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Introduction

Polyphosphoinositides (PPIn) are a family of minor (low-abundance),
negatively charged phospholipid molecules found on the
cytoplasmic leaflet of all cellular membranes that play critical
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roles in membrane homeostasis and cellular signaling'.
Structurally, they consist of two fatty acid chains (that insert into
the cytosolic leaflet of cellular membranes), a glycerol moiety,
and an inositol headgroup (Figure 1A).
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Figure 1. Phosphoinositide metabolism and biogenesis. (A) Phosphoinositide metabolism. Hypothetical equilibrium reaction involving
four polyphosphoinositide (PPIn) species at the membrane—cytosol interface. The basic structure of the parent PPIn, phosphatidylinositol
(PtdIns), forms the substrate for subsequent PPIn species. Red labels represent gene names of lipid kinases that catalyze the addition of
phosphate groups (phosphorylate) at specific positions of the inositol ring. Blue labels represent gene names of lipid phosphatases that
remove phosphate groups (dephosphorylate) at specific positions of the inositol ring. (B) Phosphoinositide biogenesis. Diagram summarizing
the major PPIn lipid kinase and phosphatase reaction pathways. Red and blue labels are the gene names of enzymes capable of catalyzing
each reaction. Gene names with question marks (?) represent enzymes with some uncertainty surrounding their ability to catalyze a specific
reaction. Dashed arrows represent the major cellular roles for each individual PPIn. Colored circles represent the approximate cellular locations
of each PPIn species. ER, endoplasmic reticulum; PKC, protein kinase C; PTEN, phosphatase and tensin homolog.
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In primary mammalian cells, about 80% of the phosphoinositide
(PI) molecules have stearoyl/arachidonyl as their fatty acid
chains™™ (Figure 1A, “Fatty acid chains”). Typically, this is
designated C18:0/C20:4 (the number of carbons:number of
double bonds in each fatty acid) or 38:4 for the whole molecule.
A small but increasing body of evidence suggests that the fatty
acid chains of a given PPIn themselves could represent a
signaling code. For example, it has been suggested that different
fatty acid chains may confer substrate preferences at the level
of one or more lipid kinases and lipid phosphatases’*; however,
this is an area of work that requires further investigation.

The vast majority of work detailing the ability of PPIn to act as
signaling moieties involves the inositol headgroup. Indeed, it is
the inositol headgroup that can be selectively phosphorylated
by specific lipid kinases (Figure 1A) at one of three positions
(D-3, D-4, or D-5) to generate seven PPIn species from the
parent, phosphatidylinositol (Ptdlns). Each of the seven PPIn
species—three monophosphorylated phosphoinositides (PtdIns3P,
PtdIns4P, and PtdInsSP), three bisphosphorylated phosphoi-
nositides (PtdIns(3,5)P, [Phosphatidylinositol 3,5-bisphosphate],
PtdIns(4,5)P,, and PtdIns(3,5)P,), and a single trisphosphorylated
phosphoinositide  (PtdIns(3,4,5)P, [Phosphatidylinositol  3,4,5
trisphosphate]) (Figure 1B)—has signature cellular locations
(Figure 2). For example, PtdIns4P within the cell can be found
at the plasma membrane (PM), endosomes, and trans-Golgi
network, whereas the majority of PtdIns(4,5)P, or PtdIns(3,4,5)P,
within cells are found mostly at the PM. Precise spatial
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regulation of PPIn distribution is critical for regulated cellular
function and is carefully controlled through the catalytic actions
of around 50 (34 phosphatases and 20 kinases)’ differentially
localized PPIn-metabolizing enzymes, each with highly specific
preferences for a given PPIn species headgroup.

Despite contributing a small fraction to the bulk of cellular
phospholipids, PPIn make striking contributions to practically
every aspect of cell biology/physiology. They do so by recruiting
and interacting with proteins at the membrane—cytoplasm
interface to organize and shape organelle identity. There are
many excellent reviews"*'" that discuss PPIn distribution, metab-
olism, and function across many cell types; these articles are
wonderful starting points to inform readers of the general
principles and importance of these essential signaling lipids. This
review article briefly summarizes our current understanding of the
essential role(s) of PPIn in orchestrating and regulating crucial
signaling events in the mammalian nervous system and puts
particular emphasis on recent work. Further highlighting the roles
of these lipids, we discuss the implications for human health and
devastating disorders that arise when phosphoinositide metabolism
goes awry.

Biogenesis, distribution, and roles of
polyphosphoinositides in the nervous system

To begin, we focus on the biogenesis of each individual PPIn
species and their membrane distribution and define their cellular
roles in healthy cells of the nervous system.
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Figure 2. Phosphoinositide zip code. Cellular distribution of polyphosphoinositide (PPIn) species and metabolizing enzymes. Diagram
depicting the signature distribution of each PPIn species and approximate location of enzymes regulating each species. Blue and red labels
represent PPIn phosphatases and PPIn kinases, respectively. E.E., early endosome; ER, endoplasmic reticulum; PM, plasma membrane;

PtdIns, phosphatidylinositol.
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Phosphatidylinositol

PtdIns, the precursor of all PPIn (Figure 1A and B), is the most
abundant PPIn species, contributing about 10 to 20 mol % of total
membrane phospholipid content. The most abundant isoform
is PtdIns 38:4, which (it should be noted) is different from
the most abundant isoform in heterologous expression cell lines
(PtdIns 36:1)'"'">. The difference in fatty acid composition in
cultured cells compared with primary cells remains to be fully
determined. We know very little about its subcellular distribution
despite being several orders of magnitude more concen-
trated in cellular membranes than other PPIn species. PtdIns
is synthesized following the simple conjugation reaction of
myo-inositol and CDP-DAG, catalyzed by a PtdIns synthase
(PIS) enzyme in endoplasmic reticulum (ER) membranes.
Following its biogenesis, PtdIns is transported out of the ER
through one of the following three routes: (1) vesicular transport,
(2) non-vesicular lipid transfer protein mechanisms at membrane
contact sites'*™", or (3) via highly mobile PIS-containing
vesicles'®. The use of lipid-binding domains for PtdIns4P and
PtdIns3P has revealed that target membranes for PtdIns delivery
include the plasma and Golgi membranes'*' as well as a pool
of endo-membranes (Figure 1B). It remains to be seen whether
significant amounts of PtdIns concentrate at these specific
endo-membranes or it is rapidly transferred de novo to generate
mono-phosphorylated species. Most investigations have focused
on PtdIns as an essential precursor lipid for the generation of
PtdIns4P or PtdIns(4,5)P,"; this is almost certainly due to the
lack of a faithful biosensor to rigorously investigate its distribution
and metabolism.

For the nervous system, alterations in the concentration of one
of the essential substrates for PtdIns synthesis, myo-inositol,
or expressional change in a myo-inositol transporter, SMIT1
(SLC5A3 gene), modify neuronal excitability through down-
stream alterations in PtdIns(4,5)P, metabolism* and direct
interactions with KCNQI1/KCNE2 complexes™, respectively. This
information pairs well with older literature demonstrating that
lithium, administered at therapeutically relevant doses, reduces
myo-inositol and subsequently PtdIns to aid in the recovery of
mood disorders, including bipolar affective disorder**. For
PtdIns transfer proteins (PITPs), such as the Secl4-like or
START-like proteins, there are strong links to human disease,
such as the progressive neurodegenerative disorder vitamin E
status ataxia with vitamin E deficiency (AVED) and a rare
autosomal recessive disorder called Cayman-type cerebellar
ataxia, to name a few (reviewed in 26). Further underscoring the
importance of PITPs, a murine knockout model of PITPo
presents striking neurological defects”’. Together, these data
underscore the importance of PtdIns transport and metabolism
for regulated nervous system function. Despite this knowledge,
there are significant questions that remain unanswered in neurons,
including the steady-state cellular distribution/metabolism of
PtdIns and how this may be affected during signaling reactions
or disease, and the role of membrane contact site proteins that
transport PtdIns, such as TMEM?24'*. Hopefully, the development
of tools to visualize PtdIns will offer helpful insights into some
of these unanswered questions.

F1000Research 2019, 8(F1000 Faculty Rev):278 Last updated: 13 MAR 2019

Phosphatidylinositol 3-monophosphate

Phosphatidylinositol 3-monophosphate (PtdIns3P) is the signature
PPIn of endosomes and autophagosomes. Despite its relatively
low abundance (20%-30% of PtdIns4P), it is a key regulator
of endocytic trafficking, fusion, and autophagy (for review,
see 28) via PtdIns3P-dependent interactions with PX or FYVE
domains on proteins involved in cargo sorting, positioning,
and maturation. PtdIns3P is derived mainly from phospho-
rylation of PI by PI3K-II or PI3K-III*, and additional
contributions are made from dephosphorylation of phosphati-
dylinositol  3,4-bisphosphate (PtdIns[3,4]P,) by PtdIns(3,4)P,
4-phosphatases and PtdIns(3,5)P, by PtdIns(3,5)P, S5-phos-
phatases (Figure 1B). For the nervous system, it has been reported
that PI(3)P is involved (through WDR91-Rab7 interactions) in
the regulation of dendritic arborization and post-natal devel-
opment of the mouse brain®, control of axonal transport and
growth”, and GABAergic neurotransmission at inhibitory
post-synapses®. Finally, underscoring a major role for PtdIns3P
in the nervous system, deletion of PIK3C3/Vps34 in sensory
neurons causes rapid neurodegeneration™.

Phosphatidylinositol 4-monophosphate

Phosphatidylinositol ~ 4-monophosphate ~ (PtdIns4P) can be
directly synthesized from PtdIns at the plasma and Golgi
membranes via the actions of PtdIns 4-kinases, with neuronal
PM PtdIns4P also potentially augmented via the actions of
synaptojanins™ and oculocerebrorenal syndrome of Lowe (OCRL)
proteins’”*, which dephosphorylate PtdIns(4,5)P, into PtdIns4P
(Figure 1B). These two biosynthetic pathways, supplemented
by PtdIns4P generated by dephosphorylation of PtdIns(3,4)P,
by PtdIns 3-phosphatase enzymes, ensure that PtdIns4P is found
across several different organelle compartments, including
the PM, Golgi, and endosomes (Figure 2). All of the PtdIns
4-kinases (Figure 1B) are expressed in the brain, and PI4KA
(PI4K1IIcr) and PI4KB (PI4KIIIP) isoforms are localized through-
out the nervous system. PI4KIIlo. appears to be more highly
expressed in spinal cord and cerebral cortex neurons, whereas
PI4KIIP has enhanced distribution in the cerebellar cortex***.
Localization studies from the Human Protein Atlas have revealed
that PI4K2A (PI4KlIlo) is expressed across different neuronal and
astrocyte populations, and there are high levels in Purkinje cells,
hippocampus, and dentate gyrus; PI4K2B (PI4KIIP) is expressed
in the cerebellum, and the highest expression is reported for the
hippocampus. Taken together, there is a large body of evidence that
each of these enzymes is localized throughout the brain, including
in many classes of neuron.

In the peripheral nervous system, PI4KIIIow was recently reported
to play an essential role in myelin formation as Schwann
cell-specific inactivation of the gene caused myelination defects
and gross alterations in actin architecture’'. Currently, there is
little direct information visualizing the distribution of PtdIns4P
in central nervous system neurons. Information gained from
sympathetic superior cervical ganglia (SCG) neurons'’, expressing
a biosensor for PtdIns4P (P4M)*, suggests that a significant
portion of the lipid resides at the PM at rest and that other
pools are in intracellular organelles (likely the trans Golgi and
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endosomes). Such a distribution is consistent with other reports
from mammalian expression system cells***, suggesting a
conserved localization of PtdIns4P-metabolizing enzymes.
Interestingly, the same authors [11] revealed a threefold accel-
erated synthesis of PM PtdIns4P in SCG neurons, suggesting
higher enzymatic activity of the lipid 4-kinase. Thus, there
may be subtle differences in enzyme abundance, activity, and
localization in primary neuronal cells. Refined experimental
designs/tools will be necessary to analyze the molecular mecha-
nisms underlying the accelerated synthesis of PM PtdIns4P in
neurons. For the other main cellular source of PtdIns4P, the
trans Golgi, information from non-neuronal cells reveals that
PI4KB and PI4K2A and -2B all contribute to its synthesis. PI4KB
is recruited to the Golgi by Arf1*—°, whereas PI4K2A and -2B
contribute to Golgi PtdIns4P via lipid modifications and
perhaps cholesterol-rich domains*'="'.

Both PM and Golgi PtdIns4P pools appear under further
regulatory control by the lipid transfer proteins ORP5/8
(oxysterol-binding protein-related proteins5/8)°>>° and OSBP
(oxysterol-binding protein)™*’, respectively. At the PM, ORP5/8
are localized to regions of close proximity (15-20 nm) between
the ER and PM, termed ER-PM contact sites. These membrane
contacts visualized in excitable cells”", including neurons®,
are sites of close organelle membrane apposition that facilitate
information transfer (lipids and ions), independent of vesicu-
lar transport. Such membrane fusion-independent lipid transport
is likely to be essential in complex cells, like neurons, where
organelle compartments are often separated by large distances.
Through binding of their N-terminal pleckstrin homology
(PH) domains with PtdIns4P> or PtdIns(4,5)P,” or both™, the
ER-localized ORP5/8 dock with the PM. Despite not being
functionally characterized in neurons, the ubiquitously
expressed ORP5/8, similar to other mammalian cells, are likely
to facilitate the counter-transport of phosphatidylserine (to the
PM) for PtdIns4P (to the ER). Transported PtdIns4P is then
likely to be dephosphorylated to PtdIns by the ER PtdIns4P-4-
phosphatase, Sacl. Thus, ORP5/8 may serve not only to tune
PM PtdIns4P but also to aid in the maintenance of ER PtdIns
levels. At ER-Golgi membrane contact sites, OSBP1 also serves
to regulate PtdIns4P abundance. Once positioned at ER—Golgi
membrane contact sites, OSBP exchanges cholesterol (on
ER membrane) for PtdIns4P (on trans-Golgi membrane)™®’.
Compelling evidence for the importance of PtdIns4P in the
nervous system is demonstrated by PI4K2A gene-trapped mice
developing late-onset spinocerebellar axonal degeneration and the
presence of PI4K2A on synaptic vesicles®.

Phosphatidylinositol 5-monophosphate

Phosphatidylinositol 5-monophosphate (PtdIns5P) remains the
most enigmatic of the PPIs because of its low abundance (similar
to that of PtdIns3P) and the current lack of a faithful biosensor.
It is for these reasons that the effectors controlled by PtdIns5P
and the pathways it regulates are poorly understood relative to
the other PPIn family members. How PtdIns5P is biosynthesized
remains controversial. Work on non-neuronal mammalian
cells suggests two pathways for its generation: (1) directly by

F1000Research 2019, 8(F1000 Faculty Rev):278 Last updated: 13 MAR 2019

phosphorylation of Ptdlns by a PI 5-kinase (such as PIKfyve
or type I PISK enzymes)*~* or (2) indirectly via dephospho-
rylation of PtdIns(3,5)P, by the myotubularin phosphatases®.
PtdIns5P was initially discovered as having a signaling role
in the nucleus®® since reports of PtdIns5P being involved in
Akt/mammalian target of rapamycin (Akt/mTOR) signaling®
and apoptosis’’ have been documented (for review see 71,72. For
the nervous system, there is little direct information regarding
PtdIns5P.

Phosphatidylinositol 4,5-bisphosphate

Phosphatidylinositol ~ 4,5-bisphosphate  (PtdIns[4,5]P,) is the
signature PPIn of the PM (Figure 2) and undoubtedly the
best-characterized PPIn of the nervous system. It is produced
primarily through the phosphorylation of PtdIns4P by type I
PtdIns4P 5-kinases (o, B, and 7), although there may be minor
contributions from PtdIns(3,4,5)P, 5-phosphatases (PTEN) or
PtdInsSP  4-kinases (Figure 1B). PtdIns(4,5)P, is under a
further layer of regulation from PtdIns(4,5)P, 5-phosphatases,
like synaptojanin 1 and 2 and OCRL (Figures 1B and 2).
Underscoring the importance of these enzymes for human
health, mutations in the genes that encode the PtdIns(4,5)P,
5-phosphatases result in a host of human disorders of the nervous
system, including seizures™, Alzheimer’s™, Down syndrome”,
Parkinson’s’®, and Lowe syndrome*’.

PtdIns(4,5)P, plays an essential role in regulating many essential
PM events, including electrical signaling (Figure 3Ai), synaptic
plasticity’’, endocytosis, and exocytosis (Figure 3Aiii). It also acts
as a substrate for phospholipase C (PLC) following G protein—
coupled receptor (GPCR) activation (Figure 3Aii). To date,
around 100 ion channels and transporters have been shown to
be directly regulated by this lipid (for review, see [10]); many of
these PtdIns(4,5)P,-sensitive channels, including voltage-gated
potassium channels’** and voltage-gated calcium channels®', are
found in cells of the nervous system (Figure 3Ai). Thus, altera-
tions in abundance or distribution (or both) of this minor lipid can
significantly alter electrical activity in neurons''*. One such
mechanism that dynamically modulates PM PtdIns(4,5)P,
abundance is binding of modulatory neurotransmitters to recep-
tors coupled to PLC (Figure 3ii). The consequence of PLC
activation is rapid hydrolysis of PtdIns(4,5)P, into soluble IP,
and membrane-bound diacylglycerol (DAG). Consequently,
modulatory neurotransmitters of the nervous system that couple
to Gq have the potential to nearly synchronously switch off
specific ion channels, initiate Ca** from IP.R on ER membranes,
and recruit protein kinase C (PKC) to the PM. Termination of
these signaling reactions, following removal of neurotransmitter
from the synaptic cleft, allows PtdIns(4,5)P, to be rapidly
resynthesized''. The source or sources of PtdIns4P that serve
as precursor sources for the PM PtdIns(4,5)P, pool that supports
ion channel activity appear to originate from the PM''% and
trans-Golgi membranes®*.

Phosphatidylinositol 3,4-bisphosphate

PtdIns(3,4)P , is localized mainly to the PM and endocytic
compartments (Figure 2), where it typically interacts with TAPP
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B PPIn deficiency in the nervous systems

~ ~
Central Nervous System
Disease Gene PPIns
Friedreich’s Ataxia PIPK1B Ptdins(4,5)P,
OCRL Lowe’s disease OCRL1 Ptdins(4,5)P,
Alzheimer’s disease PI4K2A Ptdins4P
SYNJ1 Ptdins(4,5)P,
Parkinson’s disease SYNJ2 PtdIns4P/
Ptdins(4,5)P,
Autism Pl4Kllla PtdIns4P
PIK3CA Ptdins(3,4)P,
Joubert ciliopathy INPP5E Ptdins(3,5)P,/
Ptdins(3,4,5)P,
émylropic lateral sclerosis ~ Sac3/FIG4 Ptdins(3,5)P, D,

Peripheral Nervous System

Disease/condition Enzyme PPIns
Aberrant Myelination PI4KA Ptdins4P
Chronic Pain PIP5K1C Ptdins(4,5)P,
Amytropic lateral sclerosis Sac3/FIG4 Ptdins(3,5)P,

Charcot-Marie-tooth (4B1/B2) Sac3/FIG4

Ptdins(3,5)P,

Figure 3. Roles for polyphosphoinositides (PPIn) in the nervous system in health and disease. (A) Ptdins(4,5)P,-dependent events.
Critical events regulated by plasma membrane (PM) PtdIns(4,5)P, within the nervous system. (i) Four families of ion channels that require
Ptdins(4,5)P, as a co-factor for full function. (i) Ptdins(4,5)F, is the critical precursor for generation of IP_-mediated Ca®* release and protein
kinase C (PKC)-mediated phosphorylation. Binding of ligand (1) releases the heterotrimeric G-protein Gq (2) to activate phospholipase C (PLC),
which subsequently hydrolyses PM PtdIns(4,5)P, into membrane-bound DAG and soluble IP, (3). DAG then can recruit PKC to phosphorylate
protein targets (4) while IP, binds to the IP,R on endoplasmic reticulum (ER) membranes to initiate Ca®* releases into the cytoplasm (5).
(iii) Critical involvement of PtdIns(4,5)P, in neurotransmitter release. During calcium-regulated synaptic vesicle release, Ptdins(4,5)P, is
required to attract many proteins to the PM active zone for docking and fusion. After fusion, the vesicle membrane is recovered via the clathrin
adapter protein AP2 to form clathrin-coated pits (CCP), before dynamin-dependent membrane scission occurs during the final stages of
endocytosis. (B) PPIn deficiency in the nervous system. Diseases and cellular consequences for altered PPIn metabolism in the central (red
box) and peripheral (blue box) nervous systems. CCP, clathrin coated pit; GPCR, G protein—coupled receptor; PtdIns, phosphatidylinositol.

domain-containing proteins to orchestrate signaling cascades.
Current evidence suggests that the majority of PtdIns(3,4)P, is
formed through the actions of INPPSD (SHIP1) and INPPLI1
(SHIP2) phosphatases following class I PI3K-mediated generation
of PtdIns(3,4,5)P, at the PM* (Figure 1B and Figure 2) or by
phosphorylation of PtdIns4P via class II PI3K lipid kinases®.
PtdIns(3,4)P, is under a further layer of regulation through
the metabolic phosphatase actions of INPP4A/B* and PTENY/,
which act on their substrates to generate PtdIns3P and PtdIns4P,

respectively. PtdIns(3,4)P, is involved in maturation of late-stage
clathrin-coated pits [89] and in fast endophilin-mediated
endocytosis™’'. Loss of INPP4A function leads to neurode-
generation through a mechanism thought to involve enhanced
neuronal susceptibility to glutamate-induced excitotoxicity®’,
underscoring a potential neuroprotective role for INPP4A by
tuning PtdIns(3,4)P, signaling pathways. Finally, clustering
of PtdIns(3,4)P, appears necessary and sufficient for actin-
mediated neurite initiation and dendrite morphogenesis”. Thus,
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PtdIns(3,4)P, is thought to play a role in the maintenance of
nervous system function via its role at the PM, endocytotic
membranes, and more distal membrane compartments.

Phosphatidylinositol 3,5-bisphosphate

PtdIns(3,5)P, is the low-abundance (<0.1% of total PPIs)
signature PPIn of late endosomal/lysosomal membranes
(Figure 2). Current knowledge indicates that the synthesis
and turnover of PtdIns(3,5)P, are tightly controlled by a large
protein complex that includes Vac14, PIKfyve, and FIG4. Through
direct interactions, Vacl4 nucleates the complex between the
PtdIns3P S-kinase (PIKfyve) and PtdIns(3,5)P, 5-phosphatase
(Sac3/FIG4) to ensure tight coordination between synthesis
and degradation of PtdIns(3,5)P " (Figure 1B). At steady
state, the relatively low abundance of PtdIns(3,5)P, is important
for membrane trafficking, endocytic vesicle fission/fusion,
organelle pH, and intracellular ion channel function®~**. Mouse
models of Fig4 and Vacl4 deletions and a mutation within PIK-
fyve exhibit embryonic lethality or severe neurodegenerative
phenotypes®*'".  PtdIns(3,5)P, abundance has also been
correlated with long-term depression, and the activity of PIK-
fyve is seemingly involved in modifying synaptic strength'**'"".
Together, these observations suggest that PtdIns(3,5)P, is essential
for proper development in the nervous system.

Phosphatidylinositol 3,4,5 trisphosphate

PtdIns(3,4,5)P, is generated following binding of extracellular
stimuli—for example, growth factors epidermal growth factor
(EGF), platelet-derived growth factor (PDGF), and insulin-like
growth factor-I (IGF-I)—to receptors that activate class I
PI3K to phosphorylate PtdIns(4,5)P, into PtdIns(3,4,5)P,
(Figure 1B). Receptor-mediated elevations in PtdIns(3,4,5)P,
lead to recruitment of protein kinases (for example, AKT, BKT,
and PDK1) to the PM to shape downstream cellular signaling
cascades. PtdIns(3,4,5)P,/PI3K activity has been implicated
in many facets of nervous system function; for example,
PtdIns(3,4,5)P, appears to be involved in clustering SyntaxinlA
to regulate neurotransmitter release'’””, while levels of Akt
regulate axon branching, formation of dendritic spines, cell
hypertrophy, growth cone expansion, and axon regeneration in
neurons'”*"'”. PtdIns(3,4,5)P, levels are under tight regulatory
control by the catalytic activity of the protein and lipid
phosphatase, PTEN. PTEN is widely expressed in mouse brain,
and there is some preferential distribution in Purkinje neurons
and some pyramidal neurons'”, where it is thought to be involved
in neuronal migration, size, and survival'™'". Interestingly,
PTEN has been reported as a potential target for neuroprotec-
tion and neuroregeneration following insult or injury (for review,
see 108). In these studies, upregulation of mTOR activity in
corticospinal neurons via conditional deletion of PTEN, a negative
regulator of mTOR, enables successful regeneration of a group
of injured axons'””. Along similar lines, conditional inactivation''’
or inhibition''" of PTEN function in oligodendrocytes is required
to regulate myelin thickness and preserve axon integrity.

Polyphosphoinositides in diseases of the nervous
system

In health, the PPIn zip code (Figure 2) is established through
the combined spatial and temporal activities of over 50 PPI-
metabolizing enzymes [7]. Through the actions of each of the
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34 PPIn phosphatases and 20 PPIn kinases, each of the seven
PPIn species is generated and interacts with over 400 different
proteins at the membrane—cytosol interface''”. Given the sheer
coverage of the intracellular PPIn interactome, it is perhaps not
surprising that mutations in phosphoinositide kinases and
phosphatases have been implicated in many human diseases of
the nervous system (Figure 3B). To date, over 20 monogenetic
disorders have been reported to be caused by mutations in PPIn
enzymes. Indeed, the role of PPIn phosphatases and kinases in
health and disease has been covered comprehensively in several
reviews”' -1, Here, we focus our attention on a few of the
more commonly occurring neurological disorders that have been
suggested to arise through defects in PPIn metabolism.

Several studies have suggested that mutations in genes coding
for PPIn-metabolizing enzymes are associated with autism
spectrum disorders. Interestingly, the majority of the PPIn enzymes
associated with autism are PPIn kinases, and isoforms of the
class 1 PI3K family (for review, see 117), PI4K'"*, and PIP5K'"
are all reported to play prominent roles. For the PI4Ks, muta-
tions in the peripheral membrane adaptor protein of the PI4KIIIol
signaling complex, EFR3, are significantly more common
among autism spectrum cases than controls''®. Thus, considerable
evidence suggests that involvement in PPIn signaling in
autism; however, how each of these PPI-metabolizing proteins
contributes to the pathophysiology awaits further delineation.

Amyotrophic lateral sclerosis (ALS), commonly known as Lou
Gehrig’s disease, is a progressive neurodegenerative disease
characterized by selective motor neuron death leading to
muscle atrophy, paralysis, and motor impairment. Currently, two
proteins related to PPIn metabolism have been determined to be
disease-causing ALS mutations. The first is a substitution of
proline with serine at residue 56 on the vesicle-associated
membrane protein (VAMP)-associated protein (VAP) VAPB
gene (P56S; designated ALS8). VAPB is a conserved integral
membrane protein of the ER found in all eukaryotic cells and
regulates PPIn transport and homeostasis at ER-membrane
contact sites'*!>20-122_ At present, the molecular mechanism
or mechanisms underlying ALS8 pathogenesis remain poorly
understood; however, in transgenic mice, expression of human
VAPB with the ALS8 mutation causes various motor behavioral
abnormalities, including progressive hyperactivity'”. Thus,
future investigations appear warranted to determine the down-
stream neuropathology associated with this mutation. The second
PPIn protein associated with ALS involves the PtdIns(3,5)P,
5-phosphatase, Sac3/FIG4. Mutations in Sac3/Fig4 result in a
significant loss of protein function, resulting in this autosomal
dominant form of ALS, designated ALS11 [99]. Further implicating
alterations in PtdIns(3,5)P, metabolism as a potential risk factor
for disease progression, mutations in PIKfyve production
have been linked to neurological disorders such as ALS and
Charcot-Marie-Tooth ~ disease®*'*.  Indeed, mutations in
myotubularin-related 2 (MTMR2), which preferentially dephos-
phorylates PtdIns3P and PtdIns(3,5)P, into PtdIns and PtdIns5P,
respectively, cause autosomal recessive Charcot—Marie—Tooth
disease type 4B (CMT4B1)'»-". This disorder manifests as
childhood onset of progressive muscle weakness of the distal
muscles and sensory loss that is characterized by decreased nerve
conduction velocity and demyelination in the nerve'”. A less
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severe MTMR27~ mouse model develops azoospermia and
abnormal peripheral nerve myelination with marked myelin sheath
focal outfoldings in Schwann cells rather than peripheral motor
neurons.

A growing body of evidence suggests that intracellular
levels of PPIn are significantly altered in the two most
prevalent neurodegenerative disorders: Alzheimer’s™!*'** and
Parkinson’s**"*". For Alzheimer’s disease, genetic polymor-
phisms or mutations in genes such as INPP5D"' and SYNJ1'* are
risk factors for late-onset Alzheimer’s disease (LOAD), and
there are several reports of amyloid beta—dependent alterations
in the catalytic activity of synaptojanin'*® and PI4K2A'*. For
Parkinson’s disease, an autosomal recessive R258Q mutation
within the Sac domain of synaptojanin 1 was recently
designated PARK207°. At the cellular level, this mutation alters
synaptic development and this is accompanied by endocytic
defects and accumulation of clathrin-coated intermediates.
At the behavioral level, mice harboring this mutation develop
neurological symptoms similar to those of human patients. Further
emphasizing the link between dysfunction in early endocytic
traffic and Parkinson’s disease, loss-of-function mutations in
the ER-lysosome tethering protein VPS13C result in a distinct
form of early-onset parkinsonism characterized by rapid and
severe disease progression and early cognitive decline'*>'*.

These highlighted examples fully underscore the impor-
tance of regulated PPIn metabolism for human health. Given
the ubiquitous distribution of PPIn across all mammalian
cells, the scale of the PPIn interactome, and their essential
role in choreographing critical signaling events, it is perhaps
inevitable that every human disease will exhibit some form of
PPIn dysfunction.

Conclusions and future directions

In the past 20 years, there has been an explosion of research on
PPIn signaling. The overarching narrative of this work is that
PPIn are indispensable and universal signaling entities that initial-
ize, organize, and contribute to nearly all aspects of cellular life.
Despite these heroic efforts, there is a lack of information that
translates and integrates what we understand in expression
systems to crucial primary cells like neurons. This author is
especially excited to better understand the neuronal localization
and function of each of the enzymes listed in Figure 1B. For
membrane contact sites, very little is known in neurons apart
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from beautiful characterizations of their morphology. Simple
questions remain unanswered, such as their primary roles, the
consequence(s) of their absence, and heterogeneity/redundancy
of proteins within defined membrane contact sites. For disease,
we need to determine at the molecular level how alterations in
PPIn at specific organelle membranes translate to progressive
changes in human behavior, ultimately leading to neuropathies
and frequently death. Finally, with continued development of
pharmacological tools, investigators can begin leveraging what
we know about PPIn metabolism (and their broad control of
cellular reactions across multiple membranes) to potentially
relieve symptoms of disease without actually addressing the
underlying genetic or idiopathic factors initiating the disease.

In conclusion, PPIn play a central role in coordinating virtually
all aspects of a cell’s life and death. Such fundamental
involvement demands continued research into the biology of
PPIn, specifically primary cells (like neurons), with the goal to
develop diagnostics and novel therapeutic strategies to expedite
treatment of human disorders.
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