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Abstract of the Thesis 

Sleep prevents catastrophic forgetting in spiking neural networks by forming joint synaptic 
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Artificial neural networks overwrite previously learned tasks when trained sequentially, a 

phenomenon known as catastrophic forgetting. In contrast, the brain learns continuously, and 

typically learns best when new training is interleaved with periods of sleep for memory 

consolidation. In this study, we used a spiking network to study mechanisms behind catastrophic 

forgetting and the role of sleep in preventing it. The network could be trained to learn a complex 

foraging task but exhibited catastrophic forgetting when trained sequentially on several different 

tasks. New task training moved the synaptic weight configuration away from the manifold 

representing old tasks leading to forgetting. Interleaving new task training with periods of off-

line reactivation, mimicking biological sleep, mitigated catastrophic forgetting by pushing the 

synaptic weight configuration towards the intersection of the solution manifolds representing 

previously learned tasks. The study reveals a possible strategy of synaptic weights dynamics the 

brain applies during sleep to prevent forgetting and optimize learning.
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Introduction 

Humans are capable of continuously learning to perform novel tasks throughout life 

without interfering with their ability to perform previous tasks. Conversely, while modern 

artificial neural networks (ANNs) are capable of learning to perform complicated tasks, ANNs 

have difficulty learning multiple tasks sequentially 14,30,42. Sequential training commonly results 

in catastrophic forgetting, a phenomenon which occurs when training on the new task completely 

overwrites the synaptic weights learned during the previous task, leaving the ANN incapable of 

performing a previous task 14,16,30,42. Attempts to solve catastrophic forgetting have drawn on 

insights from the study of neurobiological learning, leading to the growth of neuroscience-

inspired artificial intelligence (AI) 15,22,24. While these approaches are capable of mitigating 

catastrophic forgetting in certain circumstances 23, a general solution which can achieve human 

level performance for continual learning is still an open question. 

Historically, an interleaved training paradigm, where multiple tasks are presented within 

a common training dataset, has been employed to circumvent the issue of catastrophic forgetting 

12,16,29. In fact, interleaved training was originally construed to be an approximation to what the 

brain may be doing during sleep to consolidate memories; spontaneously reactivating memories 

from multiple interfering tasks in an interleaved manner 29. Unfortunately, explicit use of 

interleaved training, in contrast to memory consolidation during biological sleep, imposes the 

stringent constraint that the original training data be perpetually stored for later use and combined 

with new data to retrain the network 14,16,29,30. Thus, the challenge is to understand how the 

biological brain enables memory reactivation during sleep without access to past training data. 

Parallel to the growth of neuroscience-inspired ANNs, there has been increasing 

investigation of spiking neural networks (SNNs) which attempt to provide a more realistic model 
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of brain functioning by taking into account the underlying neural dynamics and by using 

biologically plausible local learning rules 10,18,47,53. A potential advantage of the SNNs, that was 

explored in our new study, is that local learning rules combined with spike-based communication 

allow previously learned memory traces to reactivate spontaneously and without interference 

during off-line processing – sleep. A common hypothesis, supported by a vast range of 

neuroscience data, is that the consolidation of memories during sleep occurs through local 

unsupervised synaptic changes enabled by reactivation of the neuron ensembles engaged during 

learning 1. Indeed, spike sequence replay was observed in the neocortex 9,21,38following both 

hippocampal-dependent tasks 21 and hippocampal-independent tasks40. 

Here we used a multi-layer SNN with reinforcement learning to investigate whether 

interleaving periods of new task training with periods of noise-induced spontaneous reactivation, 

resembling sleep in the brain 17,27,41, can circumvent catastrophic forgetting. The network could 

be trained to learn one of two complementary complex foraging tasks involving pattern 

discrimination but exhibits catastrophic forgetting when trained on the tasks sequentially. 

Significantly, we show that catastrophic forgetting can be prevented by periodically interrupting 

reinforcement learning on a new task with unsupervised sleep phases. While new task training 

alone moved synaptic weight configuration away from the solution manifold representing old 

tasks and towards the manifold specific for new task, interleaving new task training with 

unsupervised sleep replay allowed the synaptic weights to stay near the manifold specific for the 

old task and still to move towards its intersection with the manifold representing the new task. 

Our study predicts that sleep prevents catastrophic forgetting in the brain by forming joint 

synaptic weight representations suitable for storing multiple memories. 
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Methods 

Environment.  

 Foraging behavior took place in a virtual environment consisting of a 50x50 grid with 

randomly distributed “food” particles. Each particle was two pixels in length and could be 

classified into one of four types depending on its orientation: vertical, horizontal, positively 

sloped diagonal, or negatively sloped diagonal. During the initial unsupervised training period, 

the particles are distributed at random with the constraints that each of the four types are equally 

represented and no two particles can be directly adjacent. During training and testing periods 

only the task-relevant particles were present. When a particle was acquired as a result of the 

virtual agent moving, it was removed from its current location (simulating consumption) and 

randomly assigned to a new location on the grid, again with the constraint that it not be directly 

adjacent to another particle. This ensures a continuously changing environment with a constant 

particle density. The density of particles in the environment was set to 10%. The virtual agent 

can see a 7x7 grid of squares (the “visual field”) centered on its current location and it could 

move to any adjacent square, including diagonally, for a total of eight directions. 

 

Network structure.  

 The network was composed of 842 spiking map-based neurons (see Methods: Map-based 

neuron model below) 45,46,, arranged into three feed-forward layers to mimic a basic biological 

circuit: a 7x7 input layer (I), a 28x28 hidden layer (H), and a 3x3 output layer (O) with a 

nonfunctional center neuron (Fig 1). Input to the network was simulated as a set of 

suprathreshold inputs to the neurons in layer I, equivalent to the lower levels of the visual 

system, which represent the position of particles in an egocentric reference frame relative to the 
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virtual agent (positioned in the center of the 7x7 visual field). The most active neuron in layer O, 

playing the role of biological motor cortex, determined the direction of the subsequent 

movement. Each neuron in layer H, which can be loosely defined as higher levels of the visual 

system or associative cortex, received excitatory synapses from 9 randomly selected neurons 

inlayer I. These connections initially had random strengths drawn from a normal distribution. 

Each neuron in layer H connected to every neuron in layer O with both an excitatory (Wij) and an 

inhibitory (WIij) synapse. This provided an all-to-all connectivity pattern between these two 

layers and accomplished a balanced feed-forward inhibition 3 found in many biological 

structures 3,5,7,39,51,52. Initially, all these connections had uniform strengths and the responses in layer 

O were due to the random synaptic variability. Random variability was a property of all synaptic 

interactions between neurons and was implemented as variability in the magnitude of the 

individual synaptic events. 

 

Policy.  

 Simulation time was divided up into epochs of 600 timesteps, each roughly equivalent 

to300 ms. At the start of each epoch the virtual agent received input corresponding to locations 

of nearby particles within the 7x7 “visual field”. Thus 48 of the 49 neurons in layer I received 

input from a unique location relative to the virtual agent. At the end of the epoch the virtual 

agent made a single move based on the activity in layer O. If the virtual agent moved to a grid 

location with a “food” particle present, the particle was removed and assigned to a randomly 

selected new location.  

 Each epoch was of sufficient duration for the network to receive inputs, propagate 

activity forward, produce outputs, and return to a resting state. Neurons in layer I which 
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represent locations in the visual field containing particles received a brief pulse of excitatory 

stimulation sufficient to trigger a spike; this stimulation was applied at the start of each 

movement cycle (epoch). At the end of each epoch the virtual agent moved according to the 

activity which has occurred in layer O. 

 The activity in layer O controlled the direction of the virtual agent’s movement. Each of 

the neurons in layer O mapped onto a specific direction (i.e. one of the eight adjacent locations 

or the current location). The neuron in layer O which spiked the greatest number of times during 

the first half of the epoch defined the direction of movement for that epoch. If there was a tie, the 

direction was chosen at random from the set of tied directions. If no neurons in layer O spiked, 

the virtual agent continued in the direction it had moved during the previous epoch. 

 There was a 1% chance on every move that the virtual agent would ignore the activity 

inlayer O and instead move in a random direction. Moreover, for every movement cycle that 

passed without the virtual agent acquiring a particle, this probability was increased by 1%. The 

random variability promoted exploration vs exploitation dynamics and essentially prevented the 

virtual agent from getting stuck in movement patterns corresponding to infinite loops. While 

biological systems could utilize various different mechanisms to achieve the same goal, the 

method we implemented was efficient and effective for the scope of our study. 

 

Neuron models. 

  For all neurons we used spiking model identical to the model used in in 47,53 that can be 

described by the following set of difference equations 2,44,46: 

𝑉𝑛+1 = 𝑓𝛼(𝑉𝑛, 𝐼𝑛 + 𝛽𝑛), 

𝐼𝑛+1 = 𝐼𝑛 − 𝜇(𝑉𝑛 + 1) + 𝜇𝜎 + 𝜇𝜎𝑛, 
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where Vn is the membrane potential, In is a slow dynamical variable describing the effects of 

slow conductances, and n is a discrete time-step (0.5 ms). Slow temporal evolution of In was 

achieved by using small values of the parameter μ << 1. Input variables βn and σn were used to 

incorporate external current I
ext

n (e.g. background synaptic input): βn = β
e
I
ext

n, σn = 

σ
e
I
ext

n.Parameter values were set to σ = 0.06, β
e
 = 0.133, σ

e
 = 1, and μ = 0.0005. The nonlinearity 

fα(Vn,In) was defined in the form of the piece-wise continuous function: 

𝑓𝛼(𝑉𝑛, 𝐼𝑛) =  {
𝛼(1 − 𝑉𝑛)−1 + 𝐼𝑛,
𝛼 + 𝐼𝑛,
−1

  

𝑉𝑛 ≤ 0
0 < 𝑉𝑛 < 𝛼 + 𝐼𝑛 & 𝑉𝑛−1 ≤ 0
𝛼 + 𝐼𝑛 ≤ 𝑉𝑛 𝑜𝑟 𝑉𝑛−1 > 0,

 

 

where α = 3.65. This model is very computationally efficient, and, despite its intrinsic low 

dimensionality, produces a rich repertoire of dynamics capable of mimicking the dynamics of 

Hodgkin-Huxley type neurons both at the single neuron level and in the context of network 

dynamics 2,25,46.  

 To model the synaptic interactions, we used the following piece-wise difference 

equation: 

𝑔𝑛+1
𝑠𝑦𝑛

= 𝛾𝑔𝑛
𝑠𝑦𝑛

+ {
(1 + 𝑋𝑅)𝑔𝑠𝑦𝑛/𝑊𝑗 ,

0,
  
𝑠𝑝𝑖𝑘𝑒𝑝𝑟𝑒

otherwise,
 

𝐼𝑛
𝑠𝑦𝑛

= −𝑔𝑛
𝑠𝑦𝑛

(𝑉𝑛
𝑝𝑜𝑠𝑡 − 𝑉𝑟𝑝). 

Here gsyn is the strength of the synaptic coupling, modulated by the target rate Wj of receiving 

neuron j. Indices pre and post stand for the pre- and post-synaptic variables, respectively. The 

first condition, spikepre, is satisfied when the pre-synaptic spikes are generated. Parameter γ 

controls the relaxation rate of synaptic current after a presynaptic spike is received (0 ≤ γ < 1). 

The parameter R is the coefficient of variability in synaptic release. The standard value of R 
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is0.12. X is a random variable sampled from a uniform distribution with range [-1, 1]. Parameter 

Vrp defines the reversal potential and, therefore, the type of synapse (i.e. excitatory or inhibitory). 

The term (1-R+2XR) introduces a variability in synaptic release such that the effect of any 

synaptic interaction has an amplitude that is pulled from a uniform distribution with range [1-

R,1+R] multiplied by the average value of the synapse. 

 

Synaptic plasticity.  

 Synaptic plasticity closely followed the rules introduced in 47,53. A rewarded STDP rule 

11,13,19,26 was operated on synapses between layers H and O while a standard STDP rule operated 

on synapses between layers I and H. A spike in a post-synaptic neuron that directly followed a 

spike in a pre-synaptic neuron created a pre before post event while the converse created a post 

before pre event. Each new post-synaptic (pre-synaptic) spike was compared to all pre-synaptic 

(post-synaptic) spikes with a time window of 120 iterations. 

 The value of an STDP event (trace) was calculated using the following equation 4,28: 

𝑝 =
−|𝑡𝑟 − 𝑡𝑝|

𝑇𝑐
, 

𝑡𝑟𝑘 = 𝐾𝑒𝑝 

 

where tr and tp are the times at which the pre- and post-synaptic spike events occurred 

respectively, Tc is the time constant and is set to 40 ms, and K is maximum value of the trace trk 

and is set to -0.04 for a post before pre event and 0.04 for a pre before post event. 

 A trace was immediately applied to synapse between neurons in layers I and H. However, 

for synapses between neurons in layers H and O the traces were stored for 6 epochs after its 
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creation before being erased. During storage, a trace had an effect whenever there was a 

rewarding or punishing event. In such a case, the synaptic weights are updated as follows: 

𝑊𝑖𝑗 ← 𝑊𝑖𝑗 ∏ (1 +
𝑊𝑖0

𝑊𝑖
∗ ∆𝑘) ,

𝑡𝑟𝑎𝑐𝑒𝑠

𝑘

 

∆𝑘= 𝑆𝑟𝑝 (
𝑡𝑟𝑘

𝑡 − 𝑡𝑘 + 𝑐
)

𝑆𝑢𝑚𝑡𝑟

𝐴𝑣𝑔𝑡𝑟
, 

𝑆𝑢𝑚𝑡𝑟 = ∑
𝑡𝑟𝑘

𝑡 − 𝑡𝑘 + 𝑐
,

𝑡𝑟𝑎𝑐𝑒𝑠

𝑘

 

𝐴𝑣𝑔𝑡𝑟 ← (1 − 𝛿)𝐴𝑣𝑔𝑡𝑟 + 𝛿𝑆𝑢𝑚𝑡𝑟 , 

where t is the current timestep, Srp is a scaling factor for reward/punishment, trk is the magnitude 

of the trace, tk is the time of the trace event, c is a constant (=1 epoch) used for decreasing 

sensitivity to very recent spikes, Wi = Σj Wij is the total synaptic strength of all connections from 

the neuron i in layer H to all neurons in layer O, Wi0 is a constant that is set to the initial 

value(target value) of Wi at the beginning of the simulation. The term Wi0/Wi helped to keep the 

output weight sum close to the initial target value. The effect of these rules was that neurons with 

lower total output strength could increase their output strength more easily. 

 The network was rewarded when the virtual agent moved to a location which contained a 

particle from a “food” pattern (horizontal in Task 1, vertical in Task 2) and Srp = 1, and received 

a punishment of Srp = -0.001 when it moved to a location with a particle from a neutral 

pattern(negative/positive diagonal in Task 1/2). A small punishment of Srp = -0.0001 was applied 

if the agent moved to a location without a particle present to help the virtual agent learn to 

acquire “food” as rapidly as possible. During periods of sleep the network received a constant 

reward of Srp = 0.5 on each movement cycle. 
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 To ensure that neurons in layer O maintained a relatively constant long-term firing rate, the 

model incorporated homeostatic synaptic scaling which was applied every epoch. Each timestep, 

the total strength of synaptic inputs Wj = Σi Wij to a given neuron in layer O was set equal to the 

target synaptic input Wj0 – a slow variable which varied over many epochs depending on the 

activity of the given neuron in layer O – which was updated according to: 

𝑊𝑗0 ← {
𝑊𝑗0(1 + 𝐷𝑡𝑎𝑟)

𝑊𝑗0(1 − 𝐷𝑡𝑎𝑟)
    

spike rate < target rate
spike rate > target rate

 

 To ensure that the net synaptic input Wj to any neuron was unaffected by plasticity events 

at the individual synapses at distinct timesteps and equal to Wj0, we implemented a scaling 

process akin to heterosynaptic plasticity which occurs after each STDP event. When any 

excitatory synapse of neuron in layer O changed in strength, all other excitatory synapses 

received by that neuron were updated according to: 

𝑊𝑖𝑗 ← 𝑊𝑖𝑗

𝑊𝑗0

∑ 𝑊𝑖𝑗𝑖
 

Simulated Sleep. 

  To simulate the sleep phase, we inactive the sensory receptors (i.e. the input layer of 

network), cut off all sensory signals (i.e. remove all particles from the environment), and 

decouple output layer activity from motor control (i.e. the output layer can spike but no longer 

causes the agent to move). We also change the learning rule between the hidden and output layer 

from rewarded to unsupervised STDP (see Methods: Synaptic Plasticity for details) as there is no 

way to evaluate decision-making without sensory input or motor output. 

 To simulate the spontaneous activity observed during REM sleep, we provided noise to 

each neuron in the hidden layer in a way which ensured that the spiking statistics of each neuron 

was conserved across awake and sleep phases. To determine these spiking rates, we recorded 
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average spiking rates of neurons in the hidden layer H during preceding training of both Task 

1and Task 2; these task specific spiking rates were then averaged to generate target spiking rates 

for hidden layer neurons. InterleavedS,T1 training consisted of alternating intervals of this sleep 

phase and training on Task 1, with each interval lasting 100 movement cycles (although no 

movement occurred). 

 

Support Vector Machine Training.  

 A support vector machine with a radial basis function kernel was trained to classify 

synaptic weight configurations as being related to Task 1 or Task2. Labeled training data were 

obtained by taking the excitatory synaptic weight matrices between the hidden and output layers 

from the last fifth of the Task 1 and Task 2 training phases (i.e. after performance had appeared 

to asymptote). These synaptic weight matrices were then flattened into column vectors, and the 

column vectors were concatenated to form a training data matrix of size number of features x 

number of samples. The number of features was equal to the total number of excitatory synapses 

between the hidden and output layer – 6272 dimensions. We then used this support vector 

machine to classify held out synaptic weight configurations from Task 1and Task 2 training, as 

well as ones which resulted from InterleavedT1,T2 and InterleavedS,T1training. 

 

2-D Synaptic Weight distributions (Figure 6).  

 First for each synapse we found how its synaptic strength changes between two slices in 

time, where the given synapse’s strength at time slice 1 is the point’s X-value and strength at 

time slice 2 is its Y-value. Then we binned this space and counted synapses in each bin to make 

two dimensional histograms where blue color corresponds to a single synapse found in a bin and 
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brown corresponds to the max of 50 synapses. These two-dimensional histograms assist in 

visualizing the movement of all synapses between the two slices in time that are specified by the 

timelines at the top of each plot. Conceptually, it is important to note that if a synapse does not 

change in strength between time slice 1 and time slice 2, then point the synapse corresponds to in 

this space will lie on the diagonal of the plot since the X-value will match the Y-value. If a great 

change in the synapse’s strength has occurred between time slice 1 and time slice 2, then the 

synapse’s corresponding point will lie far from the diagonal since the X-value will be distant 

from the Y-value. The points on the X-(Y-) axis represent synapses that lost (gained) all synaptic 

strength between time slice 1 and time slice 2. 

 

Distance from Solution Manifolds (Figure 7).  

 Each of the two solution manifolds (i.e. Task 1and Task 2 specific manifolds) were 

defined by the point-sets in synaptic weight space which were capable of supporting robust 

performance on that particular task, namely the sets MT1 andMT2. This included the synaptic 

weight states from the last fifth of training on a particular task(i.e. after performance on that task 

appeared to asymptote) and all of the synaptic weight states from the last fifth of both 

InterleavedT1,T2 and InterleavedS,T1/T2 training. The intersection of the two solution manifolds (i.e. 

the point-set MT1∩T2) was defined solely by the synaptic weight states from the last fifth of both 

InterleavedT1,T2 and InterleavedS,T1 training. As the network evolved along its trajectory in 

synaptic weight space, the distance from the current point in synaptic weight space, pt, to the two 

solution manifolds and their intersection were computed as follows: 

𝑑𝑛(𝑝𝑡, 𝑀𝜏) = min
𝑥 ∈ 𝑀

(𝑑𝑛(𝑝𝑡, 𝑥)). 
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 Here, d n is the n-dimensional Euclidean-distance function, where n is the dimensionality of 

synaptic weight space (i.e. n = 6272 here), Mτ is the point-set specific to the manifold or 

intersection in question (i.e. either MT1, MT2, or MT1∩T2), and x is a particular element of the 

point-set M. 

  



 

 

13 

 

 

 

Results 

Human and animal brains are complex and there are many differences between species. Still, a 

number of  common elements can be identified from insects to humans. From an anatomic 

perspective, this includes largely the sequential processing of sensory information processing, 

from raw low level representations on the sensory periphery to high level representations deeper 

in the brain followed by decision making networks sending output to the motor circuits. From a 

functional perspective, this includes synaptic communications, local synaptic plasticity and 

sleep-wake cycle that shown to be critical for memory and learning in variety of species from 

insects 8,33,62 to vertebrates 41. In this study we modeled a simple brain network including many of 

these anatomical and functional elements. While our model is extremely simplified, it captures 

critical processing steps found, e.g., in insect olfactory system where odor information is sent 

from olfactory receptors to the mushroom bodies and then to motor circuits. In vertebrates, visual 

information is sent from retina to the early visual cortex and then to decision layers in associative 

cortices to drive motor output. In both insects and vertebrates many of these steps are plastic, in 

particularl decision making circuits utilize spike timing dependent plasticity (STDP).  

Figure 1A illustrates a feedforward spiking neural network (see also Methods: Network 

Structure for details) simulating basic steps from sensory input to motor output in the brain. 

Excitatory synapses between the input (I) and hidden (H) layers were subjected to unsupervised 

learning (implemented as non-rewarded STDP) 4,28 while those between the H and output (O) layers 

were subjected to reinforcement learning (implemented using rewarded STDP) 11,13,19,26 (see 

Methods: Synaptic plasticity for details). Unsupervised plasticity allowed neurons in layer H to 

learn different particle patterns at various spatial locations of the input layer I, while rewarded  
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Figure 1. Network architecture and complementary foraging task structure. (A) The 

network had three layers of neurons with a feed-forward connectivity scheme. Input from virtual 

environment was simulated as a set of excitatory inputs to the input layer neurons (“visual field”- 

7x7 subspace of 50x50 environment) representing the position of food particles in an egocentric 

reference frame relative to the virtual agent. Each hidden layer neuron received an excitatory 

synapse from 9 randomly selected input layer neurons. Excitatory synapses between input and 

hidden layer neurons were subject to unsupervised STDP, while those between hidden and 

output layer neurons were subject to rewarded STDP. Each output layer neuron received one 

excitatory and one inhibitory synapse from each hidden layer neuron. The most active neuron in 

the output layer (size 3x3) determined the direction of movement. (B) Mean performance 

(redline) and standard deviation (blue lines) over time: unsupervised training (white), Task 1 

training(blue), and Task 1 (green) and Task 2 (yellow) testing. The y-axis represents the agent’s 

performance, or the probability of acquiring rewarded as opposed to punished particle patterns. 

The x-axis is time in aeons (1 aeon = 100 movement cycles). Mean performance during testing 

on Task 1 was 0.70 ± 0.02 while Task 2 was 0.53 ± 0.02. (C) The same as shown in (B) except 

now for: unsupervised training (white), Task 2 training (red), and Task 1 (green) and Task 

2(yellow) testing. Mean performance during testing on Task 1 was 0.51 ± 0.02 while Task 2 

was0.71 ± 0.02. (D) Examples of trajectories through the environment at the beginning (left) and 

at the end (middle-left) of training on Task 1, with a zoom in on the trajectory at the end of 

training(middle-right), and the values of the task-relevant food particles (right). (E). The same as 

shown in (D) except now for Task 2. 
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STDP allowed the neurons in layer O to learn motor decisions based on the type of the particle 

patterns detected in the visual field 47. 

 

Complementary complex foraging tasks can be robustly learned 

 We trained the network on one of two complementary complex foraging tasks. In either 

task, the network learned to discriminate between a rewarded and a punished particle pattern in 

order to acquire as much of the rewarded patterns as possible. In the following we consider 

pattern discriminability (rewarded vs punished) as a measure of performance, with chance 

performance being 0.5. 

The paradigm for Task 1 is shown in Figure 1B. First, during an unsupervised learning 

period, all 4 types of 2-particle patterns (horizontal, vertical, positive diagonal, and negative 

diagonal) were present in the environment with equal densities. This was a period, equivalent to 

a developmental critical period in the brain, when the network learned the environmental 

statistics and formed, in layer H, high level representation of all possible patterns found at the 

different visual field locations (see Figure 2 for details). Unsupervised training was followed by 

a reinforcement learning period, equivalent to task specific training in the brain, during which the 

synapses between layers I and H were frozen but synapses from H to O were updated using a 

rewarded STDP rule. The reinforcement learning period was when the network learned to make 

decisions about which direction to move based on the visual input. Whether patterns were 

rewarded during reinforcement learning depended on the task – for Task 1 horizontal patterns 

were rewarded and negative diagonal patterns were punished (Figure 1D). During both the 

rewarded training and the testing periods only 2 types of patterns were present in the 

environment (e.g. horizontal and negative diagonal for Task 1).  
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Figure 2. Receptive fields of output and hidden layer neurons determine the agent 

policy.(A) Left, Receptive field of the output layer neuron controlling movement to the upper-

left direction following training on Task 1. This neuron can be seen to selectively respond to 

horizontal orientations in the upper-left quadrant of the visual field. Right, Schematic of 

connections between layers. (B) Examples of receptive fields of hidden layer neurons which 

synapse strongly onto the output neuron from (A) after training on Task 1. The majority of these 

neurons selectively respond to horizontal food particles in the upper-left quadrant of the visual 

field, with one neuron (middle-right) selectively responding to the presence of negative diagonal 

food particles in the bottom-right quadrant and the lack of negative diagonal food particles in the 

upper-left quadrant of the visual field. (C) The same as shown in (A) except following training 

on Task 2. The upper-left decision neuron can be seen to selectively respond to vertical 

orientations in the upper-left quadrant of the visual field. (D) The same as shown in (B) except  

following training on Task 2. All of these neurons selectively respond to vertical food particles in 

the upper-left quadrant of the visual field..
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After training Task 1, mean performance on Task 1 was 0.70 ± 0.2 while on Task 

2(which has not been trained yet) was 0.53 ± 0.2 (chance level). Figure 1D shows examples of 

trajectories of the simulated agent at the beginning of (left) and after (right) reinforcement 

learning period. The naive agent moved randomly through the environment, but after training it 

moved to seek out horizontal patterns and largely avoid negative diagonal ones. The 

complementary paradigm for Task 2 (vertical patterns are rewarded, and positive diagonal are 

punished) is shown in Figure 1 C,E. These results demonstrate that the network is capable of 

learning and performing either one of the two complementary complex foraging tasks. 

To understand how sensitive the network is to pruning, we employed a neuronal dropout 

procedure which progressively removes neurons from the hidden layer at random (Figure S2). 

We found the network was able to keep performance steady on either task following training 

until around 70% of the hidden layer was pruned. Such high resiliency suggests the network 

utilizes a highly distributed coding strategy to develop its policy. 

To get an understanding of the policy developed by the network for each task, we 

computed the receptive field of each neuron in layer O with respect to the input from layer I (see 

schematic in Figures 2 A,C) . This was done by first computing the receptive fields of all of the 

neurons in layer H with respect to I, then performing a weighted average where the weights were 

given by the synaptic strength from each neuron in layer H to the particular neuron in layer O. 

Figure 2A shows a representative example of the receptive field which developed after training 

on Task 1 for one specific neuron in layer O which controls movements to the upper-left 

direction. This neuron responded most robustly to bars of horizontal orientation (rewarded) in the 
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upper-left quadrant of the visual field and, importantly, did not respond to bars of negative 

diagonal orientation (punished). 

Figure 2B shows examples of receptive fields of six neurons in layer H which synapse 

strongly onto the upper-left neuron in layer O (the neuron shown in Figure 2A). These neurons 

form high level representations of the input patterns, similar to the neurons in the higher levels of 

the visual system or later layers of a convolutional neural network6,60,61. The majority of these 

receptive fields revealed strong selection for the horizontal (i.e. rewarded) food particles in the 

upper-left quadrant of the visual field. As a particularly notable example, one of these layer H 

neurons (Figure 2B; middle-right) preferentially responded to negative diagonal (i.e. punished) 

food particles in the bottom-right quadrant of the visual field. Thus, spiking in this neuron caused 

the agent to move away from these punished food particles. Similar findings after training on 

Task 2 are shown in Figures 2C and 2D. 

 

Sleep prevents catastrophic forgetting of the old task during new task training 

We next tested whether the network model exhibits catastrophic forgetting by training 

sequentially on Task 1 (old task) followed by Task 2 (new task) (Figure 3A). Following Task 2 

training, performance on Task 1 was down to no better than chance (0.52 ± 0.02), while 

performance on Task 2 improved to 0.69 ± 0.03 (Figure 3 A,B). Thus, sequential training on a 

complementary task caused the network to undergo catastrophic forgetting of the task trained 

earlier, remembering only the most recent task. 

Interleaved training was proposed as a solution for catastrophic forgetting12,16,29, so we 

tested if interleaved Task 1 and Task 2 (InterleavedT1,T2) training would allow the network to  
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Figure 3. Sleep prevents catastrophic forgetting of old task during new task training. 

(A)Mean performance (red line) and standard deviation (blue lines) over time: unsupervised 

training(white), Task 1 training (blue), Task 1/2 testing (green/yellow), Task 2 training (red), 

Task 1/2testing (green/yellow). (B) Mean and standard deviation of performance during testing 

on Task 1(blue) and Task 2 (red). Following Task 1 training, mean performance on Task 1 was 

0.70 ± 0.02while Task 2 was 0.53 ± 0.02. Following Task 2 training, mean performance on Task 

1 was 0.52± 0.02 while Task 2 was 0.69 ± 0.03. Thus, Task 2 training after Task 1 training led to 

Task 1forgetting. (C) Task paradigm similar to that shown in (A) but with InterleavedT1,T2 

training(pink) instead of Task 2 training. (D) Mean and standard deviation of performance during 

testing on Task 1 (blue) and Task 2 (red). Following Task 1 training, mean performance on Task 

1 was0.70 ± 0.02 while Task 2 was 0.53 ± 0.02. Following InterleavedT1,T2 training, mean 

performance on Task 1 was 0.68 ± 0.03 while Task 2 was 0.65 ± 0.04. InterleavedT1,T2 training 

allowed new Task 2 learning without forgetting old Task 1. (E) Task paradigm similar to that 

shown in (A)but with InterleavedS,T2 training (gray) instead of Task 2 training. (F) Mean and 

standard deviation of performance during testing on Task 1 (blue) and Task 2 (red). Following 

Task 1training, mean performance on Task 1 was 0.70 ± 0.02 while Task 2 was 0.53 ± 0.02. 

Following InterleavedS,T2 training, mean performance on Task 1 was 0.68 ± 0.05 while Task 2 

was 0.70 ±0.03. Embedding sleep phases to the new Task 2 training protected old Task 1 

memory. 
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learn new Task 2 without forgetting old Task 1 (Figure 3C). For interleaved training we 

alternated short presentations of Task 1 and Task 2 every 100 movement cycles. Figure 3 C,D 

shows that, following InterleavedT1,T2 training, the network achieved a performance of 0.68 

±0.03 on Task 1 and a performance of 0.65 ± 0.04 on Task 2. Therefore, InterleavedT1,T2 training 

allowed the network to learn new Task 2 without forgetting what the network had just learned 

during training on Task 1. However, while interleaved training made it possible to learn both 

tasks, it imposes the stringent constraint that all the original training data (in our case explicit 

access to the Task 1 environment) be stored for later use and combined with new data to retrain 

the network14,16,29,30. 

Sleep is believed to be an off-line processing period when recent memories are replayed 

to avoid damage by new learning. We recently found that in a thalamocortical network model 

that was trained to learn spike sequences, sleep rescued old tasks from catastrophic forgetting 

following new training{González, 2019 #92}. Can we implement a sleep like phase to our RL 

model to protect an old task and still accomplish new task learning without explicit re-training of 

the old task (i.e., without doing explicit interleaved training of Task 1 and Task 2)? 

Again, we first trained the network on Task 1. Next, we implemented a training phase 

consisted of alternating periods of training on Task 2 (new task) lasting 100 movement cycles 

and periods of “sleep” of the same duration (we will refer to this training phase as 

InterleavedS,T2) (Figure 3E). To simulate sleep, the rewarded STDP rule was replaced by 

unsupervised STDP, ensuring a truly offline learning period, and hidden layer neurons were 

artificially stimulated by Poisson distributed spike trains in order to maintain spiking rates 

similar to that during task training (indeed, in vivo, activity of the neocortical neurons during 

REM sleep or during Up states of slow-wave sleep is similar to awake37; see Methods: Simulated 
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Sleep for details). Importantly, no training on Task 1 was performed at any time during 

InterleavedS,T2. Figure 3 E,F shows that following InterleavedS,T2 the network achieved a 

performance of 0.68 ± 0.05 on Task 2 and retained a performance of 0.70 ± 0.03 on Task 1, 

comparable to single Task 1 (0.70 ± 002) or Task 2 (0.69 ± 0.03) performances (Figure 1B/C) 

and exceeding those achieved through InterleavedT1,T2 training (Figures 3C,D). When durations 

of Task 2 individual training episodes was increased significantly beyond 100 cycles during 

InterleavedS,T2, the network was only able to perform well on the new Task 2 while performance 

on the old Task 1 dropped to the chance level (not shown). 

We interpret these results as follows (see sections below for detailed synaptic 

connectivity analysis). Each episode of new Task 2 training improves Task 2 performance but 

damages synaptic connectivity responsible for old Task 1. If continuous Task 2 training is long 

enough, the damage to Task 1 becomes irreversible. Having a sleep phase after a short period of 

Task 2 training enables spontaneous forward (H->O) replay that preferentially benefits the 

strongest synapses. Thus, if Task 1 synapses are still strong enough to maintain replay, they are 

replayed and increase. 

 

Properties of Sleep 

To investigate the extent to which old task information is stored in the synaptic weight 

matrix devoid of any intrinsic plasticity properties such as firing rate plasticity, we employed a 

reduced implementation of our sleep phase which provided each hidden layer neuron with 

independent Poisson spike train input with a rate determined by the mean firing rate of 

population during testing. We will refer to this variation of sleep as Uniform-Noise Sleep (US) to 
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emphasize the fact that each neuron receives input noise with rate determined by the mean-field 

activity as opposed to its own private spiking history. 

The network’s performance under our reduced implementation of US (Figure S3 C,D) 

was not found to differ substantially from our initial sleep phase implementation (see Figure 

3E,F). Moreover, when a period either InterleavedS,T1 or InterleavedUS,T1 were implemented in a 

naive network with no previous training on either task (Figure S3 A,B / Figure S4 A,B), the 

network showed modest performance on Task 1 with that on Task 2 remaining at baseline. 

Finally, a period of InterleavedS,T1 following Task 1 training (Figure S4 C,D) allowed robust 

maintenance of performance on Task 1 without any significant change above baseline for Task 2. 

Taken together, these results highlight the necessity for a minimal synaptic trace representing a 

task for sleep to have any significant effect. Importantly, this phenomenon is independent of 

strict maintenance of firing rates across single hidden layer neurons. 

 

Sleep replay protects synapses critical for old tasks 

To reveal synaptic weights dynamics during training and sleep, we next traced “task-

relevant” synapses, i.e. synapses identified in the top 10% distribution following training on that 

specific task. Therefore, we first trained Task 1 followed by Task 2 training (Figure 4 

A) and we identified “task-relevant” synapses after each task training. We then continued 

by training Task 1 again but we interleaved it with periods of sleep, so the overall order of 

training was T1->T2->InterleavedS,T1. As we reported before, sequential training of Task 2 after 

Task 1 led to forgetting of Task 1, however, after InterleavedS,T1 Task 1 was learned again and 

Task 2 was preserved(Figure 4A,B). Importantly, this protocol allowed us to compare synaptic 

weights after InterleavedS,T1 training with those we identified as task specific after single Task 1   
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Figure 4. Interleaving periods of new task training with sleep allows integrating synaptic 

information relevant to new task while preserving old task information. (A) Mean 

performance (red line) and standard deviation (blue lines) over time: unsupervised 

training(white), Task 1 training (blue), Task 1/2 testing (green/yellow), Task 2 training (red), 

Task 1/2testing (green/yellow), InterleavedS,T1 training (grey), Task 1/2 testing (green/yellow). 

Note that performance for Task 2 remains high despite no Task 2 training during InterleavedS,T1. 

(B) Mean and standard deviation of performance during testing on Task 1 (blue) and Task 2 

(red). Following Task 1 training, mean performance on Task 1 was 0.70 ± 0.02 while Task 2 was 

0.53± 0.02. Conversely, following Task 2 training, mean performance on Task 1 was 0.52 ± 

0.02while Task 2 was 0.69 ± 0.04. Following InterleavedS,T1 training, mean performance on Task 

1was 0.69 ± 0.02 while Task 2 was 0.67 ± 0.03. (C) Distributions of task-relevant synaptic 

weights. The distributional structure of Task 1-relevant synapses following Task 1 training (top-

left) is destroyed following Task 2 training (top-middle), but partially recovered following 

InterleavedS,T1 training (top-right). Similarly, the distributional structure of Task 2-

relevantsynapses following Task 2 training (bottom-middle), which was not present following 

Task 1training (bottom-left), was partially preserved following InterleavedS,T1 training (bottom-

right).Task-relevant synapses were considered to be those which had a synaptic weight of at least 

0.1following training on that task. (B) Box plots with mean (dashed green line) and median 

(dashed orange line) of the distance to the decision boundary found by an SVM trained to 

classify Task 1and Task 2 synaptic weight matrices for Task 1, Task 2, and InterleavedS,T1 

training across trials. Task 1 and Task 2 synaptic weight matrices had mean classification values 

of -0.069 and 0.069respectively, while that of InterleavedS,T1 training was -0.0047. (C) 

Trajectory of H to O layer synaptic weights through PC space. Synaptic weights which evolved 

during InterleavedS,T1 training (green dots) clustered in a location of PC space intermediary 

between the clusters of synaptic weights which evolved during training on Task 1 (red dots) and 

Task 2 (blue dots).
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and Task 2 training (Figure 4C). The structure in the distribution of Task 1-relevant synapses that 

was formed following Task 1 training (Figure 4C; top-left) was destroyed following Task 2 

training (top-middle) but partially recovered following InterleavedS,T1 training (top-right). The 

structure in the distribution of Task 2-relevant synapses following Task 2 training (bottom-

middle) was not present following Task 1 training (bottom-left) and was partially retained 

followingInterleavedS,T1 training (bottom-right). Thus, sleep can preserve important synapses 

while incorporating new ones. 

To better understand the effect of InterleavedS,T1 training on the synaptic weights, we 

trained a support vector machine (SVM; see Method: Support Vector Machine Training for 

details) with a radial basis function kernel to classify the synaptic weight configurations between 

layers H and O (i.e. those responsible for decision making) according to whether they serve toper 

form Task 1 or Task 2. Figure 4D shows that the SVM robustly classified the synaptic weight 

states from Task 1 and Task 2 while those from InterleavedS,T1 weight states fell significantly 

closer to the decision boundary. This indicates that the synaptic weight matrices which result 

from InterleavedS,T1 training are a mixture of Task 1 and Task 2 states. Figure 4E shows the 

trajectory of the synaptic weight distribution for the experiment in Figure 4A projected to 3-

dimensions using principal components analysis (PCA). It can be seen that while synaptic weight 

matrices associated with Task 1 and Task 2 training cluster in distinct regions of PC space, 

InterleavedS,T1 training pushes the synaptic weights to an intermediate location between Task 

1and Task 2. Importantly, the smoothness of this trajectory to its steady state suggests that Task 

2information is never completely erased during this evolution. We take this as evidence that 

InterleavedS,T1 training is capable of integrating synaptic information relevant to Task 1 while 

preserving Task 2 information. 
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To test if synaptic weights dynamics reported here is similar to that during interleaved 

training of Task 1 and Task 2, we repeated analysis from Figure 4 but we performed the training 

in the following order: T1->T2-> InterleavedT1,T2. Again, we identified task-relevant synapses 

(top 10% of synapses) after each task training and we traced them after training on the opposing 

task or after InterleavedT1,T2 training (Supplementary Figure 1). Results were very similar to 

those reported in Figure 4, suggesting that InterleavedS,T1 can accomplish the same task 

asInterleavedT1,T2, but without access to the old task data (old training environment). 

 

Receptive fields of decision-making neurons after sleep represent multiple tasks 

 To confirm that the network has learned both tasks after InterleavedS,T1 training, we 

mapped the receptive fields of decision-making neurons in layer O (Figure 5; see Figure 2 for 

comparison). Figure 5A shows the receptive field for the neuron in layer O which controls 

movement in the upper-left direction. This neuron responds to both horizontal (rewarded for 

Task 1) and vertical (rewarded for Task 2) orientations in the upper-left quadrant of the visual 

field. Although it initially appears that this layer O neuron may also be responsive to diagonal 

patterns in this region, analysis of the receptive fields of neurons in layer H (Figure 5B) revealed 

that these receptive fields are selective to either horizontal food particles (left; rewarded for Task 

1) or vertical food particles (right; rewarded for Task 2) in the upper-left quadrant of the visual 

field. Other receptive fields were responsible for avoidance of punished particles for both tasks 

(see examples in Figure 5B, bottom-middle-right and bottom-middle-left). Thus, the network 

will utilize one of two distinct sets of layer H neurons, selective for either Task 1 or Task 2, 

depending on which food particles are present in the environment. 
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Figure 5. Receptive fields following interleaved Sleep and Task 1 training reveal how the 

network can multiplex the complementary tasks. (A) Left, Receptive field of the output layer 

neuron controlling movement to the upper-left direction following interleaved sleep and Task 

1training. This neuron has a complex receptive field capable of responding to horizontal and 

vertical orientations in the upper-left quadrant of the visual field. Right, Schematic of the 

connectivity between layers. (B) Examples of receptive fields of hidden layer neurons which 

synapse strongly onto the output neuron from (A) after interleaved Sleep and Task 1 training. 

The majority of these neurons selectively respond to horizontal food particles (left half) or 

vertical food particles (right half) in the upper-left quadrant of the visual field, promoting 

movement in that direction and acquisition of the rewarded patters. A few neurons (bottom-

middle-left/right) can be seen to selectively respond to the presence of positive/negative diagonal 

food particles in the bottom-right quadrant of the visual field. Activation of these neurons will 

promote avoidance movement to the upper-left direction away from the punished patterns). 
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Periods of sleep allow reintegration of new task without interference through 

renormalization of task-relevant synapses 

To visualize synaptic weight dynamics during InterleavedS,T1 training, traces of all 

synapses projecting to a single representative output layer neuron were plotted (Figure 6A). As 

in Figure4, we wanted to monitor task specific synapses, so we used the order of training T1-

>T2->InterleavedS,T1, when Task 1 and Task 2 specific synapses were identified after each task 

training. At the onset of InterleavedS,T1 training (i.e. 240,000 aeons), the network was only able 

to perform on Task 2, meaning the strong synapses in the network were specific to this task. 

These synapses were represented by a cluster ranging from ~0.08 to ~0.4; the rest of synapses 

grouped near 0. As InterleavedS,T1 training progressed, Task 1 specific synapses moved to the 

strong cluster and some, presumably less important, Task 2 synapses moved to the weak cluster. 

After a period of time the rate of transfer decreased and the total number of synapses in each 

group stabilized, showing that the network is approaching equilibrium (Figure 6B). 

To visualize how sleep renormalizes task relevant synapses, we plotted two-dimensional 

weight distributions for Task 1->Task2 (Figure 6C) and Task 2 -> InterleavedS,T1 (Figure 6D) 

experiments (see Methods: 2-D Synaptic Weight Distributions for details). To establish a 

baseline, in Figure 6C (left) the weight state at the end of Task 1 training (X-axis) (see overall 

timeline of this experiment in Figure 4A) was compared to itself (Y-axis). This formed a 

perfectly diagonal plot. Most synapses were weak (red dots) with stronger synapses forming a 

tail in the distribution. The next comparison (Figure 6C, middle) was between the weight state 

after Task 1 training (X-axis) and a time early on Task 2 training (Y-axis). At that time, synapses 

were only able to modify their strength slightly, causing most points to lie close to the diagonal. 

As training on Task 2 continued until maximum performance was reached, synapses moved far  
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Figure 6. Periods of sleep allow learning Task 1 without interference with old Task 

2through renormalization of task-relevant synapses. (A) Dynamics of all incoming synapses 

toa single output layer neuron during InterleavedS,T1 training shows the synapses separate into 

two clusters. The network was trained in the following order: T1->T2-> InterleavedS,T1. (B) 

Number of synapses in the strong (red) and weak (blue) clusters during InterleavedS,T1. (C) Two-

dimensional histograms illustrating synaptic weights dynamics. For each plot, the x-axis 

represents synaptic weight after Task 1 training and the y-axis represents the synaptic weight at a 

different point in time(Scale bar: brown - 50 synapses/bin, blue - 1 synapse/bin. One-

dimensional projections along top and right sides show the global distribution of synapses at the 

time slices for a given plot. If no training occurred between the time slices, a diagonal plot 

depicts that synaptic weights have not changed (left). After a small amount of Task 2 training, all 

points lie near the diagonal (middle) indicating minimal changes to synaptic weights. Once 

Task2 is fully trained (right), many synapses move far away from their original values. In 

particular, a red cluster along the x-axis indicates synapses which were strong after Task 1 

training but were erased after Task 2 training. (D) Same as (C) except the x-axis refers to the end 

of Task 2training. Again, a diagonal plot is attained when no training takes place between the 

time slices(left), and points lie near the diagonal when only a small amount of InterleavedS,T1 

training occurs (middle). After a full period of InterleavedS,T1 training (right), weak synapses 

were recruited to support Task 1 (red cluster along the y-axis) and many Task 2 specific synapses 

remained moderately strong (blue cluster along x-axis).
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away from the diagonal (Figure 6C, right). Two trends were observed. A set of synapses that had 

a strength near zero following Task 1 training increased strength following Task 2 training 

(Figure 6D, right, red dots along Y-axis). At the same time, many strongly trained by Task 

1synapses were depressed down to zero (Figure 6C, right, red dots along X-axis). The latter 

illustrates the effect of catastrophic forgetting - complete overwriting of the synaptic weight 

matrix caused performance of Task 1 to return to baseline after training on Task 2. 

Does sleep prevent overwriting of the synaptic weight matrix? The Figure 6D plots use 

the weight state at the end of training Task 2 as a reference that is compared to different times 

during InterleavedS,T1 training. The first two plots (Figure 6D, left/middle) are similar to those in 

Figure 6C. However, after InterleavedS,T1 training (Figure 6D, right) many synapses that were 

strong following Task 2 training were not depressed to zero but rather were pushed to an 

intermediate strength where they are still functional (note cluster of points parallel to X-axis; see 

also projection to 1D on the right side of the graph). Thus, InterleavedS,T1 training, combining 

new training on Task 1 with periods of unsupervised sleep, moved synapses in a way that 

preserved strong synapses from a previously learned task while also introducing new strong 

synapses to perform a new task. Since a significant fraction of the strong synapses from training 

on Task 2 were preserved (due to the sleep periods), performance on Task 2 remained high 

following InterleavedS,T1 training despite the fact that the networks received no new training 

examples of Task 2.  

To further demonstrate that this type of synaptic renormalization our sleep periods 

accomplish does more than could be done by simply preserving the most task-relevant weights, 

we employed a variation of the sequential training paradigm (previously shown to result in 

catastrophic forgetting; see Figure 3A,B) which identified and froze a percentage of the strongest 
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Task 1-relevant synapses at their weight value following Task 1 training. We found that freezing 

1 percent of Task 1-relevant weights allowed Task 2 to be robustly learned, but was not capable 

of preserving Task 1 performance following Task 2 training (Figure S5A). Freezing 5 percent of 

Task 1-relevant weights resulted in modest performance on both tasks, but significantly below 

that seen after either InterleavedS,T2 (see Figure 3C) or InterleavedS,T1 (see Figure 3E). 

Finally, Freezing 10% of Task 1-relevant weights was capable of fully preserving Task 1 

performance, but prevented Task 2 from being learned. Thus, in all cases, some degree of 

retroactive or prospective interference is observed.  

 

Periods of sleep push the network towards the intersection of the solution manifolds 

representing Task 1 and Task 2 specific weight configurations 

 Can many distinct synaptic weights configurations support a given task, or is each task 

supported by a unique synaptic connectivity matrix? Our previous analysis suggests that each 

task can be served by at least two different configurations of weights – one unique for that task 

(Task 1 or Task 2) and another one that supports both Task 1 and Task 2. To further explore this 

question and to approximate possible task-specific solution manifolds (MT1 and MT2) and their 

intersection (MT1∩T2) in synaptic weight space, we used multiple trials (with different 

initialization) of Task 1and Task 2 training to sample the manifolds. Figure 7A shows (in kPCA 

space) that multiple different configurations of synaptic weights can provide high performance 

for a given task. For example, all red dots in Figure 7A represent the states with the same high 

level of performance for Task 1 (but not Task 2). In addition, cyan and green dots represent 

states with high level of performance for both Task 1 and Task2. Blue dots represent the states 

with the same high level of performance for Task 2 (but not Task 1). We interpret these results as  
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Figure 7. Periods of sleep push the network towards the intersection of Task 1 and Task 2 

specific solution manifolds. (A-C) Low-dimensional visualizations of the synaptic weight 

configurations of 10 networks obtained through kPCA for 3-dimensions (A), 2-dimensions using 

PC 1 and PC 3 (B), and 2-dimensions using PC 1 and PC 3 (C). Synaptic weight configurations 

taken from the last fifth of Task 1 (red dots), Task 2 (blue dots), InterleavedT1,T2 (green dots), 

andInterleavedS,T1/T2 (cyan dots) training are shown. PC 1 characterizes good performance on 

Task 1(positively valued) or Task 2 (negatively valued) training. PC 2 (PC 3) characterizes the 

variability in Task 1 (Task 2) training. Trajectories resulting from InterleavedT1,T2 

andInterleavedS,T1/T2 training following Task 1 (Task 2) training are shown in red (blue). (D-

F)Average (solid lines) and standard deviation (shaded regions) of the n-dimensional Euclidean 

distances between the current synaptic weight configuration and MT1 (D), MT2 (E), and MT1∩T2(F) 

during Sequential (orange), InterleavedT1,T2 (purple), and InterleavedS,T1/T2 (black) training. 

Following Task 2 (D) or Task 1 (E) training, Sequential training on the opposite task causes the 

synaptic weight configuration to diverge from the initial solution manifold, while 

InterleavedT1,T2and InterleavedS,T1/T2 training do not. (F) InterleavedT1,T2 and InterleavedS,T1/T2 

training cause the synaptic weight configuration to converge to MT1∩T2 while Sequential training 

avoids this intersection. (G) Authors’ interpretation of the task-specific point-sets shown in (A-

C) as solution manifolds MT1 (red) and MT2 (blue). MT1 and MT2 can be thought of as two 

oppositely oriented elliptic paraboloids which intersect orthogonally near the origin (MT1∩T2; 

dark green).(H, I) Sequential training (pink arrow) causes the network to jump from one solution 

manifold to the other while avoiding MT1∩T2, while InterleavedS,T1/T2 training (light green arrow) 

keep the network close to the initial solution manifold as it converges towards MT1∩T2. 
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evidence that synaptic weight space includes a manifold, MT1, where different configurations of 

weights (red, green, cyan dots) all allow for Task 1 to perform well. This manifold intersects 

with another one, MT2, where different weights configurations (blue, green, cyan dots) are all 

suitable for Task 2. Figures 7B and 7C show 2D projections of this space onto PCs 1 and 2 and 

PCs 1 and 3, respectively. From these projections, we can see that PC 1 seems to capture the 

extent to which a synaptic weight configuration is associated with Task 1 (positive values) or 

Task 2 (negative values), while PC 2 and PC 3 capture the variance in synaptic weight 

configurations associated with Task 1 and Task 2, respectively. Note, the trajectories through this 

space (red/blue lines) during InterleavedT1,T2 and InterleavedS,T1/T2 training would also belong to 

the respective task manifolds as performance on the old tasks was never lost in these training 

scenarios. 

 We calculated the distance from the current synaptic weight configurations to MT1 (Figure 

7D), MT2 (Figure 7E), and MT1∩T2 (Figure 7F; see Methods: Distance from Solution Manifolds for 

details). Figures 7D and 7E show that while Sequential (T1->T2 or T2->T1) training causes 

synaptic weight configurations to diverge quickly from its initial solution manifold (i.e. MT1 or 

MT2), both InterleavedT1,T2 and InterleavedS,T1/T2 training cause synaptic weight configurations to 

stay close to the initial solution manifold as the new task was learned.(Note, that we under 

sampled MT1 and MT2 , which explains initial distance increase.) Importantly, Figure 7F shows that 

while both InterleavedT1,T2 and InterleavedS,T1/T2 training cause synaptic weight configurations to 

smoothly converge towards MT1∩T2, Sequential training avoids this intersection entirely. 

 In Figure 7G we show a schematic depiction of these results. The task-specific manifolds, 

MT1 and MT2, are roughly defined in 3D projection by two orthogonal elliptic paraboloids with 

opposite orientation, with an approximately ellipsoidal intersection, MT1∩T2. Figures 7H and 7I 
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depict the trajectories the network takes in this space following Task 2 and Task 1 training, 

respectively. Sequential training causes the network to jump directly from one task-specific 

solution manifold to the other, resulting in catastrophic forgetting. In contrast, interleaving new 

task training with sleep (InterleavedS,T1/T2) prevents catastrophic forgetting by keeping the 

network close to the old task solution manifold as it converges towards MT1∩T2 – a region capable 

of supporting both tasks simultaneously. 

 

Discussion 

 In this study we report that a multi-layer SNN utilizing reinforcement learning may 

exhibit catastrophic forgetting upon sequential training of two complementary complex foraging 

tasks, but the problem is mitigated if the network is allowed, during new task training, to 

undergo intervening periods of spontaneous reactivation which we consider to be equivalent to 

the replay observed during periods of sleep in biological systems. This scenario was effectively 

equivalent to explicit interleaved training of both tasks, however, no training data for the old task 

were required during “sleep”. At the synaptic level, training a new task alone led to complete 

overwriting of synaptic weights responsible for the previous task. In contrast, interleaving 

periods of reinforcement learning on a new task with periods of unsupervised learning during 

sleep preserved old task synapses damaged by new task training to avoid forgetting and 

enhanced new task synapses to allow new task learning. Thus, synaptic weight configuration was 

pushed towards the intersection of the solution manifolds representing synaptic weight 

configurations associated with individual tasks - an optimal compromise for performing both 

tasks. 
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 The critical role that sleep plays in learning and memory is supported by a vast, 

interdisciplinary literature spanning both psychology and neuroscience34,36,41,54,57. Specifically, it has 

been suggested that REM sleep supports the consolidation of non-declarative or procedural 

memories while non-REM sleep supports the consolidation of declarative memories32,41,54. In 

particular, REM sleep has been shown to be important for the consolidation of memories of tasks 

involving perceptual pattern separation, such as the texture discrimination task41,55. Despite the 

difference in the cellular and network dynamics during these two stages of sleep41,54, both are 

thought to contribute to memory consolidation through repeated reactivation, or replay, of 

specific memory traces acquired during learning17,27,32,35,36,41,59. These studies suggest that through 

replay, sleep can support the process of off-line memory consolidation to circumvent the 

problem of catastrophic forgetting. 

 From mechanistic perspective, the sleep phase in our model protects old memories by 

enabling unsupervised learning - spontaneous replay of synapses responsible for previously 

learned tasks. We previously reported that in the thalamocortical models, a sleep phase may 

enable replay of spike sequences learned in awake to improve post-sleep performance58,59 and to 

protect old memories from catastrophic forgetting{González, 2019 #92}. Here we found, 

however, that a single episode of new task training using reinforcement learning could quickly 

erase an old memory to the point that it cannot be recovered by subsequent sleep. The solution 

was similar to how brain slowly learns procedural (hippocampal-independent) 

memories31,32,41,54,55. Each episode of new task training improves this task performance only 

slightly but also damages slightly synaptic connectivity responsible for the older task. 

Subsequent sleep phases enable replay that preferentially benefits the strongest synapses, such as 

those from old memory traces, to allow them to recover. 
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 We found that multiple distinct configurations of synaptic weights can support each task 

in our model, suggesting the existence of task specific solution manifolds in synaptic weight 

space. Sequential training of new tasks makes the network to jump from one solution manifold to 

another, enabling memory for the most recent task but erasing memories of the previous tasks. 

Interleaving new task training with sleep phases enables the system to evolve towards 

intersection of these manifolds where synaptic weight configurations can support multiple tasks 

(a similar idea was recently proposed in the machine learning literature to minimize catastrophic 

interference by learning representations that accelerate future learning20). From this point of view 

having multiple episodes of new task training interleaved with multiple sleep episodes allows 

gradual convergence to the intersection of the manifolds representing old and new tasks, while a 

single long episode of new task learning would push the network far away from the old task 

manifold making it impossible to recover by subsequent sleep. 

 Although classical interleaved training of the old and new tasks showed similar 

performance results in our model as interleaving new task training with sleep, we believe the 

latter to be superior on the following theoretical grounds. Classical interleaved training will 

necessarily cause the system to oscillate about the optimal location in synaptic weight space 

which can support both tasks because each training cycle uses a cost function specific to only a 

single task. While this can be ameliorated with a learning rate decay schedule, the system is 

never actually optimizing for the desired dual-task state. Sleep, on the other hand, can support 

not only replays of the old task, but also support replays which are a mixture of both tasks43,56.. 

Thus, through unsupervised learning during sleep replay, the system is able to perform 

approximate optimization for the desired dual-task state. 
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 Our results are in line with a large body of literature suggesting that interleaved training is 

capable of mitigating catastrophic forgetting in ANNs12,16,29 and SNNs10,18. The novel 

contribution from this study is that the data intensive process of interleaved training can be 

avoided in SNNs by inserting periods of noise-induced spontaneous reactivation – unsupervised 

learning – during new task training; similar to how brains undergo offline consolidation periods 

during sleep resulting in reduced retroactive interference to previously learned tasks31,41. In fact, 

our results are in line with previous work done in humans showing that perceptual learning tasks 

are subject to retroactive interference by competing memories without an intervening period of 

REM sleep32,55. Moreover, performance on visual discrimination tasks in particular have been 

shown to steadily improve over successive nights of sleep55, consistent with our findings that 

interleaving multiple periods of sleep with novel task learning leads to optimal performance on 

each task. 

 While our model represents a dramatic simplification of a biological system, we believe 

that it captures some important processing steps of how animal and human brains interact with 

the external world. The primary visual system is believed to employ a sequence of processing 

steps when visual information is increasingly represented by neurons encoding higher level 

features6,60,61. This processing step was reduced to very simple convolution from input to hidden 

layer in our model. Subsequently, in the brain, associative areas and motor cortex are trained to 

make decisions based on reward signals released by neuro modulatory centers12,48-50. This was 

reduced in our model to synaptic projections from the hidden to output (decision making) layer 

implementing rewarded STDP to learn a task11,13,19. 

 Our study predicts synaptic level mechanisms of how sleep-based memory reactivation 

can protect old memory traces during training of a new interfering memory task. It suggests that 
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for procedural memories, that are directly encoded to the cortical network connectivity matrix 

during new training, multiple episodes of training interleaved with periods of sleep provide 

necessary mechanisms to prevent forgetting old memories. Interleaving slow new task training 

with sleep enables the connectivity matrix to evolve towards the joint synaptic weight 

configuration, representing the intersection of manifolds supporting individual tasks. Sleep 

makes this possible by replaying old memory traces without explicit usage of the old training 

data. 
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S1 Figure. Interleaving old and new task training allows integrating synaptic information 

relevant to new task while preserving old task information. (A) Mean performance (red line) 

and standard deviation (blue lines) over time: unsupervised training (white), Task 1 

training(blue), Task 1/2 testing (green/yellow), Task 2 training (red), Task 1/2 testing 

(green/yellow), InterleavedT1,T2 training (purple), Task 1/2 testing (green/yellow). (B) Mean and 

standard deviation of performance during testing on Task 1 (blue) and Task 2 (red). Following 

Task 1training, mean performance on Task 1 was 0.69 ± 0.02 while Task 2 was 0.53 ± 0.02. 

Conversely, following Task 2 training, mean performance on Task 1 was 0.52 ± 0.02 while 

Task2 was 0.69 ± 0.04. Following InterleavedT1,T2 training, mean performance on Task 1 was 

0.65 ±0.03 while Task 2 was 0.67 ± 0.04. (C) Distributions of task-relevant synaptic weights. 

The distributional structure of Task 1-relevant synapses following Task 1 training (top-left) is 

destroyed following Task 2 training (top-middle), but partially recovered 

followingInterleavedT1,T2 training (top-right). Similarly, the distributional structure of Task 2-

relevantsynapses following Task 2 training (bottom-middle), which was not present following 

Task 1training (bottom-left), was partially preserved following InterleavedT1,T2 training (bottom-

right).(D) Box plots with mean (dashed green line) and median (dashed orange line) of the 

distance to the decision boundary found by an SVM trained to classify Task 1 and Task 2 

synaptic weight matrices for Task 1, Task 2, and InterleavedT1,T2 training across trials. Task 1 

and Task 2synaptic weight matrices had mean classification values of -0.069 and 0.069 

respectively, while that of InterleavedT1,T2 training was 0.016. (E) Trajectory of H to O layer 

synaptic weights through PC space. Synaptic weights which evolved during InterleavedT1,T2 

training (green dots)clustered in a location of PC space intermediary between the clusters of 

synaptic weights which evolved during training on Task 1 (red dots) and Task 2 (blue dots).
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S2 Figure. Model displays graceful degradation in performance during periods of hidden 

layer dropout. (A) Mean performance (red line) and standard deviation (blue lines) over time: 

unsupervised training (white), Task 1 training (blue), Task 1 testing (green). Gradient bar above 

Task 1 testing (green) displays the number of hidden layer neurons over time starting at 784 and 

decreasing down to 0. Here it can be observed that once the network is trained to optimal 

performance on Task 1, the testing performance degrades gradually once the network is frozen 

and hidden layer neurons are sequentially randomly removed over time. This highlights the 

formation of a distributed synaptic structure between hidden and output layer neurons developed 

during training, ensuring output layer activity is not dictated by a select few hidden layer 

neurons. (B) Mean performance (red line) and standard deviation (blue lines) over time: 

unsupervised training (white), Task 2 training (red), Task 2 testing (yellow). Gradient bar above 

Task 2 testing (yellow) displays the number of hidden layer neurons over time starting at 784 and 

decreasing down to 0. Analysis and interpretation for the Task 2 paradigm is analogous to panel 

A. 
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S3 Figure. Periods of training interleaved with uniform noise allow for integration of new 

memories while maintaining old ones. (A) Mean performance (red line) and standard deviation 

(blue lines) over time: unsupervised training (white), InterleavedUS,T1 (burnt orange), Task 1/2 

testing (green/yellow). (B) Mean and standard deviation of performance during testing on Task 1 

(blue) and Task 2 (red). Following InterleavedUS,T1, mean performance on Task 1 was 0.60 ± 

0.01 while Task 2 was 0.49 ± 0.05. (C) Mean performance (red line) and standard deviation 

(blue lines) over time: unsupervised training (white), Task 1 training(blue), Task 1/2 testing 

(green/yellow InterleavedUS,T2 (burnt orange), Task 1/2 testing (green/yellow). (B) Mean and 

standard deviation of performance during testing on Task 1 (blue) and Task 2 (red). Following 

Task 1 training, mean performance on Task 1 was 0.70 ± 0.02 while Task 2 was 0.53 ± 0.02. 

Post InterleavedUS,T2 training , mean performance on Task 1 was 0.67 ± 0.05 and Task 2 was 

0.69 ± 0.03. 
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S4 Figure. Periods of training interleaved with sleep do not increase performance on 

untrained tasks. (A) Mean performance (red line) and standard deviation (blue lines) over time: 

unsupervised training (white), InterleavedS,T1 (grey), Task 1/2 testing (green/yellow). (B) Mean 

and standard deviation of performance during testing on Task 1 (blue) and Task 2 (red). 

Following InterleavedS,T1, mean performance on Task 1 was 0.60 ± 0.03 while Task 2 was 0.49 ± 

0.05. (C) Mean performance (red line) and standard deviation (blue lines) over time: 

unsupervised training (white), Task 1 training(blue), Task 1/2 testing (green/yellow 

InterleavedS,T1 (grey), Task 1/2 testing (green/yellow). (B) Mean and standard deviation of 

performance during testing on Task 1 (blue) and Task 2 (red). Following Task 1 training, mean 

performance on Task 1 was 0.70 ± 0.02 while Task 2 was 0.53 ± 0.02. Post InterleavedS,T1 

training, mean performance on Task 1 was 0.71 ± 0.02 and Task 2 was 0.51 ± 0.02. 
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S5 Figure. Freezing a variable percentage of task specific strong synapses preserves 

differing degrees of performance in a sequential learning paradigm. (A-C) Mean and 

standard deviation of performance during testing on Task 1 (blue) and Task 2 (red). The first set 

of bars is recorded after Task 1 training with Task 1 performance being 0.70 ± 0.02 while Task 2 

performance was 0.53 ± 0.02. Following this initial training period, a varying percentage of the 

strongest synapses required to perform on Task 1 were frozen, after which began a period of 

training on Task 2 ensued with the specified synapses held constant. It can be observed that 

freezing the top 1% of Task 1 synapses (A) resulted in a Task 1 performance of 0.54 ± 0.02 and 

Task 2 performance of 0.68 ± 0.03, freezing the top 5% of Task 1 synapses (B) resulted in a Task 

1 performance of 0.65 ± 0.02 and Task 2 performance of 0.61 ± 0.01, and freezing the top 10% 

of Task 1 synapses (C) resulted in a Task 1 performance of 0.70 ± 0.03 and Task 2 performance 

of 0.53 ± 0.03. Freezing the top 1% of Task 1 synapses does not maintain Task 1 performance 

enabling Task 2 relevant synapses to dominate the network, on the other hand, freezing the top 

10% of Task 1 synapses fully retains Task 1 performance preventing Task 2 to be learned. 

Freezing the top 5% of synapses allows for a balance of retaining/introducing old/new task 

memories.
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