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Augmenting Interpretation of Chest Radiographs with Deep 
Learning Probability Maps

Brian Hurt, MD MS*, Andrew Yen, MD, Seth Kligerman, MD, Albert Hsiao, MD PhD**

University of California San Diego

Abstract

Purpose—Pneumonia is a common clinical diagnosis for which chest radiographs are often an 

important part of the diagnostic workup. Deep learning has the potential to expedite and improve 

the clinical interpretation of chest radiographs. While earlier approaches have emphasized the 

feasibility of “binary classification” to accomplish this task, alternative strategies may be possible. 

We explore the feasibility of a “semantic segmentation” deep learning approach to highlight 

potential foci of pneumonia on frontal chest radiographs.

Materials and Methods—In this retrospective study, we train a U-net convolutional neural 

network (CNN) to predict pixel-wise probability maps for pneumonia using a public data set 

provided by the Radiological Society of North America (RSNA) comprised of 22,000 radiographs 

and radiologist-defined bounding boxes. We reserved 3,684 radiographs as an independent 

validation data set and assessed overall performance for localization using Dice overlap and 

classification performance using the area under the receiver-operator characteristic curve (AUC).

Results—For classification/detection of pneumonia, AUC on frontal radiographs was 0.854 with 

a sensitivity of 82.8% and specificity of 72.6%. Using this strategy of neural network training, 

probability maps localized pneumonia to lung parenchyma for essentially all validation cases. For 

segmentation of pneumonia for positive cases, predicted probability maps had a mean Dice score 

(+/−SD) of 0.603 +/− 0.204 and 60.0% of these had Dice score greater than 0.5.

Conclusion—A “semantic segmentation” deep learning approach can provide a probabilistic 

map to assist in the diagnosis of pneumonia. In combination with the patient’s history, clinical 

findings and other imaging, this strategy may help expedite and improve diagnosis.

Purpose

Pneumonia is a commonly encountered clinical entity with a prevalence of 10–65% among 

hospitalized patients. It is not only responsible for 257,000 emergency room visits per year, 

but also the cause of nearly 50,000 deaths in the US annually1–3. Chest radiographs are often 
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part of the initial diagnostic workup of pneumonia and are used to monitor progression or 

resolution2. Pneumonia is one of many indications for the roughly 2 billion chest 

radiographs performed annually in the US4. Due to these large study volumes, computer-

automated diagnostic tools are increasingly being developed to assist in diagnostic 

interpretation5.

Convolutional neural networks (CNNs) are a recent form of machine learning (ML) that 

have reinvigorated interest in development of algorithms for chest radiography. In contrast to 

historical ML approaches, CNNs can learn structural features of an image or volume without 

being explicitly programmed. This makes it considerably easier to build CNNs capable of 

performing a variety of tasks, including image-wide classification, object detection, and 

segmentation6.

Much of recent research in chest radiography utilize a large, 112,000 public frontal database 

of chest radiographs7–9. This database includes an associated ontology-based text image-

wide classification covering 14 common radiographic findings/pathologies. Because of the 

nature of these labels, sometimes referred to as “weak” labels, many groups have explored 

the use of “classification” networks to perform image-based diagnosis. While these 

approaches show promise in their ability to classify radiographic findings; one of challenges 

has been the uncertainty on how these methods arrive at their final categorization8,10,11. One 

potential strategy has been to use “saliency maps” or maps of neural network activation to 

reveal areas of the image important in arriving at the “diagnosis”. Because these 

classification CNNs are not explicitly directed to the pathology of interest, often these 

saliency maps are unreliable and may highlight parts of the image unrelated to the diagnosis. 

Without visualizing where an algorithm focuses on a radiograph, it may be difficult to 

resolve inconsistencies or disagreements between machine and radiologist interpretation of a 

chest radiograph.

We therefore sought to explore a novel approach using a new strategy of “semantic 

segmentation” for radiographic diagnosis, which inherently provides algorithm transparency. 

With this strategy, the CNN makes pixel-level decisions to produce a probability map for the 

presence or absence of pneumonia. This strategy is analogous to what has been used for 

segmentation and quantitative measurements of structures like the heart12, brain lesions13, 

pulmonary nodules14, and liver15. We hypothesize that this semantic segmentation approach 

may be just as effective as the “classification” strategy, while also providing a probability 

map to display the pixel-wise likelihood of pneumonia.

Materials and Methods

Data Sources and Patient Demographics

We utilize a database of publicly available frontal chest radiographs with bounding boxes 

representing pneumonia annotated by radiologists, released as part of the 2018 RSNA 

pneumonia challenge16. The radiographs in this data set are a subset of a larger 112,120 NIH 

frontal chest radiograph database7 where each radiographs were assigned findings/diagnoses 

from 14 categories based on radiologist text reports, including atelectasis, cardiomegaly, 

effusion, infiltration, mass, nodule, pneumonia, pneumothorax, consolidation, edema, 

Hurt et al. Page 2

J Thorac Imaging. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



emphysema, fibrosis, pleural thickening, and hernia. The RSNA pneumonia challenge 

included 25,684 chest radiographs spanning the range of pathologies from this data set, 

distributed as DICOM images. No additional exclusion criteria were applied for the current 

study.

Each radiograph in the public data set was distributed with a spatial resolution of 1024×1024 

pixels and 8-bit pixel depth. Patient demographics are the following: 56.8% male; ages 1–93 

years; 45.6% anterior-posterior (AP) and 54.4% posterior-anterior (PA) projections. Twenty-

two percent of radiographs were assigned as positive for pneumonia, 33.2% were normal 

radiographs, and the remaining 44.8% were diagnosed as abnormal but did not have 

pneumonia. These characteristics are presented in Table 1.

Data and Pre-processing

Radiographs and radiologist-defined bounding box annotations of pneumonia from this 

public data were preprocessed into probability maps. This additional step was devised to 

synthesize training data for the “semantic segmentation” strategy. First, to reduce 

computational complexity, chest radiographs were spatially down-sampled to 256×256 

pixels. For radiographs annotated with bounding boxes, box coordinates were used to create 

ellipsoid probability masks of identical width, height and location. This conversion from a 

bounding box to an elliptical map was utilized to reduce highlighting of extra-thoracic 

structures that were otherwise contained in the original rectangular bounding boxes. For 

radiographs without pneumonia bounding boxes, a null binary probability map was created.

The data set was randomly divided into two groups -- 22,000 (85.6%) radiographs were 

utilized for training and the remaining 3,684 (14.4%) radiographs reserved for validation. 

Validation radiographs were kept independent from training data and were used solely to 

benchmark and evaluate neural network performance.

Model Structure and Training

A U-net17 was trained using the synthetic probability maps to predict the pixel-wise 

likelihood of pneumonia on each frontal chest radiograph (Figure 1). Predictions are 

represented by a pneumonia probability map with dimensions identical to the input image 

and output pixel values between 0 and 1. Neural network weights were initialized randomly 

between 0 and 1 using a uniform distribution. No pretraining or transfer learning was 

utilized. No image augmentation was utilized.

Training was performed using batch size of 8 and weighted binary cross-entropy loss 

function17. Pixels with pneumonia were assigned 10-fold weighting and positive cases of 

pneumonia were assigned 30-fold weighting. Model training over this loss function was 

optimized using the “ADAM” back-propagation method with an initial learning rate of 

0.0001. One epoch was defined as the interval when all 22,000 radiographs have been used 

to update the network. We used a dynamic learning rate, decreasing by a factor of five when 

the validation loss failed to decrease for three consecutive epochs; overall training was 

terminated once validation loss failed to decrease for six epochs. Using this training strategy, 

the CNN trained for a total of 43 epochs.
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The U-Net CNN was implemented and trained in Python (version 3.5; Python Software 

Foundation, Wilmington, DE) using Keras 2.2 and Tensorflow 1.8 on a GPU workstation 

running Ubuntu 16.04, equipped with a Titan X graphics card (NVIDIA, Mountain View, 

CA). Model training and algorithm development was executed by the primary author, a 

radiology research resident.

Probability map post-processing

In order to arrive at patient-level binary classifications of “pneumonia” and “no pneumonia”, 

probability maps were post-processed using a fully automated strategy. First, we 

automatically isolated discrete regions of pneumonia from the probability map using an 

Otsu-thresholding technique18 and calculated each region’s mean probability and a 

rectangular bounding box encompassing the predicted pathology. The overall radiographic 

classification was determined by comparing the region with the highest predicted mean 

pneumonia probability to a minimum operating probability threshold.

Model Evaluation & Statistical Analysis

First, to evaluate accuracy of localization, we examined all 860 of the 3,684 radiographs in 

the validation cohort with ground truth labels of pneumonia. For these cases, Dice and 

Intersection over Union (IoU) scores were computed to compare the overlap between 

radiologist-annotation and the predicted probability map. Dice and IoU metrics are standard 

metrics used to describe the degree of overlap between two discrete objects in an image with 

values ranging between 0 (none) and 1 (perfect). These values were computed for 

predictions against the elliptical ground truth as well as the rectangular bounding box 

predictions against the public dataset’s rectangular annotations for comparison. For elliptical 

annotations we grouped cases according to Dice scores of high overlap (0.5< Dice <1.0), 

low overlap (0.0 < Dice <0.5), and no overlap (Dice=0).

Second, to evaluate whole-radiograph classification performance, we examined the entire 

validation cohort of 3,684 radiographs by computing receiver operator characteristic (ROC) 

curves and areas under the curve (AUC). ROC curves were created by adjusting the regional 

mean probability threshold for classifying the radiograph as “positive” for pneumonia. An 

optimal operating point was also chosen to maximize the sensitivity and specificity equally, 

known as Youden’s J-index19. Sub-analyses were performed to assess performance using (a) 

the entire validation cohort, (b) pneumonia versus normal, excluding films labeled as 

abnormal but not pneumonia in the public data set, and (c) pneumonia versus abnormal 
findings, excluding normal chest radiographs.

Visualization

Finally, to further examine the performance of the neural network, we rendered probability 

maps superimposed on input chest radiographs to assess the performance of this approach 

for individual representative cases. Probability maps were alpha blended with maximum of 

80% opacity for probability values of 100% and full transparency for probability values of 

less than 5%. Cases were divided into characteristic groups, highlighted in table 2, based on 

if there was agreement between prediction and radiologist annotation. Concordance was 

Hurt et al. Page 4

J Thorac Imaging. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



defined as agreement between the CNN and the ground truth label; Discordance was defined 

as a disagreement between the CNN and the ground truth label.

Results

Localization Performance

The performance of the CNN was evaluated on 3,684 chest radiographs held out for 

analysis, including 860 cases with ground truth labels of pneumonia. Performance 

characteristics of the algorithm are shown in Figure 2. The overall mean and standard 

deviation of Dice and IoU scores for predicted regions compared to the elliptical radiologist 

annotations were 0.603 +/− 0.204 and 0.461 +/− 0.205, respectively; The overall mean and 

standard deviation of Dice and IoU scores against the rectangular radiologist annotations 

were 0.553 +/− 0.259 and 0.417 +/− 0.229, respectively. For 60.0% of radiographs, there 

was high overlap (Dice >0.5). For 22.3% of radiographs, there was low overlap (Dice >0 and 

<0.5). For 0.5% of radiographs, there was no overlap (Dice = 0). The remaining 17.2% cases 

did not achieve the Youden J-index threshold (calculated to be 0.08) to be classified as 

pneumonia. Representative case examples are highlighted in figure 3.

Classification Performance

Classification performance of the neural network was assessed using the entire validation 

cohort of 3,684 radiographs. Overall AUC for the CNN was 0.854. At the optimal operating 

point (Youden J-index threshold), this corresponded to an accuracy of 81.6%, sensitivity of 

82.8%, specificity of 72.6%, positive predictive value of 47.9%, and negative predictive 

value of 93.3%. When abnormal non-pneumonia chest radiographs were excluded, 

performance increase to an AUC of 0.944. When normal chest radiographs were excluded, 

AUC declined to 0.788. ROC curves for each of these three analyses are illustrated in Figure 

4.

Representative examples of the performance of the neural network are highlighted in figures 

5–8. For concordant positive cases, the CNN successfully localized cases of diffuse 

pneumonia with bilateral involvement and focal pneumonia on both adult and pediatric 

films. For concordant negative cases, the CNN appeared to perform well on normal 

radiographs, but also avoided normal variants like an elevated right hemidiaphragm. For 

discordant positive cases, where the CNN predicted pneumonia and ground truth was not 

labeled as pneumonia, the CNN highlighted pulmonary opacities that might be considered 

equivocal for pneumonia. For discordant negative cases, where there was a ground truth 

label of pneumonia, but the CNN did not identify any abnormalities, findings were equivocal 

or subtle for pneumonia, including a perihilar opacity and lingular opacity.

Discussion

In this study, we show a semantic segmentation deep learning strategy can achieve 

radiographic diagnosis of pneumonia with an AUC of 0.854, compared to historical 

classification strategies that achieved AUC of 0.78–0.918,9, albeit with a different validation 

cohort. More importantly, this strategy appears to successfully highlight suspicious foci of 

pneumonia, which may be a more practical application of neural networks than previous 
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approaches, providing a natural level of algorithm transparency that can be readily integrated 

into a radiologist’s workflow. Since often radiographs are interpreted concurrently with 

clinical history, prior films, lateral projections, or even prior CTs, final interpretation of 

radiographs is often more complex than can be accomplished based on a single frontal film. 

Color-encoded pixel-wise likelihood maps likely have some intrinsic value of their own. 

Probability maps can allow a physician to rapidly refute or agree with the observations of the 

neural network and consider these observations within the full clinical context of the patient 

and other more definitive information.

The literature using deep learning to localize pneumonia is limited. Other CNN approaches 

to predict pneumonia bounding boxes can be used such as Faster RCNN, or Mask RCNN. 

Recent work using a Mask RCNN approach on this same data set reported a mean IoU of 

0.18–0.2120, which, while not an equivalent calculation, is likely slightly better than our 

rectangular-based IoU metric when accounting for discordant predictions, but roughly 

equivalent when using the elliptical-based IoU metric. Previous groups using whole image 

classification approaches attempt to illustrate pneumonia localizations using applied saliency 
maps to reveal portions of the image that are emphasized in the final classification9. 

However, it is unclear how reliable these saliency maps can be. Future work may be required 

to compare these alternative techniques to the strategy proposed here.

The purposes of cropping bounding box annotations into ellipses was an attempt to remove 

extrathoracic structures from being interpreted as pneumonia, thus improving the 

consistency of what the model learns as a pneumonia. Our results support this in two 

compounding ways: 1) all positive predictions localized to the thoracic cavity, and 2) 60% of 

concordant pneumonia predictions have elliptically based dice scores over 50%. Taken 

together this suggests the model reasonably differentiates lung opacities from normal lung 

parenchyma. The downside, as stated above, is that cropping radiologists’ annotations as 

ellipses does make it difficult for direct comparisons with prior works. Nonetheless we favor 

this approach for clinical use because we can be confident predictions will always localize 

within the thoracic cavity and being able to localize opacities.

One advantage of a classification approach over a localization or segmentation approach is 

that radiologist-defined localizations are not required for algorithm development. “Weak” 

binary labels (is or is not pneumonia, pneumothorax, etc.) are enough to make binary 

predictions. This property has made the classification strategy attractive to machine learning 

scientists, as they do not require involvement of a radiologist. The tradeoff, however, is that 

classification approaches typically require much larger data sets and more complex neural 

network architectures. Interestingly, we found that a smaller number of cases, only 20% of 

the NIH 112K data set, was enough to train a U-net to achieve similar performance as the 

classification-only approaches, which required 98–108K exams8,9. We presume this is due to 

training with explicit localizations.

AUC and Dice scores assume that the ground truth labels of pneumonia and radiologist 

annotations are correct and exact. It is possible that they were not, and the accuracy of our 

current algorithm may be underestimated. In this data set, radiologists annotated radiographs 

based on previous NLP-derived labels from the broader NIH data set. The accuracy of those 
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labels is not certain9. In addition, only a couple radiologists annotated each radiograph. Even 

expert thoracic radiologists may not have perfect agreement on the boundaries or certainty of 

radiographic findings which is discussed in the curation of the data set used for this study16. 

Without supporting clinical data or a confirmatory CT scan it is difficult to assess the degree 

of diagnostic certainty in the data set. Future work may be required to assess overall 

performance against a more definitive ground truth, including CT or objective clinical 

features, such as leukocytosis and relevant clinical history.

Several observations stand out when reviewing the probability maps generated by the neural 

network. Using the strategy proposed here, we found that all areas of medium to high 

probability for pneumonia were confined to the thoracic cavity and tended to be observed on 

lung opacities. While this intuitively obvious to human observers, one common pitfall of 

classification neural networks is that they may often use visual cues that are unrelated to the 

disease process21. It is likely that this is the natural result of utilizing radiologists’ 

annotations of the location of pneumonia in the training process, rather than loosely 

providing labels of which exams came from patients who had pneumonia.

Ultimately, algorithms like these may be integrated into the clinical workflow of 

radiologists, emergency physicians, and internists. However, it is likely that they will not be 

immediately perfect in their initial implementation, and will require further training and 

optimization, which may be facilitated with expert feedback. Since CNNs can be further 

modified through a process of transfer learning, it is possible to adapt and “teach” CNNs to 

improve performance for specific patterns where it may struggle, analogous to teaching a 

resident after he/she misses a retrocardiac pneumonia. A number of different strategies could 

have been used to further improve performance of our algorithm. It is possible using a 

pretrained network, hyperpameter optimization, or applying image augmentation could have 

marginally improved performance. However, we believe it is also possible to improve 

performance by providing relevant data to learn on. Improving performance on 

diaphragmatic, retrocardiac and lingular pneumonias may be remedied by increasing the 

number or weight of these cases in training, whether retraining from scratch or utilizing a 

“transfer learning” strategy15. Alternatively, training CNNs to specifically recognize and 

identify other similar appearing pathologies like pulmonary edema may also improve 

performance.

The approach we propose here, augmenting radiographs with a probability map, has 

potential to integrate readily into the clinical workflow of an interpreting radiologist, who 

can integrate information from multiple sources, including the clinical history, lateral films 

or other imaging modalities such as CT. Future work may further assess the multiple 

potential advantages of this image augmentation approach, which may be readily applied to 

other disease processes. For example, small pneumothoraces can be important to detect, 

though difficult with historical classification approaches22. The same technique may also be 

effective at localizing tubes, lines or other devices or acute fractures. It is also possible that 

this approach could have impact on the quality of interpretation of physicians closer to the 

point of care, such as emergency or ICU physicians, or diagnostic radiology trainees with 

more limited experience with this front-line imaging modality. Future work may be valuable 

to assess overall clinical impact of this technology.
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Conclusion

In this study we show a “semantic segmentation” deep learning approach may be a useful 

adjunct to facilitate the radiographic diagnosis of pneumonia. The pneumonia probability 

map produced by this approach may interface more naturally with radiologist interpretation 

than purely classification-based strategies.

Funding Sources:

B.H. receives grant support from the NIH T32 Institutional National Research Service Award; Hardware used to 
perform this research provided by an NVIDIA GPU Grant. A.H. receives grant support from the American 
Roentgen Ray Society, as the ARRS Scholar

References

1. Xu J, Murphy SL, Kochanek KD BB. National Vital Statistics Reports Deaths : Final Data for 2013. 
Natl Vital Stat Rep. 2016;64(2):1–119. doi:5 8, 2013 [PubMed: 26905861] 

2. NEJM, Journal E. Current concepts community-acquired pneumonia. 1995;222:1618–1624.

3. Ibrahim EH, Tracy L, Hill C, Fraser VJ, Kollef MH. The occurrence of ventilator-associated 
pneumonia in a community hospital: Risk factors and clinical outcomes. Chest. 2001. doi:10.1378/
chest.120.2.555

4. Raoof S, Feigin D, Sung A, Raoof S, Irugulpati L, Rosenow EC. Interpretation of plain chest 
roentgenogram. Chest. 2012;141(2):545–558. doi:10.1378/chest.10-1302 [PubMed: 22315122] 

5. Hinton G Deep learning-a technology with the potential to transform health care. JAMA - J Am 
Med Assoc. 2018. doi:10.1001/jama.2018.11100

6. Retson TA, Besser AH, Sall S, Golden D, Hsiao A. Machine learning and deep neural networks in 
thoracic and cardiovascular imaging. J Thorac Imaging. 2019. doi:10.1097/rti.0000000000000385

7. Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. ChestX-ray8 : Hospital-scale Chest X-ray 
Database and Benchmarks on Weakly-Supervised Classification and Localization of Common 
Thorax Diseases.:2097–2106.

8. Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK. Variable generalization 
performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional 
study. PLoS Med. 2018;15(11):1–17. doi:10.1371/journal.pmed.1002683

9. Rajpurkar P, Irvin J, Ball RL, et al. Deep learning for chest radiograph diagnosis: A retrospective 
comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med. 
2018;15(11):e1002686. doi:10.1371/journal.pmed.1002686 [PubMed: 30457988] 

10. Erickson BJ, Korfiatis P, Kline TL, Akkus Z, Philbrick K, Weston AD. Deep Learning in 
Radiology: Does One Size Fit All? J Am Coll Radiol. 2018. doi:10.1016/j.jacr.2017.12.027

11. Recasens A, Kellnhofer P, Stent S, Matusik W, Torralba A. Learning to zoom: A saliency-based 
sampling layer for neural networks. In: Lecture Notes in Computer Science (Including Subseries 
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).; 2018. 
doi:10.1007/978-3-030-01240-3_4

12. Avendi M, Kheradvar A, Jafarkhani H. Fully automatic segmentation of heart chambers in cardiac 
MRI using deep learning. J Cardiovasc Magn Reson. 2016;18(S1):2–4. 
doi:10.1186/1532-429x-18-s1-p351 [PubMed: 26738482] 

13. Miller RW, Zhuge Y, Arora BC, et al. Brain tumor segmentation using holistically nested neural 
networks in MRI images. Med Phys. 2017;44(10):5234–5243. doi:10.1002/mp.12481 [PubMed: 
28736864] 

14. Wang S, Zhou M, Liu Z, et al. Central focused convolutional neural networks: Developing a data-
driven model for lung nodule segmentation. Med Image Anal. 2017;40:172–183. doi:10.1016/
j.media.2017.06.014 [PubMed: 28688283] 

Hurt et al. Page 8

J Thorac Imaging. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



15. Wang K, Mamidipalli A, Retson T, et al. Automated CT and MRI Liver Segmentation and 
Biometry Using a Generalized Convolutional Neural Network. Radiol Artif Intell. 
2019;1(2):180022. doi:10.1148/ryai.2019180022 [PubMed: 32582883] 

16. Shih G, Wu CC, Halabi SS, et al. Augmenting the National Institutes of Health Chest Radiograph 
Dataset with Expert Annotations of Possible Pneumonia. Radiol Artif Intell. 2019. doi:10.1148/
ryai.2019180041

17. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image 
segmentation. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in 
Artificial Intelligence and Lecture Notes in Bioinformatics). Vol 9351; 2015:234–241. 
doi:10.1007/978-3-319-24574-4_28

18. Otsu N A Threshold Selection Method from Gray-Level Histograms. IEEE Trans Syst Man 
Cybern. 2008. doi:10.1109/tsmc.1979.4310076

19. Youden WJ. Index for rating diagnostic tests. Cancer. 2006. 
doi:10.1002/1097-0142(1950)3:1<32::aid-cncr2820030106>3.0.co;2-3

20. Jaiswal AK, Tiwari P, Kumar S, Gupta D, Khanna A, Rodrigues JJPC. Identifying pneumonia in 
chest X-rays: A deep learning approach. Meas J Int Meas Confed. 2019;145:511–518. 
doi:10.1016/j.measurement.2019.05.076

21. Kallianos K, Mongan J, Antani S, et al. How far have we come? Artificial intelligence for chest 
radiograph interpretation. Clin Radiol. 2019. doi:10.1016/j.crad.2018.12.015

22. Taylor AG, Mielke C, Mongan J. Automated detection of moderate and large pneumothorax on 
frontal chest X-rays using deep convolutional neural networks: A retrospective study. PLoS Med. 
2018. doi:10.1371/journal.pmed.1002697

Hurt et al. Page 9

J Thorac Imaging. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: Probabilistic view of pneumonia.
Probabilistic view of pneumonia. A U-net convolutional neural network is trained to take a 

chest radiograph as an input and generate a probability map for the likelihood of pneumonia 

at each pixel in the radiograph. This is rendered as a color image overlay to help guide 

interpretation. By establishing a probability threshold, these maps can be collapsed to a 

binary classification for the absence/presence of pneumonia.

Hurt et al. Page 10

J Thorac Imaging. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: Localization performance of U-Net segmentation for pneumonia detection at the 
optimal operating threshold.
Dice scores (0=no overlap; 1=perfect overlap) are shown in the box & whisker/feather plot 

on the upper right. 60.0% of pneumonia-positive radiographs have dice scores between 0.5 

and 1 which are considered high overlap. 22.3% have dice scores between 0 and 0.5, and 

0.5% have dice scores of 0 corresponding to a positive pneumonia prediction but no 

localization overlap with radiologist annotations. Finally, 17.2% of the radiographs assigned 

pneumonia were not predicted as such.
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Figure 3: Example predictions of probability maps for pneumonia.
(A) Patient with a highly overlap between the pneumonia probability map and radiologist 

annotation with a Dice score of 0.91. (B) Left lower lung pneumonia in patient has a Dice 

score of 0.343 due to prediction of pneumonia in the contralateral lower lobe. (C) Discordant 

localization of pneumonia in the right lung, leading to a dice score of 0. (D) Left basilar 

opacity annotated as pneumonia, but pneumonia is not predicted in any region of the 

radiograph.
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Figure 4: Receiver-operator characteristic (ROC) curve for the performance of U-Net 
segmentation for detection of pneumonia.
Including all radiographs (blue), overall performance yielded an area under the curve (AUC) 

of 0.854, which corresponds an accuracy of 81.6%, sensitivity of 82.8%, specificity of 

72.6%, positive predictive value of 47.9%, and negative predictive value of 93.3%. 

Excluding radiographs with other diagnoses (not pneumonia), AUC was 0.944. Excluding 

normal radiographs, AUC was 0.788.
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Figure 5: Examples cases where neural network predictions agreed with the ground truth label 
of pneumonia.
Probability map highlights a high likelihood of pneumonia throughout the lungs on an AP 

film, consistent with the radiologist localization (top row). Probability map matches 

radiologist annotation of a right middle lobe pneumonia (middle row). Probability map 

suggests greater involvement of pneumonia in the right lung than in the radiologists’ 

annotation for a pediatric patient (bottom row).
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Figure 6: Examples cases where the pneumonia probability map agreed with absence of 
pneumonia.
Probability map highlights an area with low likelihood of pneumonia below threshold in the 

right lung base (top row). Elevation of the right hemidiaphragm was also correctly classified 

as negative (bottom row) by the neural network.
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Figure 7: Example cases where neural network predictions disagreed with ground truth 
annotation.
The neural network predicts pneumonia in the left upper lung (top row), which was not 

marked by the annotating radiologist. Similarly, the discordant prediction of pneumonia in 

the right lung in a patient with chest tubes, pleural effusion and adjacent opacity.
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Figure 8: Example cases where neural network predictions disagreed with assigned annotation.
Left suprahilar and right infrahilar opacities were assigned as pneumonia by the annotating 

radiologist, which were not predicted by the neural network (top row). A lingular opacity 

effacing the left heart border was also assigned as pneumonia by the annotating radiologist, 

but not predicted by the neural network (bottom row).
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