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Abstract 
A number of recent models of semantics combine linguistic 
information, derived from text corpora, and visual information, 
derived from image collections, demonstrating that the 
resulting multimodal models are better than either of their 
unimodal counterparts, in accounting for behavioural data. 
However, first, while linguistic models have been extensively 
tested for their fit to behavioural semantic ratings, this is not 
the case for visual models which are also far more limited in 
their coverage. More broadly, empirical work on semantic 
processing has shown that emotion also plays an important role 
especially for abstract concepts, however, models integrating 
emotion along with linguistic and visual information are 
lacking. Here, we first improve on visual representations by 
choosing a visual model that best fit semantic data and 
extending its coverage. Crucially then, we assess whether 
adding affective representations (obtained from a neural 
network model designed to predict emojis from co-occurring 
text) improves model’s ability to fit semantic 
similarity/relatedness judgements from a purely linguistic and 
linguistic-visual model. We find that adding both visual and 
affective representations improve performance, with visual 
representations providing an improvement especially for more 
concrete words and affective representations improving 
especially fit for more abstract words.  

Keywords: language; vision; emotion; distributional models; 
multimodal models; similarity/relatedness; concreteness. 

 

Introduction 
Despite the success of distributional, linguistic models in 
accounting for behavioural effects in a variety of semantic 
tasks, all these models suffer from the symbol grounding 
problem (Harnad, 1990). As a solution to this problem, 
embodied theories of semantics (e.g., Glenberg, Graesser, & 
de Vega, 2008) have argued that the sensory-motor 
representations generated by our experiences with the world 
play an important role in determining word meaning. Recent 
computational models of semantics reconcile distributional 
and embodied theories, by combining linguistic and 
perceptual (i.e., visual) representations. The fact that 
language and vision provide complementary sources of 
information is best illustrated by the finding that multimodal, 
linguistic-visual models outperform both purely linguistic 

and purely visual models, in a wide range of tasks (see Bruni, 
Tran, & Baroni, 2011; 2014; Kiela, Verő, & Clark, 2016). 

However, empirical work has shown that semantic 
representations are not only grounded in sensory-motor 
experience but also in emotion. A vast literature supports the 
finding that emotion plays a significant and pervasive role in 
human cognition (for a review, see Dolan, 2002). Emotion is 
an important factor in memory (Blaney, 1986; Eich, 
Macaulay, & Ryan, 1994), and in processing words (e.g., 
Kousta, Vinson, & Vigliocco, 2009). Kousta et al. (2011) 
found that a much larger number of abstract than concrete 
concepts are valenced (have positive or negative emotional 
associations) and by virtue of being valenced, they are 
processed faster than neutral matched words. Vigliocco et al. 
(2014) further showed that because of their greater affective 
associations, abstract words processing engages the limbic 
emotional system and Ponari, Norbury, and Vigliocco (2018) 
showed that emotionally valenced words are learnt earlier 
and better recognized by children up to 9 years of age. Within 
a general embodiment framework, the hypothesis is that 
semantic representations do not only embed sensorimotor 
properties but also emotional properties. Emotional 
properties may be especially important for abstract concepts 
(e.g., religion, society, idea), however, emotional 
associations are not limited to abstract words and therefore, 
we argue, they play a general role in semantic representation.  

While many models have integrated linguistic and visual 
information, only one previous study has considered 
emotional information along with visual and linguistic 
information (De Deyne, Navarro, Collell, & Perfors, 2018). 
De Deyne et al. examined the change in performance for 
distributional models of semantics, when adding visual and 
emotional information. They tested the assumption that 
external language models (i.e., distributional models, trained 
on word corpora) are relatively poor at representing visual 
and affective information, in comparison to internal language 
models (i.e., models based on free association norms). They 
found that adding visual and emotional information led to 
little or no improvement for internal language models, but a 
moderate positive effect for external language models. Here, 
we develop a quite different multimodal model of semantics 
that incorporates linguistic, visual and emotional information 
from corpora of text, images and emoticons, and test the 
multimodal model against existing datasets of ratings of 
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semantic similarity/relatedness of words. We use a 
state-of-the-art emotion model (DeepMoji) and we improve 
the coverage of the visual model we use. While state-of-the 
art distributional language models (Pereira et al. 2016) have 
large coverage of words and have been widely tested for their 
ability to fit human semantic similarity/relatedness data, this 
is not the case for visual models. Thus, before being able to 
develop models that embed linguistic, visual and emotional 
information, we extend the coverage of existing visual 
models and carry out their evaluation in order to decide which 
one to use for our multimodal models. We expect that the 
integrated model will outperform a purely linguistic, as well 
as models that combine linguistic-visual and linguistic-
emotional information. In addition, we expect that adding 
visual or emotional representations will especially be 
beneficial for more concrete concepts whereas emotional 
information will especially be beneficial for more abstract 
concepts, in line with the empirical evidence reviewed above 
(and with initial findings from De Deyne et al, 2018). 

Methods 
Datasets of behavioural data 
We use four datasets of similarity/relatedness ratings to carry 
out evaluation of the models. The datasets are: SimLex999 
(999 pairs of nouns, verbs, and adjectives; Hill, Reichart, & 
Korhonen, 2015), SimVerb3500 (3500 pairs of verbs; Gerz 
et al., 2016), MEN (3000 pairs of nouns, verbs, and 
adjectives; Bruni, Tran, & Baroni, 2014), and SL (7576 pairs 
of nouns; Silberer & Lapata, 2014). We chose these norms 
mainly because they are some of the largest datasets currently 
available, but also because the word pairs they contain cover 
are very diverse in terms of concreteness and valence, as well 
as parts of speech. In terms of word pair concreteness, 
SimLex999 (M = 3.62, SD = 1.07) and SimVerb3500 (M = 
3.1, SD = 0.7) cover a broad range of values, whereas MEN 
(M = 4.4, SD = 0.49) and SL (M = 4.83, SD = 0.14) consist 
predominantly of concrete words.   
 
Model choice 
 Language Model. Our language model of choice is GloVe 
(Pennington, Socher, & Manning, 2014), trained on a corpus 
of 6 billion words, using 300-dimensional representations. 
GloVe has been shown to have a performance better than, or 
equal to, several other state-of-the-art distributional models 
(Pereira, Gershman, Ritter, & Botvinick, 2016), which makes 
it one of the best linguistic models available.   

 Emotion Model. The emotion model that we use is 
DeepMoji (Felbo et al., 2017), trained on 1.2 billion tweets. 
This model has been shown to obtain state-of-the-art 
performance in tasks involving emotion and sentiment 
analysis, as well as sarcasm detection. DeepMoji is similar to 
a number of recent approaches, which employ emotional 
expressions co-occurring with text fragments, such as 
positive/negative emoticons (Deriu et al., 2016), hashtags 
(e.g., #anger, #joy; Mohammad, 2012), or mood tags 
(Mishne, 2005). This model is very different from the one by 

De Deyne et al. (2018), which was constructed by 
concatenating valence, arousal, and potency ratings, for men 
and women separately (i.e., 6 dimensions), from the study by 
Warriner, Kuperman, and Brysbaert (2013), with valence, 
arousal, and dominance ratings, from the study by 
Mohammad (2018). DeepMoji provides better represetations 
for our purposes than ratings because firstly, a model trained 
over a corpus of tweets, rather than subjective ratings, makes 
the emotion model more comparable to the linguistic and 
visual models, both trained over corpora. Secondly, 
DeepMoji covers 50,000 words, whereas the combined 
affective norms cover less than 14,000 words. Finally, the 
model operates with 256-dimensional vector representations, 
and is trained to predict the occurrence of 64 types of 
emoticons, and thus it is able to represent complex patterns 
of word similarity, driven by richer emotional information 
than that captured by subjective norms.  

  Visual Model. To select the best model, we compared five 
models, based on their performance in predicting subjective 
similarity/relatedness ratings. The first model (K&B) is the 
convolutional model employed by Kiela and Bottou (2014; 
6144 dimensions), trained on the ESP Game dataset (Von 
Ahn & Dabbish, 2004), using the mean of the feature vectors 
per each word. The second, third, and fourth models are 
AlexNet (Krizhevsky, Sutskever, & Hinton, 2012; 4096 
dimensions), GoogLeNet (Szegedy et al., 2015; 1024 
dimensions), and VGG-19 (Simonyan & Zisserman, 2014; 
4096 dimensions), trained on images obtained from Google 
Image Search, following the approach used by Kiela, Verő, 
and Clark (2016). The fifth model uses SIFT descriptors 
(Lowe, 2004), computed over the NUS-WIDE dataset (Chua 
et al., 2009; 500 dimensions). The models were tested on 
similarity/relatedness ratings for 7611 word pairs, covered by 
all models and obtained by merging the four sets of ratings. 
Before merging, the scores in each set were linearly rescaled 
to fall in the interval [0,1], to make them comparable across 
datasets. The performance of the models was evaluated using 
the Spearman correlation between the cosine similarity of the 
model representations, and the similarity/relatedness ratings 
from the norms. The results are shown in Fig. 1.   

 
Figure 1. Spearman correlations between model cosine 
similarities and subjective similarity/relatedness ratings. 
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All the correlations are significant1 (p < .001), suggesting 
that model-based similarities are reliable predictors of 
subjective similarity/relatedness ratings. Since we want to 
find the best model, we apply the Fisher Z-Transformation 
and then run two-tailed Z-tests for all the 10 possible pairings 
of models. All the differences are significant (p < .004), and 
they reveal that GoogLeNet has the highest performance, 
followed by Alexnet, VGG-19, K&B, and SIFT. Thus, we 
use GoogLeNet. 

Results 
We tested whether linguistic-visual and linguistic-emotional 
models are indeed better than a purely linguistic one, as well 
as whether it is the case that linguistic-visual-emotional 
models are better than linguistic-visual, linguistic-emotional 
and purely linguistic ones. We also examined whether the 
models behave differently for concrete and abstract word 
pairs. 
 
Linguistic-visual and linguistic-emotional models vs 
purely linguistic model.  
To evaluate the change in goodness of fit associated with 
adding a visual component to the purely linguistic model, we 
began by normalizing the linguistic and the visual 
representations to unit length. Next, we concatenated the 
linguistic representations with the visual ones, assigning a 
weight of 1 to the linguistic components, and weights from 
0.2 to 2, in steps of 0.2, to the visual components. Both here 
and in our further analyses, we tested various weights, since 
it was not clear which weight would produce optimal results. 
Finally, for each of the four similarity/relatedness datasets, 
we compared the 10 resulting linguistic-visual models with 
the purely linguistic model, by normalizing the correlations 
and using two-tailed Z-tests. The same type of analyses were 
run for the linguistic-emotional models. Results are in Fig. 2. 

 

 
 

                                                           
1 The Bonferroni correction was applied when assessing the 
statistical significance of all the results presented in this study. 

 
 

 
 

 
Figure 2. Model performance for the linguistic-visual and 
linguistic-emotional models. The weights assigned to the 
visual/emotional component vary from 0.2 to 2, in steps of 
0.2 
 

The tests indicate that adding visual information has a 
significant positive effect only for the SL dataset (p < .001), 
for weights ranging from 0.6 to 1.2, and a significant negative 
effect for the MEN dataset (p < .001), for weights between 
1.6 and 2. These results seem to be at odds with previous 
studies showing that linguistic-visual models always perform 
slightly better than purely linguistic ones. However, firstly, 
in almost all the other studies, the authors either weigh the 
linguistic and visual representations equally, by default (e.g., 
Kiela, Hill, Korhonen, & Clark, 2014; Silberer, Ferrari, & 
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Lapata, 2013), or they only employ the weight that gives the 
best results for the integration (e.g., Bruni, Tran, & Baroni, 
2014; Bruni, Uijlings, et al., 2012), which leaves room for 
null or detrimental results of linguistic-visual integration, 
when employing sub-optimal weights. Secondly, we use a 
linguistic model that is trained over a corpus of 6 billion 
words, whereas other studies (e.g., Hill & Korhonen, 2014; 
Kiela & Bottou, 2014; Silberer & Lapata, 2012) typically 
employ considerably smaller corpora (i.e., containing 
between 80 and 800 million words). Since smaller corpora 
lead to a poorer performance of the linguistic model, this 
leaves more room for a beneficial effect of adding visual 
information in the other studies, as compared to our study.  

Adding emotional information is significantly beneficial 
only for the SimVerb3500 dataset (p < .00125), for weights 
ranging from 1.2 to 1.6, while it is significantly detrimental 
for the MEN dataset (p < .001), for weights between 1.4 and 
2, and for the SL dataset (p < .001), for weights between 0.6 
and 2. The SimVerb3500 dataset is different from all the 
others in that it is the only one including only verbs (which 
are not highly represented in any other dataset). As verbs 
(words referring to events) are considered to be more 
abstract, this finding is in line with the view that emotional 
information is especially important for abstract words 
(Kousta et al., 2011). 
 
Linguistic-visual-emotional model vs linguistic-visual, 
linguistic-emotional, and purely linguistic models.  
In order to compare the trimodal model with the bimodal and 
unimodal ones, we again start by normalizing the linguistic, 
visual, and emotional representations, to unit length. We then 
construct trimodal models by assigning a weight of 1 to the 
linguistic components, and weights from 0.2 to 2, in steps of 
0.2, to the visual and emotional components, in all pairwise 
combinations for the last two components. Next, for each 
dataset, we select the best five and worst five trimodal 
models, in terms of performance, and compare them to their 
corresponding linguistic-visual models (i.e., obtained by 
removing the emotional component), linguistic-emotional 
models (i.e., obtained by removing the visual component), 
and purely linguistic model (i.e., obtained by removing both 
the visual and emotional components). The results are shown 
in Fig. 3. 
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Figure 3. Model performance for the linguistic-visual-
emotional model. The weights assigned to the 
visual/emotional component vary from 0.2 to 2, in steps of 
0.2 
 

When comparing the performance of the trimodal models 
to that of their corresponding linguistic-visual models, the 
addition of an emotional component has a significant positive 
effect for the best models on the SimVerb3500 dataset (p < 
.0016), and a significant negative effect for the worst models 
on the MEN and SL datasets (p < .001). These results are very 
similar to those found when comparing the linguistic-
emotional models to the purely linguistic one, and might be 
explained by the fact that verbs, such as those that make up 
the SimVerb3500 norms, are relatively abstract. In contrast, 
for concrete nouns, which form the majority of pairs from the 
MEN and SL norms, emotion should not have a positive 
effect (the finding of a detrimental effect is unexpected but 
potentially interesting as may indicate that adding affective 
information may reduce the separation between different 
types of words).   

The comparison between the trimodal models and their 
corresponding linguistic-emotional models reveals that 
including a visual component is significantly beneficial for 
the best models on the SL dataset (p < .001), but significantly 
detrimental for two of the worst models on the SimVerb3500 
datasets (p < .001). Again, SL consists only of concrete 
nouns, for which visual information is very salient, while 
SimVerb3500 consists only of verbs, the semantics of which 
is likely not to be properly captured in a few tens of images 
per word, due to its complexity. 

Finally, contrasting the trimodal models with the purely 
linguistic one, we find that bringing in both visual and 
emotional information significantly increases performance 
for the best models on the SimVerb3500, MEN, and SL 
datasets (p < .0016), while it significantly decreases 
performance for the worst models on the MEN and SL 
datasets (p < .001). These results are a combination of the 
partial results regarding the effects of appending visual and 
emotional components to the purely linguistic and bimodal 

models, which indicates little overlap between vision and 
emotional representation. 

 
Comparing the models for concrete and abstract words 
In order to test whether visual content is more important for 
more concrete words, while emotional content for more 
abstract words, we first combined the SimLex999 and 
SimVerb3500 datasets, as they cover a broader range of 
concreteness ratings than MEN and SL. Then, we divided the 
merged dataset into a low and a high concreteness subset. 
More specifically, we selected the bottom 25% and the top 
25% of pairs, based on the mean concreteness of each word 
pair covered by the concreteness norms of Brysbaert, 
Warriner, and Kuperman (2014). We then tested the 
performance of the emotional and visual models, the two 
bimodal models, and the trimodal models, setting all the 
weights set to 1. The results are displayed in Fig. 4. 

 

 
Figure 3. Model performance for low and high concreteness 
word pairs. 
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convolutional models, GoogLeNet gave the best results, 
followed by AlexNet, VGG-19, and K&B.   

The second, and main goal was to develop models that 
integrate linguistic, visual and emotional information and to 
assess their performance against purely linguistic models and 
models that only include either visual or emotional features. 
We chose the DeepMoji model for a number of reasons, 
namely: its state-of-the-art performance in a number of 
emotional tasks; its distributional nature, since it predicts the 
occurrence of an emoticon based on its immediate linguistic 
context; its capacity to use rich emotional information, as it 
is trained on tweets containing 64 types of emoticons; its high 
dimensionality, which allows it to encode complex patterns 
of emotion-based word similarity. 

In order to better understand the relative importance of each 
visual and emotional component, we carried out comparisons 
in which we parametrically varied the weight of visual and/or 
emotional information. In this manner, we can see when 
adding this information leads to better or worse performance. 
In general, we found that including non-linguistic 
information has a positive impact. However, first, this impact 
is modulated by whether the dataset includes predominantly 
concrete or abstract words. As expected on the basis of 
previous literature (e.g., Kousta et al., 2011) we see that 
including visual information is particularly beneficial to more 
concrete concepts whereas including emotional information 
is particularly beneficial to more abstract concepts. This is 
clearly visible when we assess model performance separately 
for more concrete and abstract words (see Fig 4). It is also 
clear from the comparison between MEN (only concrete 
words) and SimVerb3500 (only verbs, hence more abstract): 
across comparisons, we see that indeed visual information 
brings more benefit to the former, whereas emotional 
information brings more benefit to the latter.  

Second, the effect is modulated by the weights attributed to 
the different types of information. While the theoretical 
interpretation of the differences we found related to weights 
is not immediate, this finding may have practical value for 
future modelling.  

As mentioned in the introduction, a previous study (De 
Deyne et al., 2018) also examined the change in performance 
for distributional models of semantics, when adding 
experiential (i.e., visual and emotional) information. They 
found that adding experiential information led to little or no 
improvement for internal language models, but had a 
moderate positive effect for external language models. 
Moreover, they also found that adding visual information had 
the greatest effect for concrete words, while introducing 
affective information had the largest impact for abstract 
words. This finding mirrors our own, when comparing the 
linguistic-visual and linguistic-emotional models to the 
purely linguistic model. 

However, there are a number of key differences between 
their approach and ours. Firstly, we avoided the potentially 
controversial distinction between external and internal 
language models, focusing on an objective corpus-based 
approach. Secondly, in a similar vein, we decided to use an 

emotional model that learns affective information indirectly, 
by predicting the co-occurrence of emojis and text in a 
corpus, rather than using emotional representations derived 
directly from valence, arousal and dominance norms 
(Mohammad, 2018; Warriner, Kuperman, & Brysbaert, 
2013). This also increases the coverage of our model. Finally, 
since the resulting representations in our model are high-
dimensional, they might provide more fine-grained 
information than representations with only three dimensions.  
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