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Abstract

This panel is aimed at the issue of how to use and modify plans during the course of execution.

The

relationship between a plan and the actions that an agent takes has generated a great deal

of interest in the past few years. This is, in part, a result of the realization that planning in
the abstract is an intractable problem and that much of the complexity of behavior is best
understood in terms of the complexity of the environment in which that behavior occurs.

This panel presents five distinct personalities and approaches to this problem:

Agre looks at replacing “planning” with situated activity. In particular, he has been
considering the problems involved with the reference assumptions of classical planning.

Firby’s hierarchical planner has primitive actions that are instantiated at execution-time.
The execution of these primitives generates information that can be used to guide selection
of later operators.

In Alterman’s model of run-time adaptation, the executive responds to failures by using
external cues to move between alternative steps or approaches stored in an existing network
of semantic/episodic information.

Simmons has been exploring techniques to create robust, reactive systems that can handle
multiple tasks in spite of the robot’s limited sensors and processors. His approach takes
full advantage of the resources that the robot does have. This includes using hierarchi-
cal coarse-to-fine control strategies, using concurrency whenever feasible, and explicitly
focusing attention on the robot’s tasks and monitored conditions.

Hammond suggests a theory of agency which casts planning as embedded within a memory-
based understanding system connected to the environment. Within this approach, the
environment, plan selections, decisions, conflicts and actions are viewed through the single
eye of situation recognition and response.
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The Role of Plans in Activity

Phil Agre
The University of Chicago
Artificial Intelligence Laboratory

The notion of a plan has long been central to computational research on action. The terminology
and characteristic hypotheses of ‘planning’ research received their most influential early formulation
in Miller, Galanter, and Pribram’s book Plans and the Structure of Behavior (1960), henceforth
MG&P. MG&P’s central thesis was that the observable structure of an organism’s behavior results
from its executing a Plan which has that same structure. MG&P demonstrated that a wide variety
of phenomena could be assimilated to this model. The first system which operated by construct-
ing and executing plans was Strips, built by Fikes and Nilsson (1971) using the problem-space
methodology developed by Newell and Simon (1963). A great deal of research has been conducted
within this framework (Chapman, 1987; Georgeff, 1987), recently leading to industrial applications
(Wilkins, 1988; 1989).

The argument of MG&P contains a profound ambiguity. It can be viewed as running together
two different accounts of plans and execution. On the first account, plans are primarily retrieved
from a library, or constructed from scratch, and are executed whole. This account offers an ex-
planation for the structure of behavior, but it portrays the agent as almost entirely inflexible. On
the second account, an agent assembles its plans incrementally, so that sequences of actions need
not be mapped out ahead of time. This account offers an explanation of how an agent might be
capable of dynamically adapting its behavior to circumstances as they arise, but it does not ex-
plain why an organism’s behavior has its observed structure. MG&P’s two accounts of planning
might be compatible in some complex combination, but they cannot simultaneously explain both
the observable structure and the flexible adaptation of behavior.

This ambiguity within MG&P’s argument has been fateful for subsequent research, particularly
in the last five years as various groups have worked to build agents which are capable of conducting
sensibly organized goal-directed action in environments characterized by unpredictability, uncer-
tainty, and change. Much of this work has been conducted within the vocabulary of plans and their
execution, trying to find an acceptable combination of the two approaches that MG&P introduced
(Georgeff and Lansky, 1987; Firby, 1987). Much other work, though, has dispensed with the notion
of a plan altogether, treating continual interaction with the environment as a central phenomenon
(Agre in preparation; Brooks, 1986). For this work, the observable structure of an organism’s
behavior is an emergent property of these interactions and not the causal product of the execution
of a plan. Such is the approach that I developed in the notion of running arguments (Agre, 1985)
and that David Chapman and I took in our work on the Pengi system (Agre and Chapman, 1987).

People regularly make and use plans, of course, in the ordinary vernacular sense of the word;
the introduction of an alternative to MG&P’s account of action reopens the question of what plans
actually are. They are not like computer programs, since their use regularly involves a considerable
amount of interpretive effort as well as rearrangement, interpolation, and substitution of the actions
the plan represents. Plans are moreover not a unified phenomenon; they occur in a wide variety
of activities and social contexts, from cooking (Scher, 1984) to office procedures (Suchman, 1983)
to navigation (Gladwin, 1970). In each case, though, it is best to view plans as resources for the
participants in an activity, and not (as with MG&P) as fully specifying or causally engendering the
activity (Suchman, 1987).
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In recent work, Chapman and I have begun exploring a view of plans as communication in
natural language (Agre and Chapman in press). People who use directions or instructions to find
subway stations or play video games interpret them within the cultural background that they share
with other participants in the activity. Moreover, they interpret them indexically, in terms of
their ongoing situations as they understand them at the moment they turn to the plan for advice.
Computational research can be expected to offer insight on these processes by investigating the
architectural consequences of various ways of using plans and learning from their use, but such
research must be informed by sociologically sophisticated views of the circulation and deployment
of representational materials in human societies.

Adaptive Planning!

Richard Alterman
Computer Science Department
Brandeis University

There were two key features of early models of planning in artificial intelligence. The first was
that the planner did not have a memory of previous planning episodes. This meant that the planner
was always planning from scratch, constructing a plan out of a small set of operators. Second, these
early models of planning almost entirely separated the planning and acting phases. A robot given
some task would construct a plan from scratch to achieve that task. Then it would turn the plan
over to an execution monitor that would supervise the robot as it went through the steps of the
plan. This model of planning and acting proved undesirable because, in general, it failed to provide
for the contingencies that might arise. This critique of early models arose from work on case-based
planning (Hammond, 1990 and Kolodner and Simpson, 1989), reactive planning (Firby, 1987) and
situated activity (Agre and Chapman, 1987 and Suchman, 1987).

Adaptive planning (Alterman, 1988) was an early effort to deal with the problems of traditional
models of planning. An adaptive planner is a common sense planner. It has a memory of previous
plans (routines) and retrieves a plan from that memory that seems to match the situation-at-hand.
It then adapts that plan (improvises) during the period of engagement. For example, the first time
I ride the NYC Subway, I do not plan from scratch; rather, I use my knowledge of riding BART
(Bay Area Rapid Transit) as a basis for constructing an interpretation of the actions I should take.

I am currently looking at reasoning about the usage of mechanical devices and the role of
instructions. A planner may adapt a known routine to the situation-at-hand, but, if difficulties
arise, it has access to instructions. The specific difficulty provides a concrete context for those
instructions. Much of this work is informed by my work on semantic memory (Alterman, 1989)
and by the lexical semantic theory of Pustejovsky (Pustejovsky, forthcoming) as it impacts spatial
and deictic terms.

With Roland Zito-Wolf, I am also looking at extending the adaptive planning model to handle
plan learning. We assume that planners have habitats—places where they normally plan and act
(e.g. home, the office, hotels). Thus plan learning involves a mixture of teasing out descriptions
of the planner’s habitats while extending plans to cope with new contingencies. Over a history of
engagements the planner gradually settles, and re-settles, into customized routines for its habitats.
An important advantage of the adaptive planning framework for learning is that learning is fail-safe,
since incomplete or incorrect learning is backed-up by normal adaptive functioning.

'This work was supported in part by the Defense Advanced Research Projects Agency, administered by the U.S.
Airforce Office of Scientific Research under contract #F49620-88-C-0058.
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Task Directed Adaptive Execution

Robert James Firby
Jet Propulsion Laboratory

A robot plan is usually viewed as a list of primitive robot actions which are assembled in advance
and then executed one after another. However, in real domains, a plan must have more structure if
it is to cope with the myriad unpredictable details that it will encounter during execution. Adding
such structure to a plan involves more than augmenting the primitive plan representation; it requires
a complete model of plan interaction with the world. A planner cannot know in advance all of the
sensing and control actions that will be required to achieve its goals because it cannot maintain a
complete, detailed model of the situations that it will encounter. Most sensing and control decisions
must be suspended until execution time. Therefore, the notion of a plan no longer makes sense
without a theory of how it will be executed.

The RAP adaptive execution system is a theory of plan representation and execution. The
system assumes an incomplete world model and relies on program-like reactive action packages
(RAPs) to carry out sketchy plans premised on that model. A plan consists of a list of tasks
rather than primitive actions. Each task contains three major components: a satisfaction test, a
window of activity, and a set of execution methods that are appropriate in different circumstances.
Plan execution proceeds by selecting an unsatisfied task and choosing a method to achieve it based
on the current known world state. A task may be executed as many times as necessary to keep it
satisfied while it is active. Since decisions on action selection and sensor deployment are made while
the task is “situated” in the real world, execution monitoring is an intrinsic part of the execution
algorithm, and the need for separate replanning on failure disappears.

The RAP system appears to offer an effective way to cope with the limitations imposed by real
sensors, real actuators, and the incomplete understanding of complex domains.

Robust Robots with Limited Resources

Reid G. Simmons
School of Computer Science
Carnegie Mellon University

A prevalent approach to building mobile robot systems is to have the system continually monitor
all (relevant) aspects of the environment, and use what are essentially stimulus-response rules to
decide what to do next. Getting the robot to perform a new task typically involves adding more
sensors and/or processors. While this approach produces very reactive systems, it does not scale
well as the tasks become more complex and numerous.

We are exploring techniques to create robust, reactive systems that can handle multiple tasks
in spite of the robot’s limited sensors and processors. To succeed, our approach tries to take full
advantage of the resources that the robot does have. This includes using hierarchical coarse-to-fine
control strategies, using concurrency whenever feasible, and explicitly focusing attention on the
robot’s tasks and monitored conditions.

We have developed the Task Control Architecture (TCA) to support the creation of such sys-
tems. TCA is a distributed system with central control that can construct and manipulate hierar-
chical plans, allocate and manage user-defined resources, monitor selected conditions, and handle

1008



exceptions. Robot-specific processes (such as controllers, planners, and vision processes) commu-
nicate with one another through TCA and use the T'CA mechanisms to schedule and synchronize
their activities.

TCA is currently in use on two testbeds — a prototype of the six-legged CMU Planetary
Rover, and the Hero, an indoor mobile manipulator, whose tasks include collecting cups from our
lab’s floor, retrieving printer output, delivering objects, and recharging itself when necessary. In
implementing the Hero and Rover systems, several simple, but effective, organizing principles have
emerged for taking full advantage of the robot’s available resources.

Hierarchy: Hierarchy is effective for planning, monitoring, and handling exceptions. Our
system plans only to the level of detail warranted by its current knowledge of the environment,
deferring the remaining details to be filled in at execution time. The Hero system uses coarse-to-
fine sensing strategies. For example, the system uses its 2D vision system to detect approximately
cup-shaped regions, which triggers tasks to approach and map the objects with a wrist-mounted
sonar to determine if they in fact match the robot’s model of a cup.

Concurrency: The distributed nature of TCA is used to exploit opportunities for concurrency.
These include interleaving of planning and execution, and asynchronous pre-processing of visual
data. However, our systems do not have sufficient sensors or computational resources to continually
monitor all conditions. TCA handles this by enabling processes to specify the temporal intervals
during which selected conditions should be monitored, and the frequency at which they should
be polled. For optimal performance, these frequencies should be based on the likelihood of the
monitored condition occurring, the urgency for response, and the time needed to react.

Focus of Attention: Since it is unreasonable to expect the system to monitor all possible
conditions or to plan for all tasks at once, the robot must explicitly maintain a focus of attention.
The resource mechanism of TCA is used to maintain the focus of attention on the currently active
tasks. Multiple tasks can be handled concurrently as long as they use separate resources; when
contention for resources occurs, the associated tasks must be prioritized. While TCA currently
uses only a simple, pre-programmed prioritization scheme, we are starting to explore how the robot
could make its own prioritization decisions by reasoning about models of its capabilities, limitations,
and the relative utility of the tasks. For example, if the Hero’s battery monitor warns of a low
charge, the robot should decide whether it can afford to complete its current task, or whether it
should immediately proceed to the charger.

Memory and Agency?

Kristian J. Hammond
The University of Chicago
Artificial Intelligence Laboratory

Increasingly, the study of planning is being recast as the broader study of planning, action,
and understanding. The particular approach that we are taking to this study casts planning as
embedded within an understanding system connected to the environment. This approach allows us
to view plan selection, conflict resolution, and action through the single eye of situation assessment.
Together with the use of episodic memory as the vehicle for understanding, this view leads naturally

2This work was supported in part by the Defense Advanced Research Projects Agency, monitored by the Air
Force Office of Scientific Research under contract F49620-88-C-0058, and the Office of Naval Research under contract
N0014-85-K-010.
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to an ability to learn from both planning and execution. In this paper, we draw an outline of agency,
our model of the relationship between planning and action.

Our model of the relationship between planning and action is a complete theory of agency. Our
theory of agency rises out of three pieces of work: Schank’s structural model of memory organization
(Schank, 1982), our own work in case-based planning and dependency-directed repair (Hammond,
1986), and the work of Martin and Riesbeck in Direct Memory Access Parsing (Martin 1989). Our
model has been articulated in two programs, TRUCKER and RUNNER (Hammond, Marks, and
Converse, 1988; Hammond, 1989).

Our original ob jective was to capture the ability of an agent to suspend goals, yet still recognize
execution-time opportunities to satisfy them. We used a single set of memory structures both to
store suspended goals and to understand the agent’s circumstances in the world. In response to a
blocked goal, the agent’s first step was to do a planning-time analysis of the conditions that would
favor the satisfaction of the goal. The agent then suspended the goal in memory, indexed by a
description of those conditions.

During execution, the agent performed an ongoing “parse” of the world in order to recognize
conditions for action execution. Following DMAP (Martin, 1989), this parse took the form of marker
passing through episodic memory. Because suspended goals were indexed in the same memory used
for understanding the world, the goals were activated when the conditions favoring their execution
were recognized. Once active, goals would be reevaluated in terms of the new conditions. If they
fit into the current flow of execution, they would be pursued. Otherwise, they would be suspended
again.

We called the initial model opportunistic memory because the agent’s recognition of opportuni-
ties depended on the nature of its episodic memory structures. Having turned to the broader issues
of integrating planning and action, we now refer to our work as the study of agency.

Our theory of agency accounts for the spawning of goals, the selection of plans, and the execution
of actions. Like DMAP, our theory relies on a memory organization defined by part/whole and
abstraction relationships. Activations from features in the environment are passed up through
abstraction links, and predictions are passed down through partially active concepts.

To accommodate action, we have supplemented DMAP with the notion of PERMISSIONS and
POLICIES. PERMISSIONS are handed down the parts of plans to the operators they include. The
only actions that take place are those that are PERMITTED by the activation of the operators that
are associated with them. Following (McDermott, 1978), POLICIES are statements of ongoing goals
of the agent. They may take the form of maintenance goals, such as “Glasses should be in the
cupboard” or “Always have money on hand.” The only way in which goals can be generated is out
of the interaction between POLICIES and environmental features.

Most of the processing takes the form of recognizing circumstances in the external world in the
context of the policies, goals and plans of the agent. Goals, plans, and actions interact with each
other and with the environment as follows:

e Features in the environment interact with POLICIES to spawn goals.

e Goals and environmental features combine to activate plans already in memory.

e Operators are permitted by plans and are associated with the descriptions of the world states
appropriate to their performance. Once a set of features has an operator associated with it,
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that set of features (in conjunct rather than as individual elements) is now predicted and can
be recognized.

e Operators are specialized into actions by features in the environment and by internal states
of the system. As with Firby’s RAPs (Firby, 1989), particular states of the world determine
particular methods for each general operator.

e Conflicts between actions are recognized and mediated by the same mechanism that parses
the world.

e Suspended goals are associated with the descriptions of the states of the world that are
amenable to their satisfaction.

This theory of agency not only bridges the gap between planning and execution, but approaches
a start-to-finish model of behavior in the world. Our goal is a content theory of agency. We see
this architecture as simply the vehicle for that content.
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