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Abstract

Integrative structural modelling uses multiple types of input information and proceeds in four 

stages: (i) gathering information, (ii) designing model representation and converting information 

into a scoring function, (iii) sampling good-scoring models, and (iv) analyzing models and 

information. In the first stage, uncertainty originates from data that are sparse, noisy, ambiguous, 

or derived from heterogeneous samples. In the second stage, uncertainty can originate from a 

representation that is too coarse for the available information or a scoring function that does not 

accurately capture the information. In the third stage, the major source of uncertainty is 

insufficient sampling. In the fourth stage, clustering, cross-validation, and other methods are used 

to estimate the precision and accuracy of the models and information.
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Introduction

To understand and modulate biological processes, we need their spatiotemporal models. 

These models can be computed based on input information about the structure and dynamics 

of the system of interest, including physical theories, statistical inference from databases of 

known sequences and structures, as well as a large variety of experimental methods. A 

structural model of a molecule is defined by the relative positions and orientations of its 

components (eg, atoms, pseudo-atoms, residues, secondary structure elements, domains, and 

subunits). All structural characterization approaches correspond to finding models that best 

fit input information, as can be judged by a scoring function; when the scoring function 
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includes experimental data, it quantifies the difference between the observed data and the 

data computed from the model. Therefore, structural characterization can be described as a 

four-stage process: (i) gathering input information, (ii) designing model representation and 

converting information into a scoring function, (iii) sampling good-scoring models, and (iv) 

analyzing models and information. For example, in X-ray crystallography a model consists 

of atomic positions, and the scoring function assesses the agreements (i) between the 

computed and observed structure factors via the Rfree parameter [1] as well as (ii) between 

the model geometry and the ideal geometry implied by a molecular mechanics force field 

via the potential energy of the model.

To use a model well, we need to assess its accuracy (stage iv above). Assessment standards 

and corresponding tools have already been developed for X-ray crystallography [2] and 

Nuclear Magnetic Resonance (NMR) spectroscopy [3], while they are still evolving for 

electron microscopy (EM) [4], Small Angle X-ray Scattering [5,6], and comparative 

modeling [7]. Standard validation of the crystallographic and NMR entries in the Protein 

Data Bank (PDB) [8] includes assessing geometrical features such as stereochemistry and 

packing, fit of the model to the experimental data, and the quality of the data itself. In the 

EM field, Fourier Shell Correlation (FSC) is commonly used to estimate map resolution 

[4,9,10]. Recently, new validation methods for EM maps were suggested, including tilt pair 

analysis [11], gold-standard FSC curves [4], high-resolution noise substitution [12,13], and 

ResLog plots [14•]. In SAXS data validation, the χ-free criterion was recently proposed 

[15••], inspired by Rfree in crystallography. Protein aggregation can be revealed in the 

Guinier plot, inter-particle interference can be detected by measuring SAXS profiles at 

multiple concentrations, and conformational heterogeneity is to some degree reflected in the 

Kratky or Porod-Debye plots [16]. Estimating the accuracy of comparative models is still 

challenging, but methods based on a variety of criteria do exist [7,17,18].

No single experimental method is guaranteed to produce a satisfactory structure for a given 

system. Nevertheless, structure determination can often benefit from an integrative (hybrid) 

approach, where information from multiple experimental datasets is used to compute all 

structural models that are consistent with the available data [19–22]. Data from X-ray 

crystallography, EM, NMR spectroscopy, SAXS, cross-linking combined with mass 

spectrometry (MS), Förster resonance energy transfer (FRET) spectroscopy, double 

electron-electron resonance (DEER), and hydrogen–deuterium exchange (HDX) is 

frequently used in integrative structure determination (Table 1). Sometimes integrative 

models are assessed based on clustering of models, modeling with simulated data, 

observation of non-random patterns in the models, and modeling with subsets of data [20]. 

However, a set of standards for validating integrative models has not yet been developed 

[22].

It is essential for appropriate use of a structural model to estimate errors in the model as well 

as the data used to compute it. Model error is defined as the difference between the model 

and true structure. It originates from several different sources. First, input data can be sparse, 

noisy, ambiguous, or incoherent (Glossary). Second, the system representation can be too 

coarse, resulting in some input information being ignored. Third, the scoring function may 

not accurately capture the input information or the input information is insufficient to 
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identify the true structure. Fourth, sampling may not find the true structure due to many 

degrees of freedom used to represent the system. Because the true structure is unknown in 

real applications, model error is also unknown. However, the lower bound on the model 

error can often be estimated as the precision of the set of models consistent with the input 

information. Here, we describe the origins of uncertainty in each stage of integrative 

modeling, and suggest how to quantify and minimize it.

Stage 1: Gathering information

Spatial information about a given system can include data from experiments such as those 

listed above, statistical propensities such as atomic statistical potentials extracted from 

known protein structures, and physical laws, such as interatomic interactions approximated 

by a molecular mechanics force field. This information is used to represent the system as 

well as to sample and rank its possible configurations. There are four sources of uncertainty 

in the information, as follows.

Data sparseness

The data sparseness measures the amount of information in the data relative to the number 

of degrees of freedom in the model; the amount of information in the data depends on the 

number of data points and their precision as well as their interdependence. Data sparseness 

affects the precision of the model [23]. For example, for a protein-protein complex mapped 

by a single cross-link, if each protein is represented by a single sphere, the data sparseness is 

1 data point per 1 degree of freedom; if the proteins are represented by their rigid atomic 

structures, the data sparseness is 1 data point per 6 degrees of freedom (3 rotations and 3 

translations). In X-ray crystallography, the data sparseness can be quantified by the number 

of reflections divided by the number of atoms in the unit cell. In NMR spectroscopy, the 

data sparseness is usually quantified by the number of NOE restraints per residue. In SAXS, 

the data sparseness of a SAXS profile is defined using the Nyquist-Shannon sampling 

theorem: given the maximum dimension (dmax), the sampling theorem determines that the 

number of unique, evenly distributed observations for a maximum scattering vector (qmax) is 

given by (dmax qmax)/π. The problem with sparse data is that there are more free parameters 

than observations, which may lead to an over-interpretation of the data (over-fitting).

Data error

Error of the data is the sum of random and systematic measurement errors. The magnitude 

of random error can best be assessed by multiple repeated measurements; systematic errors 

for a given type of data can be estimated by benchmarks relying on known structures. For 

example, in X-ray crystallography the random error is caused by random variations among 

the crystals as well as noise in the X-ray flux, detector and electronics, while the systematic 

error can result from radiation damage, conformational heterogeneity of the sample, and 

crystal packing defects [24]. In SAXS, the random error sources are similar to those in 

crystallography, while the systematic error can result from sample aggregation and radiation 

damage [5].
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Data ambiguity

Data ambiguity is the uncertainty in assigning data points to specific components of the 

system. For example, it is generally not possible to assign which of the three methyl protons 

gave rise to an observed NOE signal [25]. Another example is the ambiguity of assigning a 

cross-link to a specific instance of a protein when the complex contains multiple instances of 

it. In contrast, diffraction and scattering data are a function of all components of a system 

and thus not ambiguous.

Data incoherence

Data incoherence is a result of compositional or conformational heterogeneity of one or 

more samples used to generate one or more datasets for modeling; for example, a system 

may exist as a mixture of two states in an NMR solution experiment or it may exist in 

different states in X-ray (crystal) and SAXS (solution) experiments. As a result, the 

measured data will be a mixture of contributions from each state. The ability to disentangle 

different states depends on the precision and accuracy of the data; for example, 

conformational differences smaller than the precision of the data may be difficult to detect.

Stages 2 and 3: Converting input information into system representation, 

scoring function, and sampling

Input information about the structure of the system can be used (i) to select the set of 

variables that represent the system (system representation), (ii) to rank the different 

configurations (scoring function), and (iii) to search for good scoring solutions (sampling). It 

is often most computationally efficient, although not always possible, to encode information 

into the representation; in contrast it is generally most straightforward, but least efficient, to 

encode information into the scoring function. For example, in protein-protein docking, 

maximization of shape complementarity can be encoded into a scoring function that is then 

optimized by a generic optimization method. Alternatively, maximization of shape 

complementarity can also be encoded more efficiently through a representation consisting of 

shape descriptors, such as surface curvature, resulting in faster sampling by generating only 

configurations of subunits with complementary shape descriptors [26].

Representation

The representation of a system is defined by all the variables that need to be determined 

based on input information, including the assignment of the system components to 

geometric objects, such as points and spheres. A simple example is Cartesian coordinates for 

points corresponding to the individual atoms. More complex representations can assign a 

component to other geometric primitives (eg, spheres, ellipsoids, and 3D Gaussian density 

functions) and include additional degrees of freedom, such as the number of states in the 

system and their weights. For instance, in a high-resolution representation, a sphere can 

represent a single atom, while in a coarse-grained representation it may correspond to a 

residue. Coarse-graining can be used to encode the uncertainty arising from both static and 

dynamic variability. Moreover, in a “rigid body”, the relative positions of the primitives (eg, 

atoms in a domain) can be constrained, for example based on a crystallographic structure. In 
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most applications, the representation is determined before any other computations and is not 

changed. The resolution of the representation should be commensurate with the input 

information. In some cases, it is beneficial to represent different parts of a structure with 

different representations or a part may be described with several different inter-linked 

representations simultaneously (ie, multi-scale representation); in such a case, information 

can be applied to restrain the model by using the most convenient representation [27].

When defining the representation, we usually have to balance between the requirements of 

scoring and sampling. We need a representation that is sufficiently detailed for accurately 

assessing a match between a model and the input information. For example, when using 

chemical cross-linking information, we need to choose between representing the cross-linker 

explicitly with all of its atoms [28] or implicitly as a function of the distance between the 

cross-linked residues. To minimize data sparseness, we also need a representation that is 

sufficiently coarse, given the invariably limited information content of the data. Finally, the 

representation should also be sufficiently coarse to allow for exhaustive sampling of good 

scoring models in a feasible timeframe. While it would be best to be able to compute an 

optimal representation based on the input information, this is not yet possible.

Scoring

Most generally, the scoring function ranks alternative models based on the evidence 

provided by the input information. The scoring function should take into account the 

uncertainty in the input information, including sparseness, error, ambiguity, and 

incoherence. For example, a scoring function could evaluate whether or not a given model 

fits the data within its error bars. Ambiguity in the data assignment should also be accounted 

for by the scoring function. For example, to address the ambiguity in methyl proton 

assignment for an observed NOE signal, the signal is often assigned to the center of mass of 

the three methyl protons [25]. For a complex with multiple copies of the same protein, a 

cross-link can be assigned to the copy of the protein that satisfies it best [20]. When a 

sample is heterogeneous (ie, data are incoherent), a scoring function should rank instances of 

a model, each one of which consists of multiple structures (multi-state model). For example, 

protein heterogeneity in a crystal can be modeled using snapshots of molecular dynamics 

simulations [29••]. Protein dynamics in solution, as measured by SAXS and NMR 

spectroscopy, can be modeled by fitting multiple weighted conformations to the data [30–

34]. In EM single particle reconstruction, heterogeneity can be addressed by multi-model 

reconstruction using multi-stage clustering [35].

The most objective ranking of models is in principle achieved by a Bayesian scoring 

function [36]. The Bayesian approach estimates the probability of a model, given 

information available about the system, including both prior knowledge and newly acquired 

experimental data. When modeling heterogeneous systems, model M includes a set of N 

modeled structures X = {Xi}, their population fractions in the sample {wi}, and potentially 

additional parameters (eg, the unknown data errors). The posterior probability p(M|D, I) of 

model M given data D and prior knowledge I is
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where the likelihood function p(D|M, I) is the probability of observing data D given M and I; 

and the prior p(M|I) is the probability of model M given I. The likelihood function is based 

on the forward model f(X) that predicts the data point that would have been observed for 

structure(s) X in the absence of experimental error, and a noise model that specifies the 

distribution of the deviation between the experimentally observed and predicted data points. 

The Bayesian scoring function is defined as S(M) = − log[p(D|M, I)· p(M|I)] which ranks the 

models the same as the posterior probability. The most probable models are found by 

selecting the best scoring models sampled from the posterior distribution.

The Bayesian scoring function can account for most sources of uncertainty in data without 

over-fitting. It was successfully adopted for NMR spectroscopy data [36,37], and recently 

cryo-EM density maps [38,39••]. Bayesian structure determination based on sparse NOE 

measurements produces more accurate structures and better estimates of precision than 

standard NMR structure determination methods [36,37,40]. In single particle EM 

reconstruction, the Bayesian approach results in density maps with higher resolution than 

those from standard reconstruction methods using the same input datasets [38,39]; 

moreover, high-resolution maps can be obtained from only a few thousand of particles [41–

43]. Recently, the BioEM method for Bayesian analysis of individual EM images that can 

deal with conformational heterogeneity was developed [44]. Bayesian scoring functions 

have also been developed for cysteine cross-linking [45], chemical cross-linking [46], FRET 

spectroscopy [47], and atomic statistical potentials [48].

The Bayesian approach is more objective than traditional scoring functions in a number of 

respects: (i) inference of unknown quantities, such as data error and state weights, (ii) 

combination of different types of information, (iii) inference of multiple structures, (iv) 

estimate of model precision, and (v) “marginalization” of parameters that are difficult to 

determine. The main disadvantage is that the model is more elaborate (cf, noise model and 

priors) and a more exhaustive sampling of structural and parameter space is required.

Sampling

A variety of optimization methods (eg, conjugate gradients), sampling algorithms (eg, 

Monte Carlo), and even exhaustive enumeration (eg, Fast Fourier Transform) can be used to 

find models consistent with input information. The major source of uncertainty in this stage 

is insufficient sampling due to the ruggedness and high dimensionality of the scoring 

function landscape that needs to be sampled. As a result, it is almost never certain that the 

best scoring models were sampled. For stochastic sampling, such as the Monte Carlo 

algorithm, the thoroughness of sampling can be indicated by showing that new independent 

runs (eg, using random starting configurations and different random number generator 

seeds) do not result in significantly different good-scoring solutions (“convergence test”) 

[49]. Passing such a test is a necessary but not sufficient condition for thorough sampling; a 

positive outcome of the test may be misleading if, for example, the landscape contains only 
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a narrow, and thus difficult to find, pathway to the pronounced minimum corresponding to 

the native state.

For multi-state models, the sampling is often performed in two steps, due to the relatively 

high number of degrees of freedom involved. First, a large set of possible single 

configurations is sampled. Second, the sets of configurations in a multi-state model are 

enumerated, for example by using a genetic algorithm [31,32], a maximum entropy 

approach [33], or a deterministic method [34].

Stage 4: Analyzing models and information

Input information and output models are analyzed in order to estimate model precision and 

accuracy, to detect inconsistent information and missing information, as well as to suggest 

most informative future experiments. There are three possible outcomes of modeling, based 

on the number of clusters of models and consistency between the models and information. 

The following discussion applies to single-state models, but similar considerations can also 

be extended to multi-state models. First, if only a single model (or a cluster of similar 

models) satisfies all restraints and thus all input information, there is probably sufficient 

information for determining the structure (with the precision corresponding to the variability 

within the cluster). Second, if two or more different models are consistent with the restraints, 

the information is insufficient to define the single state or there are multiple significantly 

populated states. If the number of distinct models is small, the structural differences between 

the models may suggest additional experiments to narrow down the possible solutions. 

Third, if no model satisfies all input information, the information or its interpretation in 

terms of the restraints are incorrect, the representation needs to include additional degrees of 

freedom, and/or sampling needs to be improved (regardless of the outcome of the 

convergence test above).

If multiple structural states are indicated, care must be taken that the scoring function 

explicitly allows for this possibility [31–34,45,46]. When a mixture of states is modeled, the 

number of states needs to be determined. Frequently, Occam’s razor suggests that the 

smallest number of states sufficient to explain the input information within some threshold is 

the optimal choice. An example of this approach is the “minimal ensemble” method in 

molecular modeling based on SAXS data [32]. However, sometimes Occam’s razor is not 

applicable. For example, even though a SAXS profile of an intrinsically disordered protein 

may be matched by a sum of profiles for the minimal ensemble structures, the system is 

likely to exist in a large ensemble of many widely different states; such cases are indicated 

by similarity between distributions of structural properties, such as the radius of gyration, of 

the minimal and large ensembles [31].

Once we obtain a model (single or multi-state) that satisfies the input data, we can analyze it 

to estimate precision and accuracy. It is impossible to know with certainty the accuracy of 

the proposed structure without knowing the real native structure. However, accuracy can be 

estimated based on rules derived from benchmark studies that involve modeling of known 

structures. For example, there is a strong correlation of the accuracy of an X-ray structure 

with the resolution of the X-ray dataset and Rfree [1]. In addition to such broad rules, five 
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types of analysis that are indicative of model precision and accuracy in specific cases have 

been proposed [20], as follows (the first three tests are examples of statistical resampling 

[50]).

Estimating model precision based on variability in the ensemble of good-scoring models

The model ensemble is analyzed in terms of the precision of its features, such as the protein 

positions and contacts [49,51–53]; the precision is defined by the variability in the ensemble 

and likely provides the lower bound on its accuracy. Of particular interest are the features 

that are present in most configurations in the ensemble and have a single maximum in their 

probability distribution. The spread around the maximum describes how precisely the 

feature was determined by the input information. A more thorough test is performed by 

estimation of structural variability in multiple random subsets of the ensemble [52••,54••].

Self-consistency of the experimental data

Inconsistencies in the experimental data or its interpretation are indicated by an ensemble of 

models containing only frustrated structures that do not satisfy the input data, although such 

an outcome can also arise from the failure of sampling. If there is a model that satisfies all 

data, the probability of such a model occurring by chance can be indicated by statistical 

significance tests; if this probability is low, the model is likely to be correct. In these tests, 

the labels on the data points are randomized or permuted, followed by re-computing the 

model; for example, one can assign cross-links to random residue pairs [55].

Validating models by using random subsets of experimental data

The structure can be directly validated against experimental data that was not included in the 

structure calculation [52••]. This criterion is similar to the crystallographic Rfree parameter 

and can be used to assess both the model accuracy and the input data [1]. Alternatively, 

modeling can be repeated with random subsets of the data. Common statistical techniques 

for this validation include cross validation and bootstrapping [50].

Reproducibility of the model with simulated data

In this approach, a native structure is assumed, the restraints to be tested are simulated from 

this structure, the structure is then reconstructed based only on these restraints, and finally 

the reconstruction is compared to the original assumed structure [49]. Using such 

simulations, the dependence of model accuracy on the amount, quality, and type of 

information can be mapped for future prediction of accuracy.

Patterns unlikely to occur by chance

Unlikely patterns emerging from mapping independent and unused data on the structure also 

increase our confidence in a model, similarly to validation by information not used in 

modeling. For example, the model of the nuclear pore complex (NPC) revealed an 

unexpected 16-fold pseudo-symmetry in the arrangement of fold types of the constituent 

proteins, in addition to the known 8-fold symmetry [49]. The 16-fold pseudo-symmetry 

validates the model because the fold types were not used in modeling and the 16-fold pseudo 
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symmetry is unlikely to arise by chance (while it can be reasonably explained by gene 

duplications in the evolution of the NPC).

Conclusions

Integrative structure determination needs de facto standards and tools for assessing the input 

data and resulting models, following in the footsteps of X-ray crystallography and NMR 

spectroscopy with established structure validation criteria.
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Box 1

Glossary

Input data experimental data used to compute a model

Input information experimental data and any additional information

Data sparseness a measure of the amount of data relative to the number of 

degrees of freedom in the model

Data error the difference between the measured data and its true 

value, which can be computed given a forward model and 

the true structure; data error can be random and/or 

systematic, affecting the precision and the accuracy of the 

measured data

Data ambiguity a data point is ambiguous when it cannot be assigned to 

the specific components of the model

Data incoherence a dataset is incoherent when it is derived from a 

compositionally or configurationally heterogeneous 

sample

Single-state model a model that specifies a single structural state and value 

for any other parameter

Multi-state model a model that specifies two or more co-existing structural 

states and values for any other parameter

Ensemble of 

structural models

a set of structural models each one of which is consistent 

with the data

Ensemble precision variability among structural models in the ensemble

Error or accuracy of a 

structural model

the difference between the structural model and the true 

structure(s)

Representation 

resolution

a descriptor of the detail in the representation of the 

structural model (eg, atomic models consist of atoms)
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Highlights

• Integrative modeling needs standards and tools for assessing models and input 

data

• Model uncertainty originates from sparse, noisy, ambiguous, or incoherent data

• Model uncertainty also originates from representation, scoring function and 

sampling

• Some methods for assessing data and models are listed
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Figure 1. 
Uncertainty in integrative structure modeling. The four-stage scheme of integrative structure 

modeling is used to describe how to approach uncertainty in the data and the models. The 

collected information is converted into a scoring function that accounts for data error, 

ambiguity, and incoherence. The model representation should reflect data sparseness. After 

sampling, if good-scoring models satisfy the restraints, they are further evaluated by 

structural clustering and data validation tests.
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Table 1

Some of the recent structures solved by an integrative approach.

Structure Experimental information Method

S. cerevisiae INO80 [56] Cryo-EM map (17Å resolution), 212 intra-protein and 116 
inter-protein cross-links

Manual modeling in 
Chimera

Polycomb Repressive Complex 2 [57] Negative stain EM map (21Å resolution) and ~60 intra-protein 
and inter-protein cross-links

Manual modeling in 
Chimera

39S large subunit of the porcine 
mitochondrial ribosome [58]

Cryo-EM map (4.9Å resolution) and ~70 inter-protein cross-
links

COOT, O, PHENIX

S. pombe 26S holocomplex [52••] Cryo-EM map (8.4Å resolution) and 35 cross-links from S. 
pombe and 36 cross links from S. cerevisiae

IMP

S. cerevisiae RNA polymerase II 
transcription pre-initiation complex [54••]

Cryo-EM map (16Å resolution), 157 intra-protein and 109 
inter-protein cross-links

Exhaustive enumeration

S. cerevisiae 40S•eIF1•eIF3 translation 
initiation complex [59••]

965 cross-links, including 126 unique eIF3-eIF3 and 40S•eIF1-
eIF3 cross links, negative stain EM map (28Å resolution), 
crystallographic structures of 40S complex, eIF3 domains

IMP

S. typhimurium Type III secretion system 
needle [53]

solid-state NMR, cryo-EM (19.5Å resolution) Rosetta

Methane monooxygenase hydroxylase 
(MMOH), toluene/o-xylene 
monooxygenase hydroxylase (ToMOH), 
and urease [60]

Composition and stoichiometry from native MS, collision cross 
section from ion mobility–MS and cross-links

IMP

ESCRT-I complex [61•] SAXS, double electron-electron transfer (DEER), and FRET EROS

Hsp90 substrate recognition [46] 31 cross-links and NMR spectroscopy IMP

Splicing factor U2AF65 [62] Paramagnetic relaxation enhancement (PRE), residue dipolar 
couplings (RDCs), and SAXS

ASTEROIDS

HIV-1 capsid protein [63] RDCs and SAXS Xplor-NIH

500-kilobase (kb) domain of human 
chromosome 16 [64,65]

Chromosome Conformation Capture Carbon Copy (5C) 
experiments and excluded volume

IMP

Human genome architecture [66••] Tethered chromosome conformation capture (TCC) and 
population-based modeling

IMP
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