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Abstract

Stochastic Modeling and Simulation of Ground Motions
for Performance-Based Earthquake Engineering

by
Sanaz Rezaeian
Doctor of Philosophy in Engineering — Civil and Environmental Engineering
University of California, Berkeley

Professor Armen Der Kiureghian, Chair

A site-based fully-nonstationary stochastic model for strong earthquake ground motion is
developed. The model employs filtering of a discretized whit-noise process. Nonstationarity is
achieved by modulating the intensity and varying the filter properties in time. The formulation
has the important advantage of separating the temporal and spectral nonstationary characteristics
of the process, thereby allowing flexibility and ease in modeling and parameter estimation. The
model is fitted to recorded ground motions by matching a set of statistical characteristics,
including the mean-square intensity, the mean zero-level up-crossing rate, and a measure of the
bandwidth, all expressed as functions of time. These characteristics represent the evolving
intensity and time-varying frequency content of the ground motion. Post-processing by a second
filter assures zero residual velocity and displacement, and improves the match to response
spectral ordinates for long periods.

The proposed stochastic model is employed to develop a method for generating an ensemble of
synthetic ground motion time-histories for specified earthquake and site characteristics. The
stochastic model is fitted to a large number of recorded ground motions taken from the PEER
NGA database. Strong ground motions recorded on firm ground with source-to-site distance of at
least 10 km are selected. Fitting to recorded ground motions results in sample observations of the
stochastic model parameters. Using this sample, predictive equations are developed for the
model parameters in terms of the faulting mechanism, earthquake magnitude, source-to-site
distance and the site shear-wave velocity. For any specified set of these earthquake and site
characteristics, sets of the model parameters are generated, which are in turn used in the
stochastic model to generate an ensemble of synthetic ground motions. The resulting synthetic
accelerations as well as corresponding velocity and displacement time-histories capture the main
features of real earthquake ground motions, including the intensity, duration, spectral content,
and peak values. Furthermore, the statistics of their resulting elastic response spectra closely
agree with both the median and the variability of response spectra of recorded ground motions,
as reflected in existing prediction equations based on the NGA database. The proposed method
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can be used in seismic design and analysis in conjunction with or instead of recorded ground
motions.

The method of ground motion simulation for specified earthquake and site characteristics is
extended to simulate orthogonal horizontal ground motion components. Two stochastic
processes are considered, each representing one component. Assuming statistical independence
between the underlying white-noise processes, the two horizontal components are simulated on a
set of orthogonal principal axes, along which the components are statistically uncorrelated. A
database of principal component ground motion pairs is developed by rotating the as-recorded
horizontal ground motion component pairs into their principal axes. The stochastic model is
fitted to the recorded motions in the principal component database. Using the resulting sample
observations for the model parameters, regression models are developed to empirically relate
each model parameter to the earthquake and site characteristics. Correlations between parameters
of the two ground motion components are empirically determined. Given earthquake and site
characteristics, the results of this study allow one to generate realizations of correlated model
parameters for the two horizontal ground motion components. Each set of these model parameter
realizations along with two statistically independent white-noise processes are used in the
stochastic model to generate an orthogonal pair of horizontal ground motion components along
the principal axes. The simulated components, while being statistically independent, have overall
characteristics, i.e., evolution of intensity and frequency content, that are similar to each other in
the same way that the characteristics of a pair of real recorded ground motion components along
their principal axes are similar. The simulated principal components may be rotated into any
desired direction, such as the coordinate axes of a structure, through a simple orthogonal
transformation.
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CHAPTER 1

INTRODUCTION

1.1. Introduction

In the past decade, a major advancement in earthquake engineering research and practice has
been the development of the concept and tools for performance-based earthquake engineering
(PBEE) (Bozorgnia and Bertero, 2004). While traditional building design codes are prescriptive
and only assure minimum safety and serviceability requirements, PBEE attempts to consider the
entire range of seismic hazards and structural behaviors in the context of minimizing overall risk
and life-cycle cost. This range includes nonlinear behavior and even collapse of structures.
Development of tools for such analysis (e.g., OpenSees, see http://opensees.berkeley.edu for the
software and documentation by Mazzoni et al. (2006), or nonlinear structural analysis methods
presented by Filippou and Fenves in Chapter 6 of Bozorgnia and Bertero (2004)) has been the
focus of much research and development during the past decade.

Two approaches are available for nonlinear dynamic analysis of structures subjected to
earthquakes: (1) nonlinear response-history analysis by use of a selected set of ground motion
time-histories (either recorded or synthetic), (2) nonlinear stochastic dynamic analysis by use of
a stochastic representation of the ground motion. Well developed methods and tools are available
for nonlinear response-history analysis, including the OpenSees software mentioned above.
Stochastic methods are not as developed, but research in that direction is continuing (e.g., Li and
Der Kiureghian (1995), Au and Beck (2001a, 2003), Franchin (2004), Fujimura and Der
Kiureghian (2007), Der Kiureghian and Fujimura (2009)).

In the current PBEE practice, the input ground motion time-histories are selected from a database
of ground motions recorded during past earthquakes, which are often modified to fit desired
conditions. However, for many regions of the world and for many design scenarios of interest,
the database of recorded motions is sparse or lacking. As a result, in practice, one is forced to
significantly alter recorded motions, e.g., scale them by factors as large as 10 or 20 or modify
their frequency contents, in order to achieve the desired intensity or frequency characteristics.
These modifications have raised concern about the validity of the approach, as the modified
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motions may not accurately represent real earthquake ground motions. As a result of this
shortcoming, there has been increasing interest in methods for generation of synthetic ground
motions for specified design scenarios.

For stochastic dynamic analysis, there is need for a random process model of the earthquake
ground motion. Many such models have been developed in the past (see the review in Section
1.4). However, for nonlinear stochastic dynamic analysis, it is essential that the stochastic model
accurately reflects the evolving intensity and time-varying frequency content of the motion.
Furthermore, the model should be of a form that facilitates nonlinear stochastic dynamic
analysis. While several previously developed models provide adequate representation of the
characteristics of real earthquake ground motions, for the most part they are of a form that makes
their use in nonlinear stochastic dynamic analysis cumbersome. Moreover, for PBEE analysis, it
is desirable to have a stochastic model that is parameterized in terms of information that is
available to an engineer for a given design scenario. Such a model currently does not exist.

This study attempts to fill the above described gaps in PBEE. Specifically, it develops a
stochastic model of earthquake ground motions that possesses the characteristics of real ground
motions and it is described in terms of parameters that typically define a design scenario. The
model can be used to generate realistic synthetic ground motions for nonlinear response-history
analysis, or can be used directly for nonlinear stochastic dynamic analysis. The specific features
and uses of the model are described in the following section.

1.2. Major results and significance of research

In this study, a stochastic model for characterization and simulation of earthquake ground motion
time-histories is developed. Three potential applications of the proposed model in research and
engineering practice are: (1) generation of samples of synthetic ground motion components with
specified statistical characteristics defining their evolving intensities and frequency contents; (2)
generation of samples of synthetic ground motion components for a given design earthquake
scenario defined in terms of a set of earthquake and site characteristics that are typically
available to a practicing engineer; and (3) representation of the components of earthquake
ground motion as a vector random process in a form that facilitates nonlinear stochastic dynamic
analysis by existing methods. The following paragraphs elaborate on these applications of the
model developed in this study.

The model developed in this study facilitates generation of synthetic earthquake ground motions
with specified statistical characteristics. The specific statistical characteristics considered include
the time-varying intensity of the motion as defined by the variance of the acceleration time-
history, the effective duration of the motion measured between the time points at 5% and 95% of
cumulative energy, and the evolving predominant frequency and bandwidth of the motion. These
characteristics are key features of earthquake ground motions that are known to have significant
influences on structural response, particularly in the nonlinear range, and determination of
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damage induced by earthquakes. By generating synthetic motions with specified statistical
characteristics and estimating the corresponding structural response, various parametric studies
that investigate the effects of ground motion characteristics on structural response may be
conducted. Furthermore, studies that determine the statistics of structural response to earthquake
ground motions with specified statistical characteristics may be of interest. This is useful, for
example, in the construction of structural fragility models, which defines the conditional
probability of exceeding a given limit state as a function of a measure of the ground motion
intensity. Another possibility is to generate synthetic motions with statistical characteristics
similar to those of a recorded motion. One may view a recorded ground motion as one sample
observation of all the possible ground motions with the specified statistical characteristics. An
ensemble of ground motions consisting of a recorded motion and samples of synthetic motions
with similar statistical characteristics may be used to determine the statistics of structural
response to the ground motion process.

The main advancement of the present study is to provide the capability to generate a suite of
synthetic ground motion components for a future seismic event with specified earthquake and
site characteristics, i.e., for a specified design scenario. The earthquake and site characteristics
considered are the type of faulting, the earthquake magnitude, the source-to-site distance, and the
shear-wave velocity of the local soil at the site. Most importantly, the variability exhibited by the
suite of synthetic ground motions for the given set of earthquake and site characteristics is
consistent with the variability observed in recorded ground motions for the same design scenario.
This consistency is essential for accurate estimation of the statistics of structural response and
damage in the context of PBEE analysis. This capability is particularly useful for predicting
future seismic loading in regions where recorded ground motions are lacking, as there is no need
for previously recorded motions for generating the synthetics. This independence from recorded
ground motions is achieved by developing predictive equations for the parameters of the
stochastic ground motion model in terms of the earthquake and site characteristics. The
predictive equations are developed empirically using a large data set of recorded earthquake
ground motions taken from the widely used PEER NGA (Pacific Earthquake Engineering
Research Center, Next Generation Attenuation of Ground Motions Project; see
http://peer.berkeley.edu/smcat/) database.

The model proposed in this study facilitates nonlinear stochastic dynamic analysis by several
existing methods. Stochastic dynamic analysis provides the means for probabilistic assessment of
seismic demand on structures when the input excitation is defined as a stochastic process. This
type of analysis allows determination of various statistics of the structural response, such as the
probability distributions of peak values, level-crossings or the first-passage probability. Since
failure usually occurs in the nonlinear range of structural behavior, nonlinear stochastic dynamic
analysis methods are of particular interest in assessing the safety of structures and in PBEE.
Recently, Fujimura and Der Kiureghian (2007) have developed a new method for nonlinear
stochastic dynamic analysis, known as the Tail-Equivalent Linearization Method (TELM), that is
computationally more efficient than a Monte Carlo simulation method and provides superior
accuracy compared to the conventional equivalent linearization method. In a more recent paper,
Der Kiureghian and Fujimura (2009) have demonstrated the utility of TELM for PBEE analysis.
An essential step in TELM is discrete representation of the input excitation in terms of a set of
standard normal random variables. The stochastic ground motion model proposed in this study
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has a form that satisfies this requirement so that it can be used in conjunction with TELM for
nonlinear stochastic dynamic analysis. Of course the model can also be used with a number of
other methods for nonlinear stochastic dynamic analysis as described, for example, in Lutes and
Sarkani (2004).

The following section discusses the current practice in seismic load prediction and the role of the
present study in advancing the field and in overcoming some of the shortcomings and challenges
of the existing methods.

1.3. Current practice of seismic load prediction

One of the major obstacles in seismic assessment of structures is identification of future seismic
loading. Problems arise from the limited number of previously recorded ground motions and lack
of such recordings for many earthquake scenarios and site locations. The problem of predicting
appropriate ground motions for future seismic events is currently receiving a great deal of
attention. Extensive research is being conducted on developing and evaluating ground motion
prediction equations (GMPEs), also known as attenuation models, and on developing and
evaluating methods for selecting and scaling (in both time and frequency domains) previously
recorded ground motions. A recent study by Douglas and Aochi (2008) provides a survey of
techniques for predicting earthquake ground motions for engineering purposes.

Existing GMPEs (attenuation models), e.g., Campbell and Bozorgnia (2008), Abrahamson and
Silva (2008), Boore and Atkinson (2008), Chiou and Youngs (2008) and Idriss (2008), are
designed to predict measures of ground motion intensity for specified earthquake and site
characteristics. Typical measures considered are peak ground motion values (i.e., peak ground
acceleration, velocity and displacement) and elastic response spectra as functions of the
oscillator period and damping. More recently, GMPEs for inelastic response spectra have also
been developed (Bozorgnia et al., 2010). These GMPEs are useful for linear response-spectrum
analysis or crude nonlinear analysis, but not for response-history analysis, as they do not predict
ground motion time-histories. Such simplified analysis methods have proven to be adequate for
code-based design purposes. However, they are not adequate for PBEE analysis, which aims at
accurately predicting structural behavior in grossly nonlinear domains and even collapse. With
increasing computing power and the advent of nonlinear response-history dynamic analysis tools
for PBEE, such as OpenSees, the need for predicting ground motion time-histories for specified
design scenarios has become urgent. This issue is addressed in the present study. In this sense,
the present study complements GMPEs by providing models for predicting ground motion time
histories for specified design scenarios.

In the current PBEE practice, real recorded ground motions are used to perform response-history
dynamic analysis. Ground motion properties vastly vary for different earthquake and site
characteristics, but recorded motions are not available for all types of earthquakes and in all
regions. Due to scarcity of recorded motions, engineers are often forced to select records from
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locations other than the project site and modify them by scaling or spectrum matching methods,
see, e.g., Watson-Lamprey (2007), Bommer and Acevedo (2004), Hancock et al. (2006). These
methods are often controversial as, without careful processing, they may easily render motions
with unrealistic characteristics. On the other hand, because nonlinear structural response is
sensitive to the characteristics of the seismic loading, care should be taken in realistic
representation of the ground motion. To avoid selection of ground motions from inappropriate
locations, with unreasonable scaling and spectrum matching, an alternative approach is to use
synthetic motions in conjunction with or in lieu of recorded motions. The trick, of course, is to
make sure that these motions have characteristics that are representative of real earthquake
ground motions. The present study develops a method for generating synthetic ground motions,
which incorporate realistic representation of those features of the ground motion that are known
to be important to the structural response. The proposed method is ideal for use in practice since
it is computationally straightforward and it only requires information on earthquake and site
characteristics, which are readily available to the practicing engineer.

1.4. Existing models of earthquake ground motion

There are two main categories of models for generating synthetic ground motions: models that
describe the occurrence of fault ruptures at the source and propagation of the resulting seismic
waves through the ground medium, and models that describe the ground motion for a specific
site by fitting to a recorded motion with known earthquake and site characteristics. We refer to
the first category as “source-based” models and to the second category as “site-based” models.
Source-based models can produce realistic accelerograms at low frequencies (typically <1 Hz),
but often need to be adjusted for high frequencies by combining with a stochastic or empirical
component, resulting in “hybrid” models (Douglas and Aochi, 2008). An early review of source-
based models is presented by Zerva (1988). In general, these models tend to heavily employ
seismological principles to describe the source mechanism and wave travel path, and as pointed
out by Stafford et al. (2009), they depend on physical parameters that vary significantly from
region to region. This limits their use in regions where seismological data are lacking — exactly
in places where there is an increased need for generation of synthetic ground motions. In the
current practice, most engineers prefer using methods of scaling and spectrum matching of
recorded motions instead of incorporating source-based models. This is partly due to lack of
understanding the seismological principles underlying these models, and the fact that they
require a thorough knowledge of the source, wave path, and site characteristics, which typically
are not available to a design engineer. In this study, we focus on developing a site-based
stochastic model, which has advantages over existing models of this type, as described below.
Furthermore, with the aim of developing a method that uses information readily available to the
practicing engineer, the model parameters are directly related to the earthquake and site
characteristics that define a design scenario.

A large number of site-based stochastic ground motion models have been developed in the past.
Formal reviews are presented by Liu (1970), Ahmadi (1979), Shinozuka and Deodatis (1988)
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and Kozin (1988). The paper by Conte and Peng (1997) presents a brief but comprehensive
review of more recent work. To categorize the existing site-based stochastic models and to
develop a model that overcomes their disadvantages, the following criteria are recognized. A
good stochastic ground motion model must represent both the temporal and the spectral
nonstationary characteristics of the motion. Temporal nonstationarity refers to the variation in
the intensity of the ground motion over time, while spectral nonstationarity refers to the variation
in the frequency content of the motion over time. Whereas temporal nonstationarity can be easily
modeled by time-modulating a stationary process, spectral nonstationarity is not as easy to
model. Nevertheless, this spectral nonstationarity is of particular importance in nonlinear
response analysis because of the moving resonant effect (Papadimitriou, 1990) of nonlinear
structures and cannot be ignored. In addition, for a stochastic model to be of practical use in
earthquake engineering it should be parsimonious, i.e., it must have as few parameters as
possible. Preferably, the model parameters should provide physical insight into the
characteristics of the motion. Furthermore, the model should refrain from complicated analysis,
involving extensive processing of recorded motions for parameter identification.

Existing site-based stochastic ground motion models can be classified in four categories: (1)
Processes obtained by passing a white noise through a filter, e.g., Bolotin (1960), Shinozuka and
Sato (1967), Amin and Ang (1968), lyengar and lyengar (1969), Ruiz and Penzien (1971), with
subsequent modulation in time to achieve temporal nonstationarity. These processes have
essentially time-invariant frequency content. (2) Processes obtained by passing a train of Poisson
pulses through a linear filter, e.g., Cornell (1960), Lin (1965). Through modulation in time, these
processes can possess both temporal and spectral nonstationarity (Lin, 1986). However,
matching with recorded ground motions is difficult. (3) Auto-regressive moving average
(ARMA) models, e.g., Jurkevics and Ulrych (1978), Hoshiya and Hasgur (1978), Polhemus and
Cakmak (1981), Kozin (1988), Chang et al. (1982), Conte et al. (1992), Mobarakeh et al. (2002).
By allowing the model parameters to vary with time, these models can have both temporal and
spectral nonstationarity. However, it is difficult to relate the model parameters to any physical
aspects of the ground motion. (4) Various forms of spectral representation, e.g., Saragoni and
Hart (1974), Der Kiureghian and Crempien (1989), Conte and Peng (1997), Wen and Gu (2004).
The focus in these models is in developing a time-varying spectral representation by matching to
a target recorded ground motion. These models require extensive processing of the target motion.
Virtually all these models assume the ground motion to be a zero-mean Gaussian process.

With the goal to achieve efficiency and convenience in modeling and simulation, similar to the
models of the first category, the stochastic ground motion model developed in this study is based
on a modulated filtered white-noise process. However, unlike previous models, the filter used in
this study has time-varying properties, adjusted to capture the time-varying predominant
frequency and bandwidth of a target accelerogram, thus allowing variation of the spectral content
with time. Temporal nonstationarity is achieved by modulation in time, as is done in most
previous studies.

Two previous models are particularly relevant to the present study. One is the model by Yeh and
Wen (1990), which is also a filtered white-noise process. They use a time-invariant filter;
however, to achieve spectral nonstationarity, they modify the time scale through a nonlinear
transformation. The model parameters are identified by matching the cumulative energy and
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zero-level up-crossings of the target motion. This approach for parameter identification is also
used in the present work. The second is a model developed by Papadimitriou (1990), which is
based on a second-order differential equation with time-varying properties and subjected to a
modulated white-noise process (essentially a filtered white-noise process). Papadimitriou derives
approximate expressions for the second-moment statistics of the process under conditions of
slowly varying coefficients and wide bandwidth. This model can be seen as a special case of the
model presented in this study (the filter in the present formulation can be more general).
However, in the present work no approximations are made (other than presenting the model in a
discrete form) in deriving the model statistics and no assumption are made regarding the rate of
change of the filter parameters or the bandwidth. Furthermore, the approaches to
parameterization and fitting of the model are entirely different. In particular, the present model
has the important advantage that the temporal and spectral nonstationary characteristics are
completely decoupled, thus facilitating modeling and parameter identification.

In general, site-based stochastic ground motion models fail to match the response spectrum
associated with the target accelerogram in the long period range, typically beyond 2 to 4 s, e.g.,
see the review by Douglas and Aochi (2008). This has to do with the fact that a stochastic model
developed for an acceleration process cannot guarantee zero velocity and displacement residuals
(final values at the end of the record) upon integration of a sample realization. The model
proposed in this study is no exception as it yields motions with non-zero velocity and
displacement residuals and hence overestimates the response spectrum of a target motion at long
period ranges. This shortcoming of site-based models has also been recognized by Papadimitriou
(1990) and by Liao and Zerva (2006), who have extended baseline correction methods used for
recorded accelerograms to simulated motions. Following a similar approach, we post-process the
ground motion obtained from our stochastic model by high-pass filtering through a critically
damped oscillator. In this way, we obtain zero velocity and displacement residuals and
appropriate response spectrum values for periods as long as 5to 10 s.

Most existing site-based stochastic models limit their scope to generating synthetic motions
similar to a target recorded ground motion and make no attempt in selecting an appropriate set of
model parameters for a specified earthquake and site of interest. One of the few works that has
addressed this issue is by Sabetta and Pugliese (1996). They relate their model parameters to the
earthquake magnitude, source-to-site distance, and soil conditions, using empirical data from the
Italian strong-motion database. They simulate nonstationary accelerograms by summation of
Fourier series with random phases and time dependent coefficients. The major shortcoming of
their model is that the only source of variability considered is that inherent in the random phases.
As a result, their model underestimates the variability inherent in real ground motions for
specified earthquake and site characteristics. A more recent study by Stafford et al. (2009) also
addresses the issue of developing relations between the model parameters and the earthquake and
site characteristics, using the PEER NGA strong-motion database. However, this study only
models the temporal nonstationarity of the ground motion and is not suitable for nonlinear
analysis in its current form. One of the novel aspects of our approach is that we relate the
parameters of our model to earthquake and site characteristics. Furthermore, by accounting for
the uncertainty in the model parameters, we capture the natural variability of real ground motions
in the synthetics. This variability is explained in more detail below.



A major problem with the current practice of seismic hazard analysis and generation of synthetic
ground motions is related to underestimation of the ground motion variability. Abrahamson et al.
(1990) divided the uncertainty in numerical simulation procedures into two categories: (1)
modeling plus random uncertainty and (2) parametric uncertainty. Parametric uncertainty, which
refers to the uncertainty in source parameters of future earthquakes, is often ignored in source-
based models, causing underestimation of the total variability in the synthetic ground motions.
Even though the focus of Abrahamson et al. is on source-based models, the same problem
applies to site-based models, which, as pointed out by Douglas and Aochi (2008), “can
underestimate the true ground motion variability.” This underestimation is mainly due to
neglecting the uncertainty in the parameters of the stochastic model. Exceptions are the work by
Pousse et al. (2006), in which the parameters of an improved version of the model by Sabetta and
Pugliese (1996) are fitted to the K-Net Japanese database, and the work by Alamilla et al. (2001),
in which the parameters of a model similar to that proposed by Yeh and Wen (1989) are fitted to
a database of ground motions corresponding to the subduction zone lying along the southern
coast of Mexico. In these cases, the model parameters are randomized to achieve the variability.
It is noted that several recent seismological source-based models properly account for the
variability in ground motions. Typically, this is done by varying the source parameters, as in Liu
et al. (2006), Hutchings et al. (2007), Causse et al. (2008) and Ameri et al. (2009). In the present
study, parametric uncertainty is accounted for by random generation of the model parameters
from probability distributions conditioned on earthquake and site characteristics. Therefore, we
are able to reproduce in the synthetics the variability present in real ground motions, which has
been lacking in a majority of previous models.

For proper dynamic analysis of complex structural systems, it is necessary to consider the ground
motion at a site in three orthogonal directions. The vast majority of previous site-based models
are restricted to single-component motions. In some studies, two horizontal components have
been developed independently, using the same set of model parameters (e.g., Yeh and Wen
(1989)). In the present study, the stochastic ground motion model is developed for two horizontal
components of the ground motion, properly accounting for the cross-correlations between the
model parameters that control the intensities and frequency contents of the two components.
Although not considered, the proposed model can also be extended to the vertical component of
the ground motion following the same techniques that are used for the horizontal components.
To our knowledge, this is the first multi-component stochastic ground motion model for
specified earthquake and site characteristics that properly accounts for the statistical
characteristics of the component processes.

Finally, comparisons against empirical data and trusted models in engineering practice provide a
means for model validation and aid in identifying the limitations of the proposed model.
Additionally, such comparisons may encourage implementation of the proposed model in
engineering practice. One validation approach used in the present study is through comparing the
statistics of synthetic elastic response spectra with their corresponding values predicted by the
recently developed and widely used Next Generation Attenuation (NGA) models (Abrahamson
et al., 2008). Similar comparison is performed by Frankel (2009), where a seismological physics-
based model is employed to generate synthetic ground motions and comparisons with NGA
models are conducted in terms of elastic response spectra. Because NGA models are based on
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empirical data, this type of comparison indirectly validates synthetic ground motions against real
ground motions.

1.5. Objectives and scope of the study

The research described in this study has two main objectives: (1) developing a stochastic model
for strong ground motions, (2) generating synthetic ground motions for specified earthquake and
site characteristics.

The first half of this report focuses on developing a fully-nonstationary stochastic ground motion
model that is based on a modulated filtered white-noise process with time-varying parameters.
Compared to the existing models, the proposed model has the following advantages: (a) the
temporal and spectral nonstationary characteristics are completely decoupled, facilitating
identification and interpretation of the model parameters; (b) the model has a small number of
parameters with physical interpretations; (c) there is no need for complicated analysis, such as
Fourier analysis or estimation of evolutionary power spectral density, to process the target
accelerogram for identifying the model parameters; (d) simulation of a synthetic ground motion
for specified model parameters is simple and requires little more than generation of standard
normal random variables; (e) the long-period content of the motion is corrected by high-pass
filtering to achieve zero velocity and displacement residuals and avoid overestimation of
response spectral values at long periods; (f) the model and simulation method are developed for
two horizontal components of the ground motion and can be easily extended to include the
vertical component; (g) the model facilitates nonlinear random vibration analysis by TELM.
Innovative and efficient parameter identification methods are developed to fit the stochastic
model to a target accelerogram. Examples of simulated motions having statistical characteristics
similar to target recorded accelerograms are presented.

The second half of this report employs the proposed stochastic ground motion model to develop
and validate a method for generating an ensemble of synthetic ground motion time-histories for
specified earthquake and site characteristics. This is achieved by fitting the stochastic model to a
database of strong-motion records. Identification of the model parameters for many recorded
motions allows development of predictive relations that empirically relate the model parameters
to a selected set of earthquake and site characteristics. These predictive relations facilitate
random generation of the model parameters, which is the key to realistically representing the
natural variability of ground motions, for a given set of earthquake and site characteristics. The
predictive models are validated by comparing the statistics of the elastic response spectra of
synthetic ground motions with predicted statistics generated from the NGA database. The
stochastic model and the simulation method are then extended to generation of two horizontal
components of ground motion by proper accounting of the cross-correlations between the model
parameters.



The database of ground motions employed in this study is a subset of the widely used PEER
NGA strong-motion database. At their present form, the results are applicable to shallow crustal
earthquakes in active tectonic regions such as the Western United States, to moment magnitudes
greater than 6.0, to source-to-site distances of at least 10 km, and to sites with shear-wave
velocity exceeding 600 m/s.

This research helps advance the practice of PBEE by providing a means for generation of
realistic synthetic ground motions for specified earthquake and site characteristics, which can be
used in lieu of or in conjunction with recorded motions, when the latter are lacking or
nonexistent for specified design scenarios.

1.6. Organization of report

This report is organized into 8 chapters. The first objective as described in the previous section is
addressed in Chapters 2 and 3, where a stochastic model for synthetic ground motions is derived
and a method for parameter identification by fitting to a target recorded motion is developed. The
second objective is addressed in Chapters 4 through 6, where a method for generating synthetic
ground motions for specified earthquake and site characteristics is proposed and validated. In
Chapter 7, the stochastic model and simulation method are extended to generate bi-directional
ground motions. More details on the specific subjects covered in each chapter are presented
below.

Chapter 2 describes the development of a new site-based stochastic ground motion model. It
begins with a modified formulation of the filtered white-noise process, which through a
normalization decouples the temporal and spectral characteristics of the process. The model is
then extended by allowing the filter parameters to vary with time, while maintaining complete
separation of the time-varying temporal and spectral characteristics. A discrete representation of
the process is then developed, whereby the process is defined as the summation of standard
normal random variables with time-varying coefficients. This form is of particular interest for
nonlinear random vibration analysis by TELM (Fujimura and Der Kiureghian, 2007). This is
followed by parameterization of the model and high-pass filtering to assure zero residual velocity
and displacement. This chapter results in a stochastic model that captures the important
characteristics of strong earthquake ground motions, while maintaining a mathematical form that
is appropriate and efficient for modeling, digital simulation, and for use in nonlinear random
vibration analysis.

Chapter 3 develops a parameter identification method by fitting the statistical characteristics of
the stochastic model to those of a target accelerogram. It also describes in detail the simulation
procedure for generating synthetic ground motions once the model parameters are specified. By
fitting the evolutionary statistical characteristics of the stochastic model proposed in Chapter 2 to
those of a recorded motion, the model parameters are identified and synthetic ground motions
with characteristics similar to the recorded accelerogram are generated. Several examples of
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recorded ground motions, their identified parameters, and corresponding synthetic motions are
presented.

Chapter 4 begins the discussion on simulating synthetic motions for specified earthquake and site
characteristics. In this chapter, the model proposed in Chapter 2 is fitted to a database of
recorded ground motions using a simplified version of the methods proposed in Chapter 3. The
database of strong ground motions is created by selecting recordings from a larger PEER NGA
database. Fitting the model to the records of this database provides a data set of model
parameters versus variables describing the selected set of earthquake and site characteristics.
Statistical data analysis is then performed to develop predictive equations for the model
parameters in terms of the earthquake and site characteristic variables. Details and results of the
data analysis, such as distribution fitting for each model parameter, regression analysis, and
correlation analysis are presented. The results in this chapter allow prediction of the stochastic
model parameters without a need for recorded accelerograms.

Chapter 5 employs the results of Chapter 4 to generate an ensemble of synthetic ground motions
for specified earthquake and site characteristics. A method for random simulation of stochastic
model parameters is presented that accounts for the cross-correlations between the parameters.
Then the methods of Chapter 3 are used to generate synthetic ground motions for the simulated
model parameters. Methods for conditional simulation of ground motions, where one or more of
the model parameters (e.g., those defining the intensity or duration of the motion) are prescribed,
are also developed. In simulation, the natural variability of real ground motions is preserved.
Examples are presented and applications of the proposed method in PBEE are discussed.

In Chapter 6, the proposed method of generating synthetic ground motions for specified
earthquake and site characteristics is validated through examination of elastic response spectra.
Elastic response spectra of simulated motions are compared against real recorded motions.
Furthermore, the statistics of elastic response spectra of simulated motions at given periods are
compared with those predicted by the NGA models. The methods incorporated in this chapter
allow quantitative comparison between the variability among synthetic and real ground motions.
It is concluded that, in general, the median and variability of the response spectra of simulated
motions agree with those predicted by the NGA models.

Chapter 7 presents a method for simulating orthogonal horizontal components of ground motion
with correlated parameters for specified earthquake and site characteristics. The stochastic model
parameters are identified for a database of recorded horizontal ground motion pairs that are
rotated to their principal axes, along which the two components are statistically independent.
New predictive equations are developed for the stochastic model parameters in terms of
earthquake and site characteristics and correlation coefficients between model parameters of the
two components are estimated empirically. An extension of the simulation method proposed in
Chapters 4 and 5 is then utilized to generate pairs of synthetic ground motion components along
the principal axes.

Finally, Chapter 8 provides a summary of the main results and conclusions of the study.
Recommendations for future studies are presented.

11



CHAPTER 2

STOCHASTIC MODEL OF EARTHQUAKE
GROUND MOTION

2.1. Introduction

For many years, stochastic processes have been used to model earthquake ground motions. One
class of stochastic process models for earthquake ground motion is based on the interpretation of
ground acceleration as a filtered white-noise process, i.e., a process obtained by passing a white-
noise process through a filter. Due to efficient digital simulation of sample functions for a
filtered white-noise process, this class of models is appealing when it comes to simulating
earthquake ground motions. One of the earliest efforts in this area is the work done by Tajimi
(1959). His model dose not account for the nonstationarity that is present in earthquake ground
motions. Other early representative works that have employed the filtered white-noise model
with alternative filters and subsequent modulation in time to achieve temporal nonstationarity
include Bolotin (1960), Shinozuka and Sato (1967), Amin and Ang (1968), lyengar and lyengar
(1969) and Ruiz and Penzien (1971). Unlike real ground motions, these models have essentially
time-invariant frequency content. As a result, other types of stochastic models such as those
based on filtered Poisson processes (e.g., Cornell (1960), Lin (1965)), auto-regressive moving
average models (e.g., Jurkevics and Ulrych (1978), Hoshiya and Hasgur (1978), Polhemus and
Cakmak (1981), Kozin (1988), Chang et al. (1982), Conte et al. (1992), Mobarakeh et al.
(2002)), and various forms of spectral representations (e.g., Saragoni and Hart (1974), Der
Kiureghian and Crempien (1989), Conte and Peng (1997), Wen and Gu (2004)) became popular
for modeling earthquake ground motions. These models are in general difficult to match with
recorded ground motions and complicated to simulate. This chapter introduces a new
formulation of the filtered white-noise process for modeling earthquake ground motions. While
this model takes advantage of the efficiency of the filtered white-noise process in modeling and
simulation, it adequately represents the nonstationary characteristics of real earthquake ground
motions both in time and frequency domains. Hence, we refer to it as a fully-nonstationary
stochastic model.
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We start by developing a new formulation of the filtered white-noise process. Temporal and
spectral nonstationarities are achieved through modulation in time and by varying the filter
parameters over time. Through a normalization, the temporal and spectral characteristics of the
process are completely separated, which greatly simplifies the modeling procedure. A discrete
representation of the process, defined as the summation of standard normal random variables
with time-varying coefficients, is then presented. This form is of particular interest for digital
simulation and for nonlinear random vibration analysis. This is followed by interpreting the
characteristics of real ground motions (e.g., evolutionary intensity and time-varying frequency
content) as the statistical characteristics of a stochastic process (e.g., mean-square intensity,
mean zero-level up-crossing rate, and bandwidth of the process). The model is then
parameterized such that a few parameters control the main statistical characteristics of the
ground motion. Finally, the last section describes a post-processing procedure that is required in
order to assure zero residuals in the velocity and displacement time-histories. This post-
processing corrects the long period content of the resulting response spectrum, which has been
overestimated by majority of the stochastic ground motion models in the past.

The main goal of this chapter is to develop a stochastic model that captures important
characteristics of strong earthquake ground motions, while ensuring a mathematical form that is
adequate and efficient for modeling, digital simulation, and for use in nonlinear random vibration
analysis.

2.2. Formulation of the model

Earthquake ground motions have nonstationary characteristics both in time and frequency
domains. The temporal nonstationarity (nonstationarity in the time domain) refers to the
variation of the intensity of the ground motion in time. The spectral nonstationarity
(nonstationarity in the frequency domain) refers to the variation of the frequency content of the
motion in time. It is important to accurately model both these nonstationarities when simulating
ground motions. A fully-nonstationary filtered white-noise process can properly represent both
the temporal and spectral nonstationary characteristics of earthquake ground motions. This
process is obtained by time-modulating a filtered white-noise process with the filter having time-
varying parameters. Whereas time-modulation provides the temporal nonstationarity, variation of
filter parameters over time achieves the spectral nonstationarity.

2.2.1. The filtered white-noise process

White noise refers to a stationary random process that has a zero mean and a constant spectral
density for all frequencies. The word white refers to the equal distribution of power among all
the frequencies and comes from an analogy with white light which is known to have equal
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contributions from all visible frequency components. Let w(t) represent a white-noise process in
the time domain with power spectral density (PSD) function S,,,,(w) =S, where w is the
angular frequency and ranges from —oo to co. This process has an infinite variance (sometimes
referred to as the total power), o, = f_°°oo Sww(w)dw = oo, and hence is purely theoretical. Even
though the white-noise process is not a physically meaningful entity by itself, it can be used to
approximate meaningful processes in real-world situations. One example is the use of a filtered
white-noise process to model earthquake ground acceleration.

The conventional filtered white-noise process is the stationary response of a linear time-invariant
filter subjected to a white-noise excitation. The response of a linear filter may be calculated by
using the Duhamel convolution integral. Hence, the filtered white-noise process is formulated as

f) = ft h(t —t,A) w(t)dr (2.1)

where h(t,A) denotes the impulse response function (IRF)! of the linear filter, with A
representing a set of parameters used to “shape” the filter response. Specifically, A may include
the natural frequency and damping of the filter, which control the predominant frequency and
bandwidth of the resulting process. We assume the filter is causal so that h(t,A) = 0 for t < 0,
and that it is stable so that fowh(t, A)dt < oo, which also implies lim;_, h(t,A) = 0. We also
assume h(t, A) is at least once differentiable for all t. Note that this requires h(t, ) to start from
zero at t = 0 and not have any discontinuities. (The reason for this requirement will become
evident in Section 2.3.) More details on the choice of the linear filter are presented in Section
2.4.2. As previously mentioned, w(t) represents a white-noise process, which is the input
excitation to the linear filter. The white-noise process and, therefore, the filter response are
assumed to be Gaussian. Figure 2.1 schematically shows the input-output pairs for a linear filter.

The standard deviation of the filtered white-noise process in (2.1) is represented by o. Since the
response of a stable filter to a white-noise excitation becomes stationary after sufficient time, and
since the white-noise process is assumed to have started in the infinite past (the lower limit of the
integral is —oo), the filter response at any finite time point is stationary and, therefore, o5 is a
constant and is given by

t
of = ZnSf h%(t — 7, )dr (2.2)
where S is the constant PSD, commonly referred to as the intensity of the white-noise process.

A filtered white-noise process may be physically interpreted as a seismic ground motion process
by virtue of the superposition principle of the Duhamel integral. The white-noise may be
regarded as a train of random pulses (as explained later in Section 2.2.4) that represent
intermittent ruptures at the source of generation of the earthquake (i.e., the fault). The filter may
represent the medium through which seismic waves travel with the characteristics of the filter

L IRF is the response of a linear system (i.e., the filter) to a unit impulsive excitation with zero initial conditions. It
uniquely characterizes a linear system for a specified input-output pair (see Figure 2.1a).
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controlling the frequency content and bandwidth of the process. The sketch in Figure 2.2
demonstrates this concept.

Unlike real seismic ground motions, the filtered white-noise process defined by (2.1) lacks
nonstationarity in both time and frequency domains. In subsequent sections, this stochastic
model is modified in ways to accommodate for this shortcoming. In particular, the filtered white-
noise process will be multiplied by a deterministic time modulating function to achieve temporal
nonstationarity; furthermore, a linear filter with time-varying parameters is used to achieve
spectral nonstationarity.

2.2.2. Modulated filtered white-noise process: Achieving temporal nonstationarity

After normalization by its standard deviation, the filtered white-noise process in (2.1) is time-
modulated to obtain temporal nonstationarity. The resulting process is called a modulated filtered
white-noise process. When representing earthquake ground motions, the modulation over time
represents the evolution of the ground motion intensity in time.

The modulated filtered Gaussian white-noise process is formulated as

x(t) = q(t, a)

1 t
o—f—[_wh(t — 1, ) w(r)dr (2.3)

where q(t, ) is the deterministic, non-negative modulating function with a denoting a set of
parameters used to control the shape and intensity of the function. Due to the normalization by
ar, the process inside the square brackets in (2.3) has unit variance. As a result, the function
q(t, a) defines the standard deviation of the process x(t), i.e.,

ax(t) = q(t, ) (2.4)

Thus, the function q(t, &) completely defines the temporal nonstationarity of the process. Figure
2.3 represents a typical realization of the stationary process inside the square brackets in (2.3),
and Figure 2.4 represents the same process modulated over time.

The disadvantage of the modulated filtered white-noise process defined by (2.3) is that it lacks
spectral nonstationarity. (Note the time-invariant frequency content of the process in Figure 2.4.)
This causes the frequency content of the process, as represented by the instantaneous power
spectral density, to have a time-invariant shape that is scaled in time uniformly over all
frequencies according to the variance of the process, g2(t, ). For this reason, this class of
processes is known as uniformly modulated.
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2.2.3. Modulated filtered white-noise process with spectral nonstationarity

As mentioned earlier, earthquake ground motions have nonstationary characteristics in both time
and frequency domains. The temporal nonstationarity arises from the transient nature of the
earthquake event. The intensity of a typical strong ground motion gradually increases from zero
to achieve a nearly constant intensity during a “strong shaking” phase, and then gradually decays
to zero with a total duration of about 10-60 seconds. This temporal nonstationarity is achieved by
multiplying the stochastic process with a deterministic function that varies over time as done in
Section 2.2.2.

The spectral nonstationarity of the ground motion arises from the evolving nature of the seismic
waves arriving at a site. Typically, high-frequency (short wavelength) P waves tend to dominate
the initial few seconds of the motion. These are followed by moderate-frequency (moderate
wavelength) S waves, which tend to dominate the strong-motion phase of the ground motion.
Towards the end of the shaking, the ground motion is dominated by low-frequency (long
wavelength) surface waves. The complete ground motion is an evolving mixture of these waves
with a dominant frequency that tends towards lower values with time. This evolving frequency
content of the ground motion can be critical to the response of degrading structures, which have
resonant frequencies that also tend to decay with time as the structure responds to the excitation.
Thus, in modeling earthquake ground motions, it is crucial that both the temporal and spectral
nonstationary characteristics are properly represented. As described below, one convenient way
to achieve spectral nonstationarity with the filtered white-noise process is to allow the filter
parameters to vary with time.

Generalizing the form in (2.3), we define the fully-nonstationary filtered white-noise process as

1 t
x(t) = q(t,a) {mj h[t —1, A(T)]W(T)dr} (2.5)

where the parameters A of the filter are now made dependent on t, the time of application of the
load increment. Figure 2.5 illustrates the idea behind this formulation. The figure shows the
responses of a linear filter to two unit load pulses at times T =1 s, and t = 3 s, with the filter
having a higher frequency at the earlier time. The superposition of such incremental responses to
a sequence of random load pulses produces a process that has a time-varying frequency content,
as formulated by the integral process inside the curly brackets in (2.5) and illustrated in Figure
2.6.

Naturally, the response of such a filter may not reach a stationary state. Indeed, the standard
deviation a¢(t) of the process defined by the integral in (2.5) in general is a function of time and
is given by

t
af (t) = 21rSf h?[t — 7, A(7)]dt (2.6)

However, owing to the normalization by the standard deviation, the process inside the curly
brackets in (2.5) has unit variance. Hence, the identity in (2.4) still holds. However, the
normalized process inside the curly brackets now has a time-varying frequency content (Figure
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2.6). Thus, in addition to temporal nonstationarity, the formulation in (2.5) provides spectral
nonstationarity. By proper selection of the filter parameters and their evolution in time, one can
model the spectral nonstationarity of a ground motion process.

2.2.4. Discretization of the fully-nonstationary process

In order to digitally simulate a stochastic process, some sort of discretization is necessary.
Furthermore, a discretized form that facilitates nonlinear random vibration analysis by use of the
Tail-Equivalent Linearization Method (TELM) (Fujimura and Der Kiureghian, 2007), is
desirable. The following describes a discretized form of the process in (2.5) that meets these
objectives.

The modulating function q(t, «) used in modeling ground motions usually starts from a zero
value and gradually increases over a period of time. Furthermore, the damping value of the filter
used to model ground motions is usually large so that the IRF, h[t — t, A(7)], quickly diminishes
with increasing t — 7. Under these conditions, the lower limit of the integral in (2.5) and (2.6),
which is —oo, can be replaced with zero (or a finite negative value) without loss of accuracy.
This replacement offers a slight computational convenience, allowing the discretized time points
to start from zero.

We select a discretization in the time domain. Let the duration of the ground motion be
discretized into a sequence of equally spaced time points t; =i x At for i = 0,1, ...,n, where
At is a small time step. The discretization time steps must be sufficiently small to capture the
critical points of a complete cycle. Figure 2.7 shows a complete symmetrical cycle with stars
indicating the critical points. If w,,,, denotes the largest frequency to be considered, then
At < w/(2wmay) (i-€., quarter of the complete cycle) must be selected. In most earthquake
engineering applications At = 0.01 s is adequate.

At atime t, 0 <t < t,, letting k = int (Ait) where 0 < k < n, the process in (2.5) can be
written as
t

: h[t —T.?»(T)]w(r)dr} if k=0
(©) Je,

x(t) = q(t, a){

t .7)

= q(t, @ Zf AWt + —— [ hft — 7A@ w(D)dz! if 0 < k
=q a7 (0) . -7, A(7)|w(r)dr f()tk[ T, A(D]w(r)dr; i

Neglecting the integral over the time duration between ¢, and ¢, which is an integral over a
fraction of the small time step, and assuming that h[t — 7, A(t)] remains essentially constant
during each small time interval t;_; < t < t;, one obtains
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ti

—t;, A(t)] W(‘L')d‘l,'}

x(t) = q(t, a){
ti—1

(2.8)

Zk:
1
=q(t,a){A h[t — t;, A(t)]W; } te <t <ty
; k k+1

Uf t)

where
ti
w; = w(t)dt (2.9)
ti—1
Integrals of the white-noise process, W;, i = 1, ..., n, are statistically independent and identically
distributed Gaussian random variables having zero mean and the variance 2mSAt. Introducing

the standard normal random variables u; = W;/v2nSAt , (2.8) is written as

2nSAt
G (1)

We have used superposed hats on two terms in the above expressions. The one on x(t) is to
highlight the fact that the expressions (2.8) and (2.10) are for the discretized process and employ
the approximations involved in going from (2.7) to (2.8). The hat on 6¢(¢) is used to signify that
this function is the standard deviation of the discretized process represented by the sum inside
the curly brackets in (2.8), so that the process inside the curly brackets in (2.10) is properly
normalized. Since W; in (2.8) are statistically independent random variables, one has

() =q(t, a){ Z hlt — t;, A(t)] ul}, te <t <tpq (2.10)

G2 () = ZESAtZ h2[t — t, AE)]; b < ¢ < tras 2.11)
This equation is the discretized form of (2.6).

The discretized representation in (2.10) has the compact form

() =q(t, (x)Zsl-[t, Al w;  t <t <ty (2.12)
i=1
where
\V2mSAt
65 (t)

—t;, A(t (2.13)
hlt — 6, A8 Dt St<tpy; 1<i<k

Jz h2[t — t, A(t)]

Note that s;[t,A(t;)] is a function of the filter parameters at time ¢;, therefore each s;[t, A(t;)],
i=1,..,k, may correspond to a different set of values of the filter parameters. For simplicity in
notation, hereafter s;[t, A(t;)] is referred to as s;(t).

si[t, A(t)] = hlt —t;, A(t)]
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The discretized stochastic ground motion process in (2.12) not only facilitates digital simulation,
but it is of a form that can be employed for nonlinear random vibration analysis by use of the
TELM. Furthermore, it has interesting geometric interpretations as described in Der Kiureghian
(2000). In particular, the zero-mean Gaussian process X(t) can be seen as the scalar product of a
deterministic, time-varying vector of magnitude q(t, a) along the unit vector of the deterministic
basis functions s(t) = [s;(t), ..., s (t)]T and a vector of time-invariant, standard normal random
variables u = [uy, ..., ux]":

2@) = qt, )[s(®)Tu]; tx <t < tpq (2.14)

Furthermore, the model form in (2.14) has interesting physical interpretations. Standard normal
random variables, u;, provide the randomness that exists in real ground motions. The
deterministic basis functions, s;(t), control the evolving frequency content of the process,
capturing the spectral nonstationarity of real ground motions. Finally, the modulating function,
q(t, ), controls the time evolution of the intensity of the process, hence capturing the temporal
nonstationarity of real ground motions.

2.2.5. Remark: Complete separation of temporal and spectral nonstationarities

An important advantage of the proposed model is the complete separation of the temporal and
spectral nonstationarities. The key to this separation is the normalization by o (t) in (2.5).
Owing to this normalization, the segment inside the curly brackets in (2.5) is a unit-variance
process, which causes the modulating function, q(t, a), to be the standard deviation of the
overall process, x(t), as seen in (2.4). This way, the evolving intensity of the process is solely
controlled by the modulating function, while the selected filter (the form of the IRF) and its time-
varying parameters completely control the spectral nonstationarity. Figure 2.8 illustrates this
concept graphically.

Normalization by o (t), and separation of temporal and spectral nonstationarities provide several
noteworthy advantages of the proposed model. First, due to normalization by o, (t), the intensity
of the white-noise process cancels out and S can be assigned any arbitrary positive value.
Second, selection of the modulating function is completely independent from the selection of the
linear filter, providing flexibility in modeling. Finally, the separation of temporal and spectral
nonstationarities provides ease in parameter identification and simulation procedures (see
Chapter 3).
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2.3. Statistical characteristics of the ground motion process

In the time domain, a ground motion can be characterized by its evolving intensity. The intensity
of a zero-mean Gaussian process (employed in this study to model ground motions) is
completely characterized by its time-varying standard deviation. In the proposed ground motion
model, this time-varying standard deviation is identical to the modulating function g(t, ).

In the frequency domain, a ground motion process can be characterized by its evolving
frequency content. In particular, the frequency content may be characterized in terms of a
predominant frequency and a measure of the bandwidth of the process as they evolve in time.
These properties of the process are influenced by the selection of the filter, i.e., the form of the
IRF, h[t — t,A(7)], and its time-varying parameters A(1).

As a surrogate for the predominant frequency of the process, we employ the mean zero-level up-
crossing rate, v(0*, t), i.e., the mean number of times per unit time that the process crosses the
level zero from below (see Figure 2.9). Since the scaling of a process does not affect its zero-
level crossings, v(0*,t) for the process in (2.12), which is the discretized equivalent of the
process (2.5), is identical to that for the un-modulated process
k
() = Zsi(t) Wi teSt<tgs, k=1.n (2.15)
i=1

It is well known (Lutes and Sarkani, 2004) that for a zero-mean Gaussian process y(t)

_ 2.
v(o+,t)=*/1 Py (® g t) (2.16)

2w ay (1)

where g, (t), ay(t), and p,;(t) are respectively the standard deviations and cross-correlation

coefficient of y(t) and its time derivative, y(t) = dy(t)/dt, at time t. For the process in (2.15),
these are given by

k

oy (t) = Zsiz(t) =1; tx <t<tp4 (2.17)
i=1
k
oy (t) = Zs‘iz(t); tr St < trer (2.18)
i=1
1 k
Dy (6) = —Z siD5(8); te St<ty (2.19)
yy ay(t)o_y(t) L i i +1

where s;(t) = ds;(t)/dt. Using (2.13) and letting h;(t) = h[t — t;, A(t;)], one can easily show
that
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kK h(O)h:
$i(6) = |hi(©) —Z]:ih]—(tz)?;)(t)hi(t)]; ek St<tgyr,1<i<k (2.20)
j=1"y P HG)

The second equality in (2.17) is a direct result of the normalization explained in Section 2.2.
Since y(t) is a zero-mean process and, therefore, o = E[y?], the equality d(E[y?*])/dt = 0 is
obtained by taking the derivative of (2.17) with respect to time. Reversing the orders of
differentiation and expectation results in E[yy] = 0, which implies zero correlation between y
and its derivative, i.e., p,;(t) = 0. Thus, (2.16) can be simplified to

40}
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It is clear from (2.18) and (2.20) that the filter should be selected so that its IRF is differentiable
at all times. For any given differentiable IRF and filter parameter functions, the mean zero-level
up-crossing rate is computed from (2.21) by use of the relations in (2.18) and (2.20). Naturally,
one can expect that the fundamental frequency of the filter will have a dominant influence on the

predominant frequency of the resulting process.

v(0*,t) = (2.21)

Several alternatives are available for characterizing the time-varying bandwidth of the process.
In this paper we use the mean rate of negative maxima or positive minima as a surrogate for the
bandwidth (see Figure 2.9 for examples of negative maxima and positive minima). This measure
has the advantage that it is not affected by the modulating function. As is well known, in a zero-
mean narrow-band process, almost all maxima are positive and almost all minima are negative
(see Figure 2.10a). With increasing bandwidth, the rate of occurrence of negative maxima or
positive minima increases (see Figure 2.10b). Thus, by determining the rate of negative maxima
or positive minima, a time-varying measure of bandwidth can be developed. An analytical
expression of this rate for the theoretical model can be derived in terms of the well known
distribution of local peaks (Lutes and Sarkani, 2004). However, the resulting expression is
cumbersome, since it involves the variances and cross-correlations of y(t), y(t), and y(t) and,
therefore, the second derivative of s;(t). For this reason, in this paper the mean rate of negative
maxima or positive minima for the selected model process are computed by counting and
averaging them in a sample of simulated realizations of the process. As we will shortly see, the
damping ratio of the filter has a dominant influence on the bandwidth of the process.

2.4. Parameterization of the model

The parameters of the proposed stochastic ground motion model defined by (2.5) can be
categorized into two independent groups: (1) the parameters a of the modulating function, and
(2) the time-varying parameters of the linear filter, A(t). The model is completely defined by
specifying the forms and parameters of the modulating function and the IRF of the linear filter.
This section describes the possible forms and constraints of these functions and identifies the
model parameters.
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2.4.1. Modulating function and its parameters

In general, any function that gradually increases from zero to achieve a nearly constant intensity
that represents the “strong shaking” phase of an earthquake and then gradually decays back to
zero is a valid modulating function. Several models have been proposed in the past. These
include piece-wise modulating functions proposed by Housner and Jennings (1964) and Amin
and Ang (1968), a double-exponential function proposed by Shinozuka and Sato (1967), and a
gamma function proposed by Saragoni and Hart (1974). Two modulating functions that are
employed in this study are presented below.

Piece-wise modulating function:

A modified version of the Housner and Jennings (1964) model that hereafter will be referred to
as the “piece-wise” modulating function is defined by

q(t,a) =0 if t<T,
t—To\* :
=a, <T1 — To> if To<t<T; (2.22)
=, if ,<t<T,

=, exp[—a,(t—T,)%] if T,<t

This model has the six parameters a = (aq,a,, a3, Ty, T1,T,), which obey the conditions
To <T; <T,, and 0 < a;,a,,a5. (The Housner and Jennings model has a; = 1.) T, denotes the
start time of the process; T, and T, denote the start and end times of the “strong shaking” phase,
which has intensity a,; and a, and as control the shape of the decaying end of the function.
Figure 2.11 shows a piece-wise modulating function for selected parameter values.

Gamma modulating function:

Another model used in this study is the “gamma” modulating function, defined by the formula
q(t, @) =0 if t<T,

(2.23)
= a,(t —Ty)% texp[—az(t —Ty)] if Ty <t

This function is proportional to the gamma probability density function, thus the reason for its
name. The model has the four parameters a = (a4, a3, a3, Ty), Where 0 < a4, a3, and 1 < a,.
Again, T, denotes the start time of the process. Of the other three parameters, a; controls the
intensity of the process, a, controls the shape of the modulating function, and a5 controls the
duration of the motion. Figure 2.12 shows a gamma modulating function for selected parameter
values.
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2.4.2. Linear filter and its parameters

In the frequency domain, the properties of the model process are influenced by the selection of
the filter, i.e., the form of the IRF h[t — t,A(7)], and its time-varying parameters A(t) that are
used to “shape” the filter response. In particular, for a second order filter (employed in this
study), the time-varying frequency content of the process may be controlled by the natural
frequency and damping of the filter, as they evolve in time.

As stated in Section 2.2.1, in choosing the linear filter, certain constraints must be followed to
make sure that the choice of the IRF is acceptable:
e The filter should be causal so that h(t,A)=0 for t < 0.
e The filter should be stable so that f0°° h(t,A)dt < oo, which requires lim;_,., h(t,4) = 0.
e The filter must have an IRF that is at least once differentiable so that (2.20) can be
evaluated.
Any damped single or multi-degree-of-freedom linear system that follows the above constraints
can be selected as the filter.

In this study, we select

hlt —7,A(7)] = wf—(‘[)exp[—{f(‘[)a)f(r)(t — T)] X sin [a)f(‘[) /1 — {?(‘L’)(t - ‘L')]; T<t

/1 - ¢ (0 (2.24)

=0 otherwise

which represents the pseudo-acceleration response of a single-degree-of-freedom linear oscillator
subjected to a unit impulse, in which t denotes the time of the pulse (see Figure 2.5) and
A7) = [wf(7),{r(7)] is the set of parameters of the filter with w,(7) denoting the natural
frequency and {;(7) denoting the damping ratio, both dependent on the time of application of the
pulse. We expect w,(7) to influence the predominant frequency of the resulting ground motion
process, whereas {;(7) to influence its bandwidth.

Aiming for a simple model and based on analysis of a large number of accelerograms, we adopt
a linear form for the filter frequency:

T

wr (1) = wy — (wg — a)n)t— (2.25)

n
In the above expression, t,, is the total duration of the ground motion, w, is the filter frequency
at time t, = 0, and w,, is the frequency at time t,,. Thus, the two parameters w, and w,, describe
the time-varying frequency content of the ground motion. The predominant frequency of a
typical earthquake ground motion tends to decay with time; hence, it is expected that w, > w,
for a typical motion. Of course any other two parameters that describe the linear function in
(2.25) may be used in place of w, and w,, (as is done later in Chapter 4).

23



Investigations of several accelerograms revealed that the variation of their bandwidth measure
with time is relatively insignificant. Thus, as a first approximation, the filter damping is
considered a constant,

() =G (2.26)

A more refined model for the filter damping ratio that accounts for the observed variation in the
bandwidth of some recorded motions is considered later in this study (see Section 3.2.3). The
refined model is a piece-wise constant function of the form

¢, if 0<ST<T,
G if ,<t<t,

with parameters {;, {,, {5, T; and T, that must be identified for a target motion. The function in
(2.27) may have fewer or more than three pieces, as required.

One disadvantage of using a single-degree-of-freedom filter, as in (2.24), is that such a filter can
only characterize a single dominant frequency in the ground motion. One can select a multi-
degree-of-freedom filter instead to simulate ground motions with multiple dominant frequencies,
in which case additional parameters will need to be introduced and identified. This is possible
with the proposed model, but is not pursued in the present study.

2.4.3. Model parameters

With the above parameterization, the stochastic ground motion model is completely defined by
specifying the forms of the modulating and IRF functions, and the parameters that define them.
Specifically, the parameters o« = (a4, a5, a3, Ty,...) define the modulating function and
completely control the temporal nonstationarity of the process (six parameters
(ay, az,a3, Ty, T;,T,) if a “piece-wise” formulation as in (2.22) is selected, four parameters
(aq,ay, a3, Ty) if a “gamma” formulation as in (2.23) is selected). With a linearly varying filter
frequency and a constant filter damping ratio, the three parameters (w,, wy, ;) define the filter
IRF and completely control the spectral nonstationarity of the process. Therefore, the total
number of the model parameters may be as few as six if T, =0 is selected:

(al) ar, a3, Wo, Wy, Zf)

2.5. Post-processing by high-pass filtering

In general, site-based stochastic ground motion models tend to overestimate the structural
response at long periods (as also recognized by Papadimitriou (1990) and Liao and Zerva
(2006)), and the model presented in this study is not an exception. Furthermore, the proposed
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stochastic ground motion model does not guarantee that the first and second integrals of the
acceleration process over time vanish as time goes to infinity. As a result, the variances of the
velocity and displacement processes usually keep on increasing even after the acceleration has
vanished, resulting in non-zero residuals. This is contrary to base-line-corrected accelerograms,
which have zero residual velocity and displacement at the end of the record. To overcome these
problems, a high-pass filter is used to adjust the low-frequency content of the stochastic model.
Furthermore, this high-pass filter is selected to be the critically damped, second-order oscillator
to guarantee zero residuals in the acceleration, velocity and displacement time-histories. The
corrected acceleration record, denoted Z(t), is obtained as the solution of the differential
equation

Z(t) + 2w.2(t) + w?z(t) = %(t) (2.28)

where w, is the frequency of the high-pass filter and x(t) is the discretized acceleration process
as defined in (2.12). Due to high damping of the oscillator, it is clear that z(t), z(t) and z(t) will
all vanish shortly after the input process x(t) has vanished, thus assuring zero residuals for the
simulated ground motion. This filter, which was also used by Papadimitriou (1990), is motivated
by Brune’s (1970, 1971) source model, based on which w,, also known as the “corner
frequency”, can be related to the geometry of the seismic source and the shear-wave velocity.
Most ground motion databases, e.g., http://peer.berkeley.edu/nga/index.html, provide the corner
frequency for a recorded motion.

An example of a simulated ground motion before and after post-processing is shown in Figure
2.13. The left-hand side of this figure shows one realization of the fully-nonstationary stochastic
process (representing acceleration time-history) before and after post-processing by the filter in
(2.28), and their integrals over time (representing velocity and displacement time-histories). The
right-hand side shows the same motions after post-processing, drawn in a different scale.
Observe that even though the difference between the acceleration processes is insignificant, the
integration over time results in unacceptably high nonzero velocity and displacement residuals
for the acceleration process that is not high-pass filtered. The velocity and displacement traces
after post-processing are shown to have zero residual values.

Figure 2.14 shows 5% damped pseudo-acceleration response spectra of the ground motions in
Figure 2.13. As expected, the pre-processed motion causes high spectral intensities at long
periods.

It is noted that for stochastic dynamic analysis by TELM (Fujimura and Der Kiureghian, 2007),

the high-pass filter can be included as a part of the structural model so that the discretized form
of the input process in (2.12) is preserved.
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2.6. Summary

The response of a linear filter with time-varying parameters subjected to a white-noise process is
normalized by its standard deviation and is multiplied by a deterministic time-modulating
function to obtain the ground acceleration process. Normalization by the standard deviation
separates the spectral (achieved by time-variation of the filter parameters) and temporal
(achieved by multiplying the process with a time-modulating function) nonstationary
characteristics of the process. This model is formulated in the continuous form by (2.5) and in
the discrete form by (2.12). The discrete form is ideal for digital simulation and for use in
nonlinear random vibration analysis by the tail-equivalent linearization method. The model is
completely defined by the form of the filter IRF and the modulating function and their
parameters. Suggested models for the IRF and the modulating function and their parameters are
provided in Section 2.4. The stochastic model may have as few as six parameters that control the
statistical characteristics of the ground motion. The simulated acceleration process according to
(2.12) is then high-pass filtered in accordance with (2.28) to assure zero residual velocity and
displacement, as well as to produce reliable response spectral values at long periods. Figure 2.15
illustrates the steps involved in simulating a single ground acceleration time-history for a given
set of model parameters.
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| d(t—-1)
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White noise
w (t)
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Linear filter

Linear filter

(Dynamic Response)

Filtered white noise

Figure 2.1. Schematic of input-output relationship for a linear filter. (a) The response of the linear filter to the unit impulse
centered at t = t, indicated by the shifted Dirac delta function §(t — 1), is the impulse response function h(t — 7). (b) The
response of the linear filter to the white-noise excitation, w(t), is the filtered white-noise process, f (t).
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Figure 2.2. Representation of earthquake excitation as a filtered white-noise process.
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Figure 2.3. Realization of a stationary filtered white-noise process.
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Figure 2.4. Realization of a time-modulated filtered white-noise process.
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Figure 2.5. Responses of a filter with time-varying parameters (w, denoting the filter frequency, {; denoting the filter damping
ratio) to unit pulses at two time points.
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Figure 2.6. Realization of a process with time-varying frequency content.
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Figure 2.7. The minimum acceptable discretization step, At.
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x(t) = q(t,a) L) Th[t = 7. 2(z)W(z)d
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Time modulating function Unit-variance process
Controls temporal nonstationarity Controls spectral nonstationarity
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\_ /

Figure 2.8. Construction of a fully-nonstationary stochastic process according to (2.5) with separable temporal and spectral
nonstationarities.
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Figure 2.9. A sample stochastic process, showing zero-level up-crossings, positive minima and negative maxima.
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Figure 2.10. Segments of (a) a narrow-band process and (b) a wide-band process. Observe the larger number of negative maxima
and positive minima in the wide-band process.
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Figure 2.11. A piece-wise modulating function for selected parameter values.
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Figure 2.12. A gamma modulating function for selected parameter values.
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Figure 2.13. Realization of a fully-nonstationary acceleration process and its integrals before and after high-pass filtering. A “gamma” modulating function with @; = 0.05, a, =
2.66 and a3 = 0.34 is used. A linearly decreasing filter frequency from % =6Hzatt=0sto % =2 Hzatt = 20 s and a damping ratio of {; = 0.2 are selected. The corner
frequency of the high-pass filter is 0.2 Hz. Observe the improved velocity and displacement residuals after post-processing.
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Figure 2.14. Response spectrum of the realizations in Figure 2.13. Observe the high spectral content at long periods before post-

processing.
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Figure 2.15. Procedure for generating a single realization of the ground acceleration process according to the proposed model.
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CHAPTER 3

FITTING TO AND SIMULATING A TARGET
GROUND MOTION

3.1. Introduction

Given a target accelerogram (e.g., a recorded ground motion), the parameters of the stochastic
ground motion model proposed in Chapter 2 may be identified by fitting the statistical
characteristics of the stochastic model to those of the target accelerogram. As described in
Section 2.3, these statistical characteristics include the time-varying standard deviation of the
ground motion process, which controls the evolving intensity of the process, and the mean zero-
level up-crossing rate and the rate of negative maxima and positive minima, which together
control the frequency content of the process. Once a set of model parameters has been identified,
the model formulation is used to simulate realizations of the ground motion. These realizations
are all different due to the stochasticity of model, but they all have the same model parameters
and expected statistical characteristics similar to those of the target accelerogram. The target
accelerogram may be regarded as a single realization of the ground motion process for a
specified set of model parameters, while the simulated motions may be regarded as other random
samples of the process for the same set of model parameters.

One of the advantages of simulating a target accelerogram is that this motion will be represented
in a form appropriate for nonlinear random vibration analysis. Such analysis requires the input
excitation to be stochastic, and recorded time-histories cannot be used directly. The discretized
form in (2.12) is ideal for this type of analysis. The statistical characteristics of the stochastic
model represent the key features of ground motions (i.e., ground motion intensity, duration, and
frequency content) that are important for determination of structural response and estimation of
damage induced from earthquakes. Therefore, fitting the model to target accelerograms and
identifying their statistical characteristics is useful to study the properties of earthquake ground
motions. Furthermore, generating artificial samples of ground motions with specified statistical
characteristics could be useful for various applications, such as parametric studies or determining
the statistics of structural response.
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This chapter first explains how the stochastic model parameters are identified for a given target
accelerogram. From Chapter 2 we know that the model parameters are categorized into two
groups: modulating function parameters and linear filter parameters. Parameters of the
modulating function are identified first and separate from parameters of the linear filter, which
are identified next. A recorded motion is used to demonstrate the procedure. Then, a method to
generate synthetic ground motions with the identified model parameters is described. Finally,
several examples of recorded ground motions, their identified parameters, and simulations of
resulting stochastic model are presented. All recorded motions used in this chapter are taken
from the Pacific Earthquake Engineering Research (PEER) Center strong motion database (see
http://peer.berkeley.edu/nga/index.html).

3.2. Parameter identification

As shown in the previous chapter, one of the main advantages of the proposed ground motion
model is that the temporal and spectral characteristics are completely separable. Specifically, the
modulating function g(t, a) completely controls the evolving intensity of the process in time,
while the filter IRF h[t — 7, A(t)] completely controls the evolving frequency content of the
process. This means that the parameters of the modulating function and of the filter can be
independently identified for a target accelerogram, providing ease in the numerical calculations.

3.2.1. ldentification of the modulating function parameters

For a target recorded accelerogram, a(t), we determine the modulating function parameters, «,
by matching the expected cumulative energy of the stochastic process, E,(t), with the

cumulative energy of the target accelerogram, E,(t) = fot a?(t)dr, over the duration of the
ground motion, 0 < t < t,,. Consistent with the definition of E, (t), E, (t) is defined by

E.(t)=E Utxz(r)dr]
0
= E{ft[q(r, (x)s(r)Tu]sz} (3.1)
0

t
= j q?(r, a)dr
0

where E[.] denotes the expectation. The second equality in (3.1) is obtained by substituting the
discretized form of x(t) according to (2.14). Switching the orders of expectation and integration,
and noting that s(7)Tu is a zero-mean unit-variance process, results in the last equality, which is
of a convenient form as it only depends on the modulating function. Therefore, the modulating
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function parameters are obtained by matching the two cumulative energy terms: E,(t) and
E,(t). This is done by minimizing the integrated squared difference between the two terms,

th [ rt ¢ 2
a= argminf [f q%(z, a)B(T)dT—f aZ(T)B(T)dT] de (3.2)
« Jo 0 0
where @ represents the vector of identified parameters and B(t) is a weight function introduced

to avoid dominance by the strong-motion phase of the record. (Otherwise, the tail of the record is
not well fitted.) We have found the function

(3.3)

[max; q5 (¢, )] }

2 )5
qO (tl aO)

where q,(t, ay) is the modulating function obtained in a prior optimization without the weight

function, to work well. The objective function in (3.2), which was earlier used by Yeh and Wen

(1990) without the weight function, has the advantage that the integral fot a’(71)B(r)dr is a
relatively smooth function so that no artificial smoothing is necessary.

B(t) = min {

As an example, Figure 3.1a shows component 090 of the accelerogram recorded at the LA -
116™ Street School station during the 1994 Northridge earthquake. This motion is taken as the
target accelerogram, a(t). The squared acceleration, a?(t), and the cumulative energy,

fot a?(t)dr, for this record are shown in Figure 3.1b and 3.1c, respectively. Observe that

fot a?(t)dr is much smoother than either of a(t) or a?(t), and hence it is easier and more
accurate to fit a smooth function to the cumulative energy as is done in (3.2).

The weight function for the target accelerogram is based on a piece-wise modulating function
(2.22) (with T; = T,) and is presented in Figure 3.1d. Figures 3.1e and 3.1f show the weighted

squared acceleration, a?(t)B(t), and the weighted cumulative energy fot a’(t)B(7)dr,
respectively. Comparing Figure 3.1f to 3.1c (also 3.1e to 3.1b) demonstrates the necessity of a
weight function. Observe that the plot in Figure 3.1c is rather sharp and quickly flattens reaching
the total energy, while the plot in Figure 3.1f rises gradually and there is no sudden flattening. At
any given time, the fitted modulating function is proportional to the slope of this plot. Therefore,
“sudden flattening” implies that the fitted modulating function reaches nearly zero intensity too
quickly, underestimating the tail of the record. This is undesirable because, even though the tail
of the record has low intensity, it often has different frequency content from the strong shaking
phase of the motion and can influence the response of a nonlinear structure.

Figure 3.2a compares the two energy terms E,(t) and E,(t) when fitting to the target
accelerogram. Using a piece-wise modulating function with parameters = (a4, @y, a3, Ty, T1, T2),
identified values of the fitted parameters are a; = 0.0744 9, a, = 0.413s™!, a3 = 0.552,
T, = 0.0004s, T; =T, = 12.2 s. It can be seen that the fit is excellent at all time points. Figure
3.2b shows the corresponding modulating function superimposed on the target recorded
accelerogram.

As a measure of the error in fitting to the cumulative energy of the target accelerogram, we use
the ratio
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_ o E () ~ B )lde
J)" E, (H)de

The numerator is the absolute area between the two cumulative energy curves (see Figure 3.2a)
and the denominator is the area underneath the energy curve of the target accelerogram. For the
example shown in Figure 3.2, €, = 0.0248.

€q (3.4

3.2.2. ldentification of the filter parameters

The parameters w, and w,, defining the time-varying frequency of the filter (see (2.25)) and the
parameters defining the damping ratio of the filter, {r(¢), control the predominant frequency and
bandwidth of the process, respectively. Since these parameters have interacting influences, they
cannot be identified independently for a target accelerogram. Therefore, we follow a procedure
that first optimizes the frequency parameters for a series of constant damping ratios (by matching
the cumulative count of zero-level up-crossings of the simulated and target motions), then selects
the optimum set of frequency parameters and constant damping ratio by matching the cumulative
count of positive minima and negative maxima of the simulated and target motions. This
procedure is for a constant damping ratio (see (2.26)) and is described in detail in this section. If
the damping ratio is allowed to vary over time (see (2.27)), further steps are required for
optimization, which are described in the next section.

We first determine w, and w,,, while keeping the filter damping a constant ratio, ;. For a given
{r, the parameters w, and w, are identified by minimizing the difference between the

cumulative expected number of zero-level up-crossings of the process, i.e., fot v(0%, 7)dr, and

the cumulative count N(0%,t) of zero-level up-crossings in the target accelerogram for all t,
0 <t < t,. Thisis accomplished by minimizing the mean-square error,

tn [ (t 2
[@0(¢5), @a(¢r)] = argmin f [ j v(0+,Dr()dr — N(0*, )| dt (3.5)
wo,Wn Y0 0

where @,(s) and @, ({5 ) represent the identified values of frequency parameters dependent on
the selected damping ratio, and r(7) is an adjustment factor as described below. As can be noted
in the equations leading to (2.16), v(0*,7) is an implicit function of the filter characteristics
ws (1) and {¢(7), and therefore, w, and w, and . The same is true for r(7), as explained
below.

When a continuous function of time is represented as a sequence of discrete time points of equal
intervals At, the function effectively loses its content beyond a frequency approximately equal to
m/(2At) rad/s (see Figure 2.7). This truncation of high-frequency components results in
undercounting of level crossings. Since digitally recorded accelerograms are available only in
discretized form, the count N(0%,t) underestimates the true number of crossings of the target
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accelerogram by a factor per unit time, which we denote by (7). Hence, to account for this
effect when matching fotv(OJr,r)dr to N(0%,t), we must multiply the rate of counted up-

crossings by the factor 1/r(t). However, r(t) depends on the predominant frequency and
bandwidth of the accelerogram. For this reason, it is more convenient to adjust the theoretical
mean up-crossing rate (the first term inside the square brackets in (3.5)) by multiplying it by the
factor r(t). The undercounting factor, r(t), may be approximated and incorporated in (3.5) as
described in the following.

For a stationary process with power spectral density ®(w), the mean zero-level up-crossing rate
with the frequencies beyond w,,,, truncated is given by

1
V(O+'wmax) = _\/

fowm‘“‘ w?®(w)dw

fowm‘“‘ ®(w)dw

o (3.6)

The power spectral density for a stationary filtered white-noise process consistent with the IRF in
(2.24) with time-invariant parameters is ®(w) = 1/[(wf — a)z)z + 4¢f wfw?]. Using (3.6), the
undercount per unit time, denoted r, can be calculated as the ratio
_ v(0",m/2At)
~ v(0t, )
Observe that r is a function of At as well as the frequency characteristics of the process, i.e., wy
and ¢. In the present case, since wy is a function of z, r is also a function of z. The solid lines in
Figure 3.3 show the ratio r(7) plotted as a function of the filter frequency for the damping values
{r =0.3,0.4,0.5, and 0.6 and for At = 0.01 and 0.02 s. These plots are nearly linear and hence

for a specified discretization step, straight-line approximations (dotted lines in Figure 3.3) are
employed in place of (3.7). For At = 0.01 and 0.02 s, these approximations are

r(t,At = 0.01) = 1 —0.00005(w (1) + {7 (1)) — 0.000425w (1) {7 (7) (3.8)

(3.7)

r(r,At = 0.02) = 1= 0.01¢(7) — 0.009w; (7){f () (3.9

It can be seen in Figure 3.3 that representation of a process at discrete-time points can result in
undercounting of the zero-level up-crossings by as much as 2-25%, depending on the filter
parameters and the time step used.

Figure 3.4 compares the cumulative number of zero-level up-crossings of the target
accelerogram (the Northridge record in the previous section) and the adjusted (by the factor
r(t)) mean cumulative number of zero-level up-crossings of the fitted model process for
{r = 0.3. The corresponding optimal values of w, and w, are obtained for the specified damping
ratio by solving (3.5), which is equivalent to minimizing the difference between the two plots
shown in Figure 3.4. The optimized parameters @, and &, are listed in Table 3.1 for different
values of the damping ratio, namely ¢y = 0.2,0.3,0.4,0.5,0.6, and 0.7. As a measure of the
error in fitting to the cumulative number of zero-level up-crossings, we use
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Values of this measure are also provided in Table 3.1. Each set of @y, @,, and {f listed in Table
3.1 results in a plot almost identical to Figure 3.4. In this figure, it is evident that the rate of up-
crossings (the slope of the curve) decays with time, indicating that the predominant frequency of
the ground acceleration decreases with time.

We need to select the optimum value of the filter damping ratio, {r, which controls the
bandwidth of the process. We employ a simulation approach to estimate the average cumulative
number of negative maxima and positive minima, which characterizes the bandwidth of the
model process. The reason for using simulation rather than an analytical expression was
explained in Section 2.3. Shown in Figure 3.5 is the cumulative number of negative maxima plus
positive minima as a function of time for the target accelerogram (i.e., the Northridge record), as
well as the estimated averages of the same quantity for sets of 10 simulations of the theoretical
model with damping values s = 0.2,0.3,0.4,0.5, 0.6, and 0.7. The slopes of these lines should
be regarded as instantaneous measures of the bandwidth parameter. By comparing the slopes of
the target curve with those of the simulated curves, (¢ is identified. The parameters @, and @,

for each value of {; are determined as described above and listed in Table 3.1. Note that the
modulating function has no effect on this calculation.

Several observations in Figure 3.5 are noteworthy. First note that the curves based on the
theoretical model for the various values of {; are nearly straight lines. This implies that a
constant value of the filter damping ratio corresponds to a constant bandwidth of the process,
even though the predominant frequency varies with time. This also implies that the bandwidth of
the model process is solely controlled by the damping ratio of the filter. Secondly, observe that
the curve based on the target accelerogram shows relatively small curvatures. This implies that
the bandwidth of this particular accelerogram, as measured in terms of the rate of negative
maxima and positive minima, remains more or less constant during the excitation. It can be seen
that the theoretical curve with { = 0.3 best matches the bandwidth of the target accelerogram. A
measure of error, similar to (3.10), is defined for fitting the bandwidth as the cumulative absolute
difference between the cumulative numbers of negative maxima and positive minima of the
target accelerogram and of the model process (i.e., the absolute area between the two curves in
Figure 3.5), normalized by the cumulative number for the target accelerogram (i.e., the area
underneath the target curve in Figure 3.5). This measure denoted by €., is also listed in Table

3.1. Note that this error measure is smallest when {; = 0.3. Also note that the error measure ¢,
is nearly the same for all damping values.

In summary, if we select {r = 0.3, the corresponding values of the frequency parameters are

@o = 39.7 rad/s and @, = 4.68 rad/s (Table 3.1). These parameter values, together with the
parameters identified for the modulating function, completely define the theoretical model fitted
to the target accelerogram.
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3.2.3. Time varying bandwidth

Closer examination of the target curve in Figure 3.5 shows that the rate of occurrence of negative
maxima and positive minima (the slope of the target curve at a given time) is higher during the
initial 8 s and final 10 s of the motion relative to the 22 s middle segment. This phenomenon was
observed to varying degrees in other accelerograms that were investigated. It appears that ground
motions typically have broader bandwidths during their initial and final phases, as compared to
their middle segments. This phenomenon may be attributed to mixing of wave forms: In the
initial segment, P and S waves are mixed providing a broad bandwidth; the middle segment is
dominated by S waves and, therefore, has a narrower bandwidth; while the final segment is a
mixture of S waves and surface waves, again providing a broader bandwidth.

To more accurately model the time-varying bandwidth of the accelerogram, the filter damping
ratio can be made a function of time. To capture the three-segment behavior described above, we
select three values of the damping ratio for the initial, middle and final segments of the ground
motion (see (2.27)). The dashed line in Figure 3.6 shows the average cumulative number of
negative maxima and positive minima for 10 simulations of the fitted model with the filter
damping ratio {¢(7) = 0.4 for 0 <7 <8, {s(r) = 0.2 for 8< 7 < 30 s and {¢(r) = 0.9 for
30 < t <40 s. These values were selected by comparing the slopes of the target curve with
those of the simulated curves for different constant damping ratios. The corresponding optimal
values of the filter parameters (obtained by using the variable damping values in (3.5)) are
@o = 39.4 rad/s and @, = 4.86 rad/s.

It can be seen in Figure 3.6 that the refined model achieves a close fit to the time-varying
bandwidth of the target accelerogram and is an improvement to the constant damping ratio
selected previously. The error measures for the variable damping ratio are €, = 0.0127, and
€; = 0.0461.

3.3. Ground motion simulation

For specified parameters of the modulating function and the filter IRF, a sample realization of
the proposed stochastic ground motion model is generated by use of (2.12). This requires
generation of the standard normal random variables u;, i = 1, ...,n, and their multiplication by
the functions s;(t), which are computed according to (2.13). After multiplication by the
modulating function, the resulting motion is then post-processed, as described in Section 2.5, to
represent an earthquake ground motion.

It was previously mentioned that without the post-processing, the simulated motions may
overestimate the response spectral values at long period ranges. As an example, Figure 3.7a
shows the response spectrum of the target accelerogram used in Section 3.2 (thick line) together
with response spectra of 10 simulated motions with the variable-damping model described in
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Section 3.2.3 (thin lines). It can be seen that, while the simulated spectra match the target
spectrum fairly closely for periods shorter than about 2.5 s, at longer periods they all exceed the
target spectrum. Figure 3.7b compares the response spectrum of the target accelerogram with the
response spectra of the 10 simulated motions, which are post-processed with the filter in (2.28)
with w. = 0.57 rad/s. It can be seen that the post-processing significantly improves the
estimation of spectral values at long periods without affecting the short-period range.

The observed discrepancies between the target and simulated spectra in the short-period range of
Figure 3.7b, though not significant, are partly due to the use of a single degree of freedom filter.
Such a filter can only characterize a single dominant period in the ground motion. The selected
recorded motion clearly shows multiple dominant periods. If a closer match is desired, one can
select a two-degrees-of-freedom filter, in which case additional parameters will need to be
introduced and identified. This is possible with the proposed model, but is not pursued in this
study.

Figure 3.8 shows the target accelerogram (the Northridge record in Section 3.2) together with
two sample realizations simulated using the fitted stochastic model. Examples of other target
accelerograms and their simulations are provided in Figures 3.9 to 3.12. Figures 3.9 to 3.11 show
three different target accelerograms and two simulations for each accelerogram using a piece-
wise modulating function, linear filter frequency, and (three-piece) variable damping ratio. The
frequency for the high-pass filter is selected so that the response spectra of simulations are well
fitted to the response spectra of the recorded motion for spectral periods up to 10 s. Functions
that are suggested for the filter frequency and damping ratio in this study are for a typical ground
motion. These functions may be refined or altered as desired by the user. For example, in Figure
3.12, instead of a linear function for the filter frequency, an exponential function with three
parameters has been used.

The simulated ground motions in Figure 3.8 to 3.12 have evolutionary statistical characteristics,
i.e., time-varying intensity, predominant frequency and bandwidth, which are similar to those of
the target accelerogram. Hence, together with the target accelerogram, they can be considered as
an ensemble of ground motions appropriate for design or assessment of a structure for those
particular statistical characteristics.

3.3.1. Variability of ground motion

In the broader context of performance-based earthquake engineering (PBEE), an ensemble of
ground motions that represents all possible ground shakings at a site is of interest (not only
ground motions with statistical characteristics similar to those of a previously observed motion).
The variability amongst such an ensemble comes from two different sources: (1) the randomness
of ground motions for a specified set of model parameters (see the spread of response spectra for
simulated motions at a given period in Figure 3.7 and the variability among the time-histories in
Figure 3.8), and (2) the randomness of the model parameters for the site of interest. The former is
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accounted for when fitting and simulating a target accelerogram (due to the stochastic nature of
the model), but the latter is not.

It is important to note that model parameters are actually random variables and an identified set
of model parameters corresponding to a previously recorded motion is only one realization of
these random variables for the earthquake and site characteristics that produced the recorded
motion. To produce ground motions with appropriate variability for use in PBEE (i.e., for
specified earthquake and site characteristics) the model parameters must be randomized to
represent other ground motions that can result from such an earthquake.

Assigning probability distributions to the model parameters and constructing predictive relations
between the model parameters and the earthquake and site characteristics are subjects of Chapter
4. The results of Chapter 4 allow one to predict the model parameters for a given set of
earthquake and site characteristics (e.g., faulting mechanism, earthquake magnitude, distance to
the rupture, and local soil conditions) without the need for a previously recorded motion.
Chapter 5 focuses on randomly generating samples of model parameters for specified earthquake
and site characteristics, and generating an ensemble of synthetic motions that have the natural
variability of real ground motions and are appropriate for use in PBEE.
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Table 3.1. Parameter values and error measures.

Damping Ratio Frequency Parameters (rad/s) Error Measures

ff @0 (’U\n €u €;

0.2 40.8 4.16 0.0169 0.3212
0.3 39.7 4.68 0.0167 0.0858
0.4 38.6 4.49 0.0166 0.1925
0.5 38.0 4.55 0.0165 0.2949
0.6 37.4 4.56 0.0166 0.3649
0.7 36.9 4.53 0.0168 0.4004
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Figure 3.9. Target accelerogram and two simulations using the fitted model. Target accelerogram is component 090 of the 1994
Northridge earthquake at the Newnhall — Fire Station. The corresponding model parameters are a; = 0.362 ¢, a; = 0.527 s71,
a3 =0.682, T, =09s,T; =5.3sand T, = 5.4 s for a piece-wise modulating function and w, = 24.0 rad/s and w,, = 5.99

rad/s for a linear filter frequency function. A variable filter damping ratio is used where {¢(t) = 0.25for 0 <t < 135, {¢(¢t) =

0.18 for 13 < t < 25sand {¢(t) = 0.8 for 25 < t < 40 s. The corresponding error measures are €, = 0.0258, ¢, = 0.0259,

and e; = 0.0375. A frequency of 0.12 Hz is selected for the high-pass filter.
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Figure 3.10. Target accelerogram and two simulations using the fitted model. Target accelerogram is component 111 of the 1952
Kern County earthquake at the Taft Lincoln School station. The corresponding model parameters are a; = 0.0585¢, a, =
0.235s7%, a3 = 0.591, T, = 0.0001s, T; = 3.8sand T, = 8.6 s for a piece-wise modulating function and w, = 24.8 rad/s and
w, = 13.5 rad/s for a linear filter frequency function. A variable filter damping ratio is used where {¢(t) = 0.2for0 <t <35,
{r(®) =0.1for3 <t<14sand{s(t) = 0.13 for 14< t < 54.2 s. The corresponding error measures are €, = 0.0301,
€, = 0.0111, and ¢; = 0.0381. A frequency of 0.05 Hz is selected for the high-pass filter.
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Figure 3.11. Target accelerogram and two simulations using the fitted model. Target accelerogram is component 090 of the 1971
San Fernando earthquake at the LA — Hollywood Stor Lot station. The corresponding model parameters are a; = 0.0821 g,
a, = 0369571, a3 = 0.680, T, = 0.002s, T, = 2.0sand T, = 5.7 s for a piece-wise modulating function and w, = 30.2 rad/s
and w, = 16.5 rad/s for a linear filter frequency function. A variable filter damping ratio is used where {;(t) = 0.4 for 0 <t <
14s, and {¢(t) = 0.45 for 14< t < 28s. The corresponding error measures are €, = 0.0155, €,, = 0.0494, and ¢; = 0.0309.
A frequency of 0.2 Hz is selected for the high-pass filter.
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Figure 3.12. Target accelerogram and two simulations using the fitted model. Target accelerogram is component 090 of the 1994
Northridge earthquake at the Ventura — Harbor & California station. The corresponding model parameters are ¢; = 0.0201 g,
a, = 0.0046s7 1, a3 =153, T, =05, Ty = 11.3sand T, = 17.3 s for a piece-wise modulating function. Instead of a linear

function, an exponentially decreasing function is selected for the filter frequency wy (t) = 55.1 exp(—0.288t%554), A variable
filter damping ratio is used where {(t) = 0.5 for 0 <t < 12s, {¢(t) = 0.4 for 12<t < 325, and {;(t) = 0.99 for 32< t < 65
s. The corresponding error measures are €, = 0.0389, €, = 0.0102, and ¢; = 0.147. A frequency of 0.2 Hz is selected for the

high-pass filter.
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CHAPTER 4

ESTIMATION OF MODEL PARAMETERS FOR
SPECIFIED EARTHQUAKE AND SITE
CHARACTERISTICS

4.1. Introduction

In the previous chapter, parameters of the proposed stochastic ground motion model were
identified for a target accelerogram by matching the evolutionary statistical characteristics of the
model to those of the target accelerogram. Once the model parameters are identified, it is easy to
produce an ensemble of ground motion realizations as described in Section 3.3. It is important to
recall that this ensemble of ground motion realizations is created from one specific set of model
parameters that corresponds to the target accelerogram. A previously recorded ground motion
that is considered as the target accelerogram is only one sample observation of all the possible
ground motions that can occur at a site of interest from an earthquake of specified characteristics.
Therefore, it is more realistic to treat the model parameters that define the target accelerogram as
random variables when simulating ground motions for specified earthquake and site
characteristics.

To illustrate the above concept, Figure 4.1 shows a real recorded motion and eight simulated
motions. The simulated motions on the left are generated using model parameters identical to
those of the recorded motion (according to the methods described in Chapter 3). Observe that
even though they are different, they all have nearly identical overall characteristics, e.g.,
intensity, duration, frequency content. The simulated motions on the right are generated using
different model parameters that may result from the earthquake and site characteristics that
produced the recorded motion. The simulation details are presented in Chapter 5. The variability
observed in the intensity, duration and frequency content of these motions is significantly more
than that of the set on the left and is representative of the natural variability observed in recorded
ground motions for a specified set of earthquake and site characteristics. Such suite of simulated
motions (i.e., on the right side of Figure 4.1) is of interest in performance-based earthquake
engineering (PBEE). The question is: how do we predict possible realizations of the model
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parameters for specified earthquake and site characteristics? This chapter focuses on answering
this question.

As reported in Chapter 1, many ground motion models have been developed in the past. The vast
majority of these models limit their scope to generating synthetics similar to a target recorded
motion. As a result, all the generated synthetic motions with these models correspond to identical
model parameters and do not provide a realistic representation of ground motion variability for a
specified set of earthquake and site characteristics. In this study, we go one step further by
relating the parameters of our model to the earthquake and site characteristics. Furthermore, by
accounting for the uncertainty in the model parameters, i.e., assuming that the model parameters
for given earthquake and site characteristics are random, we are able to reproduce in the
synthetics the variability present in real ground motions, which has been lacking in previous
models. There have been a few exceptions in the literature including the paper by Pousse et al.
(2006), in which the parameters of an improved version of the model by Sabetta and Pugliese
(1996) are fitted to the K-Net Japanese database, and the work by Alamilla et al. (2001), in
which the parameters of a model similar to that proposed by Yeh and Wen (1989) were fitted to a
database of ground motions corresponding to the subduction zone lying along the southern coast
of Mexico. In both cases, the model parameters are randomized to achieve the variability present
in real ground motions. Stafford et al. (2009) also relate the parameters of their model to the
earthquake and site characteristics, but their model does not account for spectral nonstationarity
of ground motion. It is noted that some recent seismological models do properly account for the
variability in ground motions. Typically, this is done by varying the values of source parameters,
as in Liu et al. (2006), Hutchings et al. (2007), Causse et al. (2008) and Ameri et al. (2009).
However, these models are difficult to use in engineering practice due to unavailability of the
model source parameters during the structural design process.

This chapter focuses on developing empirical predictive equations for the stochastic model
parameters in terms of earthquake and site characteristics. The stochastic ground motion model is
fitted to a large number of accelerograms with known earthquake and recording site
characteristics. The result is a database of the model parameters for the given values of the
earthquake and site characteristics. By regressing the former against the latter predictive relations
for the model parameters in terms of the earthquake and site characteristics are developed. For a
specified set of earthquake and site characteristics, an “average” ground motion may then be
generated by using the mean model parameter values, while an entire suite of motions can be
generated by using other possible values of model parameters obtained from randomizing the
regression error. This process can be repeated for different sets of earthquake and site
characteristics, thus generating an entire suite of artificial ground motions that are appropriate for
design or analysis in PBEE without any need for previously recorded motions.

The methodology for constructing predictive relations for the model parameters is quite general
and is proposed at the beginning of this chapter. This methodology is then demonstrated by using
a database of strong ground motions on stiff soil, which is a subset of the Next Generation
Attenuation (NGA) database. Predictive equations are constructed for each model parameter in
terms of the fault mechanism, earthquake magnitude, source-to-site distance and local soil type.
Marginal and conditional distributions are assigned to each model parameter. Finally correlations
between the model parameters are determined empirically. Results of this chapter are used in
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Chapter 5 for random generation of model parameters and simulation of a suite of synthetic
ground motions for specified earthquake and site characteristics, which is ultimately of interest in
PBEE.

4.2. Methodology for developing predictive equations

For PBEE our interest is in simulating ground motions for a given set of earthquake and site
characteristics, i.e., fault mechanism, earthquake magnitude, source-to-site distance, local soil
type. In this context, parameters identified for a specific recorded ground motion are regarded as
a single realization of the parameter values that could arise from earthquakes of similar
characteristics on similar sites. To develop a predictive model of the ground motion, it is
necessary to relate the model parameters to the earthquake and site characteristics. For this
purpose, we identify the model parameters for a dataset of recorded ground motions with known
earthquake and site characteristics. Using this data, regression models are then developed to
relate the stochastic model parameters to the earthquake and site characteristics.

It is a common practice in developing predictive equations of ground motion intensities to work
with the logarithm of the data to satisfy the normality requirement of the regression error. This
transformation implies the lognormal distribution for the predicted intensity. In our case, the data
for several of the model parameters show distinctly non-lognormal behavior, including negative
values and bounds, which cannot be addressed by a logarithmic transformation. To account for
this behavior, each model parameter is assigned a marginal probability distribution based on its
observed histogram. This distribution is then used to transform the data to the normal space,
where empirical predictive equations are constructed. In effect, this is a generalization of the
logarithmic transformation.

Let ; denote the i™ parameter of the stochastic ground motion model, i = 1, ..., Ny, Where n,, is
the total number of parameters, and let Fq (6;) denote the marginal cumulative distribution
function fitted to the data for 8;. The marginal transformations

v =dHF,(8)] i=1,..,m (4.1)

where ®~1[.] denotes the inverse of the standard normal cumulative distribution function, then
define a set of standard normal random variables v;. Relations of the form in (4.1) transform the
data on 6; to data on v;, which are then regressed against variables defining the earthquake and
site characteristics. This leads to predictive equations of the form

v; = y;(Earthquake, Site, ;) +e; i=1,..,n, (4.2)

where y; is a selected functional form for the conditional mean of v; given the earthquake and
site characteristics, B; is the vector of regression coefficients, and e; represents the regression
error that has zero mean and is normally distributed. Another important piece of information for
predicting model parameters is the correlation between v; and v; for i # j, which is the same as

the correlation between the corresponding e; and e;. These correlations are determined
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empirically. Additionally, it is assumed that the error terms e; are jointly normally distributed.
Under this assumption, knowledge of the predictive equations of the form in (4.2) and the
correlation coefficients is sufficient to simulate random samples of variables v;, i = 1, ..., n,, for
specified earthquake and site characteristics (see Chapter 5 for simulation details). Equations
(4.1) are then used in reverse to determine the corresponding simulations of the model
parameters in the physical space.

The following sections present the specifics of the stochastic ground motion model used in this
chapter, propose a simplified method of parameter identification which is appropriate for
analyzing a large database of recorded motions, and elaborate on the selected ground motion
database, the fitted distributions Fyg, (6;), the functional forms of the predictive equations (4.2),
the method of analysis used to estimate the regression coefficients and the error variance in (4.2),
and the correlation analysis between the transformed model parameters v;.

4.3. Stochastic ground motion model

The stochastic ground motion model proposed in Chapter 2 is employed. The stochastic process
x(t) is obtained by time-modulating a normalized filtered white-noise process with the filter
having time-varying parameters. It is formulated according to (2.5) in the continuous form and
according to (2.12) in the discrete form. The simulated process is eventually high-pass filtered
according to (2.28) to obtain Z(t), which represents the acceleration time-history of the
earthquake ground motion. This high-pass filtering does not have a significant influence on the
statistical characteristics of the process. Therefore, when fitting to a recorded motion, as done in
Chapter 3, the process x(t) rather than Z(t) is used. x(t) is constructed by multiplication of the
deterministic time-modulating function q(t, «), and a unit-variance process that is obtained as
the response of a linear filter defined by the IRF h[t — 7, A(7)] to a white noise excitation. The
functional forms and parameters of q(t, ) and h[t — t,A(7)] separately control the temporal
and spectral characteristics of the ground motion process.

For the present study, the gamma modulating function according to (2.23) is used. The set of
parameters for this model is a = (a4, @y, a3, T;y). The filter IRF corresponding to (2.24), which
represents the pseudo-acceleration response of a single-degree-of-freedom linear oscillator, is
employed. The set of time-varying parameters for the filter is A(7) = [w;(7),{f(7)]. The
subsequent sections provide more details on selection and identification of these model
parameters.
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4.3.1. Model parameters

Since we wish to relate the parameters of the modulating function to the earthquake and site
characteristics of recorded motions, it is desirable that these parameters be defined in terms of
ground motion properties that have physical meaning. For this reason, (a4, a,, a3) are related to
three physically-based variables (I, Ds_qs, t,niq)- The first variable, I, represents the expected
Arias intensity (Arias, 1970) of the acceleration process x(t) — a measure of the total energy
contained in the motion — and is defined as

_— 1 tn ) _1 tn 2
I, = E[Zg fo x (t)dt] =3 fo q2(t, @)dt (4.3)

where g is the gravitational acceleration and t,, denotes the total duration of the motion. The
second equality above is obtained by changing the orders of the expectation and integration
operations and noting that g2(t,a) is the variance of the process x(t) (see (2.4)). Ds_qs
represents the effective duration of the motion. Here, motivated by the work of Trifunac and
Brady (1975), we define Ds_oc as the time interval between the instants at which the 5% and
95% of the expected Arias intensity are reached. This definition is selected since it relates to the
strong shaking phase of the time-history, which is critical to nonlinear response of structures.
tmiq 1S the time at the middle of the strong shaking phase. Based on investigation of many
ground motions in our database, we have selected t,,;; as the time at which 45% level of the
expected Arias intensity is reached. Figure 4.2 illustrates identification of the above three
parameters for an acceleration time-history.

The gamma probability density function (PDF) (Ang and Tang, 2006) is written as

b

_ % b-1,-at if >
fr(t,a,b) F(b)t e if t=0 (4.4)

=0 otherwise

where a and b are the parameters of the distribution and I'(b) = fooo tb~le~tdt is the gamma

function with b > 0. For the selected modulating function, ¢2(t, &) is proportional to a shifted
gamma PDF having parameter values a = 2a5 and b = 2a, — 1. One can write

g2(t, @) = a?(t — Tp)@%~D-1g72a:(t-To) jf ¢t >T, 45)

=0 otherwise '

Let ¢, represent the p-percentile variate of the gamma cumulative distribution function. Then ¢,
is given in terms of the inverse of the gamma cumulative distribution function at probability
value p%. Since these percentages are not affected by scaling of the gamma probability density
function, it follows that t, is uniquely given in terms of the parameters a, and a3 and the
probability p%. We can write

Ds_g5 = tgs — L5 (4.6)

tmia = tas 4.7)
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For given values of Ds_qs and t,,;4, parameters a, and a; can be numerically computed from
the above two equations. In this study, a nonlinear optimization approach is employed to solve
(4.6) and (4.7) for a, and a3, which requires initial guesses for optimized values of the two
parameters. We have found that a good initial guess is obtained by setting the mode of the
gamma distribution, (b — 1)/a, equal to t,,;;, which results in solving (4.6) for one variable
only. This approach is computationally efficient and is made possible due to the selected
functional form of the modulating function. The remaining parameter, a;, is directly related to
the expected Arias intensity. Substituting (4.5) into (4.3) gives

T (tn
I, = 2_f a% (t — To)(zaz_l)—le—zas(t_’ro)dt
gJo

t
= Doz | (t - Ty)re e 2 To gy (4.8)
2g 0

- ,I2a;—1)
~ 28" Qaprl
For simulation purposes, T, is assumed to be 0. Note that the expression inside the integral of the
second equality above is proportional to the gamma PDF. Assuming that t,,, the total duration of

motion, is sufficiently long for the integral of the PDF from 0 to t,, to be effectively equal to
unity, the last equality is obtained which results in an analytical expression for a,

28 (2a;)2e
= |27 — 49
“1 Jn “T(2ay — 1) (4.9

After estimating a, and a3, (4.9) is used to compute a, for a given value of I,,. In the remainder
of this study, we only work with (I, Ds_os, tnig) as the modulating function parameters. Any
simulated values of these parameters are used in (4.6), (4.7) and (4.9) to back-calculate the
corresponding values of (a4, a3, a3), which are then used to compute the modulating function.

For the filter frequency a linear function is adopted. However, instead of representing this
function with the two parameters w, and w,, as was done in (2.25), we represent it as

wr(t) = Wpig + ©'(t — tmiq) (4.10)

Here, w,,;q represents the filter frequency at t,,;4, and w’ represents the rate of change of the
filter frequency with time. Later, in Chapter 5, limits will be assigned to (4.10) to avoid
simulating unreasonably high or low frequencies. For the filter damping ratio a constant value,
{r, as in (2.26) is employed. This is done for simplicity and convenience considering that the
stochastic model must be fitted to a large number of recorded motions. Observed invariance of
the bandwidth parameter for most recorded motions motivates this simplifying approximation.

In summary, the physically-based parameters (I, Ds_os, tmig) and (Wmiq, w',{r) completely
define the time modulation and the evolutionary frequency content of the nonstationary ground
motion model. Our simulation procedure is based on generating samples of these parameters for
given earthquake and site characteristics.
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4.3.2. Identification of model parameters for a target accelerogram

As described in Chapter 3, given a target accelerogram, the model parameters are identified by
matching the properties of the recorded motion with the corresponding statistical measures of the
process. The physically-based modulating function parameters (I, Ds_os, tiq) are naturally
matched with the Arias intensity, the effective duration (the time between 5% and 95% levels of
Arias intensity), and the time to the middle of the strong shaking phase (time to the 45% level of
Arias intensity) of the recorded motion, respectively. In determining t,,;; for a recorded
accelerogram, sometimes it is necessary to make a time shift. This is because the zero point
along the time axis of a record is rather arbitrary. (There is no standard as to where to set the
initial point of an acceleration signal.) In fact, some records in the NGA database have long
stretches of zero motion in their beginning. Four such examples are provided in Figure 4.3. In
such cases, a better fit is achieved by identifying an additional parameter, T, = 0. This is done
by replacing (4.7) with

Ds_45 = tys — ts5 (4.11)

where D-_,< is the time interval between 5% and 45% levels of Arias intensity of the record.
Similar to the case for T, = 0, solutions to a, and a5 are obtained by nonlinear optimization on
(4.6) and (4.11). A good initial guess is obtained by assuming equality between the mode of the
gamma distribution, (b — 1)/a, and D, ys_45, Which results in solving (4.6) for one variable
only. Dy g5_45 represents the time between 0.05% to 45% level of Arias intensity of the record.
0.05%, which is a small percentile effectively denoting the beginning of the motion, is chosen to
avoid the long stretches of zero intensity observed at the beginning of records, which are not of
interest in simulation. After identification of (a4, a,, @3), the 45-percentile variate of the
corresponding gamma distribution, t,s, is calculated. Finally, t,,,;4 is determined by (4.7) and T,
if desired, is computed by

To = Do_45 — lss (4.12)

As mentioned earlier, the model parameters (wp;q, w",{s) control the evolving predominant
frequency and bandwidth of the process. As a measure of the evolving predominant frequency of
the recorded motion, as in Chapter 3, we consider the rate of zero-level up-crossings, and as a
measure of its bandwidth, we consider the rate of negative maxima (peaks) and positive minima
(valleys). In Chapter 3, the evolution of the predominant frequency was determined by
minimizing the difference between the cumulative mean number of zero-level up-crossings of
the process in time and the cumulative count of zero-level up-crossings of the recorded
accelerogram. The bandwidth parameter, {, was determined by minimizing the difference
between the mean rate of negative maxima and positive minima and the observed rate of the
same in the recorded accelerogram. The process required an iterative scheme, since the
predominant frequency and bandwidth of the process are interrelated. That method is ideal if the
purpose is to closely match the statistical characteristics of a single target accelerogram. For the
purpose of identifying the model parameters for a large number of recorded ground motions,
such high level of accuracy is not necessary. Instead, the following simpler method is adopted to
reduce computational effort, while providing sufficient accuracy.
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It is well known that the mean zero-level up-crossing rate of the stationary response of a second-
order filter (i.e., the filter used in this study with time-invariant parameters) to a white-noise
excitation is equal to the filter frequency (Lutes and Sarkani, 2004). This motivates the idea of
directly approximating the filter frequency w,(t) by the rate of change of the cumulative count
of zero-level up-crossings of the target accelerogram (see Figure 4.4a). In order to identify the
two parameters w,,;; and o' for a given record, a second-order polynomial is fitted to the
cumulative count of zero-level up-crossings of the accelerogram. This is done in a least-squares
sense at equally spaced time points starting from the time at 1% level of Arias intensity to the
time at 99% level of Arias intensity (a total of 9 points are selected). The fitted polynomial is
then differentiated to obtain a linear estimate of the filter frequency as a function of time. The
value of this line at t,,;; represents the estimate of w,,;;, and its slope represents the estimate of
w'. Figure 4.4a demonstrates this fitting process for the component 090 of the accelerogram
recorded at the Silent Valley - Poppet Flat station during the 1992 Landers earthquake.
Comparisons of the estimated filter frequency with those computed by the more exact method
described in Chapter 3 for several accelerograms revealed that the method is sufficiently accurate
for the intended purpose.

To estimate the filter damping ratio, the cumulative number of negative maxima plus positive
minima for the target accelerogram is determined. This value is compared with the estimated
averages of the same quantity for sets of 20 simulations of the theoretical model with the already
approximated filter frequency and the set of damping values ¢ = 0.1,0.2,...,0.9 (see Figure
4.4b). Interpolation between the curves is used to determine the optimal value of { that best
matches the curve for the target accelerogram. This is done by calculating the cumulative
difference between the target and simulated curves,

fot"(target — average of 20 simulations for {;)dt for each value of {, and interpolating to find

the {r value that gives a zero cumulative difference. When {; is less than 0.1, interpolation is
performed by assuming a zero damping ratio for a curve that falls on the horizontal axis (i.e.,
representing a motion with zero numbers of negative maxima and positive minima). For this
analysis, only the time interval between 5% to 95% levels of Arias intensity is considered, where
it is more likely for {r to remain constant. This procedure is a simplification of the more refined
fitting method used in Chapter 3, as it neglects the influence of the filter damping on the
predominant frequency. Figure 4.4b shows application of this method to the Landers earthquake
record mentioned above.

It is important to note that the modulating function has no influence on the zero-level up-

crossings, or the number of negative maxima and positive minima of the process. This facilitates
estimation of the filter parameters after determining the modulating function parameters.
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4.4. Strong motion database

The strong motion database used in this study is a subset of the PEER NGA (Pacific Earthquake
Engineering Research Center: Next Generation Attenuation of Ground Motions Project; see
http://peer.berkeley.edu/smcat/.) database, and a subset of the data used in the development of
the Campbell-Bozorgnia NGA ground motion model (Campbell and Bozorgnia, 2008). These
data were collected for the Western United States (WUS), but some well-recorded, large-
magnitude earthquakes from other regions, which were deemed to be applicable to the WUS, are
also included (Abrahamson et al., 2008). As in Campbell and Bozorgnia (2008), the database
employed in this study excludes aftershocks. Furthermore, the accelerograms in the database are
representatives of “free-field” ground motions generated from shallow crustal earthquakes in
active tectonic regions.

Earthquake and site characteristics:

The NGA database lists many characteristics of each earthquake and recording site. Considering
the type of information that is commonly available to a design engineer, four parameters are
selected for the present study: (F, M, Rmp,V530). F corresponds to the type of faulting with
F = 0 denoting a strike-slip fault and F = 1 denoting a reverse fault (normal faults are not
considered since few records are available); M represents the moment magnitude of the
earthquake; R,,,;, represents the closest distance from the recording site to the ruptured area, and
Vs30 represents the shear-wave velocity of the top 30 meters of the site soil. Among these
parameters, F and M characterize the earthquake source, R,.,, characterizes the location of the
site relative to the earthquake source, and Vg3, characterizes the local soil conditions. These
parameters are believed to have the most significant influences on the ground motion at a site
and traditionally have been considered in predicting ground motion intensities. Additional
parameters can be included to refine the predictive equations in future studies.

Enforced boundaries:

During the design process, two levels of ground motion are commonly considered: the service-
level ground motion and the Maximum Considered Earthquake (MCE) ground motion (see, for
example, the 2008 NEHRP provisions by the Building Seismic Safety Council (BSSC), or the
report by Holmes et al. (2008) on seismic performance objectives for tall buildings). While
response-spectrum analysis is sufficient to evaluate a structure for the service-level motion
during which the structure is expected to remain elastic, response-history dynamic analysis is
usually recommended or required to capture the likely nonlinear behavior of a structure
subjected to the MCE motion. Many predictive models are available that provide the spectral
ordinates of ground motion required for the response-spectrum analysis, including the recently
developed and commonly used NGA ground motion prediction equations by Abrahamson and
Silva (2008), Boore and Atkinson (2008), Campbell and Bozorgnia (2008), Chiou and Youngs
(2008) and Idriss (2008). Aiming at a predictive model of ground motion time-histories for the
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MCE event, we only consider earthquakes having 6.0 < M. By limiting the database to large
earthquakes, the predictive equations presented in this study are customized for earthquakes that
are capable of damage and can cause nonlinear behavior in structures.

In the interest of separating the effects of near-fault ground motions, such as the directivity and
fling effects, which could dominate the spectral content of the ground motion, only earthquakes
with 10 km < R,,,, are considered. A separate study for simulation of near-fault ground motions
is underway. Furthermore, an upper limit R,.,,, < 100 km is selected to exclude ground motions
of small intensity.

In the interest of separating the effect of soil nonlinearity, which can also strongly influence the
spectral content of the ground motion, the lower limit 600 m/s < Vg3, is selected. For smaller
Vs30 Values, one can generate appropriate motions at the firm soil layer and propagate through
the softer soil deposits using standard methods of soil dynamics that account for the nonlinearity
in the shear modulus and damping of the soil.

Database:

Figure 4.5 shows a summary of the selected earthquakes from the Campbell-Bozorgnia NGA
database within the above stated limits. These constraints reduced the data set used in the
analysis to 31 pairs of horizontal recordings from 12 earthquakes for strike-slip type of faulting,
and 72 pairs of horizontal recordings from 7 earthquakes for reverse type of faulting. The two
horizontal components for each recording are orthogonal and along the “as-recorded” directions
(as reported in the NGA database). Inclusion of both components not only doubles the sample
size in the following statistical analysis (31 x 2 + 72 x 2 = 206 data points), but it also allows
consideration of the correlations between the two components when simulating orthogonal
horizontal components of ground motions (see Chapter 7). The selected earthquakes and the
number of recordings for each earthquake are listed in Table 4.1. Observe that the number of
recordings for each earthquake varies; this is accounted for in the regression analysis. Table 4.2
provides a list of the recording sites.

Even though the imposed constrains on the earthquake and site characteristics have reduced the
number of recordings in our database, the resulting predictive equations are simpler (additional
terms that reflect influences of low magnitude earthquakes, near-fault ground motions, distant
earthquakes, and nonlinearity of soft soil are not required) and more reliable for the intended
application of nonlinear response-history analysis for the MCE event. Note that the selection of
the database in no way limits the methodology presented in this study.
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4.5. Identified model parameters for the selected database

For each record in the ground motion database, the model parameters
(Ig, Ds—gs, tmia, Wmia, ', {s) are identified according to the simplified methods described in
Section 4.3.2. This results in observational data for the model parameters which allow us to
investigate the statistical behavior of these parameters for the selected database. Numerical
summaries of data are provided in Table 4.3 including the observed minimum and maximum
values, sample mean, standard deviation, and coefficient of variation. These data are also
graphically represented by their normalized frequency diagrams and empirical cumulative
distribution functions, respectively provided in Figure 4.6 and Figure 4.7.

Arias intensity, I,, has the largest coefficient of variation and ranges between 0.000275 to 2.07
s.g with a mean of 0.0468 s.g. It is observed that the duration parameter D<_q< varies between
5.37 t0 41.29 s, with a mean of 17.25 s. The parameter t,,;; assumes values between a fraction
of a second to 35.15 s with a mean of 12.38 s. For some records, t,,,;4 iS found to be greater than
Ds_qs due to a long stretch of low intensity motion in the beginning of the record. Owing to the
choice of the modulating function and its flexible shape, this long stretch may be replicated in
the simulated motions, if desired.

It is interesting to note that the observed predominant frequency at the middle of strong shaking,
Wmia/2m, ranges from 1.31 to 21.6 Hz for the records in the data set, with a mean value of
5.87 Hz. The fact that only rock and stiff soils are considered is the reason for this relatively high
mean value. It is also interesting to note that w’/2m is more likely to be negative than positive
(see the middle bottom graph in Figure 4.6), i.e., the predominant frequency of the ground
motion during the strong shaking phase is more likely to decrease than increase with time. This
is consistent with our expectation. However, a small fraction of the recorded motions in the
database shows positive but small w’/2m values (i.e., the target plot similar to the one in Figure
4.4a shows a slightly positive or, in rare cases, irregular curvature). Finally, the observed filter
damping ratio {¢, which is a measure of the bandwidth of the ground motion process, is found to
range from 0.027 to 0.767 with a mean of 0.213.

4.5.1. Distribution fitting

After identifying the model parameter values by fitting to each recorded ground motion in the
database, a probability distribution is assigned to the sample of values for each parameter. The
form of this distribution is inferred by visually inspecting the corresponding histogram and
examining the fit to the corresponding empirical cumulative distribution function (CDF). The
parameters of the chosen probability distribution are then estimated by the method of maximum
likelihood. Finally the fit is examined by the Kolmogorov-Smirnov (K-S) goodness-of-fit test to
identify the optimal distribution when alternative options are available.
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Figure 4.6 shows the fitted probability density functions (PDFs) superimposed on the normalized
frequency diagrams of the model parameters. Fitted distributions are listed in Table 4.4. As
commonly assumed in the current practice, the data for I, is found to be well represented by the
lognormal distribution (In(1,) is normally distributed). But other model parameters show distinct
differentiation from the lognormal distribution. In particular, a Beta distribution with specified
boundaries is assigned to the parameters Ds_gs, tmiq, and {r, while the frequency parameter
wmia/2m 1S well represented by a gamma distribution. For w’/2m, the fitted distribution is a
two-sided truncated exponential with the PDF

485exp(6.77 w'/2m) —2< w'/2m <0
fo' jan(@'/27) = {4.85exp(—=17.10 w'/21) 0 < w'/2m < 0.5 (4.13)
0 otherwise

Rounded bounds for the corresponding distributions are provided in Table 4.4. These bounds are
assigned to reflect the physical limitations of a model parameter (e.g., frequency cannot be
negative or damping ratio cannot be greater than 1) as well as the limits of the observed data.

The K-S test, a widely used goodness-of-fit test that compares the empirical CDF with the CDF
of an assumed theoretical distribution, is performed for each model parameter and its assigned
distribution. At the significance level of 0.05, the null hypothesis that the observed data for a
model parameter follow the assigned distribution was rejected for I, Ds_qs, and w'. At the
significance level of 0.01, the null hypothesis was only rejected for I,, and w'. Figure 4.7 shows
the fit of the CDFs for the assigned distributions to the empirical CDFs of the computed samples
of model parameters. It is observed that the fit is good for all the model parameters, which
suggests the appropriateness of the assigned distributions for our purposes regardless of the
results from the K-S test.

4.5.2. Transformation to the standard normal space

Using the assigned marginal distributions, the identified model parameters for the database are
transformed to the standard normal space according to (4.1). Figure 4.8 shows quantile plots of
the data for each parameter, after transformation according to (4.1), versus the corresponding
normal quantiles. It is observed that in most cases the data within the first and third quartiles
(marked by hollow circles) closely follow a straight line, thus confirming that the transformed
data follow the normal distribution reasonably well. The worst fit belongs to the Arias intensity,
for which the commonly assumed lognormal distribution was adopted. We conclude that the
selected distributions provide an effective means for transforming the data to the normal space.
This process helps us satisfy the normality assumption underlying the regression analysis that is
used to develop empirical predictive equations for the model parameters, as described in the next
section.
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4.6. Empirical predictive equations for the model parameters

In this section we construct empirical predictive equations for each of the model parameters in
terms of the earthquake and site characteristic variables F, M, R,.,,,, and Vg3, through regression
analysis of the computed data set of fitted parameter values. The correlations between the
predicted model parameters are also estimated. For simplicity of the notation, hereafter R,.,,,, and
Vg3 are denoted as R and V.

4.6.1. Regression analysis

As seen in Table 4.1, the database contains different numbers of records from different
earthquakes. The records associated with each earthquake correspond to different source-to-site
distances, soil types, or orientations (two orthogonal horizontal components are available for
each recording station). While there are 48 records from the Chi-Chi earthquake, several
earthquakes contribute only 2 records. This uneven clustering of data must be accounted for in
the regression analysis, so that the results are not overly influenced by an individual earthquake
with many records. Furthermore, each earthquake is expected to have its own particular effect on
its resulting ground motions. This effect is random and varies from earthquake to earthquake.
Therefore, the data corresponding to ground motions from the same earthquake have a common
factor and are correlated, while the data corresponding to different earthquakes are statistically
independent observations. To address these issues, a random-effects regression analysis method
is employed. This method effectively handles the problem of weighing observations and, unlike
ordinary regression analysis, assumes that data within earthquake clusters are statistically
dependent. We employ the random-effects regression model in the form

i jie = Wi (Fj, My, Rjg, Vie, B) + i + €1 jk (4.14)
where i =1,...,6 indexes the model parameters, j = 1,...,19 indexes the earthquakes, and
k =1, ...,n; indexes the records associated with the jt" earthquake with n; denoting the number
of records from that earthquake. The transformed model parameter, v; j, is chosen as the
response parameter of the regression. y; and B; are as defined in (4.2). The former is more
precisely denoted as u,,rm r v, the predictive (conditional mean) value of v; for given F, M, R,
and V. Having random effects necessitates a more careful definition of the residuals. Therefore,
the total residual, defined as the difference between the observed and predicted values of the
response variable, is represented as the sum of 7; ; and €; ., respectively referred to as the inter-
event (random effect for the jt* earthquake) and intra-event (the random effect for the
the k" record of j* earthquake) residuals. The superposed hats indicate that these residuals are
observed values of independent, zero-mean, normally distributed error terms n; and ¢€; with
variances 2 and o/, respectively. With this arrangement, the total error for the i** model
parameter is a zero-mean normally distributed random variable with variance =7 + o?.
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One may argue that since the two horizontal components of each record are correlated, an
additional random effect term needs to be included in (4.14). This is not necessary because the
two components are included for all the records of the database. In effect, the dependence
between the pairs of components at each site is accounted for through the random effect term for
all recordings of the same earthquake. Therefore, the resulting parameter estimates are unbiased.
Eventually, the resulting sample correlations between the data corresponding to the two
horizontal components of ground motion at each site provide a means for simulating pairs of
ground motion components at a site of interest, as described in Chapter 7.

For each model parameter, a predictive equation of the form in (4.14) is constructed by selecting
an appropriate functional form for u; and estimating the regression coefficients, B;, and variance
components, T¥ and . The validity of these predictive equations are then examined by standard
statistical methods including inspection of residual diagnostic plots, investigation of estimated
variance components for alternative functional forms, and performing standard significance tests
on the regression as well as on the regression parameters.

4.6.1.1. Estimation of the regression coefficients and variance components

Random-effects modeling is sometimes referred to as variance-components modeling because
for a given database, in addition to estimating the regression coefficients B;, one needs to
individually estimate the error variances 2 and o?. In this study we employ the maximum
likelihood technique to obtain estimates of all the regression coefficients and variances at one
step. Although this method requires the use of a numerical optimization technique, it is not
computationally intensive and, unlike other proposed methods (e.g., Abrahamson and Youngs
(1992), Brillinger and Preisler (1985)), does not require a complicated algorithm that calculates
the regression coefficients and the variance components in separate, iterative steps. The
likelihood function is formulated by noting that the observed values of the total residuals are
jointly normal with a zero mean vector and a block-diagonal covariance matrix. Therefore, for
the it® model parameter, the likelihood function of the regression coefficients and variance
components is equal to the joint normal PDF evaluated for the observed values of the total
residuals. Writing the total residuals as v; j, — yi(Fj,Mj,Rjk, Vi, Bi) and collecting the values for
all j and k into vectors v; and w;(B;), the likelihood function assumes the form

1 1
L(B; 17, 07) = WEXP <—§ [vi — m(B)ITE v, — Hi(Bi)]) (4.15)

where X; is the covariance matrix, which is expressed as a function of the variance components
77 and o7 in the form

aizln1 + 17 1, 0 0
2 2
0 0 O-izlnm + Tiz 1n19 NXN (4-10)

+
= ofly + 1¢ (Z o 1nj>
=1,
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In the above, I,, is the identity matrix of size n, 1,, is an n X n matrix of 1’s, and N is the total
number of observations (206 in the present case). 0 denotes a matrix of zero values. The first
equality shows the overall appearance of the covariance matrix, while the second equally
represents the more commonly used form of this matrix (e.g., Searle, 1971). This compact form
facilitates computer programming when maximizing the likelihood in (4.15). In this expression,
»* indicates a direct sum® operation. The above formulation takes into consideration the fact that
data corresponding to records from different earthquakes are uncorrelated (off-diagonal blocks
are zero), data corresponding to the records from the same earthquake have correlation 77 /(t? +
a?) (off-diagonal elements of the diagonal blocks), and each data point is fully correlated with
itself (diagonal elements equal 7 + o). Maximum likelihood estimates of the parameters
B;, 7 and o? for each transformed stochastic model parameter v; are obtained by maximizing
the function in (4.15) relative to these parameters. In this study, the MATLAB optimization
toolbox is used for this purpose.

4.6.1.2. Model testing: Computing residuals

To assess the sufficiency of the selected functional forms for each predictive equation, one
widely used approach is to inspect the residuals. The residuals are inspected to examine
departures from normality. This is done by inspecting their histograms and Q-Q plots (Q stands
for quantile). Furthermore, plots of the residuals versus predictor variables (sometimes referred
to as the residual diagnostic plots) are constructed and examined for any systematic patterns.
This process, which is commonly known as analysis of residuals, requires calculation of the
residuals which involves partitioning of the total residuals into inter-event and intra-event
residuals. The inter-event residuals for each group (data corresponding to the records of a single
earthquake) are estimated as

ni
2 J I
ﬁ _ T Zk:l (vl,]k uvi,jlej'Mj'Rjk'Vk)
b a? n;
TZ + i ]
i nj

(4.17)

2y
_ T ijzl(vi,jk - 'uvi,jlej:Mj:Rjk:Vk)

2 2
n;Ti + o

where a shrinkage factor, reflecting the relative size of the variation in a group to the total
variation in the database, is multiplied with the raw residual (i.e., average of the total residuals in
a group) for that group. Observe that the shrinkage factor involves n;, the number of records
from earthquake j, and thereby adjusts for the sparseness of information from an earthquake with
a small number of records. The second equality is the form that is commonly used in the
literature for construction of ground motion predictive equations based on one of the earliest

A, O 0
! The direct sum of matrices of different sizes A;, i = 1, ...,n, is T nA = 0 {‘z 0
0 0 A,
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studies on this subject by Abrahamson and Youngs (1992). After calculating the inter-event
residuals, the intra-event residuals are computed from

€ijk = (Vi,jk - Hvi,jk|Fj,M,-,R,-k,vk) — i) (4.18)

where the expression in the parenthesis is the total residual.

4.6.1.3. Regression results

For the sake of simplicity, and considering the relatively narrow range of earthquake magnitudes,
a linear form of the regression equation for each transformed model parameter in terms of
explanatory functions representing the type of faulting, earthquake magnitude, source-to-site
distance and soil effect is employed. Various linear and nonlinear forms of the explanatory
functions were examined. In view of the availability of previous predictive formulas for Arias
intensity and duration (e.g., Travasarou et al. (2003), Abrahamson and Silva (1996)), more
possible forms of the explanatory functions for these two parameters were investigated. For the
other model parameters, alternative forms were considered only if the linear form revealed
inadequate behavior of the residuals. For each model parameter, the relative performances of the
resulting functional forms were assessed by inspecting the residuals and estimates of the variance
components. Functional forms with smaller variances that demonstrated adequate behavior of the
residuals (i.e., lack of systematic patterns in the plots of residuals versus the predictor variables)
were selected. The resulting predictive equations are given by

V1 = P10+ P11 (F) + B2 (%) + B3 (ln 25%) + P14 (ln %m/s) tnt+eée (4.19)
M R 14 ,

v = Bio + Bi1(F) + B (ﬁ) + Bi3 (m) + Bia (m) +nit+e i=2..6 (420)
with the estimated regression parameters and standard deviations listed in Table 4.5. Standard
significance tests verified the adequacy of the regression for each model parameter at the 90%
and higher confidence levels (P-value for the F-test with the null hypothesis ;1 = B;, = fi3 =
fia = 0 is reported in Table 4.5). Furthermore, the regression coefficients f; 1, B; 2, B3, and f; 4
(i =1,...,6) were individually tested (B;, was skipped because inclusion of a constant term in
the regression formulation was not questioned); those with statistical significance at the 95%
confidence level are shown in bold in Table 4.5. Furthermore, 95% confidence intervals for these
regression coefficients are reported in Table 4.6. Inclusion of zero in a confidence interval
indicates that the corresponding regression coefficient is not of much significance; this is
consistent with the reported results in Table 4.5. Table 4.7 presents the P-values for the t-test
with the null hypothesis g; ; = 0 (j = 1, ...,4). The smaller this number is, the more significant
the estimate of the corresponding coefficient in Table 4.5 is. In the subsequent analysis (Chapter
5), all the coefficients in Table 4.5 are used (regardless of the significance level) to randomly
generate the model parameters and simulate ground motions.

The first three terms in (4.19) and (4.20) reflect the effect of the source that generates the seismic
waves. For strike-slip type of faulting, F = 0, this effect is controlled by f5; , and f3; »; while for
reverse type of faulting, F = 1, it is controlled by f; 4, ;1 and f5; ,. The fourth term reflects the
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effect of the travel path on waves (including geometric spreading and other attenuating factors).
The fifth term reflects the effect of the site conditions on the waves. The last two terms, random
errors, represent the natural variability of the response parameters for the specified set of
earthquake and site characteristics. The moment magnitude, source-to-site distance, and shear-
wave velocity terms in the predictive equations (4.19) and (4.20) have each been normalized by a
typical value for engineering purposes. This normalization renders the regression coefficients
dimensionless. Therefore, by simply comparing the estimated regression coefficients one can
gain insight into the relative contribution of the earthquake and site characteristics to a model
parameter.

The estimated parameters in Table 4.5 provide some interesting insight. For example, we observe
that, as expected, Arias intensity tends to increase with magnitude and decrease with distance
and site stiffness. The effective duration as well as t,,;; tend to increase with magnitude and
distance (more distant sites tend to experience longer motions) and tend to decrease with site
stiffness. These findings are consistent with prior observations (Travasarou et al. (2003),
Abrahamson and Silva (1996), Trifunac and Brady (1975)). The results also suggest that the
effective duration and t,,;; tend to be shorter for reverse faulting compared to strike-slip
faulting. Furthermore, the results indicate that the predominant frequency at the middle of strong
shaking tends to decrease with increasing magnitude and source-to-site distance, while the rate of
change of the predominant frequency (which has a negative mean) tends to increase, i.e., a
slower change with increasing magnitude and distance. Finally, the filter damping, which is a
measure of the bandwidth of the ground motion, tends to increase with the moment magnitude
and site stiffness and decrease with source-to-site distance. These trends are in general consistent
with our expectations.

Figure 4.9 shows quantile plots of the residuals for each model parameter versus the
corresponding normal quantiles (zero-mean with the estimated variance). It is observed that the
data within the first and third quartiles (marked by hollow circles) closely follow a straight line,
thus confirming that the residuals follow the normal distribution. Figure 4.10 shows the
diagnostic scatter plots of the residuals versus the predictor variables. These plots show that the
residuals are evenly scattered above and below the zero level with no obvious systematic trends.
This implies lack of bias and a good fit of the regression models to the data.

As a further item of interest, Table 4.8 compares the estimated total variances obtained by the
method described above with those obtained from a standard regression analysis according to
(4.2) that disregards the random effects in the data. As can be seen, the estimated variances tend
to be larger with the random-effects regression. This is not surprising, because by neglecting
intra-event correlations, the standard regression assumes there is more information available in
the data than there really is. By correctly accounting for the dependence between groups of
observations, the random-effects regression method avoids underestimating the total error
variance.
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4.6.2. Correlation analysis

For a given set of earthquake and site characteristics (F, M, R, V), the parameters v;, i = 1, ...,6,
and, therefore, 6; are correlated. These are estimated as the correlations between the total
residuals 7); + €;. Table 4.9 lists the correlation coefficients between the jointly normal variables
v;. Several of these estimated correlations provide interesting insight. Observe that there is
negative correlation between v, and v, (corresponding to I, and Ds_qgs). This is somewhat
surprising, since one would expect a higher Arias intensity for a longer duration. However, since
Arias intensity is more strongly related to the amplitude of the motion than to the duration (it is
related to the square of the amplitude but linear in duration), this result may be due to the
tendency of motions with high amplitude to have shorter durations. This negative correlation has
also been observed by Trifunac and Brady (1975). Second, a strong positive correlation is
observed between v, and wv; (corresponding to Dg_os and t,,;q), Which is as expected.
Interestingly, v, (corresponding to w,,;4) has negative correlations (though small) with all three
previous parameters. Thus, higher intensity and longer duration motions tend to have lower
predominant frequency. The correlation between v, and v (corresponding t0 w,,;q and w’) is
negative, indicating that motions with higher predominant frequency tend to have a faster decay
of the frequency with time. Finally, the positive correlation between v, and v, (corresponding to
wmiq and {r) suggests that high-frequency motions tend to have broader bandwidth.

4.7. Summary

For the proposed stochastic ground motion model to be of practical use in earthquake
engineering, empirical predictive equations are constructed for the model parameters in terms of
earthquake and site characteristics. A general methodology for construction of empirical
predictive equations is presented which is demonstrated for a selected database of recorded
ground motions. The database used in this study is a subset of the NGA database and is limited
to strong motions on stiff soil with source-to-site distance greater than 10 km. Model parameters
are identified for each accelerogram in the database by fitting the evolutionary statistical
characteristics of the stochastic model to those of the recorded motion. For convenience in
obtaining observational data, alternative model parameters are proposed and adjustments are
made to the methods of parameter identification previously proposed in Chapter 3. By
performing statistical analysis on the identified model parameters, marginal distributions are
assigned to each parameter. Using these distributions the data are transformed to the standard
normal space, where they are regressed on the earthquake and site characteristics resulting in
predictive equations (4.19) and (4.20) and corresponding parameter estimates shown in Table
4.5. The specifics of regression analysis are described in detail and the resulting regression
models are tested. Correlation analysis is then performed to find dependencies among the model
parameters. The results are presented in Table 4.9. The equations in (4.19) and (4.20), and the
information provided in Table 4.5 and Table 4.9 facilitate probabilistic prediction of the model
parameters (I, Ds_os, tmid, @mida» @' {r) if the earthquake and site characteristics (F,M,R,V)
are specified without any need for a previously recorded ground motion.
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Table 4.1. Selected earthquakes from the Campbell-Bozorgnia NGA database, type of faulting, magnitude, and number of records.

Earthquake Earthquake ID Earthquake Faulting Moment Number of
Number in NGA Database? Name Mechanism Magnitude Records
1 0050 Imperial Valley-06 Strike-Slip 6.53 2
2 0064 Victoria, Mexico Strike-Slip 6.33 2
3 0090 Morgan Hill Strike-Slip 6.19 10
4 0125 Landers Strike-Slip 7.28 4
5 0126 Big Bear-01 Strike-Slip 6.46 10
6 0129 Kobe, Japan Strike-Slip 6.90 4
7 0136 Kocaeli, Turkey Strike-Slip 7.51 4
8 0138 Duzce, Turkey Strike-Slip 7.14 2
9 0140 Sitka, Alaska Strike-Slip 7.68 2
10 0144 Manjil, Iran Strike-Slip 7.37 2
11 0158 Hector Mine Strike-Slip 7.13 16
12 0169 Denali, Alaska Strike-Slip 7.90 4
13 0030 San Fernando Reverse 6.61 14
14 0046 Tabas, Iran Reverse 7.35 2
15 0076 Coalinga-01 Reverse 6.36 2
16 0101 N. Palm Springs Reverse 6.06 12
17 0118 Loma Prieta Reverse 6.93 28
18 0127 Northridge-01 Reverse 6.69 38
19 0137 Chi-Chi, Taiwan Reverse 7.62 48

Table 4.2. Selected ground motion records, source-to-site distances, and shear-wave velocities of recording sites.

Record ID Closest Distance Sh_ear—wave
Earthquake in NGA Station Name to The Ruptured | Velocity of Top 30

Number Database® Area meters
(km) (m/s)

1 164 Cerro Prieto 15.19 659.6

2 265 Cerro Prieto 14.37 659.6

3 454 Gilroy - Gavilan Coll. 14.84 729.6

3 455 Gilroy Array #1 14.91 1428

3 471 San Justo Dam (L Abut) 31.88 622.86

3 472 San Justo Dam (R Abut) 31.88 622.86
3 476 UCSC Lick Observatory 45.47 714

4 891 Silent Valley - Poppet Flat 50.85 684.94

2 A unique number assigned to each earthquake in the NGA database for identification purposes.
® A unique number assigned to each record in the NGA database for identification purposes.
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4 897 Twentynine Palms 41.43 684.94
5 922 Pear Blossom - Pallet Creek 99.5 684.94
5 925 Rancho Cucamonga - Deer Can 66 821.69
5 928 Sage - Fire Station 61.8 622.86
5 934 Silent Valley - Poppet Flat 31.5 684.94
5 938 Winchester Bergman Ran 58.8 684.94
6 1109 MZH 70.26 609

6 1112 OKA 86.94 609

7 1154 Bursa Sivil 65.53 659.6
7 1169 Maslak 55.3 659.6
8 1619 Mudurnu 34.3 659.6
9 1626 Sitka Observatory 34.61 659.6
10 1633 Abbar 12.56 723.95
11 1763 Anza - Pinyon Flat 89.98 724.89
11 1767 Banning - Twin Pines Road 83.43 684.94
11 1786 Heart Bar State Park 61.21 684.94
11 1787 Hector 11.66 684.94
11 1795 Joshua Tree N.M. - Keys View 50.42 684.94
11 1824 San Bernardino - Del Rosa Wk Sta 96.91 684.94
11 1832 Seven Oaks Dam Project Office 87.2 659.6
11 1836 Twentynine Palms 42.06 684.94
12 2107 Carlo (temp) 50.94 963.94
12 2111 R109 (temp) 43 963.94
13 59 Cedar Springs, Allen Ranch 89.72 813.48
13 63 Fairmont Dam 30.19 684.94
13 71 Lake Hughes #12 19.3 602.1
13 72 Lake Hughes #4 25.07 821.69
13 73 Lake Hughes #9 22.57 670.84
13 87 Santa Anita Dam 30.7 684.94
13 89 Tehachapi Pump 63.79 669.48
14 139 Dayhook 13.94 659.6
15 369 Slack Canyon 27.46 684.94
16 511 Anza - Red Mountain 38.43 684.94
16 512 Anza - Tule Canyon 52.06 684.94
16 528 Murrieta Hot Springs 54.82 684.94
16 536 Santa Rosa Mountain 39.14 684.94
16 537 Silent Valley - Poppet Flat 17.03 684.94
16 541 Winchester Bergman Ran 49.08 684.94
17 769 Gilroy Array #6 18.33 663.31
17 771 Golden Gate Bridge 79.81 641.56
17 781 Lower Crystal Springs Dam dwnst 48.39 712.82
17 782 Monterey City Hall 44.35 684.94
17 788 Piedmont Jr High 73 895.36
17 789 Point Bonita 83.45 1315.9
17 791 SAGO South - Surface 34.32 684.94
17 795 SF - Pacific Heights 76.05 1249.9
17 797 SF - Rincon Hill 74.14 873.1
17 801 San Jose - Santa Teresa Hills 14.69 671.77
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17 804 So. San Francisco, Sierra Pt. 63.15 1020.6
17 809 UCSC 18.51 714

17 810 UCSC Lick Observatory 18.41 714

17 813 Yerba Buena Island 75.17 659.81
18 943 Anacapa Island 68.93 821.69
18 946 Antelope Buttes 46.91 821.69
18 957 Burbank - Howard Rd. 16.88 821.69
18 989 LA - Chalon Rd 20.45 740.05
18 994 LA - Griffith Park Observatory 23.77 1015.9
18 1011 LA - Wonderland Ave 20.3 12225
18 1012 LA 00 19.07 706.22
18 1020 Lake Hughes #12A 21.36 602.1
18 1021 Lake Hughes #4 - Camp Mend 31.66 821.69
18 1023 Lake Hughes #9 25.36 670.84
18 1027 Leona Valley #1 37.19 684.94
18 1029 Leona Valley #3 37.33 684.94
18 1033 Littlerock - Brainard Can 46.58 821.69
18 1041 Mt Wilson - CIT Seis Sta 35.88 821.69
18 1060 Rancho Cucamonga - Deer Can 79.99 821.69
18 1074 Sandberg - Bald Mtn 41.56 821.69
18 1078 Santa Susana Ground 16.74 715.12
18 1091 Vasquez Rocks Park 23.64 996.43
18 1096 Wrightwood - Jackson Flat 64.66 821.69
19 1206 CHYO042 28.17 680

19 1234 CHY086 28.42 679.98
19 1245 CHY102 37.72 679.89
19 1257 HWAO003 56.14 1525.9
19 1273 HWAO024 43.15 630.08
19 1278 HWAO029 54.29 614.05
19 1287 HWAO038 42.54 642.73
19 1293 HWAO046 51.8 617.52
19 1302 HWAOQ57 50.6 678.6
19 1325 ILAO31 83.31 649.25
19 1347 ILAO63 61.06 996.51
19 1350 ILAO67 38.82 680

19 1377 KAUO050 40.49 679.97
19 1391 KAUQ77 82.96 680

19 1485 TCU045 26 704.64
19 1517 TCU084 11.24 680

19 1518 TCUO085 58.09 999.66
19 1520 TCUO088 18.16 680

19 1548 TCU128 13.15 599.64
19 1576 TTNO024 60.01 645.49
19 1577 TTNO25 65.79 704.96
19 1585 TTNO40 48.33 728.01
19 1587 TTNO042 65.25 845.34
19 1594 TTNO51 36.7 680
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Table 4.3.

Summary statistical data of identified model parameters

* Means and standard deviations of these distributions are according to columns 4 and 5 of Table 4.3.

Parameter Minimum Maximum Sample Mean | Sample Standard | Coefficient of
Deviation Variation
1, (s.9) 0.000275 2.07 0.0468 0.164 3.49
Ds_qs (9) 5.37 41.29 17.25 9.31 0.54
tmia (5) 0.93 35.15 12.38 7.44 0.60
Wmia/2m (Hz) 1.31 21.6 5.87 3.11 0.53
w' /21 (Hzls) —1.502 0.406 —0.089 0.185 2.07
(s (Ratio) 0.027 0.767 0.213 0.143 0.67
Table 4.4. Distribution models and bounds assigned to the model parameters.
Parameter Fitted Distribution’ Distribution
Bounds
1, (s.9) Lognormal (0, )
Ds_gs (s) Beta [5,45]
tmia (5) Beta [0.5,40]
Wmia/2m (Hz) Gamma (0,00)
w'/2m (Hz) Two-sided Truncated Exponential [—2,0.5]
{r (Ratio) Beta [0.02,1]
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Table 4.5. Maximum likelihood estimates of regression coefficients and standard error components.

} Bio Bia Bi.2 Biz Bia T g; P-value”
1 —1844 -0.071 2944 —-1356 —0.265 0.274 0.594 0.000
2 —6.195 —0.703 6.792 0.219 -0.523 0.457 0.569 0.000
3 —5.011 —0.345 4.638 0348 —0.185 0.511 0.414 0.000
4 2253 —0.081 —1.810 —0.211 0.012 0.692 0.723 0.001
5 — 2.489 0.044 2.408 0.065 —0.081 0.129 0.953 0.095
6 —0.258 —0.477 0.905 —0.289 0.316 0.682 0.760 0.002
Table 4.6. 95% confidence intervals for the regression coefficients.
Confidence Intervals

L Bia Biz2 Bis Bia

1 [—0.266, 0.124] [1.715,4.173] [-1.512, -1.200] [—0.749, 0.218]

2 [-0.929,—-0.478] [5.383,8.204] [0.106, 0.331] [—0.980, —0.065]

3 [—0.592, —0.098] [3.094, 6.181] [0.225,0.471] [—0.685, 0.316]

4 [—-0.377,0.215] [-3.668, 0.049] [—0.359, —0.063] [—0.589, 0.613]

5 [—0.255, 0.343] [0.532, 4.284] [—0.084, 0.215] [—0.688, 0.526]

6 [—0.774, —0.180] [—0.959, 2.765] [—0.437,—0.140] [—0.287,0.919]

Table 4.7. P-values for the t-test with the null hypothesis, g; ; = 0.

P-value®

i Bia Bi2 Bis Bia

1 0.476 0.000 0.000 0.281
2 0.000 0.000 0.000 0.025
3 0.006 0.000 0.000 0.467
4 0.591 0.056 0.005 0.968
5 0.772 0.012 0.391 0.792
6 0.002 0.339 0.000 0.303

® The smallest significance level at which the null hypothesis Bi1 = Bi» = Piz = Pia = 0 is rejected. F-test is

employed.

® The smaller this number is, the more significant the estimate of the corresponding coefficient in Table 4.5 is.
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Table 4.8. Total standard deviations obtained by two different regression methods.

: Regular Random-Effects
l Regression Regression

1 0.647 0.654

2 0.681 0.730

3 0.655 0.658

4 0.908 1.000

5 0.826 0.962

6 0.959 1.021

Table 4.9. Sample correlation coefficients between the transformed model parameters (estimated as the correlation coefficients
between the total error terms).

%1 U2 U3 Uy Us Ve
12 1
v, | —0.36 1 Sym.
V3 0.01 0.67 1
v, | —0.15 —-0.13 -0.28 1
Vs 0.13 -0.16 -0.20 -0.20 1
vg | —0.01 —-0.20 -—0.22 0.28 —-0.01 1
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Figure 4.1. Top: recorded motion; Left: simulated motions with model parameters identical to those of the recorded motion; Right: simulated motions with different sets of model
parameters that correspond to the characteristics of the earthquake and site that produced the recorded motion.
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Figure 4.2. Modulating function parameters identified for an acceleration time-history.
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CHAPTER 5

SIMULATION OF GROUND MOTIONS FOR
SPECIFIED EARTHQUAKE AND SITE
CHARACTERISTICS
AND THEIR USE IN PBEE

5.1. Introduction

In seismic design and analysis of structures, development of ground motions is a crucial step
because even with the most sophisticated and accurate methods of structural analysis, the validity
of predicted structural responses depends on the validity of the input excitations. Several levels of
ground motions are commonly considered for seismic assessment of a structure.

For lower levels of intensity, when the structure is expected to remain elastic, response-spectrum
analysis is usually sufficient. This type of analysis only requires knowledge of the ground motion
spectral values. One of the most practical approaches to obtain these values is to use empirically
based ground motion prediction equations (GMPES), also known as attenuation relations. Many
GMPEs have been developed that predict the median and standard deviation of ground motion
spectral values for a range of spectral periods. The most recent of them is the Next Generation
Attenuation (NGA) relations (Abrahamson et al., 2008). These GMPEs have been calibrated
against observed data and are commonly used in practice.

For higher levels of intensity, when nonlinear structural behavior is likely, response-history
dynamic analysis is necessary. This type of analysis requires knowledge of acceleration time-
histories. It is common practice to use real recorded ground motions for this purpose. However,
difficulties in this approach arise because ground motion properties vary for different earthquake
and site characteristics, and recorded motions are not available for all types of earthquakes in all
regions. As a result, the engineer is often forced to select motions recorded on sites other than the
site of interest and to modify the records (e.g., scale them or modify their frequency contents) in
ways that are often questionable and may render motions that are not realistic. Another alternative
is to use synthetic motions. A suite of synthetic motions for specified earthquake and site
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characteristics can be used in conjunction with or in place of previously recorded ground motions
in performance-based earthquake engineering (PBEE). PBEE considers the entire spectrum of
structural response, from linear to grossly nonlinear and even collapse, and thereby requires ground
motions with various levels of intensity for different earthquake scenarios. Such a collection is
scarce among previously recorded motions. Therefore, generation of an appropriate suite of
synthetic motions that have characteristics similar to those of real earthquake ground motions is
especially valuable in PBEE.

Many models have been developed in the past to synthetically generate ground motions (see the
review in Chapter 1). One group of models are physics-based seismological models that produce
realistic accelerograms at low frequencies, but often need to be combined with stochastic models
known to be more appropriate at high frequencies; the resulting combination is usually referred to
as a hybrid model. The physics-based seismological models tend to be too complicated for use in
engineering practice, as they require a thorough knowledge of the source, wave path, and site
characteristics, which typically are not available to a design engineer. As a result, these models are
rarely used for engineering purposes. Our aim in this study is to develop a method for generating
synthetic ground motions, which uses information that is readily available to the practicing
engineer. We employ a site-based (as opposed to modeling the seismic source) stochastic ground
motion model that focuses on realistically representing those features of the ground motion that are
known to be important to the structural response, e.g., intensity, duration, and frequency content of
the ground shaking at the site of interest. If the model parameters are known, synthetic acceleration
time-histories can be generated. In the previous chapter, the proposed stochastic ground motion
model was calibrated against recorded ground motions and predictive equations for the model
parameters were developed in terms of earthquake and site characteristics that are typically
required as input arguments to GMPEs, i.e., the faulting mechanism, earthquake magnitude,
source-to-site distance, and shear-wave velocity of the local soil. Considering the success of
GMPEs in practice, in this chapter, we develop a method for generating synthetic ground motions
that requires as input arguments only the earthquake and site characteristics mentioned above.

This chapter starts by describing a method for simulating jointly normal random variables. Then
the discussion leads to random simulation of the stochastic model parameters for specified
earthquake and site characteristics. The marginal distributions, predictive equations and correlation
coefficients developed in Chapter 4 are incorporated for this purpose. Each set of randomly
simulated model parameters is then used in turn in the stochastic ground motion model, resulting in
an ensemble of synthetic motions that account for the natural variability of real ground motions for
the specified earthquake and site characteristics. Examples of simulated and recorded ground
motions are provided. Finally, the importance of this study in PBEE is discussed.

5.2. Simulation of jointly normal random variables

Realizations of a set of statistically independent random variables with known marginal
distributions (e.g., normal) may be obtained by using standard random number generators. These
generators are available in most statistical toolboxes. In this study, we employ the random
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number generator in the statistics toolbox of MATLAB, which starts by generating realizations
of uniformly distributed random variables and then produces realizations of random variables for
other distributions either directly (i.e., from the definition of the distribution) or by using
inversion (i.e., by applying the inverse function for the distribution to a uniformly distributed
random number’) or rejection (an iterative scheme used when the functional form of a
distribution makes it difficult or time consuming to use direct or inversion methods) methods. In
this study, for generating normally distributed random variables, the Ziggurat algorithm by
Marsaglia and Tsang (2000) is employed as the default in MATLAB.

To generate realizations of jointly normal random variables, the correlation coefficients between
the variables must be accounted for. Therefore, simple use of random number generators that
result in uncorrelated realizations is not sufficient. Some statistical toolboxes, including the
statistics toolbox in MATLAB, have the capability to generate correlated normal random
variables. The approach used in this study to generate realizations of jointly normal random
variables given realizations of uncorrelated standard normal random variables is presented
below.

Let X = [Xq, X5, ..., X, ]7, where the superposed T indicates the matrix transpose, be a vector of n
jointly normal random variables with the mean vector, My and covariance matrix, Xxx, such that

t Var[Xi] sym.
H2 Cov|[Xy, X Var|X
Hn Cov[X,,X1] Cov[X,,X2] .. Var[X,]

where y; and Var[X;], i = 1,...,n, denote the mean and the variance of X; respectively, and
Cov[X;, X;] denotes the covariance of X; and X;. The realizations of X may be obtained by use of
the linear transformation

x = My + LIy (5.2)

In the above expression, the lower case, x, is used to denote a realization of the vector of random
variables X; y is a realization of the vector of uncorrelated standard normal random variables
Y=[V,Y,..,Y]"; and LIy is a lower triangular matrix obtained from the Cholesky
decomposition of the covariance matrix Zyx such that Zxyx = LYiLyx. The Cholesky
decomposition is made possible because the covariance matrix Zxyx is positive definite (provided
there is no linear relation between the random variables). This means that for any non-zero
column-vector a of size n, aTZyxa > 0.

The expression in (5.2) transforms uncorrelated standard normal random variables into jointly
normal random variables (i.e., transforms y to x). By definition, y has a zero mean vector and an
identity covariance matrix. It follows that the mean vector and the covariance matrix of My +
Lixy are My and Zxx respectively. Hence, (5.2) is a realization of vector X. To obtain a
realization of X, we first obtain a realization of y by individually simulating its components, and
then use (5.2) to compute the corresponding realization, x.

L If F is a continuous distribution with inverse F~1, and U is a uniformly distributed random variable on the unit
interval [0,1], then F~1(U) has distribution F.
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5.2.1. Conditional simulation of a subset of jointly normal random variables

It may be of interest to generate realizations of a subset of jointly normal random variables
X, = [X1, X5, .., Xk]", k <n, given observed values for the remainder of variables X, =
[Xk+1, - X, ]T. When simulating, it is important to account for the correlations between the
variables of X, and Xj,, hence, conditional simulation is necessary. If the set of random variables
X = [Xy,X5, ..., X,]" is jointly normal, then the conditional distribution of the subset X, given
Xp = Xy, is also jointly normal. Once the corresponding conditional mean vector M,; and
covariance matrix X,,pp are determined, the linear transformation in (5.2) can be used to
generate realizations of the subset X,.

Obtaining the conditional mean vector and covariance matrix requires partitioning of the mean
vector and covariance matrix of X in the form

Ma 2:aa | 2:ab
My =|-— Ixx=|—— —— -~ (5.3)
M, Zpa | Zpp
Then the conditional mean vector and covariance matrix are given by
Mapp = M, + ZapZpi (Xp — M) (5.4)
z:aa|bb =23, — z:abzl:l}zba (5.5)

which are used in (5.2) to generate realizations of the subset X, given X, = Xy,

For more details on properties of multinormal probability distribution and conditional simulation
of random variables refer to standard probability and statistics books such as Kotz et al. (2000)
or Anderson (1958). Specifically for conditional simulation and partitioning of the mean vector
and the covariance matrix refer to Theorem 2.5.1. of Anderson (1958).

5.3. Random simulation of model parameters

When generating synthetic ground motions, it is desired to maintain the natural variability that
exists among real earthquake ground motions for a given set of earthquake and site
characteristics. This requires accounting for the variability in the model parameters, i.e.,
(I, Ds—o5, tmid » Omid» © {r), which are regarded as random variables. To achieve this goal, it is
necessary to randomly simulate realizations of the model parameters using their joint distribution
conditioned on the earthquake and site characteristics. This joint distribution is unknown, but
marginal distributions for each model parameter were proposed in Chapter 4. The proposed
marginal distributions allow transformation of the model parameters to the standard normal
space by (4.1), resulting in the vector of random variables v = [v4,v5, ..., v¢]T. Each transformed
model parameter, v;, i = 1,...,6, follows a normal distribution with mean u;(F,M,R,V,B,;),
which is a function of the earthquake and site characteristics and can be computed using the
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predictive equations provided by (4.19) and (4.20). It has a standard deviation equal to the

standard deviation of the total error in the predictive equations (i.e., /t;% + ¢;%). Furthermore,
estimated correlation coefficients between the transformed model parameters are provided in
Table 4.9. For v, we assume a jointly normal distribution which is consistent with the set of
marginals and correlations mentioned above. This is equivalent to assuming that the original
parameters have the Nataf joint distribution (Liu and Der Kiureghian, 1986). Due to the
dependence of the mean on F, M, R, and V, the joint distribution is conditioned on the earthquake
and site characteristics. Therefore, given a set of earthquake and site characteristics, transformed
model parameters are simulated as jointly normal random variables, which are then transformed
back to their physical space by using the inverse of (4.1).

To randomly simulate realizations of the vector of jointly normal random variables v =
[vy, V5, ..., vg]T, We construct the mean vector, M,, and the covariance matrix, Z,,, according to
(5.1). The linear transformation in (5.2) is then employed to generate sample realizations of v.
Alternatively, the total error terms in the predictive equations of Chapter 4 may be regarded as
jointly normal random variables with zero mean vector and covariance matrix X,,. They can be
simulated according to (5.2) and added to the predicted mean values of each v; to generate
sample realizations of v. If the values for a subset of the model parameters are given (e.g., v; is
fixed), the conditional mean vector (e.g., My, ..jv,) and the conditional covariance matrix
(8.9 Z[v,, vellva,..vellvyv,) are computed for the remainder of these random variables as
described in Section 5.2.1 and are employed in (5.2) to generate sample realizations. As
previously mentioned, the simulated realizations of v are transformed to the original space of the
corresponding model parameter by using the inverse of (4.1) and the assigned marginal
distributions in Table 4.4. This results in realizations of I, Ds_os, tmid, Wmiq, @ and {r for the
specified earthquake and site characteristics used to construct M,,.

As an example, four sets of model parameters are simulated for the earthquake and site
characteristics: F =1, M =735 R=14km and V =660m/s. These characteristics
correspond to the earthquake and site that produced a real ground motion recorded at Dayhook
station during Tabas, Iran 1978 earthquake. The model parameters for the recorded motion are
identified and reported along with the simulated model parameters in Table 5.1. These values
belong to the records of Figure 4.1, previously discussed in Chapter 4, which demonstrates the
effect of using different model parameters on the variability in a suite of ground motions. The
model parameters for the records on the left of the figure are identical to the model parameters of
the recorded motion, while the model parameters for the records on the right of the figure are all
different but correspond to the same earthquake and site characteristics. The set of motions with
variable model parameters demonstrates a larger variability, representative of the natural
variability among real ground motions (examples in the upcoming sections will support this
statement), and are better suited for use in assessment or design of structures for a given design
scenario, i.e., given earthquake and site characteristics.

Now that we are able to simulate sets of model parameters for specified earthquake and site
characteristics, each set may be used in the stochastic ground motion model to generate a single
synthetic ground motion. The next section provides more details and examples on simulation of
ground motions for specified earthquake and site characteristics.
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5.4. Random simulation of ground motions

Given a design scenario expressed in terms of F,M,R and V, any number of synthetic ground
motions can be generated based on the information provided in the preceding sections and
without the need for any previously recorded motion. The details are described below. Here, we
employ the stochastic ground motion model of Chapter 4 (i.e., stochastic model proposed in
Chapter 2 with the modulating function, the linear filter, and the model parameters that were
specified in Chapter 4).

Given F, M, R and V, sample realizations of random variables v;, i = 1, ...,6, are generated and
transformed to sample realizations of model parameters (I, Ds_os, tmid» @mid»® » {r) according
to Section 5.3. The first three parameters are then converted to the gamma modulating function
parameters a = (aq,ay,a3) according to (4.6), (4.7) and (4.9), vyielding the set
(al,az,a3,wmid,w',ff). To, = 0 is assumed for simulation purposes. These parameter values
together with a set of n statistically independent standard normal random variables wu;, i =
1, ...,n, are used in the stochastic model in (2.12) and the high-pass filter in (2.28) to generate a
synthetic accelerogram, Z(t). Any number of accelerograms for the given earthquake and site
characteristics can be synthesized by generating new realizations of v; and w;. This procedure is
summarized in Figure 5.1. The following presents examples of simulations for Scenario I: when
all the model parameters are unknown, and for Scenario Il: when a subset of the model
parameters is specified.

5.4.1. Scenario I: All model parameters are unknown

The simulation method described above maintains the natural variability of ground motions for a
given set of earthquake and site characteristics. To demonstrate this, in Figures 5.2, 5.3 and 5.4
we show three sets of ground motions for given values of F,M,R and V. (To better observe
traces of the time-histories provided in these and subsequent figures, different scaling is used for
the vertical axes.) Each set includes one recorded motion and four simulated motions. For each
motion the acceleration, velocity and displacement time-histories are given. Also listed in the
figures are the model parameters for each motion (identified for the recorded motions and
randomly simulated for the synthetic motions). For the synthetic motions, a discretization step of
At =0.02 s and the high-pass filter frequency w./2m = 0.15Hz are used. Observe that
although the three events have almost® identical earthquake and site characteristics (all are
reverse faulting; M = 6.61, 6.93 and 6.69; R =19.3, 18.3 and 19.1 km; and V =602, 663 and
706 m/s), the three recorded motions are vastly different in their characteristics. Specifically,
their Arias intensities range from 0.040 to 0.109 s.g, effective durations range from 5.95 to 12.62

% Due to scarcity of recorded motions, it is difficult to find records that have resulted from different earthquake
events but belong to identical earthquake and site characteristics. In fact, many researchers create large magnitude-
distance bins (often larger than what has been selected in this study) to select recorded motions and declare them as
records with similar earthquake and site characteristics.
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s, predominant frequencies range from 3.97 to 14.58 Hz, and bandwidth parameters range from
0.03 to 0.24. Furthermore, the acceleration, velocity and displacement traces and their peak
values are vastly different. Similar variability can be observed among the simulated motions
(compare the parameter values and the traces). Also, observe that the general features of the
simulated motions are similar in character to those of the recorded motions. In a blind test, it
would be difficult, or impossible, for anyone to ascertain as to which of the presented ground
motions in these figures is the recorded one and which are synthetic.

Another three sets of ground motions are provided in Figures 5.5, 5.6 and 5.7. Similar results are
observed. The three events have almost identical earthquake and site characteristics (all are
strike-slip faulting; M = 6.53, 6.33 and 6.19; R = 15.2, 14.4 and 14.8 km; and VV = 660, 660 and
730 m/s), but vastly different in their characteristics. Similar variability is observed among the
simulated motions. And the general features of the simulated motions, i.e., the traces of
acceleration, velocity and displacement time-histories, are similar in character to those of the
recorded motions.

5.4.2. Scenario Il: Some model parameters are specified

It might be of interest to simulate ground motions with given values for a subset of the model
parameters, e.g., Arias intensity, effective duration, or predominant frequency. In such cases, the
corresponding v; variables are fixed while the remaining v;, j # i, variables are generated using
the conditional mean vector and covariance matrix for the given values of the fixed variables.
These conditional matrices are computed based on formulas provided in Section 5.2.1.
Conditional simulation is necessary in such cases to account for the correlations among the fixed
and varying parameters.

As an example, Figure 5.8 shows the recorded motion in Figure 5.4 together with four synthetic
accelerograms, which are conditioned to have the Arias intensity of the recorded motion. The
synthetics are obtained by generating sets of the five variables v, to vy for the given value
v; = In(0.109) of the first variable. Observe that the variability among the simulated motions is
somewhat smaller compared to the case in Figure 5.4, where the Arias intensity was not
specified.

Since Arias intensity and duration of the ground motion are of particular interest in the fields of
geotechnical and structural engineering, empirical relations for these parameters have been
developed by other researchers (e.g., Travasarou et al. (2003), Abrahamson and Silva (1996)). If
desired, it is possible to use other empirical formulas to estimate one or more of the model
parameters, such as I, and Ds_qs. However, ground motion databases used in other studies are
generally different from the one used in this study. On the other hand, the estimates of
correlations between the model parameters depend on the selected database. Therefore, the
correlation coefficients provided in this study (corresponding to a database of strong ground
motions on firm soil with source-to-site distance of at least 10 km) would only be rough
estimates if used. Finally, it should be emphasized that if more than one parameter is
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approximated by alternative empirical relations, the correlations between these parameters must
also be taken into consideration in constructing the conditional mean vector and covariance
matrix according to (5.4) and (5.5).

5.4.3. Total duration of motion and filter frequency

When simulating ground motions, the total duration of motion, ¢, is rather arbitrary. However,
some care must be exercised to ensure that the resulting synthetic motion is simulated
sufficiently long for the residuals to reach zero. At the same time, if t, is large, the filter
frequency, which is in the form of a linear function in time, may assume zero, negative, or
unreasonably high values. To avoid these situations, we need certain limitations on ¢, and w(t).

We have found that a total duration equal to two or three times the effective duration Ds_g5 is
usually sufficient to achieve zero residuals. Two examples are presented in Figures 5.9 and 5.10,
respectively for linearly decreasing and linearly increasing filter frequencies, where t,, = 3D5_gs
is used. The linear filter frequency functions used to generate these motions, based on (4.10), are
also plotted for each figure. To avoid unreasonably low or high values of filter frequency (e.g.,
beyond 25 s in Figure 5.9, or 40 s in Figure 5.10), limits must be assigned to (4.10). Recalling
that the database for the two parameters w,,;; and w’ was created by analyzing recorded motions
within 1% to 99% levels of their Arias intensities, we modify w,(t) such that it is a linear
function within 1% to 99% of the expected Arias intensity I, (see (4.3)), and constant outside
that time bracket with a minimum value of 0.3 Hz.

max[wyg + ® (ts — tmiq),0.32m)] if 0<t<t,
wr(t) =4 max[wnpg + 0 (t —tpg),032m)] if t;<t<t, (5.6)
max[wg + © (t, — tmig),0.3(2M)] if t, <t<t,

In the above expression, t, and t, refer to the times of 1% and 99% I,. Plots of simulated
motions with filter frequency according to (5.6) are also shown in Figures 5.9 and 5.10. Inside
the time bracket [t,, t.], the two simulated motions with filter frequencies according to (4.10)
and (5.6) are identical. Outside this time bracket, differences between time-histories are
insignificant, but unlike (4.10), the filter frequency according to (5.6) is physically reasonable.

5.5. Use in PBEE

The growing interest in performance-based earthquake engineering (PBEE) in recent years , e.g.,
see Bozorgnia and Bertero (2004), and the scarcity of recorded ground motions for many regions
of the world necessitate the use of synthetic ground motions with specified earthquake and site
characteristics. In PBEE, an ensemble of ground motions that represents all possible realizations
for an earthquake of given characteristics at a given site is of interest. As described in this
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chapter, such an ensemble may be obtained by generating ground motion realizations that
correspond to various realizations of the stochastic model parameters, randomly generated from
probability distributions that are conditioned on the given earthquake and site characteristics.

The main attraction of PBEE is going above and beyond the code specifications (i.e., life-safety
performance objective for rare earthquake ground motions) to meet the specific needs of the
owners and other stakeholders. As a result, various performance objectives (e.g., life-safety, cost,
and post-earthquake functionality) for specified hazard levels are to be considered, resulting in
multiple design scenarios and increasing the number of required ground motion time-histories.
Synthetic ground motions can be generated for specified design scenarios for which recorded
motions are lacking.

Furthermore, the simulation approach proposed in this study can be used to investigate structural
responses to various ground motion intensities. This is useful because PBEE analysis typically
considers the entire spectrum of structural response, from linear to grossly nonlinear and even
collapse. Therefore, there is need for ground motions with different levels of intensity. Since the
number of available recordings is limited, the current practice requires modification of recorded
motions to achieve various intensity levels. However, to adequately capture nonlinear structural
responses, realistic characterization of the ground motion is essential and unless extreme care is
taken, scaled (in time or frequency) ground motions with unrealistic properties are difficult to
avoid. It has been the focus of the present study to realistically represent the evolutionary
characteristics of ground motions such as the time-varying frequency content that can greatly
influence the nonlinear responses of degrading structures. Furthermore, the parameters of the
stochastic model are fitted to a database of real earthquake records, so that the model captures
the natural characteristics and variability of recorded motions. Therefore, realistic synthetic
motions may be generated based on this study to complement the existing recorded motions for a
specified set of earthquake and site characteristics.

Finally, in PBEE, fragility models for structural damage measures (Vamvatsikos and Cornell,
2002) are often utilized to determine failure and damage probabilities. The method of ground
motion simulation presented in this study can facilitate evaluation of fragility models for a given
design scenario that is specified by its earthquake and site characteristics.

100



Table 5.1. Four sets of simulated and one set of identified model parameters for a single set of earthquake and site characteristics.
Observe the variability among the model parameters.

Iy Ds_o5s  tmia Wmia/2m /21 (s
(s.g) (s) (s) (Hz) (Hz/s)  (Ratio)
0.075 20.1 7.0 4.84 —0.012 0.25
Simulated model parameters | 0288 213 165 248  —0.054  0.12
(corresponding to the motions on the
right side of Figure 4.1, respectively
0.147 15,5 10.0 6.22 0.00046 0.18
Identified model parameters
(corresponding to the recorded motion | 0.145  12.3 6.8 5.90 0.12 0.26

and simulated motions on the left side
of Figure 4.1)
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the model parameters in standard normal space.

( use (5.2) )

V= [y, vel"

Transform to the original space _
of each model parameter. las Ds.gs s tig » @i » @7 &

use inverse of (4.1) and marginal
distributions reported in Table 4.4

Select a modulating function and
transform I, Dg g5, and t;q, to the 01,0, O3, Wpig , @,
modulating function parameters

(Jse (4.6), (4.7), (4.9) for gamma modulating function)

Fully-nonstationary stochastic process x(t)

use (2.12) and statistically independent
standard normal random variables u; , i=1,...,n

%(t)

Post-process

( use (2.28) )

(simulated ground acceleration)

Figure 5.1. Simulating ground motions for specified earthquake and site characteristics.
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Figure 5.2. Recorded and synthetic motions corresponding to F = 1 (Reverse faulting), M = 6.61, R = 19.3 km, V = 602 m/
s. The recorded motion is component 291 of the 1971 San Fernando earthquake at the Lake Hughes #12 station.
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Figure 5.3. Recorded and synthetic motions corresponding to F = 1 (Reverse faulting), M = 6.93, R = 18.3 km,, V = 663 m/s.
The recorded motion is component 090 of the 1989 Loma Prieta earthquake at the Gilroy Array #6 station.
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Figure 5.4. Recorded and synthetic motions corresponding to F = 1 (Reverse faulting), M = 6.69, R = 19.1 km, V = 706 m/
s. The recorded motion is component 090 of the 1994 Northridge earthquake at the LA 00 station.
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Figure 5.5. Recorded and synthetic motions corresponding to F = 0 (Strike-slip faulting), M = 6.53, R = 15.2km, V =
660 m/s. The recorded motion is component 237 of the 1979 Imperial Valley-06 earthquake at the Cerro Prieto station.
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Figure 5.6. Recorded and synthetic motions corresponding to F = 0 (Strike-slip faulting), M = 6.33, R = 14.4km, V =
660 m/s. The recorded motion is component 315 of the 1980 Victoria, Mexico earthquake at the Cerro Prieto station.
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Figure 5.7. Recorded and synthetic motions corresponding to F = 0 (Strike-slip faulting), M = 6.19, R = 14.8km, V =
730 m/s. The recorded motion is component 337 of the 1984 Morgan Hill earthquake at the Gilroy - Gavilan Coll. station.
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Figure 5.8. Recorded and synthetic motions with specified Arias intensity. The recorded motion and earthquake and site
characteristics are the same as in Figure 5.4.
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CHAPTER 6

MODEL VALIDATION

6.1. Introduction

The proposed method of generating a suite of synthetic ground motions for specified earthquake
and site characteristics provides an appropriate representation of real ground motions that could
result from an earthquake and a site with the given characteristics. This claim was partially
validated in the previous chapters through modeling and examination of simulated time-histories,
showing that synthetics are representative of real ground motions. For example, the stochastic
process that models acceleration time-histories possesses both temporal and spectral
nonstationary characteristics observed in real ground motions. Adjustments have been made to
the model to ensure that residual velocity and displacement are zero (equivalent of base-line
correction with recorded motions). Furthermore, we know that these synthetic acceleration time-
histories have evolutionary statistical characteristics similar to real accelerograms. This was
achieved by scrutinizing the statistical characteristics of many recorded ground motions and
modeling the stochastic process accordingly. Among these evolutionary statistical characteristics
were the evolving cumulative energy (controlling intensity and duration of the motion), which
was measured by graphs similar to the one in Figure 3.2a, and the evolving frequency content,
which was measured by graphs similar to the ones in Figures 3.4 and 3.5. In addition to
acceleration, velocity and displacement time-histories were studied and qualitatively
(considering their general features such as frequency contents and time-history traces) compared
with real ground motions recorded during previous earthquakes (see Chapter 5). These
comparisons indicated that not only acceleration, but also velocity and displacement time-
histories of synthetic motions have characteristics and variability similar to those of real
earthquake ground motions. In this chapter, the proposed method of generating a suite of
synthetic ground motions for specified earthquake and site characteristics is validated through
examination of elastic response spectra. Working with the elastic response spectrum allows the
variability among synthetic and real ground motions to be measured and compared quantitatively
(as opposed to the qualitative comparison between time-histories presented in Chapter 5).

The response spectrum of an acceleration time-history is the plot of the absolute peak responses
of single-degree-of-freedom oscillators with a specified damping subjected to that acceleration
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time-history at its base against their natural frequencies (or periods). Response spectra are useful
tools in earthquake engineering because structural design is usually based on the peak values of
earthquake-induced forces and deformations. A response spectrum corresponding to a design
scenario (identified by its earthquake and site characteristics) is usually referred to as the design
response spectrum. Code provisions and empirical ground motion prediction equations (GMPES)
are available that aid in constructing design response spectra for given earthquake and site
characteristics. While a response spectrum may be used directly to calculate an exact solution for
the response of a single-degree-of-freedom linear system, it may be utilized to obtain an
approximate solution for the response of a multi-degree-of-freedom linear system (e.g., by modal
combination). This type of structural analysis is referred to as response-spectrum analysis, which
due to its simplicity is frequently used in practice, though it is only applicable to linear systems.
If a structure is expected to behave nonlinearly, more complex approaches such as response-
history analysis is necessary, which requires knowledge of acceleration time-histories. The
subject of this study has been to generate time-histories for response-history analysis.
Considering the frequent use of response spectrum in practice, a reasonable validation approach
for the simulated time-histories in this study is to investigate the validity of their elastic response
spectra by comparisons against the response spectra of real ground motions and by comparisons
against existing GMPEs that are used and trusted in practice for prediction of design response
spectra.

In this chapter, first the elastic response spectra of synthetic motions are compared to those of recorded
motions. For selected earthquake and site characteristics, specific examples are provided to
illustrate that the response spectrum of a recorded motion (regarded as just one realization of
possible ground motions for the specified design scenario) is within the range predicted by
synthetic motions at any given spectral period. Then, the statistics of the elastic response spectra
of a large number of simulated motions are compared to values predicted by the existing GMPEs
for various design scenarios. It is concluded that, in general, the median and variability of the
response spectra of simulated ground motions closely agree with the median and variability
predicted by the Next Generation Attenuation (NGA) GMPEs. Also, limitations on the
applicability of synthetic motions (e.g., in terms of spectral periods and earthquake and site
characteristics) are discussed.

6.2. Validation against recorded ground motions

To validate the simulated ground motions against real ground motions, for specified earthquake
and site characteristics 5% damped elastic response spectra of a large number of synthetic
motions are calculated and compared to those of a recorded motion having the specified
earthquake and site characteristics. The objective of this comparison is to examine each spectral
period and see whether the corresponding recorded spectral value falls within the range predicted
by the synthetic spectral values. This result is expected if the suite of synthetic motions
adequately represents the natural variability of real ground motions for the given earthquake and
site characteristics. To compute the response spectrum of an acceleration time-history, single-
degree-of-freedom oscillators with a range of natural frequencies and damping ratio of 0.05 are
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subjected to the acceleration time-history. Numerical time-stepping methods are then used to
estimate the response of the oscillator over time. For each oscillator with natural frequency, w,,
the peak displacement response over time, D,, is selected. The plot of peak displacement
responses, D,,, versus spectral periods, T,, = 2m/w,, is referred to as the displacement response
spectrum, while the plot of A, = w2D, versus T, is referred to as the pseudo-acceleration
response spectrum. In particular, the response spectra shown in the figures of this report have
been computed using the central difference method (see Chapter5 of Chopra (2001)), which is
stable when At/T, < 1/m.

Six sets of comparisons are provided in Figures 6.1 to 6.6. Each figure shows 5% damped elastic
response spectra of two horizontal components of a recorded ground motion against 5% damped
elastic response spectra of 50 synthetic ground motions generated for the same fault type,
moment magnitude, source-to-site distance and V (abbreviated notation for Vg5, the shear-wave
velocity of top 30 meters) values as the recorded motion. The synthetic motions are simulated for
a total duration of t,, = 2D<_os, a time discretization step equal to 0.01 s, and a filter frequency
of 0.1 Hz for the high-pass filtering according to (2.28). Figures 6.1 and 6.2 show accelerograms
recorded during the 1994 Northridge earthquake (reverse faulting, M = 6.69), but at different
locations. Figure 6.1 corresponds to a distance of R = 20.3 km with V = 1223 m/s, while Figure
6.2 corresponds to a distance of R = 41.6 km with V = 822 m/s. It is seen that the spectra of the
recorded motions, which should be regarded as resulting from just one pair of realizations of
possible ground motions produced by an earthquake of similar characteristics, are within the
range of variability of the spectra of the simulated motions throughout the period range
considered. This supports our claim that the variability observed in the spectra of the synthetic
motions is representative of the variability inherent in real ground motions for given earthquake
and site characteristics. Similar results are observed in Figures 6.3 to 6.6, which have been
selected to represent ground motions induced from earthquakes of different magnitudes. Moment
magnitudes of the events that produced the records presented in these figures are M = 6.36,
6.93, 7.35 and 7.62, respectively, each belonging to a different magnitude bin: 6.0 to 6.5, 6.5 to
7.0,7.0to 7.5 and 7.5 to 8.0.

The recorded ground motions of the response spectra shown in Figures 6.1 to 6.6 have been
processed and high-passed filtered by various reporting agencies. The corner frequency of the
applied high-pass filter for each record is reported in the PEER-NGA database. These corner
frequencies are 0.13 and 0.1 Hz for the records of Figure 6.1; 0.12, 0.2, 0.05, and 0.1 Hz for
both components of the records in Figures 6.2, 6.3, 6.4, and 6.5, respectively; and 0.04 and 0.03
Hz for the records of Figure 6.6. Even though the corner frequencies of recorded motions vary
significantly, the filter frequency of 0.1 Hz used for high-pass filtering of the synthetic motions
according to (2.28) appears to give satisfactory results even for long periods. For example, in
Figure 6.3, where the recorded motion has been processed with the rather large corner frequency
of 0.2 Hz, deviations between the synthetic and recorded response spectra are not too large. As
for the other cases, the spectra of the recorded motions are well within the range of variability of
the spectra of the 50 synthetic motions.

In Figures 6.1 to 6.6, the spectral values are shown up to a period of 10 s. Such long spectral

periods (e.g., longer than 5 s) are typically unnecessary for structural design and analysis.
Furthermore, the spectra values at such long periods may not be reliable, as they can be sensitive
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to the procedure selected for processing and high-pass filtering that recorded motions are
subjected to. We have considered such long periods merely to examine the limitations of our
simulation method, which appears not to be restricted by spectral periods, at least in the range of
periods of interest in structural engineering.

6.3. Validation against NGA models

The Next Generation Attenuation (NGA) models are five sets of ground motion models for
shallow crustal earthquakes in the Western United States and similar active tectonic regions. The
five teams who worked on these models were the developers of five pre-existing and widely used
ground motion attenuation models: (1) Abrahamson and Silva, (2) Boore and Atkinson, (3)
Campbell and Bozorgnia, (4) Chiou and Youngs and (5) Idriss. Power et al. (2008) provide an
overview of the NGA project, and Abrahamson et al. (2008) compare the five NGA models and
provide explanations for their differences. In addition to many formal publications, reports
documenting NGA models and the ground motion database are available electronically from the
PEER website (http://peer.berkeley.edu/ngawest/index.html).

The NGA models describe the probability distribution (more precisely, the median and
variability of an assumed distribution) of peak ground motion intensities in terms of the
properties of the earthquake source (faulting mechanism and magnitude), the wave propagation
path (source-to-site distance), and site response (site class or Vg3,). For more refinement in
modeling, additional factors have been introduced in some NGA models. For example, the model
by Chiou and Youngs (2008) includes additional factors to account for the effects of rupture-
depth, hanging-wall, soil/sediment depth, nonlinear site amplification, etc. Other models either
explicitly or implicitly account for or completely neglect the above mentioned effects. The
ground motion intensities that have been modeled by NGA project include the peak motion
values (i.e., peak ground acceleration, velocity, and displacement) and the 5% damped elastic
pseudo-acceleration response spectra at oscillator periods ranging from 0.01 to 10.0 s. These
models provide predictions for the geometric average of the two horizontal components. The
models for response spectra are used in this section for comparison with the spectra of synthetic
motions.

6.3.1. Probabilistic nature of response spectrum

At a given period, the response spectrum ordinate for specified earthquake and site
characteristics is a random variable. The distribution of this random variable has implicitly been
assumed to be lognormal by attenuation modelers (including NGA modelers), who have
regressed the natural logarithm of the response spectrum ordinate against earthquake and site
characteristics. Figure 6.7 illustrates the probabilistic nature of the response spectrum. Let A(T)

115



represent elastic pseudo-acceleration response spectrum at period T. Figure 6.7 shows the natural
logarithm of A(T) for an ensemble of 30 simulated records for earthquake and site characteristics
F=0,M=7.0,R=20kmandV = 760 m/s plotted as a function of T. At any given period T,
this ensemble represents sample realizations of In(A) at that period. As an example, at 0.5 s
period, the mean and mean + one standard deviation of the sample realizations of In(A) are
indicated by black dots in the figure. Assuming that A is lognormally distributed, the
corresponding probability density function of In(A), which is normal, is plotted in the figure at
the period of 0.5 s. The NGA models predict the mean and standard deviation of the natural
logarithm of response spectrum at a given period, i.e., the black dots in Figure 6.7. These
statistics correspond to the median and logarithmic standard deviation of response spectrum at
the given period. In the following, these statistics are compared with their corresponding values
obtained for synthetic motions.

Error is inherent in statistical descriptors when they are estimated using sample realizations of a
random variable. The magnitude of this error depends on the sample size. A study was
performed to identify the required number of simulations that would provide adequate accuracy
in the sample statistics of the synthetic response spectra. In these studies, 10 sets of N synthetic
records were simulated. For each set, the logarithmic mean and standard deviation of the
response spectra were calculated and the variability was examined among the 10 sets. Figure 6.8
provides plots of the logarithmic means (solid lines) and means + one standard deviations
(dotted lines) of response spectra for each of the 10 sets for N = 10, 30, 100, and 500. It was
concluded that the accuracy of the statistics estimated from 500 simulations is adequate for our
comparison purposes.

6.3.2. Comparison with NGA models

The synthetic ground motions are intended for use in engineering practice as predictions of
future earthquake ground motions at a given site. Therefore, a reasonable validation approach is
to examine how these motions compare with ground motion prediction equations used in
practice. For this purpose, we compare the statistics of 5% damped elastic response spectra of a
set of 500 synthetic accelerograms with the corresponding statistics of response spectra using
ground motion prediction equations developed by Abrahamson and Silva (2008), Boore and
Atkinson (2008), Campbell and Bozorgnia (2008) and Chiou and Youngs (2008), which are all
based on various subsets of the NGA strong-motion database. Recall that the database used in
this study is a subset of the database used in Campbell and Bozorgnia (2008). Therefore,
comparisons with Campbell and Bozorgnia model are more appropriate. However, to have a
more comprehensive study, and considering that usually a combination of the four models
mentioned above is used in practice, the other three models have also been included.

To compare the statistics of response spectra for simulated motions with their corresponding
values predicted by NGA models, 500 realizations of log,,(A) are generated. At any given
period, sample median and standard deviations, denoted by med(log;,(A4)) and std(log;¢(A4)),
are computed. Then 10™med(og10(4) gnd 10meddogro()Estd(logio(4)) gre plotted in the
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logarithmic scale. In the following, these plots are referred to as the median and median + one
logarithmic standard deviation of response spectra. Equivalent plots are generated for NGA
models. Since NGA models predict med(4) and std(In(A)), at a given period, we first calculate

med(logy(4)) =log;o(med(A4)) (5.1)
d(In(4
std(logyo(A)) = % (5.2)

and then plot 10™ed(10810(4)) gnd 10med(og10(A)Estd(log10(4)) jn the logarithmic scale.

Figures 6.9 through 6.15 compare the median and median + one logarithmic standard deviation
values of the two sets of response spectra (i.e., simulated and predicted) for periods up to 5 s for
selected moment magnitude (M = 6.0, 6.5,7.0,7.5, and 8.0) and source-to-site distance values
(R = 10,20 and 40 km for M = 7.0; R = 20 km for other magnitudes). Strike-slip faulting and
V = 760 m/s are selected in all cases. Also shown, as dashed lines, are the averages of the four
selected NGA prediction equations. Interpolation is used for periods where NGA models are not
available. Typical values are chosen for the earthquake and site parameters used in NGA models,
which are not included in the simulation model. These values are reported in the captions of
Figures 6.9 to 6.15.

Note that the plots are presented in the logarithmic scale. As a result, the spectral values and their
deviations for long periods appear larger than they really are. It can be seen that, except for the
case of M = 6.0, both the median curves and dispersions of the synthetic response spectra are in
close agreement with the corresponding statistics of the four NGA-based prediction equations.
The case of M = 6.0 coincides with the lower boundary of our database, where few records are
available and the model fit is not as good. In any case, this magnitude level is not of interest for
design against “strong” ground motions, where nonlinear response-history analysis may be of
interest. For all other magnitudes and for all distances (even magnitudes as high as 8.0, or
distances as short as 10 km), the observed deviations are much smaller than the variabilities
present in the prediction equations. Thus, we conclude that the method presented in this study for
generating synthetic ground motions for given earthquake and site characteristics is viable and
consistent with existing prediction equations for source-to-site distances R = 10 km and moment
magnitudes greater than about M = 6.5.
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Figure 6.1. Elastic 5% damped response of two horizontal components of the 1994 Northridge earthquake recorded at the LA -
Wonderland Ave station and of 50 synthetic motions: (a) pseudo-acceleration spectra, (b) displacement spectra. The motions

correspond to F = 1 (Reverse faulting), M = 6.69, R = 20.3 kmand V = 1223 m/s.
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Figure 6.2. Elastic 5% damped response of two horizontal components of the 1994 Northridge earthquake recorded at the
Sandberg - Bald Mtn station and of 50 synthetic motions: (a) pseudo-acceleration spectra, (b) displacement spectra. The motions

correspond to F = 1 (Reverse faulting), M = 6.69, R = 41.6 kmand V = 822 m/s.
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Figure 6.3. Elastic 5% damped response of two horizontal components of the 1983 Coalinga-01earthquake recorded at the Slack
Canyon station and of 50 synthetic motions: (a) pseudo-acceleration spectra, (b) displacement spectra. The motions correspond to
F = 1 (Reverse faulting), M = 6.36, R = 27.5 kmand V = 685 m/s.
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Figure 6.4. Elastic 5% damped response of two horizontal components of the 1989 Loma Prieta earthquake recorded at the San
Jose — Santa Teresa Hills station and of 50 synthetic motions: (a) pseudo-acceleration spectra, (b) displacement spectra. The
motions correspond to F = 1 (Reverse faulting), M = 6.93, R = 14.7 kmand V = 672 m/s.
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Figure 6.5. Elastic 5% damped response of two horizontal components of the 1978 Tabas, Iran earthquake recorded at the
Dayhook station and of 50 synthetic motions: (a) pseudo-acceleration spectra, (b) displacement spectra. The motions correspond
to F = 1 (Reverse faulting), M = 7.35, R = 13.9 kmand V = 660 m/s.
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Figure 6.6. Elastic 5% damped response of two horizontal components of the 1999 Chi-Chi, Taiwan earthquake recorded at the
HWAO38 station and of 50 synthetic motions: (a) pseudo-acceleration spectra, (b) displacement spectra. The motions correspond
to F = 1 (Reverse faulting), M = 7.62, R = 42.5 kmand V = 643 m/s.
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Figure 6.9. Median and median + one logarithmic standard deviation of 5% damped pseudo acceleration response spectra for 500
synthetic motions and corresponding values predicted by the average of four NGA-based prediction models for F = 0 (Strike-slip
faulting), M = 6.0, R = 20 km, V = 760 m/s. Estimated NGA values are based on a rupture width of 20 km, depth to top of
rupture of 1 km, Z, 5 = 1 km for Campbell-Bozorgnia, Z; ; = 0.034 km for Abrahamson-Silva, and Z; ; = 0.024 km for Chiou-
Youngs.
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Figure 6.10. Median and median + one logarithmic standard deviation of 5% damped pseudo acceleration response spectra for
500 synthetic motions and corresponding values predicted by the average of four NGA-based prediction models for F =0
(Strike-slip faulting), M = 6.5, R = 20 km, V = 760 m/s. Estimated NGA values are based on a rupture width of 20 km, depth
to top of rupture of 1 km, Z, s = 1 km for Campbell-Bozorgnia, Z; ; = 0.034 km for Abrahamson-Silva, and Z; ; = 0.024 km
for Chiou-Youngs.
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Figure 6.11. Median and median + one logarithmic standard deviation of 5% damped pseudo acceleration response spectra for
500 synthetic motions and corresponding values predicted by the average of four NGA-based prediction models for F =0
(Strike-slip faulting), M = 7.0, R = 10 km, V = 760 m/s. Estimated NGA values are based on a rupture width of 20 km, depth
to top of rupture of 1 km, Z, s = 1 km for Campbell-Bozorgnia, Z; ; = 0.034 km for Abrahamson-Silva, and Z; ; = 0.024 km
for Chiou-Youngs.
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Figure 6.12. Median and median + one logarithmic standard deviation of 5% damped pseudo acceleration response spectra for
500 synthetic motions and corresponding values predicted by the average of four NGA-based prediction models for F =0
(Strike-slip faulting), M = 7.0, R = 20 km, V = 760 m/s. Estimated NGA values are based on a rupture width of 20 km, depth
to top of rupture of 1 km, Z, s = 1 km for Campbell-Bozorgnia, Z, , = 0.034 km for Abrahamson-Silva, and Z; ; = 0.024 km
for Chiou-Youngs.
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Figure 6.13. Median and median + one logarithmic standard deviation of 5% damped pseudo acceleration response spectra for
500 synthetic motions and corresponding values predicted by the average of four NGA-based prediction models for F =0
(Strike-slip faulting), M = 7.0, R = 40 km, V = 760 m/s. Estimated NGA values are based on a rupture width of 20 km, depth
to top of rupture of 1 km, Z, s = 1 km for Campbell-Bozorgnia, Z; ; = 0.034 km for Abrahamson-Silva, and Z; ; = 0.024 km
for Chiou-Youngs.
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Figure 6.14. Median and median + one logarithmic standard deviation of 5% damped pseudo acceleration response spectra for
500 synthetic motions and corresponding values predicted by the average of four NGA-based prediction models for F =0
(Strike-slip faulting), M = 7.5, R = 20 km, V = 760 m/s. Estimated NGA values are based on a rupture width of 20 km, depth
to top of rupture of 1 km, Z, s = 1 km for Campbell-Bozorgnia, Z; ; = 0.034 km for Abrahamson-Silva, and Z; ; = 0.024 km
for Chiou-Youngs.
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Figure 6.15. Median and median + one logarithmic standard deviation of 5% damped pseudo acceleration response spectra for
500 synthetic motions and corresponding values predicted by the average of four NGA-based prediction models for F =0
(Strike-slip faulting), M = 8.0, R = 20 km, V = 760 m/s. Estimated NGA values are based on a rupture width of 20 km, depth
to top of rupture of 1 km, Z, s = 1 km for Campbell-Bozorgnia, Z; ; = 0.034 km for Abrahamson-Silva, and Z; ; = 0.024 km
for Chiou-Youngs.
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CHAPTER 7

SIMULATION OF TWO ORTHOGONAL
HORIZONTAL COMPONENTS

7.1. Introduction

In this chapter, the proposed method of ground motion simulation for specified earthquake and
site characteristics is extended to simulate two orthogonal horizontal components of the ground
motion. The most novel aspect of this extension is proper accounting of the correlations between
parameters of the two components in the simulation model. Accounting for these correlations is
essential in order to obtain synthetic ground motion components that are realistic. Representation
of realistic ground motion components is especially important when analyzing asymmetric
structures that are vulnerable to torsion.

As shown in this chapter, the correlations mentioned above can be very high. This is expected
since the ground motion components are generated from the same earthquake source and seismic
waves that travel through the same medium. Some previous studies assume the parameters of the
two components are identical. For example, Yeh and Wen (1989) assume identical frequency
content for the component of ground motion along any horizontal direction. In the context of the
method developed in this study, this assumption implies identical filter parameters for all
directions of the ground motion. The same study uses distinct deterministic intensity envelopes,
equivalent of our time modulating functions, for the different components, the parameters of
which are identified from recorded accelerograms. Other studies that simulate ground motion
components, such as Kubo and Penzien (1979) or Heredia-Zavoni and Machicao-Barrionuevo
(2004), also use real recorded accelerograms to identify the parameters of their ground motion
model, and thereby indirectly account for the correlations between parameters of the ground
motion components in the simulation. The present study allows simulation of bi-directional
ground motion time-histories for a future seismic event without any need for previously recorded
motions. This is possible because predictive equations are developed for the model parameters in
terms of earthquake and site characteristics, and the correlations between the parameters of the
ground motion components are empirically determined.
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It should be noted that most seismological source-based models are capable of simulating multi-
directional ground motions at a specific location without any need for previously recorded
accelerograms. However, as discussed in previous chapters, these models are computationally
intensive and require a thorough knowledge of seismic sources in the area, information that is
usually not available to the practicing engineer.

This chapter starts by presenting an extension of the stochastic ground motion model for two
components. Two stochastic processes are considered, each representing one ground motion
component. Differences between the two stochastic processes originate from different underlying
white-noise processes that excite the filter and different model parameters, i.e., Arias intensity,
effective duration, filter frequency, etc. Ground motion components with a source-to-site
distance of at least 10 km are simulated along the principal axes where the white-noise processes
are statistically independent. A new database of recorded ground motion components is
developed by rotating the as-recorded components into their principal axes. Based on this
database, empirical predictive equations for the model parameters are constructed and
correlations between parameters of the two components are empirically determined. The
outcomes allow one to randomly generate correlated model parameters for two orthogonal
horizontal ground motion components along the principal axes. The simulated components can
then be rotated back into any desired direction, e.g., principal directions of the structure, through
a simple transformation. Example simulations are provided at the end of the chapter.

7.2. Stochastic ground motion model

Following Chapter 2, orthogonal horizontal ground motion components are modeled by the
fully-nonstationary stochastic processes

1 t
x1(8) = q(t, a1) {—af 0 f hlt — 7, A (D)]wq (T)dr} (7.1)
1 —00

1 t
x2(t) = q(¢, az) {m[ hlt — 7,22 (D) [w; (T)dT} (7.2)
2 —00

where x;(t) and x,(t) respectively denote acceleration time-histories, prior to high-pass
filtering, of components 1 and 2 of the ground motion. The time modulating function and the
linear filter employed in this chapter are identical to those used in the ground motion model of
Chapter 4. Similarly, the model parameters are based on definitions given in Chapter 4, i.e.,

o1 = (Iq; ,Ds—95, , tmia;) @nd Alz(wmidl,w'l,cfl) represent the modulating function
parameters and filter parameters of component 1, and a, = (TazrD5—952rtmid2) and A, =
(wmidz,w'z,( fz) represent the corresponding parameters of component 2. The differences

between the acceleration time-histories in (7.1) and (7.2) originate from two sources: (1)
different model parameters, (oa4,A1) and (a3, 25), (2) different input excitations, i.e., white-
noise processes, wy(t) and w,(t). Whereas the model parameters (ay,44) and (as, ;)
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characterize the evolutionary intensity and frequency contents of the two components, the white-
noise processes wi(t) and wy(t) describe the stochastic nature of the ground motion
components.

When simulating bi-directional ground motions, in addition to differences, similarities and
dependencies between the two components must be accounted for. Since the ground motion
components are generated from the same earthquake source and seismic waves that travel
through the same medium, high correlations between model parameters of the two components
are expected. The correlation matrix, p(a, a,),(ap.1,): May be estimated empirically by analyzing a
large number of recorded ground motion pairs. Furthermore, dependence between w;(t) and
wy(T) must be incorporated in the simulation. In general, ground motion components are
correlated processes. However, as shown by Penzien and Watabe (1975), along a unique set of
orthogonal axes, referred to as principal axes, the translational components of ground motion
may be considered uncorrelated. Therefore, we assume that w;(t) and w,(7) are statistically
independent, provided that x; (t) and x, (t) are in the directions of principal axes.

In the subsequent sections, a new database of ground motion components is developed by
rotating the ground motion pairs of the database used in Chapter 4 into their principal axes. The
empirical predictive equations developed in Chapter 4 are no longer appropriate as they do not
correspond to the directions of principal axes. Therefore, model parameters are identified for the
new database, empirical predictive equations are developed and correlation coefficients between
model parameters of the ground motion components are estimated.

7.3. Database of principal ground motion components

The strong motion database introduced in Chapter 4 contains ground motion recordings with
orthogonal horizontal pairs, directions of which depend on the orientation of the recording
instruments. We refer to this database as the as-recorded database. Recall that the as-recorded
database contains 103 pairs of horizontal recordings. Each pair is rotated into directions along
which the components are statistically uncorrelated, i.e., the principal axes directions. The result
is a new strong motion database, which is employed in the subsequent statistical analysis. More
details on the principal axes and rotation of ground motion components are presented below.

7.3.1. Principal axes of ground motion

Earthquake ground motions are multi-dimensional. Neglecting the rotational components, a set
of principal axes are defined by Penzien and Watabe (1975) for the three translational
components of ground motion. These include the major, intermediate and minor principal axes
along which the components of ground motion are uncorrelated and have intensities in
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decreasing order. Furthermore, based on examination of real accelerograms, it is shown in the
same study that the major principal axis usually points in the general direction of the epicenter,
the intermediate principal axis is horizontal and perpendicular to the major principal axis, and the
minor principal axis is directed almost vertical. Figure 7.1a demonstrates this configuration
Where agjor (t), Qintermediate (t) aNd Gyerricqr (£) are acceleration time-histories along the
major, intermediate and minor principal axes. Subsequent studies on stochastic modeling and
generation of synthetic ground motion components have based their studies on the definition of
principal axes by Penzien and Watabe (1975). Examples include Kubo and Penzien (1979),
Smeby and Der Kiureghian (1985), Yeh and Wen (1989) and Heredia-Zavoni and Machicao-
Barrionuevo (2004). We also take advantage of the above definition to simulate the major and
intermediate ground motion components.

Let a;(t) and a,(t) represent a set of orthogonal horizontal components of ground acceleration.
The correlation coefficient between these two components over the time interval t; <t < 7, is
calculated by
fjf a; (D)a, (t)dt
Pay(t),ar(t) = (7.3)
(e [ awra

In general, the correlation coefficient is time dependent and fluctuates over successive time
intervals. However, Penzien and Watabe (1975) found that p,, 1), ¢, () rémains reasonably stable
for different time intervals of recorded ground motions. Therefore, we define p,, ) 4, for the
entire duration of the ground motion, i.e., we use 7; = 0 and 7, = t,,. (Recall that t,, represents
the total duration of the motion). This correlation coefficient varies if the ground motion
components are rotated by an angle 6 to an alternative set of orthogonal axes (see Figure 7.1Db).
Therefore, it is a function of the rotation angle, Pay(o), az(t)(e). The principal axes of the ground

motion are the directions along which Pas (), apy(@ =0, and the principal components are
components of ground motion along these axes.

In addition to the rotation angle, p,, ) «,)(8) is a function of the difference between the
intensities of the principal components. This dependence, which was pointed out by Smeby and
Der Kiureghian (1985), is also verified in this study. Specifically, the larger the difference
between the intensities of the principal components, the higher the correlation coefficient for a
given 6. In the extreme case, where the principal components have equal intensities, the
correlation coefficient is zero for all rotation angles.

In this study, Arias intensity, defined by (4.3), is used to distinguish the major component from
the intermediate component. The major component is defined as the principal horizontal
component with the larger Arias intensity. Consequently, the intermediate component is defined
as the principal horizontal component with the smaller Arias intensity. This definition is used to
sort the data when estimating the correlation coefficients between model parameters of the major
and intermediate components, as well as in the simulation algorithm.
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7.3.2. Rotation of ground motion components

Let a;(t) and a,(t) represent a pair of orthogonal horizontal acceleration time-histories in the
as-recorded directions, and a; o (t) and a, 4 (t) represent their counter clockwise rotation by
angle 6. This orthogonal transformation is illustrated in Figure 7.1b and is obtained by

[aw (t)] _ [cos(@) —sin(@)] [al(t)] (7.4)
az g (t) sin(8) cos(@) ]la,(t) '

Every pair of as-recorded ground motion components in the database are rotated according to
(7.4) for rotation angles ranging from 0° to 90° with a discretization of 1°. The correlation
coefficient is calculated according to (7.3) and the rotation angle, 8, is selected such that
Pa, ;5 (®ay; (t)(é) = 0. The corresponding rotated components, a, 5 (t) and a, 3 (t), are then used

to develop the database of principal ground motion components. Table 7.1 provides the
correlation coefficient between as-recorded components, pg, (1)q,(:). and the selected rotation

angel, 8, for all the records in the database.

The components of two as-recorded ground motions, (a) Northridge earthquake recorded at Mt
Wilson — CIT Station, and (b) Chi-Chi, Taiwan earthquake recorded at HW A046 Station, are
plotted in Figure 7.2. Each pair is rotated according to (7.4) and correlations between their two
components are plotted against the rotation angle in Figure 7.3. Figure 7.4 plots the
corresponding principal components of these two pairs of ground motions. Observe in Figure 7.3
that the correlation coefficient as a function of the rotation angle is a smooth curve and
represents half of a complete cycle between 0° to 90°. Furthermore, the dependence of the
correlation coefficient on the difference between the intensities of the principal components is
apparent in this figure. The ratio between the Arias intensities of the principal components for
the Northridge record is 0.38, while the same measure for the Chi-Chi earthquake is 0.82. As
expected, a higher ratio, which implies a smaller difference between the intensities of principal
components, has resulted in lower overall correlations.

7.4. Empirical predictive equations for the model parameters

Sample observations of the model parameters are obtained by fitting the stochastic ground
motion model in (7.1) and (7.2) to the database of principal ground motion components. This is
done according to the methods described in Chapter 4 by fitting to the time-varying intensity and
evolutionary frequency content of each component. Recall that the physically-based modulating
function parameters, Arias intensity, I,, effective duration, Ds_qs, and time at the middle of
strong shaking, t,,;;, are identified directly from the recorded accelerogram based on their
definitions. The identified modulating function parameters for all the rotated records in the
database are presented in Table 7.2. Figure 7.5 demonstrates the adequacy of this parameter
identification method. In this figure three example pairs of components are shown that are
typical of the entire database. Given the identified model parameters from Table 7.2, the
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modulating function parameters (aq, @y, a3) are calculated and the resulting modulating
functions are superimposed on the recorded acceleration time-histories. Observe that for a typical
motion, as exemplified in the top and middle plots in Figure 7.5, whether T, = 0 or T, > 0, the
fitted modulating function is in general a good representation of the evolving energy in the
record. Also observe that for the few cases in which the target accelerogram behaves irregularly,
as in the bottom plots, the fitted modulating function provides a reasonable representation of the
evolving energy.

Recall that the filter parameters, which include the filter frequency at the middle of strong
shaking, w4 , the rate of change of frequency with time, ', and the filter damping ratio, ¢, are
identified by fitting to the mean zero-level up-crossing rate and the rate of change of the
cumulative number of negative maxima and positive minima of the target accelerogram.
Simplified procedures that were presented in Chapter 4 are employed. The identified filter
parameters for all the principal components in the database are presented in Table 7.3. The error
measures, €, and €., which are calculated based on definitions in Chapter 3, are listed in Table
7.4. These error measures are calculated only for the time intervals, over which fitting is
performed, i.e., the time between 1% to 99% levels of Arias intensity for the frequency
parameters, and the time between 5% to 95% levels of Arias intensity for the damping ratio (see
Chapter 4 for details on the method of fitting). Observe that, in general, error measurements are
remarkably small, verifying the adequacy of the simplified methods for identification of filter
parameters. For damping ratios smaller than 0.1, a few cases exhibit rather large values for e,.
This is due to the definition we have chosen for the error measure. Referring to Figure 4.4, ¢, is
defined as the ratio of the area between the target and simulated curves divided by the area
underneath the target curve. As a result, when the damping ratio is small, the area underneath the
target curve is small, thereby producing a large value of ¢, for a constant difference between the
target and simulated curves.

Summary statistics of the identified model parameters for the new database are presented in
Table 7.5. The data for the Arias intensity is divided into two groups: Arias intensity for the
major principal component, I, nqjor» and Arias intensity for the intermediate principal
component, I, ;... - This division reduces the number of data points for statistical analysis from
206 to 103 for each parameter, but this is necessary for simulation of pairs of ground motion
components. The statistical analysis for the remainder of model parameters is performed for the
entire data set, i.e., data corresponding to both components are combined resulting in 206 data
points for each model parameter. Comparing the statistics provided in Table 7.5 to those of Table
4.3 reveals similar behavior of model parameters corresponding to principal motions and model
parameters corresponding to as-recorded motions.

Probability distributions are assigned to the model parameters in the manner described in
Chapter 4. Distribution types and their assigned boundaries are presented in Table 7.6. Compared
to as-recorded database, the lower boundary of the beta distribution assigned to Ds_gs has
dropped from 5 s to 4 s, and the upper boundary of beta distribution assigned to t,,;; has
decreased from 40 s to 35 s. These are insignificant differences. Figures 7.6 and 7.7 show the
assigned marginal probability density functions (PDFs) superimposed on the normalized
frequency diagrams of the model parameters. In these figures, the fitted PDFs corresponding to
the as-recorded database are also plotted for comparison. Again, differences are not significant.
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Figures 7.8 and 7.9 show the fit of the cumulative distribution functions (CDFs) for the assigned
distributions to the empirical CDFs of the identified model parameters. It is observed that the fit
is good for all the model parameters, confirming the appropriateness of the assigned
distributions.

7.4.1. Regression

Regression analysis is performed according to the methods described in Chapter 4 to develop
predictive equations for the model parameters in terms of earthquake and site characteristics,
F,M,R and V. The resulting predictive equations for vy ,,qjor = ln(ia’major) and vy jpper =

In(Iy incer ) are similar to (4.19). The resulting predictive equations for the remainder of model
parameters after transformation to the standard normal space are similar to (4.20). The maximum
likelihood estimates of regression coefficients and variance components are presented in Table
7.7. For each predictive equation, standard significance test on the linear regression formula is
performed, i.e., F-test with null hypothesis that £,; =B, =fi3=pi4 =0, for i=
Lingjor » Linter » 2, ...,6. The P-values are reported in Table 7.7. The regression coefficients
Pi1,Bi2, B3 and B; 4 (i = 1,...,6) were individually tested (B;, was skipped because inclusion
of a constant term in the regression formulation was not questioned), i.e., t-test with null
hypothesis that g;; = 0,i =1, ...,6, j = 1, ...,4. Those coefficients with statistical significance at
the 95% confidence level are shown in bold in Table 7.7. Furthermore, 95% confidence intervals
are presented in Table 7.8. If a confidence interval contains zero, then the corresponding
regression coefficient is not significant at the given confidence level. Results are consistent with
Table 7.7. Table 7.9 presents the P-values for each t-test. Regardless of the significance level, as
done in Chapter 5, all the coefficients in Table 7.7 are used in the simulation.

Comparisons of Tables 7.7, 7.8 and 7.9 respectively with Tables 4.5, 4.6 and 4.7 reveal
insignificant differences. Therefore, we conclude that the model validations against recorded
motions and against NGA relations in Chapter 6 still hold.

7.4.2. Correlation analysis

Perhaps the most important result of this chapter is obtaining the correlation matrix between the
model parameters of the major and intermediate principal components. This correlation matrix is
presented in Table 7.10. Similar to Chapter 4, correlation coefficients between two model
parameters are estimated as the sample correlation coefficients between their corresponding total
residuals. Observe that the off-diagonal block, which represents correlations between the
transformed model parameters of the major and intermediate components, contains high
numbers. Namely, correlation coefficients between pairs of similar model parameters of the two
components are 0.92 for v; (corresponding to Arias intensities), 0.89 for v, (corresponding to
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the effective durations), 0.96 for vs (corresponding to t,,;; Vvalues), 0.94 for v, (corresponding
to wp;q Values), 0.52 for vs (corresponding to w’ values), and 0.75 for v, (corresponding to ¢
values). High correlations are also observed between different model parameters of the two
components. For example, a correlation of 0.68 is observed between v3 (corresponding to t,,;4)
of the intermediate component and v, (corresponding to the effective duration) of the major
component. These high correlations should not be neglected in simulation of ground motion
components.

The diagonal blocks in Table 7.10 represent correlation coefficients between model parameters
of the individual components. Observe that the two diagonal blocks are not significantly different
from each other and from the correlation coefficients for one component simulation listed in
Table 4.9.

7.5. Simulation and examples

For specified earthquake and site characteristics, F, M, R and V, twelve model parameters (six for
each component) are randomly simulated according to the methods described in Chapter 5,
which accounts for the correlations between the parameters. Since by definition the Arias
intensity of the major component must be greater than the Arias intensity of the intermediate
component, the simulation of the parameters must satisfy this condition. Because predictive
equations have been developed for sorted Arias intensities of the two principal components, the
probability that I_a,major > I, imter 1S high. A simple way to observe the required relationship is
to simply discard the small subset of simulations with I, ,qi0r < Iy meer - This essentially
conditions the joint probability distribution of the model parameters on the event I_a,major >

Iy inter - The simulated model parameters are then used in (7.1) and (7.2) along with statistically
uncorrelated white-noise processes, w;(t) and w,(t), to generate a synthetic pair of ground
accelerations in the directions of principal axes. High-pass filtering according to (2.28) is then
performed on the simulated motions.

As an example, Figure 7.10 shows pairs of acceleration time-histories of the major and
intermediate components for one recorded and three simulated ground motions. Figures 7.11 and
7.12 show the corresponding velocity and displacement time-histories. The simulated motions
are generated for the earthquake and site characteristics of the recorded motion. Observe that, for
each pair, simulated components are different but have similar overall characteristics in the same
manner as the recorded pair of motions. These similarities are more apparent by looking at the
model parameters, which are provided in the figure for each component of the recorded and
simulated ground motion.

The method of ground motion simulation presented in this chapter allows generation of synthetic
horizontal ground motion components in the principal directions without any need for previously
recorded motions. It only requires information on the earthquake and site characteristic values
F,M,R and V. The two synthetic components may then be rotated to any desired direction

136



according to the orthogonal transformation in (7.4). As mentioned earlier, according to Penzien
and Watabe (1975), the principal axes are usually directed towards the general direction of the
earthquake source and the corresponding perpendicular direction. This allows placement of the
synthetic principal components when the location of the potential earthquake source is known.
The two synthetic principal components may then be rotated into the input directions of the
structure, e.g., the longitudinal and transverse directions of the structure. If the earthquake source
is unknown, one may wish to consider a variety of directions to obtain the maximum structural
response. If the analysis is linear, the critical directions for each response quantity can be
obtained in closed form (see Smeby and Der Kiureghian (1985)). However, for nonlinear
analysis, this angle must be determined by trial. In fact, in the current practice, ground motion
components are often rotated to alternative axes in order to obtain the maximum structural
response.
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Table 7.1. Database of principal ground motion components. For each pair of records, the correlation between the two as-
recorded horizontal components and the rotation angle for principal axes are listed. Order of records is similar to Table 4.2.

Record ID Correlation Between Rotation Angle for
in NGA As-Recorded Components | Principal Axes (degrees):
Database (pwhen 6 =0°) 0

164 —0.147 54
265 —0.034 3
454 0.042 61
455 —0.023 79
471 0.187 74
472 —0.145 46
476 0.032 1
891 0.104 55
897 0.023 77
922 0.038 8
925 —0.226 12
928 0.022 13
934 0.240 27
938 —0.203 50
1109 0.078 59
Strike-Slip 1112 —0.087 11
1154 —0.122 54
1169 0.110 41
1619 0.307 72
1626 0.072 16
1633 —0.182 72
1763 0.002 90
1767 0.131 36
1786 0.171 41
1787 —0.262 74
1795 —0.084 71
1824 —0.178 53
1832 —0.005 1
1836 0.038 74
2107 —0.052 73
2111 —0.044 83
59 0.066 83
Reverse 63 0.466 36
71 —0.116 27
72 0.350 52
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Reverse

73 —0.136 19

87 —0.374 48

89 0.018 89
139 0.060 56
369 —0.005 1
511 —0.104 28
512 0.084 49
528 —0.194 47
536 —0.161 23
537 0.455 59
541 —0.143 70
769 0.306 21
771 0.057 84
781 —0.029 88
782 0.160 68
788 —0.403 47
789 0.068 11
791 0.145 34
795 —0.454 36
797 0.188 31
801 0.053 79
804 —0.071 82
809 0.213 17
810 —0.377 35
813 0.303 15
943 —0.133 6
946 0.162 49
957 0.051 7
989 0.019 19
994 0.118 85
1011 0.165 22
1012 0.229 40
1020 —0.210 65
1021 —0.030 64
1023 —0.556 50
1027 0.417 54
1029 0.087 74
1033 0.357 50
1041 —0.422 35
1060 —0.127 9
1074 0.313 60
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Reverse

1078 0.382 47
1091 0.003 89
1096 —0.184 19
1206 —0.042 3

1234 0.363 18
1245 0.014 72
1257 0.286 77
1273 0.000 90
1278 —0.149 27
1287 0.039 7

1293 —0.091 34
1302 0.413 27
1325 0.122 25
1347 —0.171 32
1350 0.088 22
1377 —0.116 62
1391 0.105 48
1485 —0.355 38
1517 0.095 87
1518 —0.117 15
1520 —0.168 53
1548 —0.132 68
1576 0.011 87
1577 0.062 79
1585 —0.015 77
1587 —0.090 11
1594 —0.224 58
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Table 7.2. Identified modulating function parameters for the principal ground motion components. For records with Ty > 0, t,,iq
is the time starting from Tj,.

Record ID I, (s.9) Ds_g5 (s) tmid (9)
in NGA . . . . . .
Database Major Intermediate Major Intermediate Major Intermediate
Component Component Component  Component | Component  Component
164 0.1506 0.1105 34.41 32.60 17.17 14.60
265 0.2007 0.1022 8.57 7.57 5.47 5.72
454 0.0059 0.0054 8.44 8.72 3.61 3.66
455 0.0061 0.0054 8.89 9.56 4.13 4.35
471 0.0195 0.0095 17.68 20.79 9.05 9.20
472 0.0119 0.0089 22.14 19.38 10.41 11.45
476 0.0082 0.0025 7.59 7.81 3.85 3.79
891 0.0081 0.0065 29.18 32.10 15.90 18.44
897 0.0120 0.0107 30.84 30.82 17.18 16.64
922 0.0023 0.0018 27.89 25.18 20.12 19.72
925 0.0066 0.0023 22.57 26.58 14.60 15.91
928 0.0565 0.0509 18.51 16.89 14.91 14.13
934 0.0084 0.0046 13.28 14.32 8.30 8.72
938 0.0098 0.0064 13.56 15.48 12.02 11.60
1109 0.0073 0.0061 20.04 25.50 14.23 15.18
Strike-Slip | 1112 0.0096 0.0060 13.04 22.78 14.13 17.04
1154 0.0084 0.0065 33.70 34.49 17.52 18.19
1169 0.0032 0.0025 33.50 39.06 17.13 19.04
1619 0.0221 0.0079 15.34 16.45 5.06 7.12
1626 0.0165 0.0126 24.52 28.51 9.14 9.95
1633 0.8090 0.4345 30.50 28.52 10.96 10.84
1763 0.0022 0.0016 19.57 23.44 18.54 15.98
1767 0.0010 0.0008 27.46 25.50 20.07 19.15
1786 0.0165 0.0116 15.88 16.97 17.70 16.13
1787 0.1998 0.0751 9.71 12.55 8.28 7.15
1795 0.0109 0.0083 15.43 17.15 15.94 15.29
1824 0.0027 0.0019 14.87 14.18 7.37 4.99
1832 0.0066 0.0052 20.54 18.91 18.97 19.43
1836 0.0072 0.0062 17.38 18.22 8.30 9.44
2107 0.0185 0.0154 19.44 24.82 14.09 14.65
2111 0.0115 0.0079 18.99 23.38 17.06 13.45
59 0.0005 0.0003 1041 10.13 3.18 3.44
63 0.0079 0.0027 12.07 15.06 1.43 2.31
Reverse
71 0.0498 0.0374 5.12 6.22 1.05 0.93
72 0.0316 0.0148 11.85 13.67 3.82 3.92
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Reverse

73 0.0160 0.0103 9.47 11.58 1.70 1.85
87 0.0410 0.0186 10.77 13.04 3.95 4.35
89 0.0017 0.0004 8.79 9.50 1.25 1.96
139 0.1509 0.1326 12.36 11.76 6.29 6.98
369 0.0291 0.0233 9.15 11.61 6.74 7.47
511 0.0091 0.0071 6.41 6.50 2.16 1.62
512 0.0065 0.0055 5.00 10.28 6.82 7.57
528 0.0025 0.0017 7.31 9.77 6.44 7.30
536 0.0068 0.0043 7.97 8.36 6.64 6.06
537 0.0117 0.0039 6.25 8.50 3.36 3.91
541 0.0048 0.0031 8.66 9.43 3.72 4.27
769 0.0488 0.0190 12.09 13.59 4.70 5.30
771 0.0495 0.0277 5.90 7.37 10.01 9.98
781 0.0107 0.0048 12.86 13.10 8.77 9.67
782 0.0087 0.0054 12.79 13.84 9.52 8.92
788 0.0070 0.0030 10.52 12.11 8.52 9.74
789 0.0091 0.0063 8.15 9.73 8.38 9.90
791 0.0106 0.0077 16.30 17.53 7.23 7.59
795 0.0068 0.0024 8.43 11.52 9.67 10.57
797 0.0074 0.0049 10.69 15.37 10.08 11.48
801 0.1345 0.1008 10.18 9.58 7.81 7.78
804 0.0080 0.0048 9.52 11.93 8.69 9.13
809 0.1691 0.0794 8.41 9.26 6.50 7.44
810 0.3344 0.1446 9.68 9.14 6.70 7.15
813 0.0044 0.0014 7.98 18.40 9.42 11.24
943 0.0076 0.0021 12.20 13.98 12.16 12.11
946 0.0035 0.0025 13.78 15.18 9.14 9.10
957 0.0337 0.0219 7.96 11.71 5.13 5.43
989 0.0664 0.0623 6.79 9.21 8.12 7.19
994 0.1555 0.0409 8.89 11.95 7.16 7.71
1011 0.0216 0.0134 6.68 8.86 4.85 5.88
1012 0.1287 0.0802 7.64 8.44 7.05 7.63
1020 0.0517 0.0299 8.97 11.14 7.05 7.63
1021 0.0082 0.0076 13.14 13.64 8.42 7.98
1023 0.0341 0.0096 6.52 12.36 5.61 6.98
1027 0.0106 0.0042 11.68 13.12 8.30 8.88
1029 0.0106 0.0077 12.84 13.36 8.52 8.50
1033 0.0086 0.0040 11.88 19.79 8.79 12.24
1041 0.0388 0.0149 8.70 11.82 9.95 9.82
1060 0.0104 0.0048 15.32 16.12 17.54 18.12
1074 0.0174 0.0083 13.54 17.41 10.58 10.55
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Reverse

1078 0.1223 0.0545 6.57 9.78 4.77 6.50
1091 0.0381 0.0325 8.28 7.34 6.94 6.16
1096 0.0059 0.0032 11.66 18.42 16.77 15.71
1206 0.0323 0.0148 30.63 37.29 18.18 20.28
1234 0.1107 0.0318 26.30 31.24 14.62 18.42
1245 0.0081 0.0078 35.93 36.11 24.18 24.09
1257 0.0264 0.0073 14.13 27.05 21.83 28.72
1273 0.0026 0.0021 35.12 34.19 25.63 27.31
1278 0.0236 0.0163 19.52 23.81 15.16 19.23
1287 0.0080 0.0058 32.07 32.23 24.21 27.75
1293 0.0165 0.0135 16.70 17.01 18.26 17.82
1302 0.0185 0.0064 19.70 18.86 22.74 20.96
1325 0.0107 0.0078 19.64 21.19 22.99 24.04
1347 0.0094 0.0064 21.28 25.58 23.31 21.73
1350 0.0757 0.0586 16.90 18.05 13.57 12.78
1377 0.0070 0.0053 37.67 33.88 26.09 22.68
1391 0.0022 0.0018 41.53 35.92 31.13 33.59
1485 0.1788 0.0834 9.45 12.53 21.17 21.80
1517 2.0744 0.3897 14.69 23.19 16.03 21.66
1518 0.0084 0.0053 19.78 22.36 16.43 21.20
1520 0.3125 0.2198 8.81 10.52 8.77 8.74
1548 0.0881 0.0601 20.98 19.02 18.34 19.98
1576 0.0032 0.0027 37.12 38.86 29.01 29.04
1577 0.0072 0.0051 36.18 34.48 27.95 26.00
1585 0.0026 0.0025 35.04 34.14 28.01 29.25
1587 0.0099 0.0061 34.33 34.24 24.93 26.25
1594 0.0061 0.0037 36.87 36.19 26.70 26.54
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Table 7.3. Identified filter parameters for the principal ground motion components.

Record 1D Wmid /21 (Hz) w'/2m (Hzls) {r (ratio)

in NGA : : : : : :
Database Major Intermediate Major Intermediate Major Intermediate
Component  Component Component Component Component ~ Component

164 4.00 5.61 —0.063 —0.070 0.37 0.31

265 5.09 6.18 —0.383 —0.211 0.61 0.71

454 8.40 7.60 —-0.232 —-0.212 0.06 0.11

455 8.00 8.67 —0.409 —0.351 0.12 0.10

471 3.44 4.07 —0.146 —0.163 0.05 0.09

472 3.59 3.56 —0.222 —0.188 0.06 0.08

476 3.91 5.30 0.069 —0.176 0.07 0.05

891 7.97 7.72 —0.082 —0.154 0.39 0.44

897 8.81 9.55 —0.084 —0.133 0.30 0.40

922 5.87 5.16 —0.089 —0.082 0.24 0.31

925 4,37 5.19 0.003 —0.037 0.18 0.28

928 11.58 13.61 0.071 —0.055 0.26 0.22

934 8.58 8.80 —0.010 —0.090 0.32 0.44

938 11.40 11.29 —0.050 —0.036 0.21 0.17

1109 2.39 3.14 —0.002 —0.058 0.24 0.22

Strike-Slip | 1112 3.64 3.91 —0.021 —0.039 0.15 0.21

1154 1.85 2.38 —0.008 —0.016 0.10 0.12

1169 8.20 8.74 —0.037 —0.042 0.37 0.32

1619 3.23 3.32 —0.003 0.001 0.22 0.36

1626 6.56 6.88 0.045 —0.014 0.11 0.09

1633 7.82 6.87 —0.034 —0.010 0.20 0.46

1763 8.17 9.36 —0.158 —0.091 0.14 0.12

1767 5.51 4.78 —0.073 —0.013 0.33 0.58

1786 6.08 6.14 —0.153 —0.110 0.18 0.17

1787 3.12 3.72 0.123 0.053 0.48 0.23

1795 5.61 5.78 —0.164 —0.103 0.32 0.20

1824 243 3.83 -0.127 —0.116 0.14 0.09

1832 6.08 5.94 —0.118 —0.064 0.12 0.12

1836 8.96 8.13 —0.122 —0.044 0.36 0.42

2107 7.04 9.15 —0.054 —0.097 0.47 0.42

2111 4.35 5.41 0.004 —0.025 0.47 0.46

59 6.00 6.02 —0.025 0.146 0.21 0.24

Reverse 63 8.09 9.02 —0.164 —0.099 0.50 0.28

71 12.28 14.00 —0.004 —0.369 0.14 0.19

72 10.61 9.64 —0.056 —0.068 0.30 0.21
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Reverse

73 13.04 10.60 —0.337 —-0.235 0.44 0.44
87 7.72 8.83 —0.149 —0.207 0.14 0.21
89 8.73 8.97 —0.127 0.071 0.25 0.30
139 6.42 6.42 0.114 —0.030 0.24 0.27
369 2.39 1.95 —0.062 —0.087 0.08 0.15
511 7.20 7.30 0.187 0.382 0.14 0.18
512 6.99 9.03 —0.619 —0.319 0.24 0.11
528 12.23 15.46 -0.172 —0.196 0.22 0.22
536 18.71 21.98 —1.219 —1.437 0.24 0.26
537 12.13 12.59 —0.131 —-0.122 0.15 0.30
541 14.88 13.56 0.029 0.100 0.15 0.16
769 3.88 4.85 —0.052 —0.116 0.05 0.13
771 1.81 1.79 0.050 0.028 0.06 0.05
781 4.05 4.43 —0.055 —0.038 0.20 0.23
782 4.76 5.54 0.051 —0.054 0.09 0.06
788 2.47 4.21 0.042 —0.069 0.17 0.16
789 2.40 2.14 —0.074 0.050 0.09 0.06
791 2.53 2.94 —0.046 —0.031 0.21 0.21
795 1.79 2.74 0.067 —0.054 0.10 0.12
797 6.58 8.22 —0.242 —0.200 0.28 0.29
801 6.78 7.47 0.044 —0.092 0.38 0.39
804 4.07 6.94 0.038 —0.141 0.20 0.24
809 7.76 11.02 0.130 —0.291 0.14 0.14
810 5.64 6.16 —0.054 0.068 0.07 0.13
813 3.29 4.93 0.132 —0.101 0.16 0.15
943 5.63 5.24 —0.070 —0.093 0.05 0.16
946 5.11 5.68 —0.078 —0.126 0.32 0.17
957 481 4.46 —0.092 —0.115 0.23 0.35
989 4.09 3.38 —0.367 —0.082 0.54 0.29
994 5.83 7.89 —0.016 —-0.372 0.23 0.48
1011 5.25 7.53 0.056 —0.261 0.38 0.20
1012 4.65 6.01 —0.148 —0.244 0.21 0.62
1020 7.48 6.83 —0.208 —0.069 0.07 0.16
1021 6.85 5.47 —0.109 —0.113 0.31 0.43
1023 6.69 6.53 —0.258 —0.152 0.15 0.32
1027 5.00 4.80 —0.103 —0.067 0.20 0.53
1029 5.17 4.75 —0.139 0.009 0.36 0.28
1033 5.62 5.89 —0.185 —0.213 0.22 0.21
1041 6.01 6.87 —0.168 —0.180 0.13 0.29
1060 4.76 4.42 —0.123 —0.089 0.05 0.16
1074 2.68 3.29 —0.030 —0.135 0.16 0.19
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Reverse

1078 5.03 6.00 —0.020 —0.049 0.20 0.28
1091 5.30 5.58 0.062 —0.066 0.40 0.27
1096 3.80 3.51 —0.080 —0.031 0.22 0.17
1206 2.17 2.93 —0.014 —0.026 0.09 0.08
1234 2.08 2.07 —0.010 —0.007 0.05 0.09
1245 6.64 5.88 —0.050 —0.058 0.11 0.15
1257 2.03 291 —0.010 —0.032 0.05 0.05
1273 3.23 3.25 —0.093 —0.069 0.17 0.23
1278 2.32 1.99 —0.051 —0.039 0.09 0.10
1287 2.77 2.51 —0.056 —0.078 0.06 0.12
1293 3.87 4.12 —0.077 —0.020 0.12 0.11
1302 5.77 6.60 —0.090 —0.093 0.10 0.10
1325 3.54 3.96 —0.038 —0.052 0.09 0.15
1347 511 5.45 —0.097 —0.126 0.09 0.13
1350 5.61 4.33 —0.080 —0.092 0.05 0.09
1377 5.32 4.66 —0.088 —0.045 0.11 0.11
1391 4.33 3.45 —0.079 —0.058 0.03 0.04
1485 4.45 4.85 —0.029 —0.054 0.49 0.47
1517 1.33 1.85 0.009 —0.023 0.09 0.15
1518 4.90 6.85 —0.148 —-0.273 0.28 0.18
1520 10.14 11.44 0.128 0.205 0.13 0.15
1548 221 2.47 —0.063 —0.065 0.14 0.13
1576 3.68 3.71 —0.034 —0.038 0.07 0.07
1577 3.68 3.49 —0.041 —0.043 0.05 0.07
1585 3.87 3.86 —0.073 —0.073 0.10 0.09
1587 3.62 3.59 —0.025 —0.029 0.04 0.04
1594 4.75 4.86 —0.077 —0.071 0.09 0.13
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Table 7.4. Error measures for optimized values of filter parameters given in Table 7.3.

€
Rif]cﬁlrg L‘D (Calculated for 1%665[)0 99% levels of I,) | (Calculated for 5% io 95% levels of 1)
164 0.02 0.02 0.09 0.09
265 0.01 0.02 0.06 0.03
454 0.01 0.02 0.15 0.16
455 0.03 0.02 0.09 0.12
471 0.02 0.02 0.24 0.21
472 0.01 0.02 0.21 0.18
476 0.02 0.01 0.34 0.12
891 0.01 0.01 0.06 0.03
897 0.01 0.01 0.08 0.05
922 0.02 0.03 0.06 0.07
925 0.02 0.02 0.07 0.04
928 0.01 0.01 0.05 0.06
934 0.01 0.02 0.07 0.10
938 0.01 0.01 0.10 0.10
1109 0.01 0.01 0.16 0.09
Strike-Slip | 1112 0.01 0.01 0.12 0.08
1154 0.00 0.00 0.08 0.07
1169 0.01 0.01 0.05 0.04
1619 0.01 0.03 0.15 0.17
1626 0.01 0.01 0.04 0.10
1633 0.01 0.01 0.05 0.09
1763 0.01 0.02 0.08 0.08
1767 0.02 0.05 0.06 0.11
1786 0.02 0.04 0.15 0.12
1787 0.02 0.01 0.06 0.06
1795 0.02 0.02 0.13 0.12
1824 0.06 0.04 0.11 0.12
1832 0.02 0.02 0.11 0.11
1836 0.01 0.01 0.08 0.06
2107 0.01 0.01 0.05 0.05
2111 0.00 0.00 0.02 0.06
59 0.02 0.02 0.06 0.09
63 0.02 0.01 0.05 0.06
Reverse

71 0.02 0.01 0.17 0.14
72 0.02 0.02 0.07 0.10

147




Reverse

73 0.02 0.01 0.05 0.09
87 0.01 0.02 0.07 0.05
89 0.02 0.02 0.07 0.07
139 0.02 0.02 0.08 0.07
369 0.02 0.02 0.15 0.11
511 0.02 0.02 0.09 0.14
512 0.06 0.03 0.13 0.04
528 0.02 0.02 0.03 0.09
536 0.02 0.03 0.11 0.08
537 0.02 0.02 0.12 0.04
041 0.01 0.01 0.12 0.12
769 0.01 0.02 0.35 0.08
771 0.01 0.01 0.33 0.71
781 0.01 0.02 0.18 0.06
782 0.01 0.01 0.15 0.23
788 0.02 0.02 0.11 0.13
789 0.02 0.01 0.23 0.49
791 0.02 0.02 0.19 0.14
795 0.02 0.02 0.19 0.18
797 0.03 0.05 0.06 0.04
801 0.02 0.01 0.11 0.13
804 0.02 0.03 0.09 0.07
809 0.01 0.02 0.05 0.12
810 0.02 0.01 0.31 0.10
813 0.02 0.02 0.06 0.09
943 0.02 0.01 0.21 0.12
946 0.02 0.02 0.07 0.19
957 0.01 0.01 0.08 0.06
989 0.03 0.03 0.03 0.04
994 0.03 0.04 0.05 0.06
1011 0.01 0.01 0.08 0.11
1012 0.01 0.01 0.10 0.11
1020 0.01 0.01 0.14 0.07
1021 0.02 0.02 0.10 0.04
1023 0.01 0.02 0.30 0.08
1027 0.03 0.03 0.09 0.04
1029 0.01 0.02 0.08 0.04
1033 0.02 0.02 0.12 0.11
1041 0.01 0.02 0.22 0.11
1060 0.01 0.01 0.09 0.16
1074 0.01 0.01 0.19 0.10
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Reverse

1078 0.01 0.02 0.07 0.05
1091 0.01 0.01 0.14 0.13
1096 0.02 0.01 0.12 0.12
1206 0.00 0.00 0.16 0.05
1234 0.00 0.00 0.53 0.09
1245 0.00 0.00 0.05 0.05
1257 0.02 0.02 0.37 0.20
1273 0.00 0.00 0.06 0.05
1278 0.00 0.01 0.12 0.09
1287 0.00 0.00 0.13 0.12
1293 0.01 0.01 0.05 0.04
1302 0.00 0.00 0.06 0.09
1325 0.00 0.01 0.05 0.06
1347 0.01 0.01 0.11 0.07
1350 0.00 0.00 0.13 0.04
1377 0.00 0.00 0.05 0.03
1391 0.01 0.00 0.30 0.30
1485 0.00 0.00 0.07 0.10
1517 0.00 0.00 0.12 0.06
1518 0.00 0.01 0.05 0.07
1520 0.00 0.00 0.08 0.05
1548 0.00 0.01 0.04 0.13
1576 0.01 0.00 0.21 0.20
1577 0.00 0.00 0.18 0.30
1585 0.01 0.01 0.02 0.05
1587 0.01 0.01 0.30 0.41
1594 0.00 0.00 0.06 0.03
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Table 7.5. Summary statistical data of the identified model parameters of principal ground motion components.

Parameter Minimum Maximum Sample Mean Sample_Stfindard Coeffl_cu?nt of
Deviation Variation

Lo major (5.9) 0.0005 2.0744 0.0646 0.2227 3.45
Ly inter (S.9) 0.0003 0.4345 0.0290 0.0648 2.24
Ds_qs (8) 5.00 41.53 17.42 9.31 0.53
tmia (5) 0.93 33.59 12.41 7.42 0.60
Wniq /21 (HZ) 1.33 21.98 5.93 3.18 0.54
w /21 (Hzls) —1.437 0.382 —0.090 0.168 1.87
{r (Ratio) 0.03 0.71 0.21 0.14 0.64

Table 7.6. Distribution models assigned to the model parameters.

Parameter Fitted Distribution® Distribution

Bounds

I_a,major (Sg) Lognormal (0, oo)
I_a,inter (s.9) Lognormal (0, 0)
D595 (5) Beta [4,45]
tmia (S) Beta [0.5,35]
Wmyq /27 (HZ) Gamma (0, )
w /21 (Hz) Two-sided Truncated Exponential [—2,0.5]
{r (Ratio) Beta [0.02,1]

! Means and standard deviations of these distributions are according to columns 4 and 5 of Table 7.5.
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Table 7.7. Maximum likelihood estimates of regression coefficients and standard error components.

i Bio Bia Biz Bi3 Bia T i P-value®
Lingjor —1.841 0.008 3.065 —-1351 —0.168 0.176 0.614 0.000
Linter —2408 —0.073 3307 —1295 —0.246 0.474 0.583 0.000

2 —5.859 —0.707 6.472 0.231 —0.565 0.475 0.577 0.000

3 —5.038 —0.296 4.614 0350 —0.175 0.495 0.431 0.000

4 2086 —0.041 —-1.660 —0.217 0.037 0.696 0.714 0.001

5 — 3.224 0.067 3.262 0.029 —-0.144 0.168 0.921 0.019

6 0.692 —0.676 0.296 —0.341 0.181 0.704 0.709 0.000

Table 7.8. 95% confidence intervals for the regression coefficients.
Confidence Intervals
L Bia Bi2 Bi3 Bia
Lingjor [—0.273, 0.289] [1.293, 4.838] [-1.576,—-1.126] [—0.865, 0.530]
Linter [—0.342, 0.196] [1.613,5.001] [-1.510, —1.080] [-0.912,0.421]
2 [-0.936,—0.478] [5.037,7.907] [0.117, 0.346] [-1.030,—-0.101]
3 [—0.543, —0.048] [3.062,6.167] [0.226,0.474] [-0.678, 0.327]
4 [—0.338, 0.256] [—3.521,0.201] [—0.365, —0.068] [-0.566, 0.639]
5 [—0.223, 0.358] [1.443,5.081] [-0.116, 0.174] [—0.733, 0.445]
6 [—0.963, —0.338] [—1.506, 2.098] [—0.484, —0.198] [—0.402, 0.764]

Table 7.9. P-values for the t-test with the null hypothesis, §; ; = 0.

P-value®
[ Bia Bi2 Bi3 Bia

Tygior | 0955 0001 0000 0.634
lpwer | 0592 0.000  0.000 0.466
0.000 0.000 0.000 0.017
0.020 0.000 0.000 0.492
0.784 0.080 0.004 0.904
0.647 0.001 0.697 0.631
0.000 0.746 0.000 0.542

Ul W

2 The smallest significance level at which the null hypothesis Bi1 = Bi» = Piz = PBis = 0 is rejected. F-test is

employed.

® The smaller this number is, the more significant the estimate of the corresponding coefficient in Table 7.7 is.
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Major Component

Intermediate Component

Table 7.10. Sample correlation coefficients between the transformed model parameters of two horizontal ground motion

components.
Major Component Intermediate Component

121 Uy U3 Uy Us Vg 1] Uy U3 Uy Us Vg
vy| 1
v, | —038 1
vy | —0.04 +0.68 1
v, | —0.21 —0.07 -024 1 Sym.
vs | —0.25 —021 —022 —-0.19 1
Ve | —0.06 —0.26 —026 +0.28 —0.06 1
vy | 4092 —031 +0.04 —0.13 +0.19 -0.01 1
v, | —030 +0.89 +0.65 —0.15 -021 -0.23 -031 1
v3 | —0.03 +0.68 +0.96 —0.29 —0.22 —0.29 +0.01 +0.69 1
v, | 013 -0.17 -0.30 +0.94 -0.10 +0.32 -0.08 —020 -034 1
vs | +0.09 —0.11 —0.24 —0.10 +0.52 —0.02 +0.07 —0.18 —0.24 —-019 1
Vg | +0.02 —0.17 —-021 +0.29 —0.13 +0.75 —0.00 —0.17 —0.22 +0.29 —0.05 1
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Figure 7.1. (a) Directions of principal axes according to Penzien and Watabe (1975). (b) Rotation of two orthogonal horizontal
components by angle 6.
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Figure 7.3. Correlation coefficient between two horizontal components of records in Figure 7.2 after they have been rotated counter clockwise according to (7.4).
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Figure 7.5. Rotated ground motion components and fitted modulating functions. Each row shows a pair of horizontal components
in principal directions. Figures on the top row show an example with Ty = 0. Figures in the middle row show an example with
Ty > 0. Figures in the bottom row provide an example of uncommon irregular behavior of the recorded motion.
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Figure 7.6. Normalized frequency diagrams of the identified Arias intensity for the major and intermediate components of records in the principal ground motion components
database. The fitted probability density functions are superimposed.
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Figure 7.7. Normalized frequency diagrams of the identified model parameters for the principal ground motion components database. Data corresponding to major and

intermediate components are combined. The fitted probability density functions are superimposed.
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Figure 7.8. Empirical cumulative distribution functions (CDFs) of the identified Arias intensity for the major and intermediate components of records in the principal ground

motion components database. The CDFs of the fitted distributions are superimposed.
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Figure 7.9. Empirical cumulative distribution functions (CDFs) of the indentified model parameters for the principal ground motion components database. Data corresponding to
major and intermediate components are combined. The CDFs of the fitted distributions are superimposed.
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Figure 7.10. Pairs of acceleration time-histories of one recorded (same as in Figure 7.4b) and three simulated ground
motion components along principal directions. Model parameters for each record are provided on the left. All motions
correspondto F =1, M = 7.62, R =51.8 kmand V = 618 m/s.
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Figure 7.11. Velocity time-histories corresponding to the records in Figure 7.10.
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Figure 7.12. Displacement time-histories corresponding to the records in Figure 7.10.
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CHAPTER 8

SUMMARY, CONCLUSIONS
AND FUTURE STUDIES

8.1. Major developments and findings

The research described in this report focuses on stochastic modeling and simulation of ground
motion time-histories for use in response-history or stochastic dynamic analysis. Ultimately, this
research benefits the emerging field of performance-based earthquake engineering (PBEE) by
providing a convenient method of generating synthetic ground motions for specified design
scenarios that have characteristics similar to those of real earthquake ground motions. The two
main objectives proposed in Chapter 1 are fulfilled: (1) a stochastic model for strong ground
motion is developed that has important advantages over existing models; an overview of the
model is presented in Figure 2.15, (2) a method for generating an ensemble of synthetic ground
motions for specified earthquake and site characteristics is developed; an overview of the method
is presented in Figure 5.1.

The major developments and findings of this study are summarized as follows:

e A new site-based, fully-nonstationary stochastic model to describe earthquake ground
motions is developed. The model is based on time modulation of the response of a linear
filter with time-varying characteristics to a discretized white-noise excitation. The resulting
stochastic process is completely defined by the form of the modulating function, the form of
the unit impulse response function of the filter, and the set of parameters that define these
functions.

e Specific functional forms for the filter frequency and filter damping ratio are proposed based
on investigation of recorded ground motions. It is concluded that for a typical strong ground
motion the filter frequency can be represented by a linear (typically decreasing) function,
whereas the filter damping ratio can be represented by a constant or a piece-wise constant
function.
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Acceleration time-histories obtained by simulating the stochastic model are high-pass filtered
to achieve zero velocity and displacement residuals. The selected filter is a critically damped
oscillator. The oscillator frequency determines the level of high-pass filtering and helps to
avoid overestimation of simulated response spectrum ordinates at long periods.

The proposed stochastic ground motion model has a number of important advantages over
existing models:

(a) The stochastic model represents both the temporal and spectral nonstationary
characteristics of real earthquake ground motions. Furthermore, these characteristics are
completely decoupled, facilitating identification and interpretation of the model
parameters. Separation of the temporal and spectral nonstationarities is achieved through
normalization of the stochastic process by its standard deviation prior to time modulation.
As a result, the modulating function characterizes the variation of the intensity in time,
whereas the time-varying filter describes the evolving frequency content.

(b) The model has a small number of parameters with physical interpretations. These
parameters can be as few as six, with three parameters controlling the evolving intensity
of the motion, two parameters controlling the evolving predominant frequency of the
motion, and one parameter controlling the bandwidth.

(c) Modeling is done entirely in the time-domain.

(d) The discretized form of the model facilitates digital simulation as well as nonlinear
stochastic dynamic analysis.

(e) Simulation of a synthetic ground motion for specified model parameters is simple and
requires little more than generation of standard normal random variables, their
multiplication with deterministic time-varying functions, and post-processing through a
high-pass filter.

Given a recorded ground motion, the stochastic model parameters are estimated by fitting to
selected statistical characteristics of the target accelerogram. There is no need for
complicated processing of the recorded motion, such as Fourier analysis or estimation of
evolutionary power spectral density. Instead, the model fitting requires computation of the
cumulative energy, the cumulative count of zero-level up-crossings and the cumulative count
of negative maxima and positive minima of the accelerogram. This innovative parameter
identification method is simple and efficient. Furthermore, the entire analysis is done in the
time domain.

A new framework is proposed for generating an ensemble of synthetic ground motions for
specified earthquake and site characteristics. By fitting the stochastic model to a database of
recorded ground motions with known earthquake and site characteristics, sample
observations of the model parameters are obtained. Statistical data analyses are then
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performed to develop predictive equations for the model parameters in terms of selected
earthquake and site characteristics. Uncertainty in the model parameters are properly
accounted for. For a given design scenario with known earthquake and site characteristics,
the predictive equations are employed to simulate realizations of the model parameters.
Inputting each set of parameter realizations into the stochastic model results in an ensemble
of synthetic ground motions that can be used in place of or in conjunction with recorded
ground motions.

The above framework is applied to a database of ground motions taken from the widely used
PEER NGA strong-motion database to develop predictive equations for the model
parameters in terms of the faulting mechanism, moment magnitude, source-to-site distance,
and the shear-wave velocity of the local soil. The database contains ground motions from
shallow crustal earthquakes in active tectonic regions. Only strong motions corresponding to
earthquakes of magnitude 6.0 and greater, source-to-site distances of at least 10 km, and stiff
soil conditions with Vg3, of at least 600 m/s are considered. Simplified parameter
identification methods, suitable for analyzing a large database of recorded motions, are
developed to identify the model parameters for every record in the database. The model
parameters are assigned probability distributions based on empirical data. Using the assigned
probability distributions, model parameters are transformed to the standard normal space to
satisfy the normality requirement of subsequent regression analysis. Because the database
contains different numbers of recordings from different earthquakes, a random-effects
regression analysis method is employed to separately account for the inter- and intra-event
uncertainties. The maximum likelihood method is used to estimate the regression coefficients
and the error variances, resulting in an empirical predictive equation for each transformed
model parameter. Correlation analysis is performed to determine the correlation coefficients
among the transformed model parameters.

The method of generating a suite of synthetic ground motions for specified earthquake and
site characteristics is presented in detail. Cases where all the model parameters are unknown
and where some model parameters are specified are considered. The simulation method is
based on randomly generating realizations of the model parameters from their joint
distribution, conditioned on the earthquake and site characteristics. This joint distribution is
determined from the empirical predictive equations for the model parameters and their
corresponding correlation coefficients.

The proposed method of generating a suite of synthetic ground motions for specified
earthquake and site characteristics accounts for the variability in the model parameters as
well as the stochasticity in the ground motion process. Hence, it maintains the natural
variability of real ground motions.

The proposed ground motion simulation method is validated by comparing the resulting
synthetics to real recorded motions and to NGA models:
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(a) Synthetic acceleration, velocity and displacement time-histories are compared with
recorded time-histories, indicating similar characteristics and variability between
synthetic and real earthquake ground motions.

(b) The elastic response spectra of synthetic motions are compared to those of recorded
motions. It is concluded that the response spectrum of a recorded motion, which is
regarded as just one realization of possible ground motions for the specified earthquake
and site characteristics, is within the range of the spectral values predicted by synthetic
motions.

(c) The statistics of the elastic response spectra of a large number of synthetic motions for
various magnitude and source-to-site distances are compared to their corresponding
predicted values by four of the NGA models. In general, the median and variability of
elastic response spectra for synthetics are in close agreement with those of the NGA
models. This holds true for all spectral periods of interest in structural engineering,
moment magnitudes greater than about 6.5, and source-to-site distances greater than 10
km. The results of this study correspond to stiff soil conditions where nonlinear soil
behavior is not expected.

A method for simulating orthogonal horizontal ground motion components for specified
earthquake and site characteristics is developed. A new ground motion database is
constructed by rotating recorded horizontal ground motion component pairs into their
principal axes, i.e., the orthogonal axes along which the components are statistically
uncorrelated. Model parameters are identified for each principal component and new
predictive equations are constructed. Correlation coefficients between model parameters of
the two horizontal principal components are estimated empirically. As expected, these
correlation coefficients are high and should not be neglected in the simulation. An extension
of the stochastic ground motion model is utilized to simulate two horizontal ground motion
components with correlated parameters along the principal axes. The synthetic components
can then be rotated into any desired direction, e.g., the input axes of a structure, through a
simple orthogonal transformation.

8.2. Recommendations for future studies

In order to improve the accuracy of the stochastic model and the predictive equations and to
improve the applicability of the ground motion simulation methods presented in this study
following topics are recommended for future research:

In this study, we selected a single-degree-of-freedom linear filter with time-varying
frequency and damping ratio. As mentioned in Chapter 2, such a filter can only characterize a
single dominant frequency in the ground motion. To simulate ground motions with multiple
dominant frequencies, a multi-degree-of-freedom filter may be selected. Selection of such a
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filter is possible with the proposed stochastic model. However, additional parameters will
need to be introduced and identified, which may reduce the efficiency in modeling and
simulation.

In this study, recommendations on the selection of the corner frequency for high-pass
filtering, w., were provided and the sensitivity of simulated motions to this parameter was
briefly discussed in Chapter 5. Further studies should be conducted to gain a better
understanding of the effect of w. on the characteristics of the simulated ground motion.
Preliminary analyses suggest that displacement time-histories are somewhat sensitive with
respect to w,, but further studies are required.

The predictive equations and correlation coefficients for the model parameters were
developed using a specific database of recorded ground motions. This database was
considered adequate for the intended applications of the present study. Limits on earthquake
magnitude, source-to-site distance and local soil stiffness were imposed to obtain simpler
(fewer terms in regression formulas) and more reliable (customized for strong earthquakes
that are capable of causing nonlinear behavior) predictive equations. The selection of the
database in no way limits the methodology presented in this study. As more earthquakes
occur and the number of recorded ground motions increases, the ground motion database can
be expanded and the predictive equations can be validated or new equations can be
developed.

In this study, only four basic parameters were considered for earthquake and site
characteristics: faulting mechanism, moment magnitude, source-to-site distance and shear-
wave velocity of the soil. For more refinement in modeling, future studies may include
additional parameters characterizing the earthquake source, travel path or local site
conditions. For example, parameters to account for the effects of soil/sediment depth,
nonlinear soil amplification, or factors to account for magnitude saturation may be
considered. Additionally, various functional forms for the predictive equations can be
investigated. In this study, several functional forms for the explanatory functions were
examined, but a linear form was chosen for the overall regression formula for the sake of
simplicity and considering the relatively narrow range of earthquake magnitudes. Other
forms may be investigated in future studies.

Currently our method of ground motion simulation is limited to shallow crustal earthquakes
in tectonically active regions. The applicability of the methods proposed in this study for
other seismic environments such as subduction zones and stable continental regions, where
lack of recorded ground motions is a much bigger problem, should be investigated.
Subduction zones are capable of creating disastrous earthquakes with very large magnitudes
at great depths, and stable continental regions are vulnerable to earthquakes. As a result, if
validated, synthetic generation of ground motions would be extremely beneficial in these
areas. Since the physical and geological characteristics of subdution zones are different from
shallow and brittle parts of the crust, appropriate changes that reflect these differences must
be made to the stochastic ground motion model. Furthermore, suitable databases of ground
motions must be selected for each region to construct new relations between the model
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parameters and the earthquake and site characteristics. In development of predictive
equations, due to lack of data in these areas, more emphasis should be placed on the physics
of seismic wave propagation than on empirical analysis.

The simulation methods presented in this study are only applicable to sites that are located at
least 10 km from the fault. These methods should be extended to near-fault ground motions.
Due to scarcity of recorded near-fault ground motions, this extension would be of particular
interest in PBEE. A study is underway that models the distinct characteristics of near-fault
ground motions such as rupture directivity effects and the presence of a dominant long-
period pulse. The residue motion, i.e., the ground motion after removal of the directivity
pulse, is modeled by a stochastic process similar to the one proposed in this study.

The simulation methods presented in this study are applicable to linear soil conditions with
Vs30 > 600 m/s. For softer soil conditions, one can generate synthetic motions at the firm
soil layer and propagate them through the softer soil deposits using standard methods of soil
dynamics that account for the nonlinearity in the shear modulus and damping of the soil.
Alternatively, future studies may be conducted to directly account for the nonlinear soil
behavior in the simulation approach. One way is to use additional factors in the predictive
equations that account for nonlinear soil amplification effects.

Modeling of multi-dimensional ground motions is valuable for 3D dynamic analyses of

structural systems. The techniques used in this study to model and simulate two horizontal
components of ground motion can be easily extended to include the vertical component.
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