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RESEARCH ARTICLE

Outcomes and risk factors for delayed-onset 
postoperative respiratory failure: a multi-center 
case-control study by the University 
of California Critical Care Research Collaborative 
 (UC3RC)
Jacqueline C. Stocking1*  , Christiana Drake2, J. Matthew Aldrich3, Michael K. Ong4,5, Alpesh Amin6, 
Rebecca A. Marmor7, Laura Godat7, Maxime Cannesson8, Michael A. Gropper3, Patrick S. Romano1,9, 
Christian Sandrock1, Christian Bime10, Ivo Abraham11 and Garth H. Utter9,12 

Abstract 

Background: Few interventions are known to reduce the incidence of respiratory failure that occurs following elec-
tive surgery (postoperative respiratory failure; PRF). We previously reported risk factors associated with PRF that occurs 
within the first 5 days after elective surgery (early PRF; E-PRF); however, PRF that occurs six or more days after elective 
surgery (late PRF; L-PRF) likely represents a different entity. We hypothesized that L-PRF would be associated with 
worse outcomes and different risk factors than E-PRF.

Methods: This was a retrospective matched case-control study of 59,073 consecutive adult patients admitted for 
elective non-cardiac and non-pulmonary surgical procedures at one of five University of California academic medical 
centers between October 2012 and September 2015. We identified patients with L-PRF, confirmed by surgeon and 
intensivist subject matter expert review, and matched them 1:1 to patients who did not develop PRF (No-PRF) based 
on hospital, age, and surgical procedure. We then analyzed risk factors and outcomes associated with L-PRF compared 
to E-PRF and No-PRF.

Results: Among 95 patients with L-PRF, 50.5% were female, 71.6% white, 27.4% Hispanic, and 53.7% Medicare recipi-
ents; the median age was 63 years (IQR 56, 70). Compared to 95 matched patients with No-PRF and 319 patients who 
developed E-PRF, L-PRF was associated with higher morbidity and mortality, longer hospital and intensive care unit 
length of stay, and increased costs. Compared to No-PRF, factors associated with L-PRF included: preexisiting neuro-
logic disease (OR 4.36, 95% CI 1.81–10.46), anesthesia duration per hour (OR 1.22, 95% CI 1.04–1.44), and maximum 
intraoperative peak inspiratory pressure per cm  H20 (OR 1.14, 95% CI 1.06–1.22).
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Background
Postoperative respiratory failure (PRF) is a significant 
source of increased hospital length of stay, in-hospital 
and post-discharge morbidity, and in-hospital and long-
term mortality; translating into markedly increased costs 
[1–5]. However, it is thought to be a potentially prevent-
able adverse event [6] that is amenable to appropriate 
care [7]. With the volume of surgical procedures increas-
ing annually, [8] there is an urgent and unmet need to 
reduce the incidence of PRF [9] by elucidating vulnerable 
PRF subpopulations by phenotypic presentation to iden-
tify: 1) which patients are most at risk, 2) which pathways 
contribute to increased morbidity and mortality, and 3) 
which patients are most likely to benefit from targeted 
preventive and therapeutic interventions [10].

The disparate burden of PRF by phenotype in surgi-
cal patients remains understudied. Also underreported, 
are differences between patients who develop PRF early 
versus late in their postoperative course. While there is 
no universal consensus on when respiratory failure is 
related to the surgical procedure, most clinicians, includ-
ing our co-authors who are practicing anesthesiologists, 
surgeons, and critical care intensivists in the largest 
healthcare system in the state of California, describe the 
acute postoperative phase as lasting two to 3 days, and 
state that 5 days is a very reasonable cutoff that is clini-
cally relevant when studying early postoperative com-
plications. This five-day cutoff falls within the 0–7-day 
range described in four publications [11–14]. Among 
these publications is a study in which the authors used 
data from 4366 patients, 113 of whom developed early 
postoperative acute lung injury (ALI) or acute respiratory 
distress syndrome (ARDS), defined as occurring dur-
ing postoperative day (POD) 0–5, to develop the Surgi-
cal Lung Injury Prediction Model [14]. The Surgical Lung 
Injury Prediction Model uses readily available preopera-
tive risk factors to predict risk of early postoperative ALI 
or ARDS with high accuracy. The three additional studies 
used POD 0–3 [13], POD 0–5 [12], and POD 0–7 [11] to 
define the outcome of PRF, ALI, or ARDS. The dynamic 
nature of the postoperative timeframe is affected by 
many pre-, intra-, and post-operative factors acting syn-
ergistically and it is challenging to determine when PRF 
is a direct complication of the surgical events or a later 

consequence of additional events that occur during hos-
pitalization [15]. Yet, it is precisely this lack of consen-
sus that has hindered efforts to identify phenotypes and 
clinical trajectories to determine modifiable risk factors 
and reduce the incidence of PRF. There is also little con-
vergence of research on the risk factors associated with 
PRF. Different patient populations, combined with the 
low incidence of this rare event, have led to risk models 
with varying factors [15–18].

The University of California Critical Care Research 
Collaborative  (UC3RC) previously reported on patient- 
and procedure-related risk factors associated with PRF 
that developed on or before postoperative day five (early 
PRF; E-PRF) for 319 patients [19]; however, cases that 
occur later likely represent a different population of 
patients. In this study we compare patient outcomes and 
patient- and procedure-related risk factors associated 
with PRF that developed on or after postoperative day six 
(late PRF; L-PRF) to patients who did not develop PRF 
(No-PRF). We also separately compared outcomes of the 
L-PRF patients to cases of E-PRF. We hypothesize that 
patients who develop L-PRF will have worse outcomes 
and a unique set of modifiable patient- and procedure-
related risk factors.

Methods
This multicenter study by the  UC3RC was approved 
by the Institutional Review Boards at the University of 
California, Davis (lead site) and Irvine, Los Angeles, 
San Diego, and San Francisco (collaborating sites), all of 
whom waived the requirement for informed consent for 
participation in the study. We previously described our 
case-control study methods, [19] including the validity 
of case ascertainment [20]. This manuscript adheres to 
Strengthening the Reporting of Observational Studies in 
Epidemiology (STROBE) guidelines [21].

Study design and setting
This was a retrospective matched case-control study of all 
eligible adult elective surgery discharges between Octo-
ber 1, 2012, and September 30, 2015, at the five Univer-
sity of California academic medical centers. The outcome 
of interest was the diagnosis of L-PRF. We selected all 

Conclusions: We identified that pre-existing neurologic disease, longer duration of anesthesia, and greater maxi-
mum intraoperative peak inspiratory pressures were associated with respiratory failure that developed six or more 
days after elective surgery in adult patients (L-PRF). Interventions targeting these factors may be worthy of future 
evaluation.

Keywords: Respiratory failure, Postoperative, Risk factors, Surgical outcomes, Elective surgery, Matched case-control 
study, AHRQ PSI 11
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predictor variables based on literature review and clinical 
expertise. L-PRF cases, which developed six or more days 
after surgery, were first compared to the No-PRF cohort 
and then to the E-PRF cohort.

Study population
We used hospital administrative data submitted to 
the University Healthsystem Consortium (UHC), 
now Vizient Inc., based on the Agency for Healthcare 
Research and Quality (AHRQ) algorithm for Patient 
Safety Indicator 11 (PSI 11), Postoperative Respiratory 
Failure Rate, [22] to identify at-risk patients and poten-
tial cases of L-PRF among all adult patients discharged 
following an elective surgical procedure from all five 
sites during the study period. Because we were inter-
ested in potentially preventable cases of PRF, we excluded 
patients who required an open thoracic procedure (e.g., 
esophageal resection, lung cancer resection, open heart 
surgery).

Ascertainment of cases
Among 59,073 consecutive adult patients admitted for 
elective non-cardiac and non-pulmonary surgical pro-
cedures, 437 possible cases of PRF were identified based 
on administrative data. Each of these possible cases was 
then reviewed to confirm presence of at least one of the 
following criteria: [20, 23].

1) arterial oxygen partial pressure (PaO2) < 60 mmHg 
on room air; a ratio of arterial oxygen partial pressure 

(PaO2) to the fractional inspired oxygen (FiO2) < 300 
[24]; or

2) physician documentation of PRF (due to hypoxemia 
or hypercarbia) or acute respiratory distress syn-
drome (ARDS); or

3) physician documentation of one of the following pro-
cedures because of respiratory compromise, insuffi-
ciency, or failure: [22]

a. unplanned postoperative endotracheal re-intubation; 
or

b. continuous mechanical ventilation (MV) for 
> 48 hours.

We omitted 23 false positive cases and confirmed 319 
cases of E-PRF and 95 cases of L-PRF (Fig. 1).

Matching and verification of no‑PRF
We matched L-PRF cases to No-PRF in a 1:1 ratio, ran-
domly selecting the control(s) within strata based on age 
(by decade) (Additional file 1, Table S1), hospital (Addi-
tional  file  2, Table  S2), and principal ICD-9-CM proce-
dure code (grouped by anatomic region and open versus 
minimally invasive approach using the Healthcare Cost 
and Utilization Project Clinical Classification Tools and 
Software [25]; (Additional  files  3 and 4, Table  S3 and 
Table  S4). Once matched, each of the flagged No-PRF 
cases was reviewed to confirm the absence of true clinical 

Fig. 1 Ascertainment of Cases and Controls
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PRF using the criteria defined above. This control group 
is referred to as No-PRF.

Sample size and power analysis
A priori, using methods described by Dupont and Plum-
mer, [26–28] we determined the odds ratio we would be 
able to detect for a sample size of 95 cases matched 1:1 to 
No-PRF. We calculated we would be able to detect true 
odds ratios more extreme than 0.25 or 2.81 in exposed 
relative to unexposed subjects with power of 80% at an 
α level of 0.05, assuming a probability of exposure among 
No-PRF of 20% and a correlation coefficient for exposure 
between matched cases and No-PRF of 0.2.

Instrument development
We modified the abstraction instrument from a prior 
UHC PRF benchmarking project [29] for use in this study 
via the REDCap™ electronic platform. We previously 
published our study instrument as an online supple-
ment [20]. A condensed table of definitions of comor-
bidities, risk factors, and outcome variables can be found 
in the online supplement (Additional  file  5, Table  S5). 
The instrument contains information on demograph-
ics, pre-existing comorbidities, preoperative laboratory 
and radiographic test results, procedures and diagnoses, 
length of stay, intra- and perioperative care (e.g., ven-
tilator settings, fluid intake and output, and medication 
administration), and discharge disposition. We used 
methodology developed by Vizient, Inc., to determine 
total costs of care for each encounter, inclusive of direct 
and indirect costs, from charge data [30].

Data collection
The entire health record for each sampled hospitaliza-
tion was reviewed, and data were manually extracted and 
entered into a REDCap™ database. Five abstractors par-
ticipated in data collection and the first author validated 
the data abstraction of 100% of the records. Interrater 
reliability was not explicitly measured, but disagreements 
after the initial training period were rare.

Statistical analysis
We performed conditional logistic regression to assess 
potential risk factors for L-PRF. We calculated unadjusted 
odds ratios (ORs) and 95% confidence intervals (CIs). We 
assessed all predictors supported by prior studies and 
predictors with p < 0.20 for collinearity and excluded all 
variables with a variance inflation factor ≥ 2.5 from con-
sideration for multivariable analysis [31].

We developed multivariable conditional logistic regres-
sion models using purposeful variable selection [32] and 
a 10% change-in-estimate procedure [33] to determine if 
the potential for confounding was present and warranted 

adjustment. For final model selection, we relied on Akai-
ke’s Information Criteria (AIC) and Bayesian Information 
Criteria (BIC) to identify best model fit [34]. We calcu-
lated adjusted odds ratios and 95% confidence intervals, 
using Stata MP® version 15.1 for all analyses. We then 
performed Poisson regression to analyze differences in 
hospital and intensive care unit length of stay between 
L-PRF cases and non-cases and between E-PRF cases and 
L-PRF cases. We used linear regression to analyze differ-
ences in total cost.

Results
Matched case‑control sample (L‑PRF and no‑PRF)
There were 95 confirmed cases of L-PRF among 59,073 
eligible discharges from the five sites for an overall rate of 
1.61 per 1000 discharges. After 1:1 matching of L-PRF to 
No-PRF, our total sample (n = 190) was majority female, 
white, non-Hispanic, and covered by a third-party payer 
(Table  1). Most patients (59%) were 60 years of age or 
older. The baseline acuity of most patients was high: 
72.1% had an American Society of Anesthesiologists 
(ASA) class of III or greater; 63.2% had two or more pre-
existing comorbid conditions on admission.

Among the matched cohort, most patients had general 
anesthesia (n = 186, 97.9%) and received a neuromuscu-
lar blocking agent (n = 178, 93.7%) (Table  2). The most 
common neuromuscular blocking agent used for induc-
tion was rocuronium (n = 134, 70.9%); the next most 
common was vecuronium (n = 17, 9.0%). Surgery most 
often involved open procedures of the abdomen or pel-
vis (n = 122, 64.6%), followed by open procedures of the 
head and neck (n = 21, 11.1%). Most patients received a 
benzodiazepine (n = 133, 70.0%) and almost all patients 
(n = 181, 95.3%) received an opioid. Ventilator tidal vol-
ume ranged from a median low of 6.8 cc/kg for predicted 
body weight (IQR 6.1, 7.7) to a median high of 8.8 cc/kg 
for predicted body weight (IQR 7.9, 9.9). Most patients 
had a positive fluid balance at the end of the operating 
room procedure (n = 183, 96.3%) and 24 hours after the 
operating room procedure (n = 167, 87.9%).

The etiology of L-PRF was primarily of pulmonary 
origin (e.g., aspiration pneumonitis, pneumonia) in 58 
cases (61.0%) and of extrapulmonary in origin (e.g., 
sepsis, postoperative hemorrhage) in 37 cases (39.0%) 
(Additional  file  6, Table  S6). The most common etiolo-
gies were infectious in nature (n = 38, 40.0%) (e.g., sepsis, 
pneumonia).

Outcomes: L‑PRF versus no‑PRF
Cases of L-PRF had higher unadjusted in-hospital mor-
tality, hospital and intensive care unit (ICU) length 
of stay, and total costs (Table  3). Compared to cases of 
No-PRF, and adjusting for age, hospital, procedure, ASA 
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class, and total number of comorbidities, the average 
hospital length of stay for cases of L-PRF was 5.03 (95% 
CI 4.01–6.31) times as long, the average ICU length of 
stay was 21.99 (95% CI 11.76–41.11) times as long, and 
the average total cost was $166 K greater (95% CI $131 K 
- $202 K). Compared to No-PRF, cases of L-PRF were less 
often discharged home able to care for themselves and 

more often discharged to a long-term care facility or a 
skilled nursing facility.

Outcomes: E‑PRF versus L‑PRF
The median postoperative day of diagnosis for E-PRF 
was 1 (IQR 0, 2; Range 0–5) and for L-PRF was 10 (IQR 
7, 15; Range 6–57). Compared to cases of E-PRF, cases 
of L-PRF had higher unadjusted in-hospital mortality, 

Table 1 Patient-level Characteristics: Late Postoperative Respiratory Failure compared to No Postoperative Respiratory Failure

a Refer to Supplemental Table 1. Definitions of Comorbidities, Predictors, and Primary Outcome Variables
b American Society of Anesthesiologists (ASA) Classification System
c Cardiovascular disease: Includes heart attack, myocardial infarction, STEMI (ST elevation acute myocardial infarction), NSTEMI (non-ST elevation acute myocardial 
infarction), angina, dysrhythmia, valve disease (mitral, aortic), cardiomyopathy
d Neurologic disease: includes disease/deficit such as spinal cord injury, paralysis (e.g., following stroke or trauma), stroke, Parkinson’s, Cerebral Palsy, traumatic brain 
injury, hypoxic or anoxic brain injury
e Comorbid conditions included in this total: alcohol use, asthma, chronic kidney disease, chronic obstructive pulmonary disease, cardiac disease, dementia, 
diabetes (treated with oral or injectable antihyperglycemic agents), dysphagia, dyspnea (on admission at rest or with exertion), functional status (partially or wholly 
dependent,) gastroesophageal reflux disease, heart failure, home continuous positive airway pressure (CPAP) use, home oxygen use, hypertension, impaired 
sensorium (acutely confused or delirious), liver disease, neurologic disease, obstructive sleep apnea, respiratory infection (current), sepsis (present on admission), 
smoking, weight loss (> 10% unplanned in previous 3 months). OR is per each additional comorbidity

Variablea Total Sample
(n = 190)

No PRF
(n = 95)

L‑PRF
(n = 95)

Unadjusted Odds Ratio
(95% CI)

Patient Demographics
 Age (in years), median (IQR) 63 (56, 70) 63 (55, 70) 63 (56, 70) n/a (matching variable)

 Male gender, n (%) 89 (46.8) 42 (44.2) 47 (49.5) 1.26 (0.69–2.30)

 Race, n (%)

  White 139 (73.2) 71 (74.7) 68 (71.6) referent

  Black 10 (5.3) 5 (5.3) 5 (5.3) 1.01 (0.29–3.48)

  Asian 20 (10.5) 9 (9.5) 11 (11.6) 1.25 (0.50–3.09)

  Other 21 (11.1) 10 (10.5) 11 (11.6) 1.15 (0.43–3.11)

 Primary Payer Category, n (%)

  Medicare 93 (49.0) 42 (44.2) 51 (53.7) 1.45 (0.72–2.90)

  Medicaid 30 (15.8) 18 (18.9) 12 (12.6) 0.77 (0.33–1.78)

  Private/ Commercial Insurance (PPO, HMO, Military) 67 (35.3) 35 (36.8) 32 (33.7) referent

Patient Comorbidities
 Body Mass Index, median (IQR) 25.5 (22.7, 30.1) 25.8 (22.9, 30.2) 25.1 (22.5, 30.1) 0.99 (0.96–1.04)

 ASA  Classb (III and above) 137 (72.9) 62 (65.3) 75 (78.9) 1.89 (1.01–3.54)

 Alcohol (current drinker) 44 (23.2) 20 (21.5) 24 (25.3) 1.33 (0.63–2.80)

 Asthma, n (%) 14 (7.4) 9 (9.5) 5 (5.3) 0.56 (0.19–1.68)

 Chronic Kidney Disease, n (%) 17 (9.0) 7 (7.4) 10 (10.5) 1.50 (0.53–4.21)

 Chronic Obstructive Pulmonary Disease, n (%) 13 (6.8) 5 (5.3) 8 (8.4) 1.62 (0.52–5.05)

  Cardiacc, n (%) 37 (19.5) 12 (12.6) 25 (26.3) 2.05 (1.14–5.48)

 Diabetes, n (%) 34 (17.9) 16 (16.8) 18 (19) 1.15 (0.55–2.42)

 Gastroesophageal Reflux Disease, n (%) 48 (25.3) 21 (22.1) 27 (28.4) 1.36 (0.72–2.57)

 Hypertension, n (%) 85 (44.7) 39 (41.1) 46 (48.4) 1.38 (0.76–2.50)

 Liver Disease, n (%) 27 (14.2) 13 (13.7) 14 (14.7) 1.12 (0.45–2.79)

 Neurologic  Diseased, n (%) 39 (20.5) 12 (12.6) 27 (28.4) 3.30 (1.41–7.74)

 Obstructive Sleep Apnea, n (%) 20 (10.5) 8 (8.4) 12 (12.6) 1.54 (0.61–3.88)

 Smoking (current), n (%) 25 (13.2) 11 (11.6) 14 (14.7) 1.39 (0.55–3.52)

  Totale number of comorbid conditions at admission, mean (SD) 2.2 (1.6) 1.8 (1.5) 2.5 (1.5) 1.39 (1.12–1.73)

Preoperative Laboratory Tests
 Albumin < 3.5 g/dL 23 (12.1) 5 (53) 18 (19) 4.66 (1.52–14.27)
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hospital length of stay, ICU length of stay, and total costs 
(Table 3). Compared to E-PRF, and adjusting for age, hos-
pital, procedure, ASA class, and total number of comor-
bidities, the average hospital length of stay of cases of 
L-PRF was 2.30 (95% CI 1.89–2.79) times as long, the 
average ICU length of stay was 2.28 (95% CI 1.81–2.88) 
times as long, and the average total cost was $99,952 
greater (95% CI $61,532 - $138,372). Compared to E-PRF, 
cases of L-PRF were less often discharged home able to 

care for themselves and more often discharged to a long-
term care facility or a skilled nursing facility.

Relative to E-PRF, L-PRF was associated with 
increased odds (OR 2.2, 95% CI 1.66–2.97) of having 
another adverse, non-mortality patient safety event. 
L-PRF was associated with increased odds of perioper-
ative hemorrhage or hematoma (OR 4.05, 95% CI 1.66–
9.85) and postoperative acute kidney injury requiring 
dialysis (OR 6.55, 95% CI 2.97–14.43). The concept of 

Table 2 Procedure-level Characteristics: Late Postoperative Respiratory Failure compared to No Postoperative Respiratory Failure

a Refer to Additional file 5, Table S5. Definitions of Comorbidities, Risk Factors, and Outcome Variables

Variablea Total Sample
(n = 190)

No PRF
(n = 95)

L‑PRF
(n = 95)

Unadjusted Odds Ratio
(95% CI)

Procedure
 General Anesthesia, n (%) 186 (97.9) 92 (96.8) 94 (98.9) 3.67 (0.32–41.78)

 Neuromuscular Blockade, n (%) 178 (93.7) 87 (91.6) 91 (95.8) 2.33 (0.60–9.02)

 Anesthesia duration per hour, median (IQR) 6.4 (4.4, 8.1) 5.5 (3.9, 7.1) 7.1 (4.7, 8.9) 1.23 (1.09–1.41)

 Surgical duration per hour, median (IQR) 4.6 (3.0, 6.5) 3.8 (2.7, 5.6) 5.3 (3.3, 7.2) 1.21 (1.07–1.39)

Intraoperative Ventilator Management
 Tidal Volume (highest) (cc/kg) predicted body weight, median (IQR) 8.8 (7.9, 9.9) 8.8 (7.9, 9.9) 8.9 (7.8, 10.3) 1.13 (0.95–1.34)

 Positive End Expiratory Pressure (highest), median (IQR) 5 (5, 6) 5 (5, 6) 5 (5, 8) 1.09 (0.95–1.26)

 Peak Inspiratory Pressure (highest), median (IQR) 23 (19, 28) 21 (18, 25.5) 25 (20, 29) 1.14 (1.07–1.21)

Intraoperative Fluid Management
 Crystalloid Administered (per 1000 cc), median (IQR) 2.2 (1.5, 3.2) 2 (1.4, 3) 2.5 (1.6, 3.5) 1.24 (0.99–1.55)

 Colloid Administered (per 250 cc), median (IQR) 0 (0, 4) 0 (0, 2) 1 (0, 4) 1.10 (1.01–1.20)

 Blood Transfused (per 250 cc), median (IQR) 0 (0, 1) 0 (0, 0) 0 (0, 2) 1.02 (0.99–1.05)

 Net Fluid in first 24 hours post-op (cc/kg), median (IQR) 24.4 (8.6, 47.0) 21.2 (7.9, 37.8) 26.6 (9.2, 65.5) 1.007 (1.0003–1.01)

Table 3 Outcomes: Patients with Late PRF compared to Patients with No PRF and Patients with Early PRF

a Unadjusted odds ratio
b Adjusted for age, hospital, procedure, ASA classification, and total number of comorbidities
c Logistic regression, expressed as the odds ratio
d Poisson regression, expressed as the incident rate ratio (IRR)
e Linear regression, expressed as the difference between groups in units being analyzed (e.g., dollars)
f LTAC  long term acute care facility, SNF skilled nursing facility, Rehab rehabilitation facility, either a stand-alone location or a separate wing of the original hospital

Variable No PRF
(n = 95)

E‑PRF
(n = 319)

L‑PRF (n = 95) No PRF v L‑PRF Point 
Estimate
(95% CI)

E‑PRF v. L‑PRF Point Estimate
(95% CI)

Death in Hospital, n (%) 0 (0) 44 (13.8) 30 (31.6) n/a 2.88 (1.69–4.94)a, c

Hospital Length of Stay 
(days), median (IQR)

5 (4, 8) 13 (7, 23) 33 (20, 40) 5.03 (4.01–6.31) b, d 2.30 (1.89–2.79) b, d

ICU Length of Stay (days), 
median (IQR)

0 (0, 1) 3 (1, 11) 13 (1, 29) 21.99 (11.76–41.11) b, d 2.28 (1.81–2.88) b, d

Total Cost (dollars), median 
(IQR)

24,892 (16,210, 38,033) 79,755 (47,287, 140,000) 150,532 (102,953, 238,117) 166,000 (131,000 – 202,000)b, e 99,952 (61,532 – 138,372) b, e

Discharge Status Home 
independent v all other 
discharge dispositions (LTAC, 
SNF, Rehab, another Hospital, 
Hospice), n(%)f

60 (63.2) 68 (21.3) 7 (7.4) 74.3 (10.12–546.01)a, c 3.41 (1.51, 7.69)a, c
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“cascade iatrogenesis”, the sequential development of 
additional medical complications following a seemingly 
harmless first event, such as analgesia for postopera-
tive pain, has been described in terms of nursing care 
for older adults who develop PRF [35–37] and may be 
applicable here as well. We did not find an associa-
tion with any other patient safety events or hospital 
acquired infections (e.g., perioperative sepsis, surgical 
site infection).

Risk factors: L‑PRF versus no PRF
Among patient-related factors, ASA class of III or greater, 
pre-existing cardiac disease, pre-existing neurologic dis-
ease, higher number of pre-existing comorbidities, and 
low albumin were associated with increased unadjusted 
odds of L-PRF (Table 1). Procedure-related factors asso-
ciated with increased unadjusted odds of L-PRF included: 
longer duration of anesthesia and surgery; higher peak 
inspiratory pressure; higher intra-operative volume of 
infused colloid; receiving blood in the operating room; 
increased intravenous fluid intake in the operating room 
and at 24 hours postop; and 24-hour net positive fluid 
balance (Table 2).

Multivariable analysis
In the final multivariable conditional logistic regression 
model, after matching cases with L-PRF 1:1 to cases with 
No-PRF based on age, hospital, and surgical procedure, 
factors associated with L-PRF included: the presence of 
neurologic disease at admission, anesthesia duration, and 
maximum peak inspiratory pressure (Table 4).

Discussion
We compared outcomes for patients who developed 
L-PRF to patients who did not develop PRF (No-PRF) 
and to patients who developed E-PRF. L-PRF was asso-
ciated with increased morbidity, mortality, hospital 
and ICU length of stay, and total costs when compared 
to both No-PRF and E-PRF. Cases of L-PRF were often 

of infectious etiology (e.g., sepsis, pneumonia), with a 
smaller proportion due to surgical or hospital complica-
tions (e.g., acute vascular insufficiency of the intestine, 
postoperative hemorrhage). These findings align with 
those described by Moore et  al. [38], who found age 
older than 60 years and presence of any comorbidity to 
be major risk factors for sepsis, and Chughati et al. [39], 
who found hospital-acquired and ventilator-associated 
pneumonia continue to be common complications after 
surgery, despite recent emphasis on ICU prevention bun-
dles, with non-modifiable risk factors inclusive of age and 
preoperative functional ability. The incidence of infec-
tious complications emphasizes the need for early recog-
nition of at-risk patients.

While the impact of PRF (e.g., length of stay and cost) 
have been detailed in two large, multisite studies set in 
Academic Medical Centers [9] and the Veteran’s Admin-
istration, [40] we have quantified, using newer data, the 
significantly worse outcomes associated with L-PRF 
when compared to E-PRF and No-PRF. We also assessed 
for risk factors associated with L-PRF, when compared to 
a matched cohort of patients with No-PRF, and identi-
fied pre-existing neurologic disease, increased anesthesia 
duration, and increased maximum peak inspiratory pres-
sure as significant and potentially modifiable risk factors. 
These findings add to a growing body of critical care and 
surgical literature examining factors associated with PRF.

Intraoperative peak inspiratory pressure
A key finding from our study is that a higher maximum 
intraoperative peak inspiratory pressure (PIP) was asso-
ciated with increased odds of developing L-PRF. It has 
long been accepted that changes in the respiratory sys-
tem occur as soon as general anesthesia and MV are initi-
ated [41, 42]; it has more recently been postulated that 
these changes can last several days [43] to several weeks 
[44–47]. Less clear is which components of MV are most 
harmful or protective in existing ARDS as well as in 
healthy lungs when the intent is to reduce the risk of ven-
tilator induced lung injury.

In a 29-center study of 2466 moderate and severe 
ARDS patients, [48] there was substantial center-to-
center variability in early adherence to lung protective 
ventilation (LPV) (0–65%) and mortality (16.7–73.3%). 
Center standardized mortality rates (SMRs), which calcu-
lated the ratio between observed and expected mortality, 
ranged from 0.33–1.98 and, of the treatment-level factors 
explored, only early LPV was associated with lower SMR. 
The authors concluded that early adherence to LPV was 
associated with lower center mortality and postulated 
LPV to be a surrogate for overall quality of care pro-
cesses. The authors defined LPV as tidal volume < 6.5 ml/
kg of predicted body weight (PBW) and plateau pressure 

Table 4 Multivariable Conditional Logistic Regression Model 
of Risk Factors Associated with Late Postoperative Respiratory 
Failure

a Neurologic disease: includes disease/deficit such as spinal cord injury, paralysis 
(e.g., following stroke or trauma), stroke, Parkinson’s, Cerebral Palsy, traumatic 
brain injury, hypoxic or anoxic brain injury

Variable Adjusted Odds Ratio
(95% Confidence Interval)

Neurologic Disease (present on admission)a 4.36 (1.81–10.46)

Anesthesia Duration (per hour) 1.22 (1.04–1.44)

Maximum Operative Peak Inspiratory Pres-
sure (per cm water)

1.14 (1.06–1.22)
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and/or peak inspiratory pressure (PIP)  <  30  cmH2O. 
In a case-control study of 50,367 surgical hospitaliza-
tions, with 93 (0.2%) cases of postoperative ARDS, the 
authors found higher median PIP in ARDS patients (27 
versus 21, p < 0.001) and stated their data suggest intra-
operative exposure to elevated PIP with a lack of posi-
tive end expiratory pressure (PEEP) was associated with 
the development of postoperative ARDS, possibly due to 
barotrauma and atelectrauma produced by these ventila-
tor settings [11]. While they recommended further inves-
tigation, the authors concluded their findings potentially 
offered clinicians opportunities to reduce postoperative 
ARDS. These two studies by Qadir et al. and Blum et al. 
are relevant to our work as the authors deemed low PIP 
to be an acceptable surrogate of LPV in the absence of 
information about plateau pressures, which they found 
to be measured only 49.6% of the time on day one in the 
ICU [48] and not collected at all in the intraoperative 
environment [11]. While we would have liked to evalu-
ate plateau pressures, these data were not documented in 
the operating suite for adults undergoing elective surgical 
procedures during the timeframe for our study. Because, 
in many intraoperative situations, LPV is not always veri-
fied with a plateau pressure, we felt our use of PIP was 
a reasonable surrogate measure of adherence to an LPV 
approach.

While plateau or driving pressures may best correlate 
with lung injury, evidence of an association between PIP 
and hospital mortality from ARDS and acute hypoxic 
respiratory failure is also provided by the international, 
multi-site LUNG SAFE study [49]. In 2377 patients 
enrolled in LUNG SAFE, potentially modifiable factors 
associated with increased hospital mortality on multivar-
iable analyses included lower PEEP; higher PIP, plateau 
pressure, and driving pressure; and increased respiratory 
rate. In an invited editorial of the LUNG SAFE study, the 
authors further reinforced the conclusion that PIP was 
higher in non-survivors [50]. They concluded that PIP is 
a potential target for improvement of outcomes in ARDS 
patients.

The Qadir et  al. findings of low adherence to LPV in 
known ARDS patients is interesting considering decades 
of evidence that LPV improves survival in ARDS, [51] 
but perhaps makes more sense when we consider the 
evolution of LPV from an initial focus on lower tidal vol-
ume and higher PEEP with or without lung recruitment 
measures, [52–54] to the addition of lower plateau pres-
sures, [55] to a more recent focus on lower driving pres-
sure (the difference between plateau pressure and PEEP) 
[56]. More recently, literature has emerged on dynamic, 
rather than static, indicators of energy load (e.g., flow 
amplitude and the clinician-selected flow waveform), 
[57–59] Future research to evaluate applicability in the 

operating suite ventilator management of adult elective 
surgery patients and possible associations between these 
modifiable determinants of ventilator induced lung injury 
(VILI) and PRF may be warranted.

Our finding of an association between increased 
intraoperative PIP and L-PRF suggests more research is 
needed to assess the long-term effects of anesthesia and 
intraoperative LPV on PRF. Specifically, future research 
to assess possible associations between measures of 
mechanical power delivered to healthy lungs and devel-
opment of PRF are needed. Several publications describe 
the physiologic changes to the respiratory system (e.g., 
alteration in respiratory muscle function, modification 
in respiratory mechanics, and reduction in lung volumes, 
factors which lead to increased atelectasis, decreased 
functional residual capacity, and decreased vital capac-
ity) that occur upon induction of general anesthesia and 
initiation of mechanical ventilation [41, 42] and that can 
persist for several days [43] to several weeks [44–47]. 
These physiologic changes, combined with the published 
theory of cascade iatrogenesis in adverse events, [36] to 
include postoperative respiratory failure, [37] and the 
known injurious effects of barotrauma and atelectrauma, 
further highlight the need for future research to explore 
the association of intraoperative LPV, to include PIP, and 
the development of L-PRF.

Anesthesia duration
Our findings align with prior studies regarding increased 
risk of L-PRF with increased duration of anesthesia and 
surgery [60]. While one study identified risk factors for 
six common procedures (pancreatectomy, hepatectomy, 
esophagectomy, abdominal aortic aneurysm repair, open 
aortoiliac repair, and lung resection) and found the risk 
factors varied by procedure type, the one risk factor 
that was consistent across all procedures was prolonged 
procedure time [61]. Aside from consideration of less 
aggressive operative approaches and optimization of 
perioperative supplies, team staffing and expertise, there 
are limited options available to reduce total surgery and 
anesthesia duration. While we did not find an association 
between type of anesthesia and L-PRF, very few patients 
in our cohort received conscious sedation, also known 
as monitored anesthesia care. In abdominal aortic aneu-
rysm and aortoiliac repair, an endovascular approach 
using monitored anesthesia care was associated with 
lower risk of PPCs (OR 0.48, 95% CI 0.24–0.92) [62].

Pre‑existing neurologic comorbidities
We also found an association between pre-existing neu-
rologic comorbidities and increased odds of L-PRF. 
While pre-existing neurologic comorbidities are largely 
non-modifiable, [7] we believe that—given the mortality, 
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morbidity, and costs associated with PRF—more research 
is needed to determine if some neurologic disorders 
might be responsive to preoperative optimization. Exam-
ples of potential interventions include protocolized swal-
low evaluation and swallow training to reduce aspiration 
risk, incentive spirometry to reduce atelectasis, and exer-
cise programs to improve strength in anticipation of early 
postoperative mobilization. Some studies on colorectal 
and cardiac surgery patients have demonstrated positive 
benefits of multimodal “prehabilitation” to optimize such 
factors as nutrition, exercise, and smoking cessation [63–
65]. Delay of elective procedures to better prehabilitate 
the patient might also be considered in high-risk neuro-
logical patient populations. In addition, a better under-
standing and awareness of which neurologic diseases 
are at highest risk would allow providers to target these 
patients for prevention in the perioperative period.

Limitations
Our results should be interpreted with some caution. 
These findings are based on retrospective analysis of a 
rare event in five academic medical centers within one 
health system, for the years 2012–2015, a timeframe 
during which the UC systems were in the process of 
implementing perioperative bundles such as Enhanced 
Recovery After Surgery (ERAS) [66]. These interventions 
might account for the limited variability we saw between 
groups with some variables of interest, such as mechani-
cal ventilation tidal volume. We were unable to analyze 
some variables of interest, such as operative plateau pres-
sure and minute-to-minute documentation of all ventila-
tor settings due to missing documentation and limited 
resources for manual data abstraction. Lung protective 
lung ventilation involves multiple ventilator parameters, 
their interaction with the patient’s physiology, and sur-
gical factors (e.g., laparoscopic surgery with pneumop-
eritoneum, Trendelenburg position, body habitus) [67]. 
The rare nature of PRF also makes analysis complex. 
While the OR and CIs for preexisting neurologic condi-
tions were both high and wide, respectively, due to the 
low incidence (n = 27 in the L-PRF group and n = 12 in 
the No-PRF group), the ORs and CIs for anesthesia dura-
tion and PIP were reasonable and plausible. We were also 
unable to analyze the effect of preoperative frailty [68], 
which has been shown to be associated with significant 
morbidity and mortality, [69] and other comorbidities of 
interest due to the incidence of PRF as a rare event. The 
ability to collect these data is crucial for future studies. 
These study limitations are similar to those described 
by Blum et al., in their case-control study of 93 surgical 
patients who developed postoperative ARDS [11] and 
Chen et  al., in their case-control study of 36 patients 
who required unplanned reintubation following general 

anesthesia [70]. Despite the limitations associated with 
studying rare events, early and novel studies on a topic, 
such as our study of L-PRF, are often hypothesis generat-
ing and serve as a good launching point to design higher 
powered future studies.

Late PRF is associated with significant morbidity, mor-
tality, and increased hospital and intensive care unit 
length of stay and healthcare costs, making it of interest 
to health care clinicians, administrators, and consumers/
patients. A strength of our study is our database, which 
included 414 confirmed cases of PRF, 319 E-PRF and 
95 L-PRF, among nearly 60,000 elective surgical admis-
sions over 4 years from five academic medical centers. 
We believe our analysis is one of the first to describe 
the different risk factors and outcomes associated with 
E-PRF versus L-PRF.

Future research
While the importance of studying rare adverse events to 
better understand modifiable risk factors is paramount to 
improve patient outcomes, this can only be achieved with 
increased power. Increasing sample size is the most effec-
tive way to improve power but is dependent upon fund-
ing for multi-center studies in which each center provides 
complete data for analysis. Larger, multi-center studies 
also allow for adjustment for other risk factors, therefore 
reducing variation and increasing power. Machine learn-
ing techniques (e.g., Classification and Regression Tree 
[CART] and random forest models) can help in identi-
fying risk factors and building strong models. Emerging 
synthetic health data generation methods may also help 
accelerate rare event outcomes research. The UC3RC 
is exploring all of these avenues. We continue to add to 
our database and work to form collaborative relation-
ships with other leading clinical research institutions to 
increase sample size and statistical power. We are cur-
rently transitioning our data abstraction, curation, and 
validation methods from manual to automated and map-
ping the data to standardized taxonomies to better facili-
tate multi-center collaborations. We also continue to seek 
additional resources to expand our effort.

Future studies of rare events should consider a com-
posite comorbidity index (e.g., Charlson and/or Elix-
hauser) rather than a total number of comorbidities. As 
risk for suboptimal outcomes often changes during the 
hospitalization, studies should also consider scores like 
the Sequential Organ Failure Assessment (SOFA) and/
or Acute Physiology, Age and Chronic Health Evaluation 
(APACHE) scores. Analysis of frailty on surgical out-
comes is also needed to determine if some elective proce-
dures should be deferred entirely.

While manual data abstraction by trained clinicians has 
many benefits, it is costly and time-consuming and limits 
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the scope of this type of research. As electronic health 
records continue to evolve and clinician documentation 
is increasingly mapped to standardized taxonomies (e.g., 
SNOMED CT, RxNorm, LOINC), the burden of abstrac-
tion will become less prohibitive. While automatic data 
capture from the electronic health record may prove ben-
eficial for future studies, it must be balanced against bur-
den of validation of the documentation and mapping to 
the existing standardized taxonomies.

Conclusions
Prevention of PRF is of great importance as PRF is a 
source of high morbidity and mortality. We have identi-
fied, in a consecutive sample of nearly 60,000 elective sur-
gical discharges, three potentially modifiable risk factors 
for L-PRF: 1) intraoperative peak inspiratory pressure; 
2) duration of anesthesia; and 3) pre-existing neurologi-
cal disease. Identification of these factors should be used 
to create and investigate targeted interventions aimed 
at reducing L-PRF. We propose that these interventions 
might include a reduction of peak inspiratory pressures 
as a component of a lung protective ventilation, resulting 
in a personalized anesthesia approach to each patient’s 
physiologic response. Second, institutional focus on 
optimization of operating room flow to reduce dura-
tion of anesthesia and surgery through enhanced staffing 
and supplies may be considered. Lastly, identification of 
sub-populations of patients with pre-existing neurologic 
disease most apt to benefit from targeted perioperative 
pre-habilitation. Ongoing research is needed to better 
understand these risk factors and to develop and validate 
interventions for prevention of L-PRF.
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