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ABSTRACT OF THE THESIS

Encrypted Lyapunov-Based Model Predictive Control Design for Security to Cyber-Attacks

by

Atharva Vijay Suryavanshi

Master of Science in Chemical Engineering

University of California, Los Angeles, 2023

Professor Panagiotis D. Christofides, Chair

In recent years, cyber-security of networked control systems has become crucial, as these

systems are vulnerable to targeted cyber-attacks that compromise the stability, integrity and safety

of these systems. In this work, secure and private communication links are established between

sensor-controller and controller-actuator elements using semi-homomorphic encryption to ensure

cyber-security in model predictive control (MPC) of nonlinear systems. Specifically, Paillier cryp-

tosystem is implemented for encryption-decryption operations in the communication links. Cryp-

tosystems, in general, work on a subset of integers. As a direct consequence of this nature of

encryption algorithms, quantization errors arise in the closed-loop MPC of non-linear systems.

Thus, the closed-loop encrypted MPC is designed with a certain degree of robustness to the quan-

tization errors. Furthermore, the trade-off between the accuracy of the encrypted MPC and the

computational cost is discussed. Finally, a two-state multi-input multi-output continuous stirred

tank reactor (CSTR) example is employed to demonstrate the implementation of the proposed

encrypted MPC design.
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Chapter 1

Introduction

Integration of cyber-secure strategies in physical networked control systems, to ensure secure

and safe operation, has become crucial due to increased threats of targeted cyber-attacks. In these

control systems, cloud computing has been extensively used to manage large amounts of data and to

satisfy high computational power requirements. However, these advantages do not come without

threats. Communication via unsecure networks between different components of the networked

control systems, as well as computations using sensitive data on outsourced platforms, can lead to

the threats of data manipulation and data interception, which would ultimately lead to jeopardizing

the stability, integrity and profitability of the physical process. The severity and the destructive

capabilities of these cyber-attacks can be understood from the recent series of attacks on industrial

plants, such as the 2015 BlackEnergy malware attack on the Ukrainian electric power grid [1]

and the 2021 cyber-attack on the Colonial oil pipeline system that lead to its shutdown, which

consequently lead to a tremendous increase in gasoline prices [2]. Another prominent example is

that of the Stuxnet worm, which manipulated the data in the communication links connected to

programmable logic controllers (PLC) [3, 4]. Clearly, cyber-attacks on physical control systems

are extremely dangerous as they can jeopardize physical processes via digital manipulations [5]

and, hence, it is important to develop cyber-secure architectures for control systems.
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To combat cyber-security challenges in the context of information technology, i.e., the soft-

ware component of the plant, chemical and manufacturing have implemented multi-factor authen-

tication, firewall isolation, and elaborate cyber protection protocols over the last decade. However,

in the field of operation technology, which ensures the uninterrupted operation of robots, indus-

trial control systems, supervisory control and data acquisition (SCADA) systems, programmable

logic controllers (PLCs), etc., efforts to address cyber-security had started around 2010 but only

gained momentum around 2017 due to the increase in intelligent, targeted cyber-attacks, attracting

many industrial process operation and automation groups. With the increasing convergence of in-

formation technology and operation technology in the Industry 4.0 framework, cyber-security of

the operation technology domain is considered a central component of the secure and safe opera-

tion of the chemical sector. As a result, standards developing organizations such as the National

Institute of Standards and Technology (NIST) [6] have developed fundamental cybersecurity re-

search road maps, which are frameworks aimed to detect and mitigate the impact of cyber-attacks,

that have influenced the security protocols of several industries. Their road map designates five

areas for cyber-security practitioners and researchers to focus on, including but not limited to se-

curity by design, such as multi-tier controllers, and advanced threat detection. While there has

been a growing amount of research in some of the key areas such as the development of machine

learning-based detectors for advanced threat detection [7, 8, 9, 10], recovery of the process states

following a cyber-attack [11], design of two-tier controllers [12] and cyberattack-resilient con-

trollers for nonlinear systems [13, 14], the establishment of secure remote access protocols in the

chemical sector remains an important, fundamental research issue. While secure remote access

can be ensured in a number of ways, an emerging example is the use of encrypted control sys-

tems, whose primary objective is to preserve privacy with respect to the confidential system states,

control inputs, controller parameters and model data.

The earliest examples of encrypted control systems were proposed in 2015 and comprised

of linear control laws that were mostly applied to discrete-time, linear systems. The crux of such
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encrypted control systems, where the data was encrypted from the sensor up to the actuator, was

“homomorphism”. Homomorphic encryption indicates a special class of cryptographic algorithms

(cryptosystems) that allows mathematical operations to be carried out on the encrypted data or

“ciphertext”. This allows for the calculations of the control law to be carried out in the encrypted

or ciphertext space, with only the encrypted control action being sent to the actuator, where it can

be decrypted to yield the “plaintext” data, thereby minimizing exposure of the plaintext control ac-

tion to any attackers. A cryptosystem can be additively homomorphic, which means that addition

operations may be carried out in the ciphertext space, and/or multiplicatively homomorphic, which

allows multiplications in the encrypted space. In addition, a cryptosystem that is both additively

and multiplicatively homomorphic is known as a fully homomorphic encryption, although their

applicability in control systems is limited by their high computational demands and the power and

memory restraints in control system hardware. Hence, the earliest encrypted control systems used

linear control laws and partially homomorphic cryptosystems, specifically the ElGamal cryptosys-

tem [15] and Rivest-Shamir-Adleman (RSA) cryptosystem [16], to demonstrate a proof of concept

for encrypted control. However, linear control laws, especially based in the cloud, are severely

restricted in terms of industrial applications. Instead, it is far more relevant and motivated to use

encryption and remote servers for computationally expensive optimization-based control systems

such as model predictive control [17].

Since its conceptualization, model predictive control (MPC) has been widely used in chemical

industries to ensure closed-loop stability, while optimizing yield and other performance metrics.

The key advantages of MPC include its ability to handle multiple inputs, outputs, multi-variable

interactions between them, and state and input constraints by solving an optimization problem

that minimizes a desired objective function of the inputs and predicted outputs using a process

model and accounting for real-time measurement feedback. The optimization problem is solved

over a finite time horizon at every sampling period of the MPC to compute the optimal control ac-

tion, which guarantees the stability and boundedness of the trajectories of the system at all times.
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The development of an encrypted MPC framework is, therefore, highly desirable for the chemical

sector, due to the ubiquitous nature of MPC in this field. In this vein, in [18], a cyber-secure ar-

chitecture for a linear system was designed by implementing the RSA cryptosystem to encrypt the

controller parameters and the signals, while encrypted control actions were calculated in the con-

troller using the multiplicative homomorphism property of the RSA cryptosystem. In [19, 20, 21],

encrypted MPC for linear systems were proposed such that the additive homomorphism property

of Paillier cryptosystem allowed linear computations in the encrypted space that were required to

calculate encrypted MPC control actions. The main limitation of the aforementioned advances is

that the property of homomorphism only allows for additive or multiplicative operations, which

implies we can not perform the nonlinear optimization calculations required for MPC in the en-

crypted space. However, in a chemical plant setting, the nonlinear MPC computations may be

carried out in an edge computer in a secure control room, which can be remotely accessed by the

sensors and actuators via the network. As such, the goal is to use encryption to establish secure

links from the sensors and actuators to the physically secure control room. The importance of the

sensor-controller and the controller-actuator links have been highlighted in several recent works.

Ref [22] investigated the effect of the control system parameters on the closed-loop stability and

detectability of a multiplicative sensor–controller communication link attack with respect to a type

of residual-based detection schemes, finally proposing a mechanism of parameter switching of the

control system to retain attack detectability without deteriorating closed-loop performance too ag-

gressively. To balance the above trade-off, in [23], a framework for active attack detection using

the controller parameter switching of [22] was developed, where one set of controller parameters

corresponds to conventional controller design criteria, while the other set of controller parame-

ters maximizes cyber-attack detectability. Due to the possibility of controller parameter switching

leading to excitement of the process, leading to false alarms, [24] proposed a switching condition

to reduce the triggering of false alarms. Based on our review of the literature on encrypted MPC,

to the best of our knowledge, the use of encryption in nonlinear MPC has not been addressed in
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the systems engineering literature, which warrants the construction of such a framework.

In this work, we develop a Lyapunov-based encrypted MPC scheme for nonlinear systems

in which secure communication channels are established between the sensor-controller and the

controller-actuator links under the assumption that we have a secure controller. The rest of this

manuscript is organized as follows: in Chapter 2, the class of nonlinear systems considered and

details of the Paillier cryptosystem and the quantization process are provided. In Chapter 3, the

proposed encrypted MPC scheme is described, and its closed-loop stability results are derived. In

Chapters 4 to 6, the proposed encrypted MPC is applied to a reactor with recycle and a reactor oper-

ating at an unstable point, respectively, in order to investigate the effectiveness, closed-loop stabil-

ity results, the robustness of the designed controller to quantization errors, and the computational

cost associated with different quantization parameters. Finally, the conclusions are summarized in

Chapter 7.
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Chapter 2

Preliminaries

2.1 Notation

The notation |·| is used to denote the Euclidean norm of a vector. xT denotes the transpose of x.

The notation LfV (x) denotes the standard Lie derivative LfV (x) := ∂V (x)
∂x

f(x). Set subtraction

is denoted by “\”, i.e., A\B := {x ∈ Rn | x ∈ A, x /∈ B}. R,N, and Z denote the set of real

numbers, natural numbers, and integers, respectively. In addition, ZM and Z∗
M denote the additive

and multiplicative group of integers modulo M , respectively. The function f(·) is of class C1 if it

is continuously differentiable in its domain. A continuous function α : [0, a) → [0,∞) is said to

belong to class K if it is strictly increasing and is zero only when evaluated at zero.

2.2 Class of Systems

In this work, we focus on continuous-time nonlinear systems of nonlinear first-order ordinary

differential equations (ODEs) with inputs, which is of the form,

ẋ = F (x, u) = f(x) + g(x)u (2.1)
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where x = [x1, x2, . . . , xn] ∈ Rn is the state vector and u ∈ Rm is the manipulated input vector.

The inputs to the process are bounded, that is, u ∈ U where the set U ⊂ Rm is defined as

U := {u ∈ U |umin,i ≤ ui ≤ umax,i, ∀ i = 1, 2, · · · ,m}. umin,i and umax,i are physical bounds

and define the minimum and maximum value that each manipulated input can attain. f(·) is a

sufficiently smooth vector function and g(·) is a sufficiently smooth matrix function. Without loss

of generality, it is assumed f(0) = 0 and, hence, the origin is a steady state of the nonlinear

system of eq. (2.1). Throughout this paper, the initial time is assumed to be zero (i.e., t0 = 0).

Furthermore, we will use the following notation: the space of continuous functions mapping the

interval [a, b] to the space Rn is given by C([a, b],Rn). The norm of a continuous function ϕ ∈

C([a, b],Rn) is given by ∥ · ∥ which is defined as ∥ϕ∥ = max
a≤s≤b

|ϕ(s)|. Set subtraction is denoted as:

A \ B := {x ∈ Rn|x ∈ A, x ̸∈ B}. C1 denotes the class of continuously differentiable functions.

The set of piecewise constant functions with a period ∆ is denoted by S(∆).

2.3 Stabilization via Lyapunov-based Feedback Control

We assume that there exists a feedback controller u = Φ(x) ∈ U which can render the origin of the

system of eq. (2.1) exponentially stable in the sense that there exists a continuously differentiable

control Lyapunov function V (x) such that the following inequalities hold for all x ∈ D, where D

is an open neighborhood around the origin [25, 26]:

c1|x|2 ≤ V (x) ≤ c2|x|2, (2.2a)

∂V (x)

∂x
F (x,Φ(x)) ≤ −c3|x|2, (2.2b)∣∣∣∣∂V (x)

∂x

∣∣∣∣ ≤ c4|x| (2.2c)

where c1, c2, c3 and c4 are positive constants. The approach in Ref. [27] can be used to construct

one such stabilizing controller. Additionally, on the basis of the Lipschitz property of F (x, u) and
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the bounded nature of u, there exist positive constants MF , Lx, and L
′
x such that the following

inequalities hold for all x, x′ ∈ D and u ∈ U :

|F (x, u)| ≤ MF (2.3a)

|F (x, u)− F (x′, u)| ≤ Lx|x− x′| (2.3b)∣∣∣∣∂V (x)

∂x
F (x, u)− ∂V (x′)

∂x
F (x′, u)

∣∣∣∣ ≤ L
′

x|x− x′| (2.3c)

For the nonlinear system of eq. (2.1), the closed loop stability region is characterized as a level set

of the Lyapunov function V . This stability region Ωρ is defined as Ωρ := {x ∈ D|V (x) ≤ ρ},

where ρ > 0.

2.4 Paillier cryptosystem

In this paper, we use the Paillier cryptosystem [28] for encryption and decryption of both process

measurements, x, that are sent to the control system and of the control actions, u, that are calcu-

lated by the control system and sent to the control actuators. Paillier cryptosystem is a partially

homomorphic encryption scheme that allows addition operations in the encrypted message space.

The security guarantees of Paillier encryption rely on a standard cryptographic assumption called

Decisional Composity Residuocity (DCR) [28, 18, 19, 29]. Paillier encryption has been widely

used, especially in the context of linear MPC, due to its additive homomorphism property greatly

reducing the communication load and number of decryptions required in linear MPC, as compared

to, for example, a multiplicative homomorphic algorithm such as the ElGamal cryptosystem [29].

Paillier cryptosystem encrypts plaintext messages from a subset of N, and the public key of en-

cryption decides the cardinality of such a subset. The first step in the encryption process is the

generation of public and private keys. A public key is used to encrypt integer messages into ci-

phertexts. A private key is used to decrypt ciphertexts and obtain the original integer message. The

public and private keys of the Paillier cryptosystem are generated as follows:
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1. Randomly choose two large random prime integers p and q such that gcd(pq, (p−1)(q−1)) =

1 where gcd(i, j) is a function that returns the greatest common divisor of i, j ∈ N.

2. Compute M = pq and λ = lcm(q − 1, p − 1), where lcm(i, j) refers to the least common

multiple of the integers i, j.

3. Choose a random integer g such that, g ∈ Z∗
M2 where Z∗

M2 is the multiplicative group of

integers modulo M2.

4. Define L(x) = (x− 1)/M .

5. Check the existence of the following modular multiplicative inverse: u = (L(gλmodM2))−1mod M .

6. If the inverse does not exist, go back to step 4 and choose a different value of g.

7. If the inverse exists, we have the public key (M, g) and the private key (λ, u).

Once the keys are obtained, the data m ∈ ZM , which can either be quantized states or quantized

inputs, is encrypted as follows:

EM(m, r) = c = gmrM mod M2 (2.4)

where r ∈ ZM is a random integer and c is the ciphertext obtained after encryption of m. To

decrypt a ciphertext c ∈ ZM2 , it is required to calculate:

DM(c) = m = L(cλ mod M2)u mod M (2.5)

Remark 1. In this study, as the data is decrypted before being used in the MPC calculation, the

advantage of the homomorphic property of Paillier cryptosystem is not retained. However, we use

Paillier cryptosystem not due to its homomorphism but rather to avoid the computational burden of

more advanced encryption algorithms such as AES, whose applicabililty is limited by power and

memory constraints on process control hardware.

9



2.5 Quantization

Paillier cryptosystem encrypts numbers from a subset of N. This subset is given by the set ZM .

Hence, it is important to map real number data (state measurements from the process, and inputs

calculated by the controller), which are in the form of floating point numbers, to the set ZM in order

to encrypt and decrypt signals in the sensor-controller and controller-actuator links. Quantization

functions are used to map this real number data to the set ZM [19]. For this purpose, we consider

signed fixed-point numbers in the base 2. The quantization parameter l1 denotes the number of total

bits and d denotes the number of fractional bits. Based on these quantization parameters, a set Ql1,d

is constructed which contains rational numbers from −2l1−d−1 to 2l1−d−1 − 2−d with the rational

numbers separated from each other by a resolution of 2−d. A rational number q in the set Ql1,d can

be represented as: q ∈ Ql1,d such that, ∃β ∈ {0, 1}l1 and q = −2l1−d−1βl+
∑l1−1

j=1 2j−d−1βi. Given

a real number data point a, the function gl1,d that maps a to the set Ql1,d is given by the equation,

gl1,d : R → Ql1,d

gl1,d(a) := arg min
q∈Ql1,d

|a− q|
(2.6)

which finds the quantized rational number closest to the real number data point. Subsequently,

using a bijective mapping fl2,d [19], we map the quantized data to a set of integers that is a subset

of the message space ZM . The bijective mapping is defined as:

fl2,d : Ql1,d → Z2l2

fl2,d(q) := 2dq mod 2l2
(2.7)

Encryption of integer plaintext messages is carried over the set Z2l2 and the ciphertexts are de-

crypted into the same set Z2l2 . The ciphertexts are decrypted at the controller and at the actuator to

obtain the integer plaintext messages corresponding to the quantized states and quantized inputs,
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respectively. Hence, it is important to map the decrypted plaintext messages to the set Ql1,d. The

inverse mapping f−1
l2,d

is defined as:

f−1
l2,d

: Z2l2 → Ql1,d
(2.8)

f−1
l2,d

(m) :=
1

2d


m− 2l2 if m ≥ 2l2−1

m otherwise
(2.9)
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Chapter 3

Encrypted MPC Design

In the proposed closed-loop design of fig. 3.1, signals x(t) from the sensor are encrypted and

sent to the model predictive controller (MPC). Before nonlinear computations are performed, the

encrypted data is decrypted to obtain quantized states x̂(t). At time t, the plant model in the MPC

is initialized using the quantized states x̂(t). The MPC calculates the optimized inputs u(t), and

these inputs are encrypted before being sent to the actuator. These encrypted inputs are further

decrypted and the quantized inputs û(t) are applied to the process.

Figure 3.1: Schematic of closed-loop system under encrypted MPC.

Two sources of errors are identified in the above closed loop design. There is a state quantiza-

tion error in the sensor-controller communication link, and there is also an input quantization error

in the controller-actuator communication link. These quantization errors arise as a direct conse-

12



quence of mapping the state and input data from R to Ql1,d. Based on the mapping of eq. (2.6),

these quantization errors are bounded such that:

|x(t)− x̂(t)| ≤ η1 2
−d (3.1a)

|u(t)− û(t)| ≤ η2 2
−d (3.1b)

where η1, η2 > 0, and d is the quantization parameter of the mapping of eq. (2.6). Given the

quantization error in the input applied to the process, the nonlinear system of eq. (2.1) in the

closed-loop design of fig. 3.1 takes the form,

ẋ = F (x, û) = f(x) + g(x)û

= f(x) + g(x)(u+ e2)

(3.2)

where e2 = û(t)− u(t) and

|e2| ≤ η2 2
−d (3.3)

Secondly, there is an error in the computed control action, as the controller receives the quantized

state x̂ instead of the actual state x. For the stabilizing control law u = Φ(x) ∈ U , this error in the

control action is bounded as:

|Φ(x̂)− Φ(x)| ≤ L1|x̂− x| ≤ L
′

12
−d (3.4)

Taking into account the above errors, we perform a closed-loop stability analysis for the proposed

encrypted control system using first the Lyapunov-based controller and then the MPC.
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3.1 Closed-loop stability of encrypted control

The presence of quantization errors in the sensor-controller and controller-actuator communication

links requires us to characterize a new closed-loop stability region Ωρ̂ embedded in Ωρ (i.e., ρ̂ < ρ).

The following result establishes that the controller Φ(x) ∈ U can stabilize, in a sense to be made

precise below, the origin of the nonlinear system of eq. (3.2) under an encrypted controller.

Theorem 1. Consider the nonlinear system of eq. (3.2) under encrypted control, with the initial

state x0 ∈ Ωρ̂ and with the stabilizing control law u = Φ(x) ∈ U . Then, the origin of the closed-

loop system of eq. (3.2) under encrypted control is rendered practically stable for all x0 ∈ Ωρ̂ in the

sense that the closed-loop state x(t) remains in Ωρ for all times and that the following inequalities

hold:

V̇ ≤ −c5|x|2 ∀|x| ≥ c42
−d(γ1 + γ2)

c3θ
= µ (3.5a)

lim sup
t→∞

|x| ≤ b (3.5b)

where d is the quantization parameter, c3, c4, γ1, γ2, b > 0, 0 < θ < 1 and c5 = (1− θ)c3.

Proof. Based on the nonlinear system of eq. (3.2), the time derivative of V can be written as:

V̇ =
∂V

∂x
F (x, û)

=
∂V

∂x
F (x, u+ e2)

=
∂V

∂x
F (x,Φ(x̂) + e2)

=
∂V

∂x

[
f(x) + g(x)

(
Φ(x̂) + e2

)]
=

∂V

∂x

[
f(x) + g(x)

(
Φ(x̂)− Φ(x) + Φ(x) + e2

)]
=

∂V

∂x

[
f(x) + g(x)Φ(x) + g(x)

(
Φ(x̂)− Φ(x)

)
+ g(x)e2

]
=

∂V

∂x

(
f(x) + g(x)Φ(x)

)
+

∂V

∂x
g(x)

(
Φ(x̂)− Φ(x)

)
+

∂V

∂x
g(x)e2

(3.6)
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Based on eq. (2.2b), it follows that

V̇ ≤ −c3|x|2 +
∂V

∂x
g(x)

(
Φ(x̂)− Φ(x)

)
+

∂V

∂x
g(x)e2 (3.7)

Applying the inequalities of eq. (2.2c), eq. (3.3) and eq. (3.4), it follows that

V̇ ≤ −c3|x|2 + c4γ1|x|2−d + c4γ2|x|2−d

≤ −c3|x|2 + c4|x|2−d(γ1 + γ2)

≤ −(1− θ)c3|x|2 − θc3|x|2 + c42
−d(γ1 + γ2)|x|

(3.8)

Therefore, if the condition of eq. (3.5a) on |x| is satisfied i.e., |x| ≥ c42−d(γ1+γ2)
c3θ

= µ, it follows

that
V̇ ≤ −(1− θ)c3|x|2

≤ −c5|x|2
(3.9)

where c5 = (1 − θ)c3. Thus, based on eq. (3.9), we have that V̇ is negative for all x ∈ Ωρ̂ that

satisfy the condition of eq. (3.5a).

Based on the fact that Ωρ̂ is a level set of V and that V̇ is negative for all x ∈ Ωρ̂, we have

that the state of the closed-loop system x(t) stays in Ωρ̂ for all times. Furthermore, using Theorem

4.18 in Ref. [30], it follows that

lim sup
t→∞

|x(t)| ≤ b (3.10)

where b is a positive constant (which can be expressed as a class K function of µ). Hence, as the

quantization parameter d → ∞, following the definition of µ from eq. (3.5a), µ → 0 and, therefore,

the ultimate bound approaches zero, proving that larger values of the quantization parameter d

results in a smaller error between the state and input trajectories of the encrypted control system and

the non-encrypted control system. This proves that the closed-loop states of the nonlinear system

of eq. (3.2) are uniformly ultimately bounded under the stabilizing controller u = Φ(x) ∈ U for

sufficiently large d.
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3.2 Encrypted Lyapunov-based MPC

In this section, a feedback MPC is formulated for the closed-loop design of the nonlinear system

of eq. (2.1) with secure sensor-controller and controller-actuator communication links. Control

actions will be implemented on the nonlinear system in a sample-and-hold fashion with a sampling

period of ∆ [31, 32]. The proposed MPC formulation is as follows:

J = min
u∈S(∆)

∫ tk+N

tk

L(x̃(t), u(t))dt (3.11a)

s.t. ˙̃x(t) = F (x̃(t), u(t)) = f(x̃) + g(x̃)u (3.11b)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (3.11c)

x̃(tk) = x̂(tk) (3.11d)

V̇ (x̂(tk), u) ≤ V̇ (x̂(tk),Φ(x̂(tk)), if x̂(tk) ∈ Ωρ̂\Ωρmin
(3.11e)

V (x̃(t)) ≤ ρmin, ∀ t ∈ [tk, tk+N), if x̂(tk) ∈ Ωρmin
(3.11f)

where the predicted state trajectory is denoted by x̃, the set of piecewise constant functions with

period ∆ is denoted by S(∆) and the number of sampling periods in the prediction horizon is

denoted by N . The Lyapunov-based MPC calculates the optimal input sequence u∗(t|tk) over the

entire prediction horizon t ∈ [tk, tk+N), and the first input of this sequence is sent to the actuator

to be applied to the system for all t ∈ [tk, tk+1). Note that, in the MPC optimization problem of

eq. (3.11), the first-principles process model implemented in the MPC uses the quantized states x̂

to predict the state trajectory.

In the encrypted Lyapunov-based MPC (LMPC) formulation, eq. (3.11a) integrates the cost

function over the entire prediction horizon, and eq. (3.11b) describes the plant-model being used in

LMPC. The constraint of eq. (3.11c) denotes the constraints on the control inputs. The constraint

of eq. (3.11d) initializes the plant model of eq. (3.11b) with quantized states. If x(tk) ∈ Ωρ̂ \Ωmin,

then the Lyapunov constraint of eq. (3.11e) drives the closed-loop state, x(tk), of the nonlinear
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system of eq. (3.2) towards the origin. If the closed-loop state x(tk) gets in the region Ωρmin
,

then the constraint of eq. (3.11f) ensures that this state remains in Ωρmin
over the entire prediction

horizon.

The following theorem addresses the closed-loop stability of the nonlinear system of eq. (3.2)

under the encrypted LMPC.

Theorem 2. Consider the system of eq. (3.2), under the closed-loop encrypted LMPC design of

eq. (3.11) based on the stabilizing controller, u = Φ(x) ∈ U , satisfying the inequalities in eq. (2.2)

and assume that the initial state x0 ∈ Ωρ̂. Let ∆ > 0, ϵw > 0 and ρ̂ > ρmin > ρs satisfy,

− c3
c2
ρs + L

′

xMF∆+ L
′

wδ ≤ −ϵw

ρmin = max{V (x(t+∆))|V (x(t)) ≤ ρs}
(3.12)

Then, the state of the closed-loop system x(t) is always bounded in Ωρ̂ and is ultimately bounded

in Ωρmin
.

Proof. Consider the state x(tk) ∈ Ωρ̂ \ Ωρs . The time-derivative of V under the control inputs

calculated by the LMPC of eq. (3.11) for the nonlinear system of eq. (3.2) at tk can be written as:

V̇ =
∂V (x(t))

∂x
F
(
x(t), u(tk), e2

)
V̇ =

∂V (x(tk))

∂x
F
(
x(tk), u(tk)

)
+

∂V (x(t))

∂x
F (x(t), u(tk), e2)

− ∂V (x(tk))

∂x
F (x(tk), u(tk))

(3.13)

for all t ∈ [tk, tk+1].

In the encrypted LMPC, the constraint of eq. (3.11e) ensures that, if x(tk) ∈ Ωρ̂ \ Ωρmin
, then

the closed-loop state is driven towards the origin at tk+1 (to a lower level set of V ). Based on the
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inequality of eq. (2.2b), it follows from eq. (3.13) that:

V̇ ≤ −c3|x(tk)|2 +
∂V (x(t))

∂x
F (x(t), u(tk), e2)

− ∂V (x(tk))

∂x
F (x(tk), u(tk))

(3.14)

Based on the fact that the error, |e2| ≤ η2 2
−d = δ is bounded, the Lipschitz conditions of eq. (2.3),

and the inequality of eq. (2.2a), it follows from eq. (3.14) that:

V̇ ≤ −c3
c2
ρs + L

′

x|x(t)− x(tk)|+ L
′

wδ (3.15)

where L
′
w > 0. Due to the continuity of x(t) ∀ t ∈ [tk, tk+1), we can write that |x(t) − x(tk)| ≤

MF∆ ∀ t ∈ [tk, tk+1). Using this bound, it follows from eq. (3.15) that:

V̇ ≤ −c3
c2
ρs + L

′

xMF∆+ L
′

wδ (3.16)

Thus, if −c3
c2
ρs+L

′
xMF∆+L

′
wδ ≤ −ϵw, then V̇ ≤ −ϵw for any x(tk) ∈ Ωρ̂\Ωρs . This establishes

that the state of the closed-loop system is always bounded in Ωρ̂, and it ultimately converges to

Ωρs ⊆ Ωρmin
and then remains there.

Remark 2. It is important to note that the focus of this work is on the cyber-security of the sensor-

controller and controller-actuator communication links in a nonlinear MPC scheme. Other studies

such as Ref. [29] use semi-homomorphic encryption schemes to avoid decrypting/encrypting the

process states and inputs before and after the MPC block in fig. 3.1, i.e., the data is encrypted

from the sensor block to the actuator block, which provides protection against eavesdropping by

a cloud provider or neighboring agents. However, such results are restricted to linear controllers

with a feedback gain since the complex, numerous computations required in MPC, particularly

nonlinear MPC, are not possible to carry out in the encrypted space where only either addition

or multiplication may be performed. The proposed encrypted MPC architecture is most valuable

in a chemical plant setting, where encryption is required to have secure links from the sensors

and actuators to the control room, where the nonlinear MPC calculations are carried out, since the

control room itself is physically secure and only communicates with the sensors and actuators via

the network.
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Chapter 4

Application to a chemical reactor with

recycle

4.1 Process description

In this section, we apply the above methodology to a chemical reactor example, specifically the

system from Ref. [33] without input or state delays in the process. We demonstrate the encrypted

MPC approach on a well-mixed non-isothermal continuous stirred tank reactor (CSTR) with a

recycle stream and analyze the effects of encryption on the trajectories and closed loop stability.

In the CSTR, an irreversible, second-order, elementary, exothermic reaction occurs, which is given

as A → B. The CSTR is equipped with a jacket to remove/supply thermal energy at a rate of

Q. A first-principles model can be constructed based on the material and energy balances across

the CSTR. Using these balances, we can write the differential equations describing the nonlinear
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dynamics of the process as:

dCA

dt
=

(1− λ)F

V
CA +

λF

V
CA0 −

F

V
CA − k0e

−E
RT C2

A (4.1a)

dT

dt
=

(1− λ)F

V
T +

λF

V
T0 −

∆H

ρLCp

k0e
−E
RT C2

A +
Q

ρLCpV
(4.1b)

where CA is the concentration of reactant A, and T is the temperature in the reactor. The inlet feed

has a volumetric flow rate of λF , where λ is the fraction with which the outlet stream is split—the

fraction λ of the outlet stream being the product stream, whereas the fraction (1− λ) of the outlet

stream is recycled back to the reactor (recycle stream). The feed temperature is T0, and the inlet

feed containing only A has a concentration of CA0. V is the volume of the reactor, and Q is the rate

of heat removal from the reactor. The values and definitions of all the other parameters are reported

in Ref. [33]. For the above process, the reactant concentration CA and the temperature of the

reactor T , in deviation terms, are the state variables (xT = [CA − CAs T − Ts]). The inlet feed

concentration CA0 and the rate of heat removal Q are the manipulated inputs to our process, which

are bounded to be in the closed sets: Q ∈ [−80.0, 80.0] MJ/h and CA0 ∈ [0.5, 7.5] kmol/m3. We

investigate the stable steady state of the CSTR system of eq. (4.1), which is achieved at the point

[CAs Ts] = [2.96 kmol/m3 320 K] under manipulated input values of Qs = 12.2MJ/h and

CA0s = 4 kmol/m3.

��, ! " , #$

��, ! " , #(")

1 − � �
 ! "
# (")

&

Figure 4.1: Process flow diagram of the CSTR with recycle.
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In the encrypted network, secure communications are established between the sensor-controller

and controller-actuator links. Before we encrypt the states and inputs, it is important to quantize

the data. Using the first quantization function, gl1,d(a), we map state and input data in real num-

bers to the set Ql1,d. The largest value in the set Ql1,d is given as 2l1−d−1 − 2−d, which should

always be greater than or equal to the maximum value of permissible inputs and the maximum

possible values of the states in the operating region. Similarly, the lowest value in the set Ql1,d is

given as −2l1−d−1 and, hence, this value should be smaller than the minimum value of permissible

inputs and minimum possible values of the states in the operating region. Based on this, we get

the minimum value of l1 − d as 18, and we have to choose the value of l1 and d accordingly. The

rational numbers in the set Ql1,d are separated by a resolution of 2−d, which means that the higher

the value of d, the lesser is the quantization error and the higher is the computational cost. This

relation between the error and the value of d is demonstrated in fig. 4.2, where the function sinx,

for x ∈ [0, π] is quantized with d = 2 and d = 4, resulting in resolutions of 0.25 and 0.0625,

respectively. For the purpose of simulations, we vary the values of d from 1 to 8 in increments of 1

and thus, the value of l1 varies from 19 to 26 in increments of 1. For the second quantization, it is

required to have l2 > l1. Hence, we select the value l2 = 29. Once we have identified values of all

the quantization parameters, we quantize the states and inputs, and encrypt them according to the

Paillier Encryption algorithm. For the implementation of Paillier Encryption, the “phe” module

in Python is used [34]. The first-principles model of eq. (4.1) is used as the process model in the

MPC, and the optimization problem is solved using the Python module of the IPOPT software

[35]. The dynamic model of eq. (4.1) is simulated numerically using the explicit Euler method

with an integration time step of hc = 10−4 hr. The sampling period is ∆ = 10−2 hr. The control

Lyapunov function V = xTPx is constructed using the positive definite matrix,

P =

500 20

20 1
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obtained from extensive simulations. A stabilizing proportional controller is designed to be the

lower bound for the LMPC, and the prediction horizon for the LMPC is chosen as N = 2. Through

extensive simulations, we determine ρmin = 0.1. The LMPC cost function of eq. (3.11a) is chosen

to be L(x, u) = xTQ1x + uTQ2u, which achieves its minimum value at the origin. Q1 and

Q2 are the MPC weight matrices that, after carefully tuning, are taken as Q1 =

10 0

0 1

 and

Q2 =

0.03 0

0 8× 10−7

, respectively.

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

Figure 4.2: Schematic of closed-loop system under encrypted MPC.

4.2 Simulation results

We apply the encrypted LMPC to the CSTR initialized from the point, x0 = [−1.7kmol/m3 50K],

and observe the closed-loop simulation results for values of d between 1 and 8, inclusive. The state

and input profiles are shown in figs. 4.3 to 4.10. In figs. 4.3 to 4.5, it can be observed that the state

x1 as well as the input u1 experience large oscillations when using the encrypted MPC, rendering

the encrypted MPC unable to practically stabilize the closed-loop system in the sense of trapping
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the states in a small neighborhood Ωρmin
around the origin. This can be attributed to the large

quantization error at values of d ≤ 3. For d = 1, with the quantizated states being separated by

a resolution of 2−1 or 0.5, it is observed that the dithering in Figure 4 begins when the state x1

first crosses the threshold of −0.25, causing any values above this to be mapped to zero. A similar

behavior is seen in Figure 5 for d = 2, where the resolution is higher and the dithering begins

when x1 reaches a value greater than −0.125, implying that d = 2 is still smaller than necessary

for this system. At d = 4, as seen in fig. 4.6, the states under the MPC with and without encryption

almost overlap, with the oscillations/dithering in x1 and u1 mostly mitigated. At values of d ≥ 5,

the quantization error is sufficiently small, leading to the closed-loop states and manipulated input

profiles under MPC with and without encryption being nearly identical, as seen in figs. 4.7 to 4.10.

Since the closed-loop states are driven by the encrypted MPC to a neighborhood Ωρmin
around the

origin, the system is considered to be rendered stable for d ≥ 5. At increasing values of d, the

quantized states and inputs are allowed to assume values from a larger set Ql1,d, letting the error in

eq. (2.6) be reduced further. This leads to the improved closed-loop performance for larger d.

Remark 3. Following the results of theorem 1, it is known that the states of the nonlinear system

of eq. (2.1) will be bounded in a ball of radius b, which is a class K function of µ = f(d), which is

an exponentially decreasing function of d provided the modeling errors γ1 and γ2 remain the same

(i.e., model remains the same). In the reactor system of eq. (4.1), when d < 5, it can be inferred

that the small value of d causes µ and, hence, b to be large. Specifically, b > ρmin = 0.01 is too

large for the states to be maintained in the invariant set Ωρmin
as t → ∞. If the stability criterion

is less strict and a larger ρmin is selected, the system can be considered stable under the MPC for

d < 5. However, this is a process design criterion that must be chosen by domain experts, and our

results remain valid for arbitrary values of d and ρmin.
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Figure 4.3: State and input profiles of closed-loop simulations under LMPC with encryption (red
line) and without encryption (green line), where d = 1, for the stable steady state.
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Figure 4.4: State and input profiles of closed-loop simulations under LMPC with encryption (red
line) and without encryption (green line), where d = 2, for the stable steady state.
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Figure 4.5: State and input profiles of closed-loop simulations under LMPC with encryption (red
line) and without encryption (green line), where d = 3, for the stable steady state.
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Figure 4.6: State and input profiles of closed-loop simulations under LMPC with encryption (red
line) and without encryption (green line), where d = 4, for the stable steady state.
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Figure 4.7: State and input profiles of closed-loop simulations under LMPC with encryption (red
line) and without encryption (green line), where d = 5, for the stable steady state.

28



Figure 4.8: State and input profiles of closed-loop simulations under LMPC with encryption (red
line) and without encryption (green line), where d = 6, for the stable steady state.
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Figure 4.9: State and input profiles of closed-loop simulations under LMPC with encryption (red
line) and without encryption (green line), where d = 7, for the stable steady state.
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Figure 4.10: State and input profiles of closed-loop simulations under LMPC with encryption (red
line) and without encryption (green line), where d = 8, for the stable steady state.
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Chapter 5

Application to a chemical reactor operating

at an unstable steady-state

5.1 Process description

We implement the proposed encrypted LMPC to the chemical process studied in Ref. [26] i.e., a

jacketed, perfectly mixed CSTR in which the irreversible, second-order, elementary, exothermic

reaction A → B takes place. The following mass and energy balances describe the transient

operation of the nonisothermal CSTR:

dCA

dt
=

F

V
(CA0 − CA)− k0e

−E
RT C2

A (5.1a)

dT

dt
=

F

V
(T0 − T ) +

−∆H

ρLCp

k0e
−E
RT C2

A +
Q

ρLCpV
(5.1b)

where the symbols carry the same denotations as chapter 4. Parameter values are enlisted in Ref.

[26]. The state variables are the concentration of A and reactor temperature, CA and T , respec-
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tively, in deviation terms i.e., xT = [CA − CAs T − Ts]. The inlet feed concentration CA0 and

the rate of heat removal Q are the manipulated inputs to our process, which are bounded to be in

the closed sets: Q ∈ [−80.0, 80.0] MJ/h and CA0 ∈ [0.5, 7.5] kmol/m3. We are interested in op-

erating the CSTR at its unstable steady state, [CAs Ts] = [1.95kmol/m3 402K], corresponding

to inputs of Qs = 0MJ/h and CA0s = 4kmol/m3.

The control objective is to maintain the operation of the CSTR at its unstable steady state

under the encrypted LMPC using the quantized states and inputs in computations and actuation.

For the Pallier encryption algorithm, we choose l1 − d and l2 to be 20 and 31, respectively. The

sampling time ∆ and integration time step hc are chosen to be 10−2 hr and 10−4 hr, respectively.

The positive definite matrix P in the control Lyapunov function V = xTPx for this system is taken

as

P =

1060 22

22 0.52


based on extensive simulations. A prediction horizon of N = 2 is used in the LMPC. With respect

to stability under the LMPC, we choose ρmin = 2 as the criterion for the states having reached

stability and use a contractive constraint of the form V̇ ≤ −kV for eq. (3.11e), where k = 0.15.

The weight matrices Q1 and Q2 in the LMPC cost function are chosen as Q1 =

10000 0

0 1

 and

Q2 =

3× 10−7 0

0 1

, respectively.

5.2 Simulation results

The proposed encrypted LMPC is applied to the nonisothermal CSTR operating near its unsta-

ble steady state. Specifically, the initial condition is x0 = [−1.69 kmol/m3 73 K], and values

of d between 1 and 7, inclusive, are studied. The state and input profiles are shown in figs. 5.1

to 5.7. From the results of closed-loop encrypted MPC simulations, it can be observed that, for

33



some small value of the quantization parameter, d, the encrypted MPC is not able to stabilize the

nonlinear system around a small neighborhood around the origin. Instead, we observe the oscil-

lations of states around a point other than the unstable steady state. Based on fig. 5.1, this may

be attributed to the large quantization error in the input applied to the system. While the MPC

calculates an exact fixed-point value, the quantization with a low resolution withholds the systems

from applying this input. In particular, since d = 1, the manipulated CA0 that can be applied to the

system oscillates between the values of 2.0 kmol/m3 and 2.5 kmol/m3. Thus, for systems being

operated at an unstable equilibrium, it is possible that the encrypted MPC cannot practically stabi-

lize the system for d ≤ dcritical, and it is important to identify this critical value of the quantization

parameter. For the nonlinear system of eq. (5.1), we have dcritical = 1, as evidenced by the removal

of oscillations and approach to the steady state once d is increased from 1 to 2 in fig. 5.2. Addition-

ally, for d > dcritical, as the value of the quantization parameter d increases, we see improvement

in MPC performance in the sense that we achieve faster convergence of states to a small neighbor-

hood, Ωρmin
, around the origin and also less controller effort is required to reach the steady state.

The MPC performance improved because the quantization error significantly decreases with the

increase in d. However, this improvement in performance comes at a computational cost, which

is discussed in the subsequent section. It is important to note that, if the computational resources

are limited, the MPC performance that can be achieved is also limited but one must ensure that the

chosen value of quantization parameter d is larger than the critical value, dcritical.
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Figure 5.1: State and input profiles of closed-loop simulations under LMPC with encryption (red
line) and without encryption (green line), where d = 1, for the unstable steady state.
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Figure 5.2: State and input profiles of closed-loop simulations under LMPC with encryption (red
line) and without encryption (green line), where d = 2, for the unstable steady state.
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Figure 5.3: State and input profiles of closed-loop simulations under LMPC with encryption (red
line) and without encryption (green line), where d = 3, for the unstable steady state.
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Figure 5.4: State and input profiles of closed-loop simulations under LMPC with encryption (red
line) and without encryption (green line), where d = 4, for the unstable steady state.
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Figure 5.5: State and input profiles of closed-loop simulations under LMPC with encryption (red
line) and without encryption (green line), where d = 5, for the unstable steady state.
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Figure 5.6: State and input profiles of closed-loop simulations under LMPC with encryption (red
line) and without encryption (green line), where d = 6, for the unstable steady state.

40



Figure 5.7: State and input profiles of closed-loop simulations under LMPC with encryption (red
line) and without encryption (green line), where d = 7, for the unstable steady state.
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Chapter 6

Effect of the quantization parameter and

the MPC optimization on computational

cost

From fig. 6.1, it is clear that the computational cost increases with an increase in the value of

the quantization parameter d. The increase in computational cost with the increase in the magni-

tude of d is primarily attributed to two reasons. The resolution between the elements of the set Ql1,d

is equal to 2−d. As the magnitude of d increases, the resolution of the set decreases and, hence, the

number of elements in the set increases. Firstly, as a direct consequence of the increase in the num-

ber of elements, the computational cost required to construct such a set also increases. Secondly,

as the number of elements in the set Ql1,d increases, the number of search operations required to

map a real number to the set Ql1,d increases and, hence, the computational cost associated with it

also increases. For the purpose of simulation of the CSTR with a stable steady-state, a normalized

computational cost, associated with the quantization parameter d, was calculated for all the cases.

This computational cost was a weighted sum of the number of operations required to construct

the set Ql1,d and the number of search operations required to map real number states and inputs to
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the set Ql1,d. The weights depend on the computational time required for the above two kinds of

operations. Finally, the computational cost is normalized using the maximum computational cost

out of all the cases, which corresponds to the computational cost associated with the case when

d = 8.

Figure 6.1: Normalized computational cost associated with different values of the quantization

parameter d.

It is clear from fig. 6.1 that, if the computational resources are limited, the highest degree

of accuracy (with respect to performance in comparison to MPC without encryption) that can be

achieved by the encrypted MPC scheme is also limited.

Relative to the MPC problem, the encryption/decryption algorithm requires a significantly

larger computational load. Figure 6.2 shows, for d = 1, the ratio of the time it takes to perform all

the encryption/decryption operations to the time required to solve the MPC optimization problem

for every sampling period over the simulation duration. It is observed that the time taken for

encryption/decryption is an order of magnitude higher than the time required to solve the MPC for

most sampling periods. The ratio is equal to approximately 10 in the first half of the simulation and

varies between approximately 6 and 18 for the second half. As the value of d increases, a larger
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portion of the computational load will be shifted to the encryption/decryption operations because

a higher number of binary search operations will be required for encryption/decryption, while the

MPC problem remains the same in terms of complexity, leading to even higher ratios in fig. 6.2.
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Figure 6.2: Ratio of time required for encryption/decryption operations to the time required for

solving the MPC optimization problem, for each sampling period throughout the simulation of the

CSTR with the stable steady state when d = 1.

Remark 4. As discussed, a larger value of d improves the accuracy at the cost of increasing the

computational burden of both generating the set Ql1,d (which is a one-time offline computation

carried out before implementing the MPC) and the binary search operations to map floating point

numbers to the set (which is an online calculation carried out several times in each sampling period

of the MPC). Between these two components of the computational cost, however, the generation

of the set Ql1,d represents an order of magnitude higher number of computations than the binary

search operations required to encrypt/decrypt states and inputs within the simulation duration con-

sidered. Since the cost of generating Ql1,d increases exponentially with d, it is desirable to use

a value of d reasonably above dcritical but not excessively large in order to balance robustness and

computational costs. Since a value of d = 8 was sufficient for the applications considered in this
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work, this was the maximum value of d studied. However, d can be increased as necessary to rep-

resent a greater range of floating point numbers for more complex applications or when operating

in a wider region. An appropriate starting point may be to use the standard 32-bit representation

of floating or fixed point numbers, which corresponds to d = 14 in our framework. This requires

the generation of the set Q32,14, which contains 4294967296 numbers in the set. The generation

of this set, which is an offline calculation before the online MPC implementation, required 1087

seconds on an Intel i7-10700K 3.80 GHz computer with 64 GB of RAM, which was the machine

used for all the simulations in this work. Hence, a local machine is sufficient for end-to-end imple-

mentation of the proposed encrypted MPC up to at least d = 14, corresponding to 32-bit floating

or fixed point numbers. If a higher d is required, for which the generation of the set Ql1,d is not

computationally tractable in a local machine, only the generation of Ql1,d may be carried out of-

fline in a high-performance cluster and saved. Subsequently, the generated Ql1,d can be loaded and

the encrypted MPC can still be implemented in a local machine due to the much lower processing

power required for the binary search operations for encryption/decryption within the MPC, which

also scale approximately linearly rather than exponentially with d.

Remark 5. While the quantization errors in this work were not compared to other common sources

of errors such as sensor noise and plant-model mismatch, as demonstrated above, for values of

d below a certain threshold dcritical, the quantization error can be significant enough to cause the

process to oscillate without stabilizing within the level set Ωρmin
, causing the closed-loop system

to not be practically stabilizable as per the definition in our work. This effect was seen more

strongly in the case of operating a reactor at the unstable steady-state. Therefore, irrespective of

the plant-model mismatch or sensor noise levels in a chemical process, the quantization errors in

an encrypted MPC cannot be neglected in the controller design stage.
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Chapter 7

Conclusion

In this work, we developed a closed-loop encrypted MPC scheme using Paillier cryptosystem

for encryption-decryption operations in the sensor-controller and controller-actuator communica-

tion links. Quantization errors in the secure communication links were identified, based on which

closed-loop stability criteria were derived. The designed Lyapunov-based model predictive control

scheme was robust to these quantization errors and ultimately drove the states to a small a neigh-

borhood around the steady state of the nonlinear system. Further, the proposed encrypted MPC

scheme was implemented on a continuous stirred tank reactor system with recycle and another re-

actor operating at an unstable equilibrium point. Specifically, closed-loop simulations were carried

out for different values of the quantization parameter d. The state and input profiles were plotted

against the case of the unencrypted MPC. Larger values of the quantization parameter d resulted

in lesser error between the state and input profiles of the encrypted MPC and of the unencrypted

MPC; however, a higher computational cost was associated with larger values of the quantization

parameter d.
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