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Department of Phoniatrics, Pedaudiology and Communication Disorders, RWTH Aachen University 

 Pauwelsstr. 30, 52074 Aachen, Germany  
 
 

Abstract 
A first version of a neurobiologically inspired neural network 
model for speech and language processing using a spiking neu-
ron approach is introduced here. This model uses basic neural 
circuit elements for building up a large-scale brain model (i.e., 
elements for long-term and short-term memory, elements for 
activating and forwarding information (items) as neural states, 
elements for cognitive and sensorimotor action selection, ele-
ments for modeling binding of items, etc.). The resulting model 
architecture indicates three dense neural network modules, i.e., 
a module for lexical, for syntactic, and for semantic processing. 
Moreover, the model gives a detailed specification of the neu-
ral interaction interfaces between these modules. This large-
scale model is capable of parsing syntactic simple but non-triv-
ial sentences of Standard German and it clearly exemplifies the 
temporal-parallel as well as the hierarchical-sequential neural 
processes typically appearing in speech processing in the brain. 

Keywords: neural network model; neurobiologically inspired 
model; large-scale model; speech processing; language pro-
cessing; syntactic processing 

Introduction 
Theories and computer-implemented models of Natural 
Langue Processing (NLP) made progress over the last dec-
ades (e.g., Jurafsky & Martin, 2009; Jurafsky & Martin, 
2023). Most natural language processing approaches com-
prise lexical, syntactic, and semantic processing as part of 
comprehension (Natural Language Understanding) as well as 
part of production (Natural Language Generation, see e.g., 
Khurana et al., 2023). Typical NLP approaches use text data-
bases for lexical processing, i.e., for extracting grammatical 
word-type and semantic word information (Jurafsky & Mar-
tin, 2023, chap. 9 and chap. 24). NLP-based syntactic and se-
mantic processing can be based on dependency or constituent 
grammatical concepts for constructing statistical or neural 
processing models (Zhang, 2020). Over the last decade, these 
NLP based deep neural models became more and more suc-
cessful (e.g., BERT, Devlin et al., 2019; Koroteev, 2021; and 
GPT-2, Radford et al., 2019). These approaches already in-
clude attention modelling and the calculation of surprise (i.e., 
deviation from normal expectation) when new words or new 
sentences appear in a comprehension process (Vaswani et al., 
2017; Verma, 2022). Even though some of these processes 
appear in human speech processing as well (Arana et al., 
2023; Goldstein et al., 2022), the neural architecture, the 
learning mechanisms, and the core dynamics of human 
speech processing are not comparable with current NLP ap-
proaches (Pedrelli & Hinaut 2022). 

Neurobiologically grounded and computer-implementable 
speech processing models take in consideration all behavioral 

and neurobiological data as they are condensed for example 
in function-specific box-and-arrow models (e.g., Friederici, 
2011). The Friederici model aims for describing the neural 
processes of speech perception, speech comprehension, as 
well as of speech production including the left- and right-
hemispheric differences. While left-hemispheric processing 
focusses on the identification of word and sentence meaning, 
i.e., is involved in lexical, syntactic, and semantic processing, 
the right hemisphere focusses on processing of prosody (i.e., 
intonation and accentuation) as well as on processing of emo-
tional and non-linguistic aspects of speech. Four hierarchical 
processing stages are uncovered in this model, i.e., (i) acous-
tic-phonetic-phonological analysis (auditory cortex within 
the temporal lobe), (ii) initial syntactic processing (mainly 
left temporal), (iii) the computation of syntactic and semantic 
relations (mainly left temporal and frontal), and (iv) prosodic-
segmental integration of the resulting syntactic-semantic ac-
tivations (left hemispherical) combined with activations 
stemming from the right-hemispheric prosodic analysis. 
These processes take place partially in a hierarchical-serial 
and partially in a parallel processing fashion and the pro-
cessing time window increases from less than 100 ms at the 
lowest processing level to above 500 ms at the highest pro-
cessing level. 

Another prominent model for speech processing compris-
ing speech perception/comprehension and speech production 
is the dual stream model introduced by Hickok and Poeppel 
(2007). Here, a ventral and a dorsal processing stream are 
separated. In case of perception/comprehension the (initial) 
spectro-temporal (i.e., acoustic) and phonetic-phonological 
analysis is followed by lexical, syntactic, and semantic pro-
cessing within a lexical, combinatorial, and conceptual net-
work in the ventral stream, whereas the dorsal stream com-
prises the initial spectro-temporal and phonetic-phonological 
analysis which is directly connected with the articulatory net-
work via a sensorimotor interface. 

Neurobiologically inspired simulation models which are 
based on box-and-arrow models mainly exist for word pro-
cessing. This is the spreading activation model of Dell 
(Schwartz et al., 2006), the Lichtheim approach of Ueno 
(2011), and the WEAVER model of Roelofs (2014). These 
models are designed for the simulation of speech production 
and speech perception/comprehension tasks like picture nam-
ing, picture identification, as well as for word and non-word 
repetition. Moreover, there exist first neurobiologically in-
spired models for sentence-domain syntactic-semantic pro-
cessing (Hinaut & Dominey, 2013; Mitropolsky & Papadi-
mitriou, 2023; Mitropolsky et al. 2021; Pedrelli & Hinaut 
2022; Lindes 2018; Lindes 2022, based on Stocco et al. 2021; 
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Venhuizen et al., 2019; Frank 2021; Krauska & Lau, 2022), 
but currently none of these simulation approaches is based on 
spiking neuron networks. 

For developing such a neurobiologically inspired spiking 
neural network models (SNNs), several modeling environ-
ments including neural network simulation toolboxes are 
available, e.g., NEURON (Carnevale & Hines, 2006), NEST 
(Gewaltig & Diesmann, 2007), BRIAN (Goodmann & 
Brette, 2009), and NENGO (Bekolay et al., 2014). The 
NENGO software package which is based on the NEF-SPA 
theoretical framework (Neural Engineering Framework, 
NEF, and Semantic Pointer Architecture, SPA, see: Eli-
asmith, 2013; Eliasmith et al., 2012; Stewart & Eliasmith, 
2014) as well introduces compact basic neural network ele-
ments which can be used for building up neural processing 
modules for simulating different sensorimotor and/or cogni-
tive tasks (see Eliasmith et al., 2012; Crawford et al., 2015; 
Kröger, 2023). These are network elements for the realization 
of short-term and long-term memory, for the realization of 
item (i.e., vocabulary) networks including a modeling of 
word similarity or word distance, for the realization of feed-
forward (co-)activation of linguistic items at different pro-
cessing levels (i.e., associative memories), for the realization 
of action selection processes for sensorimotor and cognitive 
selection or decision processes, for the realization of binding 
of items (i.e., binding buffers) etc. In this approach, each set 
of phonological words, lemmata, or concepts is realized in 
form of distributed neural activation patterns within semantic 
pointer networks (e.g., Kröger et al. 2016).  

Method 
Based on our neurobiologically inspired model of word pro-
cessing (Kröger et al., 2016; Kröger et al., 2020; Kröger et 
al., 2022) – which has been implemented by using the NEF-
SPA approach and the Python based NENGO toolbox 
(Bekolay et al., 2014) – a trial-and-error process has been es-
tablished for developing a syntactic processing module for 
parsing syntactically simple sentences of Standard German. 
For this process we made five assumptions: (i) The input to 
the syntax processing module is activated by the mental lex-
icon; this is a sequence of lemma (word-type) and semantic 
word information. (ii) The output of the syntactic component 
is a syntactic description of each a sentence like e.g., defined 
in constituent grammar as hierarchical set of constituents (Ju-
rafsky & Martin, 2023, chap. 17) or in dependency grammar 
as a set of dependency arc relations between words (ibid., 
chap. 18). (iii) In order to be able to process word and phrase 
spans, some syntactic information needs to be stored in short-
term memories (STMs). (iv) Because of time delay of syntac-
tic information generated during syntactic processing, syn-
tactic and semantic word information (i.e., the sequence of 
lemmata and word concepts) can be accessed both, firstly di-
rectly and temporally delayed. (v) The syntax module is in-
terconnected with the action selection module (basal-ganglia 
and thalamus) for being capable of decision making, e.g., 
concerning choosing the correct syntactic elements, e.g., the 
correct dependency arcs or phrase constituents).    

For our initial modeling trial a syntax module was devel-
oped which is capable of parsing grammatically simple sen-
tences of Standard German like subj-verb-obj , like subj-
verb-obj-verbPart, or like subj-verb-prepPhra-verbPart 
where verb represents single verbs like “trinkt” (“drinks”, 
e.g., in “Benno trinkt Kaffee.”; “Benno drinks coffee.”) and 
where verb-verbPart represents verb constructions like 
“hat-getrunken” (“had drunk”, e.g., in “Benno hat den Kaffee 
getrunken.”), and where prepPhra represents prepositional 
phrases (e.g. “von Benno” like in “Der Kaffee wurde von 
Benno getrunken.”; “The coffee was drunk by Benno.”). In 
addition we allowed the realization of subject, object, and 
prepositional noun phrases as being composed of nouns, de-
terminers (det) and adjectives (adj) (e.g., “der kalte Kaffee”; 
“the cold coffee”, or “der große Junge”; “the big boy”) lead-
ing to sentences like “Der kalte Kaffee wird von dem großen 
Jungen getrunken” (“The cold coffee is drunk by the big 
boy.”).   

The corpus which has been processed by our parsing mod-
ule comprised 10 subj-verb phrases like “Benno trinkt”, 20 
subj-verb-object phrases like “Benno trinkt Kaffee”, 20 
subj-verb-obj-verb phrases like “Benno hat Kaffee 
getrunken (past tense)”, and 20 subj-verb-prepPhrase-
verb phrases like “Der Kaffee wurde von Benno getrunken 
(passive)”. Subj as well as obj should be interpreted here as 
noun spans, i.e., as word spans comprising three different 
constituents, i.e., noun like “Kaffee”, det-noun like “der Kaf-
fee”, or det-adj-noun like “der kalte Kaffee”.  

Results 
A feasible neural network architecture for a correct parsing 
of simple sentences of Standard German is displayed in Fig. 
1. The model was developed by a trial-and-error process us-
ing the sentence types outlined in the methods part of this pa-
per. We used STMs for uncovering noun spans (see above) 
and verb spans (typical verb spans in Standard German com-
prise a so called “verb clamp” (“Satzklammer”, e.g., Musan, 
2022; and see the example given above: “hat-getrunken”). 
The module awaits up to two noun spans (incl. prepositional 
spans). These spans are detected from word type (lemma) in-
formation in combination with already online activated word 
span information by action selection processes and lead to the 
online generated activations of the arc type STMs as dis-
played in Fig. 2. Moreover, this information can be used in a 
further action selection process to activate a specific type of 
dependency arc for each lemma within the word sequence of 
the sentence under processing (for modeling action selection 
see e.g., Kröger et. al., 2016; Stewart & Eliasmith, 2014).      

In addition, a preliminary semantic processing component 
has been implemented as part of our neural model for allow-
ing semantic role assignment which is realized here by a fur-
ther processing of the online generated syntactic relations (se-
quence of dependency arcs) and by associating subject and 
object with agent or patient and by associating the verb with 
the action and with the event tense. This semantic represen-
tation specifies the so-called semantic event described by the 
sentence (cf. Jurafsky & Martin, 2023, chap. 19-21).    
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The complete neural architecture of our model (Fig. 1) 
comprises three modules, i.e., mental lexicon, syntactic, and 
semantic processing module. The auditory-acoustic input ac-
tivates phonological form states, and coactivates lemma 
states and word concept states using lexical associations via 
associative memories (AMs: p2w-AM and w2c-AM with p = 
phono, w = word, and c = concept). The generated sequence 
of lemma states (i.e., word types like noun, verb, adjective, 
determiner, etc.) is cleaned up from co-activated similar 
lemma states (via clean-up memory CAM) towards WTB 
(word type buffer, see Fig. 1) which is already a part of the 
syntactic processing module. In parallel the sequence of word 
meanings (concepts) is cleaned up as well and then forwarded 
towards the WCB (word concept buffer, Fig. 1) as part of the 
syntactic-semantic and semantic processing modules. The 
WTB states allow the activation of all word span states within 
the five arc type (or span) STMs (see Fig. 1 and Fig. 2) for 
generating the final syntactic parsing information (i.e., the se-
quence of dependency arc specifications activated in the de-
pendency arc buffer, DAB, Fig. 1 and Fig. 3). The DAB states 
together with the WCB states allow the role assignment 
within the semantic processing component by activating ap-
propriate concept states in the semantic target representation 
STMs (for agent, patient, action, event time, etc.). To associ-
ate subject and object with agent and patient correctly in an 
online approach (this model), it may be necessary to tempo-
rarily store some concepts in cache STMs (e.g., the subject 
noun for patient in case of a German passive verb construc-
tion).  

The semantic target representation can be bound (binding 
buffer BiB, Fig. 1) towards a compound activation pattern 
representing the sentence meaning as one item (one S-pointer 
in terms of the SPA) in a further STM, i.e., the sentence 
meaning memory, SMM (Fig. 1 and see text below).  

 

 
 

Figure 1: The neural network architecture for the percep-
tion part of speech processing within our neural model com-

prising acoustic-phonetic, lexical, syntactic, and semantic 
processing modules (for abbreviations see text). 

 

The naming conventions used for specifying the neural net-
work components in Fig. 1 are: SPN – semantic pointer net-
work (Crawford et al., 2015; Kröger et al., 2016), AM – asso-
ciative memory, CAM – clean-up associative memory 
(Kröger et al., 2022; Kröger, 2023), XXB (XxxB) – buffer for 
phonological states (Xxx=Pho), lemmata (Xxx=Lem), 
(word) concepts (Xxx=Con, XX=WC), word types 
(XX=WT), actions (Xxx=Act), and syntactic dependency arc 
information (DA), XXB(del) – delay buffer (neural activation 
is  delayed here by 90 ms), STM – short-term memory for 
dependency arc types (also representing constituent span in-
formation), for syntactic-semantic cash information, and for 
sentence meaning SM following a binding operation done 
within a binding buffer (BiB). Red arrows indicate neural ac-
tivation management between cortical neural network ele-
ments and the action selection component. Repositories are 
long-term storages for lexical information as well as for syn-
tactic and semantic specifications. The associative memories 
within the mental lexicon use this repository information. 

The arc-type STM component (Fig. 1, also called word 
span component) currently comprises five STMs, i.e., verb 
STM, aux STM, noun1 STM, noun2 STM and preposition 
STM. The action control component activates these sates 
within the STMs (see Fig. 2) leading to specific word spans 
and further on leading to a sequence of dependency arcs for 
the sentence (Fig. 3) within the DAB.  

Particularly, it can be seen from Fig. 2 that the verb and aux 
STMs uncovers the verb-aux word span (see VerbSTM in 
Fig. 2). This span is labeled AUX in Fig. 4 and Fig. 5 and 
known as verb clamp in Standard German (see above and see 
also Foth, 2006). This verb clamp appears in case of past 
tense constructions like “hatte (das) getrunken” (“had drunk 
(that)”) where the object (“that”) is covered by the verb 
clamp. And the clamp appears in case of passive construc-
tions like “wurde (von jemandem) getrunken” (“was drunk 
(by someone)”) where the preposition phrase (“by someone”) 
is covered by the verb clamp (see also Musan, 2022). The 
noun1 and noun2 STMs uncover the noun spans as subject or 
object (“der kalte Kaffee” (“the cold coffee”) and “der große 
Benno” (“(the) big Benno”)) ((see NounSTM in Fig. 2)). The 
preposition STM together with the following noun STM un-
covers the preposition span (see PrepPhraSTM in Fig. 2).  

The syntactic description of a sentence is activated in the 
dependency arc buffer (DAB, Fig. 1) and a typical DAB ac-
tivation pattern is given in Fig. 3. Two different types of nam-
ing conventions can be seen in this figure, i.e., small types as 
used in the English dependency grammatical naming conven-
tions, as used, e.g. by de Marneffe et al. (2021) and large 
types, following the German dependency grammatical nam-
ing conventions, as given, e.g., by Foth (2006).  

The action selection procedure for activating the sequence 
of specific dependency arc labels (also called dependency arc 
names, arc types, or arc specifications, e.g., Root, Root2Subj, 
Root2Obj, Root2PrePhr, Subj2Det, Subj2Attr, etc.) is based 
on the word or phrase span information activated in the arc 
type (or word span) STMs (Fig. 1) together with the currently 
incoming (delayed) information from WTB(del), i.e., the de- 
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Figure 2: Activation signals in the word type buffer WTB (on top) and in the verb, aux, noun, and preposition STMs (be-
low) in the arc type STMs component of the syntax processing module (Fig. 1). The activations auf verb and aux STM are 
overlayed and named verbSTM. The activations of noun1 STM and noun2 STM are overlayed in the row labeled as noun-
STM. The processed sentence is: “Der kalte Kaffee wird von dem großen Benno getrunken” (“The cold coffee is drunk by 

(the) big Benno”). 
 

 
 

Figure 3: Activation signals in dependency arc buffer DAB (last row), delayed word type signal WTB(del) (top row), and 
utility values and action activations (second and third row) leading to a correct selection of dependency arc types. The pro-

cessed sentence is identical in Fig. 2 and Fig. 3.   
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layed word type sequence. The resulting syntactic infor-
mation can equivalently be written as dependency tree (Fig. 
4) or as dependency arc structure (Fig. 5).  

From the utility values appearing within the action selec-
tion process for arc types (activated in DAB), it can be seen, 
that, here the activation of adjective and determiner branches 
should probably not be separated for noun spans appearing as 
part of a prepositional word spans and for noun spans directly 
representing a subject or an object (see the comparable utility 
values in the action selection process for determiner and ad-
jective branching of the prepositional phase (“Noun2Det” 
and “Noun2Attr”) and for a (here not activated) object phrase 
(“Obj2Det”, “Obj2Attr”) in Fig. 3.        
 

 
Figure 4: Dependency tree visualization for the syntactic 

structure of the processed sentence “Der kalte Kaffee wird 
von dem großen Benno getrunken” (“The cold coffee is 

drunk by (the) big Benno”).  The dependency tree branch 
naming conventions are those used for Standard German 

(Foth, 2006).  
 

 
Figure 5: Equivalent dependency arcs visualization for the 

syntactic structure of the same sentence as given in Fig. 4.  
  
If the syntactic analysis is competed the semantic target in-
formation STMs for event-time (“present: the event is hap-
pening right now” vs. “past: the event already happened”) for 
action (e.g., “trinken”), for agent (e.g. “Benno”) and for pa-
tient (e.g. “Kaffee”) can be bound together (by using binding 
buffers) in the SMM (sentence meaning STM, see Fig. 1) re-
sulting in an activation of one single neural pattern, e.g.,  
“event_time * present + action * trinken + agent * Benno + 
patient * Kaffee”. For the concept of adding neural activation 
patterns and for the concept of binding neural activation pat-
terns in binding or convolution buffers see, e.g., Stewart & 
Eliasmith, 2014).  

The model architecture displayed in Fig. 1 was incremen-
tally developed by processing simple to complex sentences. 
The model was finally capable of processing all 70 test sen-
tences in an error-free manner if starting with the already cor-
rect sequence of phonological words.     

Discussion and Conclusions 
A preliminary version of a neurobiologically inspired syntac-
tic processing module has been implemented as part of a 
large-scale spiking neuron model for speech processing. This 
module takes the sequence of word types making up a sen-
tence and generates a sequence of dependency arc specifica-
tions, which – together with the word concept information – 
can be used to generate and activate a neural state represen-
tation of the sentence meaning in form an event specification 
comprising event time, agent, patient, and action. The syntac-
tic processing module within our model computer-imple-
ments the phrase level component postulated by Friederici 
(2011). Thus, the syntactic module can be assumed to be in 
the frontal operculum (lexical lemma activation) and in the 
anterior superior temporal gyrus (main syntactic processing), 
while further semantic processing (i.e., semantic role label-
ing) is done in the anterior as well as in the posterior temporal 
gyrus as well as in the inferior frontal gyrus (ibid., p. 1364f). 
Moreover, phrase level processing includes a syntactic rule 
system as part of the procedural memory and thus includes 
cortico-striatal connections and the basal ganglia-thalamus 
action selection system (Stocco et al., 2021).  

It should be kept in mind that our neurobiologically in-
spired large-scale model cannot be interpreted in a sense that 
it is able to unfold the exact neurofunctional anatomy at a mi-
croscopic level. Moreover, neurobiologically inspired mod-
els like that under development here underline the function-
ing of (i.e., quantitatively computer-implement) a related 
(neurophysiological grounded) box-and-arrow models (e.g., 
Friederici, 2011) by instantiating and consolidating the qual-
itative processing steps outlined in that box-and-arrow mod-
els by using concrete and quantitative neurofunctional (and 
neurobiologically inspired) simulation elements (see the 
compact basic neural network elements as described in the 
introduction of this paper).  

The developed neural network model gives an insight in 
the way how linguistic information could be processed in the 
brain: that is hierarchical-sequentially as well as temporal-
parallel: (i) word type (lemma) information as well as word 
concept (semantic) information is sequentially forwarded 
from the mental lexicon to different higher-level modules 
(syntactic and semantic processing module); (ii) neural states 
(S-pointers in terms of the SPA) are aways activated in all 
state buffers and STMs of our model during the entire time 
interval of sentence processing. Thus, linguistic information 
is (i.e., meaningful items are) permanently generated in form 
of neural activation patterns within all buffers and short-term 
memories (STMs) and permanently forwarded towards other 
buffers and short-term memories within our model. Thus, 
syntactic, and semantic processing is done online and in real-
time here (see also the model developed by Pedrelli & Hinaut 
2022). It should be kept in mind that the storage of infor-
mation in short-term memories is energy consuming and thus 
these time periods of (short-term) item storage need to be 
minimized. Thus, information is directly and always pro-
cessed and forwarded to other processing modules in our 
model when it enters the syntactic-semantic processing 
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system in form of an temporal continuous sequence of words 
(cf. the “now or never” bottleneck idea, Christiansen & 
Chater 2016; Pedrelli & Hinaut 2022). This is illustrated in 
our model by the fact that word span information, which is 
memorized for short time periods in the arc type (or word 
span) STMs, is permanently forwarded towards the action se-
lection module and thus permanently used for decision mak-
ing, i.e., for selecting dependency arc specifications which 
then are activated as S-pointers in the dependency arcs buffer 
(DAB). 

Hierarchical processing is always associated with a hierar-
chy in state representations from acoustic via lexical towards 
syntactic and semantic representations. Pedrelli & Hinaut 
(2022) introduce four levels, i.e. phones, words, parts-of-
speech, and semantic role labels. While words and parts-of-
speech (as level-defining item classes) have a comparable 
temporal labeling frequency (parts-of-speech can be inter-
preted as syntactic word categories, see Jurafsky & Martin, 
2023, chapter 8), the item frequency increases from phones 
to words to syntactic-semantic categories. The decrease in 
item frequency from words to semantic roles can be seen in 
our model by comparing the change of neural activation in 
word type buffer (WTB, Fig. 2) and in arc type STMs (all 
other STMs shown in Fig. 2). The change in neural states ap-
pearing in the arc type STMs is slower than in word buffer 
and the information appearing in the arc type STMs is the 
basis for semantic role labeling.  

AI-based NLP models like BERT or GPT-2 as well include 
a kind of temporal processing because they use a step-by-step 
processing for incoming word sequences. Consequently, 
some researchers hypothesize a potential biological reality of 
current deep neural NLP models (Arana et al., 2023; Gold-
stein et al., 2022). For example, attention spotting on specific 
parts of sentences as well as the estimation of word prediction 
and estimation of surprise – i.e., deviation from expectation 
– are typical features of current deep network NLP models as 
well as of human speech processing (ibid.). Moreover, these 
deep neural NLP models as well include processing steps like 
lexical, syntactic, and semantic analysis, but it should be kept 
in mind that (i) the neural network architecture of these mod-
els is not comparable with the architecture of neurobiologi-
cally inspired neural network models (Pedrelli & Hinaut 
2022), that (ii) the way of learning or training is different in 
comparison to natural speech acquisition procedures (ibid.) 
and that (iii) the way of temporal processing is different at 
least at the syntactic semantic level involved in romantic role 
labeling because these models need to process the whole sen-
tence before meaning extraction can be done, while “our 
brain processes a sentence in an online and anytime fashion; 
we are able to partly understand the sentence (and even pre-
dict it) before it ends.” (ibid., p. 2655). 

Beside the appearance of hierarchical-sequential and tem-
poral-parallel processing in our modeling approach, is can be 
stated that – like in deep neural networks – distributed vector 
representations (also called embeddings, see Goldstein et al., 
2022; McClelland et al., 2020) are used here at different lev-
els of word information processing (S-pointer representations 

at phonological, lemma, and semantic level, see also Kröger 
et al. 2016). Distributed neural activity for item representa-
tion (one group of neurons represents different items by dif-
ferent activity patterns) is neurobiologically more realistic 
than a local representation (each item is represented by spe-
cific neurons) at cognitive levels of processing and distrib-
uted representations allows to quantify the degree of similar-
ity between items.  

Our approach so far models bottom-up processing while 
top-down processing is not included up to now. It is known 
that the mental lexicon influences word candidate activation 
in a top-down-manner even while the acoustic-phonetic and 
the phonetic-phonological analysis at segmental and at sylla-
ble level of a word is still ongoing (de Zubicaray et al., 2006). 
The same mechanism can be expected at the syntactic level. 
Word activation is influenced in a top-down-manner by early 
activated syntactic structure candidates for a currently pro-
cessed sentence.  

Our model has been developed in an incremental way by 
processing simple syntactic sentences first before we tried to 
process more complex sentences. Thus, it could be advanta-
geous to model the developmental process, i.e. the develop-
ment of the speech processing modules by considering onto- 
and phylogenetic aspects of speech and language develop-
ment (Yang, 2013; Pearl, 2023). Concretely, it would be ad-
vantageous if we were able to motivate how the modules of 
the speech processing component grow during speech acqui-
sition by integrating the basic neural processing elements 
(buffers, short-term memories, processing circuits for selec-
tion and activation of syntactic information) in a step-by-step 
manner into the model. This growing speech processing 
model should then be able to process utterances with increas-
ing phonological, syntactic, and semantic complexity, like it 
appears in natural speech acquisition. The model should be 
able to replicate acquisition data for speech perception as well 
as for speech production (i.e., start to produce one-word than 
two- and more-word sentences etc., see Tracy, 2002). There-
fore, it is important not to develop the perception side (the 
sentence comprehension side as it is introduced here) in iso-
lation, but in addition to develop the sentence production side 
in parallel. This as well would allow to include all interac-
tions appearing between production and perception at the se-
mantic, at the syntactic, as well as at the lexical level of 
speech processing (Hickok & Poeppel, 2007).   

Finally, it could be interesting not only to focus on one tar-
get language but to develop a speech processing model which 
is capable of processing more than one language. This allows 
to focus on the similarities and on the differences in semantic, 
syntactic, and lexical processing in different languages and 
may facilitate a later modeling of second and third language 
learning.  
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