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SUMMARY

We present an integromic analysis of gene alterations that modulate transforming growth factor β 
(TGF-β)-Smad–mediated signaling in 9,125 tumor samples across 33 cancer types in The Cancer 

Genome Atlas (TCGA). Focusing on genes that encode mediators and regulators of TGF-β 
signaling, we found at least one genomic alteration (mutation, homozygous deletion, or 

amplification) in 39% of samples, with highest frequencies in gastrointestinal cancers. We 

identified mutation hotspots in genes that encode TGF-β ligands (BMP5), receptors (TGFBR2, 

AVCR2A, BMPR2), and Smads (SMAD2, SMAD4). Alterations in the TGF-β superfamily 

correlated positively with expression of metastasis-associated genes and with decreased survival. 

Correlation analyses showed the contributions of mutation, amplification, deletion, DNA 

methylation, and miRNA expression to transcriptional activity of TGF-β signaling in each cancer 

type. This study provides a broad molecular perspective relevant for future functional and 

therapeutic studies of the diverse cancer pathways mediated by the TGF-β superfamily.
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eTOC Blurb

To date there are no studies of the TGF-β superfamily of signaling pathways across multiple 

cancers. This study represents a key starting point for unraveling the role of this complex 

superfamily in 33 divergent cancer types from over 9,000 patients.

Graphical Abstract

Keywords

TGF-β; TGF-β pathway; mutation; mutation hotspot; cancer; PanCancer; The Cancer Genome 
Atlas (TCGA); DNA methylation; microRNA; transcription

INTRODUCTION

The TGF-β superfamily of ligands activates Smad proteins to regulate transcription and 

control cell proliferation and differentiation. The TGF-β pathways are context-dependent 

signal transduction cascades that can promote seemingly contradictory cell processes, 

including promotion of differentiation and tumor growth, inhibition of cell proliferation, 

suppression of immune response, and maintenance of stem cell homeostasis (Akhurst, 2017; 

Colak and Dijke, 2017; Seoane and Gomis, 2017; Christian and Heldin, 2017; Moustakas 

and Heldin, 2016; Mishra et al., 2005; Wakefield and Roberts, 2002). Animal models of 

mammary gland tumorigenesis support a pro-tumorigenic role for signaling by the TGF-β1-

Smad2 pathway (Muraoka-Cook et al., 2004), whereas mouse models of gastrointestinal 

(GI) cancers and hepatocellular cancers indicate a primarily tumor-suppressive role (Chen et 

al., 2018; Chen et al., 2016b; David et al., 2016; Katz et al., 2016). In pancreatic KRAS-

mutant premalignant cells, TGF-β signaling induces expression of metastasis-promoting 

genes (David et al., 2016) and apoptosis-regulatory genes. Thus, even within a single 

subfamily of ligands that act through the same downstream Smad complexes, the net 
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outcome can be either tumor-suppressing or tumor-promoting depending on context. Hence, 

predicting appropriate TGF-β-based therapeutic interventions is challenging.

To dissect the context-specific roles of the TGF-β pathway across multiple cancer types, we 

focused on 43 core genes that regulate or mediate TGF-β signaling. We selected the core 

genes through consensus of TCGA TGF-β network members, although we acknowledge that 

the process of identifying a core subset of genes is inherently subjective to some degree. The 

“integromic” analysis (Weinstein, 2006) described here reveals potential nodes of crosstalk 

with other cancer-relevant pathways, and it enables prediction of the activity of TGF-β–

Smad pathways in various cancer contexts. The data and analyses provide a rich resource for 

understanding TGF-β biology, with the potential to identify context-dependent therapeutic 

targets.

RESULTS

We focus here on the genomic, epigenomic, and transcriptomic landscape of 43 genes that 

encode proteins that mediate or regulate signaling by the TGF-β superfamily and 50 

downstream target genes of Smad-dependent signaling in 9,125 patients across 33 TCGA 

tumor types (https://tcga-data.nci.nih.gov/docs/publications/tcga/) (Table S1), referred to as 

the “PanCancer cohort.” The analysis is limited to this set of TGF-β pathway-related genes 

yet represents a valuable starting point to examine TGF-β signaling across multiple cancers. 

We analyzed multiple data types: somatic copy number variation (CNV), point mutation, 

DNA methylation, mRNA expression (from mRNA-seq), miRNA expression (from miRNA-

seq), and, for correlative analyses, protein expression (from reverse-phase protein arrays; 

RPPA). The data were corrected for batch effects and other systematic biases prior to 

analysis (see STAR Methods).

Selection of genes associated with the TGF-β superfamily

The list of 43 “core” TGF-β genes includes 2 genes encoding adaptor proteins (SPTBN1 and 

ZFYVE9) that are important in TGF-β signaling and play roles in other cellular processes. 

The other 41 genes encode components of each level of the “canonical” TGF-β signaling 

pathway that activates Smads to regulate gene expression (Figure 1A): 3 TGF-β ligands, 8 

bone morphogenetic protein (BMP) ligands, and 9 activin (ACV) ligands; 3 TGF-β receptors 

and 1 interacting protein (TGFBRAP1), 3 BMP receptors, and 6 ACV receptors; and 8 

Smads (Figure 1B). The list of 43 genes is available at cBioPortal (http://

www.cbioportal.org) as “General: TGF-β superfamily.” Noncanonical signaling (Figure 

S1A) is excluded from this analysis. Figure S1B shows pairwise correlation coefficients of 

the 43 genes.

To explore the effect of TGF-β pathway genomic alterations on transcriptional output and to 

validate pathway activity, we selected a panel of 50 downstream target genes that are 

regulated by TGF-β–Smad signaling and have important roles in epithelial-to-mesenchymal 

transition (EMT), metastasis, or tumor suppression (Table S1).
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Genomic alterations in TGF-β superfamily genes

We performed mutation and CNV analyses of the 43 genes to identify genomic aberrations 

across the PanCancer cohort (Figure 1B, Table S2). Using the cBioPortal definitions 

(Cerami et al., 2012), genomic alterations were classified as gene amplifications, gains (low-

level amplifications), deep deletions (equivalent to homozygous deletions for non-

aneuploidy cases), shallow deletions (heterozygous loss), truncating mutations, inframe 

mutations, or missense mutations. We use the term “alteration” henceforth for mutations 

(truncating or missense) and CNVs (deep deletion or amplification). Oncoprint 

representation from cBioPortal revealed the distribution of TGF-β genomic alterations in the 

PanCancer cohort (Figure 1B). Although alteration frequencies were low, 39% of the tumors 

contained an alteration in at least one of the 43 genes. SMAD4 (4%) and SPTBN1 (4%) 

were the most frequently altered. Collectively, BMP ligands had an alteration frequency of 

13%. Six genes (GDF1, GDF11, SMAD6, SMAD7, INHBE, and NODAL) had mutation 

frequencies < 0.5% (Table S2). When excluding those six, cumulative mutation frequency 

(23%) in the TGF-β core pathways was significantly higher than expected for a randomly 

selected set of 37 genes (Figure S1C, S1D). A set of genes in the TGF-β superfamily had 

recurrent chromosomal deletions of at least one allele (Figure S1E). Heterozygous deletions 

generally occur with high frequency in tumor suppressor genes and may be accompanied by 

additional mutations in the remaining allele, leading to complete loss of tumor suppressor 

function (Haverty et al., 2009). All SMAD-encoding genes had heterozygous deletion 

frequencies greater than 20% with several exceeding 30%. Tumors rarely had more than one 

mutationally altered gene within a category.

Distribution of gene alterations across cancer types

The frequency and type of genomic alteration varied widely across tumor types (Figure 2A 

and S2A), from no alterations in testicular germline tumors (TGCT) to all three types of 

alterations (mutation, deletion, and amplification) in urothelial bladder cancers (BLCA). 

There were genomic alterations of TGF-β pathway genes in more than 50% of samples in 12 

tumor types (Figure 2A, Tables S2–S4). Skin cutaneous melanoma (SKCM), colon 

adenocarcinoma (COAD), esophageal carcinoma (ESCA), stomach adenocarcinoma 

(STAD), and uterine corpus endometrial carcinoma (UCEC) had high background alteration 

burdens, including microsatellite instability (MSI) or chromosomal instability (CIN) (Cancer 

Genome Atlas, 2012; Cancer Genome Atlas, 2015; Cancer Genome Atlas et al., 2013). 

Without adjusting for background alteration burden, among the 39% of TCGA cases that 

carried TGF-β pathway gene alterations, SKCM (70%), COAD (65%), and ESCA (65%) 

had the highest percentages of alterations; THCA (4%), KICH (6%), and TGCT (9%) had 

the lowest (Table S3).

We observed non-silent SMAD4 mutations in 24% and SMAD4 deletions in 13% of 

pancreatic adenocarcinoma (PAAD) samples (Figure 2A, 2C; Table S4). Because SMAD4 is 

the Co-Smad required for transducing the Smad signal to downstream effectors, loss of 

SMAD4 in PAAD by mutation or deletion suggests a tumor-suppressive role for TGF-β 
signaling in PAAD, which is consistent with other reports (David et al., 2016).
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Among all cancer types, high-grade ovarian cancers (OV) (Figure 2B) had high 

amplification frequency, which could be due to genomic instability (Cancer Genome Atlas 

Research, 2011). Prostate adenocarcinoma (PRAD) had the highest deletion frequency, 

marked by losses in the SMAD9 (encoding an R-Smad) and ACVR2A (encoding a receptor) 

(Figure 2B–C). Rectal adenocarcinoma (READ) had the greatest frequency of BMP7 
amplification. Diffuse large B-cell lymphoma (DLBC) had a high frequency of deletions 

spanning different levels of the pathway—: ligands (TGFB2, INHBB, GDF1), receptors or 

receptor-associated proteins (BMPR1A, ACVR1, ACVR1C, ACV2A, ACVR2B, 

TGFBRAP1), and Smads (SMAD9)—, indicative of a tumor-suppressive role for TGF-β 
signaling in these early-stage DLBC cases in the TCGA cohort.

After adjusting for background alteration burden, we analyzed MutSigCV- and GISTIC-

precomputed results across all individual cancer types and the PanCancer cohort to identify 

significantly mutated genes (SMGs) and genes targeted by somatic CNVs (Figures 2D–F). 

The analysis revealed SMAD4, ACVR2A, and TGFBR2 as the most common SMGs within 

specific disease types and across the PanCancer cohort. SMAD4 had a highly overlapping 

profile with TGFBR2; both were SMGs in the GI cancers PAAD, ESCA, and STAD. Among 

individual disease types, COAD had the highest number of SMGs (SMAD4, SMAD3, 

SMAD2, and ACVR2A). The number of genes targeted by somatic CNVs, particularly 

deletions, was higher than the number of SMGs (Figures S1C, S2B and S2C). A common 

type of CNV was recurrent heterozygous loss (Figure S1E). SMAD4 was the only 

statistically significant deletion target in the PanCancer cohort; it was most significantly 

deleted in GI cancers (PAAD, COAD, READ, STAD, and ESCA). PAAD had deletions 

associated with 14 TGF-β core genes, suggesting synergistic effects from ligands (BMP 

family), receptors (BMPR, TGFBR), and SMAD4. Colorectal cancers (COAD and READ) 

were marked by SMAD4 and SMAD3 deletions. Deletions in genomic regions covering all 

ACVR genes except ACVR2B were identified as significant in DLBC.

Transcriptional signatures of genomic alterations in the TGF-β pathways

To understand how gene alterations affect transcriptional output of the pathways, we 

analyzed the mRNA expression of 50 downstream targets of Smad signaling with defined 

roles as tumor promoters or tumor suppressors (Table S1). Unsupervised hierarchical 

clustering analysis identified patterns of correlation between target gene expression and each 

class of genomic alteration (Figure 2G–I). Point mutations were associated with two 

predominant patterns of target gene signatures: increased or decreased expression (Figure 

2G). Surprisingly, the directionality of target-gene change was consistent for all mutations, 

even for mutations in the inhibitors SMAD6/7. An explanation is that mutations in pathway 

activators, like TGFB1/2/3 and TGFBR1/2/3, may result in gain of function, whereas 

mutations in the inhibitors SMAD6 and SMAD7 may result in loss of inhibitory function.

Another explanation is that SMAD2 was generally co-amplified with SMAD7 (Figure 1B); 

both genes are in the same cytogenetic band (18q21.1). Similarly, SMAD3 was generally co-

amplified with SMAD6; both are in proximal cytogenetic bands, 15q22.33 and 15q22.31, 

respectively. Thus, the net effect of those co-amplifications could be an overall increase in 

pathway activity. In support of that hypothesis, both the amplification and deletion profiles 
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(rows in Figure 2H–I) of those gene pairs were similar, and, consequently, SMAD2 and 

SMAD7 are co-clustered, whereas SMAD3 and SMAD6 clustered close to each other.

The effect of TGF-β pathway amplification events on target gene mRNA expression was 

similar to that of mutations (Figure 2H), suggesting that most mutations in TGF-β pathway 

activators are gain of function. HMGA2 was overexpressed in samples with either mutations 

or amplifications in the TGF-β pathway genes, with the exception of tumors with 

amplifications in TGFB2, TGFBR2, ACVR2B, SMAD4, SMAD5, or SMAD6. Those 6 

genes may deliver context-specific signals for regulating HMGA2 expression. Likewise, 

CDH2 clustered separately from other genes, and its decreased expression was associated 

with most point mutations and CNVs. CDH2 encodes a cadherin important in cell adhesion 

and migration (Principe et al., 2014; Xu et al., 2009). Another distinct cluster contained 

overexpressed metastasis-related genes, including collagens (COL1A1/1A2/3A1), a 

metalloprotease (MMP9), and a transcription factor (FOXP3).

SMAD5 amplification was associated with increased CDH2 expression; 36 other 

amplifications were associated with decreased CDH2 expression. Similarly, HMGA2 
expression was increased with most amplification events but decreased where SMAD5 was 

amplified (Figure 2H). Another exception was reduced HMGA2 expression in samples with 

amplifications of SMAD4 or TGFBR2, whereas HMGA2 expression increased in samples 

with mutations in SMAD4 or TGFBR2 (Figure 2G).

Hotspot mutations in genes associated with TGF-β superfamily pathways

We focused on sites in the 43 genes that were mutated in at least 9 samples across the 33 

tumor types (see Figure S3 for hotspot mutations identified with in at least 5 samples). The 

analysis identified 6genes with hotspot mutations, representing all levels of the TGF-β 
pathway (Figure 3A–E). BMP5 and TGFBR2 included previously unreported hotspots.

Hotspot mutations of BMP5 occurred in 13 cases across 7 cancers. BMP5 is synthesized as a 

proprotein, and an R321 stop-codon mutation (4 cases) (Figure 3A) results in loss of the 

functional, secreted ligand. An R321 to Q (9 cases) mutation may impact cleavage of the 

protein to the mature, secreted form. Frameshift mutations in ACVR2A at the K437 hotspot 

generate the variants K437Efs*19 (7 cases in 2 cancers) and K437Rfs*5 (69 cases in 5 

cancers), resulting in premature stop codons and deletion of two C-terminal helices of the 4-

helix bundle (Figure 3A, 3D), which likely disrupt ACV signaling (Rossi et al., 2005; Yosef 

et al., 2017). Type I receptors ACVR1B and ACVR1C have similar C-terminal frameshift 

mutation hotspots at R485 (6 cases) and R441 (5 cases), respectively (Figure S3). TGFBR2 

R553 to C or H mutations and BMPR2 N583 frameshift might disrupt interaction with other 

receptor subunits or binding proteins (Chan et al., 2007). Hotspots in SMAD4 at R361 and 

D537 (two conserved sites in R-Smads) (Shi et al., 1997) normally stabilize homo- or 

heterotrimer oligomerization (Figure 3C) (Fleming et al., 2013; Shi et al., 1997). Those 

mutations could have widespread effects, because SMAD4 is a binding partner for all Smad-

dependent transcriptional regulation. Mutation at either R361 or D537 in SMAD4 correlates 

with metastasis and decreased survival in colon cancer (Sarshekeh et al., 2017). SMAD2 

exhibited 13 truncating mutations at S464 (Figure 3A). S464 is part of the essential 

phosphorylation motif SSXS (Ser464-Ser465-X466-S467) of R-SMADs (Fleming et al., 

Korkut et al. Page 7

Cell Syst. Author manuscript; available in PMC 2019 February 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2013) (Figure 3E). S464 is necessary for proper positioning of SMAD2 for phosphorylation 

at S465 and S467, both of which mediate interaction of SMAD2 with SMAD4 (Macias et 

al., 2015) and dissociation of SMAD2 from TGFBR1 and the adaptor SARA (encoded by 

ZFYVE9). Hence, S464 mutations may prevent dissociation of SMAD2 from the receptor-

adaptor complex, blocking the downstream signal (Figure 3E).

GI cancers are enriched with TGF-β pathway hotspot mutations

Of 176 mutations at hotspot sites across 6 genes, 115 (65%) were in cancers of the GI 

system (Figure S3): 60 in ESCA, 51 in COAD, 3 in PAAD, and 1 in LIHC. The connection 

to GI cancers is also supported by other studies (Park et al., 2010; Sarshekeh et al., 2017). 

We found the reported SMAD4 and BMPR2 hotspots (Park et al., 2010; Sarshekeh et al., 

2017) and identified hotspots in BMP5 and TGFBR2.

To determine if GI cancers possess a unique signature of altered TGF-β pathway activity, we 

compared changes in the expression of 50 downstream genes related to mutations at hotspot 

sites (Figure 3B). The expression signatures associated with the BMP5 hotspot clustered 

separately from those associated with other hotspots. Notably, CDH2 exhibited an overall 

reduction in expression except in the context of the BMP5 hotspot mutation. A cluster of 

genes (HMGA2, TERT, MMP9, COL1A1/1A2/3A1, MYC, FOXP3, and IL6) exhibited 

increased expression in the GI cancers containing at least one of the 6 hotspot mutations. 

Unique to the GI tumors was a cluster of genes that included strongly reduced expression of 

CDH2, ALDH1A1, and IGF2, and a cluster with moderately reduced expression of 

SERPINE1.

When compared with the PanCancer cohort, the GI subset showed an association of hotspot 

mutations with less expression of downstream genes (Figure 3B). That trend was generally 

characterized by blunted upregulation of the upregulated genes (HMGA2, collagen encoding 

genes, FOXP3, MMP9, MYC) and greater downregulation of the downregulated genes 

(ALDH1A1 and CDH2).

Transcriptional signatures of TGF-β pathway alterations in GI cancers

Guided by the enrichment of hotspot mutations in GI cancers, we tested for enrichment of 

TGF-β pathway point mutations in GI cancers. Non-silent mutations were significantly more 

common in GI cancers (596 of 1,511) than in the non-GI cancers (1,606 of 7,614). Deep 

deletions and amplifications were also significantly enriched in GI cancers. COAD, READ, 

and STAD had recurrent aberrations in genes at each level of the pathway (ligands, 

receptors, and SMADs) and all axes (TGFBR, BMPR, ACVR), whereas PAAD had frequent 

mutations in only SMAD4 and TGFBR2 (Figure S4A).

To compare the TGF-β pathway transcriptional signatures in GI vs. other cancers, we 

calculated the target gene expression signatures associated with TGF-β pathway mutations 

in both groups (Figure 4A–B). The upregulation of TERT and HMGA2 was less substantial 

in GI cancers than in the PanCancer cohort. Whereas IL6 mRNA was increased in most non-

GI cancers with TGF-β pathway mutations, IL6 upregulation was significantly greater in GI 

cancers than non-GI cancers (Figure S4B), and within GI cancers IL6 expression was greater 

in samples with alterations in the TGF-β pathway genes than those without alterations in the 
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TGF-β pathway genes. Notably, in non-GI cancers associated with GDF1 mutations, IL6 
mRNA expression was markedly decreased, suggesting that GDF1 may play different roles 

in GI and non-GI cancers. A similar analysis revealed a profound difference in FOS 
expression between GI and non-GI cancers (Figure S4C). In GI cancers, most TGF-β 
pathway gene mutations were associated with increased FOS expression; exceptions were 

TGFBRAP1, SMAD7, SMAD5, GDF1, BMP5, and ACVRL1. In non-GI cancers, only 

mutations in TGFBR2 were associated with increased FOS expression; all other TGF-β 
pathway gene mutations were associated with decreased FOS expression.

To compare the transcriptional output resulting from mutations in GI and non-GI cancers, 

we calculated differences in expression of the 50 target genes associated with mutations in 

the 43 genes (Figure 4C). The analysis revealed a shift toward repression of transcriptional 

output in GI cancers with the most significant shifts occurring with mutations in ACVR2B, 

INHBA, SMAD3, or GDF2. In GI cancers, mutations in GDF1 were associated with 

significantly increased target gene transcription. We also analyzed downregulation in each 

target gene (Figure 4D). Mutations in any of the 43 genes were associated with reduced 

mRNA expression in GI cancers compared with non-GI cancers for most target genes with 

the largest reductions found for HMGA2 and TERT. Compared to non-GI cancers, GI 

cancers had fewer genes with increased expression resulting from pathway mutations. In GI 

cancers, mutations in any of the 43 genes were associated with a significantly increased 

expression of FOS, IL6, ZEB2, and ZEB1 compared to expression changes of the same 

genes resulting from pathway mutations in non-GI cancers.

Finally, we probed for associations between transcriptional output and TGF-β pathway gene 

alterations for all cancers and the GI and non-GI subsets (Figure 4E). The top 20 and bottom 

20 genes that were up- or downregulated in each case differed. However, all three cases 

included genes associated with metastasis, cell adhesion, and EMT. Members of the 

CEACAM family, which consists of proteins involved in pathogen sensing, innate immunity, 

and metastasis (Chen et al., 2016a; Vitenshtein et al., 2016), were consistently upregulated. 

TMPRSS4 and ADAMTS19, encoding cell surface proteases, were upregulated in the 

PanCancer and GI cohorts, respectively. Genes that encode immune-related proteins were 

also upregulated: PRAME in the PanCancer cohort and GPR31 in GI tumors.

Gene expression levels quantify TGF-β signaling pathway activity

To explore TGF-β signaling pathway variation across the 33 cancers in the PanCancer 

cohort, we computed a “pathway activity score” based on mRNA expression of the 43 genes. 

We verified that none of the genes were universally inhibitory in every cancer context. We 

validated the pathway score by correlating it with the median expression of the 50 TGF-β 
target genes and, separately, with the median expression of 50 random genes (Figure S5) 

(see STAR Methods).

Patterns emerged when we grouped activity scores by tumor type (Figure 5A). The two 

hematologic TCGA cancers, DLBC and LAML, had the lowest median pathway activity 

scores. Uterine carcinosarcoma (UCS) had the highest median pathway activity score 

(Figure 5A). Five cancers — LUSC, CESC, MESO, TGCT, and KIRC — had significant 
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differences in overall survival between patients with high and low pathway activity (Figure 

S6).

Supervised clustering of the 43 genes revealed that INHBC and INHBE were highly 

expressed in LIHC, whereas BMP3 and BMP5 were highly expressed in LUAD (Figure 5B). 

GDF1 expression was high in brain cancers (GBM and LGG), rare cancers (UCS and 

PCPG), and in SKCM. NODAL expression was high in TGCT. The heat map indicates the 

wide range of expression for the 43 genes in different tumor contexts and reveals potential 

targets for further study.

Unsupervised clustering of the 43 genes produced 11 clusters (Figure S7 and Table S5) that 

were dominated by cancer type. Cluster C3 was enriched with LAML, LUSC, CESC, 

squamous ESCA, HNSC, and squamous BLCA. Cluster C3 was characterized by high 

expression of BMP3, BMP7, SMAD3, and ACVR1C, coupled with low expression of 

BMPR1B, suggesting that BMPR1B signaling may be tumor suppressive, whereas signals 

involving BMP3, BMP7, SMAD3, and ACVR1C may be tumor promoting in cancers 

enriched in that cluster. Cluster C4 was enriched with GI cancers ESCA, STAD, COAD, and 

READ. Cluster C4 was characterized by high expression of ACVR1C, BMP4, BMP5, and 

INHBA, coupled with low expression of INHA, BMPR1B, GDF1, INHBB, TGFB2, and 

TGFB3. Those observations suggest tumor-promoting roles for the highly expressed set of 

genes and tumor-suppressive roles for the set with low expression in cancer types enriched 

in that cluster.

Cluster C7, which contained most of the breast cancer samples, included two subclusters 

that did not correspond to clinical breast cancer subtypes (luminal A, luminal B, HER2, 

basal, or normal-like). Instead, the subclusters separated mainly on the basis of low and high 

levels of BMPR1B expression. Thus, BMPR1B signaling may have a tumor-promoting role 

and could be a viable therapeutic target for at least a subset of breast cancers.

Figure 6A shows a clustered heat map of pairwise Pearson’s correlations between expression 

of the 43 TGF-β pathway genes and expression of the 50 downstream target genes. 

Surprisingly, expression of none of the 43 TGF-β pathway genes was strongly negatively 

correlated with the activity score, including expression of the pathway inhibitors SMAD6/7. 

We attribute this observation to co-occurring amplifications or deletions of SMAD7 and 

SMAD2 and co-occurring amplifications of SMAD6 and SMAD3 (Figure 1B). Expression 

of ligand-encoding INHBE had the strongest negative correlation with pathway activity. 

Within the downstream targets, expression of TERT and FOXK2 had the strongest negative 

correlations with activity score, suggesting that their suppression may contribute to the 

pathway’s tumor-suppressor role. By contrast, expression of the EMT genes ZEB1 and 

ZEB2 positively correlated with pathway score, providing a possible mechanism for the 

tumor-promoting effects of the pathway.

TGF-β pathway activity correlates with activity of other cancer-related pathways

With proteomic data and a published method (Akbani et al., 2014), we computed activity 

scores for 10 other oncogenic pathways: apoptosis, breast reactive, cell cycle, hormone 

receptor, hormone signaling, PI3K/AKT, RAS/MAPK, RTK, TSC/mTOR, and DNA damage 
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response (DDR). We assigned activity scores for EMT and leukocyte infiltration (an index of 

immune function) using mRNA and DNA methylation data, respectively (Cancer Genome 

Atlas Research Network, 2017). A clustered heat map representation (Figure 6B) shows that 

the PanCancer cohort exhibited a negative correlation between the TGF-β superfamily 

pathway score and the activity scores for the cell cycle pathway and apoptosis pathway. In 

contrast, positive correlations occurred for the EMT pathway, breast reactive pathway, RAS/

MAPK, and the RTK pathway. Table S6 shows correlations within individual tumor types 

and the EMT and cell cycle pathways.

Downstream target genes HMGA2, COL1A1/COL1A2/COL3A1, and MMP9 are associated 
with patient survival

We analyzed the combined impact of TGF-β target gene expression and the 43 core gene 

alterations on patient survival across the PanCancer cohort. We compared the survival of 

patients with 3 different cancer profiles: those with high expression of HMGA2 and 

alterations in any one of the 43 TGF-β pathway genes (Figure 6C, High HMGA2/TGF-β 
mutant), those with high HMGA2 expression and no alterations in any of the 43 genes 

(Figure 6C, High HMGA2/TGF-β wild-type), and those with low expression of HMGA2 
without considering alterations in TGF-β pathway genes (Figure 6C, Low HMGA2 

expression). Patients with low HMGA2 expression had the best outcome, followed by 

patients with high expression of HMGA2 and no mutations in the 43 genes. A similar trend 

was observed for genes encoding MMP9, collagens, and to a lesser extent for FOXP3. TERT 
overexpression had no impact on survival. We saw the opposite for cancers with 

downregulated CDH2; the worst outcome was associated with low CDH2 expression and 

mutations in 43 genes (Figure S6B). Thus, the expression profile of specific target genes and 

alterations in the TGF-β superfamily genes cooperated to increase tumor aggressiveness. 

The impact on survival was most significant for overexpression of collagen-encoding genes, 

HMGA2, and MMP9 (Figure 6C–E). Because of the association of collagen overexpression 

and alterations in TGF-β pathway genes with poor survival, we hypothesize that altered 

signaling through the TGF-β superfamily pathways remodels the extracellular matrix to 

drive metastasis in multiple cancer contexts.

We analyzed survival in GI and non-GI cancers (Figure S6D). In the GI cohort, only ZEB2 
combined with TGF-β pathway gene alteration yielded a significant difference, with low 

ZEB2 expression corresponding to a survival benefit. In non-GI patients, high expression of 

the TGF-β pathway target genes IL6, HMGA2, ZEB2, and FOS was associated with reduced 

survival particularly when combined with TGF-β pathway mutations. Thus, although TGF-β 
pathway mutations may not occur as commonly in non-GI cancers, they may be important 

contributors to mortality.

Epigenetics and miRNAs modulate TGF-β pathway activity

To explore regulation of TGF-β pathway activity, we evaluated DNA methylation (Table S6) 

and microRNA expression (Table S7), both processes are associated with cancer (Dawson 

and Kouzarides, 2012; Jones and Baylin, 2007; Shen and Laird, 2013). Methylation levels 

across the 41 genes for each sample grouped by tumor type revealed a high variability 

(Figure 7A). Despite this variability, when ordered by TGF-β pathway activity, DLBCs with 
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the lowest TGF-β pathway activity score had the highest median and range of DNA 

methylation scores, and LAML with low pathway activity had a low median DNA 

methylation score (Figure 7A). Hence, epigenetic silencing appeared to contribute to low 

pathway activity in DLBC but not LAML. UCS with the highest TGF-β pathway activity 

score had a low median methylation score, suggesting that other mechanisms contribute to 

the differences in activity scores.

We clustered DNA methylation levels (supervised by cancer type) (Figure 7B) and 

compared the results with supervised clustering of the expression of the 43 TGF-β pathway 

genes (Figure 5B). The epigenetic cluster analysis divided the genes into two main groups: 

those with little or no DNA methylation in any cancer and those with DNA methylation in 

some or all cancers. The cluster with high DNA methylation scores included SMAD9, 

SPTBN1, ACVRL1, GDF2, INHBC, INHBE, INHBA, and TGFB3. The presence of ACV 

ligands suggested that those ligands are tumor suppressive in many cancers. Adaptor 

SPTBN1 had a high DNA methylation score in all cancer samples, supporting a tumor-

suppressive role.

We focused on miRNAs that, according to miRBase (Kozomara and Griffiths-Jones, 2014), 

are associated with the 43 TGF-β pathway genes. We selected the top 32 miRNAs anti-

correlated with transcript abundance (Table S7). Those miRNAs exhibited variable 

expression across the 32 tumor types (Figure 7C, GBM had no miRNA data). LAML with 

low TGF-β pathway activity had the highest level of miRNA expression, suggesting that 

miRNAs regulate pathway activity in this blood cancer.

We predicted that 15 of the 43 genes were targets of at least 1 miRNA; BMPR2, TGFBR2, 

and SMAD4 were each targeted by 5 or more miRNAs (Figure 7D). An miRNA/mRNA 

topology map for the GI cancers (COAD, READ, STAD, ESCA, LIHC, and PAAD) (Figure 

S7B) revealed that BMP3 was targeted only in GI cancers, and SMAD4 was targeted only in 

the PanCancer cohort, suggesting that miRNA/mRNA topologies depend on tumor context.

Cluster analysis (supervised by cancer type) yielded an interesting pattern for miRNA 

92a-3p, which is predicted to target the 3 core genes BMPR2, TGFBR2, and SMAD7. 

miRNA 92a-3p was overexpressed in breast, ovarian, liver, and head and neck cancers. We 

also identified BMPR2 and TGFBR2 as genes with hotspot sites of mutations that were 

common in STAD and COAD. The cancers with high frequencies of hotspot mutations in 

those two genes did not have high expression of miRNA 92a-3p, suggesting that there is 

little selective pressure for both mutation and downregulation by that miRNA. To examine 

the contribution of mutations, amplifications, deletions, DNA methylation and miRNAs to 

the pathway activity score across tumor types, we computed Pearson’s correlations between 

the pathway activity score and (i) levels of DNA methylation or miRNA expression and (ii) 

percentages of mutations or CNVs in each tumor type and plotted the results in order of 

increasing pathway activity score (Figure 7F). The results suggested that miRNAs play a 

dominant role in LAML, DLBC, UVM, and THYM, all of which had low TGF-β pathway 

activity scores. DNA methylation was dominant in DLBC, STAD, BRCA, and COAD. 

Amplifications positively correlated with activity score and played a dominant role in UCS, 

SARC, ESCA, CHOL, and OV. However, OV has a high background CNV burden, making 
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it difficult to distinguish functionally important effects from passenger alterations. Overall, 

deletions exhibited a low positive correlation with pathway activity score, and mutations 

showed the weakest correlation.

DISCUSSION

Because TGF-β superfamily signaling plays context-dependent roles as both tumor 

suppressor and tumor promoter, TGF-β biological function is notably ambiguous. However, 

given its prominent role in cancer, understanding its function in diverse settings will be 

necessary to design therapy for tumors with aberrant TGF-β signaling. Hence, this study 

focused on elucidating salient characteristics of TGF-β-associated genes across a large 

cohort of different types of cancers. Some of the key findings of the study were that (i) 39% 

of the cancers carried TGF-β pathway gene alterations; (ii) the genomic alterations appeared 

to affect expression of metastatic and EMT genes; (iii) six hotspot mutations were identified 

in six genes; (iv) the pathway was most frequently aberrant in GI cancers, which exhibited 

115 of the 176 hotspot mutations identified; (iv) high expression of downstream target genes 

coupled with mutations in the TGF-β pathway genes was associated with poor outcome, 

suggesting a net tumor-promoting role of the superfamily across the PanCancer cohort; (v) 

apparent gene silencing by DNA methylation and deletion of TGF-β pathway genes were 

observed most frequently in DLBC, whereas miRNA silencing was seen most often in 

LAML. DLBC and LAML also had the lowest TGF-β pathway activity scores, suggesting a 

possible tumor-suppressive role of the TGF-β superfamily in hematologic cancers.

Although 39% of the cancers had genomic alterations in at least one of the TGF-β pathway 

genes, GI cancers were particularly enriched for them. GI cancers were most influenced by 

recurrent hotspot mutations in 6 genes, SMAD4, SMAD2, BMPR2, BMP5, TGFBR2, and 

ACVR2A. The hotspot mutations in BMP5 and TGFBR2 had not been identified previously, 

and their function in GI cancer should be explored.

UCS showed the highest TGF-β superfamily pathway activity. High activity was associated 

with amplifications or low DNA methylation. In general, epigenetics appeared to play a 

strong role in regulating the activity of the TGF-β superfamily pathways in DLBC, COAD, 

BRCA, STAD, and LUAD, whereas miRNAs played a strong role in LAML, UVM, and 

THYM. Such cancer type-dependent differences in regulation of the TGF-β pathway could 

prove important to the development of therapies that target the pathway.

TGF-β signaling pathway activity correlated positively with other cancer-relevant pathways, 

including EMT, breast reactive, RAS/MAPK, and RTK pathways. Conversely, activity of the 

TGF-β pathways was anti-correlated with the cell cycle and apoptosis pathways. Overall, 

this study provides a molecular portrait of genetics, epigenetics, and miRNA-mediated 

regulation of signaling mediated by the TGF-β superfamily. We expect that this body of 

organized data and information will be mined by other researchers over time to formulate, 

test, or validate a variety of additional hypotheses that have not yet come into focus.
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STAR METHODS

KEY RESOURCES TABLE

See attached file

CONTACT FOR RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Rehan Akbani (rakbani@mdanderson.org).

SUBJECT DETAILS

Human data, tumor data and TGF-β pathway gene selection—Molecular data 

were obtained from patients that had not received prior treatment for their disease (ablation, 

chemotherapy, or radiation therapy) and had provided informed consent as part of The 

Cancer Genome Atlas Project (TCGA). Local Institutional Review Boards (IRBs) at the 

tissue source sites reviewed protocols to approve submission of cases.

We selected samples from 33 TCGA projects to analyze the genomic, epigenomic and 

transcriptomic alterations in the TGF-β pathway.

TCGA Project Management collected necessary human subjects documentation to ensure 

the project complies with 45-CFR-46 (the “Common Rule”). The program has obtained 

documentation from every contributing clinical site to verify that IRB approval has been 

obtained to participate in TCGA. Such documented approval may include one or more of the 

following:

• An IRB-approved protocol with Informed Consent specific to TCGA or a 

substantially similar program. In the latter case, if the protocol was not TCGA-

specific, the clinical site PI provided a further finding from the IRB that the 

already-approved protocol is sufficient to participate in TCGA.

• A TCGA-specific IRB waiver has been granted.

• A TCGA-specific letter that the IRB considers one of the exemptions in 45-

CFR-46 applicable. The two most common exemptions cited were that the 

research falls under 46.102(f)(2) or 46.101(b)(4). Both exempt requirements for 

informed consent, because the received data and material do not contain directly 

identifiable private information.

• A TCGA-specific letter that the IRB does not consider the use of these data and 

materials to be human subjects research. This was most common for collections 

in which the donors were deceased.

METHOD DETAILS

Sample processing

Cases were staged according to the American Joint Committee on Cancer (AJCC). Each 

frozen primary tumor specimen had a companion normal tissue specimen (blood or blood 

components, including DNA extracted at the tissue source site). Adjacent tissue was 
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submitted for some cases. Specimens were shipped overnight using a cryoport that 

maintained an average temperature of less than −180°C.

RNA and DNA were extracted from tumor and adjacent normal tissue specimens using a 

modification of the DNA/RNA AllPrep kit (Qiagen). The flow-through from the Qiagen 

DNA column was processed using a mirVana miRNA Isolation Kit (Ambion). This latter 

step generated RNA preparations that included RNA <200 nt suitable for miRNA analysis. 

DNA was extracted from blood using the QiaAmp blood midi kit (Qiagen). Each specimen 

was quantified by measuring Abs260 with a UV spectrophotometer or by PicoGreen assay. 

DNA specimens were resolved by 1% agarose gel electrophoresis to confirm high molecular 

weight fragments. A custom Sequenom SNP panel or the AmpFISTR Identifier (Applied 

Biosystems) was utilized to verify tumor DNA and germline DNA were derived from the 

same patient. Five hundred nanograms of each tumor and normal DNA were sent to Qiagen 

for REPLI-g whole genome amplification using a 100 μg reaction scale. Only specimens 

yielding a minimum of 6.9 μg of tumor DNA, 5.15 μg RNA, and 4.9 μg of germline DNA 

were included in this study. RNA was analyzed via the RNA6000 nano assay (Agilent) for 

determination of an RNA Integrity Number (RIN), and only the cases with RIN >7.0 were 

included in this study. Reasons for rejection are described at https://tcga-data.nci.nih.gov/

datareports.

Selection of 43 core genes associated with the TGF-β superfamily

We selected the list of core TGF-β superfamily genes used in the paper by searching for the 

keyword “TGF-β” in 4 databases: (i) BIOCARTA_TGFB_PATHWAY from GSEA (http://

software.broadinstitute.org/gsea/msigdb/cards/BIOCARTA_TGFB_PATHWAY), (ii) 

KEGG_TGF_BETA_SIGNALING_PATHWAY from GSEA (http://

software.broadinstitute.org/gsea/msigdb/cards/

KEGG_TGF_BETA_SIGNALING_PATHWAY), (iii) GO_0007179 full gene set from 

BioMart, and (iv) subset of GO_0007179 (filtered by “experimental evidence”) from 

AmiGo. The union of the resulting lists comprised 181 genes. We then filtered the list down 

to 43 genes using the following three criteria. (i) Based on the databases’ annotations and 

prior literature, the genes were divided into two categories: those belonging to the signaling 

cascades and those that encoded targets of the signaling cascades. We retained genes in the 

former category. (ii) We then performed extensive literature searches and kept only those 

genes that satisfied any of the following conditions: (a) the gene had previously been 

implicated in cancer, or (b) the gene was involved in direct binding to and regulation of 

Smad function, or (c) the gene was phenotypically associated with the TGF-β superfamily, 

where mutations or deletions of the gene had resulted in phenotypes similar to those from 

loss of function of the TGF-β superfamily pathways. (iii) Finally, we discussed the complete 

list of 181 genes and the results of our literature searches with subject matter experts in the 

TCGA consortium and, after recommendations, reached a consensus for manual curation.

That selection process resulted in 43 “core” genes, including 2 genes encoding adaptor 

proteins (SPTNB1 and ZFYVE9) that are important in TGF-β signaling and genetically 

associated by phenotype (Table S1A). However, those two genes are not exclusive to the 

TGF-β superfamily and they play roles in other cellular processes as well. The other 41 core 
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genes encode components of each level of the “canonical” TGF-β signaling pathway that 

activates Smads to regulate gene expression (Figure 1A). Other genes that are not members 

of the canonical pathway (the “noncanonical” TGF-β signaling pathway) are not included in 

the set of 43 genes, but noncanonical signaling is represented in Figure S1A for the sake of 

completeness. The 43 genes used in the study encode 3 ligands in the TGF-β subfamily, 8 

ligands in the BMP (bone morphogenetic protein) subfamily, and 9 ligands in the ACV 

(activin) subfamily; 3 receptors for the TGF-β subfamily and 1 interacting protein 

(TGFBRAP1), 3 receptors for the BMP family, and 6 receptors for the ACV family; and 8 

Smads (receptor-activated R-Smads, inhibitor I-Smads, and the common Co-Smad). The list 

of 43 genes has been made available at cBioPortal (http://www.cbioportal.org) under the 

category, “General: TGF-β superfamily,” so users can explore them further and/or add their 

own selected genes to study alongside the gene set we used.

Similarly, 50 downstream genes were selected to study transcriptional output of TGF-β 
pathway activity. These genes included proteins that function in association with TGF-β 
pathways (2), proteins that regulate the extracellular matrix (2), extracellular matrix proteins 

(3), transcription factors (13), apoptosis regulators (9), EMT regulators (10), fibrosis 

inducers (4), tumor promoters (4), E3 ligases (2), and stemness markers (1) (Table S1B).

QUANTIFICATION AND STATISTICAL ANALYSIS

Mitigation of batch effects and systematic biases (Figs. 2G–I, 3B, 4, 5, 6, 7)

We investigated batch effects first within individual disease types, and then across tumor 

types. Specifically, we investigated the effects of multiple confounding factors, including 

differences in: (i) batches in which the samples were processed, (ii) tissue source sites from 

where the samples were obtained, (iii) the date on which the samples were shipped to the 

data generation centers, (iv) the instrument on which the samples were processed, (v) the 

centers that generated the data. The results from individual tumor type analyses can be found 

online at: (http://bioinformatics.mdanderson.org/tcgambatch/). We assessed the magnitude 

of batch effects using the following algorithms, (i) clustered heat maps, (ii) PCA plots, and 

(iii) box plots. Whenever batch effects were observed, we corrected them using (i) ComBat 

(Johnson et al., 2007), or an enhanced version of it, (ii) Replicates Based Normalization 

(RBN) (Akbani et al., 2014), or (iii) removal of bad gene/probe data. Using those methods, 

we corrected the mRNA, miRNA, DNA methylation and protein expression data. The 

mutations and copy number data were already discretized and corrected for background 

loads.

Differences in tumor purity were adjusted for in genomic and epigenomic data. Tumor 

purity differences in the expression platforms, however, was completely confounded with 

tumor type differences. More than 5 normal samples were available for only 15 of the 33 

tumor types, so application of deconvolution algorithms to the entire cohort was not 

possible. We acknowledge that differences in tumor purity is a limitation of TCGA 

expression data, however, TCGA had ensured that all their samples had high tumor content 

in the sample acquisition phase. The mutation calls used in all of our analyses were somatic 

mutations only, not germline, so tumor purity differences had minimal impact on that data 

type. Copy-number alterations (CNA) were assessed as deviations in the tumor sample from 
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the paired normal tissue sample, so they only reflected somatic changes. However, the 

amplitude of CNA signals can be suppressed in tumor samples with normal cell 

contamination. We thus utilized ABSOLUTE-derived tumor purity and ploidy estimates for 

In Silico Admixture Removal (ISAR) of the segmentation data (Zack et al., 2013) in order to 

correct for any signal dampening that may have occurred before proceeding to analyze 

somatic copy number alterations. To minimize the influence of normal tissue contamination 

and leukocytes infiltration in DNA methylation data, we chose probes not methylated in all 

relevant normal tissues and blood cells, to get rid of methylation signals from possible 

confounding factors.

DNA sequencing data (Figs. 1B, 2, 3, 4, 6C–E, 7F)

Exome capture was performed using Agilent SureSelect Human All Exon 50 Mb according 

to the manufacturer’s instructions. Briefly, 0.5–3 micrograms of DNA from each sample 

were used to prepare the sequencing library through shearing of the DNA followed by 

ligation of sequencing adaptors. All whole exome (WES) and whole genome (WGS) 

sequencing was performed on the Illumina HiSeq platform. Paired-end sequencing (2 × 101 

bp for WGS and 2 × 76 bp for WE) was carried out using HiSeq sequencing instruments; the 

resulting data was analyzed with the current Illumina pipeline. Basic alignment and 

sequence QC was done on the Picard and Firehose pipelines at the Broad Institute. 

Sequencing data were processed using two consecutive pipelines:

1. Sequencing data processing pipeline (“Picard pipeline”). Picard (http://

picard.sourceforge.net/) uses the reads and qualities produced by the Illumina 

software for all lanes and libraries generated for a single sample (either tumor or 

normal) and produces a single BAM file (http://samtools.sourceforge.net/

SAM1.pdf) representing the sample. The final BAM file stores all reads and 

calibrated qualities along with their alignments to the genome.

2. Cancer genome analysis pipeline (“Firehose pipeline”). Firehose (http://

www.broadinstitute.org/cancer/cga/Firehose) takes the BAM files for the tumor 

and patient- matched normal samples and performs analyses including quality 

control, local realignment, mutation calling, small insertion and deletion 

identification, rearrangement detection, coverage calculations and others as 

described briefly below. The pipeline represents a set of tools for analyzing 

massively parallel sequencing data for both tumor DNA samples and their 

patient-matched normal DNA samples. Firehose uses GenePattern (Reich et al., 

2006) as its execution engine for pipelines and modules based on input files 

specified by Firehose. The pipeline contains the following steps:

a. Quality control. This step confirms identity of individual tumor and 

normal to avoid mix-ups between tumor and normal data for the same 

individual.

b. Local realignment of reads. This step realigns reads at sites that 

potentially harbor small insertions or deletions in either the tumor or the 

matched normal, to decrease the number of false positive single 

nucleotide variations caused by misaligned reads.
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c. Identification of somatic single nucleotide variations (SSNVs). This 

step detects candidate SSNVs using a statistical analysis of the bases 

and qualities in the tumor and normal BAMs, using Mutect (Cibulskis 

et al., 2013).

d. Identification of somatic small insertions and deletions. In this step, 

putative somatic events were first identified within the tumor BAM file 

and then filtered out using the corresponding normal data, using 

Indellocator (Ratan et al., 2015).

Mutation analysis (Figs. 1B, 2, 3, 4, 7F, S1C–D)

The non-silent mutation frequencies for each gene in the individual cancer and PanCancer 

settings are determined through mining the MC3 TCGA MAF file (covering n=9125 patients 

of the PanCancer pathway analysis consortium manuscript freeze sample set) from 33 

cancertypes. To include only the non-silent mutations, the variant classes, “Silent,” “Intron,” 

“3’UTR,” “3’Flank,” “5’UTR,” “5’Flank,” “IGR,” and “RNA” are excluded from the 

analyses. The oncoprints are generated using the cBioPortal oncoprinter suite. Each 

oncoprint visualizes and quantifies the somatic mutation and copy number events in 9,125 

patients with 33 cancer types for each gene family in the pathway. The hotspot mutations are 

extracted from MC3 MAF file first programmatically for any hotspot site with more than 

nine counts and validated through a systematic mining in the cBioPortal. The hotpots are 

visualized using the mutationMapper tool in cBioPortal. For ACVR2A and SMAD4 hotspot 

mutations are mapped onto the respective protein structures (pdb IDs: 4ASX for ACVR2A 

and 1DD1 for SMAD4) using the UCSF chimera software. The driver mutations in the 

pathway are detected using MutSigCV for all cancer types in the PanCancer set. Although 

MutSigCV is a well-established method for detecting driver genomic aberrations in cancer, 

it does have the following limitations. MutSigCV is insensitive to some genomic events, 

such as the co-occurrence of mutations in genomic proximity and or mutations that are 

associated with transcription-coupled repair. MutSigCV identifies genomic heterogeneity 

across patient cohorts. Another challenge that cannot be addressed by MutSigCV is 

intratumor heterogeneity and detection of driver mutations within subclones of a single 

tumor. Finally, success of MutSigCV depends on the statistical properties and size of the 

patient population under study as the algorithm fails to classify rare variants seen within 

small to mid-sized patient cohorts. Differential mRNA expression of 50 TGF-β pathway 

target genes is also quantified in relation to 6 hotspot mutations in the PanCancer cohort and 

GI cancers (Figure 3B). Rows and columns were clustered using the complete-linkage 

algorithm with Euclidean distance, and dendrogram branches were ordered to minimize the 

differences between the cube of the mean of adjacent rows and columns.

Copy Number Analysis (Figs. 1B, 2, 7F, S1E)

Tumor sample DNA was extracted and hybridized to Affymetrix SNP6.0 arrays by the 

Genome Analysis Platform at the Broad Institute as previously described (McCarroll et al., 

2008). The calculated array probe intensities were normalized and combined using 

SNPFileCreator (Li and Hung Wong, 2001) and then processed with Birdseed (Korn et al., 

2008) to yield preliminary copy-number estimates. Segmented relative copy-number profiles 
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were produced by refining and partitioning the preliminary copy-number estimates with 

tangent normalization (Tabak et al., unpublished) and Circular Binary Segmentation (Olshen 

et al., 2004). The segmented relative copy-number profiles for 9,125 samples were selected 

for further analysis. For each disease type, GISTIC2.0 (Mermel et al., 2011) was ran on the 

corresponding copy-number profiles to identify regions undergoing significant focal-level 

and broad-level somatic copy-number aberrations and to obtain gene-level estimates of 

copy-number. The significant genomic amplification lesions and genomic deletion lesions 

identified by GISTIC2.0 were examined to determine if any TGF-β network genes were 

being targeted as potential oncogenic or anti-oncogenic drivers, and the frequency of 

amplifications and deletions across the TGF-β network genes were computed from the gene-

level thresholded copy-number estimates (−2, −1, 0, +1, +2). Genes assigned positive values 

of +1 and +2 were considered amplified, with +1 representing low-level amplification events 

and +2 representing high-level amplification events, and genes with negative values of −1 

and −2 were considered deleted, with −1 representing shallow deletion events and −2 

representing deep deletion events.

GISTIC2.0 is a tool for detecting independently targeted regions of SCNA, based on data-

driven estimation of the background rates of SCNA. GISTIC2.0 used data from SNP arrays, 

thus the successful application of GISTIC2.0 to detect low frequency differences depends on 

the resolution of array or sequencing platform and the population size.

GISTIC identifies somatic alterations that occur significantly more frequently than those 

predicted to occur at random, based on the background rate of copy number changes. The 

issue with this and all significance methods is that the ability to detect rare but meaningful 

driver events depends on the frequencies of their occurrence and on the number of the 

tumors profiled. Tumor types for which few tumors have been profiled and that have 

infrequently occurring copy number alterations, GISTIC may fail to identify rare but 

important somatic events. As more copy number profiles become available through large-

scale tumor sequencing efforts, the ability to detect these rare but significant events will 

increase.

Pathway analysis (Figs. 5, 6, 7, S4A–B)

A pathway topology is generated to link the 43 core TGF-β pathways based on database 

searches in KEGG and Pathway Commons, expert curation and literature searches. The 

pathway diagram is visualized and optimized for layout using the Pathway Mapper program. 

The genomic alteration frequencies for copy number gains or losses and mutations are 

extracted from the cBioPortal and programmatically form the MC3 MAF file. The 

alterations are mapped to each gene in the pathway diagram. In the GI-focused pathway 

analysis, only genes with >3% alteration for either copy number or mutation alterations are 

included in the pathway diagram to capture only those pathways that are substantially 

altered.

Expression signatures of genomic alterations (Figs. 2G–I, 3B, 4A–B)

The gene expression signatures of TGF-β pathway alterations are analyzed with a clustering 

algorithm. The samples with alterations in each core gene and wild type for all TGF-β 
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pathway genes are extracted from the MC3 MAF file. The transcriptional output is 

quantified using expression of 50 downstream genes. The median fold change of 

transcriptional changes are calculated as the ratio of expression of downstream genes among 

all core pathway gene mutated, amplified and deleted samples to expression levels in TGF-β 
pathway wild type samples. The transcriptional changes in each downstream gene vs each 

altered pathway gene is analyzed and visualized with a twoway hierarchical clustered heat 

map. The hierarchical clustering is performed using a Euclidean distance and complete 

linkage. The shift in the transcriptional output shift in different subsets such as PanCancer 

and GI cancers are visualized with a volcano plot with BH based FDR adjusted P values 

calculated with a Wilcoxon signed rank test (null hypothesis is the transcriptional output 

shift in the two subsets are equal to each other) and log fold change of the fold changes in 

PanCancer vs. GI cancers. The global transcriptional output is calculated by comparing fold 

changes due to TGF-β pathway alterations in all transcripts measured.

Gastrointestinal cancers (Figs. 3B, 4, S3A)

The cancer types, Colon Adenocarcinoma (COAD, N=341), Esophageal carcinoma (ESCA, 

N=169), Liver hepatocellular carcinoma (LIHC, N=348), Pancreatic adenocarcinoma 

(PAAD, N=152), Rectum adenocarcinoma (READ, N=118), Stomach adenocarcinoma 

(STAD, N=383) are included as the gastrointestinal (GI) samples. The enrichment of 

genomic TGF-β pathway genomic alterations in the GI cancers was statistically assessed 

using a one tailed Fisher’s exact test, where the null hypothesis was the odds ratio of 

alterations in GI vs other cancers was not greater than 1. The total number of GI samples 

was 1511. The transcriptional outcome of GI cancers with TGF-β pathway disruptions were 

quantified using the same method and downstream target gene list as we did in the analysis 

of transcriptional output from all cancers. The pathway analysis was performed as in the 

case of the PanCancer cohort for each GI cancer type separately. In the pathway analysis, the 

core genes with that >3% alteration frequency for any of the alteration types (mutations, 

copy number amplification or deletion) were included into the pathway diagrams while the 

rest was eliminated.

mRNA expression analysis and pathway activity scores (Figs. 5, 6, 7)

We corrected for batch effects the TCGA mRNA data available from TCGA’s web portal 

(https://portal.gdc.cancer.gov/). The log2 transformed data were used for all the mRNA 

analysis in this project. Pathway scores were generated by first Z-normalizing the values for 

the 43 core genes across all of the samples. The mean across the 43 genes was then 

calculated for each sample to yield the pathway activity score per sample. Unsupervised 

clustering used 1-Pearson’s correlation for the distance metric with Ward’s linkage. One 

limitation of the pathway activity score is that it gives equal weight to all the genes in the 

pathway, meaning that the abundance of each transcript contributes an equal positive value 

to the score. This is not reflective of the biology, for example, some genes encode inhibitors 

of pathway activity, and some components interact with multiple partners and thus may be 

limiting. Another limitation is that the score uses expression of the genes as a surrogate for 

functional protein abundance, which does not account for loss or gain of function due to 

mutations. Thus, the pathway activity score represents a relative estimate not an absolute 

value of pathway function.
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microRNA analysis (Fig. 7)

We corrected the TCGA miRNA data available from TCGA’s web portal (https://

portal.gdc.cancer.gov/) for batch effects. For 9310 primary tumor samples, we used 

MatrixEQTL v2.1.1 or v2.2 (Shabalin 2012 PMID: 22492648) in R 3.4.1 or 3.4.4 to 

calculate Spearman correlations between batch-corrected, normalized expression data for 

miRNA mature strands and gene-level mRNA data for 43 pathway genes. We then filtered 

by records in miRTarBase v6.0 (Chou 2016 PMID: 26590260), retaining both stronger and 

weaker functional interactions. We further filtered by requiring correlations to have a 

coefficient <−0.25 and an FDR <10−6, which resulted in the retention of 40 miR-mRNA 

pairs involving 32 miRNA mature strands. For heat maps, we removed eight mature strands, 

because they were too weakly expressed (<10 RPM) in all or most tumor types, retaining 24 

mature strands. For the main heat map of batch-corrected miRNA-seq data, we identified 

8930 samples from 32 of 33 tumor types that were from primary tumors, metastatic tumors, 

or blood cancers. These samples were represented in the ordered heat map for messenger 

RNAs from the pathway. We ordered the samples to match the sample order in the 

messenger RNA heat map (i.e. with cancer types ordered to have increasing mean pathway 

scores, and samples within a cancer type ordered to have increasing pathway scores). We 

generated a heat map using the pheatmap v1.0.2 package, in R 3.4.1. We generated a similar 

heat map for the 1507 primary tumors present in LIHC, COAD, READ, STAD, ESCA, and 

PAAD data sets. Box plots were generated using the boxplot() function in R. The data 

consisted of the mean miRNA value across the 24 miRNAs. A limitation of this approach is 

that the results are not based on rigorous and objective thresholds for the metrics (like 

correlations or p values). Rather the thresholds were chosen to yield a reasonably small set 

of the most statistically significant miRNAs that were easy to evaluate and visualize for 

human interpretation. Otherwise, the results would appear like the proverbial “hair ball.”

DNA Methylation profiles (Fig. 7)

We mapped the Illumina methylation array probes to individual genes using the Illumina 

Human Methylation 27k R annotation data package. Forty-one of forty-three TGF-β 
pathway genes had at least one probe mapping to their promoter region. For genes with 

multiple probes, median beta values were used. We then calculated median beta value for 

these 41 genes in each sample, and plotted them using the boxplot function in R, grouped by 

cancer type. For the heat maps, we calculated beta values for each of the 41 genes of TGF-β 
pathway and the 33 tumor types by taking median across all samples for a given tumor. We 

then plotted this data as a heat map using the Clustergram function in Matlab. For the 

analysis of the GI methylation data, probes were mapped to TGF-β pathway genes for GI 

cancers (COAD+READ, STAD, ESCA, PAAD and LIHC). Beta values for each gene-

sample pair was visualized as a heat map using the ComplexHeatmaps package, with TGF-β 
pathway genes clustered using Euclidean distances and Ward’s linkage. Box plots were 

generated using the boxplot() function in R. The data consisted of the mean beta value 

across the 41 genes. This method assumes the mean beta value is reflective of the overall 

methylation level of the entire pathway, which may not always hold and is a limitation of the 

approach.
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Correlations of pathway score vs. bootstrapped genes (Supplementary Fig. S5)

Following the calculation of TGF-β pathway scores, the absolute value of the Pearson 

correlation between gene expression values and pathway scores was calculated for all 20,310 

genes where this calculation was possible. Next, 43 correlation values were sampled with 

replacement from the correlation values of the 43 TGF-β pathway genes a total of 10,000 

times, and each time the median sampled correlation was calculated. The same sampling 

procedure was also performed for the TGF-β target genes, where 50 correlation values were 

sampled with replacement from the correlation values of the 50 target genes, and for all 

genes, where 50 correlation values were sampled with replacement from the correlation 

values of all 20,310 genes. The distribution of the 10,000 median correlations for each of the 

three gene sets is shown in Supp. Fig. S5. A p-value was also calculated for each group as 

the proportion of median correlations for the “all genes” group that are greater than or equal 

to the median of each group.

Survival analysis (Fig. 6C–E, S6B–D)

Kaplan-Meier Survival Curves are generated for each patient sub cohort using the Survival 

and Survminer R packages. The statistical significance of survival differences between 

multiple subcohorts were determined using the log-rank test to capture relations. In order to 

segment the cohorts into subgroups characterized by expression levels of the TGF-β target 

genes, we analyzed the distribution of target gene expression across the PanCancer cohort. 

We particularly focused on mRNA expression distribution of HMGA2, MMP9, collagens 

(COL1A1, COL1A2, COL3A1), TERT, FOXP3, CDH2 as the expression of these genes 

varied significantly between TGF-β pathway mutated vs. wild type samples. For this 

purpose, we used the batch normalized mRNA expression data. For each gene, the cut-off to 

separate low and high expressing cohorts was determined empirically based on the 

distribution. For expression profiles with a unimodal distribution, we used the approximate 

median values. For bimodal cases, we selected the threshold as the midpoint that separates 

each peak on the bimodal distribution. The mRNA expression threshold to separate the 

cohorts with low vs. high target expression groups were HMGA2=5, MMP9=10, mean of 

collagens (COL1A, COL1A2, and COL1A3) = 14, TERT=2, FOXP3=6, CDH2=8. The 

collagen genes are analyzed as a single entity because they showed very strong correlation 

of mRNA expression with each other. The resulting thresholds divided the cohorts into three 

groups as TGF-β expression, TGF-β mutant/high target expression, TGF-β wt/high target 

expression and low target gene expression. We merged the TGF-β mutant/low target 

expression and TGF-β wt/low expression cohorts as discriminating between these sets do 

not inform on the combined effect of TGF-β mutations and target expression. The survival 

differences between each sub cohort are analyzed using the Survival and Survminer R 

packages.

DATA AND SOFTWARE AVAILABILITY

The raw data, processed data and clinical data can be found at the legacy archive of the GDC 

(https://portal.gdc.cancer.gov/legacyarchive/search/f) and the PancanAtlas publication page 

(https://gdc.cancer.gov/about-data/publications/pancanatlas). The mutation data can be 

found here (https://gdc.cancer.gov/about-data/publications/mc3-2017). TCGA data can also 
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be explored through the Broad Institute FireBrowse portal (http://gdac.broadinstitute.org) 

and the Memorial Sloan Kettering Cancer Center cBioPortal (http://www.cbioportal.org). 

Details for software availability are in the Key Resources Table.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations of the 33 TCGA Cancer Types:

ACC Adrenocortical carcinoma

BLCA Bladder urothelial carcinoma

BRCA Breast invasive carcinoma

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma

CHOL Cholangiocarcinoma

COAD Colon adenocarcinoma

DLBC Lymphoid neoplasm diffuse large B-cell lymphoma

ESCA Esophageal carcinoma

GBM Glioblastoma multiforme
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HNSC Head and neck squamous cell carcinoma

KICH Kidney chromophobe

KIRC Kidney renal clear cell carcinoma

KIRP Kidney renal papillary cell carcinoma

LAML Acute myeloid leukemia

LGG Brain lower grade glioma

LIHC Liver hepatocellular carcinoma

LUAD Lung adenocarcinoma

LUSC Lung squamous cell carcinoma

MESO Mesothelioma

OV Ovarian serous cystadenocarcinoma

PAAD Pancreatic adenocarcinoma

PCPG Pheochromocytoma and paraganglioma

PRAD Prostate adenocarcinoma

READ Rectum adenocarcinoma

SARC Sarcoma

SKCM Skin cutaneous melanoma

STAD Stomach adenocarcinoma

TGCT Testicular germ cell tumors

THCA Thyroid carcinoma

THYM Thymoma

UCEC Uterine corpus endometrial carcinoma

UCS Uterine carcinosarcoma

UVM Uveal melanoma
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Highlights

• Genetic alterations in TGF-β pathway members observed in 39% of TCGA 

cases

• GI Cancers enriched with hotspot mutations in TGF-β pathway members

• Gene alterations correlated with expression of metastasis genes and poor 

prognosis

• TGF-β signaling silenced by miRNAs or DNA methylation in hematologic 

cancers
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Figure 1. 
A. The canonical TGF-β pathway. TGF-β superfamily member ligands bind to type II 

receptors, leading to recruitment and activation of type I receptors through phosphorylation. 

Subsequently, the activated receptors phosphorylate intracellular Receptor-SMADs (R-

SMAD), such as SMAD2 and SMAD3, which bind to the receptor through adaptor 

molecules. The RSMAD/co-SMAD (SMAD2/3-SMAD4) complex is transported into the 

nucleus to induce transcriptional programs regulated by the TGF-β superfamily. B. 
Landscape of genomic aberrations in the TGF-β superfamily genes in cancer. The 

frequency of alterations in TGF-β superfamily ligands, receptors and receptor-associated 

proteins, intracellular SMADs, and adaptor molecules are presented. Only samples with 

genomic alterations in the indicated genes are shown in each oncoprint. Alteration rates per 

gene and gene family are displayed in the left and top labels, respectively. See also STAR 

Methods, Figure S1 and Tables S1 and S2.
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Figure 2. PanCancer genomic analysis of the 43 TGF-β superfamily pathway genes in 33 cancer 
types.
A-C. Distribution of genomic alterations over cancer types. (A) Non-silent somatic 

mutations, (B) copy number amplifications, (C) homozygous deletion frequencies. SKCM, 

UCEC, STAD, and COAD show high overall mutation rates. D-F. Statistical significance of 
alterations in the TGF-β superfamily pathway genes. Genes that were significantly 

mutated or targets of copy-number alteration based on MutSigCV results (D) and GISTIC2 

(E-F) analyses. Only the genes altered significantly in at least one cancer type are included. 

G-I. Transcriptional output associated with alterations in the TGF-β superfamily 
pathway genes. Differential mRNA expression of key genes downstream of the TGF-β 
superfamily pathways including mutations (G), amplifications (H), and deep deletions (I). 
See also Figure S2 and Tables S2-S4.
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Figure 3. Mutational hotspots in the TGF-β superfamily pathways.
A. Recurrent hotspot sites. Hotspots with > 9 incidents are shown. B. Transcriptional 
output of pathway hotspot mutations in GI and PanCancer cohorts. Differential mRNA 

expression of 50 TGF-β pathway target genes quantified in relation to 6 hotspot mutations in 

the PanCancer cohort (left) and GI cancers (right). C. SMAD4 R361C/H/P/S. R361 is 

located on the SMAD4 homotrimer interaction interface, as shown on the SMAD4 structure 

(PDB ID: 1DD1). D. ACVR2A K437E. K437 is marked on the structure of the ACVR2A 

C-terminal kinase domain (PDB ID: 4ASX). E. SMAD2. Position and putative effect of the 

C-terminal truncation mutation S464* are shown. See also Figure S3.
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Figure 4. Comparison of TGF-β superfamily pathway activity and gene aberrations.
A. The TGF-β superfamily pathway gene expression signature in GI cancers. Heat map 

indicating the effects of non-silent somatic mutations in the 43 TGF-β pathway genes on 

expression of downstream target genes for 1,511 samples of 5 GI cancer types. Color 

reflects the log ratio of median expression in samples that carry the alteration vs. samples 

that are wild-type (y-axis). B. The TGF-β superfamily pathway gene expression 
signature in non-GI cancers. Same analysis as (A) for 7,614 samples of 27 non-GI cancer 

types. C. Comparison of disrupted TGF-β superfamily pathway activity in GI and 
other cancers. Volcano plots for 43 TGF-β pathway genes in GI vs. other cancers. Fold 

changes (x-axis) were calculated from the median log ratio of mRNA expression across 50 

downstream target genes (normalized to median levels in samples wild type for the 43 TGF-

β pathway genes) associated with mutations in GI vs. other cancers. Red Q-values (y-axis) 

identify genes with statistically significant changes in GI vs. other cancers. Q-values were 

calculated by Wilcoxon Signed-Rank test for each pathway gene, followed by Benjamini–
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Hochberg (BH) FDR adjustment. D. Differential expression of TGF-β superfamily 
pathway target genes in GI and other cancers. The same as C but for TGF-β pathway 

target genes. E. Comparison of global transcriptional output. The ratio of TGF-β target 

gene expression in samples with and without gene alterations. Genes listed include the 

highest absolute mRNA expression changes (top 20 increases and top 20 decreases) in the 

presence of alterations of the 43 TGF-β superfamily gene. See also Figure S4.
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Figure 5. mRNA analysis of TGF-β superfamily pathway genes.
A. TGF-β superfamily pathway activity across PanCancer tumor types. Box plot 

showing the distribution of sample-specific pathway scores across each cancer type. Scores 

were computed using mRNA transcript levels of genes in the superfamily. The median, 

interquartile range, and outliers are indicated. B. Supervised clustering of mRNA 
expression. mRNA expression values for the 43 genes, clustered from left to right by tumor 

type, then by TGF-β superfamily pathway score. See also STAR Methods.
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Figure 6. Correlation of TGF-β superfamily genes with other cancer-related pathways and genes.
A. Clustered heat map of pairwise correlations between TGF-β pathway gene 
expression and that of 50 downstream target genes. Unsupervised hierarchical clustering 

was conducted with 1-Pearson’s correlation distance metric and Ward’s linkage. The 

covariate bar on each axis shows median expression values. B. Clustered heat map of 
correlations between TGF-β pathway activity score and 12 other cancer-associated 
pathways. Oncogenic pathway activity scores (y-axis) were computed from protein data, 

except for EMT (mRNA) and immune scores (DNA methylation). C. Impact of TGF-β 
pathway-associated HMGA2 mRNA expression on patient survival. 10-year survival of 

patients with TGF-β pathway mutations (TGF-β mutant) and high HMGA2 expression 

(High HMGA2), no mutations in the TGF-β pathway genes (TGF-β wild-type) and high 

HMGA2 expression, and low HMGA2 expression (regardless of mutation status of 43 
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genes) was compared in a Kaplan Meier analysis. Statistical significance was assessed by 

log-rank test (see STAR Methods and figure S6 for selection of high and low expression 

level thresholds) D. Impact of collagen-encoding gene (COL1A1, COL1A2, COL3A1) 
mRNA expression on patient survival. The same analysis as in (C) was performed for 

aggregated mRNA expression of three collagen genes that showed increased expression in 

cancers with TGF-β pathway gene mutations. E. Impact of MMP9 mRNA expression on 
patient survival. The same analysis as in (C) was performed for the impact of MMP9 
expression on patient survival by comparing high MMP9/TGF-β pathway mutations, high 

MMP9/wild-type TGF-β pathway, and low MMP9. See also Figures S5 and S6 and Table 

S6.
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Figure 7. Epigenetic control of the TGF-β superfamily pathways.
A. Methylation levels. Boxes quantify the degree of methylation across the 43 TGF-β genes 

in a given tumor type. The methylation score is calculated from the median for each gene in 

a given sample. Scores are grouped by tumor type. B. Supervised cluster analysis of 
methylation patterns. Methylation patterns were clustered as in Figure 6A. Methylation 

levels were quantified as M-values by first mapping methylation array probes to individual 

genes. A median beta value for each gene was then calculated as the median beta value 

across all samples for a given cancer type. C. microRNA levels. Box plot showing the mean 

miRNA expression levels for the 32 miRNAs that regulate the indicated genes in the TGF-β 
superfamily pathways. D. microRNA regulation. Inferred miR-mRNA targeting for 15 

TGF-β superfamily pathway genes by the 32 miRNAs. E. Abundance of miRNAs 
predicted to target the TGF-β superfamily pathway genes. The heat map illustrates 

miRNA abundance for 8,930 tumor samples from 32 of the 33 TCGA tumors (GBM 

excluded, no miRNA data in TCGA). F. Contribution of data type to TGF-β superfamily 
pathways score. Tumor types (columns) ordered from lowest (left) to highest (right) TGF-β 
superfamily pathway score. Mean miRNA expression levels normalized between 0 and 1 

yielded the highest overall correlation with pathway score (R = −0.68). Mean DNA 

methylation beta values normalized between 0 and 1 had the next highest correlation (R = 

−0.46). Amplifications (R = 0.24), deletions (R = 0.09), and mutations (R = −0.05) represent 
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proportions of samples with the given type of aberration in at least one of the 43 TGF-β 
genes. See also Figure S7 and Tables S5-S7
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