆ [0, 1] is open and f � U = g � U , then for all α and ε, Pα
f,ε ∩ U =

Pα
g,ε ∩ U .

Proof. By induction on α. The base and limit cases are trivial. Suppose that Pα
f,ε ∩ U =

Pα
g,ε ∩ U . Fix x ∈ U and let λ be small enough that B(X,λ) ⊆ U . Then x ∈ Pα+1

f,ε if
and only if for all δ < λ there are p, q, r, s ∈ B(x, δ) such that |∆f (p, q)−∆f (r, s)| ≥ ε and
[p, q]∩ [r, s]∩Pα

f,ε 6= ∅. Since p, q, r, s ∈ B(x, δ) ⊆ B(x, λ) ⊆ U , we have [p, q]∩ [r, s]∩Pα
f,ε 6= ∅

if and only if [p, q] ∩ [r, s] ∩ Pα
g,ε 6= ∅. Thus x ∈ Pα+1

f,ε if and only if x ∈ Pα+1
g,ε .

Recall that for any function f ∈ C[0, 1], we write f [a, b] to denote a proportionally
shrunken verson of f . By definition, f [a, b] is the function which is identically 0 outside of
[a, b], and for x ∈ [a, b], f [a, b](x) = (b − a)f(x−a

b−a ). Similarly, for any real number c ∈ [0, 1]
and any interval [a, b], let c[a, b] = a + c(b − a). The point is that c is to f as c[a, b] is to
f [a, b].

Lemma 1.3.8. Let f ∈ C[0, 1] be a differentiable function satisfying f(0) = f(1) = f ′(0) =
f ′(1) = 0. Let [a, b] ⊆ [0, 1] be an interval with rational endpoints. Then |f |KW = |f [a, b]|KW .
Furthermore, for any ordinal α and for all x ∈ [0, 1],

1. x ∈ Pα
f,ε =⇒ x[a, b] ∈ Pα

f [a,b],ε

2. x[a, b] ∈ Pα
f [a,b],ε =⇒ x ∈ Pα

f,ε/2
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Proof. Proceeding by induction, it is clear that the both items holds when α = 0. The limit
case is also trivial.

Assume the first item holds for some α. If x ∈ Pα+1
f,ε , then the collection of all the tuples

p, q, r, s which witness this can be mapped to a collection of tuples p[a, b], q[a, b], r[a, b], s[a, b]
which witness x[a, b] ∈ Pα+1

f [a,b],ε. That proves the first item.

On the other hand, suppose the second item holds for some α. If x[a, b] ∈ Pα+1
f [a,b],ε and

x ∈ (0, 1) (i.e. x is not an endpoint), then as above corresponding witnesses can always be
chosen for sufficiently small neighborhoods of x, so x ∈ Pα+1

f,ε ⊆ Pα+1
f,ε/2. Last we consider

the endpoint case: suppose a ∈ Pα+1
f [a,b],ε (and the case b ∈ Pα+1

f [a,b],ε is of course just the

same). Because a = 0[a, b] and f ′(0) = 0, let λ be small enough that for all distinct
p, q ∈ B(a, λ) with p ≤ a ≤ q, |∆f [a,b](p, q)| < ε/4. Then for each δ > 0, there are p, q, r, s ∈
B(a,min(λ, (b−a)δ)) such that |∆f [a,b](p, q)−∆f [a,b](r, s)| ≥ ε and [p, q]∩ [r, s]∩Pα

f [a,b],ε 6= ∅.
Then without loss of generality, |∆f [a,b](p, q)| ≥ ε/2, so a < p < q. If also a < r < s, then we
are done since the corresponding p−a

b−a , etc. can be used as the witness for δ. It is impossible
that r < s < a < p < q because [p, q] ∩ [r, s] 6= ∅. In the last case, if r < a < s, this implies
that |∆f [a,b](r, s)| < ε/4, so |∆f [a,b](p, q)| ≥ 3ε/4. But then also |∆f [a,b](a, s)| < ε/4, and
thus |∆f [a,b](p, q) − ∆f [a,b](a, s)| ≥ ε/2. Also [p, q] ∩ [a, s] = [p, q] ∩ [r, s], and there is some
y ∈ [p, q] ∩ [a, s] ∩ Pα

f [a,b],ε, and by induction y−a
b−a ∈ P

α
f,ε/2. Therefore p−a

b−a ,
q−a
b−a , 0,

s−a
b−a will do,

and thus x ∈ Pα+1
f,ε/2.

Finally, note that by the previous lemma, Pα
f [a,b],ε ∩ ([0, 1] \ [a, b]) = ∅ for any α > 0.

Therefore, |f |KW = |f [a, b]|KW .

The next proposition shows that for any well-founded tree T , the differentiable function
fT defined in the previous section has rank |fT |KW = |T |ls, and that the rank of fT is
witnessed at oscillation sensitivity ε = 1

4
.

Proposition 1.3.9. For any nonempty well-founded tree T ∈ N<N,

1. |T |ls is a successor,

2. The function fT is differentiable with |fT |KW = |T |ls, and

3. Letting |T |ls = α + 1, we have Pα
f, 1

4

6= ∅.

Proof. The proof is by induction on the usual rank of the tree. If T is just a root (smallest
option for the rank of the the tree since the statement is for nonempty trees only) then fT
is just p[1

2
, 1], so it is continuously differentiable with |fT |KW = 1. For each n, Tn = ∅ so

|Tn|ls = 0 so supn |Tn|ls = lim supn |Tn|ls = 0, so |T |ls = 1.
If T is more than a root, assume the lemma holds for each of the subtrees Tn. First we

show that |fT |KW ≥ |T |ls. Fix n and let |Tn|ls = α + 1. Then by the inductive hypothesis
|fTn|KW = α + 1 and Pα

fTn ,
1
4

6= ∅. By Lemma 1.3.8, x ∈ Pα
fTn ,

1
4

=⇒ x[a, b] ∈ Pα
fTn [an,bn],

1
4

, so

Pα
fTn [an,bn],

1
4

6= ∅. Because the [an, bn] are closed and disjoint from each other and from [1
2
, 1],
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there is an ε > 0 such that fT � (an − ε, bn + ε) = fTn [an, bn] � (an − ε, bn + ε), and therefore
using Lemma 1.3.7, Pα

fT ,
1
4

∩ (an − ε, bn + ε) = Pα
fTn [an,bn],

1
4

∩ (an − ε, bn + ε) 6= ∅. Therefore

Pα
fT ,

1
4

6= ∅ and thus |fT |KW ≥ α + 1. So |fT |KW ≥ supn |Tn|ls.
Now let us show that |fT |KW ≥ (lim supn |Tn|ls) + 1. Let α = lim supn |Tn|ls. We will

show that 1
4
∈ Pα

fT ,
1
4

. First we show that for any β < α, 1
4
∈ P β

fT ,
1
4

. There are infinitely many

n such that |Tn|ls > β, so P β

fTn ,
1
4

6= ∅ for infinitely many n by the inductive hypothesis, so

P β

fTn [an,bn],
1
4

6= ∅ for infinitely many n by Lemma 1.3.8. By Lemma 1.3.7, P β

fTn [an,bn],
1
4

⊆ P β

fT ,
1
4

.

Because limn→∞ an = 1
4
, and infinitely many [an, bn] contain an element of P β

fT ,
1
4

, 1
4

is a limit

point of P β

fT ,
1
4

. Because this set is closed, 1
4

must be in it as well. Thus 1
4
∈ P β

fT ,
1
4

for all

β < α. If α is as limit, this implies 1
4
∈ Pα

fT ,
1
4

, so |fT |KW > α if α is a limit. Now suppose α

is a successor. Let α = β + 1. Let U be a neighborhood of 1
4
, and let n be chosen such that

[an, bn] ⊆ U and P β

fTn [an,bn],
1
4

6= ∅. Then ∆fT (an,
3
4
[an, bn]) = 1

3
and ∆fT (an,

1
2
[an, bn]) = 0,

and [an,
3
4
[an, bn]] ∩ [an,

1
2
[an, bn]] ∩ P β

fT ,
1
4

6= ∅. Therefore 1
4
∈ P β+1

fT ,
1
4

, so again |fT |KW > α.

This completes the claim that |fT |KW ≥ |T |ls.
Now let us show that |fT |KW ≤ |T |ls. First, let α = supn |Tn|ls. Note that α > 0

because the case of T being only a root was already considered separately. For each n,
|Tn|ls ≤ α, so by induction |fTn|KW = |fTn [an, bn]|KW ≤ α. So for each n and ε we have
Pα
fTn [an,bn],ε

= ∅ and also Pα
p[ 1

2
,1],ε

= ∅. Cover [0, 1] \ {1
4
} with open intervals U such that each

U intersects at most one of the [an, bn] or [1
2
, 1]. Then for each such interval and each ε,

Pα
fT ,ε
∩ U = Pα

fTn [an,bn],ε
∩ U = ∅, or Pα

fT ,ε
∩ U = Pα

p[ 1
2
,1],ε
∩ U = ∅, respectively. Therefore,

for all ε, Pα
fT ,ε
⊆ {1

4
}. If lim supn |Tn|ls = supn |Tn|ls, then |T |ls = α + 1, so this is enough:

Pα+1
fT ,ε

= ∅ for all ε.
On the other hand, suppose lim supn |Tn|ls < supn |Tn|ls. Then α = |T |ls = supn |Tn|ls

is a successor, because the induction hypothesis guarantees |Tn|ls is always a successor, and
therefore if the sup were a limit, it would be equal to the limsup. Let α = β + 1. Then
eventually |Tn|ls ≤ β. Let V be an open neighborhood of 1

4
such that [an, bn]∩V 6= ∅ implies

|Tn|ls ≤ β. Covering V \ {1
4
} with open intervals U as before, we find P β

fTn [an,bn],ε
∩ U = ∅

for each such U ⊆ V and each ε, so P β
fT ,ε
∩ V ⊆ {1

4
}, so P β+1

fT ,ε
∩ V = ∅. Therefore P β+1

fT ,ε
= ∅.

Thus |fT |KW ≤ supn |Tn|ls.

Recognizing functions of rank α is Π2α+1-hard

In this section we obtain the final result by consideration of what can be encoded into
the oscillation sensitivity ε at which a function’s rank is witnessed. For this last step,
it is necessary to consider functions again instead of trees, because with the trees we only
produce functions made of bumps with all the same proportions. In the next theorem, we use
functions made of increasingly shallow bumps, and encode the last jump into the uncertainty
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of how small ε will have to be in order for the bumps which determine the function’s rank
to be detectable.

Theorem 6. Uniformly in a constructive ordinal α > 0 and x, one may find a computable
f ∈ C[0, 1] satisfying

• x /∈ ∅(2α+1) → |f |KW ≤ α

• x ∈ ∅(2α+1) → |f |KW = α + 1

Proof. Given α, x, compute f as follows. Similar to earlier, let {[an, bn]}n∈N be any com-
putable sequence of intervals with rational endpoints satisfying

• Each interval is contained in (0, 1)

• bn+1 < an < bn for each n.

• limn→∞ an = 0

• bn − an < a2n

Let g be a computable function satisfying for all x and X,

x ∈ X ′′ ⇐⇒ ∃s[g(x, s) /∈ X ′].

Then
x ∈ ∅(2α+1) ⇐⇒ ∃s[g(x, s) /∈ ∅(2α)].

For any s, let T (s) be the tree guaranteed by Theorem 2 with input (α, g(x, s)). Thus
|T (s)|ls = α + 1 if g(x, s) /∈ ∅(2α) and |T (s)|ls ≤ α otherwise. Then define

f =
∞∑
s=0

1

s+ 1
fT (s)[as, bs].

Recall that Proposition 1.3.6 guarantees that ||fT (s)|| < 1, so

|| 1

s+ 1
fT (s)[as, bs]|| <

bs − as
s+ 1

<
a2s
s+ 1

.

On neighborhoods bounded away from 0, f is a uniformly presented sum of finitely many
computable differentiable functions, but f lives in the envelope of x2, so it is computable
near 0 as well. Thus f is computable and differentiable.

Suppose x /∈ ∅(2α+1). Then for each s, g(x, s) ∈ ∅(2α), so |T (s)|ls ≤ α, so |fT (s)|KW ≤ α.
For each z 6= 0, there is a neighborhood U of z which intersects exactly one of the [as, bs].
Because Pα

fT (s)[as,bs],ε
= ∅ for all ε, and fT (s)[as, bs] coincides with f on U , Lemma 1.3.7 implies
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that z /∈ Pα
f,ε for any ε. On the other hand, fix ε and let z = 0. Then for any s, by Proposition

1.3.6, ||f ′T (s)|| < 2, so

|| 1

s+ 1
f ′T (s)[as, bs]|| =

1

s+ 1
||f ′T (s)|| <

2

s+ 1
.

Let S be large enough that 4
S+1

< ε. Then for all p, q, r, s ∈ [0, bS),

|∆f (p, q)−∆f (r, s)| ≤ |∆f (p, q)|+ |∆f (r, s)|

≤ 2||f ′ � [0, bS)|| < 4

S + 1
< ε,

so 0 /∈ P β
f,ε for any β > 0. Therefore Pα

f,ε = ∅ for all ε and |f |KW ≤ α.
On the other hand, suppose that x ∈ ∅(2α+1). Let s be such that g(x, s) /∈ ∅(2α). Then

T (s) has rank α + 1. So |fT (s)|KW = α + 1, and this rank is visible at oscillation sensitivity
ε = 1

4
by Proposition 1.3.9. So also | 1

s+1
fT (s)|KW = |ξ−1(a)|O + 1, and this rank is visible at

oscillation sensitivity ε = 1
4(s+1)

. Therefore by Lemmas 1.3.8 and 1.3.7,

∅ 6= Pα
1
s+1

fT (s)[as,bs],
1

4(s+1)
⊆ Pα

f, 1
4(s+1)

.

Thus |f |KW ≥ α + 1. Also, for each s, |fT (s)|KW ≤ α + 1, and 0 /∈ P β
f,ε for any ε and any

β > 0, so just as above, |f |KW ≤ α + 1 always. So in fact |f |KW = α + 1.

Therefore, we have the following:

Theorem 7. For each nonzero α < ωCK1 , Dα+1 is Π2α+1-complete.

Proof. By Proposition 1.3.5, Dα+1 ≤m ∅(2α+1). By Theorem 6, ∅(2α+1) ≤m Dα+1.

Theorem 8. For any limit ordinal λ < ωCK1 , Dλ is Σλ-complete.

Proof. First we show thatDλ is Σλ. Given λ = supn βn, we have e ∈ Dλ ⇐⇒ ∃n[e ∈ Dβn+1].
Each e ∈ Dβn+1 is Π2βn+1 by Proposition 1.3.5, so Dλ is Σλ.

Now we show that Dλ is Σλ-complete by giving an appropriate reduction. We claim that

x ∈ ∅(λ) ⇐⇒ |fT |KW < λ,

where T is the tree constructed in Theorem 2 from input (λ, x). That lemma guarantees
first that x /∈ ∅(λ) implies |T |ls = λ + 1. Conversely, if x ∈ ∅(λ) we have |T |ls ≤ λ. But by
Proposition 1.3.9, the limsup rank of a tree is always a successor, so in fact x ∈ ∅(λ) implies
|T |ls < λ. Thus x ∈ ∅(λ) ⇐⇒ |T |ls < λ ⇐⇒ |fT |KW < λ.
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1.4 Applications to the Denjoy rank

Having considered differentiability on [0, 1], we now consider integration. First we consider
the Lebesgue integral. A function F : [a, b] → R is absolutely continuous if for all ε there
is a δ such that whenever (ai, bi)i<k is a finite sequence of disjoint subintervals of [a, b] with∑

i |bi − ai| < δ then
∑

i |F (bi)− F (ai)| < ε. The following is well known:

Theorem 9. Let F : [a, b]→ R. The following are equivalent:

1. F is absolutely continuous.

2. There is a Lebesgue integrable function g such that
∫ x
a
g(x)dx = F (x) + F (a) for x ∈

[a, b]

3. F is a.e. differentiable and F ′ is Lebesgue integrable and
∫ x
a
F ′(x)dx = F (x) + F (a)

for x ∈ [a, b].

We wish to consider the descriptive complexity of the set of Lebesgue integrable func-
tions, but a problem one immediately encounters is how to represent the function to be
integrated. Considering only the computable f trivializes the problem because every com-
putable function is continuous and every continuous function on [0, 1] is Lebesgue integrable.
Our solution is to consider instead AC, the image of Lebesgue integration, and a subset of
the continuous functions. In fact, one may observe from Theorem 9 that the a.e. equiv-
alence classes of the Lebesgue integrable functions are in one-to-one correspondence with
their indefinite integrals in AC satisfying F (a) = 0. This motivates the question: What is
the descriptive complexity of {e : Fe ∈ AC}, where Fe is the eth computable function? In
Section 1.4 we show this set is Π3 complete.

Lebesgue was dissatisfied with his integral because there are everywhere differentiable
functions that are not absolutely continuous, and thus they cannot be recovered from their
derivatives using Lebesgue integration. For example, x2 sin( 1

x2
) has this property.

In 1912, Denjoy devised a transfinite process, generalizing Lebesgue integration, with
the goal of being able to recover a primitive from every derivative. This process, known as
the narrow Denjoy integral, has many equivalent definitions, among them the integrals of
Perron, Kurzweil and Henstock, which we will not discuss here. This process succeeds in
integrating every derivative, and was greeted by Lebesgue with great enthusiasm.

The process of narrow Denjoy integration in fact integrates more than just derivatives
of everywhere differentiable functions. It also successfully recovers the primitive whenever
applied to the derivative of a nearly everywhere differentiable function, which is a function
differentiable at all but countably many points; and for some a.e. differentiable functions with
uncountably many points of non-differentiability, it also recovers the primitive. However, it
is not possible in principle to recover every a.e. differentiable function from its derivative
because, as we will see below, there is an a.e. differentiable function f such that f ′ = 0
almost everywhere, but f is not a.e. equivalent to a constant function. However, there is a
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characterization of the image of narrow Denjoy integration analogous to Theorem 9 above.
To get to the characterization theorem, some definitions are required.

Definition 1.4.1. The oscillation of a function F on an interval I, denoted ω(F, I), is
supx,y∈I |F (y)− F (x)|.

Definition 1.4.2. Let F : [a, b]→ R and E ⊆ [a, b] a closed set.

1. We say F is absolutely continuous in the restricted sense on E, and write F ∈ AC∗(E),
if for each ε > 0 there exists a δ > 0 such that whenever (ai, bi)i<k is a finite sequence of
disjoint subintervals of [a, b] with ai, bi ∈ E and

∑
i |bi−ai| < δ then

∑
i ω(F, [ai, bi]) <

ε.

2. We say F is generalized absolutely continuous in the restricted sense on E, and write
F ∈ ACG∗(E) if F � E is continuous on E and E can be written as a countable union
of sets on each of which F is AC∗. We write F ∈ ACG∗ if the set E is clear from
context.

And here is the analogous theorem. The third equivalent condition is included for the
completeness of the analogy, but we will not prove it. After stating the theorem we will give
the constructive definition of Denjoy integration and prove the equivalence of conditions 1
and 2.

Theorem 10. Let F : [a, b]→ R. The following are equivalent.

1. F ∈ ACG∗.

2. There is a narrow Denjoy integrable function g such that
∫ x
a
g(x)dx = F (x) +F (a) for

x ∈ [a, b].

3. F is a.e. differentiable and its derivative f is narrow (respectively wide) Denjoy inte-
grable and

∫ x
a
f(x)dx = F (x) + F (a) for x ∈ [a, b].

In Section 1.4 we develop the theory of Denjoy integration. In Section 1.4 we show that
the set of absolutely continuous functions is Π3-complete. These are exactly the indefinite
Lebesgue integrals. In Section 1.4 we show that the functions of ACG∗ of rank at most α
is Σ2α, and in Section 1.4 we use the main theorem from Section 1.2 to prove this set is
Σ2α-complete.

Preliminaries

Now we define Denjoy integration. Though we rely heavily on Saks [30] and Gordon [6], the
level-by-level analysis in this section is not duplicated in either of those resources, though
it must be known. For another approach to the fine analysis of this hierarchy, see [36]. We
begin with the constructive definition of Denjoy integration and the transfinite process which
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carries out the integration. Some lemmas are needed in order to facilitate the proof of parts
1 and 2 of Theorem 10, showing that the set of indefinite Denjoy integrals coincides with
ACG∗. The relationship is established via a transfinite process which can be applied to a
continuous function to determine whether it is in ACG∗, and which exactly parallels the
integration process applied to its a.e. derivative. Finally, we discuss the Lusin (N) property
and the Banach (S) property, two closely related properties of ACG∗ functions, which play
a role in the subsequence analysis.

Definition 1.4.3. Let f : [a, b]→ R be measurable.

1. We say f is Denjoy1-integrable if f is Lebesgue integrable. In this case, for any closed
I ⊆ [a, b], the definite Denjoy1-integral of f on I, denoted D1

∫
I
f , is equal to the

Lebesgue integral of f on I.

2. Assume that Denjoyα integration has been defined. Let E ⊆ [a, b] be the set of points
x such that f is not Denjoyα-integrable in any open neighborhood of x. We say f is
Denjoyα+1-integrable if

a) For each open interval (c, d) contiguous to E in [a, b], and each x ∈ (c, d),

lim
y→d−

Dα

∫
[x,y]

f and lim
y→c+

Dα

∫
[y,x]

f both exist.

b) The restriction f � E is Lebesgue integrable on E.

c) ∑
(c,d)∈[a,b]\E

sup
x,y∈(c,d)

Dα

∫
[x,y]

f <∞,

where the sum ranges over intervals (c, d) contiguous to E in [a, b], including
intervals of the form [a, d) and (c, b] when a, b /∈ E.

In this case, for any closed I ⊆ [a, b], define

Dα+1

∫
I

f =

∫
E∩I

f +
∑

(c,d)∈I\E

lim
x→c+
y→d−

Dα

∫
[x,y]

f.

3. For λ a limit, f is Denjoyλ integrable if f is Denjoyα integrable for some α < λ. In
this case, we define Dλ

∫
I
f = Dα

∫
I
f for such an α.

We say that f is Denjoy integrable if f is Denjoyα-integrable for some α.

One may verify that Denjoyα-integration satisfies the following property.

Proposition 1.4.1. If f is Denjoyα-integrable on (a, b) and on (c, d) and the union of these
is an interval, then f is Denjoyα-integrable on (a, b) ∪ (c, d).
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One can see already suggested in this definition a transfinite process which could be
applied to a function in an attempt to Denjoy-integrate it. At each step of the process, one
defines a closed set Pα and also adds to a growing set of facts of the form F (y)− F (x) = z
where x and y are in the same connected component of [0, 1] \ Pα. By repeating the steps
below transfinitely many times one either integrates the function f (in which case Pα = ∅
for some α) or determines that f cannot be integrated (Pα = Pα+1 6= ∅). First we need
some definitions.

Definition 1.4.4. Let f : [a, b] → R be measurable, and let E be a closed set. We say x is
a point of non-summability of f on E if there is no neighborhood of x on which f � E is
Lebesgue integrable.

Definition 1.4.5. Let E ⊆ [a, b] be a closed set and let F (x) − F (y) be defined for each
x, y ∈ [c, d] whenever (c, d) is contiguous to E in [a, b]. We say x is a point of divergence of
F on E if for all neighborhoods I of x,

∑
(c,d)∈[I]\E ω(F, (c, d)) =∞.

To integrate a given f : [a, b] → R, define a sequence Pα of closed sets and a set of
differences F (y) − F (x) recursively by iterating the following steps, stopping when an α is
reached such that Pα = Pα + 1. This must happen at a countable stage α because the Pα

are closed and decreasing. Initialize with P 0 = [0, 1]. Then repeat:

• At a successor stage α + 1:

1. If (a, b) is a connected component of [0, 1]\Pα and y ∈ (a, b), define F (y)−F (a) =
limx→a F (y) − F (x), and similarly for F (b) − F (y) and F (b) − F (a). If any of
these limits do not exist, f is not Denjoy integrable.

2. Pα+1 = {x ∈ Pα : x is a point of non-summability of f or point of divergence of F on Pα}
3. For each x < y in a connected component of [0, 1] \ Pα+1, define

F (y)− F (x) =

∫
(x,y)∩Pα

f +
∑

(c,d)∈(x,y)\Pα
F (d)− F (c).

• At a limit stage λ: P λ = ∩α<λPα.

Definition 1.4.6. For any measurable f : [a, b]→ R, let the sequence of sets Pα be defined
as in the preceding paragraph. In case of ambiguity about the function, the notation Pα

f is
used.

Proposition 1.4.2. Let f : [a, b] → R be measurable. Let the sets Pα and the differences
F (y)−F (x) be defined as above. Then Pα is the set of points x for which f is not Denjoyα-
integrable in any neighborhood of x. In particular, f is Denjoyα-integrable if and only if
Pα = ∅. Whenever F (y)− F (x) is defined during stage α we have F (y)− F (x) = Dα

∫ y
x
f ,

and whenever f is Denjoyα integrable on [x, y] then F (y) − F (x) is defined by the end of
stage α.
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Proof. We proceed by induction on α. If f is Denjoy1-integrable, then f is Lebesgue inte-
grable, so P 1 = ∅. If P 1 = ∅, then f is Lebesgue integrable in a neighborhood of every
point of [a, b]. By compactness, f is Lebesgue integrable on [a, b]. Therefore, f is Denjoy1-
integrable.

Assume the proposition is known up to α, and let f be given. Let E be the set of points
z ∈ [a, b] for which f is not Denjoyα-integrable in any neighborhood of z. If x, y ∈ (c, d)
where (c, d) is contiguous to E in [a, b], then (by compactness and Proposition 1.4.1) f is
Denjoyα-integrable on [x, y], so Pα ∩ [x, y] = ∅, by the inductive hypothesis. Therefore,
Pα ⊆ E. On the other hand, if I is a closed interval containing a point x ∈ E in its interior,
then f is not Denjoyα-integrable on I, so by the inductive hypothesis, Pα∩I 6= ∅. By taking
the intersection of the closed Pα with smaller and smaller I, by compactness we see that
x ∈ Pα. Therefore, in fact Pα = E.

Now, for any x ∈ E, f is Denjoyα+1-integrable in a neighborhood of x if and only if E
satisfies conditions (2a,b,c) in Definition 1.4.3 in a neighborhood U of x. The conditions are
satisfied on a neighborhood U of x if and only if Pα+1 ∩ U = ∅.

Therefore, Pα+1 is exactly the set of points x for which f is not Denjoyα+1-integrable
in any neighborhood of x. If [x, y] is a closed set for which Pα+1 ∩ [x, y] = ∅, then by
compactness, f is Denjoyα+1-integrable on [x, y].

By the inductive hypothesis, Dα

∫ y
x
f exists whenever [x, y] ∩ Pα = ∅ and is equal to

F (y) − F (x). therefore, for (c, d) contiguous to Pα, limx→c+
y→d−

F (y) − F (x) exists if and only

if limx→c+
y→d−

Dα

∫ y
x
f exists, and when this happens, the newly defined F (d) − F (c) is equal

to Dα+1

∫ d
c
f . Assuming these limits exist for all (c, d) contiguous to Pα, Dα+1

∫ y
x
f exists

whenever [x, y] ∩ Pα+1 = ∅, and is equal to
∫
[x,y]∩Pα f +

∑
(c,d)∈[x,y]\Pα F (d)− F (c); and this

is exactly the condition in which F (y) − F (x) is defined at stage α + 1 to the appropriate
value.

This completes the successor case.
By compactness, P λ = ∅ for λ a limit if and only if Pα = ∅ for some α < λ. By the

inductive hypothesis, this is true if and only if f is Denjoyα-integrable for some α < λ, which
is exactly the statement that f is Denjoyλ-integrable.

Now we prove the equivalences 1 and 2 from Theorem 10. We will need to build up some
facts about ACG∗.

Theorem 11 (Theorem 6.10 of [6]). Let F : [a, b]→ R, let E ⊆ [a, b] be closed, and suppose
that F � E is continuous on E. Then F is ACG∗ on E if and only if for every nonempty
perfect subset E ′ ⊆ E, there is an open interval I such that E ′ ∩ I 6= ∅ and F is AC∗ on
E ′ ∩ I.

Definition 1.4.7. Let F : [a, b] → R, and E ⊆ [a, b] a closed set. Then let FE denote the
function satisfying
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1. FE(x) = F (x) for x ∈ E, and

2. for (c, d) contiguous to E, let FE � (c, d) satisfy FE(c) = F (c), FE(d) = F (d), FE( c+d
2

) =
ω(F, [c, d]) + min(F (c), F (d)), and FE linear between these three landmarks.

Note that ω(FE, [c, d]) = ω(F, [c, d]) for (c, d) contiguous to E.

Proposition 1.4.3. Let F : [a, b] → R be bounded, and let E ⊆ [a, b] a closed set. Then F
is AC∗ on E if and only if FE is absolutely continuous on [a, b].

Proof. If FE is AC on [a, b], then because F � E = FE � E, the fact that FE is AC on [a, b]
directly implies that F is AC∗ on E.

On the other hand, suppose F is AC∗ on E. It follows that∑
(c,d)∈[x,y]\E

ω(F, [c, d]) <∞.

Let ε be given. Let δ∗ be small enough that∑
(c,d)∈[x,y]\E
s.t. d−c<δ∗

ω(F, [c, d]) < ε.

and also small enough to witness that F is AC∗ on E for ε. Let

C =
⋃

(c,d)∈[a,b]\E
s.t. d−c≥δ∗

(c, d).

Because C is a finite union of open intervals and FE is piecewise linear on C, we can let
δ < δ∗ be also small enough that δ|F ′(x)| < ε for all x ∈ C. We claim that δ witnesses that
FE is AC on [a, b] for 4ε.

Let (ai, bi)i<n be a sequence of finitely many disjoint intervals in [a, b] with
∑

i |bi−ai| < δ.
If for any i, (ai, bi) ∩ E 6= ∅, let c be the least element of E ∩ [ai, bi] and d the greatest.
These numbers may coincide with each other or with either endpoint. We may as well
replace (ai, bi) by the three intervals (ai, c), (c, d) and (d, bi), since doing so can only increase∑

i |FE∗(bi) − FE∗(ai)|. Therefore, without loss of generality, let us assume that for each
(ai, bi), either ai, bi ∈ E, or (ai, bi) is disjoint from E. (Of course, both could be true). If
(ai, bi) is disjoint from E, then either (ai, bi) ⊆ C, or (ai, bi)∩C = ∅. Using these categories,
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we calculate∑
i

|FE(bi)− FE(ai)| ≤
∑

i:ai,bi∈E

|FE(bi)− FE(ai)|+
∑

i:ai 6∈E or bi 6∈E
and (ai,bi)∩C=∅

|FE(bi)− FE(ai)|

+
∑

i:ai 6∈E or bi 6∈E
and (ai,bi)⊆C

|FE(bi)− FE(ai)|

≤
∑

i:ai,bi∈E

|F (bi)− F (ai)|+
∑

(c,d)∈[a,b]\E
s.t. d−c<δ

2ω(FE, [c, d])

+
∑

i:ai 6∈E or bi 6∈E
and (ai,bi)⊆C

|bi − ai|max
x∈C
|F ′(x)|

≤ ε+
∑

(c,d)∈[a,b]\E
s.t. d−c<δ

2ω(F, [c, d]) +

 ∑
i:ai 6∈E or bi 6∈E
and (ai,bi)⊆C

|bi − ai|

max
x∈C
|F ′(x)|

≤ ε+ 2ε+ δmax
x∈C
|F ′(x)| ≤ 4ε.

Therefore, FE is AC on [a, b].

Proposition 1.4.4. Let F : [a, b]→ R be ACG∗ and let E ⊆ [a, b] be closed. Let E ′ = {x ∈
E : F is not AC∗ on E in any neighborhood of x}. Then E = E \ E ′ where the overline
denotes the topological closure.

Proof. Clearly E ⊇ E \ E ′. In the other direction, let x ∈ E and suppose for contradiction
that x /∈ E \ E ′. Then there is an open neighborhood U 3 x such that U ∩E \ E ′ = ∅. Also,
x ∈ E ′, since x ∈ E and x /∈ E \ E ′.

Because F is not AC∗ on E in any neighborhood of x, x is not isolated in E. Let
[z, w] ⊆ U such that x ∈ (z, w).

Then E ∩ [z, w] is closed, nonempty because x ∈ [z, w].
If z or w in E, assume without loss of generality that they are not isolated in E ∩ [z, w],

because if they are isolated, just chose a smaller interval [z, w] so that z, w /∈ E.
Now there are two cases. If E ∩ [z, w] has an isolated point y, then since y 6= z, y 6= w,

in fact y is isolated in E, so y ∈ E \E ′, a contradiction. In case 2, E ∩ [z, w] is perfect. But
then by Theorem 11, there is an open I such that F is AC∗ on the nonempty E ∩ [z, w]∩ I.
Again, this is a contradiction.

Proposition 1.4.5. Suppose f is Denjoyα+1-integrable on an interval (a, b). Then F (x) =
Dα+1

∫ x
a
f is AC∗ on Pα ∩ (a, b).

Proof. Let ε be given. Because f � Pα ∩ (a, b) is Lebesgue integrable, G(x) =
∫
Pα∩(a,x) f is

AC. Let δ∗ witness the absolute continuity of G for ε
2
.
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Because
∑

(c,d)∈(a,b)\Pα ω(F, [c, d]) <∞, let δ < δ∗ be such that∑
(c,d)∈(a,b)\Pα
s.t. d−c<δ

ω(F, [c, d]) <
ε

2
.

Let (xi, yi)i < k be disjoint with
∑

i yi − xi < δ, and xi, yi ∈ Pα.
Then ∑

i

ω(F, [xi, yi]) =
∑
i

sup
x,y∈[xi,yi]

|F (y)− F (x)|

≤
∑
i

sup
x,y∈[xi,yi]

|
∫
Pα∩(x,y)

f |+
∑

(c,d)∈(x,y)\Pα
|F (d)− F (c)|

≤
∑
i

sup
x,y∈[xi,yi]

|G(y)−G(x)|+
∑

(c,d)∈(a,b)\Pα
s.t. d−c<δ

ω(F, [c, d])

≤ ε

2
+
ε

2
.

Now we are ready to prove the equivalence of the first two conditions in Theorem 10.

Proof of Theorem 10, parts 1 and 2. Suppose that F : [a, b] → R is ACG∗. We will con-
struct a Denjoy integrable g : [a, b]→ R such that D

∫
[x,y]

g = F (y)−F (x) for all x, y ∈ [a, b].

Define a sequence of sets P̃α by induction as follows. Let P̃ 0 = [0, 1], P̃α+1 = {x ∈ P̃α :

F is not AC∗ on P̃α in any neighborhood of x}, and P̃ λ = ∩α<λP̃α for λ a limit. If P̃α is

non-empty, then P̃α+1 is strictly contained in it, because if P̃α has an isolated point then
this point is not present in P̃α+1, and if P̃α is perfect, then Theorem 11 guarantees the strict
containment of P̃α+1. Therefore, there is an α for which P̃α = ∅.

For each α, let Fα = FP̃α . Then for every z ∈ [x, y] disjoint from P̃α+1, Fα is absolutely
continuous on a neighborhood of z by Proposition 1.4.3. By the compactness of [x, y], Fα is
absolutely continuous on [x, y].

For each α, let gα : [a, b] \ P̃α+1 → R be the a.e. unique Lebesgue integrable function

such that for all [x, y] ⊆ [a, b] \ P̃α+1,
∫
[x,y]

gα = Fα(y) − Fα(x). Let g(x) = gα(x) for

x ∈ P̃α \ P̃α+1. We claim that the sequence of Pα obtained in the process of integrating g is

exactly the sequence P̃α used in its construction, and thus g is Denjoyα integrable for exactly
the α for which Pα = ∅, and that furthermore Dα

∫
[x,y]

g = F (y)−F (x) for all [x, y] ⊆ [a, b].

The claim is proved by induction on α, using the following three properties as the inductive
claim for α:

1. g is Denjoyα-integrable on [x, y] when P̃α ∩ [x, y] = ∅. (This implies Pα ⊆ P̃α.)

2. Dα

∫ y
x
g = F (y)− F (x) for [x, y] ∩ P̃α = ∅.
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3. For all β < α, P̃ β = P β where P β are the sets obtained in the attempt to integrate g
according to Definition 1.4.6.

In the base case α = 1, and the inductive claim holds trivially. Now we assume it is true for
α and consider α + 1. Addressing the third property first, suppose z ∈ P̃α \ P̃α+1. If α is a

limit, then z ∈ P̃ β = P β for all β < α, so z ∈ Pα. If α = β + 1, then P̃ β = P β. Let us show
that z ∈ Pα. Letting (x, y) be an interval on which g is Dα-integrable, we show z /∈ (x, y).
For any open interval (x, y) 3 z, F is not AC∗ on P β ∩ (x, y). Without loss of generality,

assume [x, y] ∩ (̃P )α+1 = ∅. Then by Proposition 1.4.5, because g is Denjoyα-integrable on
(x, y), the function G(u) = Dα

∫ u
x
g is AC∗ on P β ∩ [x, y]. For u,w ∈ (x, y), we have

Dα

∫ w

u

g = Dα

∫ u∗

u

g +Dα

∫ w∗

u∗
g +Dα

∫ w

w∗
g

where u∗ = min[u,w] ∩ P̃α and w∗ = max[u,w] ∩ P̃α.

By the inductive hypothesis, Dα

∫ y
x
g = F (y)− F (x) whenever [x, y] ∩ P̃α = ∅. Together

with the continuity of F , that implies Dα

∫ u∗
u
g = F (u∗)−F (u) and Dα

∫ w
w∗
g = F (w)−F (w∗).

Consider now the middle term

Dα

∫ w∗

u∗
g =

∫
Pβ∩[u∗,w∗]

g +
∑

(c,d)∈[u∗,w∗]\Pβ
F (d)− F (c)

=

∫
P̃α∩[u∗,w∗]

g +
∑

(c′,d′)∈[u∗,w∗]\P̃α

∫
Pβ∩[c′,d′]

g

+

 ∑
(c′,d′)∈[u∗,w∗]\P̃α

∑
(c,d)∈(c′,d′)\Pβ

F (d)− F (c)


=

∫
P̃α∩[u∗,w∗]

gα +
∑

(c′,d′)∈[u∗,w∗]\P̃α

Dα

∫ d′

c′
g

=

∫
P̃α∩[u∗,w∗]

gα +
∑

(c′,d′)∈[u∗,w∗]\P̃α

F (d′)− F (c′)

=

∫
P̃α∩[u∗,w∗]

gα +
∑

(c′,d′)∈[u∗,w∗]\P̃α

Fα(d′)− Fα(c′)

=

∫ w∗

u∗
gα = F (w∗)− F (u∗).

Therefore, F (w)−F (u) = G(w)−G(u) for these arbitrary u,w, so F and G are equal up

to a constant on [x, y], so F is AC∗ on [x, y]∩P β because G was. Therefore P̃α ∩ (x, y) = ∅,
so z is not in (x, y). Since this was done for an arbitrary (x, y), we conclude that z ∈ Pα.

Now let x, y be such that [x, y] ∩ P̃α+1 = ∅. We just saw that Pα = P̃α, so F is
AC∗ on Pα ∩ [x, y]. By the inductive hypothesis applied to each [x, y] disjoint from Pα,
Dα

∫
[x,y]

g = F (y)− F (x), so by the continuity of F , limx→c
y→d

Dα

∫
[x,y]

g = F (d)− F (c), where
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(c, d) is an interval contiguous to Pα which contains [x, y]. Because gα is Lebesgue integrable

and coincides with g on Pα\ P̃α+1, we see that g � Pα∩ [x, y] is Lebesgue integrable. Because
F is AC∗ on Pα ∩ [x, y], criterion (2c) of Definition 1.4.3 holds. Therefore, g is Denjoyα+1-
integrable on [x, y]. Letting c∗ be the least element of Pα in [x, y] and d∗ the greatest, we
have

Dα+1

∫
[x,y]

g =

∫
[x,y]∩Pα

g +
∑

(c,d)∈[x,y]\Pα
F (d)− F (c)

=

∫
[c∗,d∗]∩Pα

gα + F (y)− F (d∗) + F (c∗)− F (x) +
∑

(c,d)∈[c∗,d∗]\Pα

∫
[c,d]

gα

= F (y)− F (x) +

(∫
[c∗,d∗]

gα

)
− (F (d∗)− F (c∗))

= F (y)− F (x).

Now for the limit case, assume the claim holds for all α < λ where λ is a limit. Then for
all β < λ, β < α for some α < λ, so P̃ β = P β. Then [x, y] ∩ P̃ λ = ∅ implies [x, y] ∩ P̃α = ∅
for some α < λ, which by the inductive hypothesis implies that g is Denjoyα-integrable with
the proper values on [x, y], so g is Denjoyλ-integrable with the proper values on [x, y].

We have shown that if F : [a, b] → R is ACG∗ then there is a Denjoy integrable g such
that D

∫
[x,y]

g = F (y) − F (x) for all [x, y] ⊆ [a, b]. In the other direction, let us assume the

existence of a Denjoy integrable g, and show that F (x) = D
∫
[0,x]

g is ACG∗. Let Pα be the

sets from Definition 1.4.6 which result when integrating g. Then [a, b] is the union of the
following countable collection of sets:

Kα,p,q = [p, q] ∩ Pα for p, q ∈ Q and [p, q] disjoint from Pα+1.

We verify that F is AC∗ on each of these sets. Because Pα+1 = ∅ on [p, q], g � [p, q] is
Denjoyα+1-integrable there. Then limx→c+

y→d−
Dα

∫
[x,y]

g = limx→c+
y→d−

F (y)− F (x) = F (d)− F (c)

for each (c, d) contiguous to Pα in [p, q], so the condition
∑

(c,d)∈[p,q]\Pα ω(F, [c, d]) <∞ holds.

Let ε be given. Because g � Pα ∩ [p, q] is Lebesgue integrable, G(x) =
∫
Pα∩[p,x] g is

AC. Let δ∗ witness the absolute continuity of G for ε
2
. Let δ < δ∗ be small enough that∑

(c,d)∈[p,q]\Pα
d−c<δ

ω(F, [c, d]) < ε
2

Now suppose we are given a sequence (ai, bi)i<k of disjoint
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intervals with ai, bi ∈ Pα ∩ [p, q] and bi − ai < δ. Then∑
i

ω(F, [ai, bi]) =
∑
o

sup
x,y∈[ai,bi]

|F (y)− F (x)|

≤
∑
i

sup
x,y∈[ai,bi]

|∫
[x,y]∩Pα

g|+
∑

(c,d)∈[x,y]\Pα
|F (d)− F (c)|)


≤
∑
i

sup
x,y∈[ai,bi]

|G(y)−G(x)|+
∑

(c,d)∈[ai,bi]\Pα
ω(F, [c, d])

≤ ε

2
+

∑
(c,d)∈[p,q]\Pα

s.t. d−c<δ

ω(F, [c, d]) < ε.

Though we will not prove the third part of the equivalence here, we remark that because
of the work required to develop the constructive definition of Denjoy integration, a variant
of the third part of the equivalence is often taken as the definition of Denjoy integration:
a measurable function f : [a, b] → R is narrow Denjoy integrable if there is a function
F ∈ ACG∗ which is a.e. differentiable and whose derivative is f .

It was clear from the definition of Denjoy integration for a function g that the resulting
indefinite integral F is the same for any f in the same a.e. equivalence class of g. Conversely,
by the proof of Theorem 10 one sees that if F is ACG∗ then the g which integrates to it is a.e.
unique. Therefore, a.e. equivalence classes of Denjoy integrable functions are in one-to-one
correspondence with their indefinite integrals in ACG∗.

We mentioned earlier that although every function of ACG∗ is a.e. differentiable, there
are a.e. differentiable functions which are not ACG∗. Perhaps the most prominent example
of this sort of function is Cantor’s function, also known as the Devil’s Staircase.

Definition 1.4.8. Cantor’s function fC : [0, 1] → [0, 1] is defined as follows. Let C be
the standard Cantor set in [0, 1]. For each n, there are 2n−1-many intervals I of length 3−n

contiguous to C. Let fC be constant on each such interval, taking the values i
2n

for i odd with
0 < i < 2n in the same order in which the intervals appear. For example, fC � (1

3
, 2
3
) ≡ 1

2
,

fC � (1
9
, 2
9
) ≡ 1

4
, and fC � (7

9
, 8
9
) ≡ 3

4
. Define fC on C so that f is continuous on [0, 1].

This function is increasing and a.e. differentiable and its derivative is zero almost every-
where. To see that fC is not ACG∗, note that if g were a function which could be integrated
to obtain fC , then g would have to be zero almost everywhere since fC is constant almost
everywhere, but then

∫ x
0
g = 0, not fC(x), a contradiction.

Cantor’s function has the interesting property that fC(C) is all of [0, 1] except the dyadic
rationals. Therefore, fC maps a measure zero set to a set of measure 1. This is, in general, a
way to tell when a function is not ACG∗. Consider the following well-known characterization.



CHAPTER 1. COMPUTABILITY IN ORDINAL RANKS 44

Proposition 1.4.6. A function F : [a, b] → R is absolutely continuous if and only if it is
continuous, of bounded variation, and µ(F (A)) = 0 whenever µ(A) = 0.

The last property in that list is called the Lusin (N) property. And we have

Proposition 1.4.7 ([6], Theorem 6.12). If F ∈ ACG∗ then F satisfies Lusin’s (N) property.

We will have need for a slight variation of this, however. Under the assumption that
F is continuous, the last property in the proposition below is equivalent to Banach’s (S)
property, that for every ε there is a δ such that whenever λ(A) < δ, λ(F (A)) < ε. Since
we deal only with continuous functions, we will refer to the property below as Banach’s (S)
property as well.

Proposition 1.4.8. A function F is absolutely continuous if and only if it is continuous, it
is of bounded variation, and for every ε there exists a δ such that whenever (ai, bi)i<k is a
finite sequence of disjoint intervals for which the (F (ai), F (bi)) (indices reversed if necessary)
are also disjoint, then

∑
i |F (ai)− F (bi)| < ε.

Proof. It is clear from the definition of absolute continuity that it implies the property (S).
On the other hand, our formulation of (S) implies continuity, and a continuous function
satisfying Banach’s (S) also satisfies Lusin’s (N), by [30, Theorem 7.4]. Therefore, (S) and
bounded variation imply absolute continuity.

Also, [30, Theorem 8.8, page 233], [30, Theorem 6.3, page 279], and [30, Theorem 7.3,
page 284], combined with the preceding, give us

Proposition 1.4.9. If F is ACG∗, then F fulfills condition (S).

In section 1.4 we show that the set {e : Fe is AC} is Π3-complete. In Section 1.4 we show
that for α > 1, {e : Fe(x) = Dα

∫ x
0
f for some f} is Σ2α. This also implies that ACG∗ is Π1

1.
In Section 1.4, we provide a reduction from well-founded trees to ACG∗ with the property
that if T 7→ F then |T |ls = |F |D, where |F |D is the least α such that F (x) = Dα

∫ x
0
f for

some f . This shows that for α > 1 {e : Fe(x) = Dα

∫ x
0
f for some f} is Σ2α-complete, and

that ACG∗ is Π1
1-complete.

To complete the analogy with previous sections, we may define

Definition 1.4.9. Let F : [a, b] → R. If F ∈ ACG∗, let the Denjoy rank of F , denoted
|F |D, be the least α such that F (x) = Dα

∫ x
a
f for some f .

In this notation, the results of the next three sections may be summarized as

Theorem 12. Let Fe denote the eth computable function in C[0, 1]. Then

1. The set {e : |Fe|D = 1} is Π3-complete

2. For each constructive α > 1, the set {e : |Fe|D ≤ α} is Σ2α-complete.
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Being a Lebesgue integral is Π3-complete

In this section we prove that the image of Lebesgue integration is Π3-complete. By Fe we
mean the eth code for a continuous function in the sense of Section 1.1.

Proposition 1.4.10. The set {e : Fe is absolutely continuous} is Π3-complete.

Proof. Under the Π2 assumption of the continuity of F , the remainder of the definition of
absolute continuity is Π3, because in the continuous setting, rational approximations suffice
for everything. That is, one may check that

F ∈ AC ⇐⇒ F is continuous and

∀ε∃δ∀(ai, bi)i<k
if the (ai, bi) are disjoint and

∑
i

bi − ai < δ, then
∑
i

|F (bi)− F (ai)| ≤ ε.

where all quantifications are over the rationals or intervals with rational endpoints; the
characterization on the right is Π3.

Considering now the alternate characterization of absolute continuity given in Proposition
1.4.7, one may check that the statements “Fe is continuous” is Π2 and “Fe is of bounded
variation” is Σ2 in the set of continuous indices. So any proof of the Π3-completeness of
being absolutely continuous must crucially use the Lusin (N) property. Our strategy is to
approximate a version of the Cantor function which will converge to a Cantor-like function
only if the Π3 statement fails, and be absolutely continuous otherwise.

Any canonical representation of a Π3 statement can be effectively re-written as ∀n[Wg(n) is finite]
for some computable total g. We now define a function F : [0, 1] → [0, 1], uniformly in g,
such that F is absolutely continuous if and only if ∀n[Wg(n) is finite ] holds.

Effective in g, we define a computable sequence of functions Fs which converge effectively
and uniformly to the desired computable function F . Let F0(x) = x. Each Fs will be
piecewise linear, containing some pieces of slope zero separated by pieces of positive slope.
Wherever Fs is piecewise constant, it is equal to the limiting function F .

For each n let In = [ 1
n+2

, 1
n+1

]. This is the interval in which Wg(n)’s finiteness or lack
thereof will be expressed.. At stage s + 1, see for which n < s is there a new element
enumerated into Wg(n). Let Fs+1 � [ 1

n+2
, 1
n+1

] = Fs � [ 1
n+2

, 1
n+1

] for all n ≥ s and for all n < s
such that no new element of Wg(n) has been enumerated at stage s. For those n for which a
new element is enumerated into Wg(n), define Fs+1 � In as follows. For each maximal interval
I ⊆ In on which Fs is constant, let Fs+1 ≡ Fs on I. For each maximal interval I on which
Fsis linear with positive slope, define Fs+1 on I to satisfy:

1. Fs+1 = Fs at the endpoints

2. Fs+1 is piecewise linear, continuous, and increasing

3. Fs+1 has slope zero on 1
3

of I, and the slope everywhere else is increased by an appro-
priate factor, which happens to be 3

2
.
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4. Fs and Fs+1 differ by no more than 2−s at any point.

This can be accomplished by letting Fs+1 � I resemble a sufficiently fine staircase. The effect
is that 1

3
of the measure of I is given to points at which F ′(x) = 0. Thus if F ′s was nonzero

on a measure r subset of In, then F ′s+1 is nonzero on a measure 2
3
r subset of In.

This completes the construction. One may check that F is continuous and of bounded
variation.

Now suppose that it holds that ∀n[Wg(n) is finite ]. Then for each n, there will come a
stage s for which Fs � In = F � In, and so the final F is piecewise linear on In for all n. And
F satisfies the Lusin N property because each In satisfies it, and there are only countably
many In. So if µ(A) = 0 then µ(F (A)) = µ(∪nF (A ∩ In)) ≤

∑
n µ(F (A ∩ In)) = 0. Thus F

is absolutely continuous.
On the other had, suppose that Wg(n) is infinite for some fixed n. Then letting Z =

∪s{x ∈ In : F ′s(x) = 0}, we have µ(Z) = µ(In), but F (Z) is countable, since for each s,
{Fs(x) : F ′s(x) = 0} is finite. But F is continuous, so F (In) = In, so F (In \ Z) has measure
µ(In), and F is not absolutely continuous.

Being a Denjoy integral of rank α is Σ2α

In this section we prove that for all constructive α > 1, {e : Fe(x) = Dα

∫ x
0
f} is Σ2α.

For the purposes of showing the completeness result of the last section, it was necessary
to make everything hinge on the Lusin (N) property. However, by Proposition 1.4.7, every
F ∈ ACG∗ has the Lusin N property.

Even more, if F ∈ ACG∗ then F satisfies Banach’s (S) property, by Proposition 1.4.9.
So this property cannot differentiate between indefinite Denjoy integrals of different ranks.

So it happens that the property of bounded variation piled on top of bounded variation is
what drives the hierarchy once we are past the three jumps where the Banach (S) property
can make a difference. In particular, we claim that

Proposition 1.4.11. For every recursive α > 1, {e : Fe is a Denjoy integral of rank at most α}
is Σ2α.

Proof. It is straightforward to verify that the Banach (S) property is Π3. Because ACG∗ is
a proper subset of the continuous functions satisfying Banach (S), we may work inside this
class.

Under the assumption that F satisfies the Banach (S) property, we claim that uniformly
in e and in all constructive α, the set {(p, q) : p, q ∈ Q and [p, q]∩Pα = ∅} is Σ2α, where Pα

are defined as follows: P 0 = [a, b], Pα+1 = {x ∈ Pα : F is not AC∗ on Pα in any neighborhood of x},
P λ = ∩α<λPα for λ a limit.

Note that this definition of the Pα hierarchy is the same as that given in the proof of
Theorem 10, and so |F |D ≤ α if and only if Pα = ∅. The latter is true if and only if
{(p, q) : [p, q] ∩ Pα = ∅} covers [a, b] (as usual, we allow [a, q), (p, b] in the cover), and if this
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happens then by compactness there is a finite cover. So for F satisfying the Banach (S)
property,

|F |D ≤ α ⇐⇒ Pα = 0

⇐⇒ ∃(pi, qi)i<k s.t [pi, qi] ∩ Pα = ∅ and ∪i (pi, qi) = [a, b]

Under the assumption that [pi, qi] ∩ Pα = ∅ is Σ2α uniformly in e and in α, this is the
result, because |F |D ≤ α ⇐⇒ (F satisfies (S)) and (Pα = ∅ assuming F satisfies (S)).

So now let us see why [pi, qi]∩Pα = ∅ is a Σ2α statement for α > 0 under the assumption
that F satisfies the Banach (S) property.

When α = 1, because F is already assumed to be continuous and have the Banach (S)
property, we need only check for bounded variation. Thus

[p, q] ∩ P 1 = ∅ ⇐⇒ ∃(p′, q′) ⊃ [p, q] s.t. F has bounded variation on (p′, q′)

⇐⇒ ∃(p′, q′) ⊃ [p, q]∃N such that for all (ai, bi)i<k disjoint in (p′, q′),∑
i

|F (bi)− F (ai)| ≤ N.

and the last expression is Σ2.
Supposing that {(p, q) : [p, q] ∩ Pα = ∅} is Σ2α, let us show {(p, q) : [p, q] ∩ Pα+1 = ∅} is

Σ2α+2 under the assumption that F has the Banach (S) property.
We have by Proposition 1.4.3

[p, q] ∩ Pα+1 = ∅ ⇐⇒ ∃(p′, q′) ⊃ [p, q] s.t. F is AC∗ on [p′, q′] ∩ Pα

⇐⇒ ∃[p′, q′] ⊃ [p, q] s.t. Fα is AC on [p′, q′]

where Fα = FPα Because F has the Banach (S) property, it has the Lusin (N) property. So
if λ(A) = 0 then λ(F (A ∩ Pα)). And λ(Fα(A ∩ (c, d))) = 0 for any (c, d) contiguous to Pα

because Fα is linear there. So µ(Fα(A))) = 0. So Fα has the Lusin (N) property, and we
may continue with

[p, q] ∩ Pα+1 = ∅ ⇐⇒ ∃[p′, q′] ⊃ [p, q] s.t. Fα has bounded variation on [p′, q′]

The last part is Σ2(Fα), so if Fα is uniformly ∅(2α)-computable, we are done.
Because F was computable, it has an effective modulus of uniform continuity. Thus, given

ε, we may effectively find N such that for any interval I of length at most 1/N , ω(F, I) < ε.
Increase N if necessary so ω(F, [a, b])/N < ε as well. We use this division to compute an
approximation G to Fα as follows.

For each natural number i < N such that [ i
N
, i+1
N

] ∩ P alpha = ∅, let G � [ i
N
, i+1
N

] = F �
[ i
N
, i+1
N

]. For each remaining maximal interval of the form ( i
N
, j
N

),
Let

w = max
i′,j′∈[i,j]

∣∣∣∣F (
i′

N
)− F (

j′

N
)

∣∣∣∣
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where i′ and j′ range over integers, and let G( i
N

) = F ( i
N

), G( j
N

) = F ( j
N

), G( i+j
2N

) = w +

min(F ( i
N

), F ( j
N

)), and let G be defined on the rest of [ i
N
, j
N

] as a linear interpolation of
these points.

One may verify that G is computable from ∅2α which answers questions of the form
[ i
N
, i+1
N

] ∩ Pα = ∅? Let us check that ||G− Fα|| < 11ε.
First we claim that ||Fα−G|| < 6ε on the intervals [ i

N
, i+1
N

] whose intersection with Pα is
nonempty. Since Fα(x) = G(x) for x ∈ Pα, we consider the rest of the points of the interval
according to the following three cases:

• Points of any interval (c, d) contiguous to Pα which is fully contained within [ i
N
, i+1
N

]

• Points in the interval (c, i+1
N

], where c ∈ Pα, but (c, i+1
N

] is disjoint from Pα.

• Points in the interval [ i
N
, d), symmetric to the above.

In the first case, for z ∈ (c, d), |Fα(x)−G(x)| = |Fα(x)− F (x)|. If x is closer to c, then

|Fα(x)− F (x)| = (x− c)|F ′α(x)|

where |F ′α(x)| ≤ 2ω(F,[c,d])
d−c < 2

d−cε. Therefore,

|Fα(x)− F (x)| < (x− c) 2

d− c
ε < 2ε

since x− c < d− c. If x is closer to d, a symmetric argument gives the same conclusion.
In the second case (and the third, by symmetry), for x ∈ (c, i+1

N
], let (c, d) be the full

connected component contiguous to Pα which extends the interval under consideration. Let
j be an integer for which d ∈ [ j

N
, j+1
N

]. Then by the choice of N , ω(F, [c, d]) < ε(j − i + 1),

so F ′α(x) < 2(j−i+1)ε
d−c . Then regardless of whether x is closer to c or d, we have

|Fα(x)− F (x)| < (x− c)2(j − i+ 1)

d− c
ε

. If j−i = 1, then since x−c < d−c, we have |Fα(x)−F (x)| < 4ε. Otherwise, d−c ≥ j−i−1
N

,

so |Fα(x) − F (x)| < (x − c)2(j−i+1)N
j−i−1 ε < 1

N
6Nε = 6ε, and the bound is even tighter in the

wide case.
Our second claim is that ||Fα − G|| < 11ε on [ i+j−1

2N
, i+j+1

2N
], where ( i

N
, j
N

) is a maximal
interval disjoint from Pα. Note that the interval on which we are evaluating the approxi-
mation need not have its boundaries on integer multiples of 1

N
, but it does contain both i+j

2N

and c+d
2

, where (c, d) is the connected component of [0, 1] \ Pα in which [ i
N
, j
N

] lies. Then

|Fα(x)−G(x)| = |Fα(x)− Fα(
c+ d

2
)|+ |Fα(

c+ d

2
)−G(

i+ j

2N
)|+ |G(

i+ j

2N
)−G(x)
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Unless the coincidence of x with c+d
2

makes it zero, the first summand is

|Fα(x)− Fα(
c+ d

2
)| = |c+ d

2
− x| · |F ′α(x)| < 1

N

2(j − i+ 2)N

j − i
ε < 4ε,

because |F ′α(x)| ≤ 2ω(F,[c,d])
d−c and as before knowing the approximate location of c and d allows

us to conclude that ω(F, [c, d]) < (j − i+ 2)ε and j−i
N
< d− c. (The numbers do not line up

exactly with the previous ones because there is a off-by-one difference in the location of c.)
For the second summand,

Fα(
c+ d

2
)−G(

i+ j

2N
)| = |ω(F, [c, d]) + min(F (c), F (d))− w −min(F (

i

N
), F (

j

N
)|

≤ |ω(F, [c, d])− w|+ |min(F (c), F (d))−min(F (
i

N
), F (

j

N
))|

≤ 2ε+ ε

And the last summand is also bounded by 4ε, since w < ω(F, [c, d]) and the same bounds
apply to G. Therefore, for x ∈ [ i+j−1

2N
, i+j+1

2N
], |Fα(x)−G(x)| < 11ε.

Finally, we claim that ||Fα − G|| < 11ε on the remaining intervals not yet discussed.
That is because Fα and G are both linear on the remaining intervals, so their difference is
maximized on one or both of the endpoints of those intervals, and bounds on those end-
points have already been found. Therefore, ||Fα − G|| < 11ε everywhere. Thus Fα may be
approximated as closely as desired by an effective sequence of functions computable in ∅(2α).

Thus we see that Pα+1 is Σ2(α+1), completing the successor case of the induction. For the
limit case, if λ is given as an effective sequence αn with limn→∞ αn = λ, then [p, q] ∩ P λ =
∅ ⇐⇒ ∃n[p, q]∩Pαn = ∅. Since the matrix is uniformly ∅λ-computable, {[p, q] : [p, q]∩P λ =
∅} is Σλ = Σ2λ.

Being a Denjoy integral of rank α is Σ2α-complete

In this section we give a reduction (WF,¬WF ) → (ACG∗,¬ACG) which maps trees of
limsup rank α to functions of Denjoy rank α. The idea is that each node of the tree should
contribute a finite length to the variation of the function. In most cases the total variation
will be infinite as a result, but the way in which that infinite length is distributed will
determine the rank of the function.

Proposition 1.4.12. There is a computable reduction T 7→ FT from trees to continuous
functions on [0, 1] satisfying

1. If T is not well-founded, FT /∈ ACG∗.

2. If T is well-founded with |T |ls = α, then FT ∈ ACG∗, and |FT |D = α.
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I

J0[I]J1[I]J2[I]

etc.

Figure 1.5: The function G(I), when λ(I) = 1.

Proof. To each subset X ⊆ N and interval I ⊆ R, one may associate a function G(X, I) :
R→ R, uniformly in X and I, as follows. G(X, I) will be supported on I. First associate to
each interval I a function G(I) defined as follows. For [a, b] ⊆ [0, 1], let [a, b][I] denote the
corresponding interval in I, namely [min I+aλ(I),min I+bλ(I)], where λ(I) is the Lebesgue
measure (here, just the length of I). For each interval Jn = [ 1

n+2
, 1
n+1

] define G(I) � Jn[I]
to be a computable piecewise linear function as follows: Let Jn[I] be divided into 4M + 1
equally sized regions, where M is least such that M ≥ n+2

λ(I)
. Let G ≡ 0 on every fourth

region including the first and last, G ≡ λ(I)
n+2

on the middle interval of each remaining cluster
of three intervals, and let G be a linear interpolation on the rest of Jn[I]. See Figure 1.5.
Note that M has been chosen so that the variation of G(I) on Jn[I] is at least 2.

Note that G(I)(min I + x) ≤ x for all x. One might say that Jn supports M “hills” each

of height λ(I)
n+2

. G(I) is computable uniformly in I.
Define G(X, I) by defining G(X, I) � Jn[I] = G(I) � Jn[I] for every n ∈ X, and G(X, I) ≡

0 elsewhere.
Now for well founded T , we may define F (T, I) : R→ R recursively as follows, proceeding
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by recursion on the usual rank of T . If T = ∅, let F (T, I) ≡ 0. Otherwise, assuming F (Tn, I)
is defined for all I and all Tn = {σ : nσ ∈ T}, let

F (T, I) = G({n : Tn 6= ∅}, I) +
∑

n:Tn 6=∅

∑
H maximal
in Jn[I] s.t.
G(I)′(x)=0
for x∈H

F (Tn, H)

Let us check that F (T, I) is computable uniformly in T and I, where I is represented by the
numbers min I, max I.

Proceeding by induction on the usual rank of T , let us assume that each F (Tn, H) is
computable uniformly in Tn and H, and let us also assume that each F (Tn, H) satisfies
F (Tn, H)(minH + x) ≤ x. Bounded away from min I, F (T, I) is a sum of finitely many
functions, uniformly computable by the inductive hypothesis.

Let us check that F (T, I)(min I + x) ≤ x on each Jn[I]. Because of the shape of G(I) �
Jn[I], and because the F (Tn, H) all satisfy the same bound, if F (T, I) would fail to satisfy
the bound anywhere, the failure would occur at the top of the first hill. Because G(I) is felt
there, the bound on F (Tn, H) implies the bound on F (T, I) � Jn[I]. Since n was arbitrary,
the bound holds for F (T, I) as a whole. Together with the uniform computability of F (T, I)
away from zero, this bound also implies that F (T, I) is computable.

So far F (T, I) has been defined only for well-founded trees, but it has a natural extension
to all trees. For any tree T ∈ N<N, let T � m be {σ ∈ T : |σ| ≤ m}. If T is not well-
founded, define F (T, I) = limm→∞ F (T � m, I). To see that this is well-defined, note that the
definition gives the same result for all well-founded trees, and that ||F (T � m+ 1, I)−F (T �
m, I)|| < 2−nλ(I). The bound can be seen by noting that F (T � m + 1, I) − F (T � m, I)
consists of a sum of a large number of functions of the form G(X, J) for J disjoint and
λ(J) < 2−nλ(I) because the locally constant intervals of G(X,H) satisfy λ(J) < 2λ(H), and
part of the induction hypothesis is that ||F (T, I)|| < λ(I).

Let us check that if |T |ls exists, then F (T, I) is an indefinite Denjoy integral of rank |T |ls.
We proceed by induction on the usual rank of the tree, starting with the singleton tree {∅}.

This tree has limsup rank 1, and F (T, I) ≡ 0, so it is Lebesgue integrable, and |F (T, I)|D = 1
in both the narrow and wide senses. Let T be given, with limsup rank α+ 1. By induction,
assume that for each n and J , |Tn|ls = |F (Tn, J)|D. By the definition of the limsup rank of T ,
there must be a number N such that for all n ≥ N , |Tn|ls ≤ α. Consider F (T, I) � [0, 1

N+2
].

For x > 0, F (T, I) � [x, 1
N+2

] is a sum of finitely many functions of Denjoy rank at most α, by

the induction hypothesis. Therefore, by Proposition 1.4.1, F (T, I) � [x, 1
N+2

] is an indefinite

Denjoyα-integral. By Proposition 1.4.2, Pα
F (T,I) ∩ [x, 1

N+2
] = ∅, where the Pα are defined

as in the proof of Theorem 10, because that proof also showed that these Pα are precisely
the Pα of Proposition 1.4.2 for the a.e. unique g whose Dα-integral is F (T, I) � [x, 1

N+2
].

Therefore, Pα
F (T,I) ∩ [0, 1

N+2
] ⊆ {0}. Since 0 is topologically isolated in Pα, 0 6∈ Pα+1. So

Pα+1∩ [0, 1
N+2

] = ∅. Next consider F (T, I) � [ 1
N+2

, 1]. It is the sum of finitely many functions

of rank at most α + 1, so Pα+1 ∩ [ 1
N+2

, 1] = ∅. Therefore Pα+1 = ∅ and the Denjoy rank of
F (T, I) is at most α + 1.
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Now we show that it is at least α+1. Suppose that |Tn|ls = α+1 for some n. Then since
for all J , Pα

F (Tn,J)
6= ∅ by the inductive hypothesis, and the fact that F (T, I) � J = F (Tn, J)

for some interval J ⊂ Jn[I], we have Pα
F (T,I) ∩ Jn 6= ∅, so |F (T, I)|D ≥ α + 1. On the

other hand, suppose that limn→∞ |Tn|ls = α. Then for every β < α, there are infinitely
many n for which P β

F (T,I) ∩ Jn 6= ∅. Therefore, 0 ∈ P β
F (T,I). In fact, for any such n, for

any maximal J ⊆ Jn[I] on which G(I) is constant, P β
F (T,I) ∩ J 6= ∅, because P β

F (Tn,J)
6= ∅.

Therefore, for each such n,
∑

(c,d)∈Jn\Pβ ω(F, (c, d)) ≥
∑

(c,d)∈Jn\Pβ |F (d)| − |F (c)| and the

latter sum catches at least half the variance in G(I) � Jn[I], because if G(I)(c) = λ(I)
n+1

then F (T, I)(c) ≥ λ(I)
n+2

,a nd if G(I)(c) = 0 then F (T, I)(c) ≤ ||F (Tn, J)|| ≤ λ(J). Then

λ(J) = λ(Jn[I])
4M+1

= λ(I)
(n+2)(n+1)(4M+1)

< λ(I)
2(n+2)

. So
∑

(c,d)∈Jn\Pβ |F (d) − F (c)| ≥ 1 for each n for

which |Tn|ls > β, and because there are infinitely many such n, for each x > a, we have∑
(c,d)∈[a,x]\Pβ |F (d) − F (c)| = ∞. So F (T, I) is not absolutely continuous on P β in any

neighborhood of 0. Therefore, for every β < α, 0 ∈ P β+1. If α is a limit, this implies 0 ∈ Pα.
If α = β + 1, then directly 0 ∈ Pα. Therefore, |F (T, I)|D ≥ α+ 1. This completes the proof
that if |T |ls exists then |F (T, I)|D = |T |ls.

Now suppose that T is not well-founded. We will show that F (T, I) /∈ ACG∗. To do
so, we find a perfect set E ⊆ I so that F (T, I) is not AC∗ on any J ∩ E, which shows
F (T, I) /∈ ACG∗ by Theorem 11.

Let {mi}i<ω be an infinite path through T . Let E0 = {I}. For each k, let

Ek+1 = {J ⊆ Jmk [K] : K ∈ Ek and G(K) � J constant and J maximal for this property}.

Let E = ∩∞k=0(∪Ek).
Then for any x ∈ E and any open interval J containing x, let ε be small enough that

(x− ε, x+ ε) ⊆ J . Let k0 be large enough that the elements of Ek0 have length less than ε.
Then there is an H ∈ Ek0 such that x ∈ H. Let us see that F (T, I) is not AC∗ on H ∩ E.

First note from the definition of the Ek that for each K ∈ Ek, there is K ′ ⊆ Ek+1 with
K ′ ⊂ K. So by compactness, for each k and each K ∈ Ek, there is a y ∈ K such that y ∈ E.

Now for each Ek with k > k0, define a finite set of disjoint intervals (aj, bj) as follows.
For each K ∈ Ek for which K ⊆ H, let c1 < c2 < · · · < cr be an ordered list of ele-
ments of E, consisting of one element of E for each interval in Ek+1 that is contained in
K. Again, the location of the ci, alternating in imagine between F (T, I)(ci) ≥ λ(K)

mk+2
and

F (T, I)(ci) <
λ(K)

2(mk+2)
, guarantee that the intervals (c1, c2), (c2, c3), . . . , (cr−1, cr) capture most

of the variation of G(K) � Jmk [K]. That is,

r−1∑
i=1

|F (T, I)(ci+1)− F (T, I)(ci)| ≥ 1.

Taking the set of all the intervals (ci, ci+1) gleaned from all K ∈ Ek with K ⊆ H, we
obtain the finite sequence (ai, bj), which is disjoint because the different K are. Because
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∪j(aj, bj) ⊆ Ek, we have ∑
j

bj − aj ≤ µ(Ek) < 2−kλ(I),

where the last inequality is justified because each K ∈ Ei is replaced in Ei+1 by a set of
subintervals of Jmi [K], and λ(Jmi [K]) ≤ λ(K)

2
. Therefore, as k goes to infinity, the selected

intervals have a total measure approaching zero. However, Ek ∩H has at least 2k−k0-many
intervals, because each K ∈ Ei is replaced by at least two intervals in Ei+1. Therefore,∑

j |F (T, I)(bj)− F (T, I)(aj)| > 2k−k0 , and F (T, I) is not AC∗ on E ∩H.
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Chapter 2

Computability in Subshifts

In this chapter, we discuss the connections between computability theory and symbolic
dynamics by examining the subshift invariants of entropy, Medevedev degree, and effective
dimension spectrum. The latter is defined in Section 2.6. In Section 2.1 we establish the basic
notions in computability theory and in symbolic dynamics. In Section 2.2 we review what is
known about the values the entropy can take for subshifts subject to various restrictions. In
Section 2.3 we review what is known about the Medvedev degrees that subshifts may inhabit.
In Section 2.4 we review what is known about the effective dimensions that trajectories of a
subshift may have. In Section 2.5 we show that entropy and Medvedev degree of subshifts are
independent, and that every right-r.e. entropy in [0, 1) may combine with every Medvedev
degree in a one-dimensional Π0

1 subshift or a two-dimensional shift of finite type using an
alphabet with only to symbols. In Sectoin 2.6 we introduce the effective dimension spectrum,
give conditions under which it is a simple interval, and calculate it for a certain minimal
subshift.

2.1 Preliminaries

Notation

We use standard notation. In general, capital letters are either large integers or subsets
of AG, where A is a finite set, considered an alphabet, and G is N,Z,N2 or Z2. Letters
a, b, c, d are usually numbers, f, g, h functions, i, j, k, l,m, n indices or lengths, p, q rationals,
r, s, t reals, u, v, w, σ, τ strings in 2<ω, and x, y, z ∈ 2G where G is as before. The length of
a string σ is denoted |σ|. Concatenation of strings in 2ω is denoted by simply writing the
string names one after the other, for example σ1. We use σN to denote the concatenation
of σ N -many times. Finite strings are also called finite sequences. The notation σω refers to
the concatenation of σ infinitely many times to form an infinite sequence. For a finite or an
infinite sequence x, the notation x[a, b] refers to the finite sequence x(a)x(a+ 1) . . . x(b− 1).
The length of x[a, b] is b− a. If b ≥ |x|, then x[a, b] is not defined. In the special case when
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a = 0, we write x � b for x[a, b]. If σ = x[a, b] for some a, b, we say that σ is a subword of x
or σ appears in x.

If G = Zd and x ∈ AG then x � n refers to the d-dimensional array u ∈ A(2n−1)d such
that u is equal to the central block of x. We may also say u is a subword of x. Similarly, if
G = Nd and x ∈ AG, then x � n ∈ And .

If σ ∈ And for some n, then [σ] denotes {x ∈ ANd : x � n = σ}. Similarly, if σ ∈ A(2n−1)d

for some n, then [σ] denotes {x ∈ AZd : x � n = σ}. It will be clear form context whether N
or Z should be used. The sets AG have a natural topology whose basic open sets are the [σ].

Computability-Theoretic Notions

A real number s is right-recursively-enumerable, or right-r.e., if there is an algorithm pro-
ducing a decreasing sequence of rationals q0, q1, . . . such that limn→∞ qn = s.

If σ is a finite string, K(σ) refers to its prefix-free Kolmogorov complexity. For an intro-
duction to Kolmogorov complexity, see [18]. Informally, Kolmogorov complexity measures,
up to an additive constant factor, the number of bits of information contained in the string.
It satisfies the following properties, which can also be found in [18].

Proposition 2.1.1. There is a C such that for all n, K(n) ≤ 2 log n+ C.

Proposition 2.1.2. There is a C such that for all σ, τ ∈ 2<N,

K(στ) ≤ K(σ) +K(τ) + C.

Proposition 2.1.3. There is a C such that for all σ, τ ∈ 2<N,

K(σ, τ) = K(σ) +K(τ |σ∗)± C.

Proposition 2.1.4. There is a C such that for all σ, τ ∈ 2<N,

K(σ, τ) ≤ K(στ) +K(|τ |) + C.

Putting the last two propositions together gives,

Proposition 2.1.5. Letting C be large enough to satisfy the previous propositions, for all
σ, τ ,

K(στ) ≥ K(σ) +K(τ |σ∗)− 2 log |τ | − 3C.

Proof. Combining the last two propositions,

K(στ) +K(|τ |) + C ≥ K(σ) +K(τ |σ∗)− C
K(στ) ≥ K(σ) +K(τ |σ∗)−K(|τ |)− 2C

≥ K(σ) +K(τ |σ∗)− 2 log |τ | − 3C
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Though the constants C above may all be different, we choose one C larger than all of
them, and use it frequently later.

We will use the notion of effective dimension defined in [20]. An equivalent definition
[21] is:

Definition 2.1.1. The effective dimension of a sequence x ∈ 2ω is

dim(x) = lim inf
n→∞

K(x � n)

n
.

The packing dimension Dim(x) is defined similarly, using lim sup instead of lim inf.
Medvedev reducibility is a way of comparing two sets A,B ⊆ 2ω in terms of how compli-

cated it is to isolate an individual sequence from those sets.

Definition 2.1.2. Given C,B ⊆ AG, we say that C is Medvedev reducible to B, and write
C ≤w B, if there is a Turing functional Γ whose domain includes all of B such that for all
x ∈ B, Γ(x) ∈ C. If C ≤w B and B ≤w C then we say C and B are Medvedev equivalent
and write C ≡w B.

Note that Medvedev degree can apply to all finite A and previously mentioned G, not
just A = 2 and G = N. For the non-2N cases, assume a standard way of encoding the
elements of AG.

Subshifts, Conjugacy and Invariants

Let A be a finite set of symbols, considered as an alphabet. A subshift is a set X ⊆ AG

that is topologically closed and closed under the shift operation, where G = Nd or Zd, where
d = 1, 2, . . . . In general there are d shift operations to be closed under, on for each direction.
It can be shown that a subshift may be characterized by its set of forbidden strings, that is,
F = {σ : for all x ∈ X, σ does not appear in x} may be used to define X in the sense that
X = {x ∈ AG : no string of F appears in x}. If F is empty, X = AG and this shift is called
the full shift. If X is not the full shift, then some σ is forbidden, and as a result infinitely
many other strings are forbidden (all those which contain σ as a subword.) However, a finite
set F can still be used to define a shift

XF = {x ∈ AG : no string of F appears in x},

and if X can be defined in this way, it is called a shift of finite type

Definition 2.1.3. A subshift X ⊆ 2G is called a shift of finite type if it may be written as
X = {x ∈ 2G : no string of F appears in x} for some finite set of strings F .

Two subshifts X, Y ⊆ 2G are topologically conjugate if there is a shift-invariant home-
omorphism h : X → Y . The conjugation function h is in fact a finite object because the
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compactness of the spaces brings a finiteness to the action of h on X near zero, and the shift-
invariance then defines h everywhere else. Therefore, the function h is also called a sliding
block code because the ith bit of y = h(x) ∈ Y may be determined from x[i−N, i + N ] for
a fixed sufficiently large N , and so one could imagine sliding a 2N -sized window over x and
using the block visible in the window to read off the appropriate symbol of y. For details
and the proof of the following, we refer the reader to [19].

Proposition 2.1.6. The property of being a shift of finite type is invariant under conjugacy.

Despite the simplicity of the conjugation functions, equivalence of subshifts under con-
jugacy is a universal Borel equivalence relation [4].

Conjugacy invariants are studied both for the satisfaction of curiosity about the properties
of various subshifts, and as a way to tell when two subshifts are not conjugate. By [4] there
will be no simple invariant that exactly captures conjugacy, however.

A very important invariant is the entropy.

Definition 2.1.4. The entropy of a subshift X ⊆ AG is defined as

ent(X) = lim
n→∞

log |{x � n : x ∈ X}|
|Fn|

,

where |Fn| depends on G, and is the number of symbols in x � n. For G = Nd, Fn = nd; for
G = Zd, Fn = (2n− 1)d.

The entropy measures the rate of growth of the number of permitted strings of length n
as n goes to infinity. For example, the full shift on 2N has entropy 1. It is well-known that
the limit which defines the entropy is decreasing.

Another subshift invariant is the Medvedev degree. If two subshifts are topologically
conjugate, then they have the same Medvedev degree because the homeomorphism that
witnesses their conjugacy is both computable and computably invertible. Therefore, this
function also witnesses the Medvedev equivalence.

A useful operation one can do with subshifts is to take their product. Given two subshifts
X ⊆ AG and Y ⊆ BG, where G is the same for both subshifts and A and B are any two
finite alphabets, the product shift X × Y is {x× y : x ∈ X and y ∈ Y }, where x× y is the
trajectory of (A× B)G satisfying (x× y)(n) = (x(n), y(n)). One may verify that this set is
closed and shift invariant. We now consider the entropy and Medvedev degree of product
shifts.

It is well-known that ent(X, Y ) = ent(X) + ent(Y ), and it follows from the complete
independence of the x and y parts of any element of X × Y . One may calculate:

ent(X × Y ) = lim
n→∞

log |{x× y � n : x× y ∈ X × Y }|
n

= lim
n→∞

log |{x � n : x ∈ X}| · |{y � n : y ∈ Y }|
n

= lim
n→∞

log |{x � n : x ∈ X}|+ log |{y � n : y ∈ Y }|
n

= ent(X) + ent(Y ).
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As for the Medvedev degree, we can say that if X has a computable element x0, (that is,
X has Medvedev degree 0), then X × Y is Medvedev equivalent to Y . For given any x× y
in X × Y , one may trivially extract its y part; and given any y ∈ Y , one may computably
produce x0 × y.
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2.2 Entropy of subshifts

Any number in [0,∞) can be the entropy of a subshift, but certain restrictions, such as
having the set of forbidden words be computably enumerable, or being a shift of finite type,
also put restrictions on the possible values for the entropy. This section summarizes what
is known about the possible values the entropy of a subshift can take subject to various
restrictions. References are provided for everything but the development of the density-r
subshifts; the author expects that they would be known to the community, but is not aware
of a source.

In one dimension

Let us consider first the case of one dimension, soG = N or Z. Without any other restrictions,
the set of possible entropies is [0,∞). Because the full shift 2G has entropy 1, if Xr has
entropy r ∈ [0, 1), then X × (2G)n has entropy n + r, where n = 0, 1, 2, . . . . Therefore, it
suffices to show that for any r ∈ [0, 1), there is a subshift Xr with entropy r.

We construct a subshift on 2ω with the strategy of only using a fraction r of the total bits
to encode information. This strategy was already used in [11] to construct shifts in Cantor
space of every entropy r ∈ [0, 1], but we organize the coding bits differently here.

Let {ρi}0<i<ω be any sequence of 0s and 1s. Intuitively, an example of a sequence X of
effective dimension s =

∑∞
i=1 ρi2

−i is one for which X(n) = 0 whenever n ≡ 2i−1( mod 2i)
for an i such that ρi = 0, and where the remaining bits of X are taken from a sequence of
effective dimension one. We would like a subshift with includes all the shifts of sequences of
this form for {ρi}0<i<∞ with

∑∞
i=1 ρi2

−i ≤ r. Thus

Definition 2.2.1. The density-r subshift Xr ⊆ 2G is defined as follows. Given σ and k (the
amount to shift), let ρi = 1 if σ(j) = 1 for any j in range such that j − k ≡ 2i−1 mod 2i. If
σ(j) = 0 for all such j, let ρi = 0. The ρi depend on k and σ, but context will always resolve
the ambiguity.

Let Xr be the subshift obtained by forbidding σ if for all k,
∑∞

i=1 ρi2
−i > r.

Note that almost 2|σ| values of k need to be checked. Therefore, if r is right-r.e., then
the set of forbidden strings is computably enumerable, so Xr is a Π0

1 subshift.

Proposition 2.2.1. The entropy of Xr is r.

Proof. Let r =
∑∞

i=1 τi2
−i. If r is a dyadic rational, chose the expression which ends in

zeros. For a lower bound on the entropy, we will count those strings σ which satisfy σ(j) = 0
whenever j ≡ 2i−1( mod 2i) and τi = 0. Such σ are permitted words regardless of what is
encoded in their “free” bits. Let f(n) denote the number of free bits in a string of length n

under this scheme. Then limn→∞
f(n)
n

= r, so

ent(Xr) = lim
n→∞

log |Xr � n|
n

≥ lim
n→∞

log 2f(n)

n
= lim

n→∞

f(n)

n
= r.
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Now we find an upper bound on the entropy. For any σ, writing k = a0+21a1+ · · ·+2lal,
where each ai ∈ {0, 1}, one may observe that the choice of a0 determines which half of the
bits of σ to use to evaluate ρ1, and in general, the choice of ai determines which half of the
so-far-unused bits of σ to use to evaluate ρi+1. Therefore, whenever it is possible to choose
ai0 so that ρi0+1 = 0, it is also possible to choose the other value for ai0 , guaranteeing ρi = 0
for all i > i0 + 1.

Therefore, if σ and k are such that
∑∞

i=1 ρi2
−i ≤ r, it is possible to choose k′ so that

(associating the ρi to k and the ρ′i to k′)
∑∞

i=1 ρ
′
i2
−i ≤

∑∞
i=1 τi2

−i = r with the additional
restriction that ρ′i ≤ τi for each i. If

∑∞
i=1 ρi2

−i < r, but ρi > τi for some i, let i0 be least such
that ρi0 = 0 and τi0 = 1. We know i0 exists because

∑
ρi2
−i <

∑
τi2
−i, and furthermore

is the first index at which ρi and τi differ. Let k′ = k + 2i0−1. Then ρ′i0 = 1 = τi0 , and
ρ′i = 0 ≤ τi for all i > i0. If

∑∞
i=1 ρi2

−i = r, then both are dyadic rationals and both are
finite sums, so ρi = τi for all i already.

Based on the above, when counting the number of permissible strings σ of length n, it
suffices to consider all choices of k, and all choices of σ which satisfy ρi ≤ τi for the given k.

For any n, there are at most 2n choices of k which have distinct residues mod 2, 4, . . . , 2dlogne.
Let g(n) be the maximum, taken over all values of k, of the number of free bits a string σ
can have while satisfying j − k ≡ 2i−1( mod 2i) and τi = 0 =⇒ σ(j) = 0. Note that

limn→∞
g(n)
n

= r. Then for each value of k there are at most 2g(n) strings σ permitted by
that k, so

ent(Xr) = lim
n→∞

log |Xr � n|
n

≤ lim
n→∞

log 2n2g(n)

n
= lim

n→∞

log 2n

n
+
g(n)

n
= r.

The construction of Xr provides answers to two more questions about how the entropy
characterization changes when restrictions are made on what type of subshift can be used.
Because any subshift on 2G has entropy at most 1, and each Xr ∈ 2G, we see that the
entropies of the subshifts in 2G are exactly the numbers in [0, 1]. Furthermore, by the
definition of the entropy together with the that the limit in that definition is decreasing,
it is clear that if a subshift in one dimension is Π0

1, then its entropy is right-r.e. Going in
the other direction, if r is right-r.e., then the Xr defined above is Π0

1, as one may verify by
checking its definition.

One-dimensional shifts of finite type

When we restrict X to be a shift of finite type, the situation becomes significantly more
restricted. The entropies of the shifts of finite type are exactly the rational multiples of
logarithms of Perron numbers (see e.g. [19] for the definition and discussion). The entropy
of an SFT can be effectively computed, because it is the logarithm of the spectral radius
of a certain matrix associated with the SFT. Because the graph underlying this matrix will
interest us later, we present some standard ways of analyzing one-dimensional SFTs here.
For more details, see [19].
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The nth higher block shift of a subshift X ⊆ 2G, where G is N or Z, is

X [n] = {{xji}i<n,j∈G ∈ (An)G : for all j, xj0 . . . x
j
n−1 is a permitted word of X

and xji+1 = xj+1
i whenever the value of the indices are in range}.

One may verify that X [n] is a subshift and that it is naturally conjugate to X. Thus it has
the same entropy.

If X is an SFT, consider X [n] when n is longer than the longest forbidden word of X.
Let B ⊆ An be the collection of permitted words from An; these are the symbols of X [n]. So
X [n] ⊆ BG, and X [n] is not only a shift of finite type, but it is what is called a one-step shift of
finite type, meaning that it can be characterized by its length-2 forbidden words. Therefore,
one could describe X [n] by a directed graph whose nodes are in one-to-one correspondence
with the elements of B, and for u, v ∈ B, an arrow begins at u and terminates in v if and
only if uv is a permitted word of X [n]. The set of all infinite or bi-infinite (according to
whether G = N or Z) paths through this graph is exactly X [n]. The adjacency matrix of this
graph is the matrix from whose spectral radius one may compute the entropy of the SFT.
For details, see [19].

In two dimensions

In two dimensions, it is still true that the product of any shift with the full shift results in an
increase by one in the entropy, so it suffices to consider only entropies in [0, 1]. Within that
restriction, it is possible to make density-r subshifts just as in the one-dimensional case.

Definition 2.2.2. Let G = Z2 or N2. The density-r subshift Xr ⊆ 2G is defined as follows.
Given σ ∈ 2n

2
and k (the amount to shift in one dimension), let ρi = 1 if σ(j0, j1) = 1

for any j0, j1 in range such that j0 − k ≡ 2i−1( mod 2i). If σ(j0, j1) = 0 for all such j, let
ρi = 0.

Let Xr be the subshift obtained by forbidding σ if for all k,
∑∞

i=1 ρi2
−i > r.

The only difference between this and the one-dimensional denity-r subhift is that in-
stead of free bits and constrained-to-zero bits, we have free columns and constrained-to-zero
columns. With proofs almost identical to the one-dimensional case, we may see that in two
dimensions also Xr has entropy r, that every entropy in [0, 1] is obtainable with only two
symbols, and that the right-r.e. r correspond to the Π0

1 Xr.

Two-dimensional shifts of finite type

The problem of characterizing the entropies of multidimensional SFTs was open until [13]
in 2010. In sharp contrast to the algebraic characterization of the entropies of the one-
dimensional SFTs, the characterization in the multidimensional case is recursion-theoretic.

Theorem 13. (Hochman-Meyerovitch) The entropies of the d-dimensional shifts of finite
type for d ≥ 2 are exactly the right-r.e. numbers.
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The method of the proof was to encode the workings of a certain Turing machine into the
rules of the SFT, a Turing machine which in turn would enforce a structure on the SFT to
make it act like one of the two-dimensional density-r subshifts above. It was already known
how to force elements of an two-dimensional SFT to encode computations (see e.g. [28, 24,
25, 10]); the novelty was to use those computations to control the entropy of the subshift
that resulted.

One constant source of technical difficulty in the encoding of Turing machines in SFTs
is that one must balance the need for assuring that there every element of the SFT contains
some computation (meaning new computations must be begun at regular spatial intervals)
and the need for ensuring that computations of arbitrary size can exist. The usual solution,
first described in [28], is to pepper the tilings sparsely with computations of various sizes,
spread apart so that larger computations can use the space left behind by smaller computa-
tions. One technical device for making such constructions easy, which we will also use, is a
substitution construction. The following is paraphrased from [13]:

Let G = Z2. A substitution rule is a map s : A→ Ak
2

which sends each symbol of A to
a k × k block of symbols of A. One may iterate the rule by applying it to each symbol of
the resulting block. so that sn : A→ A(kn)2 . Define a subshift W ⊆ AG by saying that σ is
forbidden in W if there is no sn(a) in which it appears as a subword. Define s∞ : W → W
so that s∞(x) is the result of replacing each symbol in x with its image under s. (So the
image of each sub-block increases in size by a factor of k2.) Say that x is derived from y
if s∞(y) = x, where it is permitted to first shift x less than k vertically and horizontally
in order to get it to “line up” with s∞(y). Each x is derived from some y, and if this y is
unique then we say s has unique derivation. Then using crucially a theorem of Mozes [24],
Hochman and Meyerovitch showed the following:

Proposition 2.2.2. Let s : A → Ak
2

be a substitution rule with unique derivation and let
W be the associated subshift. Then there exists an alphabet ∆, a SFT W̃ ⊆ ∆G, and a map
ϕ : ∆→ A such that ϕ(W̃ ) = W . Furthermore, ent(W̃ ) = 0.

In other words, one may define a subshift W as above using a substitution rule and be
able to treat it as a SFT with entropy zero, the only difference being that there are finitely
many versions of each symbol of W and the SFT may have different rules for each. We will
use substitution to create a subshift that includes computations in the next section.
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2.3 Medvedev degree of subshifts

In this section we review what is known about the Medvedev degrees of one-dimensional Π0
1

subshifts and two-dimensional SFTs. In short, it was known that every Medvedev degree
not immediately prohibited is possible ([32, 23]). Our contribution is to notice (in the one-
dimensional case) and reconstruct (in the two-dimensional case) such subshifts with zero
entropy.

Medvedev subshifts

Simpson [31] showed that there is a two-dimensional SFT in every Π0
1 Medvedev degree, and

asked whether there was a one-dimensional Π0
1 subshift in every Π0

1 Medvedev degree. Miller
answered this in [23] with the following family of subshifts, one for each Π0

1 class. We present
the construction here because later we will modify it to prove that the Medvedev degree of
a subshift is independent from its entropy.

The idea behind the construction is this. For a given Π0
1 class P , each element y ∈ P

will be encoded into some x ∈ MP by ensuring that every bit of y is coded into the tail
of x, and that these bits can be recovered from any tail of x. To encode the first bit of y
into the tail of x, we demand that x be an infinite concatenation of certain words abb, abbb
if y(0) = 0, and certain other words baa, baaa if y(1) = 1, where a and b are chosen so that
the two possibilities can be distinguished (for example, a = 0, b = 1.) Subsequent bits are
encoded by placing restrictions on the order in which abb, abbb (respectively baa, baaa) can
be concatenated.

More formally, let λ denote the empty string. Fix aλ, bλ ∈ 2<ω with a self-aligning
property: for every sufficiently long σ, if σ is a subword of c0c1 . . . , ck, ci ∈ {aλ, bλ}, then the
word boundaries of the ci contained in σ may be uniquely determined from σ. For example,
Miller used aλ = 0, bλ = 1. Later we will use aλ = 0, bλ = 1N for some large N .

Proceeding by induction, define

aσ0 = aσbσbσ bσ0 = aσbσbσbσ
aσ1 = bσaσaσ bσ1 = bσaσaσaσ

Definition 2.3.1 (Miller). Given a closed set P ⊆ 2ω, let its Medvedev subshift MP be the
subshift for which the following words are forbidden:

1. Any word which cannot be parsed as a subword of a concatenation of aλ and bλ.

2. For each σ, forbid aσaσaσaσ, aσaσbσbσ, aσbσaσbσ

3. For each σ, forbid the same strings as above, but with a and b reversed.

4. For each σ 6∈ P , forbid aσ, bσ.
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Lemma 2.3.1. If x ∈ MP , then for every n, there is a unique σn of length n so that x
eventually consists of a concatenation of the words aσ, bσ. Furthermore, all such σ are
comparable.

Proof. Proceeding by induction on n, we start with n = 0. The prohibition on words that
cannot be parsed as a concatenation of aλ and bλ, together with the self-aligning condition
on these words, guarantees that each x ∈ MP is eventually a concatenation of aλ and bλ.
Now suppose that each x ∈ MP is eventually a concatenation of aσ and bσ. By the second
and third prohibitions, two occurrences of aσ must be followed by either bσ or aσbσ; this
bσ must be followed by at least two, but not more than three, aσ. Another way of stating
these restrictions is that whenever aσaσ occurs in x, the rest of x from then on must be a
concatenation of bσaσaσ and bσaσaσaσ, and the parallel fact is true if ever bσbσ occurs in x.
Exactly one of these two must occur. So x is either a concatenation of aσ0, bσ0, or of aσ1, bσ1.
To see that x is not additionally eventually parseable as a concatenation of aτ , bτ for σ 6≺ τ ,
observe that aσ is not a subword of any concatenation of aτ , bτ for such τ .

Proposition 2.3.2. The subshift MP is Medvedev equivalent to P .

Proof. To each x in MP , one may effectively associate a y ∈ 2ω by

y = ∪{σ : x is eventually a concatenation of aσ and bσ}.

The effectiveness follows from the above observation that the first occurrence of aσaσ (re-
spectively bσbσ) guarantees the eventual concatenation of aσ1, bσ1 (respectively aσ0, bσ0). To
see that y is in P , observe that since aσ, bσ occur in y, the fourth prohibition implies that
σ ∈ P .

Conversely, if y ∈ P , then ∪n>0ay�n ∈MP . For more details, see [23].

Note that we have not yet made any restriction on the complexity of P , so in fact there
are subshifts in every Medvedev degree which contains a closed set. If P is a Π0

1 class, then
one may observe that the set of forbidden sequences is computably enumerable, and so MP

is a Π0
1 subshift, which was Miller’s original goal. He had no need to analyze the entropy of

the subshifts he produced, but we will use the following fact.

Proposition 2.3.3. The subshifts MP all have entropy 0.

Proof. For each x ∈MP , and for each k, there is a σ of length k such that except for a finite
initial segment, x is made of concatenations of aσ and bσ, where |aσ|, |bσ| > k. Therefore,
the effective dimension of x is less than 1

k
. Since this is true for all k, the effective dimension

of x is 0. Since x was arbitrary, supx∈MP
dim(x) = 0. Therefore, the constructive dimension

of MP is zero, so ent(MP ) = 0.

The existence of a zero entropy two-dimensional SFT with arbitrary Medvedev degree is
almost guaranteed by [31, 25, 28], but in those papers the authors did not have any reason
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to consider the entropy, and their construction happens to have positive entropy. Below we
will, for completeness, give a version of that proof that results in zero entropy.

We closely follow the Hochman and Meyerovitch construction because in that construc-
tion the entropy is very carefully controlled, adding in the ideas of [31, 25] to get the result.

Definition 2.3.2. The subshift of boards B is defined as follows.
Construct an SFT W̃ by substitution using the following rules:

1. → , → , and their 180◦ rotations.

2. → and →

3. → , and its other three rotations.

4. → , and its 180◦ rotation.

5. → , → , and →

Let Ov be the shift with two symbols l and m, and the constraint that l and m cannot

appear horizontally next to each other. Let B = Ov × W̃ .

By Proposition 2.2.2, W̃ has zero entropy. The restriction on Ov implies that all its
elements are constant on columns. Because an n×n square has only 2n ways to satisfy these
restrictions, Ov has entropy zero. Therefore, ent(B) = O. In Section 7 of [13], it is described
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how to superimpose the action of a Turing machine on a certain SFT named X × R̃ in their
paper. While X × R̃ 6= B, the two shifts are very similar, and many of the same conclusions
hold for the same reasons. In particular,

Proposition 2.3.4 (Proposition 7.1 of [13]). given a Turing machine T , there exists an SFT
YT superimposed over B such that the following are equivalent:

1. (x, r) ∈ B is represented in YT .

2. For each finite or infinite board induced by r and containing the symbol corner-slash,
when T is run on the sequence of 0’s and 1’s induced by the l’s and m’s of x on the
board, the number of steps it runs without halting is at least equal to the number of
rows in the board.

Furthermore, ent(YT ) = O.

Proof. See the proof of Proposition 7.1 in [13].

It is clear that the same is true of B ×Ov if the Turing machine T should read from the
oracles.

For the purposes of exhibiting two-dimensional, zero-entropy SFTs in each Π0
1 Medvedev

degree, it will be necessary to synchronize the oracles as in [25].
Analogous to Proposition 2.3.4 we have

Proposition 2.3.5. Given a Turing machine T , there exists an SFT YT superimposed over
B such that the following are equivalent:

1. (x, r) ∈ B is represented in YT .

2. For each finite board induced by r and containing the symbol corner-slash, the sequences
of 0’s and 1’s induced by the l’s and m’s of x on the boards are all compatible, and
their union is an oracle O on which T does not halt; and if there is an infinite board
induced by r containing corner-slash, T does not halt on the sequence of 0’s and 1’s
induced by Ov on it.

Furthermore, ent(YT ) = 0 and for any oracle O on which T runs forever, there is (x, r) ∈ B
represented in YT such that an initial segment of O is induced by x on each finite board
induced by r.

Proof. First note that in any element z ∈ B, the columns and rows are naturally partitioned
into “0-board columns”, “1-board column”, etc., and similarly for rows. Formally, a column
of z is an n-board column if n is the least number such that sn(�) appears as a subword
of z that intersects the given column in z. A parallel criterion defines an n-board row. See
Figure 2.1.

The n-board columns of z ∈ B are exactly the columns which induce the oracle of the
n-boards.



CHAPTER 2. COMPUTABILITY IN SUBSHIFTS 67

n
j

(2, 15)
(2, 14)
(0, 0)
(2, 13)
(2, 12)

2 2 0 2 2
0 1 0 2 3

2 2 0 2 2
4 5 0 6 7

1 1 0 1 1
0 1 0 2 3

2 2 0 2 2
4 5 0 6 7

2 2 0 2 2
12 13 0 14 15

(2, 11)
(2, 10)
(0, 0)
(2, 9)
(2, 8)
(1, 3)
(1, 2)
(0, 0)
(1, 1)
(1, 0)
(2, 7)
(2, 6)
(0, 0)
(2, 5)
(2, 4)
(2, 3)
(2, 2)
(0, 0)
(2, 1)
(2, 0)

Figure 2.1: The tiles of s2(�) with the (n, j)-rows and -columns labeled.

Notice, the subshift R̃ of Hochman and Meyerovitch does not have the property that the
columns used by n-boards for their oracle are distinct from the columns used by m-boards
for their oracle when m 6= n, because they used

→ .

Instead, we use

→ .

This property can be proved by induction on n, using the fact that sk(�) appears with the
period sk in both dimensions in sn(�) for n > k and sk(�) appears nowhere else in sn(�)
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(the latter is not true in [13] because of the difference pictured above).
The columns and rows can be further subdivided into the (n, j) columns and (n, j) rows,

where n indicates the board size to which the column/row belongs, and j indicates how
many n-columns or n-rows appear to the left of or below the given column or row in sn(�).
So for example, when n = 1, j ranges from 0 to 3. One may verify by induction on n that
the choice of j is well-defined. See Figure 2.1.

Let Oh be the shift on ↔, ⇔ which is just Ov rotated 90 degrees. Consider the shift B̂
which is a subset of the product shift Oh × B, adding the additional constraint that on ,

, and �, the column and row markings from Oh and Ov must agree, either l and ↔, or
m and ⇔. It is immediate that B̂ has zero entropy.

The constraints imposed by , , � and fall into two categories. First we consider
the effect of the , , and �. By induction on the size of sn(�) needed to identify the (n, j)
label of the column or row, if one of these tiles occurs on an (n, j) column, then it must also
occur in an (n, j) row and vice versa. Furthermore, every (n, j) column and every (n, j) row
intersect in such a tile. Therefore, the , , and � tiles link exactly the (n, j) rows and
columns together, so that there is one (n, j)-label (either 0 or 1, as represented by l or m)
which is shared by all (n, j) rows and columns. And the ’s, ’s and �’s place no other
restrictions on rows and columns of finite boards.

The second kind of constraint is a . Again by induction one may show that when a
occurs in a (n, j) row, its column is an (n+ 1, j)-column. And for every n and j < 4n, there
is at least one place where this happens. Therefore, the effect of the ’s is to link the values
carried by the (n, j) and (m, j) rows and columns for any finite n and m. The may also
exist in an infinite-board row (respectively column) but in that case it must also exist in an
infinite-board column (respectively row). Thus it imposes no restraint on the finite rows and
columns.

Now for any O ∈ 2N, there is B̂ such that O(j) and the markings on each (n, j) column
and row agree. And conversely, in any element of B̂, the sequences of 0’s and 1’s induced
on each finite board are all compatible. Then by applying Proposition 2.3.4 to B̂, we obtain
YT satisfying the equivalences and ent(YT ) = 0.

Finally, if O is an oracle on which T runs forever, let z ∈ B̂ be such that O(j) agrees
with the common marking on all the (n, j) columns and rows, and such that there are no
infinite rows. Then by the equivalence just proved, z is represented in YT .

Now we are ready to re-prove Simpson’s result using an SFT with zero entropy.

Proposition 2.3.6. Given any Π0
1 class P , there is a two-dimensional SFT with zero entropy

that is Medvedev equivalent to P .

Proof. Let a Π0
1 class P be given. Let T be the Turing machine that halts if its oracle leaves

P0.
Let MP = YT from Proposition 2.3.5. We claim that MP is Medvedev equivalent to P .

Given an arbitrary x ∈ YT , the common oracle O for the finite boards may be uniformly
read off of it, and by Proposition 2.3.5 T does not halt on O, so O ∈ P . On the other hand,
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given any element O ∈ P , one may compute a tiling which has O as the common oracle of
the finite boards and has no infinite boards.

Thus we have assured the existence of a two-dimensional shift of finite type with zero
entropy in any Π0

1 Medvedev degree.
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2.4 Entropy and effective dimension

In this section we introduce a theorem of Simpson relating effective dimension and entropy
of subshifts, and we give an elementary proof of a special case. We also discuss shift-complex
sequences and what they reveal about the entropy of related subshifts.

An element of maximal dimension

The entropy of a subshift is related to effective dimension through the following theorem
of Simpson [32]. Recall that dim(x) is the effective dimension of x. If x ∈ AZd then

dim(x) = limn→∞
K(x�n)
(2n−1)d and similarly for G = N.

Theorem 14 (Simpson). Let X ⊆ AG be a subshift, where G = Nd or G = Zd. Then
{dimx : x ∈ X} has a maximum element, and max{dimx : x ∈ X} = ent(X).

The proof required the use of measure-theoretic entropy. Simpson asked whether there as
a more elementary proof. Here we note that there is an elementary proof in the case G = N,
using an argument very similar to the ones Furstenburg had used to prove that the entropy
of a subshift on AN was equal to its Hausdorff dimension.

Simpson had considered a general measure of complexity, speaking simultaneously both
of prefix free and plain Kolmogorov complexity, and some other variants as well. In the
below we assume prefix-free Kolmogorov complexity, but because all the universal measures
of complexity differ from each other by at most a logarithmic factor, the effective dimension
calculated by all of them is the same. We will use the fact that ent(X) is an upper bound
on the effective dimensions (in fact, on the packing dimensions) of x ∈ X.

Lemma 2.4.1 (Simpson). Let X ⊆ AG be a subshift. Then for any x ∈ X,

lim sup
n→∞

K(x � n)

|x � n|
≤ ent(X).

Now here is the alternate proof of Simpson’s result for the case G = N.

Proposition 2.4.2 (Simpson). If X ⊆ 2N is a subshift, then there is an x ∈ X for which
dim(x) = ent(X).

Proof. The idea is similar to Furstenburg’s proof that ent(X) = dim(X) for X ⊆ AN.
First, any x ∈ X with the property that K(x � n)/n ≥ ent(X) for all n also satisfies
limn→∞K(x � n)/n = ent(X), by Lemma 2.4.1. Now for contradiction, assume there is no
x with this property. Then there is a finite set I ⊂ A<N such that ∪σ∈I [σ] covers X, and for

each σ ∈ I, K(σ)/|σ| < ent(X). Since I is finite, let s < ent(X) be such that K(σ)
|σ| ≤ s for

σ ∈ I. We will show ent(X) ≤ s to get the contradiction.
Let m be the maximum length of σ ∈ I. Fix any z ∈ X and make a code for z � n as

follows. Using σi from I, write z � n as σ1 + ...+ σk, where the latter is too long by at most
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m. Then in the code, give first a prefix free description of n (so that the universal machine
knows when to stop reading) and then, in order, the optimal prefix free codes for σ1, ..., σk.
The universal machine can recover z from this information by reading the codes for σi and
appending them until it has read enough codes to fill n bits. Calculating the complexity of
this code:

K(z � n) < C + log n+K(σ1) + ...+K(σk)

≤ C + log n+ s(|σ1|+ ...+ |σk|)
< C + log n+ s(n+m).

This bound holds for any z ∈ X. Therefore, there are at most 2C+logn+s(n+m) permitted
strings of length n in X. Thus

lim
n→∞

log(|{x � n : x ∈ X}|)
n

≤ lim
n→∞

C + log n+ s(n+m)

n
= s.

An alternate proof for the multidimensional case would complete the picture.

Shift Complex Subshifts

A nice family of example subshifts comes from the notion of shift-complex sequences, which
were introduced in [5]. A good survey is [15].

Definition 2.4.1. An x ∈ 2N is (d, b)-shift-complex if for any σ appearing as a subword of
x, K(σ) ≥ d|σ| − b. An x ∈ 2N is d-shift-complex if there is a b for which x is (d, b)-shift-
complex.

The existence of a d-shift-complex sequence for any d < 1 was established by [5]. Miller
[23] gave an alternative proof in which he showed that for each d there is a b such that the set
Sd,b of (d, b)-shift-complex sequences is a nonempty subshift. The reader may directly verify
that each such set is a subshift, so the work is to show that one is nonempty. Because the
effective dimension of every d-shift-complex sequence is at least d, by Theorem 14 we have
d as a lower bound of the entropy of Sd,b whenever this subshift is non-empty. In general,
the entropy of this subshift depends on the universal machine used.

We will build on the method of proof of the following result:

Theorem 15 (Hirschfeldt and Kach [12]). For every d ∈ (0, 1), there is a d-shift-complex
sequence with packing dimension d.

By controlling the packing dimension, they guarantee that the effective dimension of the
resulting sequence is also d.
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2.5 Orthogonality of entropy and Medvedev degree

In this section we show that entropy and Medvedev degree of subshifts are quite independent
by constructing subshifts of every possible combination of the two, while varying the dimen-
sion of the subshift, the number of symbols, and the presence of computability restrictions.
The main difficulty is in passing from multiple symbols to two symbols.

In one dimension

Proposition 2.5.1. For any r ∈ [0,∞), and any closed set P , there is a one-dimensional
subshift Medvedev equivalent to P with entropy r. Furthermore, if r is right-r.e., and P is a
Π0

1 class, the subshift may be made Π0
1. If r ∈ [0, 1), the subshift may be found in 2G, where

G = N or Z.

If one does not include the restriction that the subshift must exist on two symbols if
r ∈ [0, 1), the proof is much simpler, so we give that first.

Proposition 2.5.2. For any r ∈ [0,∞) and any closed set P ⊆ 2ω, there is a one-
dimensional subshift Medvedev equivalent to P withe entropy r.

Proof. By taking the product with as many full shifts as needed (each contributes entropy 1),
we may assume that r ∈ [0, 1). By Definition 2.3.1 and Proposition 2.3.2, for every closed set
P there is a zero-entropy subshift MP in 2N Medvedev equivalent to P . On the other hand,
for every r ∈ [0, 1), the density-r subshift has entropy r. By taking the product MP×Xr and
noting that the density-r subshift does contain a computable element, we obtain a subshift
of entropy r which is Medvedev equivalent to P .

The difficulty in repeating the above using only two symbols is that a product of subshifts
results in a minimum of four symbols. So we cannot make the Medvedev portion and the
entropy portion of our subshift completely independent anymore. Instead, we reserve some
small-density fraction of the bits in the subshift for Medvedev-related encoding, and use
the rest for entropy. We interleave a subshift MP with a subshift Xr′ , where MP has the
appropriate Medvedev degree and r′ > r is precisely the right size to compensate for the loss
of entropy when we reserve some density of bits for encoding MP .

Note that when one is restricted to two symbols, the only subshift with entropy 1 is
the full shift, so the Medvedev degree can only be zero for that entropy. This is why the
restriction to r ∈ [0, 1) is necessary.

Proof of Proposition 2.5.1. Let r ∈ [0, 1) be given. Fix N odd and large enough that N
N−1r <

1. Let r′ = N
N−1r. We build a subshift X with the idea that its trajectories x should be of

the form

x(j) =

{
m( j−l

N
) if j ≡ l mod N

y(j) otherwise
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where l < N is fixed but arbitrary, y is a trajectory from the density-r′ subshift Xr′ , and m
is a trajectory from a subshift MP defined as in 2.3.1. Because of the choice of the subshift
from which m is drawn, it will be possible to compute, uniformly in x, the value l. Because
m has no information content, its presence overwriting bits of y will decrease the information
content of x, and we will show that this decrease is exactly by a factor of N−1

N
. Now we give

a formal definition of the subshift X.
Let MP be a subshift defined as in 2.3.1, using aλ = 0 and bλ = 12i0 where i0 is least

such that τi0 = 0 in the decomposition r′ =
∑∞

i=1 τi2
−i (choose the decomposition ending in

zeros has been chosen if r′ is a dyadic rational). The purpose of making long strings of 1s is
to be able to later identify which bits came from MP .

Let X be the subshift defined by the following set of forbidden strings. Given a string
σ, consider for each l < N the subsampled string σm = σ(l)σ(l +N)σ(l + 2N) . . . σ(l + pN)
and its “background” σy = σ[0, l]0σ[l+ 1, l+N ]0σ[l+N + 1, l+ 2N ]0 . . . 0σ[l+ pN + 1, |σ|1].
We say the alignment l fails if σm is forbidden in MP or σy is forbidden in Xr′ . If all of the
alignments fail, we forbid σ.

Note that if r is right-r.e., then r′ is as well, and if P is a Π0
1 class, then X is also Π0

1.
First we check the entropy of X. The key observation is that because the chosen N is

odd, it is relatively prime to 2i for all i. Proceeding as in the proof of the entropy of Xr,
let us first compute a lower bound on the entropy by considering only those σ which are
permitted with

1. Alignment l = 0

2. σy belongs to Xr′ with shift k = 0 and τi = 0 implies σy(j) = 0 for all j ≡ 2i−1(
mod 2i).

3. Anything can happen in σy on bits not constrained by the above, or by the σy(bN) = 0
restriction.

If it were not for the fact that σy(bN) = 0 for this alignment, the number of free bits in
σy would take up approximately r′ of the length of σy. To take that additional restriction
into account, first note that the free bits f(n) in a string of length n and shift 0 before that
restriction may be broken down as

f(n) =
∑

i<∞:τi=1

|{j < n : j ≡ 2i−1( mod 2i)}|,

and limn→∞
f(n)
n

= r′. Since N and 2i are relatively prime,the set of j ≡ 0 mod N has
density 1

N
in {j : j ≡ 2i−1( mod 2i)}. So the number of actual free bits f ′(n) on a string of



CHAPTER 2. COMPUTABILITY IN SUBSHIFTS 74

length n under the additional restriction σ(bN) = 0 satisfies

f ′(n) =
∑

i<∞:τi=1

|{j < n : j ≡ 2i−1( mod 2i) and j 6≡ 0 mod N}|

≤
∑

i<dlogne:τi=1

(
N − 1

N
|{j < n : j ≡ 2i−1( mod 2i)}|+ 1

)
=
N − 1

N
f(n) + dlog ne.

Therefore,

ent(X) = lim
n→∞

log |X � n|
n

≤ lim
n→∞

log |MP � n
N
|+ log 2f

′(n)

n

= lim
n→∞

N
log |MP � n

N
|

n
N

+
N−1
N
f(n) + log n

n

= 0 +
N − 1

N
r′ = r

On the other hand, if we overcount by considering

1. All values of l < N

2. All values of k which result in a distinct partitioning of the bits (at most 2n values of
k)

define g′(n) as the maximum number of free bits a string of length n with any alignment
l and shift k can have under

∑∞
i=1 τi2

−i, then |X � n| ≤ |MP � n
N
| · 2g′(n) · N · 2n where

limn→∞
g′(n)
n

= N−1
N
r′ = r. So

ent(X) ≤ 1

N
ent(MP ) + r = r.

Finally, we must verify the Medvedev equivalence. Since 0ω ∈ Xr′ , any element of MP

computes an element of X by just placing the bits of a trajectory of MP on every Nth bit
and zeros otherwise. On the other hand, given a trajectory x ∈ X we may uniformly find
an l which allows us to recover a trajectory m ∈MP as follows. The idea is that due to the
very long strings of 1s in the starting words for MP , for a sufficiently long σ there will be
only one l that could possibly be the alignment of the m part. Again because N and 2i are
relatively prime, any sufficiently long σ will have at least 2i0-many 1s in a row on its m part.
Regardless of the choice of k, these 1s will appear at every residue mod 2i0 . Because τi0 = 0,
these 1s would invalidate the string were they niot to be blanked out by a unique selection of
l. Therefore, there is an effective algorithm to find l, and from there the embedded m ∈MP

is easily retrieved.
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In multiple dimensions

Multidimensional shifts of finite type, must have right-r.e. entropy and they must be in a
Π0

1 Medvedev degree. In this section we show that within those restrictions, the entropy and
Medvedev degree are independent. Furthermore, any combination of entropy and Medvedev
degree that is not immediately prohibited by the use of only two symbols can be obtained
using only two symbols.

As in the one-dimensional case, there is a direct product-based construction using arbi-
trarily many symbols, while the reduction to only two symbols uses a division of the bits
into a low-density computation portion and a high-density entropy portion.

Proposition 2.5.3. Given any right-r.e. entropy and any Π0
1 Medvedev degree, there is a

2-dimensional shift of finite type which lies in the given Medvedev degree and has the given
entropy.

Proof. The strategy is just as in the many-symbol one-dimensional case – we take the product
of a two-dimensional SFT with the given entropy (guaranteed by [13]) with a two-dimensional
SFT of zero entropy with the appropriate Medvedev degree guaranteed by Proposition 2.3.6.
Then just as before, because there is a computable element of each subshift constructed by
[13], we will have the desired result.

Next we show how to modify the construction of Hochman and Meyerovitch in order to
make 2-dimensional SFTs of every possible right-r.e. entropy using only two symbols. As
in the one-dimensional case, the two symbol restriction means that the entropy must be in
[0, 1], and the only way to have the entropy equal to 1 is to use the full shift. Aside from
these basic restrictions, everything else is possible.

Proposition 2.5.4. Given any right-r.e. r ∈ [0, 1], there is an SFT on 2Z2
with entropy r.

Proof. If r = 1, the full shift suffices. Otherwise, the key to the proof is the observation that
if the entropy is to be less than 1, then it will be possible to reserve some tiny but definite
fraction of the total area for computation. This computation makes no contribution to the
entropy in itself, but it controls the rest of the space, which is used for entropy.

For convenience of visualization we will speak of white tiles and black tiles instead of the
symbols {0, 1}.

We impose the following constraints on the geometric structure of the elements of our
SFT. There will be a grid, formed mostly of white tiles, made with horizontal and vertical
bands of width a (where a is a number to be determined later). These bands will be spaced
far from each other, so that the area not used by the white grid is divided into an infinite
array of square regions of side length b (another number to be determined later). Within
the white grid, at the place where a horizontal and vertical white band intersect, there is an
(a − 2) × (a − 2) square at the center which may take any one of its 2(a−2)2 configurations.
This coding square is centered, surrounded by an a× a ring of white tiles. Turning now to
the b × b square, it is required that the edges of the square consist of black tiles. In this
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Figure 2.2: A permitted word in the white grid SFT with a = 5 and b = 10. Any combination
of white and black tiles are permissible for the tiles pictured gray here.

way there can be no ambiguity about the location of the grid and the coding squares. See
Figure 2.2. One may verify that these geometric restrictions may be accomplished with a
finite number of local restrictions.

Now, in any square region of side length b + a, the area taken by tiles belonging to the
interior of the b× b square is (b− 2)2, while the rest of the area is taken by tiles belonging
to the white grid and black outline. The interior of the b× b square will be the place where
entropy is encoded, so we must verify that it make take up as great a percentage of the total
area as is needed. But this is clear because its percentage of the total area is

(b− 2)2

(b+ a)2

and so regardless of a, this ratio can be made arbitrarily close to 1 by an appropriate increase
of b.
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Now returning strictly to the context of [13], consider a Turing machine T which has two
input tapes and does the following.

1. It computes over time better and better approximations to a target right-r.e. number
r ∈ [0, 1).

2. It reads from one of its input tapes codes for two numbers a and b.

3. It proceeds computing a new right-r.e. number r′ = (b+a)2

(b−2)2 r.

4. Exactly as in [13], it halts if the evidence of its second oracle indicates that the density
of the 1’s exceeds r′ in the element of X which induced the second oracle, where X is
the SFT from [13] Section 6.

Now apply Propositions 2.3.4 and 2.3.5 to obtain YT with the following properties.

1. ent(YT ) = 0.

2. The first oracle, n the manner of Proposition 2.3.5, is synchronized across all finite
boards.

3. The second oracle, in the manner of Proposition 2.3.4, is induced by an unsynchronized
x ∈ Ov, and in general the induced second oracles on the finite boards may not be
compatible.

Let X be the SFT defined in Section 6 of [13]. Let Z ⊆ YT ×X be the SFT YT ×X under
the additional constraint that the l and m markings which induce the second oracle on the
boards of YT must correspond to the 0 and 1 markings in X, respectively. The entropy of Z
is zero, and for every x ∈ Z, if its common first oracle encodes a, b, then the density of 1’s

in its X part is at most (b+a)2

(b−2)2 r. This follows form the definition of the Turing machine T to

interact appropriately with X as described in [13].
Fix a large enough that the total number of symbols in the alphabet of Z is at most

2(a−2)2 . Associate to each symbol in the alphabet of Z a unique (a− 2)× (a− 2) square of
black and white tiles, which will serve as the code for that tile. Let b be large enough that
the fraction of the total area in the interior of the b× b squares is at least r. Note that this
also guarantees that r′ < 1.

Returning to the original grid of black and white tiles, now we add the following additional
restrictions, which one may verify consist of finitely many local restrictions. Call the resulting
SFT W .

1. The only codes which can appear in the coding locations of the white grid are codes
from the alphabet of Z.
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2. The first oracle (whose values can be read in the (a− 2)× (a− 2) square codes) must
encode the same numbers a and b which were fixed above. Because the code for a, b is
finite, and the amount of space from an (n, 0) column to an (n, j) column is dependent
only on j, not n, this can be accomplished with finitely many local restrictions.

3. A local configuration of adjacent (in the sense of the white grid) codes is forbidden in
the grid if the symbols associated to the codes were forbidden in that configuration in
Z.

4. Whenever a code refers to a symbol whose X part is marked with 0, all the tiles of the
b× b square directly up-right of the code tile must be black.

If the code refers to a symbol whose X part is marked with 1, then there is no additional
restriction on the associated b× b square, so all 2(b−2)2 configurations are permitted.

One may see that the elements of Z in which the first input tape contains “a, b” are in
computable one-to-one correspondence with the configurations of the white grid in W . Since
Z had zero entropy, the configuration of the white grid contributes nothing to the entropy
of W . Because the location of the free bits is determined entirely by the configuration of
the white grid, we may estimate |W � n| = |{u ∈ 2n

2
: u may be extended to x ∈ W}| as

follows. A free bit is a bit contained in the interior of a b× b square whose associated code
has 1 in its X part. Let f(n) be the greatest number of free bits in any n× n square of any
x ∈ W . There are x ∈ W or which the density of 1’s in the X part of the corresponding

z ∈ Z is r′, so limn→∞
f(n)
n2 = (b−2)2

(b+a)2
r′ = r.

For a lower bound on |W � n|, consider that if some x ∈ W has a pattern u whose white
grid configuration permits f(n) free bits, then u could be replaced with any one of 2f(n)

variations of itself which vary the free bits in all possible ways and the result would still be
an element of W . Therefore,

lim
n→∞

log |W � n|
n2

≤ 2f(n)

n2
= r.

For an upper bound, it suffices to consider all the ways the white grid could be aligned in
the n × n region, which is (a + b)2 ways; all the possible configurations of the white grid
that size, which is |Z � n

(a+b))
|; and for each configuration of the white grid, the maximum

number of distinct choices of its free bits, which is at most 2f(n).
Thus,

|W � n| ≤ (a+ b)2 · |Z � n

a+ b
| · 2f(n)

|W � n|
n2

≤ log(a+ b)2

n2
+

log |Z � n
a+b
|

n2
+
f(n)

n2

and by taking limits in the above, ent(W ) = r.
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Of course, these two ideas may be combined to create an SFT on two symbols with any
desired combination of Medvedev degree and entropy in [0, 1).

Corollary 2.5.5. For any Π0
1 class P and any right-r.e. r ∈ [0, 1), there is a two-dimensional

SFT on two symbols with entropy r that is Medvedev equivalent to P .

Proof. Replace Z in the previous proof with Z ×MP , where MP has entropy zero and has
the desired Medvedev degree. A proof of the existence of MP was described in Proposition
2.3.6. Then proceed with the construction of W as above. The entropy is determined as
before, and is unaffected by the additional superimposed SFT because its entropy is also
zero. From any element of the W , we may read off the oracle for the finite boards of MP

by decoding the codes in the white grid, obtaining an element of P . And from any element
O ∈ P , we may uniformly compute an element of W which combines an element of MP

which has finite board oracle O, with a computable element of the original Z.



CHAPTER 2. COMPUTABILITY IN SUBSHIFTS 80

2.6 The effective dimension spectrum

We consider the effective dimension spectrum:

Definition 2.6.1. The effective dimension spectrum of a subshift X is DS(X) = {dim(x) :
x ∈ X}.

If Φ : X → Y is a shift-invariant homeomorphism of subshifts, then dim(Φ(x)) = dim(x)
for all x ∈ X. So the effective dimension spectrum is a conjugacy invariant for subshifts.
Simpson [32] proved a topological restriction on DS(X) – it must always have a maximum
element. We would like to characterize the A ⊆ [0, 1] for which there exists a subshift X
such that DS(X) = A. For simplicity, we work only with the case X ⊆ 2N.

Motivating examples

In this section we relate what is known about the dimension spectrum by finding the dimen-
sion spectrum of the important examples. We also include a more general result which lets
us characterize the effective dimension spectra of shifts of finite type.

Density-r subshifts

If Xs and Xt are density-r subshifts with given entropies s < t, then by the definition,
Xs ⊆ Xt. Combined with Simpson’s result [32] that the effective dimension spectrum of
a subshift X always has a maximal element, ent(X), this set of inclusions guarantees that
DS(Xs) = [0, s] for all s ∈ [0, 1].

Shift-complex subshifts

Because any d-shift-complex sequence has effective dimension at least d, the shift-complex
subshift Sd,b, when it is nonempty, satisfies DS(Sd,b) ⊂ [d, 1). An effective dimension of one
is excluded because forbidding any string puts an upper bound on the packing dimension.
The entropy of Sd,b depends not only on d and b, but also on the universal machine used. It
is not known whether the effective dimension spectrum of Sd,b is an interval. By Theorem
15 for d ∈ (0, 1) and for sufficiently large b, there is x ∈ Sd,b with dim(x) = d.

Medvedev subshifts

Because each Medvedev subshift has entropy zero, each of its elements has effective dimension
zero, so the effective dimension spectrum of a Medvedev subshift is simply {0}.

Conditions under which the spectrum is [0, ent(X)]

In this section we give some sufficient conditions for the dimension spectrum to be the
commonly encountered [0, ent(X)].
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Definition 2.6.2. A subshift X ⊆ 2N is computably extendible if uniformly in every σ such
that σ ≺ x ∈ X, one may compute such an x extending σ.

Definition 2.6.3. A subshift X ⊆ 2N is uniformly full if

lim
n→∞

min
σ≺x∈X

log |{x � n : σx ∈ X}|
n

= ent(X).

Theorem 16. If a subshift X ∈ 2N is computably extendible and uniformly full, then
DS(X) = [0, ent(X)]

Proof. The proof is very similar to Hirschfeldt and Kach’s construction [12] of a d-shift-
complex sequence with packing dimension d for a given d ∈ (0, 1). The difference is that
we run the construction inside the subshift. Though we only need sequences of effective
dimension r for each r ∈ (0, ent(X)), we actually construct r-shift-complex sequences with
packing dimension r.

Because X is computably extendible, it has a computable element, so 0 ∈ DS(X). By
[32], ent(X) ∈ DS(X). Let r ∈ (0, ent(X)) be given. We will build x ∈ X in stages, at
each stage appending a string of length m, where m will be chosen later. At stage n, given
x � mn, if K(x � mn)/mn ≤ r, we choose τ so that K(τ : x � mn) is as large as possible;
otherwise, we extend x � mn computably.

Now to specify the choice of m and check that this construction works.
First we will check that there is a constant D such that for all n, rmn − D ≤ K(x �

mn) ≤ rmn+D.
There is some inertia to Kolmogorov complexity. If K(σ) ≤ r|σ| and K(σaτ) > r|σaτ |,

then K(σaτ)− r|σaτ | can be bounded by a constant:

K(σaτ)− r|σaτ | < K(σ) +K(τ) + C − r|σaτ |
≤ r|σ|+m+ 2 logm+ 2C − r|σaτ |
= m+ 2 logm+ 2C − rm
= (1− r)m+ 2 logm+ 2C

Similarly, if K(σ) > r|σ| and K(σaτ) ≤ r|σaτ |,

r|σaτ | −K(σaτ) < r|σ|+ rm−K(σ) +K(|τ |) + C

< rm+ 2 logm+ 2C

where we used the fact that K(σ) < K(σaτ) + K(|τ |) + C. So, if there is any trouble, it
comes from the situation where our attempts to change the compressive ratio actually move
it in the wrong direction.

When we are trying to get the ratio to increase, in fact we will always be able to find
τ such that K(στ) −K(σ) ≥ rm. If one takes this fact as given (it will be justified later)
then one sees that when trying to go up, one can never go down by accident, and thus in
fact rmn− (rm+ 2 logm+ C) ≤ K(x � mn) for all n.
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However, when we are trying to get the ratio to decrease by adding τ according to an
algorithm, it may be possible to get unlucky and actually increase the ratio for some period
of stages before succeeding in bringing the ratio down. We can quantify this, assuming that
initially r|σ| < K(σ) < r|σ| + ((1 − r)m + 2 logm + 2C), since this is the situation we will
be in when first trying to decrease the ratio. Then, letting k be the number of iterations of
continuing to extend the string algorithmically, that is |τ | = km, we have

K(στ)− r|στ | ≤ K(σ) +K(τ : σ∗) + C − r|σ| − rkm
≤ K(τ : σ∗) + C − rkm+ (1− r)m+ 2 logm+ 2C

≤ 2 log km+ 2C − rkm+ (1− r)m+ 2 logm+ 2C

= −rkm+ 2 log k + (1− r)m+ 4(logm+ C)

Since only the first two terms vary with k, and the negative term dominates, there is some k∗

(which does not depend on |σ|) such that within k∗ iterations of choosing τ algorithmically,
K(στ) < r|στ | will be achieved, and there is some D which upper bounds the values the
right hand side can take as k increases from 0. Thus we have shown that always

rmn−D ≤ K(x � mn) ≤ rmn+D

pending justification for the assertion that when we wish the ratio to go up, we may in fact
choose a τ such that K(στ)−K(σ) ≥ rm.

Now we make use of uniform fullness. Since r < ent(X), fix t with r < t < ent(X), and
let m be long enough that for all σ,

log |x � m : σx ∈ X|
m

> t.

By counting, there must be some τ such that K(τ : σ∗) > tm. Let m also be long enough that
tm−2 logm−3C > rm. Then, by proposition 2.1.5, this τ also satisfies K(στ)−K(τ) ≥ rm.

Thus the bound K(x � mn) = rmn±D holds, and dim(x) = Dim(x) = r, as desired.
To see that x is also r-shift-complex, consider first σ of the form x[am, bm], that is,

a σ whose boundaries are multiples of m. Then it follows from K(x � bm) ≤ K(x �
am) +K(σ) + C that

K(σ) ≥ K(x � bm)−K(x � am)− C
≥ rbm− ram− C − 2D

= r|σ| − (C + 2D)

Now consider an arbitrary substring σ of x, whose boundaries may lie anywhere. So σ =
σbσmσe, where σm is aligned and |σb|, |σe| < m. Then we have

K(σ) +K(|σb|) +K(|σe|) + C ≥ K(σb, σm, σe)

≥ K(σm)− C
K(σ) ≥ K(σm)−K(|σb|)−K(|σe|)− 2C

≥ r|σm| − (C + 2D)− 4(logm+ C)

≥ r|σ| − (2rm+ 2D + 4 logm+ 5C)
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Thus x is (r, b)-shift-complex, where b = 2rm+ 2D + 4 logm+ 5C.

Shifts of finite type

The theorem of the previous section may be applied to characterize the effective dimension
spectra of shifts of finite type. All SFTs are computably extendible, but not all are uniformly
full. For example, the SFT which forbids {10100, 01011} has positive entropy, but the string
σ = 0101 has only one infinite extension. However, the following can be proved using
techniques standard to the analysis of SFTs.

Proposition 2.6.1. Let X ≤ 2N be a SFT with entropy r. Then X contains an SFT with
entropy r which is uniformly full.

Proof. Consider X [n], the nth higher block shift of X, for some n longer than the longest
forbidden word of X. Let B ⊆ 2n (here 2n refers to the set of binary sequences of length n)
be the collection of permitted words from 2n; these are the symbols of X [n]. For each pair of
symbols a, b ∈ B, say that a ≡ b if and only if there are words u and v made of the symbols
of B such that aub and bva appear as subwords of some elements x, y ∈ X [n]. This relation
is transitive and symmetric, but it may not be reflexive. Restrict the relation only to those
a ∈ B such that a ≡ a and the result is an equivalence relation. It is nonempty because X [n]

is non-empty and there are only finitely many symbols in B, so at least one of them must
occur infinitely often in some x ∈ X [n].

In fact, given any x ∈ X [n], the set of {a ∈ B : a appears infinitely often in x} is con-
tained in some equivalence class. Fix x ∈ X [n] to be an element such that dim(x) = ent(X),
such an element being guaranteed by [32]. Let U ⊆ B be the set of symbols which appear
infinitely often in x. Let Y [n] ⊆ X [n] be the subshift of X [n] all of whose elements use only
symbols of U . Then Y [n] is non-empty because some tail of x is in Y [n].

The entropy of Y [n] is equal to ent(X) because the tail of x has the same effective
dimension as x, and this is the largest possible entropy. Finally, Y [n] is naturally conjugate
to a shift Y ⊆ X via the map {xji}i<n 7→ xj0. Because being an SFT is invariant under
conjugation, Y is an SFT (Proposition 2.1.6). Note that Y [n] actually is the nth higher block
shift of Y , justifying the notation.

It remains to show that Y is uniformly full. We work in Y [n] because it is easier. Fix
a ∈ U . Because Y [n] is a one-step SFT, starting from any σ there is a uniform bound on the
number of symbols needed in a word u so that σua is valid. From that point on, anything
that may follow a may follow σua. A tail of x may follow a, so Y [n] is uniformly full.

Thus we have

Corollary 2.6.2. If a subshift X ⊆ 2N is an SFT, then DS(X) = [0, ent(X)].
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Shifts with gaps in the dimension spectrum

All the examples of subshifts we have seen so far have dimension spectrum that either is a
closed interval, or, in the case of the shift-complex subshifts, is consistent with being a closed
interval. There are shifts whose effective dimension spectra have gaps in them, however. For
s < d and appropriately large b, the subshift X = Xs ∪ Sd,b satisfies

[0, s] ∪ {d} ⊆ DS(X) ⊆ [0, s] ∪ [d, 1).

However, this example is unsatisfactory, being just the union of two subshifts with non-
overlapping spectrum. We address this issue further in the next section by considering
minimal subshifts, those which have no subshift as a proper subset.

Minimal subshifts

Definition 2.6.4. A subshift is minimal if it has no proper sub-subshifts.

Solving the characterization problem for the dimension spectra of minimal subshifts will
not solve it for general subshifts because not every x ∈ 2N is contained in a minimal subshift.
However, considering this simplification allows us to avoid the issue of simply taking the
union of two subshifts in order to form an interesting dimension spectrum.

Minimality allows us to prove

Proposition 2.6.3. If X is minimal, DS(X) has a least element.

Proof. Going in stages, construct x by finite extension, σ0 ≺ σ1 ≺ · · · . We will maintain
always that σn is a subword of some y ∈ X, and thus by minimality, that σn is a subword
of every y ∈ X. At stage n + 1, find y ∈ X so that dim(y) − inf DS(X) < 1/n. Let
σn+1 = y[k, k +m], where k is the start of σn in y, and m is long enough that

K(σn+1)

|σn+1|
− dim(y) < 1/n.

Then
K(σn+1)

|σn+1|
− inf DS(X) < 2/n.

Therefore dim(x) = inf DS(X).

We note that this was possible because in a minimal subshift, every element contains
every word, and because it is impossible to end up with dim(x) < inf DS(X).
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An example

The existence of minimal subshifts is guaranteed by Zorn’s lemma, but the first explicit
construction of a minimal subshift was by Grillenberger [8]. His construction was simplified
to the following by Bruin [2]:

Definition 2.6.5. Let E1 consist of n1 strings of length l1, where n1 and l1 will be chosen
later. For i > 1, define Ei to be the set of all concatenations of permutations of the elements
of Ei−1. Let X be the subshift which forbids exactly the words which never appear as a subword
of any σ in any Ei.

Note that for i > 1, |Ei| = ni = ni−1! and the length of an element of Ei is li = ni−1li−1.

Proposition 2.6.4 (Grillenberger [8], Bruin [2]). X is a minimal subshift.

Proof. If X had a proper sub-subshift Y , there would be some σ permitted in X that was
not permitted in Y . Let τ and i be such that σ is a subword of τ ∈ Ei. Then σ is a subword
of every word in Ek for k > i. In fact, σ occurs repeatedly in each word of such Ek, with
occurrences of σ separated by at most 2li+1, since σ is a subword of each word of Ei+1,
each word of Ei+1 has length li+1, and each word of Ek is a concatenation of words of Ei+1.
Therefore, Y has no permitted words longer than 2li+1, so Y is empty.

As noted in the original constructions, this subshift has positive entropy if n1 and l1 are
chosen sufficiently.

Proposition 2.6.5 (Grillenberger[8], Bruin[2]). The parameters n1 and l1 may be chosen so
that X has positive entropy.

Proof. By subsampling the convergent sequence which defines the entropy of X, we have

ent(X) = lim
i→∞

logNli

li

where Nk is the number of permitted strings in X of length k. For a lower bound, because
ni < Nli ,

lim
i→∞

logNli

li
≥ lim

i→∞

log ni
li

= lim
i→∞

log ni−1!

ni−1li−1

Then using the approximation
∑n

k=1 log k ≥
∫ n
1

log tdt = n log n− n+ 1 we have

log ni−1!

ni−1li−1
≥ ni−1 log ni−1 − ni−1 + 1

ni−1li−1
>

log ni−1
li−1

− 1

li−1
.

Therefore, by repeating this,

log ni−1!

ni−1li−1
≥ log n1

l1
−

i−1∑
k=1

1

lk
,



CHAPTER 2. COMPUTABILITY IN SUBSHIFTS 86

and

ent(X) ≥ log n1

l1
−
∞∑
k=1

1

lk
.

Because li increases as the factorial, the sum on the right can be made arbitrarily small by
choose l1 large enough, and logn1

l1
can be made arbitrarily close to 1 by choosing n1 arbitrarily

close to 2l1 . Therefore, not only can the entropy be made positive, it can be made arbitrarily
close to 1.

Proposition 2.6.6. The entropy of X can be computed as

ent(X) = lim
i→∞

log ni
li

.

Proof. In the previous proposition, we saw that ent(X) ≥ limi→∞
logni
li

. For an upper bound,
note that if σ is permitted in X with |σ| = li, then σ is a subword of some permitted τ which
is a concatenation of elements of Ei−1. Because |σ| = ni−1li−1, σ intersects at most ni−1 + 1
of the elements of Ei−1 making up the concatenation, and σ starts at most li of the way into
the first of them. Therefore, letting Nk be the number of permitted words of X of length k,
we have the upper bound

Nli ≤ n
ni−1+1
i−1 li−1

and so

lim
i→∞

logNli

li
≤ lim

i→∞

ni−1 log ni−1 + log ni−1li−1
ni−1li−1

≤ lim
i→∞

log ni−1
li−1

+
log li
li

= lim
i→∞

log ni
li

.

The main result of this section is the calculation of the dimension spectrum of this
subshift, which we show to be [0, ent(X)]. The strategy is similar to the one used in the
proof of Theorem 16, but it cannot be used as-is because X is not uniformly full. We explain
why below.

Definition 2.6.6. A word σ is aligned in X if σ is permitted in X and σ is an initial
segment (as opposed to merely a subword) of some τ in some Ei.

For an aligned word of length N and any li < N , one may write a unique decomposition
N = ali + b where b < li. In that case, we would say that σ has a-many li-blocks, which are
the σ[jli, (j + 1)li] for j < a.

If a word τ is permitted but not aligned, we may still refer to its li-blocks, which will
generally be of the form τ [jli + k, (j + 1)li + k] and correspond to the li-blocks of an aligned
block of which τ is a subword. Each li-block of a permitted word is an element of Ei.

Now consider a string σ = w1w1w2w3 . . . wni−1−1 where each wk ∈ Ei and j 6= k implies
wj 6= wk. Then σ is permitted even though its first two li-blocks are the same, because it is
possible that the li+1-block boundary lies between the first two li-blocks.
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In fact, this is the only scenario where σ is permitted, so the only way it can be extended
is with wni−1

, the last unused block of length li. But i was arbitrary, so for any N there is a
σ which is permitted but for which |{y � N : σy ∈ X}| = 1. Therefore, X is not uniformly
full.

However, note that for this example, the number of bits beyond σ that are fully deter-
mined make up a very small fraction 1

ni−1
of the original length of σ. This phenomenon turns

out to be true more generally, inspiring the following strategy for constructing elements of
effective dimension t for every t ∈ (0, ent(X)). We still build up a trajectory out of finite
initial segments, but instead of adding a finite number of bits each time, we add bits in
such a way as to increase the length of the initial segment by a fixed proportion, so that
|σs+1| ≈ |σs|n+1

n
where σs is the initial segment produced at stage s.

Most of the work goes into showing that when a sufficiently long string is extended by
a fixed proportion of its length, it will always be possible to extend it in a way that causes
K(σ)
|σ| to increase by a fixed amount. This is the content of Lemma 2.6.7 below. Then by

letting n go to infinity, the effect of any individual extension on the value of K(σ)
|σ| is reduced

and the effective and packing dimensions converge to the target t.

Lemma 2.6.7. For every n > 0 and ε > 0, there is an N such that for all aligned σ permitted
in X with |σ| > N , there is a τ for which στ is aligned and permitted in X, and |τ | = bσ

n
c

and

ent(X)− K(τ |σ∗)
|τ |

< ε.

Proof. Let N be long enough to satisfy the following list of requirements, whose necessity
will be seen in the course of the proof.

1. Because limi→∞
logni
li

= ent(X), let N be large enough that | logni−1

li−1
− ent(X)| < ε

4
for

all li > N .

2. Let N be large enough that
(
16
ε

+ 2
)
n < (ni−1 − 1

n
)
(
n+1
n

)
for all li > N .

3. Let N be large enough that 8
ε
n log 3n
li−1

< ε
4

for all li > N .

4. Let N be large enough that 1+4n
ni−1

< ε
4

for all li > N .

Let σ be aligned in X with |σ| > N . Then |σ| can be written in a canonical way as

|σ| = aili + ai−1li−1 + · · ·+ a1l1

where ai > 0 and each ak < nk. Because of the sufficiently large size of N , the numbers
li, ni, li−1, ni−1 satisfy the relationships to n and ε enumerated above.

The analysis splits into two cases, depending on whether we will find an appropriate τ
by appending blocks of size li or blocks of size li−1. Which we choose depends on the size of
ai. If ai >

(
16
ε

+ 2
)
n, we will build τ out of blocks of length li. If ai < (ni−1 − 1

n
)
(
n+1
n

)
, we

will build τ out of blocks of length li−1. By condition (2) on the size of σ, for each value of
ai one of these cases will hold.
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Case 1: Appending li-blocks

Assuming ai >
(
16
ε

+ 2
)
n, we will now give a lower bound on the number of strings τ of

length b |σ|
n
c for which στ is aligned in X. Because we wish to add li-blocks, we must start on

an li-boundary, but σ may not end on one. Therefore, under-counting, we fix the first bits
of τ to be some arbitrary way of extending σ to the nearest li-boundary. For example, there
is a computable way to do this. Then we will count the number of different ways to choose
the order of the subsequent li-blocks of τ , until its length is exhausted but for some number
of bits again less than li. Because we will only count ways of laying li-blocks which stay
inside the subshift, there will be a way to continue τ to its full length by choosing the last
bits arbitrarily, again perhaps computably. Therefore, letting b be the number of li-blocks
within the domain of τ , we have the following bounds:

ai
n
− 3 < b <

ai + 1

n
.

The bound on the left takes into account losing up to li on the left and right sides of τ ,
minus one more to allow us to forget the values of ak for k < i. The bound on the right is
larger than |τ |

li
.

Now if ai+1+b < ni
(
1− 1

2n

)
, then the blocks we are adding are “far” from the end of the

first li+1-block. Because of the restriction on repeating li-blocks within an aligned li+1-block,
the number of choices per block decreases by one for each block added. But since we are
far from the end, for each of b-many li-blocks chosen, there will be at least ni

2n
-many choices

for each block, because there are at least that many choices for the last block. Therefore, a

lower bound on the number of τ satisfying the conditions of the lemma is
(
ni
2n

)b
. Therefore,

by counting there is a τ for which

K(τ |σ∗) ≥ b log
ni
2n

and so

K(τ : σ∗)

|τ |
≥ b log ni − b log 2n

ai+1
n
li

=

(
bn

ai + 1

)[
log ni
li
− log 2n

li

]
=

(
bn

ai + 1

)
log ni
li
− ε

4

where the last replacement follows by constraint (3) on N and the fact that bn
ai+1

< 1.

Now on the other hand, if ai+1+b ≥ ni
(
1− 1

2n

)
, then the blocks we are adding are near

to the end of the first li+1-block. In fact, they might spill over in to the next li+1-block. If
they do not spill over, then there are (ni−ai−1)!

(ni−ai−b−1)! possibilities. If they do spill over, there are
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(ni−ai−1)! ni!
(2ni−ai−1−b)! possibilities. A lower bound on both these numbers is b!. Therefore,

by counting, there is a τ for which

K(τ |σ∗) ≥ log b! ≥ b log b− b

where the last inequality is obtained using an integral approximation to the logarithm. Now,
because ai + 1 + b ≥ ni(1− 1

2n
) and b < ai+1

n
, we have

(ai + 1)
n+ 1

n
≥ ni(1−

1

2n
)

ai ≥
n

n+ 1
ni(1−

1

2n
)− 1 ≥ n

2(n+ 1)
ni

And then because b > ai
n
− 3, we have

b ≥ ai
n
− 3 ≥ ni

2(n+ 1)
− 3 ≥ ni

3n

Therefore,

K(τ |σ∗)
|τ |

≥ b log b− b
ai+1
n
li

≥
b log ni

3n
− b

ai+1
n
li

=

(
bn

ai + 1

)(
log ni
li
− 1 + log 3n

li

)
≥
(

bn

ai + 1

)
log ni
li
− ε

4

where the last replacement is justified by the condition (3) on N and the fact that bn
ai+1

< 1.
Therefore, in either case there is a τ for which

ent(X)− K(τ |σ∗)
|τ |

<

∣∣∣∣ent(X)− log ni
li

∣∣∣∣+

(
log ni
li
− K(τ |σ∗)

|τ |

)
<
ε

4
+

(
log ni
li
−
(

bn

ai + 1

)
log ni
li

+
ε

4

)
=
ε

2
+

(
log ni
li

)(
1− bn

ai + 1

)
<
ε

2
+
ai + 1− bn
ai + 1

<
ε

2
+
ai + 1− ai + 3n(

16
ε

+ 2
)
n+ 1

<
ε

2
+ ε

1 + 3n

(16 + 2ε)n+ ε

< ε.
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Case 2: Appending li−1-blocks

Assuming ai < (ni−1 − 1
n
)
(
n+1
n

)
, we will again bound the number of strings τ of the ap-

propriate length. That restriction translates into ai + ai+1
n

< ni−1. In this case, we will

add approximately aini−1+ai−1

n
-many length-li blocks. As before, we will fill in the ends com-

putably and just count full blocks. We will also waste one li−1 block at the beginning, so
letting a = aini−1 + ai−1, the total number b of blocks to be added will satisfy

a

n
− 4 < b <

a+ 1

n
.

Since ai-many li-length blocks have already been started, and we may start as many as ai+1
n

more of them, we need some strategy to ensure that we do not repeat any. The simple
strategy we use is to start each new li-block with an li−1-block that has never been used at
the start of a previous li-block. For the very first li−1-block, which may come in the middle
of an li-block which may be threatening to repeat a previous li-block, we will also choose it
deterministically, so that it does not repeat an li−1-block that has stood in its position in
previous li-blocks. This strategy works as long as ai + ai+1

n
< ni−1, so that we cannot run

out of li−1-blocks.
Now let us count. Expressing b as b = bini−1 + bi−1, with bi−1 < ni−1, notice that

whenever we lay ni−1-many li−1-blocks in a row (not necessarily on an li-boundary, though
a total length of li is laid down), there are at least (ni−1− 1)! ways to do this. (There would
be ni−1! if we let the first block be chosen freely, but instead it is chosen according to the
strategy described above.) And for laying bi−1-many li−1-blocks in a row, in the worst case
there are still at least (bi−1−1)! ways to do this (the very worst case being when the last block
starts a new li-block). Therefore, the total number of options for the b-many li−1-blocks of
τ is bounded by (ni−1 − 1)!bi(bi−1 − 1)!. By counting, there is a τ of the appropriate length
such that

K(τ |σ∗) ≥ bi log(ni−1 − 1)! + log(bi−1 − 1)!

≥ bi(ni−1 − 1)(log(ni−1 − 1)− 1) + (bi−1 − 1)(log(bi−1 − 1)− 1)

≥ bini−1 log
ni−1

2
+ bi−1 log

bi−1
2
− bini−1 − bi log ni−1 − bi−1 − log bi−1

≥ bini−1 log ni−1 + bi−1 log bi−1 − 3b

therefore

K(τ |σ∗)
|τ |

≥ bini−1 log ni−1 + bi−1 log bi−1
a+1
n
li−1

− 3b
a+1
n
li−1
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Now 3bn
(a+1)li−1

< 3
li−1

< ε
4
. Furthermore, if b < ni−1, then bi = 0 and bi−1 = b, so in that case

K(τ |σ∗)
|τ |

≥ b log b
a+1
n
li−1
− ε

4

≥ bn

a+ 1

log a
2n

li−1
− ε

4

≥ bn

a+ 1

(
log ni−1
li−1

− log 2n

li−1

)
− ε

4

≥ bn

a+ 1

log ni−1
li−1

− ε

2

On the other hand, if b ≥ ni−1, then (using the convexity of x log x)

K(τ |σ∗)
|τ |

≥
(bi − 1)ni−1 log(ni−1) + (ni−1 + bi−1) log(ni−1+bi−1

2
)

a+1
n
li−1

K(τ |σ∗)
|τ |

≥ (bi − 1)ni−1 log(ni−1) + (ni−1 + bi−1) log(ni−1)− (ni−1 + bi−1)
a+1
n
li−1

≥ bn

a+ 1

(
log ni−1
li−1

− 1

li−1

)
≥ bn

a+ 1

log ni−1
li−1

− ε

2

Therefore, in either case there is a τ for which

ent(X)− K(τ |σ∗)
|τ |

<

∣∣∣∣ent(X)− log ni
li

∣∣∣∣+

(
log ni
li
− K(τ |σ∗)

|τ |

)
<
ε

4
+

(
log ni−1
li−1

−
(

bn

a+ 1

)
log ni−1
li−1

+
ε

2

)
=

3ε

4
+

(
log ni−1
li−1

)(
1− bn

a+ 1

)
<

3ε

4
+
a+ 1− bn
a+ 1

<
3ε

4
+
a+ 1− a+ 4n

aini−1 + ai−11

<
3ε

4
+

1 + 4n

ni−1
< ε,

where the last step is justified by condition (4) on N .
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Now we can prove the main theorem of the section.

Theorem 17. The minimal subshift X from Definition 2.6.5 has effective dimension spec-
trum [0, ent(X)].

Proof. It is clear that X contains a computable element and by [32] it contains an element
of effective dimension ent(X). So, fixing t ∈ (0, ent(X)), we construct an element of X with
effective dimension t by extending initial segments. All our initial segments will be aligned.
We also build this element with packing dimension t. Fix ε = ent(X)−t

4
.

Let n0 = 1. By Lemma 2.6.7, let N be such that whenever |σ| > N , for an aligned σ,

then there is a τ with |τ | = |σ| such that στ is aligned and ent(X) − K(τ |σ∗)
|τ | < ε.. Let N

also be large enough that 2 logN+2C
N

< t
2
. Let σ0 be any aligned string of length at least N .

At each stage, we attempt to extend σs in such a way as to bring K(σs+1)
|σs+1| closer to t.

If K(σs)
|σs| ≥ t, we let σs+1 be the result of computably extending σ for |σs|

ns
bits. On the

other hand, if K(σs)
|σs| < t, we choose τ by the guarantee of Lemma 2.6.7 with n = ns and

ε = ent(X)−t
4

. This is possible because |σs| will always great enough to satisfy the lemma for
n = ns, a fact which is normally guaranteed by setting ns+1 = ns, and using the fact that |σ|
was large enough at the previous step. But we do set ns+1 = ns + 1 whenever the following
conditions are satisfied:

1. |σs+1| is large enough to guarantee the existence of a τ with |τ | = |σs+1|
ns+1

for which

ent(X)− K(τ |σ∗)
|τ | < ε.

2. |σs+1| > N for which
2 log N

ns+1
+ 2C

N
ns+1

< min(
t

2
,
ent(X)− t

4
)

Since we add a large chunk at a time, it is necessary to verify that not only isK(σs+1)/|σs+1|
approaching t, but any intermediate τ such that σs 4 τ 4 σs+1 also has K(τ)

|τ | bounded near
t. So, first let us elaborate on why no individual step changes the compressive ratio by too
much. Suppose we have a string σ and will add to it a string τ which is 1/n the length of σ.
On the one hand, by Proposition 2.1.2,

K(στ)

|στ |
≤ K(σ) +K(τ) + C

|στ |

=
K(σ)

|σ|
+
− 1
n
K(σ) +K(τ) + C

|σ|(n+1
n

)

≤ K(σ)

|σ|
+

1

n+ 1

(
K(τ)

|τ |
− K(σ)

|σ|

)
+
C

|σ|

≤ K(σ)

|σ|
+

1

n+ 1
+
C

|σ|
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And since this holds for all n, considering a smaller length τ is equivalent to increasing n, so
this upper bound bounds the entire possible amount of deviation upwards in the compressive
ratio that could be experienced when performing a single stage with proportion determined
by n and starting from length |σ|.

For the other direction, by Proposition 2.1.4,

K(στ)

|στ |
≥ K(σ)− 2 log |τ | − C

|στ |

=
K(σ)

|σ|
−

1
n
K(σ) + 2 log(|τ |) + C

|σ|n+1
n

≥ K(σ)

|σ|
− 1

n+ 1
− 2 log |σ|+ C

|σ|

So we see that as n and |σ| grown large, the amount of deviation introduced over a single

stage decreases to zero. Therefore, if lims→∞
K(σs)
|σs| = t, and x = ∪sσs, then limm→∞

K(x�m)
m

=
t.

Next let us verify that if K(σs)
|σs| > t, then

K(σs)

|σs|
− K(σs+1)

|σs+1|
≥ t

2ns + 2
.

Expressing σs+1 as στ , where σ = σs:

K(στ)

|στ |
≤ K(σ) +K(τ |σ) + C

|σ|n+1
n

≤ K(σ)

|σ|
+

1

n+ 1

(
K(τ |σ) + C

|τ |
− K(σ)

|σ|

)
≤ K(σ)

|σ|
+

1

n+ 1

(
2 log |τ |+ 2C

|τ |
− K(σ)

|σ|

)
Because ns is not increased until σ is long enough to satisfy condition (2) on the increase

of ns, |σ| must be long enough that 2 log |σ|/ns+2C
|σ|/ns < t/2. Thus we may continue:

K(στ)

|στ |
≤ K(σ)

|σ|
+

1

n+ 1

(
t

2
− t
)

So whenever K(σs)
|σs| > t, it will be decreased by at least t/(2ns + 2) until it becomes less than

t again. Because this decrease may take many steps, it is possible that ns will vary over
the course of it, so that the decrease is not guaranteed by the same constant each stage.
However, because ns increases by at most one per stage, and in the worst case it is increased
at every stage, in which case the resulting series would be harmonic, so it will eventually
make it below t again.
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Lemma 2.6.7 guarantees the increase in compressive ratio when K(σs)
|σs| < t. Therefore, by

Proposition 2.1.5,, and letting σs+1 = σsτ ,

K(σsτ)

|σsτ |
≥ K(σs) +K(τ |σ∗s)− 2 log |τ | − 3C

|σs|n+1
n

≥ K(σs)

|σs|
+

1

n+ 1

(
K(τ |σ∗s)− 2 log |τ | − 3C

|τ |
− K(σs)

|σs|

)
Now we claim that

ent(X)− K(τ |σ∗s)− 2 log |τ | − 3C

|τ |
<

ent(X)− t
2

.

This follows because

ent(X)− K(τ |σ∗s)− 2 log |τ | − 3C

|τ |
≤
(

ent(X)− K(τ |σ∗s)
|τ |

)
+

2 log |τ |+ 3C

|τ |

≤ ent(X)− t
4

+
ent(X)− t

4
.

Therefore, we may continue as before to conclude that if K(σs)
|σs| < t, then at each stage s

the ratio will increase by at least

1

ns + 1

(
K(τ |σ∗s)− 2 log |τ | − 3C

|τ |
− K(σs)

|σs|

)
≥ 1

ns + 1

(
ent(X)− K(σs)

|σs|
− ent(X)− t

2

)
≥ 1

ns + 1

(
(ent(X)− t)− ent(X)− t

2

)
=

ent(X)− t
2ns + 2

Again, even though ns may increase over time, it does so slowly enough that the ratio
will eventually surpass t again. Therefore, lims→∞

K(σs)
|σs| = t. This completes the proof.
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[18] Ming Li and Paul Vitányi. An introduction to Kolmogorov complexity and its appli-
cations. Third. Texts in Computer Science. Springer, New York, 2008, pp. xxiv+790.
isbn: 978-0-387-33998-6. doi: 10.1007/978-0-387-49820-1. url: http://dx.doi.
org/10.1007/978-0-387-49820-1.

[19] Douglas Lind and Brian Marcus. An introduction to symbolic dynamics and coding.
Cambridge University Press, Cambridge, 1995, pp. xvi+495. isbn: 0-521-55124-2; 0-
521-55900-6. doi: 10.1017/CBO9780511626302. url: http://dx.doi.org/10.1017/
CBO9780511626302.

[20] Jack H. Lutz. “Gales and the constructive dimension of individual sequences”. In:
Automata, languages and programming (Geneva, 2000). Vol. 1853. Lecture Notes in
Comput. Sci. Springer, Berlin, 2000, pp. 902–913. doi: 10.1007/3-540-45022-X_76.
url: http://dx.doi.org/10.1007/3-540-45022-X_76.

[21] Elvira Mayordomo. “A Kolmogorov complexity characterization of constructive Haus-
dorff dimension”. In: Inform. Process. Lett. 84.1 (2002), pp. 1–3. issn: 0020-0190. doi:
10.1016/S0020-0190(02)00343-5. url: http://dx.doi.org/10.1016/S0020-
0190(02)00343-5.
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