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How to Get Statistically Significant Effects in Any ERP 
Experiment (and Why You Shouldn’t)

Steven J. Luck1,2 and Nicholas Gaspelin1

1Center for Mind & Brain, University of California, Davis

2Department of Psychology, University of California, Davis

Abstract

Event-related potential (ERP) experiments generate massive data sets, often containing thousands 

of values for each participant, even after averaging. The richness of these data sets can be very 

useful in testing sophisticated hypotheses, but this richness also creates many opportunities to 

obtain effects that are statistically significant but do not reflect true differences among groups or 

conditions (bogus effects). The purpose of this paper is to demonstrate how common and 

seemingly innocuous methods for quantifying and analyzing ERP effects can lead to very high 

rates of significant-but-bogus effects, with the likelihood of obtaining at least one such bogus 

effect exceeding 50% in many experiments. We focus on two specific problems: using the grand 

average data to select the time windows and electrode sites for quantifying component amplitudes 

and latencies, and using one or more multi-factor statistical analyses. Re-analyses of prior data and 

simulations of typical experimental designs are used to show how these problems can greatly 

increase the likelihood of significant-but-bogus results. Several strategies are described for 

avoiding these problems and for increasing the likelihood that significant effects actually reflect 

true differences among groups or conditions.

It can seem like a miracle when a predicted effect is found to be statistically significant in an 

event-related potential (ERP) experiment. A typical ERP effect may be only a millionth of a 

volt or a hundredth of a second, and these effects can easily be obscured the many sources of 

biological and environmental noise that contaminate ERP data. Averaging together a large 

number of trials can improve reliability and statistical power, but even with an infinite 

number of trials there would still be variance due to factors such as mind wandering. All 

these sources of variance can make it very difficult for a 1 μV or 10 ms difference between 

groups or conditions to reach the .05 threshold for statistical significance. Consequently, 

when an experiment is designed to look for a small but specific effect, much care is needed 

to ensure that the predicted effect will be statistically significant if it is actually present.

On the other hand, it is extraordinarily easy to find statistically significant but unpredicted 

and unreplicable effects in ERP experiments. ERP data sets are so rich that random 

variations in the data have a good chance of producing statistically significant effects at 

some times points and in some electrode sites if enough analyses are conduct. These effects 
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are bogus (i.e., not genuine), but it can be difficult for the researchers, the reviewers of a 

journal submission, or the readers of a published article to know if a given effect is real or 

bogus. This likely leads to the publication of a large number of effects that are bogus but 

have the imprimatur of statistical significance. Estimating how often this happens is difficult, 

but there is growing evidence that many published results in psychology (Open Science 

Collaboration, 2015), neuroscience (Button, Ioannidis, Mokrysz, Nosek, Flint, Robinson, & 

Munafò, 2013), and oncology (Prinz, Schlange, & Asadullah, 2011) are not replicable. 

Many factors contribute to the lack of replicability, but one of them is what Simmons, 

Nelson, and Simonsohn (2011) called experimenter degrees of freedom. This is the idea that 

experimenters can analyze their data in many different ways, and if the methods that 

experimenters choose are selected after the data have been viewed, this will dramatically 

increase the likelihood that bogus effects reach the criterion for statistical significance.

Experimenters typically have more degrees of freedom in the analysis of ERP experiments 

than in the analysis of behavioral experiments, and this likely leads to the publication of 

many significant-but-bogus ERP findings. The purpose of the present paper is to 

demonstrate the ease of finding significant-but-bogus effects in ERP experiments and to 

provide some concrete suggestions for avoiding these bogus effects. Following the approach 

of Simmons et al. (2011), we will begin by showing how the data from an actual experiment 

can be analyzed inappropriately to produce significant-but-bogus effects. We will then 

discuss in detail a common practice—the use of analysis of variance with large numbers of 

factors—that can lead to significant-but-bogus effects in the vast majority of experiments. 

We will also provide concrete suggestions for avoiding findings that are statistically 

significant but are false and unreplicable.

How to Find Significant Effects in Any ERP Experiment: An Example

Our goal in this section is to show how a very reasonable-sounding analysis strategy can 

lead to completely bogus conclusions. To accomplish this, we took a subset of the data from 

an actual published ERP study (Luck, Kappenman, Fuller, Robinson, Summerfelt, & Gold, 

2009) and performed new analyses that sound reasonable but were in fact inappropriate and 

led to completely bogus effects. Note that everything about the experiment and re-analysis 

will be described accurately, with the exception of one untrue feature of the design that will 

be revealed later and will make it clear that any significant results must be bogus in this re-

analysis (see Luck, 2014 for a different framing of these results). Although the original study 

compared a patient group with a control group, the present re-analysis focuses solely on 

within-group effects from a subset of 12 control subjects.

Design and Summary of Findings

In this study, data were obtained from 12 healthy adults in the visual oddball task shown in 

Figure 1. Letters and digits were presented individually at the center of the video display, 

and participants were instructed to press with the left hand when a letter appeared and with 

the right hand when a digit appeared (or vice versa). The stimuli in a given block consisted 

of 80% letters and 20% digits (or vice versa), and the task required discriminating the 

category of the stimulus and ignoring the differences among the members of a given 
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category (i.e., all letters required one response and all digits required the other response). 

However, unbeknownst to the participants, 20% of the stimuli in the frequent category were 

exact repetitions of the preceding stimulus (such as the repetition of the letter G in the 

example shown in Figure 1). The goal of the analyses presented here was to determine 

whether these frequent repetitions were detected, along with the time course of the 

differential processing of repetitions and non-repetitions. Previous research has shown that 

repetitions of the rare category can influence the P3 wave (Duncan-Johnson & Donchin, 

1977; Johnson & Donchin, 1980), but the effects of repetitions on individual exemplars of 

the frequent category are not known.

The experiment included 800 trials per participant, with 640 stimuli in the frequent category 

and 160 stimuli in the rare category. Within the frequent category, there were 128 repetitions 

and 512 non-repetitions for each participant. As has been found many times before, the N2 

and P3 waves were substantially larger for the rare category than for the frequent category 

(see Luck et al., 2009 for a comparison of these waveforms). The present analyses focused 

solely on the frequent category to determine whether there were any differences in the ERPs 

for frequent repetitions and frequent non-repetitions. Standard recording, filtering, artifact 

rejection, and averaging procedures were used (see Luck et al., 2009 for details).

Figure 2 shows the grand average waveforms for the frequent repetitions and the frequent 

non-repetitions. There were two clear differences in the waveforms between these trial types. 

First, repetitions elicited a larger P1 wave than non-repetitions, especially over the right 

hemisphere. Second, repetitions elicited a larger P2 wave at the central and parietal electrode 

sites. We performed standard analyses to determine whether these effects were statistically 

significant.

In these analyses, P1 amplitude was quantified as the mean voltage between 50 and 150 ms 

poststimulus, and the amplitude measures were analyzed in a three-way analysis of variance 

(ANOVA) with factors of trial type (repetition versus non-repetition), electrode hemisphere 

(left versus right), and within-hemisphere electrode position (frontal pole, lateral frontal, 

mid frontal, central, or parietal). The effect of trial type was only marginally significant (p 
= .051), but the interaction between trial type and hemisphere was significant (p = .011). 

Because of the significant interaction, follow-up comparisons were performed in which the 

data from the left and right hemisphere sites were analyzed in separate ANOVAs. The effect 

of trial type was significant for the right hemisphere (p = .031) but not for the left 

hemisphere. These results are consistent with the observation that the P1 at right hemisphere 

electrode sites was larger for the repetitions than for the non-repetitions.

P2 amplitude was quantified as the mean voltage between 150 and 250 ms poststimulus at 

the central and parietal electrode sites, and the amplitude measures were again analyzed in 

an ANOVA with factors of trial type, electrode hemisphere, and within-hemisphere electrode 

position. The effect of trial type was significant (p = .026), supporting the observation that 

the P2 was larger for the repetitions than for the non-repetitions at the central and parietal 

electrodes.
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Together, the P1 and P2 results indicate that repetitions of specific exemplars of the frequent 

category are detected even when this is not required by the task. Further, these results 

indicate that the repetition happens rapidly (within approximately 100 ms of stimulus onset) 

and also impacts later processing (ca. 200 ms).

One might be concerned that many fewer trials contributed to the averaged ERP waveforms 

for the repetition waveforms than for the non-repetition waveforms. However, this is not 

actually a problem given that mean amplitude, rather than peak amplitude, was used to 

quantify the components. Mean amplitude is an unbiased measure, which means that it is 

equally likely to be larger or smaller than the true value and is not more likely to produce 

consistently larger values in noisier waveforms (see Luck, 2014).

Actual Design and Bogus Results

Although the analyses we have presented follow common practices, and might not be 

criticized in a journal submission, our analysis strategy was seriously flawed. The 

statistically significant effects were, in fact, solely a result of random noise in the data. 

Ordinarily, one cannot know whether a set of significant effects are real or bogus, but we 

know with completely certainty that any effects involving stimulus repetition in the present 

experiment were bogus because there was not actually a manipulation of stimulus repetition. 

This was just a cover story to make the data analysis sound plausible. Instead of 

manipulating repetitions versus non-repetitions, we randomly sorted the frequent stimuli for 

each subject into a set of 512 trials that we arbitrarily labeled “non-repetitions” and 128 

trials that we arbitrarily labeled “repetitions.” In other words, we simulated an experiment in 

which the null hypothesis was known to be true: The “repetition” and “non-repetition” trials 

were selected at random from the same population of trials. Thus, we know that the null 

hypothesis was true for any effects involving the “trial type” factor, and we know with 

certainty that the significant main effect of trial type for the P2 wave and the significant 

interaction between trial type and hemisphere for the P1 wave are bogus effects. This also 

means that our conclusions about the presence and timing of repetition effects are false.

The problem with our strategy for analyzing this data set is that we used the observed grand 

average waveforms to select the time period and electrode sites that were used in the 

analysis. Even though this was a relatively simple ERP experiment, there were so many 

opportunities for noise to create bogus differences between the waveforms that we were able 

to find time periods and electrode sites where these differences were statistically significant. 

There is nothing special about this experiment that allowed us to find bogus differences; 

almost any ERP experiment will yield such a rich data set that noise will lead to statistically 

significant effects if the choice of analysis parameters is based on the observed differences 

among the waveforms.

The Problem of Multiple Implicit Comparisons

This approach to data analysis leads to the problem of multiple implicit comparisons (Luck, 

2014): the experimenter is implicitly making hundreds of comparisons between the observed 

waveforms by visually comparing them and performing explicit statistical comparisons only 

for the time regions and scalp regions in which the visual comparisons indicate that 
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differences are present. To show how this problem arises, we re-analyzed the data from the 

aforementioned experiment in a way that makes the problem of multiple comparisons 

explicit. Specifically, we performed a separate t test at each individual time point and at each 

electrode site to compare the “repetition” and “non-repetition” waveforms. This yielded 

hundreds of individual p values, many of which indicated significant differences between the 

“repetition” and “non-repetition” waveforms. It is widely known that this strategy is 

inappropriate and leads to a high rate of false positives. If we had tried to publish the results 

with hundreds of individual t tests and no correction for multiple comparisons, any 

reasonable reviewer would have cited this as a major flaw and recommended rejection. 

Indeed, none of the differences remained significant when we applied a Bonferroni 

correction for multiple comparisons.

Although it is widely understood that performing large numbers of explicit statistical 

comparisons leads to a high probability of bogus differences, it is less widely appreciated 

that researchers are implicitly conducting multiple comparisons when they use the observed 

ERP waveforms to guide their choice of explicit statistical comparisons. This is exactly what 

we did in the aforementioned experiment: We looked at the grand average waveforms, saw 

some differences, and decided to conduct statistical analyses of the P1 and P2 waves using 

specific time ranges and electrode sites that showed apparent differences between 

conditions. In other words, differences between the waveforms that were entirely due to 

noise led us to focus on specific time periods and electrode sites, and this biased us to find 

significant-but-bogus effects in a small number of explicit statistical analyses. Using the 

grand averages to guide the analyses in this manner leads to the same end result as 

performing hundreds of explicit t tests without a correction for multiple comparisons—

namely a high rate of spurious findings—and yet it is very easy to “get away with” this 

approach when publishing ERP studies. Similar issues arise in fMRI research (Vul, Harris, 

Winkielman, & Pashler, 2009).

If we had submitted a paper with the small set of ANOVA results described earlier, we could 

have told a reasonably convincing story about why we expected that the P1 and P2 

waveforms would be sensitive to the detection of task-irrelevant stimulus repetitions (which 

is known as hypothesizing after the results are known or HARKing – see Kerr, 1998). 

Moreover, we could have concluded that repetitions are detected as early as 100 ms 

poststimulus, and it is plausible that the paper would have been accepted for publication. 

Thus, completely bogus differences that are a result of random variation could easily lead to 

effects that are convincing and possibly publishable, especially if they are described as 

“predicted results” rather than post hoc findings.

Thus, an unethical researcher who wishes to obtain “publishable effects” in a given 

experiment regardless of whether the results are real would be advised to look at the grand 

averages, find time ranges and electrode sites for which the conditions differ, measure the 

effects at those time ranges and electrode sites, report the statistical analyses for those 

measurements, and describe the data as fitting the predictions of a “hypothesis” that was 

actually developed after the waveforms were observed. However, a researcher who wants to 

avoid significant-but-bogus effects would be advised to focus on testing a priori predictions 

without using the observed data to guide the selection of time windows or electrode sites, 
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treating any other effects (even if highly significant) as being merely suggestive until 

replicated.

How to Avoid Biased Measurement and Analysis Procedures

In this section, we will describe several approaches that can be taken to avoid the bogus 

findings that are likely to occur if the grand average waveforms are used to guide the 

measurement and analysis procedures (see Luck, 2014 for additional discussion). First, 

however, we would like to note that there is a tension between the short-term desire of 

individual researchers to publish papers and the long-term desire of the field as a whole to 

minimize the number of significant-but-bogus findings in the literature. Most approaches for 

reducing the Type I error rate will simultaneously decrease the number of significant and 

therefore publishable results. Moreover, many of these approaches will decrease statistical 

power, meaning that the rate of Type II errors (false negatives) will increase as the rate of 

Type I errors (false positives) decreases. It is therefore unrealistic to expect individual 

researchers—especially those who are early in their careers—to voluntarily adopt data 

analysis practices that are good for the field but make it difficult for them to get their own 

papers published. The responsibility therefore falls mainly on journal editors and reviewers 

to uniformly enforce practices that will minimize the Type I error rate. The need for editors 

and reviewers to enforce these practices is one of the key points of the recently revised 

publication guidelines of the Society for Psychophysiological Research (Keil, Debener, 

Gratton, Junhöfer, Kappenman, Luck, Luu, Miller, & Yee, 2014).

A Priori Measurement Parameters

When possible, the best way to avoid biasing ERP component measurement procedures 

toward significant-but-bogus effects is usually to define the measurement windows and 

electrode sites before seeing the data. However, this is not always possible. For example, the 

latency of an effect may vary across studies as a function of low-level sensory factors, such 

as stimulus luminance and discriminability, making the measurement windows from 

previous studies inappropriate for a new experiment. Also, many studies are sufficiently 

novel that prior studies with similar methods are not available to guide the analysis 

parameters. There are several alternative approaches for these cases.

Functional Localizers

One approach, which is popular in neuroimaging research, is to use a “functional localizer” 

condition to determine the time window and electrode sites for a given effect. For example, 

an experiment that uses the N170 component to examine some subtle aspect of face 

processing (e.g., male faces versus female faces) could include a simple face-versus-nonface 

condition; the timing and scalp distribution of the N170 from the face-versus-nonface 

condition could then be used for quantifying N170 amplitude in the more subtle conditions. 

An advantage of this approach is that it can take into account subject-to-subject differences 

in latency and scalp distribution, which might be more sensitive than the usual one-size-fits-

all approach. A disadvantage, however, is that it assumes that the timing and scalp 

distribution of the effect in the functional localizer condition is that same as in the conditions 
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of interest, which may not be true (see Friston, Rotshtein, Geng, Sterzer, & Henson, 2006 

for a description of the potential shortcomings of this approach in neuroimaging).

Collapsed Localizers

A related approach, which is becoming increasingly common, is to use a collapsed localizer. 
In this approach, the researcher simply averages the waveforms across the conditions that 

will ultimately be compared and then uses the timing and scalp distribution from the 

collapsed waveforms to define the analysis parameters that will be used for the non-

collapsed data. For example, in an experiment designed to assess the N400 in two different 

conditions, the data could first be averaged across those two conditions, and then the time 

range and electrode sites showing the largest N400 activity could be used when measuring 

the N400 in the two conditions separately. There may be situations in which this approach 

would be problematic (see Luck, 2014), but it is often the best approach when the analysis 

parameters cannot be set on the basis of prior research.

Window-Independent Measures

Some methods for quantifying ERP amplitudes and latencies are highly dependent on the 

chosen time window, and other methods are relatively independent (see Luck, 2014). For 

example, mean amplitude can vary by a great deal depending on the measurement window, 

whereas peak amplitude is less dependent on the precise window, especially when the largest 

peak in the waveform is being measured. Mean amplitude is typically superior to peak 

amplitude in other ways, however, such as sensitivity to high-frequency noise (Clayson, 

Baldwin, & Larson, 2013; Luck, 2014). Nonetheless, it may be appropriate to use peak 

amplitude when there is no good way of determining the measurement window for 

measuring mean amplitude. Another approach is to show that the statistical significance of a 

mean amplitude effect doesn’t depend on the specific measurement window (see, e.g., 

Bacigalupo & Luck, 2015).

The Mass Univariate Approach

Another approach is the mass univariate approach, in which a separate t test (or related 

statistic) is computed at every time point for every electrode site and some kind of correction 

for multiple comparisons is applied to control the overall Type I error rate. The traditional 

Bonferroni correction is usually unreasonably conservative, but a variety of other correction 

factors are now available (Groppe, Urbach, & Kutas, 2011a; Maris & Oostenveld, 2007) and 

are implemented in free, open-source analysis packages, such as the Mass Univariate 
Toolbox (Groppe, Urbach, & Kutas, 2011b) and FieldTrip (Oostenveld, Fries, Maris, & 

Schoffelen, 2011). These approaches are still fairly conservative, but they may be the best 

option when no a priori information is available to guide the choice of latency windows and 

electrode sites.

Mathematical Isolation of the Latent Components

Another approach is to use a method that attempts to mathematically isolate the underlying 

latent ERP components. For example, techniques such as source localization, independent 

component analysis, and spatial principal component analysis attempt to quantify the 
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magnitude of the underlying component at each time point, eliminating the need to select 

specific electrode sites for analysis. Similarly, temporal principal component analysis 

attempts to quantify the magnitude of the underlying component across each type of trial, 

eliminating the need to select specific time windows for analysis.

Replication

The final and most important approach is simple, old-fashioned replication. If there is no a 

priori basis for selecting a time window and set of electrode sites, a second experiment can 

be run that demonstrates the replicability of the findings with the same analysis parameters. 

The second experiment will not typically be an exact replication of the first experiment, but 

will instead add something new (e.g., showing that the results generalize to somewhat 

different conditions).1

Do Published Papers Actually Justify Their Measurement Parameters?

According to the latest publication guidelines of the Society for Psychophysiological 

Research, “measurement windows and electrode sites must be well justified” (Keil et al., 

2014, p. 7) using one of the approaches just described or some other clear and compelling 

method. To assess how well this guideline is being followed, we conducted an informal 

analysis of the papers published in Psychophysiology during the first six months of 2015. 

We selected all of the papers that met the following three criteria: 1) Empirical studies 

(excluding review papers and methodology papers); 2) Focused on ERPs (rather than other 

psychophysiological measures); 3) Univariate ANOVAs used as the primary statistical 

approach (so that statistical practices could be assessed in a subsequent section of this 

paper). Fourteen papers met these criteria for inclusion. Ten of these papers provided a clear 

a priori justification for the choice of time windows and electrode sites or used methods that 

are insensitive to or independent of the choice of time windows and electrode sites. 

However, four of the papers provided no justification or only a vague justification (e.g., an 

appeal to the literature without citing any specific papers). In some cases, visual inspection 

of the observed waveforms was explicitly cited as a part of the justification, even though this 

is exactly what should be avoided in most cases.

Although our analysis of these papers in Psychophysiology was based on a relatively small 

sample of papers, it does indicate that authors, editors, and reviewers are not always 

following the requirement that a good justification must be provided for measurement 

windows and electrode sites. It is also worth noting that 12 of the 14 papers included only a 

single experiment, making it impossible to assess the replicability of the observed results. 

Thus, relatively few papers in this journal are using the most powerful approach to 

demonstrating the robustness of their findings, namely replication.

1Such conceptual replications can be problematic, because a failure to replicate might be explained away by the differences between 
the original experiment and the replication (Pashler & Harris, 2012). This is particularly problematic in areas of research where each 
individual experiment is fast and inexpensive, making it plausible to publish only the small fraction of experiments in which a 
significant-but-bogus experiment is found. Given the time and expense of ERP experiments, however, conceptual replications are 
unlikely to lead to this kind of file drawer effect in ERP research.
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Factorial ANOVAs and Familywise/Experimentwise Error Rates

Defining Familywise and Experimentwise Error Rates

In addition to the problem of multiple implicit comparisons, ERP studies often involve a 

problem of multiple explicit comparisons that can be highly problematic but is not usually 

recognized. Specifically, ERP studies often involve conducting two or more multi-factor 

ANOVAs, leading to several main effects and interactions that are tested with no correction 

for multiple comparisons. The probability of a Type I error for one or more effects in a set of 

related analyses (e.g., the main effects and interactions from a single ANOVA) is called the 

familywise error rate. For example, each three-way ANOVA used to analyze the experiment 

shown in Figures 1 and 2 involved seven main effects and interactions, leading to a 

familywise error rate of over 30%. This means that the chance of obtaining one or more 

significant-but-bogus results from among the seven effects in each three-way ANOVA was 

>30% and not the 5% that one might expect.

Similarly, the probability of a Type I error for one or more effects across all the analyses 

performed for a given experiment is called the experimentwise error rate. Two three-way 

ANOVAs were reported for this experiment, and the experimentwise error rate was over 

50%. In other words, although there were no true effects for any of the 14 main effects and 

interactions that were assessed in this experiment, the chance of finding at least one 

significant-but-bogus effect was approximately 50%. Thus, even if we had used a priori time 

windows and electrode sites, we would have had a 50% chance of finding a significant-but-

bogus effect and not the 5% chance that one ordinarily expects. This does not reflect 

something unique about the experiment shown in Figures 1 and 2; the experimentwise error 

rate would be approximately 50% for any experiment that was analyzed using two three-way 

ANOVAs. This problem does not seem to be widely recognized, so we will provide a 

detailed discussion and some simple simulations to make the problem clear (see also 

Cramer, van Ravenzwaaij, Matzke, Steingroever, Wetzels, Grasman, Waldorp, & 

Wagenmakers, 2015).2

Post Hoc Corrections for Multiple Comparisons

Virtually every graduate-level ANOVA course includes a discussion of the problem of 

multiple comparisons, along with the Bonferroni and Scheffé corrections. Often this is raised 

in the context of follow-up analyses for factors that contain more than two levels. For 

example, if Factor A of an experiment has three conditions—A1, A2, and A3—and a 

significant effect of Factor A is found, follow-up analyses can be conducted to compare A1 

with A2, to compare A2 with A3, or to compare A1 with A3. The more such comparisons are 

performed, the greater is the likelihood that one or more of them will yield a significant-but-

bogus result, and the overall probability of a Type I error (i.e., a false positive) will exceed 

the nominal .05 level. A correction is therefore applied so that the overall probability of a 

Type I error will remain at the .05 level. However, the standard advice is that a correction is 

not necessary for planned comparisons.

2This first issue was first brought to our attention in a blog post by Dorothy Bishop, http://deevybee.blogspot.co.uk/2013/06/
interpreting-unexpected-significant.html.
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Although this conceptualization of the problem of multiple comparisons is widely taught, it 

is much less common for courses to consider the problem of multiple comparisons that 

arises within a single ANOVA with multiple factors. For example, in a simple 2 × 2 

experiment with Factor A and Factor B, the ANOVA will yield three p values: one for the 

main effect of Factor A, one for the main effect of Factor B, and one for the A × B 

interaction. If the null hypothesis is true for both of the main effects and the interaction, this 

analysis provides three opportunities to obtain a significant-but-bogus effect. The likelihood 

that at least one of these three effects will be significant is not 5%, but is actually close to 

14%. However, researchers do not usually provide a correction for multiple comparisons, 

presumably because the main effects and interactions in an ANOVA are treated as planned 

rather than unplanned comparisons.

Computing the Familywise and Experimentwise Error Rates

The probability of obtaining one or more significant-but-bogus effects in factorial ANOVA 

can be computed using simple probability theory. If c independent statistical comparisons 

are performed, and we call the single-test error rate αs (typically .05), the combined alpha 

for the c comparisons will be can be defined as follows:

For example, if you conduct 3 statistical tests, and the null hypothesis is actually true for all 

3, the chance that one or more of the tests will yield a significant result is as follows:

The relationship between the number of statistical tests and combined alpha is shown 

graphically in Figure 3A. Note that the combined alpha could be either the familywise alpha 

(when the number of tests used in the equation is the number of main effects and interactions 

in a single ANOVA) or the experimentwise alpha (when the number of tests used in the 

equation is the total number of main effects and interactions across all the statistical analyses 

in an experiment).

The number of independent tests (main effects and interactions) in an ANOVA with f factors 

is f2 − 1, so the equation for determining the familywise alpha level (αf) for a factorial 

ANOVA with f factors is as follows:

For a 3-factor ANOVA, this would give us:
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When multiple ANOVAs are conducted, the total number of statistical tests is simply the 

sum of the number of tests for the individual ANOVAs. For example, if you conduct an 

experiment with two 3-way ANOVAs, each ANOVA involves 7 main effects and 

interactions, leading to 14 total tests that contribute to the experimentwise error. This gives 

us

This relationship between the number of factors and the combined error rate is shown 

graphically in Figure 3B.

Note that the above equations require the assumption that all of the effects are independent 

(uncorrelated), which will be approximately correct for null effects. There will be some 

small correlations as a result of finite sample sizes, so these equations slightly overestimate 

the true overall alpha rate in most real experiments (Cramer et al., 2015).

Effects of Large Numbers of ANOVA Factors in ERP Research

Researchers do not typically apply a correction for multiple comparisons in factorial 

ANOVAs, under the implicit assumption that all of the main effects and interactions are 

effectively planned comparisons. That may be a reasonable assumption in a two-way 

ANOVA, but it is unlikely that a researcher has a priori hypotheses about all 15 main effects 

and interactions that are computed for a four-way ANOVA. Moreover, the number of main 

effects and interactions increases exponentially as the number of factors in the ANOVA 

increases, and the likelihood of a false positive can become very high. This is illustrated in 

Table 1 and Figure 3B, which show that the probability of one or more significant-but-bogus 

effects exceeds 50% in a four-way ANOVA and approaches 100% with a seven-way 

ANOVA (when the null hypothesis is true for all effects).

With enough factors in an ANOVA, researchers are virtually guaranteed that at least one 

effect will be statistically significant. Thus, a researcher who wishes to obtain “something 

significant” in a given experiment—irrespective of whether the effects are real—would be 

advised to include as many factors as possible in the ANOVA. However, a researcher who 

wants to avoid significant-but-bogus effects—and promote real scientific progress—would 

be advised to include as few factors as possible.

Common approaches to the statistical analysis of ERP experiments tend to lead to very high 

familywise and experimentwise error rates. These error rates are elevated in many ERP 

analyses relative to behavioral analyses because each condition of an experiment that yields 

a single behavioral measurement may yield many ERP measurements because multiple 

different components may be measured, because the amplitude and the latency may be 

measured for each component, and because each component may be measured at multiple 

electrode sites.

This is a very common issue in ERP studies, including our own. To take an extreme 

example, consider a paper published by Luck & Hillyard (1994a) in Psychophysiology that 

provided a detailed analysis of several different ERP components in a set of visual search 
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tasks. The analysis of the first experiment alone involved four 5-factor ANOVAs, three 4-

factor ANOVAs, and three 3-factor ANOVAs, for a total of 190 individual p values. The 

experimentwise error rate for an experiment with 190 p values is close to 100%, so it is a 

near certainty that at least one of the significant effects in that experiment was bogus. Of 

course, this was an exploratory study, and many of the key effects were replicated in 

subsequent experiments. Nonetheless, this example demonstrates that it is possible to 

publish ERP studies with an extremely high experimentwise error rate in a journal that has a 

reputation for methodological rigor.

To go beyond this single anecdote, we examined the aforementioned set of 14 ERP studies 

published in Psychophysiology during the first six months of 2015. Three of these 14 papers 

reported at least one four-way ANOVA (and one of these three papers included 5 four-way 

ANOVAs, along with 8 two-way ANOVAs). Three additional papers reported between 3 and 

5 three-way ANOVAs each. Of the 14 papers, 12 reported at least 10 different statistical tests 

and the remaining two papers included 6 or 7 statistical tests each. Following standard 

practice, no correction for multiple comparisons was applied in any of these analyses. This 

does not mean that the authors of these papers did anything wrong or that their conclusions 

are incorrect. However, it does demonstrate that the number of independent statistical tests is 

quite high in the kinds of ERP papers published in this journal.

Simulations of Familywise Error Rates in Factorial ANOVAs

The Simulation Approach

To provide a concrete demonstration of how familywise error rates play out in factorial 

ANOVAs in a typical ERP study, we simulated a hypothetical experiment in which the late 

positive potential (LPP) was measured for stimuli with varying emotional content in two 

different groups of participants (N = 30 per group). The nature of the groups does not matter 

for this simulation, nor does it matter that the simulation included both between- and within-

group effects. The key is that the study is reflects the number of factors that is found in many 

ERP studies.

In the simulated experiment, participants performed an oddball task in which they viewed 

photographs and pressed one of two buttons on each trial to indicate whether the photograph 

showed an affectively positive scene (e.g., a cute baby) or an affectively negative scene (e.g., 

a dead animal). In half of the trial blocks, positive scenes were frequent (80%) and negative 

scenes were rare (20%), and this was reversed in the remaining trial blocks. Half of the 

simulated participants in each group responded with a left-hand buttonpress for the positive 

scenes and with a right-hand buttonpress for the negative scenes, and this was reversed for 

the other half (for counterbalancing purposes). Simulated measurements of LPP amplitude 

were from 18 electrode sites (Fp1, Fpz, Fp2, F3, Fz, F4, FC3, FCz, FC4, C3, Cz, C4, CP3, 

CPz, CP4, P3, Pz, P4). Following common practice, the data were collapsed across nearby 

electrode sites to form frontal, central, and parietal electrode clusters. This design yielded 

four main factors: a between-participants factor of group (patient versus control) and within-

participant factors of stimulus probability (rare versus frequent), stimulus valence (positive 

versus negative), and anterior-posterior electrode cluster (frontal, central, and parietal). 
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There was also a fifth counterbalancing factor of stimulus-response mapping (left versus 

right hand for positive valence stimuli).

Simulated experiments such as this are valuable in three main ways. First, whereas the true 

effects are unknown in real experiments, we know the truth (i.e., the population means) in 

simulations. Second, simulations allow us to see what would happen if we conducted the 

same experiment many times, allowing us to see how often real effects are found to be 

statistically significant (the true positive rate) and how often null effects are found to be 

statistically significant (the false positive rate, which is the same as the Type I error rate). 

Third, these simulations do not require assumptions about the independence of the statistical 

tests and therefore provide a more accurate estimate of the false positive rate.

In our simulations, the R statistical package (R Core Team, 2014) was used to generate 

simulated amplitude and latency values for each participant in each condition (as if they 

were measured from the averaged ERP waveforms of the individual participants). For the 

sake of simplicity, the simulated data exactly matched the assumptions of ANOVA: the 

values were sampled from normal distributions with equal variances and covariances. These 

assumptions would likely be violated in the LPP experiment, which would likely increase 

the rate of Type I errors even further (Jennings & Wood, 1976). We examined two different 

possible patterns of results, and we simulated 10,000 experiments for each of these patterns. 

In each simulation, we randomly sampled the values for each participant in each condition 

from the relevant probability distributions and conducted an ANOVA. Following the typical 

convention, a given effect was classified as statistically significant if the p value for that 

effect was less than .05 (i.e., the alpha level was set at .05). By asking how often significant 

effects were obtained across these 10,000 experiments, we can determine the true positive 

and false positive rates.

Simulation Results for the Case of All Null Effects

In the first set of simulations, there were no true main effects or interactions. The population 

mean for LPP amplitude was exactly 5 μV at each electrode site in each condition. Likewise, 

the population mean for LPP latency was 400 ms at each electrode site in each condition. 

This is clearly unrealistic, because the LPP would ordinarily vary in amplitude and latency 

across electrode sites, but this simulation allowed us to assess the number of Type I errors 

that would be found if the null hypothesis were true for all effects (which should 

approximately match the formulae given earlier). Observed means for each cell of the design 

are presented for 1 of the 10,000 simulated experiments in Table S1 (available in online 

supplementary materials). Most of the observed means were fairly close to the true 

population mean of 5.0 μV, but some differed considerably simply by chance.

In our statistical analyses of the data from each of these simulated experiments, we began by 

conducting a four-way ANOVA on mean amplitude with the factors described above, 

excluding the counterbalancing factor (stimulus-response mapping). This led to 15 separate 

main effects and interactions. Table 2 shows the proportion of experiments in which each 

main effect and interaction was found to be significant, as well as the proportion of 

experiments in which one or more effects was found to be significant (the familywise error 

rate). For any given effect, the probability of a significant effect was very close to 5%, which 
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is exactly what should happen when the null hypothesis is true, given an alpha level of .05. 

In fact, the probability of Type I error averaged across all main effects was exactly 5.0%. In 

other words, if you do experiments with four-way ANOVAs, but you look at only one of the 

effects (e.g., the Group × Probability interaction) and ignore any other significant effects, 

you will obtain a false positive for this one effect in only 5% of your experiments. However, 

if you look at all 15 main effects and interactions, the likelihood that at least one of these 

effects is significant (but bogus) will be much higher. Indeed, we found at least one 

significant effect in 5,325 of our 10,000 simulated experiments, which is a familywise false 

positive rate of approximately 53.3% (which is nearly identical to the predicted rate of 

53.7%). In other words, even though there were no real effects, more than half of 

experiments yielded at least one significant-but-bogus effect. Moreover, if we included the 

counterbalancing variable (stimulus-response mapping) as a fifth factor in the ANOVA, 

approximately 79.1% of the experiments yielded at least one significant-but-bogus effect.

In a real experiment of this nature, the key result would be a main effect of Group or an 

interaction between Group and one or more of the other factors. We therefore asked how 

many of our simulated experiments yielded a significant Group main effect or at least one 

interaction involving Group. With the four-way ANOVA shown in Table 2, 36.8% of 

experiments yielded a significant-but-bogus effect involving the Group factor. If we included 

the counterbalancing factor as a fifth variable, this likelihood rose to 58.5%. Thus, even 

when we limited ourselves to group-related effects, there was still a high likelihood of 

obtaining a significant-but-bogus effect.

As revealed by our literature review, many studies include multiple ANOVAs, and this will 

further boost the likelihood of obtaining a false positive. To demonstrate this, we conducted 

a four-way ANOVA on peak latency in addition to the four-way ANOVA on mean 

amplitude. Together, these two ANOVAs yielded 62 main effects and interactions, producing 

an experimentwise false positive rate of 78.0%. When we added the counterbalancing 

variable and conducted the amplitude and latency ANOVAs, the experimentwise false 

positive rate rose further to 95.7%.

Simulation Results for the Case of a Mixture of True and Null Effects

We performed a second set of simulations that was more realistic because it contained some 

true effects for both LPP amplitude and LPP latency. In this simulation, LPP amplitude was 

50% larger for rare stimuli than for frequent stimuli and was progressively larger at more 

posterior electrode sites, but with no other effects (see Table 3 for the population means). 

Note, however, that the probability and electrode site effects were proportional rather than 

additive, as would be true with real ERP data, and this created a probability by electrode 

cluster interaction (McCarthy & Wood, 1985). For the sake of simplicity, we did not perform 

a normalization procedure to deal with this interaction. In addition, LPP latency was 25 ms 

longer in the rare condition than in the frequent condition and was also progressively longer 

at more posterior electrode sites (see Table 3). The probability effect on latency was greater 

for rare than for frequent stimuli, producing an electrode cluster by stimulus probability 

interaction. We again simulated 10,000 experiments with this pattern, running ANOVAs for 

each simulation.
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We first replicated the four-way ANOVA on mean amplitude, which collapsed across the 

counterbalancing variable. We found that the main effect of probability, the main effect of 

anterior-posterior electrode cluster, and the interaction between these factors were 

statistically significant in 100% of the simulated experiments. This is what would be 

expected, because these were real effects with large effect sizes. The 28 other main effects 

and interactions were null effects, and each of these effects considered alone yielded a 

significant effect in approximately 5% of the simulated experiments. When considered 

together, however, at least one of these 28 null effects was significant in 46% of the 

experiments (4,629 out of 10,000 experiments). In other words, approximately half the 

experiments yielded at least one significant-but-bogus effect in addition to the true positive 

effects. When two ANOVAs were run for each experiment, one for amplitude and one for 

latency, the experimentwise false positive rate rose to 71.2%. We then added the 

counterbalancing variable to our analysis, yielding 2 five-way ANOVAs. The 

experimentwise false positive rate rose even higher to 94.3%. Thus, even under more 

realistic conditions in which several true effects were present, null effects were statistically 

significant in a large percentage of the simulated experiments.

Together, these simulations clearly demonstrate that ERP experiments will have a high 

likelihood of finding significant-but-bogus effects if they involve large numbers of statistical 

tests as a result of multi-factor ANOVAs, especially if more than one ANOVA is conducted 

for a given experiment.

Reducing the Familywise and Experimentwise Error Rates

One approach to dealing with the high familywise error rate that occurs in ANOVAs with 

several factors would be to apply an explicit correction for multiple comparisons. A variety 

of correction approaches are now available, each with its own assumptions, strengths, and 

weaknesses (see Groppe et al., 2011a for an excellent discussion). However, mathematical 

corrections will inevitably decrease the statistical power of an experiment, so this section 

will describe some alternative approaches.

Reducing the Number of Factors

An alternative solution that does not reduce statistical power is to simply reduce the number 

of factors in a given ANOVA. For example, factors that are simply used for counterbalancing 

should be left out of the ANOVA (e.g., the stimulus-response mapping factor in the 

simulated experiment described in the previous section).

In addition, it is often possible to eliminate factors that are a part of the design but are not 

necessary for testing the main hypotheses of the study. In the present example, we could 

eliminate the electrode cluster factor and instead collapse the measures across all the 

electrode sites (or measure from a single cluster if based on an a priori assumption about the 

cluster at which the component is present). We reanalyzed the data from our second set of 

simulations (with the population means shown in Table 3) to determine how well this would 

reduce the familywise error rate. We simply took the single-participant amplitude 

measurements from the previous simulation and averaged them across the three electrode 

clusters (frontal, central, and parietal).3 We then performed a three-way ANOVA for each 
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simulated experiment with factors of group, stimulus probability, and stimulus valence. 

Because we collapsed across electrode sites, the only true effect in this simulation was the 

main effect of probability, and we found that this main effect was significant in 100% of the 

simulations. The only remaining effects tested in the ANOVA were the main effect of group, 

the main effect of valence, the three two-way interactions, and the three-way interaction. The 

null hypothesis was true for all six of these effects, and one or more of these effects was 

significant in 26.8% of the simulated experiments (or 18.7% of experiments if we limited 

ourselves to Group-related effects). This is still a fairly high familywise error rate, but it is 

much better than the 53.3% familywise error rate obtained when the same data were 

analyzed with a 4-way ANOVA (or the 79.1% error rate we obtained with a 5-way ANOVA).

Using Difference Scores to Eliminate Factors from an ANOVA

In the previous example, the number of factors was reduced by average across the levels of 

one factor (i.e., averaging across the electrode sites). A related approach is to take the 

difference between two levels of a factor and perform the analyses on these difference 

scores. In the simulated experiment, for example, the ANOVA could be performed on 

measurements taken from rare-minus-frequent difference waves, eliminating the stimulus 

probability factor. When we applied this approach to the present simulation, using a two-

way ANOVA to analyze the rare-minus-frequent difference scores after averaging across 

electrode sites, the familywise error rate dropped to 14.0% of experiments (9.6% if we 

limited ourselves to Group-related effects).

This difference-based strategy is already widely used in some areas of ERP research. 

Consider, for example, the N2pc component, which is typically defined as the difference in 

amplitude between electrode sites that are contralateral versus ipsilateral to a target object in 

a visual stimulus array. In early studies, the N2pc was analyzed statistically by looking for 

an interaction between stimulus side and electrode hemisphere (see, e.g., Luck & Hillyard, 

1994a, 1994b). To determine whether N2pc amplitude was larger for one condition than for 

another, it was then necessary to look for a 3-way interaction between condition, stimulus 

side, and electrode hemisphere. If within-hemisphere electrode site was also included as a 

factor in in the ANOVA, this required a four-way ANOVA with 15 total main effects and 

interactions, yielding a familywise Type I error rate of approximately 50%.

Over the years, there has been a clear movement away from this approach. Instead, N2pc 

amplitude is measured from contralateral-minus-ipsilateral difference waves that have been 

collapsed across both hemispheres and often collapsed across a cluster of within-hemisphere 

electrodes as well (Eimer & Kiss, 2008; Hickey, McDonald, & Theeuwes, 2006; Sawaki, 

Geng, & Luck, 2012). This eliminates three factors from the analysis, often allowing the 

data to be analyzed with a simple t test or a two-way ANOVA, which dramatically reduces 

the familywise Type I error rate. The same contralateral-minus-ipsilateral approach is also 

commonly used for the lateralized readiness potential (Smulders & Miller, 2012) and for 

3If LPP amplitude is quantified as the mean voltage within a specific time range, this approach (in which we measured the voltage at 
each electrode site separately and then took the average of these measures) leads to exactly the same results as averaging the 
waveforms across electrode sites and then measuring LPP amplitude from this averaged waveform. However, if peak amplitude is used 
instead of mean amplitude, the results from these two sequences of operations will not be the same. This is discussed in detail by Luck 
(2014).
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contralateral delay activity (Perez & Vogel, 2012). In addition, the mismatch negativity is 

often measured from rare-minus-frequent difference waves (Alain, Cortese, & Picton, 1998; 

Javitt, Grochowski, Shelley, & Ritter, 1998; Näätänen, Pakarinen, Rinne, & Takegata, 2004), 

and the P3 wave is occasionally analyzed this way (Luck et al., 2009; Vogel, Luck, & 

Shapiro, 1998). Statistical analyses of difference scores were used in several of the 14 papers 

published in Psychophysiology that were discussed above.

Eliminating unnecessary analyses

Whereas reducing the number of factors within a given analysis reduces the familywise error 

rate for a given analysis, it is possible to reduce the experimentwise error rate by eliminating 

unnecessary analyses altogether. For example, analyzing both amplitudes and latencies can 

double the experimentwise error rate, as will analyzing the data from two components 

instead of just one. If an experiment is designed to look at, for example, the amplitude of the 

P3 wave, any significant effects observed for P3 latency or for other components should be 

treated with caution and described as being exploratory.

Costs and Benefits of Reducing the Number of Factors

The obvious downside of reducing the number of ANOVA factors or the number of 

measures being analyzed is that a true effect might be missed. However, many of these 

effects will not be of great scientific interest. For example, hemispheric differences are very 

difficult to interpret in N2pc studies, so not much information is lost by collapsing across the 

left and right hemispheres. Other cases may not be so clear, and researchers will always need 

to balance the importance of avoiding Type I errors with the ability to find unexpected by 

potentially important effects.

More broadly, ERP researchers should focus their data analyses on the effects that are most 

important for testing the underlying theory. Many statistics textbooks encourage a 

hierarchical strategy, in which an omnibus ANOVA with all possible factors is conducted 

first, followed by follow-up analyses to decompose any significant effects observed in the 

omnibus ANOVA. This is not a good strategy from the perspective of minimizing the 

experimentwise Type I error rate. Instead, researchers should focus on the specific main 

effects and interactions that test the underlying theory, and they should treat any other 

significant effects as suggestive rather than conclusive. This strategy could also be 

encouraged by journal editors and reviewers. More generally, a good dose of clear thinking 

and logic would be an effective treatment for most of the causes of bogus-but-significant 

results described in this paper.

Replication and the Role of Reviewers and Editors

The most convincing way of demonstrating that a significant result is not bogus is to show 

that it replicates. Replications take time, and the short-term payoffs are not always very high 

for individual researchers. However, journal editors and reviewers can, in principle, demand 

replications of an experiment when the data analysis strategy seems likely to yield a high 

experimentwise Type I error rate (for more on the issue of replication, see Pashler & Harris, 

2012). Replication of ERP results within a single paper does not seem to be as common as 
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might be desired, at least in Psychophysiology, given that only 2 of the 14 papers that were 

examined in the analyses described earlier included more than a single experiment.

Some studies require a great deal of time and money to conduct (e.g., longitudinal studies, 

large-N patient studies), and it would be impractical to run a replication before publishing 

the results. However, most such studies are done as follow-ups to smaller, less expensive 

studies that can be used to define a priori data analysis parameters. For such studies, journal 

editors and reviewers should demand that these a priori parameters are well defined and 

extremely well justified. This has already been specified in the publication guidelines of the 

Society for Psychophysiological Research (Keil et al., 2014), but widespread adoption will 

require a change in practice among researchers, editors, and reviewers.

Given the potential for a massive inflation of the Type I error rate in ERP studies given the 

large number of degrees of freedom in selecting measurement windows and electrode sites, 

along with the common use of multifactor ANOVAs, it may be time for the field (or at least 

the journal Psychophysiology) to require that the main findings from every paper be 

replicated unless the authors make a compelling argument against the need for replication 

(e.g., because of cost, high statistical power, etc.). This would likely slow down the rate at 

which papers are published, and it would require an adjustment in our expectations for 

productivity, but it would probably speed the ultimate rate of scientific progress.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Experimental paradigm from the study of Luck et al. (2009). Letters and digits were 

presented at fixation, with a stimulus duration of 200 ms and a stimulus onset asynchrony of 

1500±150 ms. One of these two stimulus categories was rare (20%) and the other was 

frequent (80%). Participants were instructed to make a left-hand button-press for one 

category and a right-hand button-press for the other category. Both the rare category and the 

category-hand response mapping were counterbalanced across trial blocks. The same letter 

or digit was occasionally presented twice in succession in the frequent category.
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Figure 2. 
Grand average waveforms for the frequent repetitions and frequent non-repetitions. 

Repetitions yielded a larger P2 wave over posterior scalp sites (the P2 effect) and a larger P1 

wave over the right hemisphere (the P1 effect).
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Figure 3. 
Familywise Type I error rate as a function of the number of statistical comparisons in a set 

of related tests (A) and as a function of the number of factors in a given ANOVA (B).
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Table 1
Number of effects (main effects and interactions) and approximate familywise Type I 
error rate for ANOVA designs with different numbers of factors

Number of
Factors 1 2 3 4 5 6 7 8

Number of
Effects 1 3 7 15 31 63 127 255

Familywise
Type I
Error Rate 0.05 0.1426 0.3017 0.5367 0.7961 0.9605 0.9985 1.0000
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Table 2
Number and Percentage of Significant Effects (p < .05) for Each Factor Combination in a 
4-Way ANOVA of Simulated Data with All Null Main Effects and Interactions

ANOVA Factor
Number of Simulations
with Significant Effects

Percentage of Simulations
with Significant Effects

AP 500 5.0%

G 495 5.0%

SP 536 5.4%

SV 503 5.0%

AP × G 497 5.0%

SP × AP 469 4.7%

SP × G 518 5.2%

SP × SV 484 4.8%

SV × AP 499 5.0%

SV × G 516 5.2%

SP × AP × G 479 4.8%

SP × SV × AP 488 4.9%

SP × SV × G 525 5.3%

SV × AP × G 511 5.1%

SP × SV × AP × G 503 5.0%

Average 502 5.0%

Experiments with a Type I Error 5325 53.3%

Note. G = Group, SP = Stimulus Probability, SV = Stimulus Valence, AP = Anterior-Posterior Electrode Cluster.
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Table 3
Population Means (amplitude and latency) for Each Combination of Stimulus Probability 
and Electrode Cluster in the Second Simulation

Stimulus
Probability Measure

Electrode Cluster

Frontal Central Parietal

Frequent
Amplitude (μV) 2.0 4.0 6.0

Latency (ms) 400 425 450

Rare
Amplitude (μV) 3.0 6.0 9.0

Latency (ms) 400 450 500
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