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Abstract

Accurate reconstruction of the spatio-temporal dynamics of event-related cortical oscillations 

across human brain regions is an important problem in functional brain imaging and human 

cognitive neuroscience with magnetoencephalography (MEG) and electroencephalography (EEG). 

The problem is challenging not only in terms of localization of complex source configurations 

from sensor measurements with unknown noise and interference but also for reconstruction of 

transient event-related time-frequency dynamics of cortical oscillations. We recently proposed 

a robust empirical Bayesian algorithm for simultaneous reconstruction of complex brain source 

activity and noise covariance, in the context of evoked and resting-state data. In this paper, we 

expand upon this empirical Bayesian framework for optimal reconstruction of event-related time-
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frequency dynamics of regional cortical oscillations, referred to as time-frequency Champagne 

(TFC). This framework enables imaging of five-dimensional (space, time, and frequency) event-

related brain activity from M/EEG data, and can be viewed as a time-frequency optimized adaptive 

Bayesian beamformer. We evaluate TFC in both simulations and several real datasets, with 

comparisons to benchmark standards-variants of time-frequency optimized adaptive beamformers 

(TFBF) as well as the sLORETA algorithm. In simulations, we demonstrate several advantages 

in estimating time-frequency cortical oscillatory dynamics compared to benchmarks. With real 

MEG data, we demonstrate across many datasets that the proposed approach is robust to highly 

correlated brain activity and low SNR data, and is able to accurately reconstruct cortical dynamics 

with data from just a few epochs.

Keywords

Dynamics of neural activity; Brain source power changes; Five-dimensional neuroimaging; 
Electromagnetic brain imaging; Bayesian inference

1. Introduction

Noninvasive functional brain imaging has made a tremendous impact in improving our 

understanding of the human brain. Functional magnetic resonance imaging (fMRI) has been 

the predominant modality for imaging the functioning brain since the middle of 1990s, as 

it can produce images with high spatial resolution. However, due to reliance on the blood 

oxygenation response, fMRI lacks the temporal resolution required to image the dynamic 

and oscillatory spatiotemporal patterns associated with activities in the brain. In contrast 

to fMRI, magnetoencephalography (MEG) and electroencephalography (EEG) are other 

popular non-invasive techniques which measure electromagnetic fields emanating from the 

brain with excellent temporal resolution. This level of resolution has clinical utility, as high 

temporal and frequency resolution is essential for epileptic waveform activity localization 

(Guggisberg et al., 2008; Velmurugan et al., 2019). It has also shown to be essential for 

cognitive neuroscience imaging studies using M/EEG that examine dynamic brain networks 

subserving perception, action and cognition (Borghesani et al., 2020; Herman et al., 2013; 

Hinkley et al., 2011; Ranasinghe et al., 2020).

Since M/EEG sensors are located outside the head, examining sensor data does not provide 

sufficient information about which brain structures generated the activity of interest. To 

extract more precise information about underlying brain activities, it is essential to apply 

electromagnetic brain source localization algorithms which are solutions to the ill-posed 

biomagnetic inverse problem. Many inverse algorithms have been proposed for solving the 

bioelectromagnetic inverse problem, i.e., for estimating the parameters of neural source 

activity from MEG and EEG sensor data, including linear (van Drongelen et al., 1996; Gross 

et al., 2003; Hämäläinen and Ilmoniemi, 1994; Schmidt, 1986; Stoica and Nehorai, 1990; 

Van Veen et al., 1997) and non-linear methods (Friston et al., 2008; Gramfort et al., 2013; 

Wipf et al., 2010a), distributed (Pascual-Marqui, 2002) vs sparse (Gramfort et al., 2013; 

Wipf et al., 2010a).
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In functional neuroimaging studies, two distinct types of neural source activity have been 

examined – phase-locked and non-phase locked event-related brain activity. Phase-locked 

activity is usually obtained in evoked-response paradigms by averaging activity across 

repeated events. Many algorithms have been proposed in the literature for examining 

phase-locked activity (Gramfort et al., 2013; Hämäläinen and Ilmoniemi, 1994; Pascual-

Marqui, 2002; Uutela et al., 1999; Wipf et al., 2010a). A key feature contributing to 

accurate estimation of phase-locked activity is that the power of phase-locked activity 

following an event is greater than a pre-event baseline period, and this activity is dominated 

by low frequencies (1–8 Hz). In contrast, non-phase locked activity is reconstructed by 

extracting signal magnitude (and phase) in single trials. Importantly, such event-related 

power fluctuations can manifest as either an increase or a decrease in power. Furthermore, 

power increases and decreases will be frequency-specific. There have been only a few papers 

that have described algorithms for accurate reconstructions of time-window and frequency 

specific event-related non-phase locked brain activity (Dalal et al., 2008a; Gross et al., 2001; 

Limpiti et al., 2008).

In our previous work, we proposed an adaptive optimised time frequency Beamformer 

(TFBF) which enables accurate reconstruction of five-dimensional event-related non-phase 

locked brain activity by using segmented filtered data to obtain the weight matrix and is 

able to estimate the change in power from a control (i.e., baseline) time window to an 

active time window (Dalal et al., 2008a). However, the method suffers from sensitivity 

to inaccurate sample data covariance matrices that are used to obtain the weight matrix, 

especially under high correlated brain sources or limited time series data availability and low 

signal-to-noise ratio (SNR), for example, in cognitive paradigms. Although modifications to 

the Beamformer algorithm have been developed to address the issue of correlated source 

reconstruction, they have met with varying success and are further limited by requiring 

a-priori information on source location (Dalal et al., 2006), being limited to scalar sources 

rather than vector sources (Brookes et al., 2006), or by being limited to two sources due to 

computation time constraints (Diwakar et al., 2010; 2011).

Recently, for phase-locked brain activity, we proposed a family of robust empirical Bayesian 

algorithms, e.g., Champagne (Cai et al., 2020; Hashemi et al., 2021b; Sekihara and 

Nagarajan, 2015; Wipf et al., 2010b) and its extensions (Hashemi et al., 2021a; 2021c; 

Hashemi and Haufe, 2018), which are able to reconstruct complex brain activity and 

learn the noise covariance simultaneously, and which has been successfully applied in 

M/EEG source imaging. In this paper, we expand this empirical Bayesian framework 

for reconstruction of event-related non-phase locked time-frequency dynamics of regional 

cortical oscillations. We refer to this extension as time-frequency Champagne (TFC). This 

TFC framework enables imaging of five-dimensional (space, time, and frequency) event-

related brain activity from M/EEG data. The key idea here that allows for reconstructions 

of event-related activity in both task and control periods is the use of sparse Bayesian 

reconstruction algorithms on omnibus data, which includes both task and control time-

windows (Robinson and Vrba, 1999; Singh et al., 2003; Vrba and Robinson, 2001).

Here, we evaluate TFC both in simulations and on several real datasets, with comparisons 

to benchmark standards-variants of time-frequency optimized adaptive beamformers (TFBF) 
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as well as the sLORETA algorithm. In simulations, we demonstrate several advantages in 

estimating time-frequency cortical oscillatory dynamics compared to benchmarks. With real 

MEG data, we demonstrate across many datasets that the proposed approach is robust to 

highly correlated brain activity and low SNR data, and is able to accurately reconstruct 

cortical dynamics with data from just a few epochs.

2. Methods

This section first briefly introduces the generative model for neural dynamics and the 

problem of imaging dynamics of frequency-specific neural activity. Following this, we 

introduce the time-frequency Champagne algorithm (TFC) algorithm for estimation of 

neural dynamics. Finally, we show the relationship of TFC to TFBF.

2.1. The generative model

The sensor level data measured on or near the scalp can be modeled as:

Y = LS + ε = ∑
n = 1

N
LnSn + ε, (1)

where Y = [y(1), ⋯, y(T)] ∈ ℝM × T  is the measured sensor data, M is the number of channels 

measured, and T  is the number of time samples. L = L1, …, LN ∈ ℝM × dcN is the leadfield 

matrix obtained from the forward model, and dcN = dc × N, which we assume to have 

dc orientations for each voxel. S = S1
⊤, …, SN

⊤ ⊤ ∈ ℝdcN × T  is the unknown brain activity. 

Sn = sn
1, ⋯, sn

dc ⊤ ∈ ℝdc × T  is the n-th voxel intensity. N denotes the number of voxels under 

consideration and Ln = ln
1, ⋯, ln

dc ∈ ℝM × dc denotes the leadfield matrix for the n-th voxel. 

The i-th column of Ln represents the signal vector that would be observed at the scalp given 

a unit current source or dipole at the n-th voxel with a fixed orientation in the i-th direction. 

The voxel dimension dc is usually set to 3. In event-related data analysis, we always segment 

the sensor data into control and task periods which are expressed as Y C and Y T.

2.2. Imaging dynamics of frequency-specific neural activity

In many neuroscience paradigms, it is necessary to compute the dynamics of event-related 

non-phase locked neural activity for specific experimental or cognitive tasks, which could be 

obtained by contrasting activity in multiple activation windows, across different frequency 

bands, or by comparison to activity during one or multiple baseline windows. The resulting 

contrast spectrograms are time frequency representation of non-phase locked event-related 

brain source activity.

In previous work, we have proposed an adaptive spatial filtering algorithm optimized for 

robust source time frequency reconstruction, which maximizes the ultimate potential of 

M/EEG for five-dimensional imaging of brain activity in space, time, and frequency and 

renders it applicable for widespread studies of human cortical dynamics during cognition 

(Dalal et al., 2008b). We directly computed spectrograms of the source time series during a 
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task time-period of interest by contrasting it with the spectrogram of a control time period 

where the brain sources of interest are expected to not be active.

To quantify this task-induced activity, first, the sensor data Y  is passed through a filter 

bank and then divided into control and task periods, which are denoted as Y C(f) and Y T(f)
for f-th band. Task periods are then segmented into overlapping task windows, which are 

expressed as Y T(k, f) (k = 1, ⋯, K, we assume the number of segmented task time windows 

is K, the lower case k refers to the index of the overlapping task time window). To estimate 

the change from a control time window to a k-th task time window at n-th voxel, we 

first estimate the source power from each windows at n-th voxel, denoted as PC(n, f) and 

PT(n, k, f), then the following equation to calculate the F-ratio of power contrast in decibels 

is expressed as:

F(n, k, f) = 10 log10
PT(n, k, f)
PC(n, f) , (2)

Since MEG and EEG measure signals data outside brain, we need to estimate the underlying 

brain source activity from sensor data in both task and control time windows using inverse 

reconstruction algorithms.

Naive use of the above F-ratio to quantify task-induced brain activity in conjunction with 

sparse reconstruction algorithms can however often lead to divide-by-zero errors for the 

most interesting voxels of interest, i.e. the voxels which are activated in the task-window 

but have no activity in the control period resulting a zero in the denominator. Moreover, if 

there are strong correlated brain sources, then beamformer reconstruction of power in both 

task- and control-windows will be inaccurate, rendering the F-ratio calculation inaccurate 

as well. Here, we propose a solution to avoid both of these problems with an adaptation of 

Champagne, a sparse Bayesian algorithm.

2.3. Time-frequency Champagne algorithm

In our prior work, we introduced the robust empirical Bayesian algorithm Champagne, 

which is able to reconstruct complex brain activity and estimate the source activation power 

(Cai et al., 2020). However, instead of estimating the Champagne source reconstruction 

estimate for power in task and control time-windows separately, and to directly compute 

the power ratio at each voxel, here we propose a modified approach for Eq. (2). Since 

Champagne is a sparse reconstruction algorithm, naive estimation of the denominator, i.e. 

source power in control period, will result in zero activity for many voxels and consequently 

result in divide-by-zero errors for the calculation of the F-ratio in Eq. (2).

To circumvent this problem and to improve the robustness of the F-ratio calculation, 

we estimate the power in task and control periods and propose using a spatial weight 

matrix derived from the omnibus data that includes both task and control time-windows 

Y O(k, f) = Y C(f), Y T(k, f) . We then estimate omnibus hyperparameters αO and the well-

regularized omnibus data covariance ΣO(k, f), and use these inferred parameters to estimate 

the source power in task and control windows. The idea of using omnibus data has been 

used in conjunction with adaptive beamforming for MEG by others (Robinson and Vrba, 
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1999; Singh et al., 2003; Vrba and Robinson, 2001) and ensures robustness and avoids the 

divide-by-zero errors.

This modified time-frequency Champagne algorithm with noise learning (Cai et al., 2021) is 

shown in Appendix A. Specifically, we obtain the brain source power from k-th task window 

and the control window at n-th voxel in f-th frequency band P T(n, k, f) and P C(n, k, f),

P T(n, k, f) = αO
2(n, k, f)tr Ln

⊤ΣO
−1(k, f)ΣT(k, f)ΣO

−1(k, f)Ln , (3)

P C(n, k, f) = αO
2(n, k, f)tr Ln

⊤ΣO
−1(k, f)ΣC(f)ΣO

−1(k, f)Ln , (4)

where, αO(n, k, f) is the prior variance of the n-th voxel for the omnibus data, ΣT(k, f), ΣC(f), 
and ΣO(k, f) are well-regularized model covariances for the task, control and omnibus data 

respectively which are robust to limited numbers of data samples. Consequently, when 

αO(n, k, f) is not equal to zero, this F-ratio as described above corresponds to voxels that are 

active in either the task or the control periods, which is expressed as:

F TFC(n, k, f) = 10 log10
tr Ln

⊤ΣO
−1(k, f)ΣT(k, f)ΣO

−1(k, f)Ln

tr Ln
⊤ΣO

−1(k, f)ΣC(f)ΣO
−1(k, f)Ln

, (5)

In contrast, while αO(n, k, f) equals to zero, there is no activity in either period, then the 

F-ratio can be expressed as:

F TFC(n, k, f) = 0. (6)

The specific steps of the time-frequency Champagne algorithm (TFC) are detailed in Table 

1.

In summary, to estimate the five-dimensional dynamics of neural activity, TFC first filters 

the input sensor data into different frequency bands; then the filtered active sensor data is 

segmented into overlapping active windows. Subsequently, TFC estimates the model data 

covariances of control, active and concatenated data using the Champagne algorithm, and 

finally calculates the neural dynamics using Eq. (5).

2.4. Relationship of TFC to TFBF

Previously, we have proposed a TFBF algorithm to estimate brain sources and their neural 

dynamics as (Dalal et al., 2008b):

F TFBF(n, k, f) = 10 log10

tr W ⊤(n, k, f)RT(k, f)W (n, k, f)
tr W ⊤(n, k, f)RC(f)W (n, k, f)

, (7)

where, P T
BF(n, k, f) and P C

BF(n, k, f) are the brain source power from k-th task window and 

the control window at n-th voxel in f-th frequency band using Beamformer algorithm, 

RT(k, f) ∈ ℝM × M and RC(f) ∈ ℝM × M are sample task and control covariances computed 
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for each resulting time-frequency window. W (n, k, f) ∈ ℝM × dc is the weight matrix obtained 

with the omnibus sample data covariance, which is defined as RO(k, f).

W (n, k, f) = RO
−1(k, f)Ln Ln

⊤RO
−1(k, f)Ln

−1 . (8)

In the TFBF model above, the output power change for each voxel is determined by the lead 

field matrix Ln, the omnibus data covariance RO(k, f), and the sample data covariances from 

task RT(k, f) and control windows RC(f).

The fidelity of power change estimation is dramatically affected by the accuracy of 

the sample data covariance, as well as a variety of other factors such as SNR, source 

correlations, and the number of time samples T . Since the TFBF algorithm requires that 

the covariance matrices be invertible, without regularization or with incorrect regularization 

for covariance matrix inversion, algorithm performance can degrade. Furthermore, if sources 

are highly correlated, the performance of the estimate can be significantly compromised, 

a well-known problem for adaptive beamformers. Finally, if the number of sample time 

points T  is small, then the sample data covariance may deviate sharply from the true 

covariance, leading to systematic estimation errors. This is partly because when T  is small, 

then even sources produced by an uncorrelated generative model may appear correlated. 

Consequently, if a more robust version of the sample data covariance were obtained, it 

would greatly improve the power change estimation. The TFC algorithm we propose here 

contains a robust way to estimate the power of our brain activity from control and task 

time window. Theoretically, TFC can be shown to be a particular instantiation of a Bayesian 

model-based TFBF, which are adaptive beamformers that use model covariances instead 

of the sample covariance of the data (Al-Shoukairi and Rao, 2019; Pote and Rao, 2020). 

In the limit of infinite data, the model covariance matrix estimated by TFC will equal the 

sample covariance, i.e. R = LαL⊤ + Λ = Σy. Therefore, we could replace RO(k, f), RT(k, f)
and RC(f) with the corresponding model covariance matrices ΣO(k, f), ΣT(k, f), and ΣC(k, f)
respectively in Eqs (7) and (8). Consequently, the F-ratio of power contrast for TFBF can be 

expressed as:

F TFBF(n, k, f) = tr Ln
⊤ΣO

−1(k, f)ΣT(k, f)ΣO
−1(k, f)Ln

tr Ln
⊤ΣO

−1(k, f)ΣC(f)ΣO
−1(k, f)Ln

= F TFC(n, k, f) .
(9)

Therefore, TFC can be viewed as a particular instantiation of a Bayesian model beamformer 

that uses model covariance derived from sparse Bayesian learning instead of the sample data 

covariance.

3. Performance evaluation of simulated and real data

3.1. Benchmark algorithms

We chose to test the TFC algorithm against four representative source localization 

algorithms from the literature: three adaptive spatial filtering methods, namely time 

frequency optimized beamformer (TFBF) (Sekihara et al., 2001), Bayesian PCA based 
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TFBF (bPCA_TFBF) (Engemann and Gramfort, 2015; Woolrich et al., 2011), and 

Variational Bayesian Factor Analysis based TFBF (VBFA_TFBF) (Engemann and Gramfort, 

2015; Nagarajan et al., 2007), more details are provided in Appendix B. In addition, 

one non-adaptive spatial filtering method, sLORETA (Pascual-Marqui, 2002), is included. 

For sLORETA, we use the default setting defined in the NUTMEG software where the 

regularization parameter of sLORETA is set as 1e-3 of the maximum eigenvalue of the 

Gram matrix (Dalal et al., 2004).

3.2. Simulations configurations

Dipolar sources with variable orientation were used to generate the simulated data. Damped 

sinusoidal time courses were created as point source time activity and then projected to the 

sensors using the leadfield matrix generated by the forward model. The brain volume was 

segmented into 8 mm voxels and a three-orientation forward lead field was calculated using 

a single spherical-shell model Hallez et al. (2007) implemented in NUTMEG (Hinkley et 

al., 2020a). The parcellation at this resolution yields around 5000 voxels. To evaluate the 

robustness of the proposed algorithm to noise, we randomly chose segments of real brain 

noise from actual resting-state sensor recordings of ten human subjects. These recordings are 

presumed to contain only spontaneous brain activity and sensor noise. SNR and correlations 

between voxel time courses were varied to examine algorithm performance. SNR and time 

course correlation are defined in a standard fashion (Cai et al., 2018; Owen et al., 2012).

We first examined the accuracy of TFC with simulations. Fifty trials were generated, 

spanning-750 ms to 1000 ms per trial with a sampling rate of 1200 Hz and an SNR of 

0 dB. Three point sources with sine waves time courses at frequencies of 8 Hz, 21 Hz and 

42 Hz were synthesized and placed randomly in the brain source space. We also randomized 

the phase of each source and varied them between trials. The brain sources time series 

were windowed such that they represented event-related synchronization (ERS) activity and 

were not active simultaneously. The first source was active from 50 ms to 300 ms, while 

the second one was active from 350 ms to 550 ms, and the last source had a baseline 

activity from −750 ms to 0 ms, then went to zero activity from 0 ms to 600 ms, following 

which it returned to baseline activity from 600 ms to 1000 ms to simulate event-related 

desynchronization (ERD) (Dalal et al., 2008a).

Then, we increased the number of seeded point sources to evaluate the algorithm 

performance as a function of the number of sources. The locations for the sources were 

randomly chosen and we also set some minimum distance between sources (at least 15 mm) 

and a minimum distance from the center of the head (at least 15 mm). The generated time 

courses were partitioned into control and active periods. The control period (−300 ms to 

0 ms, sampled at 1200 Hz) contained only noise and interfering brain activity. The active 

period of the same length (0 ms to 300 ms, sampled at 1200 Hz) consisted of the activity 

of interest and interference present in the control period. The SNR was fixed at 5 dB. The 

number of seeded point sources was increased from two to ten in increments of two for 50 

times tests per each configuration. The inter and intra source correlation strengths were set 

to be 0.95 and 0.95, for more details refer to Owen et al. (2012).
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Last, we evaluated algorithm performance as a function of SNR. Simulations were 

performed at SNRs ranging from 0 dB to 20 dB in steps of 5 dB. The estimation of 

F-ratio performance was evaluated for five randomly seeded point sources with the same 

configuration as described above for 50 tests. The inter and intra source correlation strengths 

were set to be 0.95 and 0.95. Again, we set the minimum distance between sources and from 

the center of the head both at least 15 mm.

3.3. Real datasets

Real MEG data was acquired in the Biomagnetic Imaging Laboratory at University of 

California, San Francisco (UCSF) with a CTF Omega 2000 whole-head MEG system from 

VSM MedTech (Coquitlam, BC, Canada) with 1200 Hz sampling rate. The leadfield for 

each subject was calculated in NUTMEG (Hinkley et al., 2020a) using a single-sphere head 

model and an 8 mm voxel grid. Each column was normalized to have a norm of unity. Three 

real MEG data sets were used to evaluate the application of the algorithms: 1. Auditory 

Evoked Fields (AEF); 2. Finger movement data; 3. Picture naming data. The first two data 

sets have been reported in our prior publications, and details about the datasets can be found 

in Wipf et al. (2010a), Dalal et al. (2008a), Owen et al. (2012) for finger movement and 

picture naming.

We collected 120 trials of AEF data from two subjects; more details related to the task can 

be found in our prior papers (Cai et al., 2020; 2018). We calculate the change in power from 

a control time window to the active time window in an extended Alpha band ranging from 

4 to 12 Hz (Lehtelä et al., 1997). We set the active window to range from 0 ms to 200 ms, 

and the baseline window to range from −250 ms to −50 ms. We also collected 96 trials of 

finger movement data from another subject. We tested the change in power in the Beta and 

Gamma bands from a control (i.e., baseline) time window to an active time window. For the 

frequency-domain methods, in Beta band (12–30 Hz), the active window was set to range 

from −250 to 350 ms and the control window was defined to range from −950 to −750 ms; 

in the Gamma band (65–90 Hz), the active window was set as −200 to 300 ms and the 

control window was −900 to −800 ms (Hinkley et al., 2019).

Next, we evaluated the performance of all algorithms on data for the picture naming task. 

For the visual picture naming test, an image of an object is projected onto a screen (99 trials) 

and subjects are instructed to name the pictured object verbally; more details can be found 

in our previous paper (Hinkley et al., 2020b). Again, for the frequency-domain methods, in 

Beta band (12–30 Hz), the active window was set as −50 to 900 ms and the control window 

was −200 to 0 ms; in Gamma band (65–90 Hz), the active window was set as −200 to 300 

ms and the control window was −150 to −50 ms (Hinkley et al., 2011). Both datasets were 

processed with a 50 ms window step size.

To evaluate the robustness of TFC to sample size, we evaluate algorithm performance when 

the number of trials was limited to 10, 20, 40 and 60 for finger movement and picturing 

name. Based on our previous work (Hinkley et al., 2019), for finger movement task, the 

active window was set as follows: Beta band 12–30 Hz with active window set to be −50 

ms to 150 ms relative to the button press, with −950 ms to −750 ms as the baseline; Gamma 

band 65–90 Hz with active window set to be 0 ms to 100 ms relative to the button press, 
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with −900 ms to −800 ms as the baseline. For picture naming task, we set the time window 

and frequencies as follows, Beta band 12–30 Hz with active window set to be −50 ms to 

150 ms relative to the button press, with −950 ms to −750 ms as the baseline; Gamma 

band 65–90 Hz with active window set to be 0 ms to 100 ms relative to the button press, 

with −900 ms to −800 ms as the baseline. Each test was performed 30 times with the 

specific trials themselves chosen as a random subset of all available trials (Hinkley et al., 

2011). Since there was no existing ground truth for the real tasks, to test robustness and 

stability of the results, we compare the estimated results with F-ratio estimated with whole 

trials by TFC during the evaluation. It is worth noting that, even though we apply the TFC 

as reference ”ground-truth ” here, results are similar when we use TFBF as the reference, 

because as the number of trials increases performance of TFBF approaches that of TFC.

3.4. Data processing and quantifying algorithm performance

We run TFC in a lattice of time-frequency windows. The original data were first 

passed through a bank of 200th-order finite impulse response (FIR) bandpass filters and 

subsequently split into overlapping temporal windows with a step size of 25 ms for all 

bands. In our filter design, we chose to follow traditional MEG/EEG power band definitions 

as best as possible. We defined Theta-Alpha band as 4 − 12 Hz with 300 ms windows, Beta 

band 12 − 30 Hz with 200 ms windows, low Gamma 30 − 55 Hz with 150 ms windows and 

high Gamma band 65 − 90 Hz with 100 ms windows.

To quantify the performance of TFC and other benchmark algorithms in simulations, in 

which we knew the ground truth, we used free-response receiver operator characteristics 

(FROC) which shows the probability for detection of a true source in an image versus the 

expected value of the number of false positive detections per image (Cai et al., 2018; Darvas 

et al., 2004; Owen et al., 2012; Sekihara, 2016). Based on the FROC, we compute an A′
metric (Cai et al., 2019; Snodgrass and Corwin, 1988), which is an estimate of the area 

under the FROC curve for each simulation. If the area under the FROC curve is large, then 

the hit rate is higher compared to the false positive rate. Hit rate (HR) was calculated by 

dividing the number of hit point sources by the true number of point sources. The false 

rate (FR) was defined by dividing the number of potential false positive voxels by the total 

number of inactive voxels for each simulation. The details of the A′ metric calculation can 

be perused in our previous paper (Cai et al., 2019). The A′ metric ranges from 0 to 1, 

with higher numbers reflecting better performance (Cai et al., 2018; Darvas et al., 2004; 

Owen et al., 2012; Sekihara, 2016). To calculate the mean and variance of the A′ metric, 50 

simulations were conducted for each configuration.

In real data sets, since we did not know the actual brain activity power change, to test 

the robustness and stability of the results, we compared estimated results with the F-ratio 

estimated from all trial epochs (120 epochs for AEF data, 96 epochs for finger movement, 

99 epochs for picture naming) by TFC for each subject and algorithm. We compared the 

spatial correlation between estimated F-ratio for a smaller number of trials with the F-ratio 

estimated for all trial epochs and the results for increasing trial numbers were averaged 

across 30 simulations for each configuration.
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4. Results

4.1. Simulation results

In Fig. 1, we show a single example to compare the accuracy of the F-ratio estimation for 

three simulated point sources. The TFBF was able to provide good results and produce 

accurate localization for all three sources, the intuition was that the presence of jitter 

in the source time-course across trials allowed Beamformers to reconstruct source power 

across trials even if they were highly correlated within a single trial. However, results 

bled over to other frequency bands and the estimated duration of the activition was longer 

(greater temporal extent) than the ground truth activation, especially for sources 1 and 2. 

For sLORETA, the spatial extent of the solution was broader and more blurry for all three 

simulated sources, with peaks on the periphery of the defined volume of interest in each 

case. The SNR for sLORETA was also clearly weaker than that of the TFBF solutions. 

bPCA_TFBF and VBFA_TFBF show similar results as TFBF, and correctly localized 

all three simulated sources, however, showing some frequency bleed-over and a general 

overestimation of the temporal duration of the activations of sources 1 and 2. Finally, the 

results of TFC were superior to those of other benchmarks. TFC was able to localize all 

three sources, and showed minimal frequency spill-over. The temporal durations of the 

activation estimated by TFC were more tightly reflecting those of the ground truth compared 

to other solutions, and produced the highest SNR (color-bar in Fig. 1) in the spectrograms.

Fig. 2 shows the aggregate brain activity power change estimation performance achieved 

in the simulations. The results of all algorithms as a function of the number of seeded 

point sources are presented in the left column of Fig. 2. Here, the inter- and intra-source 

correlation coefficients were fixed to 0.95 and SNR was fixed to 5 dB. All algorithms 

present the same trend, showing decreasing performance under increasing source count. 

TFC consistently produced better results than TFBF, bPCA_TFBF, VBFA_TFBF and 

sLORETA in high correlation settings. bPCA_TFBF and VBFA_TFBF show similar 

performance, which as slightly inferior to that of TFBF, but both outperformed sLORETA.

Performance as a function of SNR is plotted for all algorithms in the right column of Fig. 2. 

Reconstruction performance was evaluated for five randomly seeded point sources with both 

inter- and intra-source correlation coefficients of 0.95. Again, TFC consistently shows better 

performance than other benchmarks in high correlation settings.

In summary, we demonstrate from simulated data that, while all adaptive beamforming 

based benchmarks outperform the non-adaptive method-sLORETA, TFC consistently 

outperforms all benchmarks including adaptive beamformering based methods. Since 

bPCA_TFBF and VBFA_TFBF show similar performance on the simulated data, we only 

present the results of VBFA_TFBF on real data in the following.

4.2. Results of real datasets

4.2.1. Auditory evoked field paradigm—Fig. 3 shows auditory evoked field (AEF) 

localization results obtained using all trials from two subjects. The power change from 

the control time window to the active time window at each voxel around the M100 

peak is plotted for each algorithm. TFBF, sLORETA and VBFA_TFBF failed to generate 
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convincing source solutions, whereas TFC is able to localize the expected bilateral brain 

activation showing focal reconstructions for both subjects. Specifically, the TFC estimates 

localize to Heschl’s gyrus in the temporal lobe, the location of the primary auditory cortex 

(A1). These datasets demonstrate that TFC is superior to other source solutions when 

localizing power changes of highly correlated multiple sources from real data, which is 

known to be the case for sources in the auditory cortex.

4.2.2. Finger movement data—Fig. 4 shows F-ratios obtained for left index finger 

movements using different source estimation algorithms. The power change from a control 

time window to an active time window in the Beta (12–30Hz; Fig. 4, top row) and Gamma 

bands (65–90Hz; Fig. 4, second row) is superimposed on subject’s MRI. As expected, the 

characteristic Beta band power (12–30 Hz) decrease in contralateral sensorimotor cortex 

was observed by all algorithms 0–200ms following movement onset. For sLORETA, this 

solution was blurry (i.e. spatially disperse) and biased towards the edge of the brain in 

voxels outside of sensorimotor cortex. Additionally, TFBF, VBFA_TFBF and TFC localized 

a focal high Gamma (65–90 Hz) peak in sensorimotor cortex. This activity was found 

to be more spatially focal and temporally bound to the movement. For high Gamma, the 

sLORETA solution was spatially dispersed and not centered on a functionally relevant 

region for this task (sensorimotor cortex).

Figs. 5 and 6 illustrate the performance of each algorithm using real (left index finger 

movement) data in Beta and high Gamma bands for increasing numbers of trials. TFC 

is the only algorithm able to localize a significant Beta band power decrease and a high 

Gamma peak with as few as ten trials. In contrast, VBFA_TFBF was only able to localize 

these sources with at least 20 trials, TFBF only localized the same sources with 40 trials, 

and sLORETA required 60 trials to identify these sources. Overall, TFC outperformed all 

benchmarks in this dataset with a limited number of trials.

Evaluation of reconstruction algorithm performance against increasing number of trials for 

left index finger movement data are plotted in Fig. 7. We compared the spatial correlation 

between the F-ratios as estimated using different algorithms and the F-ratio estimated 

by TFC using all available trials. While increasing the number of trials increased the 

performance of all algorithms, TFC outperformed the other solutions for all numbers of 

trials in both Beta and Gamma bands.

4.2.3. Picture naming task paradigm—Fig. 8 shows the reconstructed power change 

from the picture naming task obtained by each algorithm from all available trials. TFBF, 

VBFA_TFBF and TFC were able to localize the visual cortex for the Beta band, similar 

to our previous findings (Hinkley et al., 2011), while the localization of sLORETA was 

weighted/biased outside of the cortex and close to the edge of the brain. In the high Gamma 

band, both TFBF and TFC accurately localized increased power to the primary visual 

cortices (Hinkley et al., 2011), while other benchmarks localized sources far away (dorsal) 

from these expected locations. In addition, the localization of TFC was closer to visual 

cortex and centered around 200ms, confirming the superior spatial and temporal resolution 

of TFC observed in the simulations.
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F-ratio results obtained by different algorithms for increasing numbers of trials of the picture 

naming task in Beta and Gamma bands are shown in Figs. 9 and 10. Similar to the motor 

data (Figs. 5 and 6), TFC was able to localize Beta power changes to visual cortex with as 

few as ten trials in a fashion more spatially and temporally focal than other source solutions. 

Although TFBF and sLORETA perform adequately in reconstructing task-related effects 

with a few number of trials, activation extents are more broad. Similarly, in high Gamma 

band, TFC was able to localize power change accurately using all numbers of trials. Source 

localization for the other solutions were not as accurate in space and time as they were for 

TFC.

Evaluation results for increasing numbers of trials of the picture naming task are shown in 

Fig. 11. Similar to what was demonstrated for the motor data, performance of all algorithms 

increased with increasing numbers of trials, and TFC outperformed all other benchmarks 

in both the Beta and high Gamma band. Even though sLORETA showed higher spatial 

correlation than TFBF and VBFA_TFBF for these datasets when the number of trials was 

less than 40, this gain in performance was lost for sLORETA when the number of trials 

increased to 40.

In summary, consistent with our expectations from the simulated data, we were able to 

demonstrate that TFC consistently outperformed other benchmarks in several real datasets. 

Adaptive beamformer based benchmarks outperformed the non-adaptive method sLORETA, 

especially for complex brain source power change estimation, which was consistent to our 

previous findings.

5. Discussion

This paper introduces a novel alternative empirical Bayesian method to localize the 

time-frequency dynamics of non-phase locked event related cortical activity. Since the 

proposed algorithm explicitly expands the robust source estimation algorithm, Champagne, 

we refer to this algorithm as Time-Frequency Champagne (TFC). TFC is able to obtain 

the spatiotemporal dynamics of cortical oscillations across brain sources and enables the 

five-dimensional imaging of space, time, and frequency activity in the brain, thereby it is 

applicable for wide ranging sets of studies of human cortical dynamics during cognition. 

TFC is able to handle correlated brain activity and resolve many distinct and functionally 

relevant brain areas, and estimates the minor power changes of brain activity in various tasks 

even with few trials. TFC displayed significant theoretical and empirical advantages over the 

existing benchmarks TFBF, bPCA_TFBF, VBFA_TFBF and non adaptive sLORETA. We 

also demonstrate theoretically that the TFC algorithm can be viewed as a time-frequency 

optimized beamformer algorithm where model covariances learnt from sparse Bayesian 

learning are used instead of the sample data covariance.

Simulations were developed to explore the reconstruction performance of complex source 

configurations with highly correlated time-courses, multiple point sources, and high levels 

of noise and interference. These simulations demonstrated that TFC outperformed all 

benchmarks since it showed less frequency bleed-over of activity and the temporal extents 

of the activations were accurately captured by TFC. In addition, TFC produces highest 
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SNR (colorbar in Fig. 1) in spectrograms and it is more robust to complex brain source 

reconstruction especially with high correlated time-courses, multiple point sources, and high 

levels of noise and interference as it show higher A′. In general, it is difficult to evaluate 

localization algorithm performance with real data since the ground truth is unknown. For 

this reason, we chose real data sets that have well-established patterns of brain activity 

(AEF, finger movement data and picture naming task). We also demonstrated that TFC 

is able to localize the expected bilateral brain activation with focal reconstructions for all 

subjects for AEF data analysis. TFC was also able to find a characteristic Beta band power 

decrease in contralateral sensorimotor cortex and a focal high Gamma peak in sensorimotor 

cortex which confirmed results obtained by our existing robust five dimension beamformer 

(Dalal et al., 2008a). In a picture naming task analysis, the localization quality of TFC was 

superior to that of other benchmarks, since the localized voxel was more centered on the 

time-frequency decomposition and the spread of activation was more restricted. TFC thus 

not only improved the spatial but also the temporal resolution, yielding the highest output 

SNR.

Since spontaneous brain activity has a very low signal-to-noise ratio against background 

activity, many trials are typically required to reconstruct evoked fields. In real data analyses, 

we also explored the ability of our novel TFC to achieve such reconstructions with few 

trials. TFC was able to robustly localize brain activity power changes with few trials in 

the finger movement and picture naming tasks, which can be considered a breakthrough in 

electromagnetic brain imaging, showing a potential to reduce scanning times for children 

and other groups of subjects who cannot tolerate long periods of data collection.

Prior efforts in model data covariance estimation have used pure statistical models like 

probabilistic principal components analysis (PPCA) or factor analysis (FA) models. In our 

prior work and as benchmarks here, we have demonstrated that such pure statistical model 

based covariance estimates do not yield robust performance. In contrast, we can view TFC 

as a hybrid method using a combined biophysical and statistical model that yields robust 

model covariances which can be used instead of sample covariance estimates in adaptive 

beamformers.

The robust performance of TFC enables accurate and automated estimation of event 

related non-phase locked activity from a very small number of trials. Therefore, TFC 

can significantly advance translational neuroscience studies using MEG imaging. In 

clinical populations, such as those with neurodevelopmental or neurodegenerative disorders, 

collecting data with minimal head movements for long scan times can be particularly 

challenging. In these populations, it may be possible to use TFC with data from shorter 

scans with fewer number of trials with minimal loss in reconstruction performance.

Algorithm 1

Time Frequency Champagne Algorithm.

Input: Sensor data Y C, Y T  and leadfield matrix L = L1, …, LN

Output: Dynamics of neural activity F
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1: function TFC(Y C, Y T , L)

2:  Filter Y C and Y T  into several frequency bands Y C(f) and Y T(f), f = 1, ⋯, F
3:  forf = 1, ⋯, Fdo

4:   Segment Y T(f) into several overlapping windows Y T(k, f), (k = 1, ⋯, K)

5:   ΣC(f), ∼ = CHAMPAGNE Y C(f), L
6:   fork = 1, ⋯, Kdo

7:    ΣT(k, f), ∼ = CHAMPAGNE Y T(k, f), L
8:    Y O(k, f) = Y C(f), Y T(k, f)
9:    ΣO(k, f), αO = CHAMPAGNE Y O(k, f), L
10:    forn = 1, ⋯, Ndo

11:     ifαO(n, k, f) ≠ 0then

12:
     FTFC(n, k, f) = 10 log10

tr Ln
⊤ΣO

−1(k, f)ΣT(k, f)ΣO
−1(k, f)Ln

tr Ln
⊤ΣO

−1(k, f)ΣC(f)ΣO
−1(k, f)Ln

13:     else

14:      FTFC(n, k, f) = 0
15:     end if

16:    end for

17:   end for

18:  end for

19:  returnF
20: end function

21:

22: functionCHAMPAGNE Y , L
23:  Initialize α = diag α1Idc × dc, ⋯, αNIdc × dc , Λ = diag λ1, ⋯, λM  randomly

24:  repeat

25:   ΣY = LαL⊤ + Λ
26:   forn = 1, ⋯, Ndo

27:    Sn = αnLn
⊤ΣY

−1Y
28:

   αn =
tr Sn

⊤Sn

Ttr Ln
⊤ΣY

−1Ln

29:   end for

30:   form = 1, ⋯, Mdo

31:

   λm =
(Y − LS)(Y − LS)⊤

mm

T ΣY
−1

mm

32:   end for

33:  until

34:  F = log ΣY + tr Y ⊤ΣY
−1Y  converges

35:  returnΣY , α
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36: end function

The underlying framework for Bayesian inversion algorithms proposed by Friston et al. 

(2008), Sato et al. (2004), Belardinelli et al. (2012) et al. is similar to ours. These are all 

algorithms attempting to parameterize the inverse model in terms of empirical Bayesian 

estimation of coefficients of covariance components. In the case of Friston et al. (2008). 

these covariance components are based on spatial bases of the adjacency matrices. In 

the case of Sato et al. (2004), the covariance components are based on fMRI spatial 

priors. These approaches can be thought of as estimating multiple sparse priors (MSP) 

as investigated by Belardinelli et al. (2012). Although our framework is identical to 

the above publications, there are differences in the exact algorithm for optimization. In 

contrast to Friston, Sato and Belardinelli et al. who use variations of Restricted Maximum 

Likelihood, Expectation-Maximization, Fisher Scoring and Greedy Methods with slower 

and poorer convergence properties, we use a convex-bounding framework with better and 

faster convergence (see Wipf and Nagarajan, 2009 for details), which also correspond to 

Majorization Minimization algorithm based on majorization by a convex function using 

Jesnen’s inequality (see recent publication Hashemi et al., 2021b on MM for solving this 

class of problems). Finally, in contrast to ours and the above mentioned approaches, the 

approach proposed by Grova et al. (Chowdhury et al., 2013) uses a maximum entropy 

non-linear framework for source reconstruction and this framework does not have a direct 

interpretation within a Bayesian framework. Appropriate modifications to these alternative 

sparse methods could result in similar performance and need to be demonstrated in future 

work. Related work also includes Gianvittorio et al. who developed a Bayesian method for 

localization of multiple dipole in the frequency domain (Luria et al., 2019). Future studies 

should compare their approach with the proposed TFC.
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Appendix A.: Brief summary of the Champagne algorithm

This section briefly introduces the Champagne algorithm with noise learning, for a detailed 

derivation, we refer to our previous paper (Cai et al., 2020). Champagne algorithm 

with noise learning is formulated based on an empirical Bayesian schema and the input 

are only the sensor data Y  and leadfiled matrix L. Champagne assumes the generative 

model (Eq. (1)) with the following prior distributions s(t) ∼ N(s(t) ∣ 0, α) and ε(t) ∼ N(0, Λ), 
where Λ = diag λ1, λ2, ⋯, λM  and α is a dcN × dcN block diagonal matrix expressed as 

α = diag α1Idc × dc, ⋯, αNIdc × dc , αnIdc × dc is a prior variance dc × dc matrix of sn and Idc × dc is a dc × dc
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identity matrix. To estimate the model data covariance, we need to maximize the marginal 

likelihood expressed below:

F = log ΣY + tr Y ⊤ΣY
−1Y , (A.1)

where ΣY = LαLT + Λ is the model data covariance. The unknown parameters are the prior 

hyperparameters α and Λ. Champagne utilizes a convex bounding (Hashemi et al., 2021b; 

Jordan et al., 1999) on the logarithm of the marginal likelihood (model evidence) to estimate 

these unknown hyperparameters, which results in the following fast and convergent update 

rules:

Sn = αnLn
⊤ΣY

−1Y , (A.2)

αn =
tr Sn

⊤Sn

Ttr Ln
⊤ΣY

−1Ln
, (A.3)

λm =
(Y − LS)(Y − LS)⊤

mm

T ΣY
−1

mm

. (A.4)

In short, the Champagne algorithm with noise learning first initializes the voxel variances 

and noise covariance with random values, then updates the voxel variances and the noise 

covariance using Eqs. (A.2), (A.3) and (A.4) until the cost function Eq. (A.1) converges. 

Finally, the Champagne algorithm with noise learning outputs the model data covariance ΣY , 

brain source activity S and estimated prior distributions variance α.

For robust estimation of source power for control and time windows using the Champagne 

algorithm, we start by filtering and segmenting the sensor data into control time and K
task time windows, to calculate the change from control time window Y C(f) to k-th task 

time window Y T(k, f). To ensure that the magnitude of sources are comparable between 

the task and control periods and decreases the likelihood of resolving false sources, we 

run Champagne algorithm with the input of omnibus data that includes both task and 

control time-windows, denoted as Y O(k, f) = Y C(f), Y T(k, f)  and leadfield matrix L to obtain 

omnibus prior hyperparamters αO(k, f) and model data covariance ΣO(K, f). We then use the 

omnibus parameters to estimate the source power in control and task periods at n-th voxel 

(Eqs. (3) and (4) in the main paper) expressed as

P C(n, k, f) = tr Ep SC ∣ Y C SC n SC
⊤

n

= αO
2(n, k, f)tr Ln

⊤ΣO
−1(k, f)ΣC(f)ΣO

−1(k, f)Ln , (A.5)

P T(n, k, f) = tr Ep ST ∣ Y T ST n ST
⊤

n

= αO
2(n, k, f)tr Ln

⊤ΣO
−1(k, f)ΣT(k, f)ΣO

−1(k, f)Ln , (A.6)
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where ΣC(f) and ΣT(k, f) are well-regularized model covariances of control and task windows 

estimated by running Champagne algorithm with inputs Y C(f), L and Y T(k, f).

Appendix B.: Bayesian Principal Components Analysis (bPCA) and Factor 

Analysis (FA) estimates of model data covariance

Bayesian PCA (bPCA) corresponds to a multivariate Gaussian model where a random vector 

can be expressed as a weighted linear combination of random components superimposed by 

independent noise. The covariance can be decomposed as the sum of a low rank matrix and a 

scaled identity matrix. With this statistical model, standard PCA is transformed into a latent 

variable model such as VBFA.

To derive the bPCA model, we use an extension of the standard bPCA model (Engemann 

and Gramfort, 2015; Nagarajan et al., 2007; Woolrich et al., 2011). We assume K represents 

the number of components and Y  a sample sensor time series. The M-dimensional vector Y
is then obtained from a K-dimensional random vector X which is linearly transformed by K
latent factors forming a matrix A of size M × K, and a random noise vector ϵ. The generative 

model used in bPCA is then expressed as:

Y = AX + ϵ, (B.1)

where we assume that both X and ϵ are mutually independent random vectors drawn 

from spherical multivariate Gaussian distributions, of respective dimensionalities K and M. 

Without loss of generality, the prior distributions of X and ϵ are assumed as:

p(X) = N(0, I), (B.2)

p(ϵ) = N 0, σ−1I . (B.3)

The prior on A is an automatic relevance determination (ARD) prior:

p(A) = N 0, (σΨ)−1 , (B.4)

where σI and σΨ are the prior precision of noise ϵ and weight matrix A. Using Variational 

Bayes (VB) inference to approximate the unknown parameters A, X, σ and Ψ by maximizing 

the variational free energy, the update rules are as follows,

A = RY X RXX + Ψ −1,
X = σ A⊤σA + M RXX + Ψ −1 + I −1AY ,
σ = 1

KM tr RY Y − ARY X ,

Ψ = diag 1
M A⊤σA + RXX + Ψ −1 ,

(B.5)
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where, RY Y  is the sample data covariance of Y , RY X and RY X are the expected data covariance 

of Y X and XX Sekihara and Nagarajan (2015). After convergence, the covariance derived 

from the bPCA model is given by:

ΣY
bPCA = AA⊤ + σIM . (B.6)

We note that the model used for bPCA in Eq. (B.4) can be considered as a special case of 

the model used in Factor Analysis. In bPCA, the error, ϵ is assumed to be a homoscedastic 

noise, ϵ ∼ N 0, σIM : the noise variance is the same for all variables, here all sensors. In 

contrast, FA assumes a heteroscedastic noise, ϵ ∼ N 0, Σϵ , where Σϵ = diag σ1, ⋯, σM : the 

noise variance differs between sensors. In this case, the update rule of Σϵ is expressed as 

Σϵ = 1
K diag RY Y − ARY X . The estimated model data covariance as delivered by FA is given by

ΣY
FA = AA⊤ + Σϵ . (B.7)

This estimate of the model data covariance (Eqs. (B.6) and (B.7)) can be used to compute 

the beamformer weights and the estimated source power, and finally the F-ratio of the power 

contrast. In this paper, we named Time_Frequency Beamformer with model covariance 

learnt by bPCA and VBFA as bPCA_TFBF and VBFA_TFBF.
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Fig. 1. 
A single example to compare the performance of F-ratio estimation across methods. 

Shown at the top are the peaks and corresponding spectrograms of the three simulated 

sources. In the rows below the reconstruction results using TFBF, sLORETA, bPCA_TFBF, 

VBFA_TFBF and TFC are shown. In each of those panels, the crosshairs mark the 

spatiotemporal peak of the F-ratio for the reconstructed source, with the corresponding 

spectrogram shown below it. The time-frequency window for which the spatial activation 

map is superimposed on the MRI is highlighted in the spectrogram.
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Fig. 2. 
Localization results of aggregate performance as a function of the number of seeded point 

sources and the signal-to-noise ratio. The inter- and intra- source correlation were set to 0.95 

and 0.95. The results are averaged across 50 simulations for each configuration and the error 

bars represent the standard error.
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Fig. 3. 
Auditory evoked field (AEF) results for two subjects obtained for all available trials. The 

results using TFC are shown in the right-most column and the results obtained using the 

benchmark algorithms are shown in the other four columns.
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Fig. 4. 
Shown above are F-ratios obtained for left index finger movement data using different 

algorithms. The change in power from a control time window to an active time window was 

superimposed on subject’s brain for the Beta (first row) and Gamma bands (second row).
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Fig. 5. 
Single example showing F-ratios for left index finger movement in Beta band obtained for 

different algorithms as a function of the number of trials.
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Fig. 6. 
Single example showing F-ratios for left index finger movement in high Gamma band 

obtained for different algorithms as a function of the number of trials.
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Fig. 7. 
Obtained F-ratios as a function of the number of trials for left index finger movement data. 

Spatial correlation was calculated between the F-ratios estimated by different algorithms and 

the ground truth, which was defined as the F-ratio estimated from all available trials using 

TFC. The results were averaged across 30 simulations for each configuration. Error bars 

show the standard error of the mean.
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Fig. 8. 
Shown above are F-ratio estimates obtained for the picture naming task using TFBF, 

sLORETA, VBFA_Beam and TFC. The functional maps are superimposed on each 

individual subject’s structural MRI scan. In each of the panels, the crosshairs mark the 

spatiotemporal peak for the reconstructed source, with the corresponding spectrogram 

shown below it. The functional map plotted on the MRI corresponds to the time-frequency 

window highlighted in the spectrogram.
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Fig. 9. 
A single example showing F-ratios obtained for each algorithm on the picture naming task 

data in Beta band as a function of the number of trials.
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Fig. 10. 
A single example showing F-ratios obtained for each algorithm on the picture naming task 

data in Gamma band as a function of the number of trials.
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Fig. 11. 
Evaluation results observed for increasing numbers of trials on the picture naming task 

data in the Beta and high Gamma bands. Spatial correlation was calculated between the 

F-ratios estimated by different algorithms and ground truth, which was defined as the F-ratio 

estimated by TFC using all avilable trials. The results were averaged across 30 simulations 

for each configuration. Error bars show the standard error of the mean.
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