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Abstract

Elastic Thin Sheets In and Out of Equilibrium

by

Zhitao Chen

This thesis investigates two-dimensional theory of elasticity, exploring the effects of ther-

mal fluctuations, non-equilibrium odd elasticity, and disorder.

We use molecular dynamics to study the vibrations of a thermally fluctuating elastic

sheet with one end clamped at its zero-temperature length. We uncover a tilted phase in

which the sheet fluctuates about an inclined mean configuration, thus breaking reflection

symmetry. We determine the phase behavior as a function of the aspect ratio of the sheet

and the temperature. We show that tilt may be viewed as a type of transverse buckling

instability induced by clamping coupled to thermal fluctuations, and develop an analytic

model that predicts the tilted regions of the phase diagram. Unusual responses, as

exemplified by the tilted phase, driven by control of purely geometric quantities like the

aspect ratio, as opposed to external fields, provide a rich playground for two-dimensional

mechanical metamaterials.

We also investigate the impact of disorder on the elastic moduli of an odd elastic ma-

terial, defined by a non-symmetric elastic tensor. Using an effective medium theory and

numerical simulations, we reveal the behavior of effective odd elastic moduli in the pres-

ence of disorder, interpreting it as a crossover between the affine response of the passive

elastic backbone and a rigidity percolation transition in the odd elastic components. We

find that odd elasticity is generally robust against disorder, although certain finely-tuned

features may be affected.
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Chapter 1

Introduction

Elasticity, the property whereby a material deforms under the influence of external forces

and returns to its original shape and size upon force removal, is a characteristic of most

solids. The study of elasticity dates back to ancient human history. Across diverse cul-

tures, ancient engineers demonstrated a practical and intuitive understanding of elasticity

through the construction of structurally sound bridges and buildings [1]. A mathemat-

ical theory of elasticity, however, was not feasible until the development of Newtonian

mechanics. Even then, it took mathematicians and physicists over a century and a half

to develop the modern theory of elasticity, characterized by the application of stress and

strain tensors, energy functionals, and partial differential equations [2].

The theory of elasticity provides a rigorous framework for analyzing the stability of

mechanical structures. Early prominent results include Euler’s calculation of critical load

[3] and Greenhill’s determination of the critical length over which a beam buckles under its

own weight [4]. The importance of mechanical stability analysis continues in modern days,

influencing the design of diverse structures such as pressure vessels, pipelines, and ship

hulls. Recent years have also witnessed an increasing interest in harnessing mechanical

instabilities to design mechanical metamaterials with desired properties [5, 6, 7].
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Introduction Chapter 1

This thesis focuses on the elasticity of polymerized or solid thin sheets. We assume

that at the continuum level, the stress-strain relation is well defined, and that at the

microscopic level, the connectivity among particles is fixed. Notable examples of poly-

merized thin sheets include biological membranes like the spectrin network in red blood

cells [8] and atomically thin two-dimensional materials like graphene and layered transi-

tion metal dichalcogenides, which exhibit intriguing mechanical and electronic properties

[9, 10]. To describe the mechanical properties of these materials, a two-dimensional the-

ory of elasticity can be formulated, and the theory for thin sheets with large deflections

reached its modern form of Föppl-von Kármán theory in the early 20th century. The

Föppl-von Kármán theory introduces a set of highly nonlinear partial differential equa-

tions, often solved numerically in practical applications. While it might seem that thin

sheet theory is reduced to numerical solutions of these equations with suitable boundary

conditions, two crucial elements breathe new life into this seemingly mature field.

First, the mechanical behavior of thin sheets is enriched under the influence of thermal

fluctuations [11]. As will be reviewed in the following section, thermal fluctuations lead to

a low-temperature wrinkled flat phase with anomalous elastic properties in thermalized

thin sheets. Analyzing these properties requires insights and techniques from modern

statistical physics. In Chapter 2 of this thesis, we focus on the stability and phases of

thermally fluctuating thin sheets in a single-clamped configuration.

Second, there is an increasing interest in studying non-equilibrium phenomena in

thin sheets and membranes [12]. Traditional elasticity theories are formulated in terms

of conservation of energy, which are in general not appropriate for a wide range of living,

driven, or active media. A recent example of a non-equilibrium theory of elasticity

is known as odd elasticity, in which the stress-strain relation is incompatible with an

energy functional [13]. Investigating the robustness of odd elasticity in the presence of

disorder is the focus of Chapter 3 of this thesis.

2



Introduction Chapter 1

1.1 Statistical Physics of Polymerized Thin Sheets

In this section, we provide an overview of the statistical mechanics of polymerized

thin sheets under the influence of thermal fluctuations. We also present fundamental

concepts from the theory of elasticity that serve as the foundation for the remainder of

this thesis. The presentation below is inspired by the lecture of Nelson from Ref. [9].

To describe a fluctuating thin sheet embedded in a three-dimensional ambient space,

we first parameterize its flat undistorted configuration with coordinates r0 = (x1, x2, 0).

For convenience, we will use the notation x = (x1, x2). In general, the thin sheet config-

uration is given by

r(x) = r0 +


u1(x)

u2(x)

h(x)

 , (1.1)

where u1 and u2 describe in-plane displacements, and h describes out-of-plane fluctua-

tions. Here, we use the Monge gauge parameterization and assume the thin sheet to have

no overhangs. An undistorted line segment dr0 = (dx1, dx2, 0) on the sheet is deformed

into

dr =


(1 + ∂1u1)dx1 + ∂2u1 dx2

∂1u2 dx1 + (1 + ∂2u2)dx2

∂1h dx1 + ∂2h dx2

 . (1.2)

The stretching of the line segment defines the symmetric strain tensor uij through

d2r = d2r0 + 2uijdxidxj, (1.3)

where, allowing large deflection of the thin sheet, we have

uij =
1

2
[∂iuj + ∂jui + (∂ih)(∂jh)]. (1.4)

3



Introduction Chapter 1

The stretching energy can be expressed as an expansion in powers of uij, and the total

energy is the sum of the bending and stretching energies. For an isotropic thin sheet, the

focus of this thesis, the total energy is:

E[h,u] =
1

2

∫
d2x[κ(∇2h)2 + 2µu2

ij + λu2
kk], (1.5)

where repeated indices are summed over. κ is the bending rigidity (at zero tempera-

ture) with dimension of energy, and µ and λ, known as the Lamé parameters, are elastic

constants with dimension of energy per area. We truncate the stretching energy at the

quadratic order in the strain field uij. This is known as the Hookean approximation, and

gives rise to a linear stress-strain relation (at zero temperature). The Föppl–von Kármán

equations can subsequently be derived from this energy functional with variational cal-

culus [14].

To study the statistical physics of thermalized thin sheets, we define the partition

function as a path integral:

Z =

∫
DhDu e−E[h,u]/kBT . (1.6)

Since the energy functional is quadratic in the in-plane displacement fields, we can in-

tegrate them out to obtain an effective energy functional Eeff of the height fluctuations

alone, which is defined as:

Z =

∫
Dhe−Eeff [h]/kBT , (1.7)

where 1

Eeff [h] = −kBT ln (

∫
Due−E[h,u]/kBT ). (1.8)

1The logarithm in Eq. (1.8) may suggest that Eeff is a free energy. The true free energy of the
system, however, is given by F = −kBT lnZ. Eeff should be interpreted as a Hamiltonian or energy
functional of the h field, from which the exact partition function can be calculated through Eq. (1.7).

4
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The effective energy functional reads [15]:

Eeff [h] =
1

2
κ

∫
d2x(∇2h)2 +

1

2
Y

∫
d2x[

1

2
P T
ij (∂ih)(∂jh)]

2

=A
∑
q

1

2
κq4h(q)h(−q)

+ A
∑

q1+q2=q ̸=0
q3+q4=−q ̸=0

Y

8
[q1iP

T
ij (q)q2j][q3iP

T
ij (q)q4j]h(q1)h(q2)h(q3)h(q4),

(1.9)

where A is the area of the thin sheet, P T
ij (q) = δij − qiqj/q

2 the transverse projection

operator, and Y = 4µ(µ+λ)/(2µ+λ) the Young’s modulus. The convention for Fourier

transform is h(q) =
∫
(d2x/A)h(x)e−iq·x.

In the harmonic approximation where we ignore the quartic interaction term, we have

the bare height-height correlation function

G0
hh(q) = ⟨h(q)h(−q)⟩0 =

kBT

Aκq4
, (1.10)

where the subscript 0 denotes a statistical average calculated using only the first term in

the effective energy functional. The quartic term is expected to give rise to a renormalized

bending rigidity κR(q) defined by

Ghh(q) = ⟨h(q)h(−q)⟩ ≡ kBT

AκR(q)q4
, (1.11)

where the expectation value is calculated using the full effective energy functional. A

naive application of perturbation theory reveals a length scale lth above which the effect

of the quartic term dominates and perturbation theory breaks down [16]. This material-

5



Introduction Chapter 1

dependent length scale is known as the thermal length scale, and it is given by

lth =

√
16π3κ

3kBTY
. (1.12)

Physically, this is the sample size above which the measured bending rigidity κR(q) of

the material differs significantly from its microscopic bending ridigity κ.

Calculations utilizing various methods, including the ϵ-expansion to one loop [17] and

higher loop order [18, 19], the self-consistent screening approximation [20], and functional

renormalization group [21], reveal that the properties of thermalized thin sheets are

controlled by a non-Gaussian (Föppl-von Kármán) fixed point, and the renormalized

bending rigidity is given by

κR(q)

κ
∼
(

q

qth

)−η

, (1.13)

for q < qth = π
lth
, with the anomalous exponent η ≈ 0.8. Thermal fluctuations therefore

increase the bending rigidity of thin sheets. The Lamé coefficients, and hence the Young’s

modulus, are also renormalized:

YR(q)

Y
∼ µR(q)

µ
∼ λR(q)

λ
∼
(

q

qth

)ηu

, (1.14)

with the anomalous exponent ηu ≈ 0.4. In contrast to the bending rigidity, thermal

fluctuations soften the in-plane rigidity of thin sheets.

The renormalized bending rigidity and height-height correlation function allow us to

calculate a range of mechanical and statistical properties of thermalized thin sheets. A

prominent example is the existence of long-range order in the surface normals, indicating

that, unlike thermalized one-dimensional polymers which always crumple, thermalized

thin sheets exhibit an extended “flat” phase at low temperature [15]. The existence of a

symmetry-breaking extended phase does not violate the Mermin-Wagner theorem, which

6
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states that two-dimensional systems with short-ranged interactions cannot spontaneously

break a continuous symmetry [22], because the quartic interaction in Eq. (1.9) is in fact

long-ranged [23]. In the following, we only review two calculations relevant to the rest of

this thesis: the scaling of the root mean square of height fluctuation, and the projected

area of thermalized thin sheets.

The mean square height fluctuation is computed as

⟨h2⟩ =
∫

d2x

A
⟨h(x)h(x)⟩ =

∑
q

⟨h(q)h(−q)⟩

=
∑
q

kBT

AκR(q)q4
≈
∫

d2q

(2π)2
kBT

κR(q)q4

∼
∫

dq
1

q3−η
∼ L2−η ≡ L2ζ ,

(1.15)

where we have only kept the part of the result divergent with the system size L. The

roughness exponent, ζ = 1− η/2 is theoretically predicted to be approximately 0.6. The

root mean square of height fluctuation is therefore

hrms

L
=

√
⟨h2⟩
L

∼ L−η/2. (1.16)

The fact that hrms/L approaches zero in the limit of large system size is a result of the

stabilizing effect of the anomalous exponent η > 0. At low temperature, a thermalized

thin sheet is therefore in an extended but rough phase.

The roughness of the extended phase, stemming from thermally induced wrinkles

as illustrated in a simulation snapshot in Fig. 1.1, reduces the (projected) area of a

thermalized sheet to a value smaller than its area at zero temperature. The area shrinkage

7



Introduction Chapter 1

Figure 1.1: Snapshot of a simulation of a freestanding triangulated sheet at T = 300K.
See Chapter 2 for simulation details.

δA is given by:

δA

A
=

1

A
⟨
∫

d2xu0,ii(x)⟩ = ⟨u0,ii(q = 0)⟩ ≡ ⟨ũ0,ii⟩, (1.17)

where u0,ij =
1
2
(∂iuj + ∂jui) is the in-plane strain field. The last term is the expectation

value of the trace of the Fourier zero mode, which we denote as ũ0,ii. We present here

a general method to compute (δA/A) even in the presence of external stress. This was

used in Ref. [24] to derive the non-Hookean response to external stress of thermalized

sheets, a result previously predicted from a scaling argument in Ref. [25].

To facilitate the calculation, we introduce a source term in the energy functional:

Eσ[h,u] =

∫
d2x

{1
2
[κ(∇2h)2 + 2µu2

ij + λu2
kk]− σiju0,ij(x)

}
=
{1
2

∫
d2x[κ(∇2h)2 + 2µu2

ij + λu2
kk]
}
− Aσijũ0,ij,

(1.18)

where σij is a spatially uniform tensor, and the last term is outside of the integral.

The partition function Zσ in the presence of the source term is similarly defined as in

8
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Eq. (1.6). Integrating out the in-plane displacement fields, we obtain for the effective

energy functional for the height fluctuation in the presence of the source term:

Eσ,eff [h] =
A

2

∑
q

[
κq4 + σijqiqj

]
h(q)h(−q) + (quartic term) + (terms quadratic in σij),

(1.19)

where the quartic term is identical to that in Eq. (1.9). Using Eq. (1.18), we obtain

⟨ũ0,ij⟩ =
1

Zσ

∫
DhDu ũ0,ij e

−Eσ [h,u]/kBT
∣∣∣
σij=0

=
kBT

A

∂

∂σij

lnZσ

∣∣∣
σij=0

. (1.20)

The last expression can also be computed using the effective energy functional. Omitting

the linear in σij term, which vanishes after taking the σij = 0 limit, we have

kBT

A

∂

∂σij

lnZσ

∣∣∣
σij=0

=
1

Zσ

∫
Dh
(−1

2

)∑
q

qiqjh(q)h(−q)e−Eσ,eff [h]/kBT
∣∣∣
σij=0

=− 1

2

∑
q

qiqj⟨h(q)h(−q)⟩.
(1.21)

The area shrinkage is then [24]:

δA

A
=⟨ũ0,ii⟩ = −1

2

∑
q

q2⟨h(q)h(−q)⟩

=− 1

2

∫
d2q

(2π)2
q2

kBT

κR(q)q4

≈− 1

2

[∫ qth

π/L

dq

2π

kBT

κ( q
qth

)−ηq
+

∫ π/a

qth

dq

2π

kBT

κq

]
=− kBT

4πκ
[η−1 − η−1(lth/L)

η + ln(lth/a)],

(1.22)

where a is a microscopic cut-off controlled by the average spacing between particles

in the system. In the above calculation we have used κR(q) ≈ κ for q > qth, and

κR(q) ≈ κ(q/qth)
−η for q < qth. The reduction of length along each dimension of the

9
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two-dimensional thin sheet is thus

δLx

Lx

=
δLy

Ly

=
1

2

δA

A
, (1.23)

a result we will utilize in Chapter 2 of this thesis.

While the anomalous elasticity of freestanding thermalized sheets has been explored

theoretically for decades, the field has recently advanced considerably on the experimental

front with the synthesis of a wide range of two-dimensional materials, such as graphene,

hexagonal boron nitride, tungsten disulfide (WS2), and molybdenum disulfide (MoS2)

[10]. For graphene at room temperature, the thermal length scale lth is approximately a

few nanometers. This is a result of both a small bending rigidity κ ≈ 1.2eV and a large

Young’s modulus Y ≈ 20 eV/Å
2
[26, 27, 28]. Experiments conducted with atomically

thin freestanding graphene in Ref. [29] revealed a renormalized bending rigidity at room

temperature of order 4000 times larger than its microscopic value. It is worth noting,

however, that this enhancement is partially due to static ripples from sample preparation,

which are predicted to also contribute to the renormalization of the bending rigidity [30].

The predicted softening of the in-plane Young’s modulus of a graphene sheet has also

been observed experimentally [31]. Such experimental progress has spurred theoretical

and numerical efforts to extend the theory of thermalized sheets beyond the pristine,

free-standing scenario. This extension is necessary as material samples in experiments

often encounter diverse boundary conditions, including supports, clamping, and external

stress applied to the samples’ boundaries. In Chapter 2 of this thesis, we study a ther-

mally fluctuating sheet with one end clamped at its zero-temperature length. Our study

uncovers a tilted phase in which the sheet fluctuates about a mean configuration that

is inclined relative to the horizontal plane, thus breaking reflection symmetry. We will

show that this tilt may be viewed as a type of transverse buckling instability induced by

10
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clamping in conjunction with thermal fluctuations. Chapter 2 is adapted from a previous

publication [32].

1.2 Overview of Odd Elasticity

Conventional theories of elasticity are often built upon (conservative) energy function-

als [14]. For example, the statistical and mechanical properties of thermally fluctuating

thin sheets reviewed above are derived from the energy functional of Eq. (1.5). This

conventional approach, however, may be inadequate for systems driven out of thermal

equilibrium. Examples of such non-equilibrium elastic systems arise in the field of active

and biological matter, where entities in a system consume free energy to generate forces

and motion [33, 34]. Two-dimensional tissues, or epithelia, for instance, exhibit defor-

mations induced by active stresses and torques stemming from cellular processes [35].

To describe the elastic response of these systems, it is necessary to extend the theory of

elasticity beyond its traditional framework. Generalizations of the theory of plates and

sheets to describe active surfaces are proposed in Ref. [12] and Ref. [36]. For the purpose

of this thesis, we focus on odd elasticity, a minimal extension of linear elasticity theory

characterized by antisymmetric components of the elasticity tensor [13].

We begin with conventional the two-dimensional theory of elasticity and, for sim-

plicity, focus strictly on in-plane displacements and strain. Dropping height fluctuations

from Eq. (1.5), we obtain the energy functional

E[u] =
1

2

∫
d2x[2µu2

ij + λu2
kk], (1.24)

where the strictly in-plane strain is defined as uij = 1
2
(∂iuj + ∂jui) ≡ 1

2
(uj,i + ui,j).

11
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Introducing the elasticity tensor

Cijkl = λδijδkl + µ(δikδjl + δilδjk), (1.25)

we express the energy functional in the following form:

E[u] =
1

2

∫
d2xCijkluijukl. (1.26)

The in-plane stress σij is the functional derivative of E[u] with respect to strain

σij(x) =
δE

δuij(x)
= Cijklukl(x) = λδijukk(x) + 2µuij(x), (1.27)

where the elasticity tensor encodes the linear stress-strain relation. It is convenient to

introduce the following basis matrices:

τ 0 =

1 0

0 1

 (1.28)

τ 1 =

0 −1

1 0

 (1.29)

τ 2 =

1 0

0 −1

 (1.30)

τ 3 =

0 1

1 0

 , (1.31)

12
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which satisfy the orthogonality condition

ταijτ
β
ij = 2δαβ. (1.32)

We can therefore project the stress tensor onto these four basis matrices:

σij(x) = τ 0ijσ
0(x) + τ 1ijσ

1(x) + τ 2ijσ
2(x) + τ 3ijσ

3(x), (1.33)

where σα(x) = 1
2
ταijσij(x). We similarly project the unsymmetrized strain tensor ui,j(x)

on this basis as:

ui,j(x) =
1

2

[
τ 0iju

0(x) + τ 1iju
1(x) + τ 2iju

2(x) + τ 3iju
3(x)

]
, (1.34)

where uα(x) = ταijui,j(x). Note that we use a superscript to distinguish the components

of the unsymmetrized strain fields uα(x) from the in-plane displacement fields ui(x). The

stress-strain relation in Eq. (1.27) then gives:

σ0(x) =
1

2
τ 0ijσij(x) = (µ+ λ) τ 0ijui,j(x) = (µ+ λ)u0(x), (1.35)

σ1(x) =
1

2
τ 1ijσij(x) = 0, (1.36)

σ2(x) =
1

2
τ 2ijσij(x) = µ τ 2ijui,j(x) = µu2(x), (1.37)

and

σ3(x) =
1

2
τ 3ijσij(x) = µ τ 3ijui,j(x) = µu3(x). (1.38)
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Expressing the above results in a matrix form, we have:



σ0(x)

σ1(x)

σ2(x)

σ3(x)


=



µ+ λ 0 0 0

0 0 0 0

0 0 µ 0

0 0 0 µ





u0(x)

u1(x)

u2(x)

u3(x)


. (1.39)

To understand the geometry behind Eq. (1.39), we first consider a deformation cor-

responding to a spatially uniform u0(x) = 2ϵ and uα(x) = 0 for α ̸= 0. This deformation

can be achieved with displacement fields u1(x) = ϵx1 and u2(x) = ϵx2. The effect of

this deformation with ϵ = 0.2 on a unit square is depicted in Fig. 1.2(a). Since this de-

formation expands the unit square isotropically, u0 corresponds to the mode of dilation,

and σ0 is the pressure 2. The coefficient B ≡ µ + λ relating pressure to dilation is the

bulk modulus. Generally, a spatially uniform uα(x) = 2ϵ can be achieved with displace-

ment fields ui(x) = ταijxj. The effects of all four modes of deformation are illustrated in

Fig. 1.2, from which we see that u1 corresponds to a rotation. Since a local rotation does

not change the inter-particle separation, it does not induce any stress in conventional

stress-strain materials. σ1 corresponds to an internal torque density, the antisymmetric

part of the stress tensor that gives rise to an extra area integral term when one calculates

the total torque on an area element (see section 2 of Ref. [14] for details). From here on,

in our discussion of “torque density”, it is implied to represent “internal torque density”

without the need for explicit mention of “internal”. u2 corresponds to a shear strain

along the coordinate axes, and is referred to as shear strain 1 in this thesis. σ2 is referred

to as shear stress 1. Similarly, u3 corresponds to shear strain along directions diagonal to

the coordinate axes, and is referred to as shear strain 2. σ3 is referred to as shear stress 2.

2We adopt the definitions and terminologies in Ref. [37] and the main text of Ref. [13]. Conventionally,
however, σij = −pδij for isotropic compression, and therefore σ0 = −p is negative of pressure.
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The Lamé coefficient µ relating shear strains to shear stresses is the shear modulus. That

fact the same shear modulus µ relates two independent sets of shear strains and stresses

reflects the assumption that the sheet is elastically isotropic.
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Figure 1.2: Four independent modes of strain in two dimensions. The gray bound-
aries indicate the undistorted unit squares, and the blue shaded areas represent the
distorted squares under (a) dilation, (b) rotation, (c) shear 1, and (d) shear 2.
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One can show that Eq. (1.39) is the most general form of linear stress-strain relation

in two dimensions, assuming isotropy, conservation of energy (existence of an energy

functional), and conservation of angular momentum [13]. In particular, conservation of

energy demands the stress-strain matrix to be symmetric [14]. Relaxing the latter two

assumptions, isotropic odd elasticity allows additional entries in the stress-strain relation,

which takes the following general form:



σ0(x)

σ1(x)

σ2(x)

σ3(x)


=



B 0 0 0

A 0 0 0

0 0 µ Ko

0 0 −Ko µ





u0(x)

u1(x)

u2(x)

u3(x)


. (1.40)

The A modulus couples dilation to torque density, breaking conservation of angular mo-

mentum and conservation of energy. TheKo modulus couples the two independent shears

in an antisymmetric, non-reciprocal fashion, breaking conservation of energy. The anti-

symmetric odd moduli give rise to a range of rich behaviors such as net work-extraction

under deformation cycles, self-sustained elastic waves even in the over-damped limit, and

a negative Poisson ratio. We refer the readers to Refs. [13, 37] for detailed descriptions

and derivations.

Until now, our exposition of the theory of elasticity has centered on the continuum

limit, where a thin sheet completely fills the space it occupies. It is often convenient,

however, to employ microscopic models for elasticity, where a thin sheet is modeled as

a collection of discrete interacting particles. Discretized models offer a few advantages.

They are well-suited for conducting numerical simulations of thin sheets, and we will use

numerical molecular dynamics throughout the remainder of this thesis. They facilitate

the introduction of structural inhomogeneity and disorder in the material, a feature we
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will utilize in Chapter 3. These models provide a microscopic perspective on mechani-

cal stability, often revealing rich and intricate elastic phenomena [38]. Importantly, for

odd elasticity, they offer insight into the microscopic mechanisms that may lead to this

unconventional form of elasticity.

Ref. [13] introduced the first microscopic mechanism for odd elasticity through odd

springs that exert non-conservative pairwise force on particles. An odd spring with a rest

length a connecting particles at r1 and r2 exerts a force

F = −
(
k
∆r

|∆r|
+ ko ∆r∗

|∆r∗|

)
(|∆r| − a) (1.41)

on the particle at r1, where k is the passive spring constant and ko the odd spring constant.

∆r = r1 − r2 is the positional separation between the two particles, and ∆r∗ = ϵ · ∆r,

where ϵ is the two-dimensional Levi-Civita tensor. The force exerted by an odd spring

is nonconservative because it contains a chiral transverse component represented by the

second term in the parenthesis. One can show that the net work done by the system after

completing a closed loop of displacement is proportional to the area of the region enclosed

by the loop. An odd elastic material can then be assembled with particles connected with

odd springs, or with particles that interact with a force law identical to that of an odd

spring.

Much like the way conventional elastic moduli can be derived from a microscopic

lattice model of interacting particles through a coarse-graining procedure [39], the odd

moduli A and Ko can be related to the microscopic odd spring constant ko [40, 41]. A

triangular lattice of particles with nearest-neighbor interactions through odd springs has
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odd moduli 3

A = 2Ko =

√
3

2
ko. (1.42)

Since A and Ko are proportional, the violation of energy conservation necessarily implies

the violation of angular momentum conservation in an odd elastic triangular lattice. This,

however, does not have to be the case in general. Indeed, in a honeycomb lattice where

nearest-neighbor particles interact with odd springs with strength ko
1, and next-nearest-

neighbor particles interact with odd springs with strength ko
2, careful adjustment of the

ratio between ko
1 and ko

2 allows for the creation of an odd elastic sheet with A = 0 and

Ko =
√
3
2
ko
2. Such a material preserves conservation of angular momentum but breaks

conservation of energy. In chapter 3 of this thesis, which is adapted from Ref. [42], we

explore the effects of disorder on the effective odd moduli of an odd elastic thin sheet.

In particular, we show that the fine-tuned conservation of angular momentum in an odd

elastic media built from odd springs is not robust in the presence of disorder.

3We use the convention that σij is the force in the j direction for a surface element in i direction.
The external force on a surface with surface normal n is F = n · σ.

18



Chapter 2

Spontaneous Tilt of Single-Clamped

Thermal Elastic Sheets

The rise of two-dimensional (2D) materials since the synthesis of graphene has created

opportunities not only for the fundamental study of elastic sheets in the atomically-thin

limit, where their mechanical behavior is enriched by thermal fluctuations, but also for

practical applications. Recently, the field has advanced considerably, with the experi-

mental observations in Ref. [29], who studied the deflections and thermal fluctuations of

atomically thin, 10µm wide free-standing graphene cantilevers and springs, and found a

renormalized bending rigidity at room temperature of order 4000 times larger than its

microscopic value at T = 0. This remarkable enhancement of the bending rigidity is

consistent with the predicted stiffening due to thermal fluctuations alone. The predicted

softening of the in-plane Young’s modulus [24] of a graphene sheet polymer (by a factor

of roughly 25) has also been observed experimentally [31].

While the linear and nonlinear mechanical response of thin sheets, possibly decorated

with cuts or holes to facilitate escape into the third dimension [29, 43, 44], is interesting

in its own right, one can also envision engineering applications, such as nano-springs,
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nanoscale actuators, nano-kirigami and highly sensitive temperature or mass sensors

[45]. To compare theoretical predictions with experimental observations, and to properly

design mechanical nano-devices at room temperature, one must explore how thermal

fluctuations affect the mechanical properties of individual thin sheets, subject to various

realistic boundary conditions and geometries [46, 47]. Theoretically, the thermalized

behavior of single [48] and double-clamped [49] long ribbons had been studied previously.

Ref. [50] demonstrated that in a double-clamped ribbon, the critical buckling strain

increases with temperature and is dependent on the system size, and Ref. [51] showed that

the critical buckling load also increases with temperature. The buckling transition under

the influence of isotropic stress or strain on the boundary [52], as well as external aligning

field [53] had been explored with field-theoretical techniques. Inspired by asymmetric

coating in realistic thin sheet samples, Ref. [54] uncovered a novel double spiral rolled up

phase in inversion-asymmetric thin sheets.

Here we use molecular dynamics (MD) simulations to study a thermal elastic sheet

of zero-temperature width W0 and length L0, with the aspect ratio α = (W0/L0) ≥ 1,

clamped along only one edge of width W0. We find that besides the horizontal phase

where the system vibrates about the horizontal plane, it can also exhibit a tilted phase

where the elastic sheet spontaneously tilts, i.e., oscillates about a mean buckled configu-

ration that is tilted with respect to the horizontal plane. Since the tilt plane is equally

likely to be above or below the horizontal plane, we have in fact a two-state oscillator.

We explore the phase diagram of the system as a function of the temperature and the

aspect ratio. Interestingly, the tilted phase only exists for a finite window of the aspect

ratio. Further, we provide a theoretical explanation that qualitatively fits the simulation

results. As we will show more precisely later, the combination of thermal fluctuations and

clamping deforms the reference thin sheet by a length scale proportional to kBT
κ

g(α)L0,

where g is some function of the aspect ratio. This deformation sets off a competition be-

20



Spontaneous Tilt of Single-Clamped Thermal Elastic Sheets Chapter 2

tween in-plane compression and out of plane bending, and bending is energetically more

favorable if the deformation is larger than a length scale approximately proportional to

κ
Y L0

. Therefore, we expect a large thin sheet with a small κ and large Y to buckle in our

setup at a high temperature, for some aspect ratio. This is consistent with the classic

intuition that a long, solid but flexible beam is susceptible to buckling under compres-

sion. Apart from clamping, no external forces or fields are present in the setup, so our

finding identifies a way of controlling the states of 2D materials by pure geometry and

temperature.

2.1 Numerical Methods and Characterization

We model an elastic sheet as a discrete triangular lattice of vertices and bonds, with

the elastic energy being a sum of a stretching term and a bending term:

E =
ε

2

∑
⟨ij⟩

(|ri − rj| − a)2 +
κ̃

2

∑
⟨IJ⟩

(n̂I − n̂J)
2 , (2.1)

where ε is the discrete spring constant, a is the equilibrium spring length and κ̃ is the

discrete bending modulus. The sum ⟨ij⟩ is over pairs of nearest-neighbor vertices, with

positions ri in 3D Euclidean space, while the sum ⟨IJ⟩ is over all pairs of triangular

plaquettes, with unit normals n̂I , that share a common edge. The continuum limit of

Eq. (2.1) leads to a Young’s modulus Y = 2ε/
√
3, a bending rigidity κ =

√
3κ̃/2 and

a Poisson ratio ν = 1/3 [55, 56, 57]. For graphene the discrete triangular lattice may

be viewed as the dual of its actual honeycomb lattice [49] with edge length a =
√
3a0,

where a0 = 1.42Å is the carbon-carbon bond length. We use graphene’s microscopic

material parameters κ = 1.2 eV [58, 26] and Y = 20 eV/Å
2
[27, 28]. Fig. 2.1(a) displays

the zero-temperature flat configuration of a sheet in the x − y plane, with L0 = 20a ≈
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50Å and aspect ratio α = W0/L0 ≈ 5, where the subscript 0 labels zero-temperature

quantities. We clamp the edge vertices along one zigzag boundary indicated by the pink

line in Fig. 2.1(a) and tag the middle vertex on the free end (shown in red). We find

consistent results from MD simulations using two different software packages: HOOMD-

blue [59, 60] and LAMMPS [61]. After giving the free vertices a small random out-of-plane

displacement, we update their positions with the Nosé-Hoover thermostat, in which the

the system reaches a target temperature and evolves in the constant temperature (NVT)

ensemble (see Appendix A for details). Every simulation run consists of 107 time steps

in total, with the first 5× 106 time steps ensuring equilibrium.

Our system exhibits two phases depending on the aspect ratio and the temperature:

a horizontal phase where the sheet vibrates about the horizontal z = 0 plane, and a

tilted phase where it vibrates about a tilted configuration. We show snapshots of the two

phases in Figs. 2.1(b) and (c). It is revealing to plot the height h (z coordinate) of the

middle vertex of the free long edge (the red vertex in Fig. 2.1(a)) for 106 timesteps after

equilibrating – see Fig. 2.1(d). At low temperature (kT = 0.1eV), the red vertex vibrates

about z = 0 (black line). At a higher temperature (kT = 0.8eV), however, the vertex

vibrates about z ≈ 10 – the upper trace (blue line). At an intermediate temperature

(kT = 0.5eV), the vertex vibrates about two symmetric positions z ≈ ±7 with occasional

inversions (red line).

We quantify tilt with an order parameter ϕ ≡ ⟨|h/x|⟩, where h and x are coordinates of

the aforementioned vertex, and the bracket denotes an average over time and independent

runs. We plot ϕ as a function of aspect ratio α and temperature kT in Fig. 2.2, where

we have averaged over five independent runs. At sufficiently high temperature and in

a moderate range of aspect ratios, the sheet is clearly tilted; otherwise the sheet is

horizontal. We do not observe any abrupt discontinuity in Fig. 2.2, which suggests that

the transition between the horizontal phase and the tilted phase is continuous. For a
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Figure 2.1: (a) A triangulated membrane with zero-temperature length L0 = 20a and
aspect ratio α = W0/L0 ≈ 5 clamped on the back edge (colored pink). The middle
vertex on the front edge is marked with a large red dot. We label the left and right
edges in green, and the centerline in grey. The snapshot was generated using the
Visual Molecular Dynamics (VMD) package [62] and rendered using the Tachyon ray
tracer [63]. (b) Snapshot of the horizontal phase. (c) Snapshot of the tilted phase.
(d) Height (measured in the zero-temperature lattice spacing a) of the red vertex as
a function of time for 106 time steps after equilibrating for 5× 106 time steps.

system with an aspect ratio in the window for tilt the free energy gradually changes from

having only one global minimum (horizontal phase) to having two equal local minima
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Figure 2.2: The value of order parameter ϕ as a function of temperature and aspect
ratio α. The diagram is obtained by analyzing the second 5×106 time steps and aver-
aging over five independent runs. White lines indicate the estimated phase boundary
by solving ∆m = ∆c, which are described in Eq. (2.5) and Eq. (2.8), respectively.

(tilt up and tilt down) as temperature increases. A further increase in temperature will

lead to the system tilting higher and staying in the tilted state longer. A close look at

a typical tilt configuration shows that the sheet is not uniformly tilted along the width

direction. We plot the profile of the sheet in the tilted phase in Fig. 2.3(a), and the two

short free edges (marked in green in Fig. 2.1(a)) and the parallel middle line (marked in

grey in Fig. 2.1(a)) in Fig. 2.3(b). It can be seen that the middle line has a pronounced

buckled profile, while the two free edges have lower curvatures.
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Figure 2.3: A tilted thin sheet with kT = 0.8eV and α = 5. (a) Interpolated profile of
the thin sheet. (b) Profile of the two short free edges (marked in green in Fig. 2.1(a))
and the parallel middle line (marked in grey in Fig. 2.1(a)).The green crosses (tri-
angles) correspond to the top (bottom) edge, and the grey circles correspond to the
midline.

2.2 Theoretical Model of Tilt

The tilted phase may be understood as a result of a buckling instability: a macroscop-

ically flat thermalized thin sheet has a projected area smaller than its zero-temperature

area due to thermally induced microscopic wrinkles (e.g. Refs. [24, 49]). The natu-

ral reference state for defining stresses and strains is the thermalized thin sheet. Thus

clamping one end at its zero-temperature width W0 exerts a stretching force along the

clamped boundary. A combination of stretching and clamped boundaries is known to

produce a region of compressive stress in the direction transverse to stretching, leading

to a wrinkling instability in double clamped thin sheets [64, 65, 66]. In our case, a similar

instability appears as tilting.

To develop an analytic model for tilt (see Appendix A for details), we use the ther-

malized elastic sheet as our reference state and choose the coordinates such that the ther-
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malized sheet occupies the region 0 ≤ x ≤ L′ and −W ′/2 ≤ y ≤ W ′/2, and is clamped

at x = 0. As discussed above, a thermalized sheet is smaller than its zero-temperature

counterpart, so W ′ < W0 and L′ < L0. The deformation from the reference state is de-

scribed by in plane displacements ux(x) and uy(x), and an out-of-plane deflection h(x),

where x = (x, y) 1. The elastic energy of the system is [14]

E =

∫
d2x

[
κR

2
(∇2h)2 + µRu

2
ij +

1

2
λRu

2
kk

]
, (2.2)

where uij =
1
2
( ∂ui

∂xj
+

∂uj

∂xi
+ ∂h

∂xi

∂h
∂xj

) is the strain tensor. Thermal fluctuations renormalize

the elastic moduli so that they become (strongly) scale-dependent [15, 67, 17, 20, 68, 24]:

κR(L0) ∼ κ
(

L0

lth

)η
and YR(L0) =

4µR(µR+λR)
2µR+λR

∼ Y
(

L0

lth

)−ηu
, where η ≈ 0.8 and ηu ≈ 0.4.

Clamping imposes a boundary condition ux(0, y) = 0. It also fixes the left edge to the

zero-temperature width W0 > W ′, imposing stretching on the reference state:

uy(0,
W ′

2
) = −uy(0,−

W ′

2
) =

W0 −W ′

2
≡ ϵ

2
W0. (2.3)

The extension ratio ϵ = (W0 −W ′)/W0 is approximately given by [24]

ϵ ≈ 1

8π

kBT

κ

[
η−1 − η−1(lth/L0)

η + ln(lth/a)
]
. (2.4)

We find it useful to double our system to the region −L′ ≤ x ≤ L′ and −W ′/2 ≤

y ≤ W ′/2 by reflecting it about the y axis. The originally clamped edge is no longer

on the boundary in this doubled system, and ux(0, y) = 0 is automatically satisfied by

symmetry. We consider a narrow strip with length 2L′ around y = 0 and call it the

middle strip, which can buckle under enough compression, serves as a simple proxy for

the system in our analysis. To determine the compression ∆m of the middle strip we

1We will use (x1, x2) interchangeably with (x, y), and (ux, uy) interchangeably with (u1, u2).
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examine the system from its horizontal (h = 0) pre-buckled phase in Eq. (2.2). In this

planar configuration, the energy functional gives the equilibrium equation for the in-plane

stress ∂iσij = 0 [14].

On the left and right edges of the doubled system, we impose the strong traction-free

boundary condition σxx(±L′, y) = 0 and a weak boundary condition
∫
σxy(±L′, y)dy = 0.

On the top and bottom edges we impose σxy(x,±W ′/2) = 0, and σyy(x,±W ′/2) =

f cos(πx/2L′), which models the stretching effect from clamping on the reference state.

For simplicity, we have used a delocalized stress σyy on the boundaries instead of a

highly localized stress concentrated at x = 0. f is determined self-consistently through

the stress-strain relation by enforcing condition Eq. (2.3) on the displacement. This set

of boundary conditions allows us to solve for the in-plane stress analytically with the

Airy stress function method, which confirms that the middle strip is indeed subject to a

compressive stress σxx.

After solving for σij and applying the stress-strain relation, we obtain uxx(x, 0), which

we integrate to obtain the compression ∆m of the middle strip at y = 0. To first order

in small ϵ we find

∆m = −2ux(L
′, 0) =

L0αϵ

2sinh2(πα
4
)

[πα
4
cosh(

πα

4
)(1+νR)−sinh(

πα

4
)(1−νR)

]
(2.5)

where νR = λR

2µR+λR
is the renormalized Poisson ratio, which would be −1/3 for an

infinitely sized, free-standing thermalized sheet [20, 68]. We observe that ∆m crosses

from negative to positive at some threshold aspect ratio (Fig. 2.4). This is due to two

competing effects. The tensile stress σyy from clamping tends to extend the middle strip

because of an overall negative Poisson ratio of the reference state. The compressive

stress σxx, in contrast, tends to compress the middle strip. Our calculation shows that

the former dominates for small aspect ratio, extending the middle strip (∆m < 0), and the
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Figure 2.4: Compression of middle strip ∆m/L′ as a function of aspect ratio α using
Eq. (2.5), with ϵ = 0.05 and two different renormalized Poisson ratios.

latter dominates for higher aspect ratios, allowing buckling for a window of aspect ratios.

For even larger aspect ratio, the two factors balance each other and ∆m approaches zero,

which implies no buckling. Note that we have analyzed the physics of a thermalized

thin sheet in a mean field manner, where the effects of thermal fluctuations are only

minimally incorported through the renormalization of elastic moduli. A finite element

calculation in the same spirit using the FEniCS package [69] and a comparison between

MD simulation, theory and finite element calculation is presented in Appendix A.

To estimate the critical compression ∆c above which the sheet buckles we use a one

dimensional model for the middle strip. Dropping the y derivatives and uy in Eq. (2.2),

we have an energy density functional

E [ux, h] =
κR

2

∫
dx

(
d2h

dx2

)2
+

YR

2(1− ν2
R)

∫
dx

[
dux

dx
+

1

2

(
dh

dx

)2
]2

(2.6)

with the anti-periodic boundary condition ux(−L′) = −ux(L
′) = ∆/2 on the displace-
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ment. The integration is implied to be from x = −L′ to x = L′. Integrating out the

displacement field gives an effective energy density in terms of h alone:

Eeff [h] = −kBT ln

[∫
Duxe

−E[ux,h]/kBT

]
=

κR

2

∫
dx

(
d2h

dx2

)2

+
YR

4L′(1− ν2
R)

[
∆− 1

2

∫
dx

(
dh

dx

)2
]2

=
κR

2

∫
dx

(
d2h

dx2

)2

− YR

2(1− ν2
R)

∆

2L′

∫
dx

(
dh

dx

)2

+
YR

2(1− ν2
R)

1

8L′

∫ ∫
dxdx′

(
dh

dx

)2(
dh

dx′

)2

,

(2.7)

where we drop a constant term independent of h from the second line. A quartic term

similar to the one in the last line also appears in a circular plate under strain imposed on

the boundary [52]. We use a mean field variational function h(x) = H cos
(

πx
2L′

)
, where

H serves as the buckling order parameter whose behavior depends on ∆. If minimization

of Eq. (2.7) requires H = 0, the strip will stay in the plane; if it requires H ̸= 0, then

the strip will buckle out of the plane. The boundary between these two behaviors define

the critical compression, which is calculated to be

∆c =
π2

2L′
κR(1− ν2

R)

YR

. (2.8)

Setting ∆m = ∆c, and combining the results of Eq. (2.4), Eq. (2.5) and Eq. (2.8),

we obtain the phase boundary between the horizontal and tilted phases, which is shown

with thick white lines in Fig. 2.2. The result shows that the tilted phase exists for

a finite window of aspect ratios, consistent with our MD simulations. Here we have

used a constant νR = −1/3 which is the universal Poisson ratio for an infinitely sized,

free-standing thermal sheet [20, 68]. Finite-size effects and the suppression of thermal

fluctuations from clamping may shift νR to a less negative value and even introduce
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spatial and strain dependence. We leave such complications to further studies and only

point out that a less negative Poisson ratio such as νR = −1/5 reduces the effect of the

tensile σyy and favors compression of the middle strip, as can be seen from Fig. 2.4, but

does not qualitatively change our conclusions. Our study shows that the compressive

stress induced by thermal fluctuation and clamped boundary can overcome a negative

Poisson’s effect and lead to buckling.

The observation that tilt is only present for kT ≳ 0.4eV in MD simulations is a non-

universal result of the small system size, and we expect larger systems to favor tilt for the

following reason: Eq. (2.5) gives ∆m ∼ L0, and Eq. (2.8) gives ∆c ∼ L−1+η+ηu
0 ≈ L 0.2

0 .

The amount of compression of the middle strip therefore grows much faster than the

critical compression required for tilting as system size increases. A comparison of the

phase diagrams of L0 = 20a and L0 = 30a suggests that tilt is more easily observed

for larger systems (see Appendix A). We also observe tilt, for instance, with L0 = 60a,

α = 5 at kBT = 0.1eV , with an order parameter ϕ ≈ 0.47. We expect a much lower

tilt temperature for real experiments with larger samples, where L0 can be orders of

magnitude greater than the microscopic lattice spacing.
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Chapter 3

Effective Moduli of Disordered Odd

Elastic Lattices

Odd elasticity is characterized by a stress-strain relation incompatible with conservation

of energy [13]. In the Hookean approximation, the stress and strain in an odd elastic

material are related by a non-symmetric elastic tensor. The absence of a potential energy

gives rise to peculiar phenomena in odd elastic materials, including work-extraction under

deformation cycles, self-sustained waves in the bulk in the over-damped limit [13], and

non-Hermitian topological skin effects [70, 71]. Experimentally, odd elasticity has been

reported in a robotics system with piezoelectric elements [72], in a colloidal spinners

system [73], and in assemblies of spinning bacteria [74] and starfish embryos which exhibit

self-sustained chiral waves [75]. Violation of energy conservation in these example systems

is achieved by external supplies of energy consumed by particles in the systems locally,

a signature of a broad class of systems known as active matter [34]. Simulations and

calculations from Ref. [76], however, suggest that odd elasticity can also arise from passive

chiral elements. Despite this subtlety, for the sake of simplicity, we refer to any elasticity

that is not odd as passive in this thesis.
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Considering the potential for extracting work from engines built with odd elastic

materials and the use of odd elasticity for designing novel robots, it is natural to ask what

are the effects of disorder on an odd elastic medium. How robust is odd elasticity in the

face of disorder? How do the odd elastic moduli behave if certain electronic components

in an artificial odd system malfunction? Does disorder induce a passive-to-odd phase

transition? These questions may also be relevant in the context of the starfish embryos

experiment in Ref. [75]. As embryos develop, their mutual interaction suffers an increase

of effective noise, which leads to an eventual dissolution of the odd crystals. Studying

disorder may shed light on the properties of the odd elastic crystals in the intermediate

to long time scale.

Here, we investigate the impact of bond disorder on the odd moduli of thin sheets

represented by two-dimensional triangular and honeycomb lattices, where each spring

has a probability p of being odd. We find that oddness is robust against disorder, and it

persists at small p, i.e. there is no passive-to-odd phase transition at a finite p. We show

that the behavior of odd moduli as a function of p is the result of a competition between

the affine response of the passive elastic backbone and a rigidity percolation transition

in the odd elastic components.

3.1 Disordered Odd Elastic Lattices

We study two types of two-dimensional lattices: triangular lattices and honeycomb

lattices, which are illustrated in Fig. 3.1. For triangular lattices, we impose that each

bond is at least a passive spring with a spring constant k. Additionally, each spring has

a probability p of having an odd spring constant ko. To reiterate the exposition from

Chapter 1, an odd spring with a rest length a connecting particles at r1 and r2 exerts a
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force

F = −
(
k
∆r

|∆r|
+ ko ∆r∗

|∆r∗|

)
(|∆r| − a) (3.1)

on the particle at r1, where k is the passive spring constant and ko the odd spring

constant. ∆r = r1 − r2 is the positional separation between the two particles, and

∆r∗ = ϵ · ∆r, where ϵ is the two-dimensional Levi-Civita tensor. Throughout this

chapter and Appendix B, we use a dot to denote multiplication between a matrix and a

vector, as well as to indicate the inner product between two vectors. When two vectors

are juxtaposed without a dot in between,, they are multiplied in an outer product to

form a matrix.

A honeycomb lattice is a triangular lattice where each unit cell hosts two particles, dis-

tinguished by blue and red colors in Fig. 3.1(b). Nearest-neighbor (NN) springs connect

type A particles to type B particles, forming a tiling of regular hexagons. Next-nearest-

neighbor (NNN) springs connect particles of the same type, resulting in an NNN network

that is comprised of two overlapping triangular lattices. In our disordered models, each

NN and NNN spring has a passive spring constant k. An NN spring has a probability p

of having an odd spring constant ko
1, while an NNN spring has a probability p of having

ko
2. For both lattices, the probability distribution of disorder is independent from one

spring to another.

At the disorder-free p = 1 limit, both lattices are isotropic odd elastic materials. In

the continuum limit, under the Hookean approximation, the coarse-grained stress and

strain fields are related by a non-symmetric elastic tensor. As introduced in Chapter 1,

we can represent stress in terms of four independent components of pressure (σ0), torque

density (σ1), shear stress 1 (σ2) and shear stress 2 (σ3). Similarly, we represent strain

with the corresponding components uα of dilation, rotation, and the two shear strains.
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A
B

(a) (b)

Figure 3.1: Illustration of the geometric structure of the triangular (a) and honeycomb
(b) lattice models.

The stress-strain relation is given by:



σ0

σ1

σ2

σ3


=



B 0 0 0

A 0 0 0

0 0 µ Ko

0 0 −Ko µ





u0

u1

u2

u3


, (3.2)

where we have omit writing the spatial dependence of the stress and strain fields. Here,

B is the passive bulk modulus, and µ is passive the shear modulus. For triangular

lattices, B = 2µ =
√
3k/2 , and for honeycomb lattices, B = (k1 + 6k2)/(2

√
3) and µ =

√
3k2/2. The odd modulus Ko couples shears in different directions in a non-reciprocal

way, violating the conservation of energy. The odd modulus A couples dilation to an

internal torque density, violating both the conservation of energy and the conservation
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of angular momentum. For triangular lattices,

A = 2Ko =

√
3

2
ko. (3.3)

For honeycomb lattices,

A =
ko
1 + 6ko

2

2
√
3

Ko =

√
3

2
ko
2.

(3.4)

One can therefore fine-tune the value of A independent of Ko by choosing appropriate

ko
1. In this chapter, we fix (ko

1/k
o
2) = −6 so that A = 0 at p = 1. That is, at the disorder-

free limit, angular momentum is conserved. The objective of our study is to determine

how the measured values of the odd moduli change as functions of p. We denote the

measured, or effective, odd moduli of the disordered lattices as Am and Ko
m, and we will

use both a mean field theory and numerical simulations to determine Am and Ko
m.

3.2 Overview of Effective Medium Theory

We study the disordered lattices with a well-established effective medium theory

(EMT) with the coherent potential approximation [77]. EMT is an uncontrolled mean

field method where we map the disordered system to a disorder-free effective medium

whose parameters are determined self-consistently [78, 79]. The form of EMT described

below has been successfully applied to problems in various contexts [80, 81, 82], and can

be adapted to systems with dynamics not derived from an energy function.

The configuration of an elastic lattice in two dimensions is describe by a 2nN -

dimensional displacement vector u, where N is the number of unit cells in the lattice,

and n is the number of particles per unit cell. The forces on the particles are encoded

into a 2nN -dimensional vector F. Under the Hookean approximation, the two vectors
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are linearly related:

F = −D · u, (3.5)

where D is the dynamical matrix, which is a function of the microscopic spring constants

and disorder. The static Green’s function G is defined as the negative inverse of the

dynamical matrix:

G = −D−1. (3.6)

We use the triangular lattice to outline the general procedure of EMT, and direct

readers to Appendix B for detailed calculations. Instead of studying the full disordered

Green’s function G, EMT seeks to describe the disordered system with an effective ho-

mogeneous (disorder-free) medium with a dynamical matrix Dm, and Green’s function

Gm = −(Dm)
−1. The dynamical matrix Dm is a function of the effective odd spring

constant ko
m, which varies with p and is generally not equal to ko. The determination of

ko
m follows this approach: we replace one of the springs in the effective medium by a dis-

ordered spring with an odd elastic constant ko
s . The replacement spring is sampled from

the same disorder probability distribution in the original disordered system. Therefore,

ko
s is a random variable with the following distribution:

P (ko
s) = p δ(ko

s − ko) + (1− p) δ(ko
s). (3.7)

This replacement corresponds to a perturbation matrix V to the dynamical matrix Dm.

The perturbed dynamical matrix is then D′ = Dm +V. Inverting this expression, one

can show that the perturbed Green’s function of the effective medium is:

G′ = Gm +Gm ·T ·Gm, (3.8)
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where

T = V · (I−Gm ·V)−1

= V +V ·Gm ·V +V ·Gm ·V ·Gm ·V + ...

(3.9)

is called the T -matrix, and I is the identity matrix. Since the effective medium is a

faithful representation of the original disordered system, the replacement of a single

spring with a spring sampled from the original disorder probability distribution should,

on average, have no impact on the effective medium’s Green’s function. We therefore

impose ⟨G′⟩ = Gm, where the average is taken over the probability distribution in

Eq. (3.7). A self-consistent solution to this requirement is

⟨T⟩ = 0, (3.10)

which turns out to be a single equation for the one unknown ko
m. In this treatment,

we disregard any deviation of the effective passive spring constant from its disorder-free

value, which has been numerically tested to be at most a few percent.

3.3 Numerical Simulation Methods

We also study the problem with molecular dynamics simulations. For both triangular

and honeycomb lattices, we setup n1 = 30 rows and n2 = 31 columns of unit cells where

the springs obey force law in Eq. (3.1) and exhibit disorder as described in the previous

sections. To measure the elastic moduli, we first apply a small global compression or

shear with an affine displacement uaff
i = η · xi, where η is a 2 by 2 matrix. Here, the

i subscript indexes the vertices in the lattice, and xi is the equilibrium position of the

particle on the i-th vertex. For compression, η = −γI2, where I2 is the two-dimensional
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identity matrix. For shear,

η = γ

1 0

0 −1

 , (3.11)

which corresponds to shear strain 1. In all simulations, we choose γ = 0.01.

To maintain a constant overall strain, we do not time-evolve positions of particles on

the boundary after applying the initial distortion. We time-evolve positions of particles

in the interior of the system, following the over-damped dynamics given by:

λ
d

dt
ri(t) = Fi(t), (3.12)

where Fi is the force on particle i, which depends on the positions of its neighboring

particles. We use the lattice spacing of the triangular lattices as the unit of length, and

λ/k as the unit of time, where k is the passive spring constant. The system dynamics

are integrated using a second order Runge-Kutta method for 104 time steps, with a time

step of dt = 0.001. We then measure the microscopic stress tensor in the bulk, whose

value at the position of particle i is [83, 84]:

σi =
1

2A

∑
j

′
(rj − ri)Fij, (3.13)

where the sum is over particles j connected to particle i. A is the area occupied by

particle i, which, in the small strain limit, is independent of i and equals the area of a

unit cell in triangular lattices and half of the area of a unit cell in honeycomb lattices.

Fij is the force on particle i due to its connection with particle j. The separation vector

(rj − ri) and the force vector Fij are multiplied in an outer product on the right hand

side. With this definition of stress tensor, we have T = n · σ, where T is the external

force on a surface element with surface normal vector n. Using Eq. (3.2), we extract the
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elastic moduli from the imposed overall strain and the spatial average of the microscopic

stress tensor. All elastic moduli are measured in units of the passive spring constant k,

and we omit writing k below. We also calculate a non-affine parameter Γ for the final

configuration of each simulation run, defined as:

Γ =
1

Nγ2

∑
i

|ui − uaff
i |2. (3.14)

This parameter quantifies how far the final configuration deviates from the initially im-

posed affine distortion [85]. We perform ten independent simulation runs for each choice

of parameter. Given the consistent agreement between the results of EMT and molecular

dynamics simulations, we present their findings collectively below.

3.4 Results

3.4.1 Triangular Lattices

For triangular lattices, Eq. (3.10) leads to an equation for ko
m:

ko
m = ko p−H(ko

m)

1−H(ko
m)

, (3.15)

where

H(ko
m) =

2

3

(ko
m)

2

1 + (ko
m)

2
. (3.16)

After some arithmetic, we observe that Eq. (3.15) reduces to a cubic equation with a

unique solution ko
m > 0 for any probability p > 0. This result implies that even the

slightest presence of odd springs in our setup makes the system odd as a whole. This is a

natural consequence of the design, since every odd spring breaks conservation of energy

locally with a chiral force, and all odd spring in the setup have the same sign of ko, and
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hence the same sign of chirality. When the system is compressed, for instance, we expect

all odd springs to experience some degree of compression. Since they possess identical

chirality, they collectively generate torques in the same direction locally, leading to a

non-zero internal torque globally. The uniform chirality is crucial as one can imagine

that in a setup where each odd spring has an equal probability of having ko or −ko, the

system as a whole may not be odd elastic on average.

We now examine Ko
m = Am/2 =

√
3ko

m/4 as a function of p and ko in a few limiting

regimes. Near p = 0, we expect that ko
m ≪ 1. Solving Eq. (3.15) in this regime gives

Ko
m

Ko
=

ko
m

ko
≈ p− 2

3
(ko)2p2. (3.17)

That is, the scaled effective oddness is locally a concave function of p, and its curvature

increases as a function of oddness ko. Based on a counting argument by Maxwell [86], we

expect the odd springs in the disordered lattice to form a system-spanning rigid cluster

close to p = 2/3. At p = 2/3, Eq. (3.15) gives (Ko
m/K

o) ≈ 2/3 = p for ko ≪ 1, and

(Ko
m/K

o) ∼ (ko)−2/3 for ko ≫ 1. The scaled effective oddness, therefore, decreases as a

function of ko at p = 2/3. Lastly, near the disorder-free point, expanding to linear order

in δp = 1− p, we get

δK0
m = Ko −Ko

m ≈ Ko 3(k
o)2 + 3

(ko)2 + 3
δp, (3.18)

where the fraction on the right hand side is an increasing function of ko. From these

simple calculations, we come to the conclusion that for a small ko, the scaled effective

oddness Ko
m/K

o increases almost linearly with p. In contrast, for a larger ko, Ko
m/K

o

increases slowly at small p, and increases faster after some probability around p = 2/3.

These features are consistent with molecular dynamics simulations results and numerical
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solutions of Eq. (3.15), presented collectively in Fig. 3.2.

To understand the above results qualitatively, we consider two limiting scenarios.

In the limit of small ko, the elastic property of a disordered lattice is controlled pre-

dominately by the passive elastic backbone, which responds to a small global distortion

affinely. Under a global compression, for instance, the odd springs are compressed by

almost the same amount, and the total internal torque generated scales linearly with the

percentage of odd springs in the system. This results in a linear relation between Ko
m and

p for ko ≪ 1. In the large ko limit, the response of the system is controlled by the odd

components in the lattice, which undergo a rigidity percolation transition near p = 2/3

[86]. Below the critical rigidity percolation probability, there is little elastic response,

passive or odd, and we expect Ko
m to be near zero for p < 2/3, before ramping up as a

function of p for p > 2/3. The actual behavior of Ko
m at intermediate values of oddness

is then a crossover between these two limits. Further confirming our interpretation, the

probability p at which Ko
m/K

o deviates the most from linearity is near p = 2/3, similar

to a passive rigidity percolation transition [78], as shown in Fig. 3.2(b). This observation,

however, does not imply that the non-affine parameter Γ of the system is the greatest at

this value. Indeed, as shown in Fig. 3.3(a, b), the non-affine parameter for both sheared

and compressed disordered triangular lattices is maximized at a lower value of p, and

is dependent on ko. In some models of disordered elastic media, non-affine response is

strongly correlated with the softening of effective passive elastic moduli [87]. In this

case, however, it does not appear to have a correlation with the behavior of effective

odd moduli. Predicting Γ as a function of p is beyond the capability of EMT, since the

effective medium is disorder-free.
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(a)

(b)

Figure 3.2: Effective odd modulus Ko
m, unscaled (a) and scaled (b) as a function of

probability p, for triangular lattices with different values of ko. Numerical solutions of
Eq. (3.15) are plotted with solid curves, and molecular dynamics simulations results
are presented with dots. Error bars are smaller than the dot size.
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(a) (b)

(c) (d)

Figure 3.3: Non-affine parameter Γ for triangular lattices (top row) and honeycomb
lattices (bottom row) with an initial global shear (left column) and compression (right
column) distortion.
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3.4.2 Honeycomb Lattices

For honeycomb lattices, we have two EMT equations, one for NN springs and the

other for NNN springs. These equations are:

ko
1,m = ko

1

p−H1(k
o
1,m, k

o
2,m)

1−H1(ko
1,m, k

o
2,m)

ko
2,m = ko

2

p−H2(k
o
1,m, k

o
2,m)

1−H2(ko
1,m, k

o
2,m)

.

(3.19)

The effective odd spring constants are coupled through functions H1(k
o
1,m, k

o
2,m) and

H2(k
o
1,m, k

o
2,m). These functions have no convenient closed form expressions, in contrast

to the one for triangular lattices, and we present their derivation in Appendix B. Despite

such complication, we can expect that in general, H1(k
o
1,m, k

o
2,m) ̸= H2(k

o
1,m, k

o
2,m), and

Eq. (3.19) implies (ko
1,m/k

o
2,m) ̸= (ko

1/k
o
2) for p < 1. This means that even though we

choose ko
1/k

o
2 = −6, making our system torque-free with A = (ko

1 + 6ko
2)/(2

√
3) = 0 at

p = 1, this feature and, in general, any fine-tuned ratio between A and Ko, are not robust

in the presence of disorder.

We solve Eq. (3.19) numerically and the results compare well with molecular dynamics

simulations, as shown in Fig. 3.4. The odd modulus Ko
m is nearly a linear function of

p, and Am is non-zero in general as expected, and is maximized near p = 0.6. These

findings align with our intuition derived from triangular lattices. First, recall that Ko
m =

√
3 ko

2,m/2 is completely determined by the NNN springs, which form two overlapping

triangular lattices. Given that ko
2 ≤ 1/2, the almost linear growth of Ko

m with respect to

p across all simulations is expected. As in the triangular lattices, for |ko
1| ≪ 1, we also

expect ko
1,m to be linear in p, making Am = (ko

1,m+6ko
2,m)/(2

√
3) ≈ p (ko

1+6ko
2)/(2

√
3) = 0,

as shown in Fig. 3.4(b). At larger values of |ko
1|, we expect ko

1,m to be a nonlinear function

of p, satisfying ko
1,m(p)/k

o
1 < p, similar to the behavior seen in Fig. 3.2(b). Combining
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(a)

(b)

Figure 3.4: Effective odd modulus Ko
m (a) and Am (b) in disordered odd honeycomb

lattices, at different values of ko1, with a fixed ratio ko1/k
o
2 = −6. Numerical solutions

of Eq. (3.19) are plotted with solid curves, and molecular dynamics simulations results
are presented with dots.
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the nonlinearity of ko
1,m and linearity of ko

2,m in this regime, we expect Am to be a

positive nonlinear function of p, reaching its maximum at a value of p at which ko
1,m

deviates from linearity the most. Therefore, even though ko
1,m and ko

2,m are coupled in

the EMT equations, we can understand the results of honeycomb lattices qualitatively

by considering them independently. Finally, we observe that the non-affine parameter Γ

in honeycomb lattices has similar features as in triangular lattices, as shown in Fig. 3.3.

At low p, Γ increases as a function of p due to disorder, and it decreases to zero (a smaller

value) at p = 1 for a compressed (sheared) honeycomb lattice.

Our study reveals that odd elasticity, characterized by a non-symmetric elastic ten-

sor, is robust against disorder, albeit with the disruption of certain fine-tuned features.

Our results offer a practical diagnostic tool: by measuring the residual oddness, one can

estimate the operational fraction of odd springs in a system. In the context of the exper-

iment in Ref. [75], where starfish embryo crystals dissolve in time, our findings predict

that enforcing crystallization of a dissolving embryo collection by external constraint re-

sults in a crystal that may still be odd elastic. Such an experiment would further confirm

the odd elasticity of the living crystals.
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Supplemental Material for Chapter 2

A.1 Molecular Dynamics Simulations

In thin sheet elasticity theory the elastic energy is given by the sum of stretching and

bending terms [14, 88]: Eel = Es+Eb. For a discrete triangulation the stretching energy

is

Es =
ε

2

∑
⟨ij⟩

(|ri − rj| − a)2 , (A.1)

and the bending energy is

Eb =
κ̃

2

∑
⟨IJ⟩

(n̂I − n̂J)
2 , (A.2)

where ε is the discrete spring constant, a is the equilibrium spring length and κ̃ is the

discrete bending modulus. As usual ⟨ij⟩ denotes pairs of nearest-neighbor vertices, with

positions ri in the 3D Euclidean embedding space and ⟨IJ⟩ denotes pairs of triangular

plaquettes sharing a common edge, with n̂I being their unit normals. The corresponding

continuum moduli are Y = 2ε/
√
3, κ =

√
3κ̃/2 and zero-temperature Poisson ratio

ν = 1/3 [55, 56, 57]. The lattice constant a can be taken as the distance between

neighboring hexagons when describing the dual honeycomb lattice applicable to graphene.
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This discretized model has been used to study a wide variety of 2D elastic membranes

(see Ref. [49]). With graphene as a concrete example, we set the equilibrium spring

length a to be
√
3a0, where a0 = 1.42 Å is the carbon-carbon bond length in graphene –

thus a ≈ 2.46 Å, where we again note that the triangular lattice we employ is the dual

of graphene’s honeycomb lattice. To give the correct graphene density we take the mass

of every vertex to be m = 2mC ≈ 4× 10−26 kg, where mC is the mass of a carbon atom.

We choose a and m as our units of length and mass and set a = 1 and m = 1 in all

simulations. Fig. 2.1(a) displays the initial, zero-temperature flat configuration of the

elastic sheet in the x − y plane, with n1 = 21 vertices in the short (x) direction and

n2 = 117 vertices staggered along the long (y) direction. Therefore, L0 ≈ 20a ≈ 50Å

and W0 = 58
√
3a ≈ 100Å. There are 2399 vertices in total. We perform MD simulations

using both the HOOMD-blue [60, 59] and the LAMMPS software packages [61] and find

consistent results. We choose E0 = 1 eV as the unit of energy in all simulations. The

elastic energy is calculated as the sum of the stretching and bending energies given in

Eqs. (A.1) and (A.2), with bare elastic parameters κ = 1.2 eV [58, 26] and Y = 20 eV/Å
2

[27, 28] for graphene. The discrete parameters ε and κ̃ follow from the relations above.

After giving the free vertices a small random out-of-plane displacement, we update their

positions in the constant temperature (NVT) ensemble. The simulation unit of time

thus corresponds to a real time t0 =
√

ma2/E0 ≈ 0.12ps. Finally we set the integration

timestep to be 0.005. Every simulation timestep τ thus corresponds to a real time

τ = 0.005 t0 ≈ 0.6 fs. Every simulation run consists of 107 time steps in total, with

the first 5 × 106 time steps ensuring equilibration. For data analysis we record one

configuration every 104 time steps in the second 5× 106 timesteps.

We plot the phase diagram of a system with L0 = 30a in Fig. A.1. To compare

with the system of L0 = 20a presented in Chapter 2, we plot in Fig. A.1(a) the order

parameter on the same colorbar scale as Fig. 2.2. We see that with a larger system
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size, the region for the tilted phase is larger. Fig. A.1(b) plots the same phase diagram

with colorbar scaled to data, from which we see that the order parameter reaches larger

values for L0 = 30a, indicating a more pronounced tilt. The tilt region here seems

to correspond to slightly higher aspect ratios compared to Fig. 2.2. The optimal aspect

ratio where the tilt order parameter is maximized, is between 4 and 5 for simulations with

L0 = 20a, depending on temperature, and it is mostly between 5 and 6 for simulations

with L0 = 30a. However, for L0 = 30a with the highest simulated temperature, the tilt

order parameter is maximized at an aspect ratio of 7.

(a) (b)

Figure A.1: The value of order parameter ϕ as a function of temperature and aspect
ratio α for L0 = 30a on (a) the same colorbar scale as Fig. 2 in the main text and (b)
a colorbar scaled to data.

We also plot the interpolated profile of the membrane, and the profile of the two short

free edges with green crosses and triangles and the parallel middle line with grey circle

for a variety of parameter sets in Fig. A.2. For small α, we see that the slopes of the

top and bottom free edges and that of the middle line are similar at large x. As α gets

bigger, the top and bottom edges are steeper than the middle line at large x.
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Figure A.2: (a) Reproduction of Fig. 3 in the main text. (b) Configurations for other
parameter sets.
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A.2 Finite Element Simulations

We perform a finite element (FE) simulation using the FEniCS package [69] to obtain

the distribution of the in-plane stress fields in the pre-buckled planar configuration. We

minimize the energy functional

E =

∫
d2x

[
µu2

ij +
1

2
λu2

kk

]
, (A.3)

subject to the boundary conditions ux(0, y) = 0 and uy(0, y) = ϵy, for a rectangular sheet

on 0 ≤ x ≤ L and −W/2 ≤ y ≤ W/2 1. The aspect ratio is α = W/L. The boundary

condition on uy represents a uniform stretching of the left edge if ϵ > 0. We measure

all stress fields in units of the Young’s modulus, which is set to unity in the calculation.

Similarly, length is measured in L, which is set to unity. To model a thermalized thin

sheet, we choose a negative Poisson ratio of −1/3 unless specified otherwise. This is the

theoretically predicted Poisson’s ratio for a free standing thermalized membrane in the

infinite sized limit, which we choose for convenience. Other choices of negative Poisson

ratio, or even positive values, make quantitative but not qualitative difference in the

in-plane stress fields.

Here we present example results for ϵ = 0.05. The stress fields for α = 2 are shown

in the top row of Fig. A.3. We see that at this aspect ratio, σxx has a single compressive

region in the middle and two tensile regions in the top and bottom left corners. In

comparison, the stress fields at a higher aspect ratio α = 5 is shown in the top row of

Fig. A.4. In this case, the compressive region breaks down into two, akin to previous

results in [64, 66] which study wrinkling in stretched thin films. We expect this is the

reason why the system re-enters the horizontal phase at high aspect ratio. This feature

of σxx is also captured qualitatively by our theoretical calculation, as shown below.

1L and W here serve the purpose of L′ and W ′ in Chapter 2.
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(a) (b) (c)

Figure A.3: In-plane stress fields for (a) σxx/Y , (b) σyy/Y and (c) σxy/Y from FEniCS
calculation (top row) and theory (bottom row, only half of the doubled system shown).
Aspect ratio α = 2.
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Figure A.4: In-plane stress fields for (a) σxx/Y , (b) σyy/Y and (c) σxy/Y from FEniCS
calculation (top row) and theory (bottom row, only half of the doubled system shown).
Aspect ratio α = 5.
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A.3 Analytical Calculations of In-plane Stress Fields

Taking the Hookean approximation and suppressing any out of plane displacement,

the in-plane stress fields satisfy [14]

∂iσij = 0. (A.4)

To solve this 2D elasticity problem with the Airy stress function technique, boundary

conditions on all sides in terms of stresses are needed. The stress σxx due to clamping at

x = 0 is, however, unknown. Rather, the boundary condition at x = 0 is given in terms of

the displacement field – Eq. (2.3) in Chapter 2 and ux(0, y) = 0. A way around this issue

is to double the original system to the region −L′ ≤ x ≤ L′ and −W ′/2 ≤ y ≤ W ′/2

by reflecting it along the y axis (see Fig. A.5). In the doubled system, we no longer

need to provide any condition at x = 0 as it is now an internal edge. The condition

ux(x = 0, y) = 0 is satisfied automatically.

We introduce the Airy stress function χ, such that σxx = χ,yy, σyy = χ,xx, and

σxy = −χ,xy, where the subscripts denote differentiation. Eq. (A.4) implies that χ is

biharmonic:

∆2χ = 0. (A.5)

The most general solution involves an infinite series of products in trigonometric and

hyperbolic functions in both x and y. To gain analytic tractability, we approximate

the boundary conditions in two ways. First, instead of imposing a delta function local-

ized at x = 0 for σyy due to clamping, we impose a delocalized boundary condition

σyy(x,±W ′/2) = f cos(λx) on the top and bottom edges, where λ = π/2L′. Here

f is a force density to be determined self-consistently. Second, we only demand the

weak boundary condition
∫
σxy(±L′, y)dy = 0 on the left and right edges, instead of
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x

y

2L'

W'

0

Figure A.5: The doubled system. The original elastic sheet in x ≥ 0 is doubled by
reflection about the y axis.

the strong traction-free condition σxy = 0. The remaining boundary conditions are

σxx(x = ±L′, y) = 0 and σxy(x, y = ±W ′/2) = 0. Eq.(A.4) can now be solved with the

simple ansatz

χ = [A cosh(λy) +B y sinh(λy)] cos(λx), (A.6)

which is an even function in both x and y, since σxx and σyy should be even in both

directions. If we keep more than one Fourier component in σyy(x,±W ′/2), then χ will

be a summation of similar functions with A → An, B → Bn, and λ → λn. The stress

fields are given by:

σxx = χ,yy =
[
(Aλ2 + 2Bλ) cosh(λy) +Bλ2y sinh(λy)

]
cos(λx)

σyy = χ,xx = (−λ2) [A cosh(λy) +B y sinh(λy)] cos(λx)

σxy = −χ,xy = [Bλy cosh(λy) + (Aλ+B)sinh(λy)]λ sin(λx).

(A.7)
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Note that due to the choice of an anti-periodic Fourier series, σxx(x = ±L′, y) = 0 on

the left and right edges is automatically satisfied by the ansatz. The weak boundary

condition on σxy on the left and right edges is also satisfied by symmetry. The two

unknowns A and B can be solved using the two boundary conditions on the top and

bottom edges σxy(x, y = W ′/2) = 0 and σyy(x,±W ′/2) = f cos(λx). The result is given

by

σxx =
f

D

{
[sinh(πα/4)− (πα/4)cosh(πα/4)] cosh(πy/2L′)

+
π

2L′ sinh(πα/4) y sinh(πy/2L
′)
}
cos(πx/2L′)

σyy =
f

D

{
[(πα/4)cosh(πα/4) + sinh(πα/4)] cosh(πy/2L′)

− π

2L′ sinh(πα/4) y sinh(πy/2L
′)
}
cos(πx/2L′)

σxy =
f

D

[ π

2L′ sinh(πα/4) y cosh(πy/2L
′)

−(πα/4)cosh(πα/4)sinh(πy/2L′)
]
sin(πx/2L′),

(A.8)

where D = λW ′/2+cosh(W ′λ/2)sinh(W ′λ/2) is a constant, and we have used the aspect

ratio α ≡ W ′/L′ = W0/L0. We now determine f with the condition

uy(0,
W ′

2
) = −uy(0,−

W ′

2
) =

W0 −W ′

2
≡ ϵ

2
W0. (A.9)

Applying the stress strain relation uyy = 1
YR

(σyy − νRσxx) at x = 0, we integrate the

strain to obtain displacement, resulting in

f

D
=

ϵπW0YR

8L′ sinh2(πα/4)
, (A.10)

which completes our calculation of the in-plane stress. Similarly, applying uxx = 1
YR

(σxx−

νRσyy) at y = 0 and integrating uxx, we obtain the compression of the middle strip given

by Eq. (2.5).

56



Supplemental Material for Chapter 2 Chapter A

-1 -0.5 0 0.5 1

-0.01

0

0.01

0.02

0.03

-2 -1 0 1 2

0

0.02

0.04

0.06

0.08

(a) (b)

Figure A.6: Theoretical estimation of σxx at the clamped edge (x = 0) for (a) α = 2
and (b) α = 5. In both cases, σxx < 0 in the middle and σxx > 0 toward the top and
bottom edges.
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Figure A.7: Compression of the middle strip from finite element calculations with
FEniCS (solid curves) and theory (dotted curves).
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Fig. A.6 shows σxx at the clamped edge at x = 0. One sees that σxx(x = 0) is negative

at y = 0 and positive near the top or bottom edge. At high aspect ratio, the compressive

region breaks into two, similar to the result from FEniCS calculation. However, there are

a few key differences between the finite element calculation, the theoretical calculation

and the MD simulation. As seen from Fig. A.3 and Fig. A.4, σxy obtains its biggest

value on the left edge in the finite element calculation, as expected. However, the weak

boundary condition we impose and the ansatz we use that allow for a simple analytical

calculation leads to a solution where σxy obtains its biggest value on the right edge. In

our estimate for the condition for tilting, we only use the value of stress fields at y = 0,

on which σxy = 0 for both calculations. Since one of the equation is ∂xσxy + ∂yσyy = 0,

the flipped sign in ∂xσxy leads to a flipped sign in ∂yσyy in our theoretical result, as

seen in Fig. A.4. For a negative Poisson ratio, the tensile σyy extends the middle strip.

Hence the underestimation of σyy at y = 0 leads to an overestimation of the compression

of the middle strip, which leads to an overestimation of the tilted phase. We compare

the compression of the middle strip from finite element calculations and the theoretical

calculation (Fig. 4 in the main text) in Fig. A.7. For finite element calculations, we

see that for a Poisson ratio of −1/3, the negative Poisson effect is too strong for the

compressive σxx to overcome. The most negative Poisson ratio where we still observe

∆m > 0 is between −1/3 and −1/4. The approximations made to obtain the analytical

solution can be a main source of the discrepancy between the two methods. But despite

the discrepancy, the same feature of the curves, i.e., as the aspect ratio increases the

compression increases to a maximal value then decreases, is in agreement with the MD

observations that the tilted phase only happens for a finite window of the aspect ratio

value.

Examining the optimal aspect ratio where the middle strip is the most compressed

reveals a difference between the MD simulation and theoretical and finite element calcu-
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lations. In the theoretical calculation, the optimal aspect ratio is about 4, regardless of

system size, and it is between 2 and 3 as shown in Fig. A.7 in the finite element calcu-

lation. In contrast, the optimal aspect ratio in MD simulations is bigger and seems to

have a slight system size dependence, as shown in Fig. 2.2 and Fig. A.1. This suggests

that even though we give a qualitative picture for the tilted phase from the perspective

of buckling, while ignoring all thermal effects except renormalization of elastic moduli,

there are non-trivial thermal effects beyond our simple mean field treatment.

A.4 Effective 1D Theory of Middle Strip

We now derive the effective 1D energy density presented in the main text. For nota-

tional simplicity, we drop all subscripts in the elastic moduli, with the assumption that

they are all renormalized. We drop the prime in L′ so that here −L ≤ x ≤ L. The

factors of kBT in the following calculations are also implied. To restore kBT and proper

dimension, one can replace very E with E/kBT . Starting from the full 2D energy in

Eq. (2.2) in the main text, we drop the y derivative and uy to obtain an energy density

(per width) functional

E [ux, h] =
κ

2

∫
dx

(
d2h

dx2

)2

+
Y

2(1− ν2)

∫
dx

[
dux

dx
+

1

2

(
dh

dx

)2
]2

≡ Eb[h] + Es[ux, h],

(A.11)

where we have used the identity 2µ+λ = Y
1−ν2

. ux is an odd function of x and satisfies the

anti-periodic boundary condition ux(−L) = −ux(L) = ∆/2. Following the established

method (see e.g., Ref. [15]), we define

A(x) ≡ 1

2

(
dh

dx

)2

. (A.12)
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To integrate out ux and obtain an effective energy density for h only, we perform the

Fourier series expansion for anti-periodic functions

ux(x) =
∑
n=1

sin(λnx)un

A(x) =
∑
n=1

cos(λnx)An,

(A.13)

where λn = (2n−1)π
2L

, and the expansion of A(x) only converges on the open interval

(−L,L) since A(x) is an even function with non-zero values on the boundaries. The

boundary condition on ux is equivalent to

∑
n=1

(−1)n−1un = −∆/2. (A.14)

The second term in Eq. (A.11) in Fourier modes is given by:

Es[ux, h] =
Y L

2(1− ν2)

∑
n=1

(λnun + An)
2. (A.15)

Formally, the effective density energy is then Eeff [h] = Eb − log
[∫

Duxe
−Es
]
, with the

appropriate boundary condition. We impose the boundary condition in the functional

integral explicitly by introducing a delta function:

Eeff [h] = Eb − log

[∫
Duxe

−Es
]

= Eb − log

[∫
Dux δ [ux(L) + ∆/2] e−Es

]
= Eb − log

[∫
Dux

∫
dλ eiλ[ux(L)+∆/2]−Es

]
= Eb − log

[∫
dλ

∫
Dux e

iλ[
∑

n=1(−1)n−1un+∆/2]−Es
]
.

(A.16)
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The functional integral over ux can be calculated in a straightforward way after a change

of variable λnun +An → un. Performing the remaining integral with respect to λ results

in:

Eeff [h] = Eb +
Y

L(1− ν2)

(
∆

2
+
∑
n=1

(−1)n
An

λn

)2

. (A.17)

Substituting

An =
1

L

∫
dx

1

2

(
dh

dx

)2

cos(λnx), (A.18)

we observe that the above equation contains the Fourier series of a square-wave function.

On the interval of interest −L ≤ x ≤ L, we have:

Eeff [h] =
κ

2

∫
dx

(
d2h

dx2

)2

+
Y

4L(1− ν2)

[
∆− 1

2

∫
dx

(
dh

dx

)2
]2

. (A.19)

Eeff is then an effective energy density as a function of only h. The last line of Eq. (2.7)

presented in Chapter 2 is then obtained by dropping a constant term independent of h.

The derivation above is based on an expansion of ux(x) with anti-periodic Fourier

series. However, it is conventionally more convenient to derive the effective model based

on a Fourier expansion of strain, which we present now. Expanding the periodic and

even function of strain with the usual Fourier series:

dux

dx
=

−∆

2L
+
∑
n=1

uncos(
nπx

L
). (A.20)

Likewise, we expand A(x) with periodic Fourier series

A(x) = A0 +
∑
n=1

Ancos(
nπx

L
), (A.21)
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where

A0 =
1

2L

∫
1

2

(
dh

dx

)2

. (A.22)

The total energy density takes the form

E =Eb +
Y

2(1− ν2)

∫ [
(
−∆

2L
+ A0) +

∑
n=1

(un + An)cos(
nπx

L
)
]2

=Eb +
Y

2(1− ν2)

[
2L(

−∆

2L
+ A0)

2 + L
∑
n=1

(un + An)
2
]
.

(A.23)

The second term in the square bracket is quadratic in un and can be trivially integrated

out, resulting in the effective energy density

Eeff =Eb +
Y

2(1− ν2)
2L
[−∆

2L
+

1

2L

∫
1

2

(
dh

dx

)2]2
=Eb +

Y

4L(1− ν2)

[
∆− 1

2

∫
dx

(
dh

dx

)2
]2

,

(A.24)

which is identical to the result from the previous derivation.
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B.1 Triangular Lattices

To describe particles on two-dimensional lattices, we begin by establishing some no-

tations. We label each unit cell with a two-component index l = (l1, l2), where l1 and

l2 are integers. For both triangular and honeycomb lattices, the two primitive lattice

vectors are:

e1 =

1

0

 e2 =

 1/2
√
3/2

 . (B.1)

We also define e3 = e2 − e1 for convenience. In a triangular lattice, there is one particle

per unit cell, and the equilibrium position of the particle on unit cell l is given by

xl = a(l1e1 + l2e2), where a is the rest length of the spring, which we set to be a = 1 in

the following. The position of this particle upon distortion of the lattice is denoted by

rl. The displacement vector of this particle is defined as ul = rl−xl. In the lattice basis,

Eq. (3.5) becomes:

Fl = −
∑
l′

Dl,l′ · ul′ , (B.2)
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where Dl,l′ is a 2 by 2 matrix for each pair of l and l′.

To find Dl,l′ , we need to linearize the force law in Eq. (3.1). Consider the spring

connecting particle l with one of its nearest-neighbors l′. The distorted spring has length

|∆r| = |rl − rl′| = |xl − xl′ + ul − ul′|. Assuming that the difference between ul and ul′

is much smaller than the lattice spacing, we have ∆r/|∆r| ≈ el,l′ , where el,l′ = xl − xl′

is proportional to one of the unit vectors ei’s defined previously. The change of length of

the spring is approximately |∆r| − 1 ≈ (ul − ul′) · el,l′ . Under these approximations, the

total force on particle l is given by:

Fl = −
∑
l′

′
(k el,l′ + ko e∗l,l′)(ul − ul′) · el,l′ , (B.3)

where the primed sum is over all 6 nearest-neighbors of particle l, and Dl,l′ may be read

off from this expression. For EMT, however, it is more convenient to cast Eq. (B.2) in

the Fourier basis, using periodic boundary condition. Similar to Ref. [79], we use the

following lattice Fourier convention for vector quantities:

ul =
1

N

∑
q

uq e
iq·xl

uq =
∑
l

ul e
−iq·xl ,

(B.4)

where N is the number of unit cells in the system, and q belongs to the first Brillouin

zone. The corresponding Fourier convention for matrices is:

Dl,l′ =
1

N2

∑
q,q′

eiq·xl Dq,q′ e−iq′·xl′

Dq,q′ =
∑
l,l′

e−iq·xl Dl,l′ e
iq′·xl′ .

(B.5)
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Fourier transforming Eq.(B.2), we obtain:

Fq = − 1

N

∑
q′

Dq,q′ · uq′ . (B.6)

To facilitate calculations, we define the following translation vectors for lattice indices:

t1 = (1, 0), t2 = (0, 1), and t3 = t2 − t1 = (−1, 1). The Fourier transform of a translated

vector field is: ∑
l

ul+ti e
−iq·xl = uq e

iq·ei . (B.7)

Since the effective medium in EMT is disorder-free, we first derive the form of Dq,q′

for a homogeneous lattice. Fourier transforming Eq.(B.3), we obtain:

Fq = −
∑
l

3∑
i=1

[
(kei + koe∗i )(ul − ul+ti) · ei e−iq·xl

− (kei + koe∗i )(ul − ul−ti) · (−ei) e
−iq·xl

]
= −

3∑
i=1

[
(kei + koe∗i ) ei (1− eiq·ei + 1− e−iq·ei)

]
· uq

= −
3∑

i=1

[
(kei + koe∗i ) ei (1− eiq·ei)(1− e−iq·ei)

]
· uq

= −
3∑

i=1

(kbi,qbi,−q + kob∗
i,qbi,−q) · uq,

(B.8)

where we define

bi,q ≡ ei(1− e−iq·ei). (B.9)

We note again that when two vectors appear together without a dot in between, they

are multiplied in an outer product to form a matrix. Comparing the above equation to
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Eq. (B.6), we obtain:

Dq,q′ = Nδq,q′

3∑
i=1

(kbi,qbi,−q + kob∗
i,qbi,−q)

≡ Nδq,q′Dq.

(B.10)

For reference, we provide the matrix elements below:

3∑
i=1

bi,qbi,−q =

Aq,xx Aq,xy

Aq,yx Aq,yy

 (B.11)

and
3∑

i=1

b∗
i,qbi,−q =

 Aq,yx Aq,yy

−Aq,xx −Aq,xy

 . (B.12)

, where

Aq,xx = 3− 2 cos(qx)− cos(qx/2) cos(

√
3

2
qy)

Aq,yy = 3− 3 cos(qx/2) cos(

√
3

2
qy)

Aq,xy = Aq,yx =
√
3 sin(qx/2) sin(

√
3

2
qy).

(B.13)

We also need the dynamical matrix of a single spring for EMT. We choose a spring

connecting l1 = (0, 0) and l2 = (1, 0). Since there is only one spring in this setup, Fl

is non-zero only if l = l1 or l = l2. We therefore have the following expression, where

repeated l’s on the right hand side are not summed over:

Fl = −(ke1 + koe∗1)e1 ·
[
(ul − ul+t1)δl,l1 + (ul − ul−t1)δl,l2

]
=

−1

N
(ke1 + koe∗1)e1 ·

∑
q′

uq′eiq
′·xl

[
(1− eiq

′·e1)δl,l1 + (1− e−iq′·e1)δl,l2

]
.

(B.14)
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Performing a Fourier tansform, we obtain:

Fq = − 1

N

∑
q′

(kb1,qb1,−q′ + kob∗
1,qb1,−q′) · uq′ . (B.15)

The dynamical matrix of a system containing a single spring is therefore:

Dsingle
q,q′ = kb1,qb1,−q′ + kob∗

1,qb1,−q′ . (B.16)

Compared to the dynamical matrix of a homogeneous lattice in Eq. (B.10), Dsingle
q,q′ does

not contain a Kronecker delta, and hence couples all pairs of wave vectors (q,q′).

In EMT, the disordered lattice is mapped to a homogeneous, disorder-free effective

medium with a dynamical matrix

Dm,q,q′ = Nδq,q′

3∑
i=1

(kbi,qbi,−q + ko
mb

∗
i,qbi,−q)

≡ Nδq,q′Dm,q,

(B.17)

where the effective odd spring constant ko
m is an unknown to be determined self-consistently,

and we assume that the passive spring constant k is unaffected by disorder. The Green’s

function of the effective medium is

Gm,q,q′ = −(Dm,q,q′)−1 =
1

N
δq,q′(−Dm,q)

−1

≡ 1

N
δq,q′Gm,q.

(B.18)

To establish a self-consistent condition, we first replace one of the effective odd springs

in the effective medium with an odd spring with odd constant ko
s . To mimic the random

nature of the original setup described in Chapter 3, ko
s is a random variable which equals

ko with a probability of p and ko
s = 0 with a probability of 1 − p. The passive spring
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constant k is unchanged by the replacement, and in the following we set k = 1. Without

loss of generality, we choose to replace the spring connecting l1 = (0, 0) and l2 = (1, 0).

The replacement corresponds to a random dynamical matrix:

Vq,q′ = (ko
s − ko

m)b
∗
1,qb1,−q′ . (B.19)

Similar to Dsingle
q,q′ , Vq,q′ couples all pairs of wave vectors. The absence of the factor of N

compared to Dm,q,q′ allows us to treat it as a perturbation to the latter. In the following

derivation, we omit writing the (q,q′) subscripts. The perturbed dynamical matrix is

D′ = Dm +V, and the perturbed Green’s function is:

G′ = −(D′)−1 = [(Gm)
−1 −V]−1 = Gm · (I−V ·Gm)

−1

= Gm · (I+V ·Gm +V ·Gm ·V ·Gm + ...)

= Gm +Gm ·T ·Gm,

(B.20)

where the series expansion is allowed because V ·Gm ∼ (1/N). The T -matrix is

T = V +V ·Gm ·V +V ·Gm ·V ·Gm ·V + ... (B.21)

Since the effective medium is a faithful representation of the original disordered system,

replacing a single spring with a spring drawn from the original disorder probability distri-

bution should, on average, have no impact on the effective medium. We therefore impose

⟨G′⟩ = Gm, which is solved by the equation ⟨T⟩ = 0. This equation allows us to solve

for the effective odd elastic constant ko
m, as we show below.

Computing the T -matrix, we obtain:

Tq,q′ = T b∗
1,q b1,−q′ , (B.22)
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where the scalar T reads:

T =
ko
s − ko

m

1− (ko
s − ko

m)
∑

q
1
N
b1,−q ·Gm,q · b∗

1,q

. (B.23)

Defining the following function:

H(ko
m) ≡ −ko

m

∑
q

1

N
b1,−q ·Gm,q · b∗

1,q, (B.24)

we express T in the following form:

T =
ko
s − ko

m

1 + ( kos
k0m

− 1)H(ko
m)

. (B.25)

The equation ⟨T ⟩ = 0 then leads to the following equation of ko
m:

ko
m = ko p−H(ko

m)

1−H(ko
m)

. (B.26)

The summation over q in H(ko
m) can be computed by taking the continuum (N → ∞)

limit and converting the sum to an integral over the first Brillouin zone (see, for example,

Appendix 2A of Ref. [89]), resulting in

H(ko
m) =

2

3

(ko
m)

2

1 + (ko
m)

2
. (B.27)

Eq. (B.26) then reduces to the following cubic equation which gives rise to various results

in Chapter 3:

(ko
m)

3 + 3ko
m = ko

[
3p+ (3p− 2)(ko

m)
2
]
. (B.28)

69



Supplemental Material for Chapter 3 Chapter B

B.2 Honeycomb Lattices

A honeycomb lattice is a triangular lattice of unit cells, each containing two particles,

labelled by A and B. Every particle has three nearest neighbors, one from the same

unit cell and the other two from adjacent unit cells. A nearest neighbor spring connects

particles of different types, and is in the direction of one of the three unit vectors below:

a1 =

0

1

 a2 =

−
√
3/2

−1/2

 a3 =

√
3/2

−1/2

 . (B.29)

Every particle has 6 next-nearest-neighbors (NNN) of the same type, and the NNN

network consists of two overlapping triangular lattices, one for each particle type. We

use the length of a NNN spring as the unit of length. In the lattice basis, Eq. (3.5) reads

FA
l

FB
l

 = −
∑
l′

Dl,l′ · ul′ = −
∑
l′

DAA
l,l′ DAB

l,l′

DBA
l,l′ DBB

l,l′

 ·

uA
l′

uB
l′

 , (B.30)

where Fα
l is the force on the type-α particle on unit cell l, and Dαβ

l,l′ is a 2 by 2 matrix

for a given pair of (l, l′) and (α, β). The 4 by 4 dynamical matrix Dl,l′ is the sum of

a nearest-neighbor part DNN
l,l and a next-nearest-neighbor part DNNN

l,l . The former has

the general form:

DNN
l,l =

DNN,AA
l,l′ DNN,AB

l,l′

DNN,BA
l,l′ DNN,BB

l,l′

 , (B.31)

while the latter is block diagonal

DNNN
l,l =

DNNN,AA
l,l′ 0

0 DNNN,BB
l,l′

 , (B.32)
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because the two NNN triangular lattices are disjoint.

Similarly, in Fourier space, we have

Dq,q′ = DNN
q,q′ +DNNN

q,q′ , (B.33)

and the NNN contribution is block diagonal:

DNNN
q,q′ =

DNNN,AA
q,q′ 0

0 DNNN,BB
q,q′

 . (B.34)

Using Eq. (B.10), we have:

DNNN,AA
q,q′ = DNNN,BB

q,q′ = Nδq,q′

3∑
i=1

(k2bi,qbi,−q + ko
2b

∗
i,qbi,−q), (B.35)

where k2 is the passive NNN spring constant, and ko
2 is the odd NNN spring constant.

Defining two sets of four-dimensional vectors:

ci,q =

bi,q

0

 di,q =

 0

bi,q

 , (B.36)

we can write the 4 by 4 NNN dynamical matrix as:

DNNN
q,q′ = Nδq,q′DNNN

q , (B.37)

where

DNNN
q = k2

3∑
i=1

(ci,qci,q + di,qdi,−q) + ko
2

3∑
i=1

(c∗i,qci,q + d∗
i,qdi,−q). (B.38)
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For the NN network, in the lattice basis, we have:

FA
l =− (k1a1 + ko

1a
∗
1) · (uA

l − uB
l )

− (k1a2 + ko
1a

∗
2) · (uA

l − uB
l−t2

)

− (k1a3 + ko
1a

∗
3) · (uA

l − uB
l−t3

),

(B.39)

and

FB
l =− (k1a1 + ko

1a
∗
1) · (uB

l − uA
l )

− (k1a2 + ko
1a

∗
2) · (uB

l − uA
l+t2

)

− (k1a3 + ko
1a

∗
3) · (uB

l − uA
l+t3

),

(B.40)

where the lattice translation vectors are defined in the paragraph below Eq. (B.6). To

simplify the expressions in Fourier space, we define the vectors: f1 = 0, f2 = e2 and

f3 = e3. Fourier transforming Eq. (B.40), we obtain:

FA
q = −

3∑
i=1

(k1ai + ko
1a

∗
i )ai · (uA

q − uB
q e−iq·fi), (B.41)

and

FB
q = −

3∑
i=1

(k1ai + ko
1a

∗
i )ai · (uB

q − uA
q eiq·fi). (B.42)

The NN dynamical matrix then reads:

DNN
q,q′ = Nδq,q′DNN

q , (B.43)

with 2 by 2 block matrices:

DNN,AA
q = DNN,BB

q = k1

3∑
i=1

aiai + ko
1

3∑
i=1

a∗
iai (B.44)
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and

DNN,AB
q = DNN,AB

q = −k1

3∑
i=1

aiai e
−iq·fi − ko

1

3∑
i=1

a∗
iai e

−iq·fi . (B.45)

The long bar denotes complex conjugation in the above equation. For the purpose of

EMT, these results can be organized by defining another set of four-dimensional vectors:

gi,q =

 −ai

ai e
iq·fi

 . (B.46)

Then we have:

DNN
q = k1

3∑
i=1

gi,qgi,−q + ko
1

3∑
i=1

g∗
i,qgi,−q. (B.47)

The dynamical matrix of the effective medium is obtained by replacing ko
1 and ko

2

by ko
1,m and ko

2,m in Eq. (B.38) and Eq. (B.47). The perturbation dynamical matrix by

replacing a single NN spring is

VNN
q,q′ = (ko

1,s − ko
1,m)g

∗
1,qg1,−q′ , (B.48)

and the one for an NNN spring is

VNNN
q,q′ = (ko

2,s − ko
2,m)c

∗
1,qc1,−q′ . (B.49)

Similar to the triangular lattice case, the T -matrix for the NN replacement is given by

TNN
q,q′ = TNNg∗

1,qg1,−q′ , (B.50)
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where the scalar TNN is given by:

TNN =
ko
1,s − ko

1,m

1− (ko
1,s − ko

1,m)
∑

q
1
N
g1,−q ·Gm,q · g∗

1,q

. (B.51)

The form of Gm,q is obtained by inverting the dynamical matrix in Eq. (B.33). The

T -matrix for the NNN replacement is given by:

TNNN
q,q′ = TNNNc∗1,qc1,−q′ , (B.52)

where

TNNN =
ko
2,s − ko

2,m

1− (ko
2,s − ko

2,m)
∑

q
1
N
c1,−q ·Gm,q · c∗1,q

. (B.53)

The two functions H1(k
o
1,m, k

o
2,m) and H2(k

o
1,m, k

o
2,m) in Chapter 3 are defined as:

H1(k
o
1,m, k

o
2,m) = −ko

1,m

∑
q

1

N
g1,−q ·Gm,q · g∗

1,q, (B.54)

and

H2(k
o
1,m, k

o
2,m) = −ko

2,m

∑
q

1

N
c1,−q ·Gm,q · c∗1,q. (B.55)

The two unknowns ko
1,m and ko

2,m are solved self-consistently by requiring ⟨T1⟩ = 0 and

⟨T2⟩ = 0, resulting in Eq. (3.19) in Chapter 3. Unlike the situation with triangular

lattices, we do not find any convenient closed form for H1 and H2. Consequently, we rely

entirely on numerical methods to solve the EMT equations.
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[46] A. Košmrlj and D. R. Nelson, Statistical mechanics of thin spherical shells,
Physical Review X 7 (2017), no. 1 011002.

[47] S. Sarkar, M. E. H. Bahri, and A. Košmrlj, Statistical mechanics of nanotubes,
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