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Abstract

BACKGROUND—The increasing availability of digital data on scholarly inputs and outputs—

from research funding, productivity, and collaboration to paper citations and scientist mobility—

offers unprecedented opportunities to explore the structure and evolution of science. The science 

of science (SciSci) offers a quantitative understanding of the interactions among scientific agents 

across diverse geographic and temporal scales: It provides insights into the conditions underlying 

creativity and the genesis of scientific discovery, with the ultimate goal of developing tools and 

policies that have the potential to accelerate science. In the past decade, SciSci has benefited from 

an influx of natural, computational, and social scientists who together have developed big data–

based capabilities for empirical analysis and generative modeling that capture the unfolding of 

science, its institutions, and its workforce. The value proposition of SciSci is that with a deeper 

understanding of the factors that drive successful science, we can more effectively address 

environmental, societal, and technological problems.
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ADVANCES—Science can be described as a complex, self-organizing, and evolving network of 

scholars, projects, papers, and ideas. This representation has unveiled patterns characterizing the 

emergence of new scientific fields through the study of collaboration networks and the path of 

impactful discoveries through the study of citation networks. Microscopic models have traced the 

dynamics of citation accumulation, allowing us to predict the future impact of individual papers. 

SciSci has revealed choices and trade-offs that scientists face as they advance both their own 

careers and the scientific horizon. For example, measurements indicate that scholars are risk-

averse, preferring to study topics related to their current expertise, which constrains the potential 

of future discoveries. Those willing to break this pattern engage in riskier careers but become 

more likely to make major breakthroughs. Overall, the highest-impact science is grounded in 

conventional combinations of prior work but features unusual combinations. Last, as the locus of 

research is shifting into teams, SciSci is increasingly focused on the impact of team research, 

finding that small teams tend to disrupt science and technology with new ideas drawing on older 

and less prevalent ones. In contrast, large teams tend to develop recent, popular ideas, obtaining 

high, but often short-lived, impact.

OUTLOOK—SciSci offers a deep quantitative understanding of the relational structure between 

scientists, institutions, and ideas because it facilitates the identification of fundamental 

mechanisms responsible for scientific discovery. These interdisciplinary data-driven efforts 

complement contributions from related fields such as sciento-metrics and the economics and 

sociology of science. Although SciSci seeks long-standing universal laws and mechanisms that 

apply across various fields of science, a fundamental challenge going forward is accounting for 

undeniable differences in culture, habits, and preferences between different fields and countries. 

This variation makes some cross-domain insights difficult to appreciate and associated science 

policies difficult to implement. The differences among the questions, data, and skills specific to 

each discipline suggest that further insights can be gained from domain-specific SciSci studies, 

which model and identify opportunities adapted to the needs of individual research fields.

Graphical abstract

The complexity of science. Science can be seen as an expanding and evolving network of ideas, 

scholars and papers. SciSci searches for universal and domain-specific laws underlying the 

structure and dynamics of science.

The deluge of digital data on scholarly output offers unprecedented opportunities to explore 

patterns characterizing the structure and evolution of science. The science of science 

(SciSci) places the practice of science itself under the microscope, leading to a quantitative 
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understanding of the genesis of scientific discovery, creativity, and practice and developing 

tools and policies aimed at accelerating scientific progress.

The emergence of SciSci has been driven by two key factors. The first is data availability. In 

addition to the proprietary Web of Science (WoS), the historic first citation index (1), 

multiple data sources are available today (Scopus, PubMed, Google Scholar, Microsoft 

Academic, the U.S. Patent and Trademark Office, and others). Some of these sources are 

freely accessible, covering millions of data points pertaining to scientists and their output 

and capturing research from all over the world and all branches of science. Second, SciSci 

has benefited from an influx of and collaborations among natural, computational, and social 

scientists who have developed big data–based capabilities and enabled critical tests of 

generative models that aim to capture the unfolding of science, its institutions, and its 

workforce.

One distinctive characteristic of this emerging field is how it breaks down disciplinary 

boundaries. SciSci integrates findings and theories from multiple disciplines and uses a wide 

range of data and methods. From scientometrics, it takes the idea of measuring science from 

large-scale data sources; from the sociology of science, it adopts theoretical concepts and 

social processes; and from innovation studies, it explores and identifies pathways through 

which science contributes to invention and economic change. SciSci relies on a broad 

collection of quantitative methods, from descriptive statistics and data visualization to 

advanced econometric methods, network science approaches, machine-learning algorithms, 

mathematical analysis, and computer simulation, including agent-based modeling. The value 

proposition of SciSci hinges on the hypothesis that with a deeper understanding of the 

factors behind successful science, we can enhance the prospects of science as a whole to 

more effectively address societal problems.

Networks of scientists, institutions, and ideas

Contemporary science is a dynamical system of undertakings driven by complex interactions 

among social structures, knowledge representations, and the natural world. Scientific 

knowledge is constituted by concepts and relations embodied in research papers, books, 

patents, software, and other scholarly artifacts, organized into scientific disciplines and 

broader fields. These social, conceptual, and material elements are connected through formal 

and informal flows of information, ideas, research practices, tools, and samples. Science can 

thus be described as a complex, self-organizing, and constantly evolving multiscale network.

Early studies discovered an exponential growth in the volume of scientific literature (2), a 

trend that continues with an average doubling period of 15 years (Fig. 1). Yet, it would be 

naïve to equate the growth of the scientific literature with the growth of scientific ideas. 

Changes in the publishing world, both technological and economic, have led to increasing 

efficiency in the production of publications. Moreover, new publications in science tend to 

cluster in discrete areas of knowledge (3). Large-scale text analysis, using phrases extracted 

from titles and abstracts to measure the cognitive extent of the scientific literature, have 

found that the conceptual territory of science expands linearly with time. In other words, 

Fortunato et al. Page 3

Science. Author manuscript; available in PMC 2018 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



whereas the number of publications grows exponentially, the space of ideas expands only 

linearly (Fig. 1) (4).

Frequently occurring words and phrases in article titles and abstracts propagate via citation 

networks, punctuated by bursts corresponding to the emergence of new paradigms (5). By 

applying network science methods to citation networks, researchers are able to identify 

communities as defined by subsets of publications that frequently cite one another (6). These 

communities often correspond to groups of authors holding a common position regarding 

specific issues (7) or working on the same specialized subtopics (8). Recent work focusing 

on biomedical science has illustrated how the growth of the literature reinforces these 

communities (9). As new papers are published, associations (hyper-edges) between 

scientists, chemicals, diseases, and methods (“things,” which are the nodes of the network) 

are added. Most new links fall between things only one or two steps away from each other, 

implying that when scientists choose new topics, they prefer things directly related to their 

current expertise or that of their collaborators. This densification suggests that the existing 

structure of science may constrain what will be studied in the future.

Densification at the boundaries of science is also a signal of transdisciplinary exploration, 

fusion, and innovation. A life-cycle analysis of eight fields (10) shows that successful fields 

undergo a process of knowledge and social unification that leads to a giant connected 

component in the collaboration network, corresponding to a sizeable group of regular 

coauthors. A model in which scientists choose their collaborators through random walks on 

the coauthorship network successfully reproduces author productivity, the number of authors 

per discipline, and the interdisciplinarity of papers and authors (11).

Problem selection

How do scientists decide which research problems to work on? Sociologists of science have 

long hypothesized that these choices are shaped by an ongoing tension between productive 

tradition and risky innovation (12, 13). Scientists who adhere to a research tradition in their 

domain often appear productive by publishing a steady stream of contributions that advance 

a focused research agenda. But a focused agenda may limit a researcher’s ability to sense 

and seize opportunities for staking out new ideas that are required to grow the field’s 

knowledge. For example, a case study focusing on biomedical scientists choosing novel 

chemicals and chemical relationships shows that as fields mature, researchers tend to focus 

increasingly on established knowledge (3). Although an innovative publication tends to 

result in higher impact than a conservative one, high-risk innovation strategies are rare, 

because the additional reward does not compensate for the risk of failure to publish at all. 

Scientific awards and accolades appear to function as primary incentives to resist 

conservative tendencies and encourage betting on exploration and surprise (3). Despite the 

many factors shaping what scientists work on next, macroscopic patterns that govern 

changes in research interests along scientific careers are highly reproducible, documenting a 

high degree of regularity underlying scientific research and individual careers (14).

Scientists’ choice of research problems affects primarily their individual careers and the 

careers of those reliant on them. Scientists’ collective choices, however, determine the 
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direction of scientific discovery more broadly (Fig. 2). Conservative strategies (15) serve 

individual careers well but are less effective for science as a whole. Such strategies are 

amplified by the file drawer problem (16): Negative results, at odds with established 

hypotheses, are rarely published, leading to a systemic bias in published research and the 

canonization of weak and sometimes false facts (17). More risky hypotheses may have been 

tested by generations of scientists, but only those successful enough to result in publications 

are known to us. One way to alleviate this conservative trap is to urge funding agencies to 

proactively sponsor risky projects that test truly unexplored hypotheses and take on special 

interest groups advocating for particular diseases. Measurements show that the allocation of 

biomedical resources in the United States is more strongly correlated to previous allocations 

and research than to the actual burden of diseases (18), highlighting a systemic misalignment 

between biomedical needs and resources. This misalignment casts doubts on the degree to 

which funding agencies, often run by scientists embedded in established paradigms, are 

likely to influence the evolution of science without introducing additional oversight, 

incentives, and feedback.

Novelty

Analyses of publications and patents consistently reveal that rare combinations in scientific 

discoveries and inventions tend to garner higher citation rates (3). Interdisciplinary research 

is an emblematic recombinant process (19); hence, the successful combination of previously 

disconnected ideas and resources that is fundamental to interdisciplinary research often 

violates expectations and leads to novel ideas with high impact (20). Nevertheless, evidence 

from grant applications shows that, when faced with new ideas, expert evaluators 

systematically give lower scores to truly novel (21–23) or interdisciplinary (24) research 

proposals.

The highest-impact science is primarily grounded in conventional combinations of prior 

work, yet it simultaneously features unusual combinations (25–27). Papers of this type are 

twice as likely to receive high citations (26). In other words, a balanced mixture of new and 

established elements is the safest path toward successful reception of scientific advances.

Career dynamics

Individual academic careers unfold in the context of a vast market for knowledge production 

and consumption (28). Consequently, scientific careers have been examined not only in 

terms of individual incentives and marginal productivity (i.e., relative gain versus effort) 

(29), but also institutional incentives (30, 31) and competition (32). This requires combining 

large repositories of high-resolution individual, geographic, and temporal metadata (33) to 

construct representations of career trajectories that can be analyzed from different 

perspectives. For example, one study finds that funding schemes that are tolerant of early 

failure, which reward long-term success, are more likely to generate high-impact 

publications than grants subject to short review cycles (31). Interacting systems with 

competing time scales are a classic problem in complex systems science. The multifaceted 

nature of science is motivation for generative models that highlight unintended 

consequences of policies. For example, models of career growth show that non-tenure 
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(short-term) contracts are responsible for productivity fluctuations, which often result in a 

sudden career death (29).

Gender inequality in science remains prevalent and problematic (34). Women have fewer 

publications (35–37) and collaborators (38) and less funding (39), and they are penalized in 

hiring decisions when compared with equally qualified men (40). The causes of these gaps 

are still unclear. Intrinsic differences in productivity rates and career length can explain the 

differences in collaboration patterns (38) and hiring rates (35) between male and female 

scientists. On the other hand, experimental evidence shows that biases against women occur 

at very early career stages. When gender was randomly assigned among the curricula vitae 

of a pool of applicants, the hiring committee systematically penalized female candidates 

(40). Most studies so far have focused on relatively small samples. Improvements in 

compiling large-scale data sets on scientific careers, which leverage information from 

different sources (e.g., publication records, grant applications, and awards), will help us gain 

deeper insight into the causes of inequality and motivate models that can inform policy 

solutions.

Scientists’ mobility is another important factor offering diverse career opportunities. Most 

mobility studies have focused on quantifying the brain drain and gain of a country or a 

region (41, 42), especially after policy changes. Research on individual mobility and its 

career effect remains scant, however, primarily owing to the difficulty of obtaining 

longitudinal information about the movements of many scientists and accounts of the 

reasons underlying mobility decisions. Scientists who left their country of origin 

outperformed scientists who did not relocate, according to their citation scores, which may 

be rooted in a selection bias that offers better career opportunities to better scientists (43, 

44). Moreover, scientists tend to move between institutions of similar prestige (45). 

Nevertheless, when examining changes in impact associated with each move as quantified 

by citations, no systematic increase or decrease was found, not even when scientists moved 

to an institution of considerably higher or lower rank (46). In other words, it is not the 

institution that creates the impact; it is the individual researchers that make an institution.

Another potentially important career factor is reputation—and the dilemma that it poses for 

manuscript review, proposal evaluation, and promotion decisions. The reputation of paper 

authors, measured by the total citations of their previous output, markedly boosts the number 

of citations collected by that paper in the first years after publication (47). After this initial 

phase, however, impact depends on the reception of the work by the scientific community. 

This finding, along with the work reported in (46), suggests that, for productive scientific 

careers, reputation is less of a critical driver for success than talent, hard work, and 

relevance.

A policy-relevant question is whether creativity and innovation depend on age or career 

stage. Decades of research on outstanding researchers and innovators concluded that major 

breakthroughs take place relatively early in a career, with a median age of 35 (48). In 

contrast, recent work shows that this well-documented propensity of early-career discoveries 

is fully explained by productivity, which is high in the early stages of a scientist’s career and 

drops later (49). In other words, there are no age patterns in innovation: A scholar’s most 
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cited paper can be any of his or her papers, independently of the age or career stage when it 

is published (Fig. 3). A stochastic model of impact evolution also indicates that 

breakthroughs result from a combination of the ability of a scientist and the luck of picking a 

problem with high potential (49).

Team science

During past decades, reliance on teamwork has increased, representing a fundamental shift 

in the way that science is done. A study of the authorship of 19.9 million research articles 

and 2.1 million patents reveals a nearly universal shift toward teams in all branches of 

science (50) (Fig. 4). For example, in 1955, science and engineering teams authored about 

the same number of papers as single authors. Yet by 2013, the fraction of team-authored 

papers increased to 90% (51).

Nowadays, a team-authored paper in science and engineering is 6.3 times more likely to 

receive 1000 citations or more than a solo-authored paper, a difference that cannot be 

explained by self-citations (50, 52). One possible reason is a team's ability to come up with 

more novel combinations of ideas (26) or to produce resources that are later used by others 

(e.g., genomics). Measurements show that teams are 38% more likely than solo authors to 

insert novel combinations into familiar knowledge domains, supporting the premise that 

teams can bring together different specialties, effectively combining knowledge to prompt 

scientific breakthroughs. Having more collaborations means greater visibility through a 

larger number of coauthors, who will likely introduce the work to their networks, an 

enhanced impact that may partially compensate for the fact that credit within a team must be 

shared with many colleagues (29).

Work from large teams garners, on average, more citations across a wide variety of domains. 

Research suggests that small teams tend to disrupt science and technology with new ideas 

and opportunities, whereas large teams develop existing ones (53). Thus, it may be important 

to fund and foster teams of all sizes to temper the bureaucratization of science (28).

Teams are growing in size, increasing by an average of 17% per decade (50, 54), a trend 

underlying a fundamental change in team compositions. Scientific teams include both small, 

stable “core” teams and large, dynamically changing extended teams (55). The increasing 

team size in most fields is driven by faster expansion of extended teams, which begin as 

small core teams but subsequently attract new members through a process of cumulative 

advantage anchored by productivity. Size is a crucial determinant of team survival strategies: 

Small teams survive longer if they maintain a stable core, but larger teams persist longer if 

they manifest a mechanism for membership turnover (56).

As science has accelerated and grown increasingly complex, the instruments required to 

expand the frontier of knowledge have increased in scale and precision. The tools of the 

trade become unaffordable to most individual investigators, but also to most institutions. 

Collaboration has been a critical solution, pooling resources to scientific advantage. The 

Large Hadron Collider at CERN, the world’s largest and most powerful particle collider, 

would have been unthinkable without collaboration, requiring more than 10,000 scientists 
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and engineers from more than 100 countries. There is, however, a trade-off with increasing 

size that affects the value and risk associated with “big science” (2). Although it may be 

possible to solve larger problems, the burden of reproducibility may require duplicating 

initial efforts, which may not be practically or economically feasible.

Collaborators can have a large effect on scientific careers. According to recent studies (57, 

58), scientists who lose their star collaborators experience a substantial drop in their 

productivity, especially if the lost collaborator was a regular coauthor. Publications involving 

extremely strong collaborators gain 17% more citations on average, pointing to the value of 

career partnership (59).

Given the increasing number of authors on the average research paper, who should and does 

gain the most credit? The canonical theory of credit (mis)allocation in science is the 

Matthew effect (60), in which scientists of higher statuses involved in joint work receive 

outsized credit for their contributions. Properly allocating individual credit for a 

collaborative work is difficult because we cannot easily distinguish individual contributions 

(61). It is possible, however, to inspect the cocitation patterns of the coauthors’ publications 

to determine the fraction of credit that the community assigns to each coauthor in a 

publication (62).

Citation dynamics

Scholarly citation remains the dominant measurable unit of credit in science. Given the 

reliance of most impact metrics on citations (63–66), the dynamics of citation accumulation 

have been scrutinized by generations of scholars. From foundational work by Price (67), we 

know that the distribution of citations for scientific papers is highly skewed: Many papers 

are never cited, but seminal papers can accumulate 10,000 or more citations. This uneven 

citation distribution is a robust, emergent property of the dynamics of science, and it holds 

when papers are grouped by institution (68). If the number of citations of a paper is divided 

by the average number of citations collected by papers in the same discipline and year, the 

distribution of the resulting score is essentially indistinguishable for all disciplines (69, 70) 

(Fig. 5A). This means that we can compare the impact of papers published in different 

disciplines by looking at their relative citation values. For example, a paper in mathematics 

collecting 100 citations represents a higher disciplinary impact than a paper in microbiology 

with 300 citations.

The tail of the citation distribution, capturing the number of high-impact papers, sheds light 

on the mechanisms that drive the accumulation of citations. Recent analyses show that it 

follows a power law (71–73). Power-law tails can be generated through a cumulative 

advantage process (74), known as preferential attachment in network science (75), 

suggesting that the probability of citing a paper grows with the number of citations that it 

has already collected. Such a model can be augmented with other characteristic features of 

citation dynamics, such as the obsolescence of knowledge, decreasing the citation 

probability with the age of the paper (76–79), and a fitness parameter, unique to each paper, 

capturing the appeal of the work to the scientific community (77, 78). Only a tiny fraction of 

papers deviate from the pattern described by such a model—some of which are called 
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“sleeping beauties,” because they receive very little notice for decades after publication and 

then suddenly receive a burst of attention and citations (80, 81).

The generative mechanisms described above can be used to predict the citation dynamics of 

individual papers. One predictive model (77) assumes that the citation probability of a paper 

depends on the number of previous citations, an obsolescence factor, and a fitness parameter 

(Fig. 5, B and C). For a given paper, one can estimate the three model parameters by fitting 

the model to the initial portion of the citation history of the paper. The long-term impact of 

the work can be extrapolated (77). Other studies have identified predictors of the citation 

impact of individual papers (82), such as journal impact factor (72). It has been suggested 

that the future h-index (83) of a scientist can be accurately predicted (84), although the 

predictive power is reduced when accounting for the scientist’s career stage and the 

cumulative, nondecreasing nature of the h-index (85). Eliminating inconsistencies in the use 

of quantitative evaluation metrics in science is crucial and highlights the importance of 

understanding the generating mechanisms behind commonly used statistics.

Outlook

Despite the discovery of universals across science, substantial disciplinary differences in 

culture, habits, and preferences make some cross-domain insights difficult to appreciate 

within particular fields and associated policies challenging to im plement. The differences 

among the questions, data, and skills required by each discipline suggest that we may gain 

further insights from domain-specific SciSci studies that model and predict opportunities 

adapted to the needs of each field. For young scientists, the results of SciSci offer actionable 

insights about past patterns, helping guide future inquiry within their disciplines (Box 1).

The contribution of SciSci is a detailed understanding of the relational structure between 

scientists, institutions, and ideas, a crucial starting point that facilitates the identification of 

fundamental generating processes. Together, these data-driven efforts complement 

contributions from related research domains such as the economics (30) and sociology of 

science (60, 86). Causal estimation is a prime example, in which econometric matching 

techniques demand and leverage comprehensive data sources in the effort to simulate 

counterfactual scenarios (31, 42). Assessing causality is one of the most needed future 

developments in SciSci: Many descriptive studies reveal strong associations between 

structure and outcomes, but the extent to which a specific structure “causes” an outcome 

remains unexplored. Engaging in tighter partnerships with experimentalists, SciSci will be 

able to better identify associations discovered from models and large-scale data that have 

causal force to enrich their policy relevance. But experimenting on science may be the 

biggest challenge SciSci has yet to face. Running randomized, controlled trials that can alter 

outcomes for individuals or institutions of science, which are mostly supported by tax 

dollars, is bound to elicit criticisms and pushback (87). Hence, we expect quasi-experimental 

approaches to prevail in SciSci investigations in the near future.

Most SciSci research focuses on publications as primary data sources, implying that insights 

and findings are limited to ideas successful enough to merit publication in the first place. Yet 

most scientific attempts fail, sometimes spectacularly. Given that scientists fail more often 
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than they succeed, knowing when, why, and how an idea fails is essential in our attempts to 

understand and improve science. Such studies could provide meaningful guidance regarding 

the reproducibility crisis and help us account for the file drawer problem. They could also 

substantially further our understanding of human imagination by revealing the total pipeline 

of creative activity.

Science often behaves like an economic system with a one-dimensional “currency” of 

citation counts. This creates a hierarchical system, in which the “rich-get-richer” dynamics 

suppress the spread of new ideas, particularly those from junior scientists and those who do 

not fit within the paradigms supported by specific fields. Science can be improved by 

broadening the number and range of performance indicators. The development of alternative 

metrics covering web (88) and social media (89) activity and societal impact (90) is critical 

in this regard. Other measurable dimensions include the information (e.g., data) that 

scientists share with competitors (91), the help that they offer to their peers (92), and their 

reliability as reviewers of their peers’ works (93). But with a profusion of metrics, more 

work is needed to understand what each of them does and does not capture to ensure 

meaningful interpretation and avoid misuse. SciSci can make an essential contribution by 

providing models that offer a deeper understanding of the mechanisms that govern 

performance indicators in science. For instance, models of the empirical patterns observed 

when alternative indicators (e.g., distributions of paper downloads) are used will enable us to 

explore their relationship with citation-based metrics (94) and to recognize manipulations.

The integration of citation-based metrics with alternative indicators will promote pluralism 

and enable new dimensions of productive specialization, in which scientists can be 

successful in different ways. Science is an ecosystem that requires not only publications, but 

also communicators, teachers, and detail-oriented experts. We need individuals who can ask 

novel, field-altering questions, as well as those who can answer them. It would benefit 

science if curiosity, creativity, and intellectual exchange—particularly regarding the societal 

implications and applications of science and technology—are better appreciated and 

incentivized in the future. A more pluralistic approach could reduce duplication and make 

science flourish for society (95).

An issue that SciSci seeks to address is the allocation of science funding. The current peer 

review system is subject to biases and inconsistencies (96). Several alternatives have been 

proposed, such as the random distribution of funding (97), person-directed funding that does 

not involve proposal preparation and review (31), opening the proposal review process to the 

entire online population (98), removing human reviewers altogether by allocating funds 

through a performance measure (99), and scientist crowd-funding (100).

A critical area of future research for SciSci concerns the integration of machine learning and 

artificial intelligence in a way that involves machines and minds working together. These 

new tools portend far-reaching implications for science because machines might broaden a 

scientist’s perspective more than human collaborators. For instance, the self-driving vehicle 

is the result of a successful combination of known driving habits and information that was 

outside of human awareness, provided by sophisticated machine-learning techniques. Mind-

machine partnerships have improved evidence-based decision-making in a wide range of 
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health, economic, social, legal, and business problems (101–103). How can science be 

improved with mind-machine partnerships, and what arrangements are most productive? 

These questions promise to help us understand the science of the future.
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Box 1

Lessons from SciSci

1. Innovation and tradition: Left bare, truly innovative and highly 

interdisciplinary ideas may not reach maximum scientific impact. To enhance 

their impact, novel ideas should be placed in the context of established 

knowledge (26).

2. Persistence: A scientist is never too old to make a major discovery, as long as 

he or she stays productive (49).

3. Collaboration: Research is shifting to teams, so engaging in collaboration is 

beneficial. Works by small teams tend to be more disruptive, whereas those 

by big teams tend to have more impact (4, 50, 53).

4. Credit: Most credit will go to the coauthors with the most consistent track 

record in the domain of the publication (62).

5. Funding: Although review panels acknowledge innovation, they ultimately 

tend to discount it. Funding agencies should ask reviewers to assess 

innovation, not only expected success (24).
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Fig. 1. Growth of science
(A) Annual production of scientific articles indexed in the WoS database. (B) Growth of 

ideas covered by articles indexed in the WoS. This was determined by counting unique title 

phrases (concepts) in a fixed number of articles (4).
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Fig. 2. Choosing experiments to accelerate collective discovery
(A) The average efficiency rate for global strategies to discover new, publishable chemical 

relationships, estimated from all MEDLINE-indexed articles published in 2010. This model 

does not take into account differences in the difficulty or expense of particular experiments. 

The efficiency of a global scientific strategy is expressed by the average number of 

experiments performed (vertical axis) relative to the number of new, published biochemical 

relationships (horizontal axis), which correspond to new connections in the published 

network of biochemicals co-occurring in MEDLINE-indexed articles. Compared strategies 

include randomly choosing pairs of biochemicals, the global (“actual”) strategy inferred 

from all scientists publishing MEDLINE articles, and optimal strategies for discovering 50 

and 100% of the network. Lower values on the vertical axis indicate more efficient 

strategies, showing that the actual strategy of science is suboptimal for discovering what has 

been published. The actual strategy is best for uncovering 13% of the chemical network, and 

the 50% optimal strategy is most efficient for discovering 50% of it, but neither are as good 

as the 100% optimal strategy for revealing the whole network. (B) The actual, estimated 

search process illustrated on a hypothetical network of chemical relationships, averaged 

from 500 simulated runs of that strategy. The strategy swarms around a few “important,” 

highly connected chemicals, whereas optimal strategies are much more even and less likely 

to “follow the crowd” in their search across the space of scientific possibilities. [Adapted 

from (15)]
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Fig. 3. Impact in scientific careers
(A) Publication record of three Nobel laureates in physics. The horizontal axis indicates the 

number of years after a laureate’s first publication, each circle corresponds to a research 

paper, and the height of the circle represents the paper’s impact, quantified by c10, the 

number of citations after 10 years. The highest-impact paper of a laureate is denoted with an 

orange circle. (B) Histogram of the occurrence of the highest-impact paper in a scientist’s 

sequence of publications, calculated for 10,000 scientists. The flatness of the histogram 

indicates that the highest-impact work can be, with the same probability, anywhere in the 

sequence of papers published by a scientist (49).
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Fig. 4. Size and impact of teams
Mean team size has been steadily growing over the past century. The red dashed curves 

represent the mean number of coauthors over all papers; the black curves consider just those 

papers receiving more citations than the average for the field. Black curves are 

systematically above the dashed red ones, meaning that high-impact work is more likely to 

be produced by large teams than by small ones. Each panel corresponds to one of the three 

main disciplinary groups of papers indexed in the WoS: (A) science and engineering, (B) 

social sciences, and (C) arts and humanities.
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Fig. 5. Universality in citation dynamics
(A) The citation distributions of papers published in the same discipline and year lie on the 

same curve for most disciplines, if the raw number of citations c of each paper is divided by 

the average number of citations c0 over all papers in that discipline and year. The dashed line 

is a lognormal fit. [Adapted from (69)] (B) Citation history of four papers published in 

Physical Review in 1964, selected for their distinct dynamics, displaying a “jump-decay” 

pattern (blue), experiencing a delayed peak (magenta), attracting a constant number of 

citations over time (green), or acquiring an increasing number of citations each year (red). 

(C) Citations of an individual paper are determined by three parameters: fitness λi, 

immediacy μi, and longevity σi. By rescaling the citation history of each paper in (B) by the 

appropriate (λ, μ, σ) parameters, the four papers collapse onto a single universal function, 

which is the same for all disciplines. [Adapted from (77)]
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