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Genome-Wide Fine-Scale Recombination Rate Variation
in Drosophila melanogaster
Andrew H. Chan1., Paul A. Jenkins1., Yun S. Song1,2*

1 Computer Science Division, University of California Berkeley, Berkeley, California, United States of America, 2 Department of Statistics, University of California Berkeley,
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Abstract

Estimating fine-scale recombination maps of Drosophila from population genomic data is a challenging problem, in
particular because of the high background recombination rate. In this paper, a new computational method is developed to
address this challenge. Through an extensive simulation study, it is demonstrated that the method allows more accurate
inference, and exhibits greater robustness to the effects of natural selection and noise, compared to a well-used previous
method developed for studying fine-scale recombination rate variation in the human genome. As an application, a genome-
wide analysis of genetic variation data is performed for two Drosophila melanogaster populations, one from North America
(Raleigh, USA) and the other from Africa (Gikongoro, Rwanda). It is shown that fine-scale recombination rate variation is
widespread throughout the D. melanogaster genome, across all chromosomes and in both populations. At the fine-scale, a
conservative, systematic search for evidence of recombination hotspots suggests the existence of a handful of putative
hotspots each with at least a tenfold increase in intensity over the background rate. A wavelet analysis is carried out to
compare the estimated recombination maps in the two populations and to quantify the extent to which recombination
rates are conserved. In general, similarity is observed at very broad scales, but substantial differences are seen at fine scales.
The average recombination rate of the X chromosome appears to be higher than that of the autosomes in both
populations, and this pattern is much more pronounced in the African population than the North American population. The
correlation between various genomic features—including recombination rates, diversity, divergence, GC content, gene
content, and sequence quality—is examined using the wavelet analysis, and it is shown that the most notable difference
between D. melanogaster and humans is in the correlation between recombination and diversity.
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Introduction

Recombination is a biological process of fundamental impor-

tance in population genetic inference. The crossing-over of

homologous chromosomes during meiosis results in the exchange

of genetic material and the formation of new haplotypes. Accurate

estimates of the recombination rate in different regions of the

genome help us to understand the molecular and evolutionary

mechanisms of recombination, as well as a host of other important

phenomena. For example, recombination rate estimates are

needed in assessing the impacts of natural selection [1,2],

admixture [3], and disease associations [4].

Recombination rates have been observed to exhibit a number of

interesting heterogeneities: they are known to vary in magnitude

and distribution between species (e.g., [5–7]), between populations

within species [8,9], and between individuals within populations

[9–12]. There is also substantial variation in different regions of

the genome at different scales. At the broad-scale, for example,

recombination rates in humans are known to be correlated

negatively with the distance from telomeres [13], while at the fine-

scale, recombination events cluster in narrow hotspots of *2 kb

width [4,13,14]. In humans, hotspots are typically defined as those

with statistical support in favor of at least a five-fold increase of the

recombination rate [13] over the background or surrounding

region, and many hotspots suggest a ten- or even hundred-fold

increase. Such hotspots exhibit a powerful influence on the

recombination landscape; 70–80% of recombination events in

humans occur in 10% of the total sequence [8]. Extensive fine-

scale variation and recombination hotspots have also been found

in other species, including chimpanzees [7], Arabidopsis thaliana [15]

and yeast [16].

The picture in Drosophila is however less clear. Broad-scale maps

of recombination have been constructed for D. melanogaster by

fitting a third-order polynomial to each chromosome arm [17,18].

These give an overview of the distribution of recombination along

each arm, quantifying for example earlier observations of

declining recombination rates with proximity to the telomeres

and centromeres. Variation on finer scales has been inferred by

studies of linkage disequilibrium (LD) and by breeding experi-

ments. Rapid and consistent decay in LD [19] leads to an absence

of long haplotype blocks. There is scant evidence for hotspots

either at the intensity or prevalence of those found in humans.

PLOS Genetics | www.plosgenetics.org 1 December 2012 | Volume 8 | Issue 12 | e1003090



Experimental studies of variation have produced local, fine-scale

maps in D. melanogaster [20], D. persimilis [21], and D. pseudoobscura

[22,23], providing a resolution typically on the order of 100 kb in

the regions analyzed. These experimental results suggest that

regions of fine-scale variation—including some mild ‘‘hotspots’’

[22]—do exist in several Drosophila species. For example, Singh et

al. [20] study a 1.2 Mb region of the X chromosome in D.

melanogaster, and find 3.5-fold variation in this region, though no

hotspots by the criterion mentioned above. These experimental

approaches are cumbersome to recapitulate, however.

A number of crucial questions concerning Drosophila therefore

remain unanswered. It is not known to what extent this variation is

further localized to finer scales, or how common such variation is

across the genome. Further, intra-specific differences in recombi-

nation rate have not been characterized. However, the advent of

ambitious projects (e.g., see the Drosophila Genetic Reference Panel

[18] and the Drosophila Population Genomics Project [24])

sequencing tens of D. melanogaster genomes each from different

global populations raises the exciting prospect of addressing these

and other questions. The patterns of LD in a random sample of

contemporary genome sequences taken from a population contain a

great deal of information regarding historical recombination events,

and from these we can infer recombination rates across the genome.

A number of sophisticated and computationally-intensive statistical

approaches have been developed for inferring recombination rates

from such data [14,25–27] and for testing for the presence of

recombination hotspots [28,29], and are ostensibly suitable for this

task. In particular, LDhat [14,25,30] is a useful software package

which scales well to large datasets, and it has therefore been applied

to estimating recombination rates in humans [4,8,13,14], chimpan-

zees [7], dogs [31], yeast [16], and microbes [32], among others.

Estimating fine-scale recombination rates from recently pub-

lished D. melanogaster genomes is, however, challenging for several

reasons: First, these data exhibit a much higher density of single

nucleotide polymorphisms (SNPs) than those of other species and

of earlier technologies. For example, the African data considered

in this paper exhibits a mean SNP rate of about 1 SNP per 38 bp

for a sample of size 22, far higher than those of other recent

sequencing projects (e.g., [8]). This promises an unprecedented

opportunity to localize recombination rate variation to very fine

scales, but making full use of these data raises further challenges in

computational and statistical efficiency. Second, data generated

from short-read sequencing technologies give rise to numerous

missing alleles. It would be highly advantageous to be able to make

use of sites in which some alleles are missing without the

exponential increase in LDhat’s running time that this entails.

Third, the background recombination parameter in D. melanogaster

is known to be an order of magnitude higher than in humans (the

species for which LDhat’s prior distributions and parameters are

typically calibrated) and it is not clear how this will affect the

accuracy of subsequent rate estimates. Fourth, there is a growing

consensus that a considerable fraction of the genome of some

Drosophila species is influenced by adaptive substitutions [2,33].

Recurrent selective sweeps combined with genetic hitchhiking

affect patterns of variation across many kilobases of sequence and

have the potential to invalidate inferences of recombination, even

leading to the possibility of spurious signals of recombination

hotspots [34,35]. By contrast, the footprints of positive selection in

recent human evolution are less widespread [1]. The model

underlying LDhat assumes a neutrally evolving population of

constant size. While LDhat is known to be robust to mis-

specification of the demographic model [14], its susceptibility to

the effects of selection is less clear cut.

In this paper, we develop a new method, called LDhelmet,

which addresses the above critical issues. While it employs a

reversible-jump Markov Chain Monte Carlo (rjMCMC) mecha-

nism similar to that of LDhat, our method has a number of

modifications that render key advantages. Briefly, by utilizing

recent theoretical advances in asymptotic sampling distributions

[36–41], we introduce several analytic improvements to the

computation of likelihoods in the underlying population genetic

model, which reduce Monte Carlo errors and simultaneously

provide likelihoods for all relevant samples with an arbitrary

number of missing alleles. Our refinements further improve

accuracy by allowing us to make full use of a quadra-allelic

mutation model in which realistic mutation patterns between the

four nucleotides A, C, G, T can be taken into account.

Additionally, we utilize information from the available genomes

of outgroup species by using them to infer a distribution on the

ancestral allele at each polymorphic site in D. melanogaster. Taken

together, our method enables us to compute fine-scale, genome-

wide recombination rates with considerably improved accuracy

and efficiency. LDhelmet generally produces recombination maps

that are less noisy than that of LDhat’s. In particular, while LDhat

can infer spurious hotspots under certain types of selection, we

demonstrate that our approach is much more robust.

We apply our method to data taken from two D. melanogaster

populations, one from North America and the other from Africa,

and estimate fine-scale recombination maps for each population.

Then, through a wavelet analysis, we capture levels of variability

and correlation of the two recombination maps, and provide a

quantitative view of genome-wide inter-population comparison of

recombination rates in D. melanogaster. We also employ the wavelet

analysis to examine the correlation between various genomic

features, including recombination rates, diversity, divergence, GC

content, gene content, and sequence quality. At the fine-scale, we

perform a conservative, systematic search for evidence of the

existence of recombination hotspots and find a handful of putative

hotspots each with at least a tenfold increase in intensity over the

background rate. Also, we compare our recombination rate

estimates with existing experimental genetic maps.

Author Summary

Recombination is a process by which chromosomes
exchange genetic material during meiosis. It is important
in evolution because it provides offspring with new
combinations of genes, and so estimating the rate of
recombination is of fundamental importance in various
population genomic inference problems. In this paper, we
develop a new statistical method to enable robust
estimation of fine-scale recombination maps of Drosophila,
a genus of common fruit flies, in which the background
recombination rate is high and natural selection has been
prevalent. We apply our method to produce fine-scale
recombination maps for a North American population and
an African population of D. melanogaster. For both
populations, we find extensive fine-scale variation in
recombination rate throughout the genome. We provide
a quantitative characterization of the similarities and
differences between the recombination maps of the two
populations; our study reveals high correlation at broad
scales and low correlation at fine scales, as has been
documented among human populations. We also examine
the correlation between various genomic features. Fur-
thermore, using a conservative approach, we find a
handful of putative recombination ‘‘hotspot’’ regions with
solid statistical support for a local elevation of at least 10
times the background recombination rate.

Fine-Scale Recombination Map of D. melanogaster
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Our software LDhelmet and the fine-scale recombination maps

described in this paper are publicly available at http://

sourceforge.net/projects/ldhelmet/.

Results

We applied our method to samples from two populations of D.

melanogaster: Raleigh, USA (RAL) and Gikongoro, Rwanda (RG).

The RAL dataset consisted of the genomes (Release 1.0) of 37
inbred lines sequenced at a coverage of §10| by the Drosophila

Population Genomics Project [24] (DPGP, http://www.dpgp.org/

). The RG dataset comprised 22 genomes (Release 2.0) from

haploid embryos sequenced at a coverage of §25| by the

Drosophila Population Genomics Project 2 (DPGP2, http://www.

dpgp.org/dpgp2/DPGP2.html).

Mutation transition matrices
Using the procedure described in Materials and Methods, we

were able to designate the ancestral allele in 1,755,040 of

2,475,674 high quality (quality score Q§30) SNPs in the RAL

sample (70.9%), and 2,213,312 out of 3,134,295 high quality SNPs

in the RG sample (70.6%). These collections of polarized SNPs

yielded the following estimates for the mutation transition matrix

P, with rows and columns ordered as A, C, G, T:

PRAL~

0:47 0:10 0:23 0:19

0:27 0:00 0:14 0:59

0:59 0:14 0:00 0:27

0:20 0:23 0:10 0:47

2
666664

3
777775and

PRG~

0:48 0:09 0:24 0:20

0:24 0:00 0:14 0:62

0:62 0:14 0:00 0:24

0:20 0:24 0:09 0:47

2
666664

3
777775:

These results imply that simple diallelic models are inadequate for

the Drosophila populations. As expected, we see a transition:trans-

version bias. We also observe a higher overall mutation rate away

from C and G nucleotides—this pattern persists even after

excluding CpG sites from our analysis (not shown). Indeed, each

of the four nucleotides exhibits its own characteristic mutation

distribution. There appears to be no significant difference between

the transition matrices for the two populations. This is partly

explained by the shared history of the two populations: There were

2,990,025 sites for which: (i) data were available in both

populations, (ii) two alleles were observed in the combined sample,

and (iii) one of the two alleles was assignable as ancestral. Of these,

925,569 (31.0%) were polymorphic in both populations, 800,118

(26.8%) were private to RAL, 1,262,109 (42.2%) were private to

RG, and 2,229 (0.1%) were fixed differences.

For simplicity, in the analysis described in this paper, we used

the same mutation transition matrix for all sites in the genome.

However, we note that our method can easily handle site-specific

mutation transition matrices at no extra computational cost; see

Materials and Methods: for details.

Accuracy of the method in the neutral case
To assess the accuracy of estimated recombination maps, we

carried out an extensive simulation study with various simple

recombination patterns, first assuming selective neutrality (the case

with natural selection is discussed in the subsequent section).

The simulations assumed a finite-sites, quadra-allelic mutation

model, with the mutation transition matrix PRAL shown above

and the population-scaled mutation rate h~0:008 per bp. We

used these transition matrix and mutation rate in LDhelmet’s

inference. For LDhat, we used the corresponding effective

mutation rate heffective~0:006 per bp (see Estimation of mutation

transition matrices). Incidentally, we note that 0:006 per bp is the

estimated effective mutation rate for the autosomes of RAL lines

[24].

Figure 1 shows representative examples of LDhelmet’s and

LDhat’s results. As the figure illustrates, our method LDhelmet

generally produces recombination maps that are less noisy than

that of LDhat’s; in particular, LDhelmet produces spurious

‘‘spikes’’ less frequently than does LDhat. To illustrate the impact

of the spikes on the total genetic distance, the corresponding

cumulative recombination maps comparing LDhelmet and LDhat

are shown in Figure S1. Additional comparisons between

LDhelmet and LDhat can be found in Table S1, and SNP

statistics of the datasets are listed in Table S2.

In general, we observed that LDhelmet is able to identify the

location of hotspots reliably. Furthermore, in the scenario

considered in the second row of Figure 1, the width and height

of the hotspot could be estimated very accurately; on average the

total rate in the hotspot region could be estimated within 2.5% of

the true value.

To test the performance of LDhelmet in a more realistic

scenario, we simulated 1 Mb regions each with a substantial

amount variation in recombination rate and with a high average

rate representative of the interior of the D. melanogaster X

chromosome. To specify realistic levels of recombination rate

variability in these regions, we took as the true recombination map

a 1 Mb excerpt from our estimated map for the RAL sample. To

specify realistic absolute levels of recombination, we rescaled this

map to match the mean (per megabase) recombination rates

inferred for the X chromosomes of RAL and of RG. In Figure 2,

LDhelmet’s estimated recombination maps for these two scenarios

are illustrated in blue, while the true maps are shown in red. These

results demonstrate that, even when the average recombination

rate is high, LDhelmet with our chosen block penalty in the

rjMCMC is able to capture the pattern of fine-scale variation

rather well. However, we note that in the top plot of Figure 2, in

which case the true average rate is r~21 per kb, the estimated

map tends to be slightly more variable than the true map. In

contrast, if the true average recombination rate is substantially

higher, as in the bottom plot of Figure 2 with the true average rate

of 170 per kb but otherwise the same pattern of variation, the

estimated map tends to be somewhat smoother than the true map.

Clearly, there is no single block penalty value that is universally

optimal in all cases, but the value we have chosen seems to yield

reasonable results for D. melanogaster (see Materials and Methods

for further details on the choice of block penalty).

Impact of positive selection on the estimation of
recombination rates

It has been previously shown [34,35,42] that hitchhiking can

induce seemingly similar patterns of linkage disequilibrium as that

created by recombination hotspots, while McVean [43] has

argued that the precise signatures of selective sweeps and hotspots

actually differ. To test the robustness of our method to natural

selection, we simulated data under various scenarios with positive

selection and recombination rate variation, and assessed the

impact on our estimates of recombination rates. We generated

data using a range of values for the selection strength and fixation

Fine-Scale Recombination Map of D. melanogaster
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time. See Simulation study on the impact of natural selection for

details of the simulation setup.

The results of LDhelmet and LDhat for a few cases are shown in

Figure 3; each plot shows the results for 25 simulated datasets

illustrated in 25 different colors. The corresponding cumulative

recombination maps are shown in Figure S2. For both methods,

the estimated recombination maps are in general noisier than that

for the neutral case (c.f., Figure 1), though LDhelmet is still more

robust than LDhat. As can be seen in Figure 3, LDhat tends to

produce false inference of elevated recombination rates near the

selected site more frequently than does LDhelmet. A more detailed

comparison is provided in Table S3 and SNP statistics of the

datasets are listed in Table S2. Overall, although strong positive

selection causes more noise and fluctuations in our estimates, it

does not seem to produce a strong bias to the extent that would

consistently lead to false inference of recombination hotspots.

The noise in our estimates of the recombination rate in the

presence of selection depends on several factors. Specifically, we

observed that the accuracy of our estimates decreases as the

selection strength increases, whereas the accuracy improves as the

distance between the selected site and the region of estimation

increases. Furthermore, the more recent the time of fixation, the

noisier are the estimates.

In addition to the case of a single, recent selective sweep, we also

assessed the impact of recurrent selective sweeps [44,45] on the

estimation of recombination rates. Assuming that beneficial

mutations fixate randomly at a given rate, we simulated three

different sets of datasets with a background recombination rate of

10 per kb, as detailed in Simulation study on the impact of natural

selection. The degree to which recurrent sweeps reduce diversity

in each model is summarized in Table S4. In model RS3, which

has infrequent but strong sweeps, the mean number of SNPs

reduces by more than a factor of 8 relative to the neutral model.

Such a drastic drop in diversity significantly reduces the ability to

perform accurate statistical inference of recombination. To infer

the location of a recombination hotspot, for example, at least a few

SNPs must be present in the hotspot and near its edges.

The results of recombination rate estimation under recurrent

sweep models are summarized in Table 1 and Table 2. Compared to

a single sweep, recurrent selective sweeps tend to decrease the

accuracy of recombination rate estimates more noticeably. Further-

more, infrequent but strong selective sweeps (model RS3) have more

severe impact on the accuracy than do frequent but weaker selective

sweeps (model RS1). As discussed above and can be seen in Table 2,

detecting recombination hotspots in model RS3 would pose a great

challenge. Overall, LDhelmet generally underestimates the

Figure 1. Comparison of the results of LDhelmet and LDhat for 25 datasets simulated under neutrality. In each plot, different colors
represent the results for different datasets. The left and right columns show the estimated recombination maps of LDhelmet and LDhat, respectively,
using the same block penalty of 50. Our method LDhelmet generally produces less noisy estimates than that produced by LDhat. (First Row) Each
dataset was simulated with a constant recombination rate of 0:01 per bp. (Second Row) Each dataset was simulated with a hotspot of width 2 kb
starting at location 11 kb. The background recombination rate was 0:01 per bp, while the hotspot intensity was 10| the background rate, i.e., 0:1 per
bp. The maps are shown in their entirety, including potential edge effects.
doi:10.1371/journal.pgen.1003090.g001

Fine-Scale Recombination Map of D. melanogaster
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recombination rate in the presence of selection, suggesting that it is

unlikely to produce spurious hotspots because of selection.

Impact of demography on the estimation of
recombination rates

We also tested our method on datasets simulated under a variety

of demographic scenarios. Specifically, the demographic models

we considered are those proposed by Haddrill et al. [46], and by

Thornton & Andolfatto [47], comprising two exponential growth

models and two bottleneck models. As in the neutral simulations,

we assumed a finite-sites, quadra-allelic mutation model, with the

mutation transition matrix PRAL and the mutation rate h~0:008
per bp. See Simulation study on the impact of demographic

history for details on the other parameters used in the simulations.

Table 3 and Table 4 show the results of recombination rate

estimation in this simulation study. Although the estimates are

clearly less accurate compared to the case with constant

population size, they are reasonably accurate in most cases. Note

that the overall trend is to underestimate the true rates, in some

cases only slightly.

As in the case of recurrent selective sweeps, demography may

decrease diversity, thus hindering statistical inference of recombi-

nation. Table S4 includes the SNP statistics for the demography

models we considered. In model B2, which involves a very recent

bottleneck, a reduction in diversity by about a factor of 4 was

observed, partly explaining the particularly poor estimates of the

recombination rate. Table S5 shows that the average SNP density

of the D. melanogaster data considered in this paper; note that the

Figure 2. LDhelmet results on simulations with realistic variable recombination rates. In each study, the program MaCS [72] was used to
simulate data, with sample size 22, for a 1 Mb region with the variable recombination map shown in red. (We used h~0:008; output was
postprocessed to incorporate an empirical quadra-allelic mutation model.) Estimated recombination maps are shown in blue. The same block penalty
of 50 was used in both cases. (A) The average recombination rate for the region is 21 per kb, representative of the interior of the North American X.
(B) The average recombination rate for the region is 170 per kb, representative of the interior of the African X.
doi:10.1371/journal.pgen.1003090.g002

Fine-Scale Recombination Map of D. melanogaster
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average SNP density of each chromosome is substantially greater

than the SNP density observed in simulation model B2.

Population-specific average recombination rates of D.
melanogaster

The population-specific average recombination rate for each

major chromosome arm is summarized in Table 5, which shows

that the average rate for the African (RG) population is higher

than that for the North American (RAL) population. This

difference could be explained partially, but not entirely, by a

difference in population size. Note that the average recombination

rate in the X chromosome appears to be higher than that in the

autosomes, much more so in RG than in RAL. Table 5 shows the

ratio of the average recombination rate of RG to that of RAL for

each chromosome arm. Although the ratio is more or less

consistent for the autosomes, the ratio for the X chromosome is

significantly higher. Hence, a difference in population size could

explain the higher recombination rate estimates in RG for the

Figure 3. Comparison of the results of LDhelmet and LDhat for 25 datasets simulated under strong positive selection. In each plot,
different colors represent the results for different datasets. The left and right columns show the estimated recombination maps of LDhelmet and
LDhat, respectively, using the same block penalty of 50. In each simulation, the selected site was placed at position 5 kb and the population-scaled
selection coefficient was set to 1000. The fixation time of the selected site was 0:01 coalescent unit in the past. Although the estimated
recombination maps are in general noisier than that for the neutral case (c.f., Figure 1), LDhelmet is more robust than LDhat. As illustrated in the
plots, LDhat produces false inference of elevated recombination rates near the selected site more frequently than does LDhelmet. The same scenarios
of recombination patterns as in Figure 1 were considered: (First Row) with a constant recombination rate of 0:01 per bp, and (Second Row) with a
hotspot of width 2 kb starting at location 11.5 kb. The background recombination rate was 0:01 per bp, while the hotspot intensity was 10| the
background rate, i.e., 0:1 per bp. The maps are shown in their entirety, including potential edge effects.
doi:10.1371/journal.pgen.1003090.g003

Table 1. Average recombination rates for recurrent-sweep simulations.

No Hotspot (10 per kb) Hotspot 10| (17:2 per kb) Hotspot 50| (49:2 per kb)

Model est. % err. est. % err. est. % err.

RS1 8.5 {15:0 15.6 {9:3 44.9 {8:7

RS2 4.4 {56:0 8.6 {50:0 45.0 {8:5

RS3 0.9 {91:0 1.3 {92:4 2.3 {95:3

Control 9.3 {7:0 16.4 {4:7 53.9 9:6

The accuracy of the recombination rate estimate for model RS3, containing infrequent but strong selective sweeps, was considerably worse than that for model RS1,
containing frequent but weaker selective sweeps. The mean number of SNPs in model RS3 was a factor of 8 less than that in the selectively neutral ‘‘Control’’ model,
thus reducing the ability to perform accurate statistical inference of recombination. See Simulation study on the impact of natural selection for the details of the models.
For each recombination landscape, the median estimated average recombination rate is shown in the left column (‘‘est. ’’) and the percent error is shown in the right
(‘‘% err. ’’). The true average recombination rate for each recombination landscape is shown in parenthesis.
doi:10.1371/journal.pgen.1003090.t001

Fine-Scale Recombination Map of D. melanogaster
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autosomes, but it does not explain the significant increase in the

recombination rate for the X chromosome of RG over RAL.

Furthermore, for RAL, that the observed average recombination

rate of the X chromosome is higher than that of autosomes is

unexpected given that an excess of LD is observed on the X

chromosome of this population [18,24].

In both populations, arm 3R has a notably reduced recombi-

nation rate compared to the other arms. This reduction is more

pronounced in RG than in RAL, which could be partly explained

by the fact that, in African populations, arm 3R has the largest

number of common inversions [48].

To study the effect of sample size on the estimation of

recombination rates, we subsampled a 2 Mb excerpt of chromo-

some arm 2L from each population over several repeated trials.

We performed the subsampling on an excerpt rather than the

entire genome for computational reasons. The averages of the

estimates are shown in Table S6. Despite a slight increase in the

estimate as sample size increases, the effect is small and appears to

diminish with increasing sample size. We also analyzed the whole-

genome RAL dataset down-sampled to match the sample size (i.e.,

22) of RG. As Table 5 shows, the genome-wide average estimates

produced using 22 genomes of RAL were only slightly lower than

those produced using all 37 genomes. Encouragingly, our estimate

(107:3 per kb) of the recombination rate for the X chromosome of

RG is similar to the previous estimates for other African

populations obtained using a different method: Haddrill et al.

[46] estimated 84,89, and 47 per kb for the X recombination rate

in three African populations.

To assess the effect of SNP density, we thinned the SNPs on

chromosome arm 2L and chromosome X of the RG dataset to the

corresponding SNP densities of RAL, and performed inference on

the resulting data. The results summarized in Table S7 show that

although SNP density indeed influences the ability to estimate

recombination rates, the impact is not nearly large enough to

account for the difference between the observed recombination

rates of RAL and RG on the X chromosome.

Finally, as there exist several inversions in D. melanogaster, we

analyzed regions of inversion excluding individuals known to carry

the inversion [49]. The comparison of excluding individuals with

inversions and the original analysis is shown in Table S8. Note that

for each inversion, only a small number of individuals carry it. We

found that excluding the individuals with inversions did not

significantly affect the recombination rate estimates.

Comparison with experimental genetic maps
LDhelmet’s fine-scale recombination maps for RAL and RG

are illustrated in Figure 4; files containing the corresponding

numerical values are publicly available. To assess the accuracy of

our recombination estimates obtained via statistical analysis of

population genetic variation data, we compared them to genetic

maps obtained experimentally.

Singh et al. [20] examined the fine-scale recombination rate

variation over a 1.2 Mb region of the D. melanogaster X

chromosome using a genetic mapping approach, by crossing an

African line with a line presumably of North American origin (a

cross between two lines from Bloomington Drosophila Stock

Center). For their experiment, Singh et al. genotyped 8 SNPs and

identified two flanking genes, white and echinus, with visible

phenotypes. They found statistically significant heterogeneity in

this region, with differences in rate up to 3:5-fold. In Figure 5,

estimates from LDhelmet for both the RAL and RG samples are

shown, along with the genetic map from [20]. Both estimates from

LDhelmet mostly fall within the 95% confidence intervals of the

empirical estimate, with the exception of the outermost intervals.

The three maps share the same overall shape, including the

location of the highest peak. We find 4:5-fold variation in the RG

estimate, which is comparable to the 3:5-fold variation obtained by

Table 2. Hotspot areas for recurrent-sweep simulations.

No Hotspot (20) Hotspot 10| (200) Hotspot 50| (1000)

Model est. % err. est. % err. est. % err.

RS1 16.6 {16:8 179.8 {10:1 889.6 {11:0

RS2 8.9 {55:5 38.2 {80:9 773.0 {22:7

RS3 1.7 {91:4 2.6 {98:7 4.5 {99:5

Control 18.2 {9:0 183.5 {8:3 1100.0 10:0

For each recombination landscape, the median estimated hotspot area is shown in the left column (‘‘est. ’’) and the percent error is shown in the right (‘‘% err. ’’). The
true hotspot area for each recombination landscape is shown in parenthesis. ‘‘Control’’ refers to a neutral model. See Simulation study on the impact of natural selection
for the details of the models and Table 1 for related results.
doi:10.1371/journal.pgen.1003090.t002

Table 3. Average recombination rates for demography
simulations.

No Hotspot
(10 per kb)

Hotspot 10|

(17:2 per kb)
Hotspot 50|

(49:2 per kb)

Model est. % err. est. % err. est. % err.

G1 5.8 {42:0 10.1 {41:3 38.6 {21:5

G2 7.7 {23:0 12.8 {25:6 52.2 6:1

B1 7.2 {28:0 10.2 {40:7 28.8 {41:5

B2 1.2 {88:0 3.9 {77:3 20.0 {59:3

Control 9.3 {7:0 16.4 {4:7 53.9 9:6

Here, ‘‘Control’’ refers to a neutral model with constant population size. Model
B2 involved a very recent bottleneck, and we observed a reduction in diversity
by about a factor of 4 relative to the Control model. This reduction in diversity
partly explains the particularly poor estimates of the recombination rate for
model B2. The estimates for the other models are reasonably accurate, although
they are clearly nosier compared to that for the Control model. See Simulation
study on the impact of demographic history for the details of the models. For
each recombination landscape, the median estimated average recombination
rate is shown in the left column (‘‘est. ’’) and the percent error is shown in the
right (‘‘% err. ’’). The true average recombination rate for each recombination
landscape is shown in parenthesis.
doi:10.1371/journal.pgen.1003090.t003
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Singh et al. The high correlation among the three maps give us

confidence that our estimates from the statistical analysis of

population genetic data accurately represent the true underlying

recombination map.

In a second study, we compared our chromosome-wide

recombination estimates with a consensus genetic map for each

chromosome arm based on data hosted at the FlyBase website

(http://www.flybase.org [50]). To facilitate a comparison with this

map, resolution of which is roughly 200 kb, we binned our data

into the same cytogenetic subdivisions [24] and LOESS-smoothed

the results, with a span of 15%; a correspondingly LOESS-

smoothed version of the FlyBase data was kindly provided to us by

C.H. Langley. A comparison of the maps is shown in Figure 6;

evidently, the three estimates show broad agreement, each

capturing key features such as the spike in recombination near

position 10 Mb on arm 2L, as well as a series of dramatic changes

in recombination rate across chromosome X. When the

recombination map for RAL is regressed on the FlyBase maps,

the coefficient of determination, or proportion of variability

explained by the simple linear regression model, is

R2~0:54,0:57,0:37,0:53 and 0:50 for chromosome arms 2L,

2R, 3L, 3R, and X, respectively; the corresponding values for RG

are R2~0:55,0:63,0:45,0:42, and 0:41. These correlations are

lower than those seen in a comparison of statistically- versus

experimentally-derived maps in humans (e.g. R2~0:97 [13]),

though in that case the experimental data from pedigrees were of

higher quality. As noted by Langley et al. [24], data on which the

FlyBase map is based is highly edited and based on heterogeneous

experimental conditions with sometimes conflicting results.

Recombination hotspots
As discussed in the sec:introduction, it is well known that in

humans and many other eukaryotes recombination tends to cluster

in recombination hotspots, regions of approximately 2 kb wide in

which the rate of recombination may be one or more orders of

magnitude higher than the background rate [4,12–14]. However,

it is an open question whether hotspots exist in the D. melanogaster

genome, or to what extent recombination rates vary on a fine

scale.

We first searched for the most extreme forms of recombination

rate variation—namely, recombination hotspots. Using a highly

conservative approach described in Materials and Methods, we

initially identified nineteen and five putative autosomal recombi-

nation hotspots from the RAL and RG data, respectively. Of

these, respectively six and four were also detected by the hotspot

detection software sequenceLDhot [29]. These ten hotspots, the

width of which ranges between 0.5 kb and 6.8 kb, are listed in

Table 6. All were found in genic regions, with all except one

overlapping exons and one contained within an intron. An

example of a RAL hotspot is shown in Figure 7, where we also

show the RG recombination map. The fine-scale recombination

maps in this region for the two populations are clearly highly

correlated, with both RAL and RG exhibiting a tenfold increase in

recombination rate within almost identical 4 kb intervals, though

only the hotspot of RAL was also found by sequenceLDhot. We

note that the power of sequenceLDhot may be further reduced by

the apparent preference (not shown) for putative hotspots to reside

in regions in which the ‘‘local’’ background rate is higher than that

of the chromosome arm as a whole. In light of these factors, it is

likely that several more hotspots would have been found in one or

both populations under a more relaxed definition, though it is

clear that they are far scarcer, and less hot, than in humans.

Genome-wide fine-scale recombination rate variability
It is apparent from both RAL and RG maps shown in Figure 4

that recombination rates vary on multiple scales, from the very fine

to the very broad, as has been observed in a number of other

species [7,13–16]. It is clear, for example, that recombination rates

tail off towards each end of the arm, with the reduction towards

the telomere much more precipitous than the pericentromeric

reduction. The latter reduction is evident from as far as the start of

heterochromatic sequence a few megabases from the centromere,

Table 4. Hotspot areas for demography simulations.

No Hotspot (20) Hotspot 10| (200) Hotspot 50| (1000)

Model est. % err. est. % err. est. % err.

G1 11.6 {41:9 116.6 {41:7 752.0 {24:8

G2 15.2 {23:8 131.9 {34:1 1032.6 3:3

B1 14.2 {29:1 25.6 {87:2 471.0 {52:9

B2 1.6 {92:2 31.0 {84:5 205.2 {79:5

Control 18.2 {9:0 183.5 {8:3 1100.0 10:0

For each recombination landscape, the median estimated hotspot area is
shown in the left column (‘‘est. ’’) and the percent error is shown in the right (‘‘%
err. ’’). The true hotspot area for each recombination landscape is shown in
parenthesis. ‘‘Control’’ refers to a neutral model with constant population size.
See Simulation study on the impact of demographic history for the details of
the models and Table 3 for related results.
doi:10.1371/journal.pgen.1003090.t004

Table 5. The average recombination rate for each major chromosome arm.

r per kb Ratio

Chromosome
arm RAL(37) RAL(22) RG(22) RG(22):RAL(37) RG(22):RAL(22)

2L 13.3 12.4 33.2 2.5 2.7

2R 13.4 12.4 34.5 2.6 2.8

3L 13.4 12.1 44.9 3.4 3.7

3R 9.6 8.1 17.8 1.9 2.2

X 14.8 13.4 107.3 7.3 8.0

Note that RG has higher recombination rates than that of RAL. This difference could be explained partially, but not entirely, by a difference in population size. In RG, the
average recombination rate of X is substantially higher than that of the autosomes. In both populations, arm 3R has a notably lower recombination rate than do the
other arms. We also analyzed a smaller RAL dataset down-sampled to match the sample size of RG. The numbers in parentheses denote sample sizes.
doi:10.1371/journal.pgen.1003090.t005
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Figure 4. LDhelmet’s estimated fine-scale recombination maps for RAL and RG populations of D. melanogaster. The North American
sample (RAL) comprised 37 genomes, while the African sample (RG) comprised 22 genomes.
doi:10.1371/journal.pgen.1003090.g004

Figure 5. Comparison of LDhelmet estimates to the empirical genetic map of Singh et al. The experimental genetic map of Singh et al. [20]
is shown in black with 95% confidence intervals. The LDhelmet estimate for the RAL sample is shown in blue, while the estimate for the RG sample is
shown in red. The LDhelmet estimates were converted into units of cM/Mb by normalizing them to have the same total genetic distance as the
empirical map for the region. The three maps demonstrate high correlation, especially near the center of the region, where they share the highest
peak in the same interval.
doi:10.1371/journal.pgen.1003090.g005
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in agreement with other broad-scale estimates of recombination

[17,18], although we do not find a complete absence of

recombination here.

Figure 8 shows that the recombination rate in the X

chromosome between positions 10 kb and 20 kb is noticeably

higher than the rate in the subtelomeric region to the right. This

trend is much more pronounced in the North American X than

in the African X, consistent with a previous study by Anderson et

al. [51]. The telomere-associated sequence (TAS), located to the

left of position 10 kb, was not available in our data, but

Anderson et al. provided evidence that the TAS region in the

North American X exhibits even higher recombination rate

than that in the subtelomeric region between positions 10 kb

and 20 kb.

As shown in Figure 4, the largest difference between the

estimated recombination maps of the two populations is observed

Figure 6. Comparison with FlyBase genetic map. Plotted for each chromosome arm are the estimated recombination maps using our method
and the consensus experimental map hosted at FlyBase [50]. To ease comparison each map is LOESS-smoothed using a span of 15%. LDhelmet
estimates were converted into units of cM/Mb by normalizing them to have the same total genetic distance as the empirical map.
doi:10.1371/journal.pgen.1003090.g006
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in the X chromosome. First, the recombination map in the African

X is generally much higher than that in the North American X.

Second, there is noticeably less variation in the estimated African

X recombination map. As mentioned earlier in the discussion of

our simulation study, when the average recombination rate is as

high as that of the African X, the amount of variation in our

estimated map tends to be somewhat lower than the true variation.

Hence, the observed reduction in variation could be partially

attributed to our method being not sensitive enough in that range

of very high rates. More generally, it is also true that Fisher’s

information for data on sequence variation is lower in regions of

high recombination (Figure S3), which could create an inherent

limitation in our ability to infer recombination rate changes here.

Recombination around transcription start sites. To

assess the pattern of recombination around genes, we plotted the

average recombination rate as a function of distance from the

transcription start sites (TSS). As shown in Figure S4, the plots for

RAL and RG show high similarity in shape, despite differences

between their fine-scale recombination maps. Also, note that the

plots follow a similar pattern as in human [4,12,13], chimpanzee

[7], and mouse [52], although the gene density of D. melanogaster is

much higher than that of the other species.

A wavelet analysis. To carry out a more methodical analysis

of recombination rate variation within and between the two

populations, and its correlation with other genomic features, we

performed a wavelet analysis (Materials and Methods). Wavelet

analyses are suitable for detecting localized, intermittent period-

icities embedded in the data, across a range of possible scales. Our

inputs are two sets of discrete ‘‘time’’-series data representing the

recombination maps of RAL and RG, binned into a recombina-

tion rate in each 250 bp window. Each is transformed into a

collection of coefficients indexed by position (‘‘time’’) and scale,

and describe the variation in the input signal at each position and

scale. The scale index may be discrete or continuous, and in this

Figure 7. A putative hotspot found by LDhelmet and confirmed by sequenceLDhot. (Top): Estimated recombination rate for RAL (blue)
and RG (red) in a 50 kb region of chromosome 3R, and their respective mean recombination rates in this region (dotted). (Bottom): Evidence of
recombination hotspots in the same region, evaluated according to sequenceLDhot. The dotted line shows the likelihood ratio cutoff we used.
doi:10.1371/journal.pgen.1003090.g007
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paper we make use of both types of transform as appropriate.

Although the wavelet transform may be complex-valued, it can be

summarized by a plot of its (local) power: the square of the norm of

the wavelet coefficients at each position and scale. Taking the

mean power across all positions yields the (global) wavelet power

spectrum, which summarizes how the total variability in the signal is

explained by heterogeneity at different scales. Further, a correla-

tion between the wavelet coefficients from two different ‘‘time’’-

series datasets can identify how a change in one signal predicts a

change in the other, at a given scale. One advantage of the wavelet

approach is that one does not have to choose the appropriate

window size in advance, which is important since analyses of

genomic data on different pre-chosen scales can give conflicting

results (e.g., [2,23,53]).

To illustrate, continuous wavelet transforms of the recombina-

tion maps of chromosome arm 2L are shown in Figure 9; wavelet

transforms for the rest of the genome are shown in Figures S5, S6,

S7, S8. For brevity we focus on chromosome arm 2L throughout;

results for the remaining arms are given in the Supporting

Information. We can interpret these transforms with reference to

the wavelet transform of a constant recombination map, which

would yield essentially zero power (dark blue) everywhere. Clearly

the transform is highly inconsistent with a constant map. Regions

of high power, shown at the red end of the spectrum and

corresponding to wavelet coefficients of large magnitude, are

consistent with variation in recombination rate at the given

location (x-axis) and at the given scale (y-axis). Intuitively, a

location of high local power in the wavelet transform suggests that

a useful proportion of the variability in our dataset is well-

explained if we track it by placing a wavelet function at this

position and with the appropriate width corresponding to this

scale. One way to evaluate the most significant regions of the time-

frequency domain is to compare the transformed data with the

transform of a null first-order autoregressive process with the same

variance; thus, we allow for some variability as we scan along the

data from left to right, and identify those regions (black contours in

the figures) with wavelet power significantly above the null

expectation.

Observe that highest power (red color) is seen in Figure 9 at the

broadest scales (long periods) and at very fine scales. The former

reflects the centromeric and telomeric decline in recombination

rate, and we see that the centromeric decline has a more

pronounced effect on the largest periods (though we caution that

these signals are below the cone of influence, a region whose wavelet

transform may be unduly distorted by edge effects [54]).

Analogous patterns are evident in the other chromosome arms

(Figures S5, S6, S7, S8). Notice also that very fine-scale variation is

manifested in high power regions at small periods (e.g., Figure 9,

right-hand plots). While there exists some previous evidence for

localized fine-scale variation in recombination rate in D.

melanogaster [20], our finding that it is widespread across the

genome is novel.

Correlation of the two recombination maps at various

scales. Although there is some correlation in fine-scale variation

between the two populations (for example, its lower volatility in

region 11.2–11.25 Mb of arm 2L; see the right column of

Figure 9), it is far from strong. To explore how well correlated the

two maps are at each scale, we computed the pairwise correlations

between wavelet coefficients of the two maps, after applying a

discrete (Haar) wavelet transform following [53] (Figure 10, Figure

S9). This choice of transform decomposes a dataset into a series of

wavelet coefficients for each of a discrete set of scales. The

decomposition provides a series of detail coefficients measuring

changes between neighboring observations, and a series of smooth

coefficients which provides a smooth approximation of the original

signal [55]. The correlation, at a given scale, between the detail

coefficients of the wavelet transform of two maps can then be

computed, and those with significantly high correlation identify

the scales at which the two maps do co-vary. Across all arms and

across all except the broadest scales there is a highly significant

correlation in the variability of the two maps (Kendall’s rank

correlation, two-tailed test at 1% significance). The lack of

correlation at broader scales is probably due to lack of power:

for example, at the 1% level there are too few data points for this

test to have any power at any scale broader than 4 Mb.

Given the similarities between the two populations, it is perhaps

not surprising that their recombination rates are highly correlated

when assessed globally. To further elucidate how this correlation

varies in different regions of the genome, we performed a wavelet

coherence analysis (see sec:method), which can be regarded

informally as calculating a squared correlation coefficient between

the variation of the two maps at each position as well as at each

scale. Wavelet coherence analysis thus evaluates correlations in

local, rather than global, power. Results are shown in Figure 11

Table 6. Putative recombination hotspots in D. melanogaster found by our method.

Dataset Arm Gene Start End Width (kb) #SNPs r per kb
Ratio to
armwide mean

6*RAL 2L CR43314 11966311 11966880 0.6 20 140.8 11

3L CG9384, CG17173 14759823 14761142 1.3 30 177.9 13

3R Cys 10394533 10395940 1.4 42 100.8 10

3R CG7530 10552022 10553677 1.7 65 110.6 11

3R Ccap 18526587 18527115 0.5 23 122.1 13

3R CG2010, Trc8 25320629 25324745 4.1 169 154.9 16

4*RG 2R DJ-1a, AGO1 9830014 9830946 0.9 53 547.3 14

2R CG15706, Tsf3 12109706 12116536 6.8 344 545.2 14

2R CG4927, CG8317 12460329 12466422 6.1 255 431.4 11

3R nAcRb-96A 20339494 20340164 0.7 33 219.7 12

These putative hotspots were confirmed by the hotspot detection software sequenceLDhot [29].
doi:10.1371/journal.pgen.1003090.t006
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and Figure S10. It is clear that the correlation between the two

maps is found nonuniformly along the chromosome. While there is

high correlation at all positions at the broadest (megabase) scales,

at smaller scales there exist regions of very low correlation, even

when the overall correlation between the two maps at this scale is

high. For example, the average coherence between the two maps

at the 256 kb scale is 0.59 over the whole of 2L, compared to only

0.19 in the region 5–6 Mb. (Note that the persistently high

correlation seen near position 20 Mb across many scales, reflects a

particular region of missing data in both populations, and hence

flat recombination.) Although the existence of regions of low

coherence is partly explained by statistical error (Figure S11), it

does not explain the drop fully. Thus, at least some isolated regions

of low correlation are consistent with the idea that biological

differences between the two populations create local differences in

the recombination rate.

Correlation of recombination rates with other genomic
features

The use of wavelets enables us to compare how changes in the

rate of recombination along the genome correlate with other

genomic features. For each population we computed pairwise

correlations between the detail coefficients of the following

features: diversity (mean fraction of pairwise differences between

each individual in the population, within sequenced nucleotides),

divergence (fraction of differences between the reference sequences

of D. melanogaster and D. simulans), GC content, gene content

(fraction of sites annotated as exonic), and sequence quality (Phred

score), as well as the recombination rate, with each feature

measured in 250 bp windows (see Materials and Methods). Results

are shown in Figure 12 and Figure S12, and follow a similar

analysis performed by Spencer et al. [53] on human data. From

these results we can make a number of observations detailed

below.

The power spectra of each genomic feature. As in

humans, we find the greatest heterogeneities in divergence and

GC content at the finest scales, and in gene content at

intermediate scales. Heterogeneity in diversity and recombination

are strikingly different when we compare RAL and RG:

recombination shows the greatest heterogeneity at fine scales in

RAL and at intermediate scales in RG (as in humans); the reverse

is true of diversity. These patterns are broadly repeated for each

arm (Figure S12), although it should be noted that the lack of

heterogeneity in recombination at fine scales in the RG data may

partly be a consequence of its high background recombination rate

leading to lower resolution (as discussed above; see Figure S3).

Limitations such as these notwithstanding, the broad agreement

between chromosome arms gives ground for optimism that the

signals are not swamped by noise.

Pairwise covariation of genomic features. The off-diag-

onal plots in Figure 12 provide a great deal of information about

Figure 8. Fine-scale recombination maps for the X chromosome subtelomeric region. The telomere is at the left end of the region. The
recombination rate between positions 10 kb and 20 kb is considerably higher than the rate in the subtelomeric region immediately to the right. This
trend is much more pronounced in the North American X than in the African X, consistent with a previous study [51].
doi:10.1371/journal.pgen.1003090.g008
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the covariation of several pairs of genomic features. Some are

predictable and also found in humans [53]. For example, there is a

strong positive correlation between diversity and divergence at fine

and intermediate scales, consistent with variation in mutation rates

at different positions in the genome. As a second example, both the

negative correlation between gene content and diversity and the

negative correlation between gene content and divergence are

predicted by the observation that exons tend to be under greater

selective constraint.

Perhaps the most notable difference between D. melanogaster and

humans is seen when we examine the correlation between

recombination and diversity. In humans this correlation is weak

and extends only up to approximately the 4 kb scale. Spencer et al.

[53] therefore infer that the influence of recombination on changes

in diversity is primarily local in nature and driven by recombi-

nation hotspots. In D. melanogaster—for both the RAL and RG

data—the positive correlation between recombination and diver-

sity is stronger and acts up to intermediate scales, approximately

2–256 kb. Interestingly, the correlation at very fine scales, v2 kb,

is weaker and for some chromosome arms nonsignificant (see

Figure S12). These findings suggest both that a local influence of

recombination hotspots on diversity is weaker or absent in D.

melanogaster, consistent with the paucity of hotspots found in our

search described above, and that some other phenomenon exerts

an effect on diversity, but not divergence, over much larger scales.

Clearly, one candidate is the action of selection, whose impact on

the correlation between recombination and diversity is well

appreciated [20,21,23,24,56,57]. The scale up to which we have

been able to detect this correlation, around 256 kb (with some

differences according to the population and chromosome arm

examined), is surprisingly large given that the footprints of selective

sweeps are typically in the region of up to *20 kb [2,24].

Finally, it is notable that there is a significant negative

correlation between the recombination rate and gene content at

intermediate scales, in both RAL and RG and across all

chromosome arms (though the signal is weaker on the X

chromosome). This is consistent with the apparent preference for

crossovers to occur outside exonic sequence [58], although we

note that the effect does not appear to act at the finest scales—

recall also that all but one of the putative hotspots identified in

Table 6 do in fact overlap with exonic sequence.

A linear model analysis. Given the strong but imperfect

correlation between the recombination maps of RAL and RG, can

we use the same genomic features to predict the regions in which

the two maps might differ? To extend the analysis above and to

address this question, we used a linear model analysis of the

wavelet coefficients of each recombination map, using wavelet

coefficients of other features as predictors. This analysis is similar

to that described in [53], though their interest was in the

prediction of changes in diversity rather than recombination. For

each population and at each scale, we fit a linear model for the

detail coefficients of the recombination map using as predictors the

Figure 9. Local wavelet power spectrum of recombination rate variation across chromosome arm 2L. The whole arm is shown on the
left, and a detailed (central) 1 Mb is shown on the right, for RAL and RG. Black contours denote regions of significant power at the 5% level, and the
white contour denotes the cone of influence. Color scale is relative to a white noise process with the same variance. Lower panels show estimates of
the corresponding recombination maps.
doi:10.1371/journal.pgen.1003090.g009
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detail coefficients of wavelet transforms of sequence quality, gene

content, GC content, divergence, and diversity (Figure 13A;

Figures S13A, S14A, S15A, S16A). We find changes in diversity to

be a strong predictor of changes in recombination across all

chromosome arms and across many scales, though the effect is on

some arms somewhat weaker (and nonsignificant) at the finest

scales. Again, this is in contrast to the primarily local relationship

between changes in diversity and recombination in humans. In

addition to diversity, there are additional positive influences of GC

content and sequence quality at fine scales; a weak negative

influence of gene content at intermediate scales; and, in RG only,

a negative influence of sequence quality at broad scales. Each of

these signals is much weaker on the X chromosome (Figure S16),

except the influence of diversity as a predictor of recombination,

which still extends up to the megabase scale despite much higher

absolute rates of recombination on this chromosome. The positive

association between GC content and recombination is consistent

with biased gene conversion [21,53] and/or codon bias [21,22],

though we note an apparent negative correlation between GC

content and recombination at broader scales (Figure 12, Figure

S12).

When the recombination map from the other population is

added as an additional covariate, it is the strongest predictor of

recombination rate at all but the broadest scales (Figure 13B;

Figure S13B, S14B, S15B, S16B). Of the remaining covariates,

those which were previously highly significant predictors now

generally have reduced impact. However, their p-values at several

scales are still highly significant, indicating that they offer

explanatory power of the recombination rate over and above that

provided by the recombination map of the other population. In

particular, diversity remains a strong positive predictor of levels of

recombination over most scales.

Discussion

We have developed a new method, LDhelmet, which is able to

provide accurate estimates of recombination rates using genomic

data from D. melanogaster. Although our focus has been on this

species, the features of our method should offer improvements in

the estimation of recombination in other species too. For example,

the desire to efficiently incorporate sites in which some alleles are

missing is a common issue when data are generated by next-

generation sequencing technologies. We believe that our method

will find many further applications in other datasets.

Using our method, we have performed a genome-wide

comparison of fine-scale recombination rates between two

populations of D. melanogaster, one from Raleigh, USA (labeled

RAL) and the other from Gikongoro, Rwanda (labeled RG).

While earlier studies have largely been confined to regions of

Figure 10. Pairwise correlation of detail wavelet coefficients of
RAL and RG recombination maps for chromosome arm 2L. Black
circles denote Kendall’s rank correlation between pairs of detail
coefficients at each scale. Crosses denote the correlation that would
be required for significance at the 1% level in a two-tailed test; red
crosses are those scales at which the correlation is in fact significant.
doi:10.1371/journal.pgen.1003090.g010

Figure 11. Wavelet coherence analysis comparing RAL against RG. (Left): Wavelet coherence of the two maps for chromosome arm 2L. The
cone of influence is shown in white. (Right): For each arm, the plot shows the fraction of the genome with significantly high coherence at the 5%
level, at each scale.
doi:10.1371/journal.pgen.1003090.g011

Fine-Scale Recombination Map of D. melanogaster

PLOS Genetics | www.plosgenetics.org 15 December 2012 | Volume 8 | Issue 12 | e1003090



moderate resolution, we find extensive fine-scale variation across

all chromosomes and in both populations. A notable difference

between the two recombination maps is the higher overall

recombination rate in RG than in RAL. Our method estimates

the composite parameter 2Nerf , where Ne is the effective

population size and rf is the (female) rate of recombination per

generation, so this difference is partly explained by a difference in

effective population size. However, further differences between

chromosomes—namely, the inflated recombination rates in the X

chromosome relative to autosomes—lead us to invoke biological

Figure 12. Global wavelet power spectrum and pairwise correlations of detail wavelet coefficients of RAL and RG data for
chromosome arm 2L. Diagonal plots show the global wavelet power spectrum of each feature of the RAL (blue) and RG (red) data. Off-diagonal
plots show Kendall’s rank correlation between pairs of detail coefficients at each scale, with respect to the wavelet decomposition of the two
indicated features. Crosses denote the correlation that would be required for significance at the 1% level in a two-tailed test; red crosses are those
scales at which the correlation is in fact significant. The bottom left and top right plots correspond to RAL and RG, respectively.
doi:10.1371/journal.pgen.1003090.g012

Fine-Scale Recombination Map of D. melanogaster

PLOS Genetics | www.plosgenetics.org 16 December 2012 | Volume 8 | Issue 12 | e1003090



differences too, particularly the role of polymorphic inversions.

There may also be other, unappreciated, biological factors causing

an increase in rf on the X chromosome.

In addition to the higher absolute rate of recombination in RG,

a further difference between the populations merits discussion: the

relative increase in recombination on the X chromosome

compared to the autosomes is much more pronounced in RG

than in RAL. In the African population, estimates of the ratio

rX=rA lie in the range 2:4*6:0, whereas in the North American

population they lie in the range 1:1*1:5 (Table 5). There are

several possible explanations for the difference between the two

populations. First, RAL may have experienced a historical

population bottleneck. The effect of a population bottleneck on

LD is stronger on the X chromosome than on the autosomes [59]

(a similar effect on diversity is also seen [60]). Thus, a population

bottleneck leads to an increase in LD on the X chromosome over

and above the increase on the autosomes. A bottleneck in the non-

African population is a sensible proposition since D. melanogaster is a

human commensal of African origin which has colonized North

America more recently. Bottlenecks in non-African populations of

D. melanogaster have been inferred from genetic data by others

[46,47]. Furthermore, as shown in our simulation study, bottle-

Figure 13. Linear model for wavelet transform of recombination map of chromosome arm 2L. (A) In a linear model for the detail
coefficients of the wavelet transform of the recombination map of chromosome arm 2L, covariates are the detail coefficients of wavelet transforms of
data quality, gene content, GC content, divergence, and diversity. Shown is the 2log10 p-value of the regression coefficient at the given scale, as
determined by a t-test. Colored boxes indicate significant relationships, with red positive and blue negative. Also shown in the adjusted r2 . (B) As
above, but with the recombination map of the other population as an additional covariate.
doi:10.1371/journal.pgen.1003090.g013
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necks tend to cause our method to underestimate the true

recombination rate, so the bottleneck explanation would be

consistent with the fact that our recombination rate estimates for

RAL are lower than that for RG. Second, the impact of

polymorphic inversions may be greater in RG, since the African

population has a high frequency of polymorphic inversions in the

autosomes and in the centromere-proximal X. The observed

increase in the recombination rate in the African X could be

partially attributed to interchromosomal effect [61,62]. A third possible

explanation is the more efficient role of selection on the X

chromosome when nonneutral mutations are recessive: such

mutations can more easily be exposed to the action of selection

in their hemizygous state in males. This effect will be more

pronounced in RAL if it has undergone greater selective pressures,

as seems likely in its adaptation to a new environment. Unraveling

the relative importance of these possible explanations merits

further investigation.

At fine-scales, we also find extensive differences between the

recombination maps of the two populations, for which a simple

difference in effective population size is not a sufficient explana-

tion. Wavelet coherence analysis reveals high correlation at broad

scales but regions of low correlation at fine scales, as has been

documented among human populations, and in comparison

between humans and chimpanzees [8,9]. The advantage of a

wavelet coherence approach is that it further identifies the

locations of similarities and differences. However, the causes of

these differences remain to be understood. One noteworthy result

of our analysis is that changes in diversity are a strong positive

predictor of changes in recombination in one population, even

when the recombination map of the other population is included

as a covariate. A possible explanation for this observation is that

the two populations have undergone separate selective sweeps,

with sufficient impact on the genome that the correlation between

recombination and diversity can still be detected even when the

recombination map of the other population is used as a covariate.

We note that a partial overlap in the signature of selective sweeps

was also found by Langley et al. [24]. Using a metric based on

valleys of diversity, they found that 44% of diversity valleys in RAL

overlapped with those found in an African sample. There are of

course other possible explanations for the observed correlations

between diversity and recombination; it is known that background

selection—the loss of neutral diversity due to linked deleterious

mutations—can also induce such a correlation (see Charlesworth

[63,64] and references therein). The relative importance of these

types of selection in distinguishing the two populations is obviously

deserving of further study.

Access to a fine-scale map lets us address a crucial question of

the distribution of recombination in Drosophila: whether they

localize into recombination hotspots. Using a conservative

approach, we found a few regions with solid statistical support

for a local elevation of at least 10 times the background

recombination rate (Table 6). With the caveat that we used a

high block penalty in the rjMCMC and employed a stringent

hotspot detection strategy, overall our findings support the belief

that extreme localization of recombination into hotspots is not

prevalent in D. melanogaster; in humans, on the other hand, the list

of well-supported hotspots exceeds 30,000 [4], many of which

exhibit much more than a tenfold increase and have a common

mechanism for recruiting the recombination machinery [6,10,11].

Singh et al. [20] therefore reserve the term ‘‘recombination peaks’’

for the milder variability they find, and it could be the case that

what we have found in this paper are the most extreme examples

of these peaks. Having said that, we also note that, as discussed

earlier in our simulation study, the ability to perform accurate

statistical inference of recombination (in particular, detecting

hotspots) gets significantly reduced when recurrent strong selective

sweeps are in play. It is hence possible that there are actually more

hotspots in the D. melanogaster genome than our study could find.

We have focused on estimating and characterizing the

recombination map itself and on its correlation with a set of

important genomic annotations, but given such a map one can

tackle many further problems. The question of primary sequence

influences of recombination localization can now be addressed

with much greater power. In humans, the 13 bp motif

CCNCCNTNNCCNC has been found to be over-represented

in hotspots, consistent with its recruitment of the protein PRDM9

which has been implicated in the hotspot usage [6,11]. Searches

for motifs in Drosophila that correlate with fine-scale recombination

rate have been undertaken in D. pseudoobscura [22,23], D. persimilis

[21], and D. melanogaster [58]. Motifs that correlate with fine-scale

recombination in humans are also significant in some of these

species [21,23], which is unexpected given the rapid turnover of

motif usage in humans and chimpanzees [6]. In a recent pedigree

study, Miller et al. [58] were able to localize with high precision

fifteen crossover events on the X chromosome of D. melanogaster.

From these they identified the 7 bp motif GTGGAAA as

significantly enriched in the vicinity of these crossovers. Further

study is required to validate this motif and to search for others, and

our maps should prove useful in this regard.

Finally, our work should be of interest since a fine-scale

recombination map is a prerequisite of studies seeking to estimate

the influence of natural selection on the genome [1]; those lacking

such a map retain this caveat [2]. Although these inferences of

recombination and selection rely on the same data and have the

potential to distort each other, it is reassuring that our method is

robust to the influence of positive selection, and that it shows good

agreement with existing experimental estimates of recombination.

In our simulation studies we focused on the effects of hard sweeps,

since they are thought to be an important mode of adaptation in

Drosophila [2,33,45] and are expected to have the strongest effect

on patterns of variation. Aside from additional noise resulting from

a reduction in diversity, there is little bias introduced by failing to

include selection in the assumed model, at least under the

parameters we considered. This is consistent with the observation

that a recurrent sweep model does not have a striking effect on LD

beyond that predicted by the reduction in diversity [59].

Nonetheless, further investigation is warranted on the effects of

other types of selection, and on the development of methods that

can account for recombination and selection jointly.

Materials and Methods

Data
The mean coverage of the RAL data was §10|. Regions of

residual heterozygosity and regions of identity-by-descent between

genomes were masked in the RAL data, in addition to a quality

filter of Q30 applied to both populations. Preliminary analysis by

the DPGP2 group found evidence of admixture among 5 of the 22
RG lines we considered, in addition to evidence for minor levels of

identity-by-descent between genomes. To maintain a reasonable

sample size, these regions were not masked in the results presented

in this paper. We did repeat several of our analyses with these

regions excluded and generally found little difference. Despite the

extensive filtering, which increases the amount of missing data, the

runtime complexity of our method does not increase from a lack of

data, as it does for LDhat.

The data were divided into overlapping blocks of 4,400 SNPs

each, with 200 SNPs of overlap on either end of a block. For every
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block, LDhelmet was run for 3,000,000 iterations after 300,000

iterations of burn-in. The map for each chromosome or

chromosome arm was constructed by removing 200 SNPs from

the ends of the blocks and concatenating the blocks together.

Population-scaled recombination parameter
The aim of our method is to infer the fine-scale map of the

population-scaled recombination rate in D. melanogaster, in which

recombination occurs only in females. The population-scaled

recombination rate between a pair of sites in the X chromosome is

defined as rX ~
8

3
NX

e rX
f , where NX

e is the effective population size

for X and rX
f is the probability of recombination between the sites

per generation per X chromosome in females. The population-

scaled recombination rate between a pair of sites in an autosome is

defined as rA~2NA
e rA

f , where NA
e is the effective population size

for the autosome and rA
f is the recombination rate between the

sites per generation per autosome in females. Furthermore, NX
e

and NA
e are defined as NX

e ~9Nf Nm=(4Nmz2Nf ) and

NA
e ~4Nf Nm=(Nf zNm), where Nf and Nm denote the effective

number of female and male individuals in the population. If we

assume Nf ~Nm~Ne=2, we obtain rX ~2NerX
f and rA~2NerA

f .

In contrast to recombination, mutation occurs in both males

and females. We denote the X chromosome mutation rates in

females and males as mX
f and mX

m , respectively, and the autosomal

mutation rates in females mA
f and mA

m males as and, respectively.

Then, the population-scaled mutation rates for X and the

autosomes are given by hX ~
4

3
NX

e (2mX
f zmX

m) and

hA~2NA
e (mA

f zmX
m), respectively. Further, if Nf ~Nm~Ne=2,

then the expressions simplify to hX ~Ne(2mX
f zmX

m) and

hA~2Ne(mA
f zmA

m).

In our statistical model, we allow the recombination rate to vary

across the genome. We use to denote generically the population-

scaled recombination map, which is a function of genomic

position. For ease of notation, we do not add a subscript to r to

distinguish between X and autosome; it should be clear from the

context which is intended. Similarly, we use h to denote generically

the population-scaled mutation rate.

Our objective is to estimate the recombination map from

population genomic DNA sequence data. Our approach intro-

duces several key improvements to the method LDhat [14,30]

(v2.1 used throughout), which was first developed for estimating

fine-scale recombination maps in humans. Below is a brief

description of LDhat, followed by the details of our improved

method LDhelmet.

A brief description of LDhat
Given a sample of chromosomes from a population, LDhat

estimates the recombination map r within a Bayesian setting,

placing a prior on the map. To avoid overfitting, r is assumed to

be a step function (i.e., a piecewise constant function). The prior is

a distribution on the number of times r changes value, the

locations of such changes, and the value of each piecewise constant

segment. LDhat employs reversible-jump MCMC (rjMCMC) [65]

to sample from a posterior distribution over a sample space of step

functions where different parts of the space have different numbers

of parameters.

Denote the likelihood of r and h by P(DDr,h), where D
represents a set of phased haplotypes. Rather than compute the

full likelihood, which is in general intractable except for a very

small sample, LDhat computes an approximation known as the

pairwise composite likelihood [30,66]. For every pair of SNPs in a short

region, the pairwise likelihood is computed under the coalescent

with recombination, and the product over all such pairwise

likelihoods serves as an approximation to the full likelihood. This

approach scales well to large datasets, and has been demonstrated

through simulation studies to provide a reasonable approximation

to the full likelihood [30].

The two-locus likelihoods are precomputed and stored in a

lookup table for computational efficiency. In LDhat, the two-locus

likelihoods for sample configurations with no missing data are

precomputed by importance sampling [67]. Then, the likelihoods

for sample configurations with missing data are computed (and

stored) as they are encountered during data analysis, by

marginalizing over appropriate configurations with no missing

data; the running time of this procedure is exponential in the

number of missing entries in the configuration.

There is one likelihood table for every choice of mutation

parameter h, and likelihoods are precomputed over a grid of the

recombination parameter r. In LDhat, the default is over

r~0,1, . . . ,100 and a two-allele model is assumed, with mutation

transition matrix P~(
0 1
1 0

) at each site. That is, when a

mutation event occurs, the allele changes to the other type with

probability 1.

An overview of our new method LDhelmet
To accommodate the higher recombination rate observed in D.

melanogaster, we introduce several key modifications to LDhat to

improve the accuracy and robustness of recombination map

estimation. These modifications are summarized as follows:

1. Instead of using importance sampling to compute the two-locus

likelihoods, we compute them by solving a systems of recursion

relations, thereby producing more accurate lookup tables. An

additional benefit of this approach is that we can handle large

amounts of missing data at no additional computational cost,

since the likelihoods of configurations with missing data

naturally appear in the system of recursions.

2. Our method incorporates a general quadra-allelic mutation

model, whereas LDhat assumes a diallelic model. As a

consequence, we can handle complex mutation patterns

between the A, C, G, T nucleotides. Furthermore, our method

can use different mutation transition matrices for different sites

at no extra computational cost.

3. We make use of the recent work [36–39] on asymptotic

sampling distributions to incorporate a larger range of r values

in the lookup table in a computationally tractable manner.

4. The lookup table exhibits a finer grid resolution for values of r
in regions of higher likelihood curvature, for improved

accuracy.

5. We infer a distribution on the ancestral allele at each site and

use this information to compute more refined likelihoods.

6. The prior for the recombination map is more flexible and can

be tailored to the particular species under analysis. For

example, when analyzing a species that is believed to have

significantly higher recombination rates than that of humans,

as is the case for D. melanogaster, one should not use the same

prior as for humans.

The computational tractability of the first two modifications

listed above is dependent on the following approximation we

employ: We assume that each site underwent at most one

mutation in the entire genealogical history of the sample. This
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assumption is reasonable for small values of h, as is the case for D.

melanogaster, and it provides several computational advantages,

described in the following sections.

Two-locus recursion relation
For generating two-locus likelihood lookup tables, we replace

importance sampling with solving recursion relations [68] (see also

[36–39,69]). These recursion relations necessitate the solution of

large systems of equations in the possible observed sample

configurations. However, the one-mutation-per-site assumption

leads to gains in efficiency that make such systems soluble. To

illustrate, consider first a random sample drawn from a single

locus. We use the notation q(m; h) to denote the probability that a

sample of m alleles taken at random from the population in some

fixed order leads to the one-locus configuration m~(mj)j~1,...,K ,

where mj is the number of samples with allele j; if we are

modeling, say, the evolution of DNA nucleotides, then K~4 and

j[fA,C,G,Tg. (It is implicit that this probability is also a function

of the mutation transition matrix P at this locus.) It is well known

(e.g., [70]) that q(m; h) satisfies

m(m{1zh)q(m; h)~
XK

i~1

mi(mi{1)q(m{ei; h)

zh
XK

i,j~1

mjPijq(m{ejzei; h),

ð1Þ

for which a closed-form solution is not known in general. Here, ei

denotes a unit vector with ith entry 1 and the rest zero. In a later

section, we describe a method for using outgroup data to infer

which of the alleles in our samples is ancestral. When the identity

of the ancestral allele (i.e., the allele of the most recent common

ancestor of the sample) is presumed known, say type a, the

appropriate boundary condition for use with (1) is

q(ej ; h)~
1, if j~a,

0, otherwise:

�

As an alternative to working with (1), we can seek a solution for the

joint probability of obtaining the configuration m with the event

that it arose as the result of precisely s mutation events in the

history of the sample, a probability we denote by q(m,s; h). Then

we have [70]:

m(m{1zh)q(m,s; h)~
XK

i~1

mi(mi{1)q(m{ei,s; h)

zh
XK

i,j~1

mjPijq(m{ejzei,s{1; h),

ð2Þ

with

q(ej ,s; h)~
1, if j~a and s~0,

0, otherwise:

�

The advantage of the one-mutation-per-site assumption is then

apparent: q(,1; h) is known in closed-form [40,41]:

q(m,1; h)~

Pad
hma!md !

m(hz1)(hz2) � � � (hzm{1)

Xma

l~1

ma{1

l{1

 !
m{1

l

 !{1
1

hzl
,
ð3Þ

where the only nonzero entries of m are ma and md , corresponding to a

sample comprising ma copies of the ancestral allele type a and md

copies of a derived allele type d. Hence, in this case we entirely

circumvent the need for a numerical solution to a large system of linear

equations. Provided the mutation rate per site is sufficiently small, the

error Dq(m; h){q(m,1; h)D should be negligible.

We can make similar gains in a two-locus model by reducing a

large system of equations to a much smaller system, albeit one that

still requires a numerical solution. The idea is similar to that

described above, though notation is more complicated: the precise

form of the system is provided in Text S1. In the present paper,

the largest sample size we work with is n~37. This leads to a very

large system of equations that must be solved: Accounting for

symmetries, the total number of complete configurations of size

n~37 is approximately 1,300. When we count all configurations

encountered in the RAL data—including those with missing

alleles—this number rises to 27|106. In the two locus case, the

quantity of interest is q(n,1,1; h,r), the probability of obtaining the

two-locus configuration n together with the events that there was

precisely one mutation event at each of the two loci. Here, h
denotes the mutation rate and r denotes the recombination rate

between the two loci. Provided we work with the reduced system

of equations for q(n,1,1; h,r) as outlined above, it becomes feasible

to solve the system for every sample of size n~37, and thus to

generate exactly solved lookup tables for later use. Table S9 shows

the running time of this recursion-based likelihood computation as

a function of sample size n.

Missing data
Because the two-locus recursion relation is solved jointly for

every configuration, this also gives us exact solutions for every

subconfiguration at no extra computational cost. In particular, we

emphasize that we also obtain likelihoods for all relevant

configurations with any missing data, at no extra computational

cost. By contrast, when LDhat encounters a configuration in

which some alleles are missing, its approach is to marginalize over

missing alleles by summing over the relevant entries in its lookup

table for fully-specified haplotypes, but the time required for this

computation is exponential in the number of missing alleles. The

extent of missing data in the D. melanogaster genomes is such that

this approach is impracticable. On the data we analyzed, we

masked all alleles with a quality less than 30. For the RAL lines,

about 20% of the data was missing, and for the RG lines, about

8% of the data was missing. The more missing data there is, the

more expensive marginalization becomes, and the greater the

number of distinct configurations present in the data.

Incorporating a quadra-allelic mutation model
One key advantage of our approach is that it can make use of all

four alleles (A, C, G, T) in sequence data, together with the

ancestral alleles inferred from outgroup sequences. This is

achieved with modifications to the boundary conditions of the

appropriate two-locus recursion described above. In combination

with the one-mutation-per-site assumption, this allows us to use a

full 4|4 transition matrix P~(Pij)i,j[fA,C,G,Tg to model realistic

mutation patterns between nucleotides, with no significant amount

of extra computation: Suppose the ancestral allele at each of a
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given pair of segregating sites is known to be A and C,

respectively. At the first site some chromosomes exhibit a derived

G allele, and at the second site some chromosomes exhibit a

derived T allele. Because of the one-mutation-per-site assumption

and the decoupling of the genealogical and mutational processes

under neutrality, it is easy to see that the likelihood of this two-

locus configuration has a dependence on P only through a single

multiplicative factor PAGPCT . Hence, this expression can be

factorized completely out of the two-locus likelihoods and hence

from our lookup tables. The remaining quantity, which represents

the probability of observing a particular configuration up to the

identities of the alleles involved, can be multiplied by the relevant

pair of entries in P for any observed combination of nucleotides.

To be precise, if q(n,1,1; h,r) denotes our solution to the system of

equations described above, this argument shows we can write

q(n,1,1; h,r)~PAGPCT F (n; h,r), ð4Þ

for some function F independent of P. [The single-locus analogue

of this result is evident in equation eq:one-locus-solution.] We then

need to store only F (n; h,r). If later we see the same combination

of haplotype counts but for a different combination of nucleotides,

we can reuse this quantity and multiply it by different relevant

entries in P. For simplicity, in our analysis we used the same for

each site in the genome, but note that, because of the factorization

in (4), it is possible to use different mutation transition matrices for

different sites at no extra computational cost.

This approach easily generalizes to the case where the ancestral

allele is not known or where we only have a distribution on the

ancestral allele at each site. We can simply take the weighted

average over each of the four possible combinations of ancestral

alleles, weighted with respect to their distributions. In the case

where no information is known about the ancestral alleles, this

reduces to using the stationary distribution of P as the distribution

over ancestral alleles at each site.

Estimation of mutation transition matrices
Because we are now able to make full use of a quadra-allelic

mutation model, we developed a method to estimate the 4|4
mutation transition matrix P from empirical data, for subsequent

use in our recombination rate inference. We use the following

parsimony-based method to estimate P by inferring the ancestral

allele at each site in D. melanogaster by comparison with aligned

outgroup reference genomes of D. simulans, D. erecta, and D. yakuba.

We designate the ancestral allele at each dimorphic site in D.

melanogaster using the following rule. If the alleles of the three

outgroups are not all missing at this site and together exhibit

precisely one of the four possible nucleotides, and if this allele

agrees with one of the two observed in D. melanogaster, then this is

designated as the ancestral allele. Otherwise, it is considered

unknown and discarded from the analysis. (We also discarded

triallelic and quadra-allelic sites.) A related approach is used in the

Drosophila Population Genomics Project in the estimation of

divergence. We tried both more and less restrictive parsimony

rules, as well as excluding CpG sites from our analysis; neither

variation substantially altered our results.

Given a large collection of SNPs in our dataset for which the

ancestral allele is known, we can infer the identities of the alleles

involved in the mutation event at each polymorphic site. For

example, an A/G polymorphism with A ancestral implies a

historical A.G transition. The relative frequencies of each type of

event, normalized to account for varying genomic content of the

four nucleotides, determines our empirical estimate of P. To be

precise, let fA denote the total number of A nucleotides in the D.

melanogaster genome, of which fAC, fAG, and fAT have been inferred

to be A.C, A.G, and A.T polymorphisms, respectively. (For

consistency we restrict all these definitions only to those

monomorphic or dimorphic sites for which sufficient, consistent

outgroup information is also available, as required above.) We

make analogous definitions for fi and fij , for each i,j[fA,C,G,Tg.
Finally, let M~ maxi[fA,C,G,Tgf(

P
j=i fij)=fig, the largest empir-

ical frequency of mutation away from any particular nucleotide.

The appropriate choice for P is given by

Pij~

fij
fiM

, i=j,

1{
P
j=i

fij
fiM

, i~j:

8><
>:

Division by M ensures that, without loss of generality, one entry in

the diagonal of P is zero. By allowing the diagonal entries of P to

be nonzero, different nucleotides can have different overall

mutation rates. The total ‘‘effective’’ mutation rate—that is,

mutations not involving the diagonal entries of P—is calibrated

against classical infinite-sites-based estimators: for RAL this is

heffective~0:006 per bp (autosomes) and heffective~0:004 per bp (X

chromosome). For RG we used heffective~0:006 per bp for all

chromosomes. Since we are to use a general quadra-allelic model

in which both effective and ineffective mutations are permitted to

occur, the appropriate choice of h for use with P is such that it

exhibits the same overall rate of effective mutations:

heffective~h
X

i

(
fiP
k f k

X
j=i

Pij):

Ancestral allele distribution
When it is not known which of the two alleles at a polymorphic

site is ancestral, one can use the stationary distribution of P as a

prior distribution over the ancestral allele. However, when

additional information is available, such as sequence data from

an outgroup, we can use the information to update our prior

beliefs about the identity of the ancestral allele, thus allowing a

more accurate estimate of the recombination map. In our

application, we used the D. simulans outgroup information to

update our prior distributions on the ancestral alleles of the D.

melanogaster samples. Specifically, for each D. melanogaster genome,

we used the software psmc [71] to estimate, at each site, a

distribution on the time to the most recent ancestor (TMRCA) of

the D. melanogaster and D. simulans genomes. Given the TMRCA,

we integrate over possible mutations occurring according to P
along the two branches, to obtain a distribution on the ancestral

allele. Finally, for each site, we aggregate each of these pairwise

distributions into a single distribution on the ancestral allele, and

use this distribution in the computation of our likelihoods. Further

details are provided in Text S1.

Padé approximants
Recall that LDhat’s lookup tables are precomputed over a grid:

r~0,1, . . . ,100. For a pair of sites with a recombination rate

greater than 100, the likelihood at r~100 is used as an

approximation. This can create systematic errors in the likelihood

[36]. Instead, for rw100 we compute accurate approximations to

the two-locus likelihood using the method of Padé summation

described in Jenkins & Song [38]. Briefly, one Taylor expands

q(n,s1,s2; h,r) about r~? and uses the method of Jenkins & Song
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to compute the first few terms in the expansion. In practice this

Taylor series rapidly diverges for values of r of interest, but it can

be made into an accurate, convergent approximation of

q(n,s1,s2; h,r) by replacing this truncated series with a rational

function approximation whose own Taylor series agrees as far as

possible, a technique known as Padé summation. We modified the

analysis of Jenkins & Song to account for our new system of

equations described above (see Text S1). We precompute 11 Padé

coefficients (up to 1=r10 in the Taylor series expansion of the

likelihood about r~?) for every sample configuration of size n,

which gives an extremely accurate approximation for every

rw100 (not just integral values). Usually, the ‘‘join’’ between

the Padé approximant for rw100 and the true likelihood for

rƒ100 is indistinguishable. We also employ a ‘‘defect heuristic’’

[38] with threshold parameter e~40 to correct for potential effects

from singularities in the Padé approximants. As in the direct

computation of the likelihoods from the system of equations,

obtaining the Padé coefficients for a given configuration also yields

the coefficients for all its subconfigurations. This approach is

therefore well-suited to data with a large proportion of missing

data. Table S9 shows the running time for the Padé coefficient

computation as a function of sample size n.

Lookup table grid resolution
One can imagine that it would be useful to have a more refined

lookup table in regions of higher curvature of the likelihood. In

such regions simply using integral values of r might be too coarse.

Since the lookup tables will be used for every conceivable pairwise

dataset, we should be interested in the expected curvature of the

likelihood curve at r, across datasets drawn under a model with

the same r. (That is, the curvature at some r0 is most important

for datasets that we are likely to see when the recombination rate

really is r0.) This is reflected by Fisher’s information:

I(r0)~{Er0

L2

Lr2
ln L(r;D)

" #
,

which can be estimated from an existing lookup table using the

second-order central difference operator. As is evident from Figure

S3, curvatures are generally higher in the range 0ƒrƒ10, and so

we changed the increment between r values in the lookup table

from 1 to 0.1 in this range.

Prior on recombination map and block penalty choice
LDhelmet places a prior distribution on the number of change

points, the positions of the change points, and the heights of the

change points in the recombination map. The prior on the

number of change points is, as in LDhat, a Poisson distribution

with mean equal to (S{2) exp ({j), where S is the number of

SNPs in the data and j is a user-defined parameter called the block

penalty. The positions of the change points are distributed

uniformly, and the distribution on the heights of the change

points is user-settable as exponential, gamma or log-normal.

One should be mindful that LDhat was designed for

background recombination rates an order of magnitude less than

that used in the simulations. In particular, LDhat implements the

exponential prior but the mean is hard-coded for human data.

Adjusting the mean of the prior according to the expected

background recombination rate is necessary to obtain meaningful

results. For example, using a prior suitable for humans on

Drosophila-type data produces poor estimates with little to none of

the true variation in the underlying recombination map (simula-

tions not shown). To facilitate a comparison, we modified the

source code of LDhat such that its prior was similar to the one

used by LDhelmet. Without such modifications, the estimates from

LDhat were not comparable to LDhelmet’s estimates. In the

simulations and analysis, we used an exponential prior with the

mean adjusted for the expected background rate of D. melanogaster.

The block penalty controls the extent of variation in the

estimated recombination map. In general, the higher the block

penalty, the smoother the estimated map. We carried out a

simulation study to choose a conservative penalty value to reduce

false positive inference of hotspots, at the expense of tolerating

more false negatives.

In this simulation study, we considered the following three

scenarios: no recombination variation (constant rate), moderate

variation (with a hotspot of width 2 kb and intensity 10| the

background rate), and high variation (with a hotspot of width 2 kb

and intensity of 50| the background rate, such as that seen in

humans). We simulated 100 datasets of each kind, with a fixed

background rate of r~10 per kb in all cases.

After considering a variety of evaluation metrics for measuring

the accuracy of an estimated map, we found the ‘1-distance

between the true map and the estimated map to be the simplest to

interpret and assess, where the ‘1-distance is the sum of the point-

wise differences between the true and estimated maps. For the

three scenarios described above, Figure S17 shows the average ‘1-

distances between the true recombination maps and the estimated

maps for various block penalty values and recombination

landscapes. For each dataset, we ran LDhelmet for 250,000

iterations after a 50,000 iteration burn-in. We observed that noise

from overfitting is reduced for higher block penalties. Based on our

simulation study, we chose a conservative block penalty of 50 in

our analysis of the real data.

In our simulation study for evaluating the choice of block

penalty on realistic data (Figure 2), we used the program MaCS

[72] to simulate a 1 Mb region with a highly variable recombi-

nation map. (We used n~22 and h~0:008; output was

postprocessed to incorporate an empirical quadra-allelic mutation

model.) The map’s variability was taken from a 1 Mb excerpt of

the estimated recombination map of the X chromosome for the

RAL sample. The total recombination rate for the region was then

rescaled to match the mean (per Mb) rate of the RAL X

chromosome (to create a ‘‘RAL-like’’ map) or the RG X

chromosome (to create a ‘‘RG-like’’ map; see Figure 2).

Simulation study on the impact of natural selection
In order to simulate datasets that had been affected by natural

selection, we focused on modeling the effects of sites experiencing

positive, genic selection, i.e. selective sweeps. We investigated two

modeling scenarios: First, the effect of a single, strong sweep with

its strength, fixation time, and location treated as fixed parameters.

Under some parameter combinations, we expect such sweeps to

substantially reduce observed polymorphism levels. Second, we

considered data generated under the influence of a recurrent

sweep model, in which the ages and genomic locations of sweeps

occur randomly. In this scenario, we chose the parameters of the

model (selection coefficient and rate of fixation of beneficial

mutations) such that expected polymorphism levels were concor-

dant with observations in D. melanogaster. While the second scenario

is likely to be a more realistic model for the forces affecting

variation in D. melanogaster genomes, its inherent randomness

introduces additional noise. The first scenario allows us to study

the effects of a sweep with particular characteristics under a

controlled environment.

Under both scenarios, we again simulated data under three

possible recombination landscapes: a flat recombination rate of
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r~10 per kb except for a 2 kb-wide hotspot at the center of the

sequence, of relative strength 1 (no hotspot), 10, or 50; we also

post-processed all outputs to allow for a full quadra-allelic

mutation model, using the mutation transition matrix PRAL. To

reconstruct the recombination maps of simulated data, we used

the following parameters for LDhelmet and LDhat: 250,000

iterations after 50,000 iterations of burn-in for LDhelmet, and

1,000,000 iterations after 100,000 iterations of burn-in for LDhat.

We chose the number of iterations such that the two methods

would require about the same computational time.

Single sweep model. In order to simulate datasets that had

experienced a single hard sweep, we used the software mbs [73].

Using mbs, we simulated the trajectory of a selected allele

backwards from its fixation time at the present back to the random

time of its birth, then post-processed the software’s output to

translate the trajectory such that its fixation time was instead at

time Tfix in the past. (This lets us condition on Tfix, which is

otherwise not possible using the software.) Subject to this trajectory

we then used mbs to simulate n~37 samples of 25 kb of sequence

in the vicinity of the selected site. We simulated 100 trajectories for

each possible combination of the following choices of parameter:

selection strength 4Nes~0, 10, 102, 103, and 104 (where s is the

relative fitness); Tfix~0:01, 0:1, 0:5, 1, and 5, in units of 4Ne

generations; and three possible recombination landscapes (see

above). For each trajectory we simulated, independently, a 25 kb

sample with the selected site at coordinate {100, {50, {10, 0, 5,

or 12:5 kb with respect to the start coordinate of the sequences. In

total, this procedure generated 100|6|5|5|3~45,000 inde-

pendent datasets for input into LDhelmet and LDhat.

Recurrent sweep model. In order to simulate datasets

experiencing hard sweeps at random times and locations, we

modified the software rsweep [45] to allow for a recombination

hotspot rather than a constant recombination landscape. As

above, we simulated datasets of n~37 samples of 25 kb of

sequence, this time under three realistic recurrent sweep models:

RS1ð Þs~10{5, 2Nel~2|10{3,

RS2ð Þs~10{4, 2Nel~2|10{3,

RS3ð Þs~10{2, 2Nel~2|10{5,

where s is the selection coefficient of new beneficial mutations and

2Nel is the rate of fixation of beneficial mutations. In each case we

took Ne~2:5|106. The first parameter combination is one of

frequent, weak sweeps, and similar to the parameters estimated in

[44]. The third combination is one of infrequent but stronger

sweeps and similar to the parameters estimated in [45]. The

second combination is intermediate between the two. Under a

recurrent sweep model, selective sweeps occur at random times at

a rate governed by 2Nel and at a location in the genome chosen

uniformly at random. Sweeps both within the sequenced 25 kb

and in flanking sequence can affect the observed data and are

accounted for in the simulation software [45].

We considered r~10 per kb for comparison with the single

sweep model. As in the single sweep model, we simulated 100

datasets under each parameter combination, generating

100|3|3~900 independent datasets for input into LDhelmet.

As for the single sweep simulations, we ran LDhelmet for 250,000

iterations after 50,000 iterations of burn-in.

Simulation study on the impact of demographic history
In order to simulate datasets that had been affected by a

nonstandard demographic history, we used the software msHOT

[74]. We investigated four realistic demographic histories:

(G1) Exponential growth at rate 100 initiated 0:023Ne

generations ago (a tenfold increase by the present time),

(G2) Exponential growth at rate 10 initiated 0:161Ne genera-

tions ago (a fivefold increase by the present time),

(B1) A bottleneck initiated 0:5Ne generations ago, with a

transient reduction to size 0:00001Ne lasting 0:00002Ne genera-

tions,

(B2) A bottleneck initiated 0:0055Ne generations ago, with a

transient reduction to size 0:029Ne lasting 0:00375Ne generations.

The first three models were proposed by Haddrill et al. [46] as

reasonable fits to their (African) data, while the fourth is taken

from [47] for a European population. We note that the precise

demographic history of D. melanogaster populations remains poorly

understood, and that these models simply serve as reasonable

examples for investigating the robustness of our method. It is

probable that there exist better fitting demographic models;

indeed, Haddrill et al. ultimately favor their bottleneck model over

any growth model.

We simulated 100 datasets under each model and under each of

three recombination landscapes: a flat recombination rate of

r~10 per kb except for a 2 kb-wide hotspot at the center of the

sequence, of relative strength 1 (no hotspot), 10, or 50. This

provided 100|4|3~1,200 independent datasets in total. We

also post-processed all outputs from the infinite-sites-based

software to allow for a full quadra-allelic mutation model, using

the mutation transition matrix PRAL and the mutation rate

h~0:008 per bp. We ran LDhelmet for 250,000 iterations after

50,000 iterations of burn-in.

Search for recombination hotspots
We used a conservative approach to identify candidate

recombination hotspots. From the recombination maps for RAL

and RG we first identified putative hotspots—regions in which the

recombination rate exceeded ten times the mean for that

chromosome arm, and which were greater than 500 bp in length.

We discarded regions of length less than 500 bp on the grounds

that such narrow peaks can be produced occasionally as spurious

artifacts of the rjMCMC procedure.

To further filter the remaining candidate hotspots, we applied

an independent method, sequenceLDhot [29], to the same data, in

order to test for the presence of hotspots in these regions. The

software uses a computationally-intensive importance sampling

framework to construct likelihood ratios in sliding windows to

evaluate the evidence for the presence of a hotspot in that window.

To reduce computation time we focused on 50 kb regions

centered on the autosomal putative hotspots. We modified

sequenceLDhot’s default parameters, which are tuned for inter-

rogating human data, as follows. We used h~0:008 per site, and

for the background recombination rate we used the estimated

mean across the local 50 kb containing the hotspot of interest. We

specified the software’s grid for hotspot likelihoods to be in the

range 10–100 times the background rate, and tested windows of

500 bp sliding in steps of 250 bp, using a composite likelihood

comprising ten SNPs. Other parameters were unchanged. We

reduced SNP density to be comparable to the data on which the

software had been calibrated [29], by discarding sites with any

missing alleles and singleton SNPs, though we obtained similar

results without such a reduction (not shown). In constructing our

final list of candidate hotspots, we retained only those which

overlapped one of sequenceLDhot’s ‘extended hotspot regions’,
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constructed conservatively from windows with a likelihood ratio

greater than 10. To improve power in the search for hotspots, we

included five additional lower coverage RG genomes in this

analysis.

Wavelet analysis
To put the recombination maps into a suitable time-series

format, we used the (log-transformed) cumulative recombination

rate across each dt~250 bp window. We found that this provided

good resolution at high frequencies, with little further improve-

ment using smaller bins. To facilitate a comparison between RAL

and RG, we used the maps estimated from sample size n~22 in

both populations.

Continuous wavelet transform. Continuous wavelet trans-

forms are useful for visualization purposes and for feature

extraction, and the methods of wavelet coherence [54,75] are based

on them. All our plots of wavelet power are therefore based on

continuous transforms, using software provided by [75] which

convolves the data with the Morlet wavelet (parametrized by a

frequency parameter v0; we take v0~6). This choice of wavelet is

reasonable because it is simple, widely used, and provides a

sensible balance between time and frequency localization.

At large scales, the wavelet transform is influenced by data

distant from a given position—possibly even outside the range of

the data. The region of the time-frequency domain distorted by

the consequent introduction of unwanted edge effects is said to be

inside the cone of influence, which we define following [54] as the

region in which wavelet power for a discontinuity at the edge

drops by a factor of e{2. Results using the transform inside the

cone of influence should be treated with caution.

To assess the significance of regions of the local wavelet power

spectrum of high power, we assumed as a background power

spectrum that of an autoregressive process of order 1 (AR(1)),

whose underlying power spectrum is red noise. This serves as a

simple, parametric way of positing an expected power spectrum

for a dataset varying about some mean value and allowing for

some autocorrelation. The distribution of the observed wavelet

power taken with respect to the Morlet wavelet is, for each position

and scale, then proportional to a x2
2 distribution under this model

[54]. The autoregression parameter of the null model was

estimated as that which best fit our observed data.

In order to identify regions of correlation of the wavelet

transforms for the RAL and RG data, we performed a wavelet

coherence analysis. Wavelet coherence is a (smoothed) measure of

correlation which is computed as a function of both position and

scale; we used the formulation given in [75]. To assess the

significance of regions of high coherence, we again assume AR(1)

models underlying the two datasets, and obtain critical coherence

values using Monte Carlo simulation as described in [75] (with

1,000 Monte Carlo samples and 10 scales per octave).

Discrete wavelet transform. Because the scale index of a

continuous wavelet transform varies continuously, coefficients at

nearby scales encode similar information and a great deal of the

transformed data is superfluous. On the other hand, the discrete

wavelet transform provides a decomposition of the data into a

minimal number of independent coefficients. It is therefore

suitable for modeling purposes, since the transform is constructed

so that variation in a signal at one scale is orthogonal to that at a

different scale. Within the discrete set of scales chosen, those with

important or significant variation can be identified unambiguous-

ly. In our linear model analyses we take the discrete wavelet

transform based on the Haar wavelet, using methods and R scripts

provided by [53]. Indeed, the paper by Spencer et al. [53] provides

an excellent overview of the use of the discrete wavelet transforms

in analyzing genomic data, and we refer the interested reader

there for further details. Our analysis differs from theirs in several

respects: (i) We analyzed five chromosome arms from two

populations, giving ten datasets in total compared to their two,

(ii) Since our data has much improved SNP density, we binned our

data into 250 bp windows rather than 1 kb, giving a fourfold

improved resolution, (iii) To control for the influence of local

sequence quality, we used quality score information directly rather

than read depth.

In addition to wavelet transforming the 250 bp-binned recom-

bination map, we also binned and transformed a number of other

genomic features: Diversity was computed as the mean, across

pairs of samples within the population, of the fraction of sites that

differed between the pair, out of a total of the number of sites for

which both samples had data available. Divergence was computed

as the diversity between the D. melanogaster and D. simulans

reference sequences, which were available as part of a multiple

sequence alignment along with the data from [24]. GC content

was computed as the fraction of the total number of sequenced

positions in the window (across all samples within the population)

that were called as G or C. Gene content was computed for each

window as the fraction of the window annotated as exonic;

genome annotations were obtained from FlyBase (release 5.45,

http://www.flybase.org [50]). Sequence quality scores were taken

directly from the FASTQ files of the original data. Note that

divergence and gene content data are the same for RAL and RG,

explaining their identical power spectra in Figure 12.

Supporting Information

Figure S1 Comparison of the cumulative recombination maps

of LDhelmet and LDhat for 25 datasets simulated under neutrality

In each plot, different colors represent the cumulative recombi-

nation maps for different datasets. The datasets in these plots

correspond to the same datasets used in Figure 1. The thick

dashed line indicates the true cumulative recombination map for

the given recombination landscape. The left and right columns

show the estimated recombination maps of LDhelmet and LDhat,

respectively, using the same block penalty of 50. (First Row) Each

dataset was simulated with a constant recombination rate of 0:01
per bp. (Second Row) Each dataset was simulated with a hotspot

of width 2 kb starting at location 11 kb. The background

recombination rate was 0:01 per bp, while the hotspot intensity

was 10| the background rate, i.e., 0:1 per bp. The cumulative

maps are shown in their entirety, including potential edge effects.

(EPS)

Figure S2 Comparison of the cumulative recombination maps

of LDhelmet and LDhat for 25 datasets simulated under strong

positive selection. In each plot, different colors represent the results

for different datasets. The datasets in these plots correspond to the

same datasets used in Figure 3. The thick dashed line indicates the

true cumulative recombination map for the given recombination

landscape. The left and right columns show the estimated

recombination maps of LDhelmet and LDhat, respectively, using

the same block penalty of 50. In each simulation, the selected site

was placed at position 5 kb and the population-scaled selection

coefficient was set to 1000. The fixation time of the selected site

was 0:01 coalescent units in the past. The same scenarios of

recombination patterns as in Figure 1 were considered: (First Row)

with a constant recombination rate of 0:01 per bp, and (Second

Row) with a hotspot of width 2 kb starting at location 11.5 kb.

The background recombination rate was 0:01 per bp, while the

hotspot intensity was 10| the background rate, i.e., 0:1 per bp.
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The cumulative maps are shown in their entirety, including

potential edge effects.

(EPS)

Figure S3 Fisher’s information for two-locus samples of size

n~37 using lookup tables for h~0:006 and under the infinite-sites

assumption. The ancestral allele at each locus is assumed to be

known.

(EPS)

Figure S4 Distribution of recombination rates relative to

transcription start sites. Plots for RAL (solid) and RG (dashed) of

the average estimated recombination rate as a function of distance

from the midpoint of the nearest transcription start site (TSS) to

the left (negative x-axis) and to the right (positive x-axis) of every

base. A 5-kb averaging window was used to smooth the estimates.

(EPS)

Figure S5 Local wavelet power spectrum of recombination rate

variation in chromosome arm 2R. A power spectrum is shown for

RAL and RG. Black contours denote regions of significant power

at the 5% level, and the white contour denotes the cone of

influence. Color scale is relative to a white-noise process with the

same variance. The lower panels shows estimates of the

corresponding genetic maps.

(EPS)

Figure S6 Local wavelet power spectrum of recombination rate

variation in chromosome arm 3L. A power spectrum is shown for

RAL and RG. Black contours denote regions of significant power at

the 5% level, and the white contour denotes the cone of influence.

Color scale is relative to a white-noise process with the same variance.

The lower panels shows estimates of the corresponding genetic maps.

(EPS)

Figure S7 Local wavelet power spectrum of recombination rate

variation in chromosome arm 3R. A power spectrum is shown for

RAL and RG. Black contours denote regions of significant power

at the 5% level, and the white contour denotes the cone of

influence. Color scale is relative to a white-noise process with the

same variance. The lower panels shows estimates of the

corresponding genetic maps.

(EPS)

Figure S8 Local wavelet power spectrum of recombination rate

variation in chromosome X. A power spectrum is shown for RAL

and RG. Black contours denote regions of significant power at the

5% level, and the white contour denotes the cone of influence. Color

scale is relative to a white-noise process with the same variance. The

lower panels shows estimates of the corresponding genetic maps.

(EPS)

Figure S9 Pairwise correlation of detail wavelet coefficients of

RAL and RG recombination maps for chromosome arms 2R, 3L,

3R, and X. Black circles denote Kendall’s rank correlation

between pairs of detail coefficients at each scale. Crosses denote

the correlation that would be required for significance at the 1%

level in a two-tailed test; red crosses are those scales at which the

correlation is in fact significant.

(EPS)

Figure S10 Wavelet coherence analysis comparing RAL against

RG for chromosome arms 2R, 3L, 3R, X. The cone of influence is

shown in white.

(EPS)

Figure S11 Positive control for wavelet coherence analysis.

(Left): Coherence plot for two independent estimates of the

recombination map across chromosome arm 2L using the same

(RG) dataset. (Right): The fraction of chromosome arm 2L with

significantly high coherence at the 5% level, at each scale.

(EPS)

Figure S12 Global wavelet power spectrum and pairwise

correlations of detail wavelet coefficients of RAL and RG data

for chromosome arms 2R, 3L, 3R, and X. Diagonal plots show the

global wavelet power spectrum of each feature of the RAL (blue)

and RG (red) data. Off-diagonal plots show Kendall’s rank

correlation between pairs of detail coefficients at each scale, with

respect to the wavelet decomposition of the two indicated features.

Crosses denote the correlation that would be required for

significance at the 1% level in a two-tailed test; red crosses are

those scales at which the correlation is in fact significant. The

lower left triangle and upper right triangle of plots correspond to

RAL and RG, respectively.

(EPS)

Figure S13 Linear model for wavelet transform of recombina-

tion map of chromosome arm 2R. (A) In a linear model for the

detail coefficients of the wavelet transform of the recombination

map of chromosome arm 2R, covariates are the detail coefficients

of wavelet transforms of data quality, gene content, GC content,

divergence, and diversity. Shown is the 2log10 p-value of the

regression coefficient at the given scale, as determined by a t-test.

Colored boxes indicate significant relationships, with red positive

and blue negative. Also shown in the adjusted r2. (B) As above, but

with the recombination map of the other population as an

additional covariate.

(EPS)

Figure S14 Linear model for wavelet transform of recombina-

tion map of chromosome arm 3L. (A) In a linear model for the

detail coefficients of the wavelet transform of the recombination

map of chromosome arm 3L, covariates are the detail coefficients

of wavelet transforms of data quality, gene content, GC content,

divergence, and diversity. Shown is the 2log10 p-value of the

regression coefficient at the given scale, as determined by a t-test.

Colored boxes indicate significant relationships, with red positive

and blue negative. Also shown in the adjusted r2. (B) As above, but

with the recombination map of the other population as an

additional covariate.

(EPS)

Figure S15 Linear model for wavelet transform of recombina-

tion map of chromosome arm 3R. (A) In a linear model for the

detail coefficients of the wavelet transform of the recombination

map of chromosome arm 3R, covariates are the detail coefficients

of wavelet transforms of data quality, gene content, GC content,

divergence, and diversity. Shown is the 2log10 p-value of the

regression coefficient at the given scale, as determined by a t-test.

Colored boxes indicate significant relationships, with red positive

and blue negative. Also shown in the adjusted r2. (B) As above, but

with the recombination map of the other population as an

additional covariate.

(EPS)

Figure S16 Linear model for wavelet transform of recombina-

tion map of chromosome X. (A) In a linear model for the detail

coefficients of the wavelet transform of the recombination map of

chromosome arm X, covariates are the detail coefficients of

wavelet transforms of data quality, gene content, GC content,

divergence, and diversity. Shown is the 2log10 p-value of the

regression coefficient at the given scale, as determined by a t-test.

Colored boxes indicate significant relationships, with red positive

and blue negative. Also shown in the adjusted r2. (B) As above, but
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with the recombination map of the other population as an

additional covariate.

(EPS)

Figure S17 Plot of the average ‘1-distance between the true and

estimated recombination maps. Each plot shows the results

averaged over 100 simulated datasets per block penalty for a

given recombination landscape. In each simulation, we considered

a 25 kb region with the background recombination rate of

r~10=kb. ‘‘no hotspot’’: The true recombination map is

constant. ‘‘hotspot 10|’’: In the middle of the 25 kb region, the

true recombination map has a hotspot of width 2 kb and intensity

10| the background rate. ‘‘hotspot 50|’’: In the middle of the

25 kb region, the true recombination map has a hotspot of width

2 kb and intensity 50| the background rate.

(EPS)

Table S1 Summary of comparison between LDhelmet and

LDhat in the neutral case. Based on 100 simulated datasets for a

25 kb region. ‘‘No Hotspot’’ corresponds to the case of a constant

recombination map, whereas ‘‘Hotspot 10|’’ corresponds to the

case with a 2 kb wide hotspot situated at the center of the region.

The first row shows the regional average of r obtained by

LDhelmet and LDhat, averaged over the 100 datasets. The second

row shows the total rate in the hotspot region, averaged over the

datasets. The third row shows the percentage of datasets for which

the estimate had at least one false peak with height §5 times the

background rate. The fourth row shows the percentage of datasets

for which the estimate had at least one false peak with height §10
times the background rate. The fifth row shows the percentage

absolute error of the estimated r average outside the hotspot

region from the true r average outside the hotspot region. The

true r average outside the hotspot region is r~0:01=bp. To

account for edge effects, 2.5 kb from each end of the map were

removed prior to computing the statistics.

(PDF)

Table S2 SNP densities (per kb) of neutral and single-sweep

simulations. The mean, minimum, maximum and standard

deviation of the SNP density for the datasets used in Tables S1

and S3. The simulations assumed a finite-sites, quadra-allelic

mutation model, with mutation matrix PRAL and h~0:008, which

is the effective population-scaled mutation rate adjusted for PRAL

(see Estimation of mutation transition matrices).

(PDF)

Table S3 Summary of comparison between LDhelmet and

LDhat in the case of single selective sweep. Based on 100

simulated datasets for a 25 kb region. For each dataset, a selected

site was placed at position 5 kb and the population-scaled selection

coefficient was set to 1000. The fixation time of the selected site

was 0:01 coalescent units in the past. The column and the row

labels are the same as in Table S1. As for Table S1, 2.5 kb from

each end of the map were removed prior to computing the

statistics to account for edge effects.

(PDF)

Table S4 SNP densities (per kb) of recurrent-sweep and

demography simulations. The statistics for each selection or

demography scenario are merged over the three recombination

landscapes (i.e., no hotspot, hotspot 10| and hotspot 50|). The

simulations use hRAL and as parameters. The third column shows

the SNP density per kb across the hundred datasets, and the fourth

column shows the standard deviation. For the definitions of the

scenario names, refer to Simulation study on the impact of natural

selection and Simulation study on the impact of demographic

history of the main text. ‘‘Control’’ refers to a control dataset with

constant population size and no selection.

(PDF)

Table S5 SNP densities (per kb) of the North American (RAL)

and the African (RG) Drosophila data.

(PDF)

Table S6 Subsampling of real data. To assess the effect of

subsampling individuals, we subsampled a 2 Mb excerpt from

chromosome arm 2L for both the RAL and RG datasets. We

performed subsampling four times, and each row is the average of

the four subsampled datasets. The column labeled n is the number

of individuals in each subsample. The percentiles are given in the

three rightmost columns. The results show that sample size has a

slight positive bias, but does not impact estimates greatly.

(PDF)

Table S7 Thinned SNPs on RG dataset. To assess the effect of

SNP density on the recombination rate inference, we thinned the

SNPs on chromosome arm 2L and chromosome X of RG to the

SNP density of RAL. The 2:5%, 50% and 97:5% percentiles are

shown for estimates. The number of SNPs in the original dataset

and in the thinned dataset are shown in the fourth column. For

chromosome arm 2L, the change in SNP density is negligible. For

chromosome X, the difference in SNP density is significant. The

results show that SNP density impacts the estimate, but not to the

extent of the difference observed between RAL and RG on

chromosome X.

(PDF)

Table S8 Exclusion of individuals with inversions. To assess the

effect of inversions on the recombination rate estimate, we

excluded individuals known to carry the given inversion, and

performed inference on the remaining sample. 0:5 Mb was added

to both ends of the region to eliminate possible edge effects.The r
average is over the inversion region only. The column labeled

Original gives the estimate using the entire sample. The column

labeled Excluded gives the estimate excluding the individuals with

the given inversion. The inversion region length and the number

of individuals with the inversion are provided in the rightmost two

columns.

(PDF)

Table S9 Running times (in seconds) for solving recursions and

computing Padé coefficients. The second column is the time to

solve the two-locus recursion described in Text S1 to compute the

likelihood of a single value of r for all sample configurations of size

n. The third column is the time to compute 11 Padé coefficients for

all sample configurations of size n. Recall that the recursion must

be solved afresh for every value of r in the lookup table. On the

other hand, the Padé coefficients are used to construct a rational

function of r that approximates the likelihood; once the Padé

coefficients are determined, evaluating the likelihood is instanta-

neous. A single 2.5 Ghz core was used in this benchmarking to

provide representative estimates of the running time. However,

note that both the recursion and Padé coefficient computations are

highly parallelizable, which we exploit in the implementation of

LDhelmet. Also note that the presence of missing data does not

increase the running time for either computation.

(PDF)

Text S1 Supplementary text on the two-locus recursion relation,

Padé summation, and ancestral allele estimation.

(PDF)
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