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A B S T R A C T

Individual differences in white matter tract microstructure, measured with diffusion tensor imaging (DTI),
demonstrate substantial heritability. However, it is unclear to what extent this heritability reflects global genetic
influences or tract-specific genetic influences. The goal of the current study was to quantify the proportion of
genetic and environmental variance in white matter tracts attributable to global versus tract-specific influences.
We assessed fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD)
across 11 tracts and 22 subdivisions of these tracts in 392 middle-aged male twins from the Vietnam Era Twin
Study of Aging (VETSA). In principal component analyses of the 11 white matter tracts, the first component,
which represents the global signal, explained 50.1% and 62.5% of the variance in FA and MD, respectively.
Similarly, the first principal component of the 22 tract subdivisions explained 38.4% and 47.0% of the variance in
FA and MD, respectively. Twin modeling revealed that DTI measures of all tracts and subdivisions were heritable,
and that genetic influences on global FA and MD accounted for approximately half of the heritability in the tracts
or tract subdivisions. Similar results were observed for the AD and RD diffusion metrics. These findings under-
score the importance of controlling for DTI global signals when measuring associations between specific tracts and
outcomes such as cognitive ability, neurological and psychiatric disorders, and brain aging.
1. Introduction

Diffusion tensor imaging (DTI) estimates the directionality and
magnitude of the diffusion of water molecules within the brain, which
aids in characterizing white matter microstructure. Findings from twin,
family, and association studies have revealed that much of the variability
in white matter tracts across multiple DTI metrics is influenced by genetic
factors (Chiang et al., 2011; Hatton et al., 2018; Jahanshad et al., 2013;
Kochunov et al., 2016; Lee et al., 2017; Vuoksimaa et al., 2017). How-
ever, it is unclear to what extent these genetic influences are due to (i)
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unique factors specific to each tract, or (ii) general variance in white
matter across the entire brain. Greater understanding of the genetic and
environmental influences on white matter structure may expedite
ongoing efforts to use genome-wide association studies to identify the
genetic influences on white matter microstructure (Hatton et al., 2018).
This knowledge in turn could improve our understanding of associations
between white matter microstructure and outcomes such as cognitive
ability, psychiatric disorders, and brain aging.

Fractional anisotropy (FA) quantifies directional diffusion within a
voxel and is broadly used to describe the density and coherence of a
iego, 9500 Gilman Dr. (MC 0738), La Jolla, CA, 92093, USA.
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Table 1
Sample characteristics.

Characteristic N M SD Range

Age 390 61.82 2.62 56, 66
Lifetime education 389 13.76 2.10 5, 20
Occupation 388 5.45 1.78 0, 9
Ethnicity (% white nonHispanic) 390 86.67 na na
Combat Exposure (% yes) 334 26.34 na na
Traumatic Brain Injury (% yes) 381 27.30 na na
PTSD symptoms 389 25.17 9.63 17, 74
Alcohol Use Problems 358 0.98 1.15 0, 4

Note: Lifetime education was the number of years of school completed. Occu-
pation was based on the Hollingshead Four-Factor index (Hollingshead, 1975),
from 0 (unemployed) to 9 (major professionals). Combat exposure was assessed
as part of an earlier study (at approximately age 41) with the Combat Exposure
Index (Janes et al., 1991; Koenen et al., 2003). Traumatic brain injury was based
on an interview centered around responses to three questions regarding whether
they were ever told they had a concussion by a doctor, or had a severe head injury
that was associated with loss of consciousness or confusion (Kaup et al., 2018).
Post-traumatic stress disorder (PTSD) symptoms were based on the 17-item
DSM-IV based PTSD checklist civilian version (Weathers et al., 1993). 3.3% of
the sample reported scores greater than 49, a good predictor of PTSD diagnosis
(Weathers et al., 1993). Alcohol problems were assessed with The CAGE Ques-
tionnaire (Mayfield et al., 1974), with 3.1% of respondents received scoring 4 (an
indicator of alcoholism) and 27.1% of respondents reporting scores of 2 or 3
(indicating potential alcohol problems).
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white matter region. Higher FA indicates stronger directionality and
better cohesion of white matter. In contrast, mean diffusivity (MD) rep-
resents the average diffusivity of water molecules within a voxel,
regardless of direction, and is used in the clinical diagnosis and charac-
terization of lesions (Alexander et al., 2007). As white matter develops,
FA increases and MD decreases in healthy populations until early
adulthood, followed by steady decreases in FA and increases in MD
throughout the rest of the lifespan (Westlye et al., 2010). Lower white
matter FA and higher white matter MD have also been associated with
lower cognitive functioning (Bennett and Madden, 2014; Charlton et al.,
2006; Mabbott et al., 2006).

Axial diffusivity (AD) and radial diffusivity (RD), respectively, reflect
the magnitude of diffusion of water along, or perpendicular to, the pri-
mary axis of directionality, and are used in the computation of FA and
MD (for review, see Alexander et al., 2011). Murine models suggest that
reduced myelin due to dysmyelination or demyelination is associated
with increased RD and reduced AD (Harsan et al., 2006; Song et al., 2002,
2005; Tyszka et al., 2006). Further murine models of reversible dys-
myelination (Harsan et al., 2006; Sun et al., 2006) show that decreases in
AD are associated with reduced axonal caliber and increased expression
of the cytoskeletal proteins, whereas increases in AD are associated with
increases in axonal number and caliber. Thus, it is generally accepted that
decreases in AD reflect disorganization, damage, or loss of axons (Freund
et al., 2012; Song et al., 2005; Tyszka et al., 2006; Zhang et al., 2009),
and that increases in RD are a result of disruptions to the myelin sheath
(Chen et al., 2011; Klawiter et al., 2012; Naismith et al., 2010; Song et al.,
2002). All of these factors influence MD.

Twin studies have shed light on the genetic/environmental archi-
tecture of white matter and suggest that much of the variance between
people in DTI-derived measures in any given white matter tract can be
explained by genetic influences. For example, in previous research using
the same sample described here (men ages 56–66 years) heritability es-
timates were high for all four diffusivity indices in 12 bilateral white
matter tracts and the corpus callosum (Vuoksimaa et al., 2017). Although
heritability estimates of global measures were especially high
(0.72-0.80), the estimates varied considerably between tracts. For
example, of the tracts assessed in the present study, heritabilities of FA
measures were 0.50–0.82 for 87% of the tracts and 0.28-0.46 for the
remaining 13%. These results were consistent with estimates based on
voxel-wise analyses of FA, which also suggested that heritability may be
higher in adolescents than young adults, and higher in males than fe-
males (Chiang et al., 2011). However, because Chiang et al.‘s adolescent
heritability estimate was based on a small sample, replication using a
much larger sample is required to confirm this age-related trend. More
recent findings suggest that the genetic influences on AD and RDwithin a
given tract are moderately correlated (Hatton et al., 2018).

Thus, genetic influences account for most of the variance in white
matter microstructure across the brain and within localized anatomical
regions, but a remaining question concerns the underlying structure of
the phenotypic and genetic/environmental influences on individual dif-
ferences in white matter morphometry. For example, a set of common
genetic and/or environmental influences may contribute to white matter
microstructure across the entire brain, such as factors that influence
myelination and cellular structure (Alexander et al., 2011). If a general
factor (e.g., the first principal component of a PCA) explains considerable
variance across all white matter tracts, it will be important to identify the
extent to which genetic and environmental influences on a given tract are
explained by this general factor. It will also be important to quantify the
amount of genetic and environmental influences that are unique to a
tract, as this localized variance will be important when examining how
specific tracts are associated with outcomes such as cognitive ability,
psychiatric disorders, motor function, and brain aging (beyond those
associations with white matter microstructure across the entire brain).

We used two approaches to examine global and specific influences on
heritability of white matter tracts. First, to examine evidence for a global
factor, we conducted principal components analysis of white matter
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microstructural measures within 11 white matter tracts and 22 tract
subdivisions representing anatomically meaningful sub-regions of 8 of
the white matter tracts. We hypothesized that the first principal
component would explain much (if not most) of the variance across all
tracts or tract subdivisions.

Second, we examined the genetic/environmental correlations be-
tween global measures of FA or MD and the same measures within 11
individual white matter tracts or 22 subdivisions using bivariate twin
analyses. These twin analyses statistically parse the total variance in each
dependent measure (and its covariance with global measures) into three
sources of influences: genetic influences (i.e., the sum of all effects of
additive genetic influences across the genome), shared environmental
influences (influences that make twins in a pair similar to one another),
and nonshared environmental influences (influences that make twins in a
pair different from one another, including measurement error). Thus,
these analyses quantify the extent to which genetic/environmental in-
fluences are specific to a given tract or subdivision, or reflect influences
that are common to global diffusion measures that represent the brain's
white matter microstructure as a whole. We hypothesized that a large
proportion of the genetic variance in white matter tracts would be
explained by genetic influences on the global measure, but there will also
be genetic influences specific to individual tracts. Finally, we conducted
parallel genetic analyses for the AD and RD diffusion metrics, fromwhich
FA and MD are calculated. AD and RD share some genetic variance but
there are also some genetic influences that are unique to each (Hatton
et al., 2018). These analyses are mostly described in the supplementary
material.

2. Methods

2.1. Subjects

Data analyses were based on 390 male twins who participated in the
second wave of the longitudinal Vietnam Era Twin Study of Aging
(VETSA) project and had adequate DTI data. The sample included 84 full
monozygotic (MZ) twin pairs, 56 full dizygotic (DZ) twin pairs, and 110
unpaired twins. VETSA participants were recruited randomly from a
previous study of members of the Vietnam Era Twin Registry (Tsuang
et al., 2001). All individuals served in the United States military at some
time between 1965 and 1975, but nearly 75% reported no combat
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exposure. Sample characteristics are displayed in Table 1. Participants
are generally representative of American men in their age group with
respect to health and lifestyle characteristics (Kremen et al., 2006, 2011;
Schoenborn and Heyman, 2009).

Data were collected at the University of California, San Diego (UCSD)
and Boston University (BU). MRI data collection for BU participants was
conducted at the Massachusetts General Hospital (MGH). All participants
gave their written informed consent before participation, and the study
protocol was approved by the Institutional Review Boards at all partici-
pating institutions.

2.2. Image acquisition

Image acquisition, processing, and generation of the DTI measures in
this sample have been previously described (Hatton et al., 2018; McEvoy
et al., 2015; Vuoksimaa et al., 2017), and are briefly summarized here.
T1-weighted and diffusion-weighted images were acquired on 3T scanners
at both sites; twin pairs were always assessed on the same scanner. At
UCSD, images were acquired on a GE 3T Discovery 750 scanner (GE
Heath-care, Waukesha, WI, USA) with an eight-channel phased array head
coil. The imaging protocol included a sagittal 3D fast spoiled gradient echo
(FSPGR) T1-weighted image (TE¼ 3.164ms, TR¼ 8.084ms, TI¼ 600ms,
flip angle¼ 8�, pixel bandwidth¼ 244.141, FOV¼ 24 cm, fre-
quency¼ 256, phase¼ 192, slices¼ 172, slice thickness¼ 1.2mm), and a
diffusion-weighted image with 51 diffusion directions, b
value¼ 1000 s/mm2, integrated with a pair of b¼ 0 images with opposite
phase-encode polarity, TR¼ 9700ms, TE¼ 80–84ms, pixel band-
width¼ 3906.25. Acquisition resolution for diffusion scans was 2.5mm
isotropic, but images written by the scanner had a nominal resolution of
1.875� 1.875� 2.5mm.

At MGH, images were acquired with a Siemens Tim Trio (Siemens
USA,Washington, DC) with a 32-channel head coil. The imaging protocol
included a 3D magnetization-prepared rapid gradient echo (MPRAGE)
T1-weighted image (TE¼ 4.33ms, TR¼ 2170ms, T1¼ 1100ms, flip
angle¼ 7�, pixel bandwidth¼ 140, slices¼ 160, slice thick-
ness¼ 1.2mm), and a diffusion-weighted image consisting of two sepa-
rate b¼ 0 images with opposite phase-encode polarity, followed by two
scans with 30 diffusion directions, b value¼ 1000 s/mm2 (and one b¼ 0
image), TR¼ 9500ms, TE¼ 94ms, pixel bandwidth¼ 1371. Acquisition
resolution for diffusion scans was 2.5mm isotropic, and images written
by the scanner had the same resolution.

2.3. Image processing

Images were processed at the Center for Multimodal Imaging Genetics
(CMIG) as described previously (McEvoy et al., 2015; Vuoksimaa et al.,
2017). Briefly, T1-weighted (T1) structural images were corrected for
gradient nonlinearity distortions (Jovicich et al., 2006) and B1 field in-
homogeneity (Sled et al., 1998) and then rigidly resampled and regis-
tered to standard space. Diffusion MRI (dMRI) data were corrected for
eddy current distortion (Zhuang et al., 2006), head motion (Hagler et al.,
2009), B0 distortions (Holland et al., 2010), and gradient nonlinearity
distortions (Jovicich et al., 2006). The b¼ 0 images were registered to T1
images using mutual information (Wells et al., 1996). That registration
was used to rigidly resample the dMRI data into a standard orientation
relative to the atlas-registered T1, with 2mm isotropic resolution. All
images were visually inspected to exclude data with severe scanner ar-
tifacts or excessive head motion. We excluded an additional 42 in-
dividuals from the analyses based on this data quality review, as reported
in our earlier work (Vuoksimaa et al., 2017).

2.4. DTI measures

We previously reported the process of identifying 25 white matter
fiber tracts, 12 in each hemisphere plus the corpus callosum (Vuoksimaa
et al., 2017) using a probabilistic atlas which estimated the a posteriori
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probability that a voxel belongs to a particular fiber tract (AtlasTrack;
Hagler et al., 2009). Fiber probability maps were used to create a
weighted average across all voxels within a region of interest (i.e., each
tract). We collapsed tracts by averaging DTI measures across the left and
right hemispheres because we have demonstrated that heritabilities were
similar across left and right hemispheres for all tracts (Vuoksimaa et al.,
2017), resulting in 12 tracts plus the corpus callosum. We excluded the
corticospinal tracts from the present investigation due to low reliability
(i.e., because the volume and average diffusivity measures can vary
solely due to the variations in the size of the participant's head with
respect to the fixed field of view of the acquisition matrix). The fornix
was also excluded because segments of this fine structure are smaller
than the voxel size used and lie along the third ventricle, often leading to
error-prone estimations due to co-registration and partial voluming.
Thus, 11 tracts were used here (anterior thalamic radiation, corpus cal-
losum, cingulate gyrus portion of the cingulum, hippocampal portion of
the cingulum, inferior frontal occipital fasciculus, inferior frontal supe-
rior frontal cortex, inferior longitudinal fasciculus, superior corticos-
triate, superior longitudinal fasciculus, striatal inferior frontal cortex, and
uncinate). Dependent measures were residualized to account for the use
of different scanners across sites (UCSD or BU). These 11 tracts are shown
in Fig. 1 (excluding the corpus callosum due to its large size).

Eight of these fiber tracts (those tracts included in AtlasTrack; Hagler
et al., 2009): anterior thalamic radiation, corpus callosum, cingulum
(cingulate gyrus portion), cingulum (hippocampal portion), inferior
frontal occipital fasciculus, inferior longitudinal fasciculus, superior
longitudinal fasciculus, and uncinate) were segmented into subdivisions.
The method of fiber tract segmentation has been described in detail
previously (Hagler et al., 2009). Briefly, spatial subdivisions of each of
these tracts were manually defined as a series of binary mask volumes in
the space of the probabilistic atlas. For example, the inferior frontal oc-
cipital fasciculus was divided along the posterior-anterior axis into three
parts, whereas the uncinate fasciculus was divided into temporal and
frontal parts. These masks were morphed from atlas-space into individual
subject-space, using the nonlinear registration used to align a subject to
the atlas. The fiber tract probability maps for each of the complete tracts
were then multiplied by the sub masks, creating subdivision probability
maps for each subject, which were then used to calculate weighted av-
erages of the DTI measures, as was done for the full fiber tracts.

Although the distributions of each subdivision were marginally
skewed, we identified some extreme outliers (1 total observation for FA,
26 total observations across 12 subdivisions for MD) with values more
than three times the interquartile range above the upper quartile. These
cases were reviewed again to verify no technical errors related to image
processing, and the values were trimmed to three times the interquartile
range above the upper quartile (see Table 2 for descriptive statistics).
Analyses were also conducted on the raw data and revealed qualitatively
similar results.

2.5. Data analysis

Principal components analysis. Principal components analyses
were conducted in SPSS (version 24) with no rotation. Missing data were
excluded in a pair-wise manner. We used scree plots to inform the
analysis, but all factors with an eigenvalue >1 were extracted.

Genetic analyses. We conducted biometrical genetic twin analyses
using the structural equation modeling package OpenMx (version 2.7.9)
in R version 3.3.3 (Neale et al., 2016). OpenMx accounts for missing
observations using a full-information maximum likelihood approach.

Genetic models were based on the standard assumptions of the clas-
sical twin design (Neale and Cardon, 1992), in which the variance of a
phenotype can be separated into proportions attributable to additive
genetic influences (A), common environmental influences (C), and
non-shared environmental influences (E). Genetic influences (A) are
assumed to correlate at 1.0 in MZ twin pairs because they share 100% of
their alleles identical-by-descent. The DZ twin pair correlation is assumed



Fig. 1. The 11 white matter tracts analyzed in the
current study, shown for an example subject. The
corpus callosum was excluded from this example
because its size makes it difficult to see other tracts.
Axial (A) and sagittal (B) views are displayed. Ante-
rior thalamic radiation (orange), Cingulum, cingulate
gyrus portion (light blue), Cingulum, hippocampal
portion (white), Inferior frontal occipital fasciculus
(dark green), Inferior frontal superior frontal cortex
(dark purple), Inferior longitudinal fasciculus (light
green), superior corticostriate (light purple), Superior
longitudinal fasciculus (dark blue), Striatal inferior
frontal cortex (yellow), Uncinate (pink).
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to be 0.5 in because DZs, on average, share 50% of their alleles
identical-by-descent. Shared environmental influences (C), which are
influences that make twins more similar, are assumed to be correlated at
1.0 in both MZ and DZ twins. Non-shared environmental influences (E)
are specified to correlate 0 in both MZ and DZ twins, and necessarily
includes measurement error. This method also assumes equal means and
Table 2
Descriptive statistics for fractional anisotropy and mean diffusivity in all 11 tracts an

Tracts Fractional Anisotropy (FA)

M SD Range

All Fibers 0.46 0.02 .40, .50
Tracts
Anterior thalamic radiation 0.40 0.03 .31, .48
Corpus callosum 0.52 0.03 .43, .58
Cingulum, cingulate gyrus portion 0.49 0.04 .37, .60
Cingulum, hippocampal portion 0.35 0.03 .25, .46
Inferior frontal occipital fasciculus 0.46 0.02 .38, .53
Inferior frontal superior frontal cortex 0.40 0.02 .32, .46
Inferior longitudinal fasciculus 0.45 0.02 .37, .53
Superior corticostriate 0.46 0.03 .38, .53
Striatal inferior frontal cortex 0.40 0.02 .33, .45
Superior longitudinal fasciculus 0.45 0.03 .34, .52
Uncinate 0.41 0.03 .29, .49
Tract Subdivisions
ATR anterior 0.37 0.03 .25, .47
ATR posterior 0.42 0.03 .33, .48
CC anterior 0.47 0.03 .36, .56
CC middle-anterior 0.51 0.03 .38, .58
CC middle-posterior 0.52 0.03 .40, .60
CC posterior 0.57 0.04 .44, .66
CgC anterior 0.42 0.05 .23, .54
CgC middle 0.52 0.04 .37, .64
CgC posterior 0.46 0.04 .33, .57
CgH anterior 0.36 0.04 .26, .47
CgH posterior 0.33 0.04 .16, .47
ILF anterior 0.37 0.03 .29, .45
ILF middle 0.49 0.03 .38, .56
ILF posterior 0.47 0.03 .37, .58
IFO anterior 0.41 0.03 .31, .50
IFO middle 0.49 0.03 .41, .56
IFO posterior 0.48 0.04 .38, .58
SLF temporal stem 0.48 0.04 .37, .57
SLF parietal stem 0.45 0.03 .32, .53
SLF frontal stem 0.45 0.03 .34, .53
Unc frontal 0.43 0.03 .29, .54
Unc temporal 0.40 0.03 .29, .48

Note: ATR¼ Anterior thalamic radiation, CC ¼ Corpus callosum, CgC¼ Cingulum,
frontal occipital fasciculus, IFSFC ¼ Inferior frontal superior frontal cortex, ILF ¼ Inf
gitudinal fasciculus, SIFC ¼ Striatal inferior frontal cortex, Unc¼Uncinate.
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variances within twin pairs and across zygosity. These assumptions for
univariate analyses also apply in bivariate analyses. As in other structural
equation models, latent genetic/environmental variance components
were not measured directly. Rather, these assumptions were imposed on
the model and the maximum likelihood estimator converged on the
best-fitting solution.
d 22 tract subdivisions.

Mean Diffusivity (MD)

Skewness M SD Range Skewness

�0.33 0.84 0.03 .77, .96 0.71

�0.23 0.82 0.04 .74, 1.00 1.23
�0.25 0.89 0.04 .80, 1.05 0.69
�0.18 0.75 0.03 .69, .83 0.46
�0.04 0.83 0.05 .73, 1.07 1.29
�0.08 0.86 0.04 .77, 1.00 0.53
�0.44 0.75 0.03 .68, .92 1.11
�0.07 0.84 0.04 .75, .98 0.48
�0.22 0.75 0.03 .69, .89 1.18
�0.11 0.78 0.03 .70, 98 1.02
�0.45 0.75 0.03 .69, .93 1.33
�0.40 0.82 0.03 .75, 1.04 1.00

�0.06 0.84 0.06 .72, 1.09 1.34
�0.25 0.80 0.04 .71, .99 1.25
�0.16 0.91 0.06 .75, 1.12 0.53
�0.44 0.89 0.05 .78, 1.11 0.78
�0.44 0.89 0.05 .78, 1.09 0.81
�0.64 0.90 0.09 .77, 1.24 1.49
�0.19 0.78 0.04 .63, .87 �0.32
�0.28 0.75 0.03 .67, .84 0.34
�0.26 0.75 0.03 .67, 84 0.70
�0.16 0.83 0.06 .71, 1.08 1.37
�0.37 0.82 0.06 .74, 1.04 1.44
0.10 0.81 0.04 .72, .93 0.32
�0.08 0.84 0.04 .76, 1.03 0.73
�0.02 0.85 0.06 .74, 1.06 0.88
�0.13 0.79 0.03 .71, .92 0.71
�0.10 0.86 0.04 .79, 1.00 0.56
�0.06 0.92 0.07 .77, 1.19 0.86
�0.20 0.76 0.04 .68, .93 0.72
�0.49 0.76 0.04 .68, .91 1.08
�0.30 0.75 0.03 .68, .88 0.91
�0.40 0.80 0.03 .73, .93 0.66
�0.08 0.84 0.04 .75, 1.02 0.63

cingulate gyrus portion, CgH¼ Cingulum, hippocampal portion, IFO ¼ Inferior
erior longitudinal fasciculus, SCS ¼ Superior corticostriate, SLF ¼ Superior lon-
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Figure 2 provides an example of a bivariate Cholesky decomposition
used to separate global and specific genetic and environmental influences
in the current study. Variance in global FA is decomposed into its genetic
(AGlob), shared environmental (CGlob), and non-shared environmental
(EGlob) components. Variance in the measure of FA from each candidate
tract is decomposed into genetic/environmental variance shared with
global white matter microstructure (AGlob, CGlob, EGlob; paths a12, c12,
e12), and genetic/environmental variance specific to that tract (ASpec,
CSpec, ESpec; paths a22, c22, e22). The total variance explained by each
latent genetic/environmental factor is computed by squaring the path
coefficient or loading on the latent factor, whereas genetic correlations
(rg) are computed by dividing the genetic covariance between tract FA
and global FA (path a11*a12) by the square root of the product of their
genetic variances (√(a11*11*(a12*a12 þ a22*a22)). Thus, a standard
phenotypic correlation represents the shared total variance between two
phenotypes whereas the genetic correlation represents only the shared
genetic variance between two phenotypes. We do not report model fit
statistics for each Cholesky decomposition, but note that all models had
acceptable fit (based on the difference in the �2 x log likelihood values
between the best fitting a saturated model). Significance of individual
parameters was established with chi-square difference tests (χ2). 95%
confidence intervals (95% CIs) were also computed for the squared paths
representing proportions of genetic and environmental influences shared
with global white matter microstructure (paths a12, c12, e12), and
specific to that tract (paths a22, c22, e22).

3. Results

Descriptive statistics for FA andMD in all tracts and tract subdivisions
are displayed in Table 2.
3.1. Evidence for a substantial global factor for FA and MD

As expected, the first principal component revealed evidence of a
global factor. For the 11 tract-based measures, the first principal compo-
nent explained 50.3% and 62.5% of the total variance in FA and MD,
respectively. The factor loadings on each first principal component were
substantial for all white matter tract subdivisions (range¼ 0.39 to 0.88,
median¼ 0.74 for FA; range¼ 0.40 to 0.91, median¼ 0.84 for MD).
Fig. 2. Cholesky factor model used to examine the genetic/environmental in-
fluences on white matter microstructure for a given tract explained by the global
measure. Genetic influences (AGlob), shared environmental influences (CGlob), and
non-shared environmental influences (EGlob) account for all the variation in the
global measure of FA (estimated paths a11, c11, and e11). These influences also
account for some of the FA variance in a specific tract or tract subdivision (esti-
mated paths a12, c12, and e12), and the remaining variance in the tract FA is
captured by tract-specific genetic/environmental influences (ASpec, CSpec, ESpec;
estimated paths a22, c22, and e22). The proportion of variance explained by each
latent genetic/environmental factor (displayed in Figs. 3 and 4) is computed by
squaring the factor loading on that factor. And the genetic correlation is computed
by dividing the genetic covariance between tract FA and global FA (path
a11*a12) by the total genetic variance (√(a11*11*(a12*a12 þ a22*a22)).
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Principal component analyses were also conducted on the 22 tract
subdivisions. The first component accounted for 38.4% and 47.0% of the
variance in FA and MD, respectively. Again, the factor loadings on each
first component were substantial for all white matter tract subdivisions
(range¼ 0.28 to 0.75, median¼ 0.65 for FA; range¼ 0.40 to 0.87, me-
dian¼ 0.69 for MD). Principal component loadings are shown in the
supplement (Tables S1-S4).

Second, as shown in the supplement (Tables S5-S6), there were strong
phenotypic correlations between each of the 11 FA and MD tracts and the
global measures of FA and MD (r¼ 0.34 to 0.88, median¼ 0.71 for FA;
r¼ 0.42 to 0.86, median¼ 0.82 for MD). Similarly, there were strong
correlations between global measures and each of the 22 tract sub-
divisions (r¼ 0.29 to 0.79, median¼ 0.59 for FA; r¼ 0.30 to 0.83, me-
dian¼ 0.66 for MD; Tables S9 and S10). These results support our use of
the global measure of FA and MD in further analyses and suggest that
much, but not all, of the variance in any given white matter tract sub-
division can be accounted for by variance common to all tracts.

3.2. Global measures account for about half of the tract-based genetic and
environmental variance

Heritability of DTI measures based on the 11 individual white matter
tracts and the proportions of variance shared with the global measures
are displayed in Fig. 3. Similar results for the tract subdivisions are dis-
played in Fig. 4. Heritability point estimates representing variance shared
with global measures (aglobal) and variance unique to each tract (aspecific),
and the corresponding 95% confidence intervals, are reported in Table 3
(FA and MD) and Table 4 (AD and RD) for white matter tracts and in the
supplemental materials for tract subdivisions (Tables S13 and S14). Total
heritability point estimates (i.e., global þ specific genetic influences)
along with genetic and environmental correlations between the global
measures and each of the individual tracts and tract subdivisions are
detailed in the supplemental materials, including results for AD and RD
(Figures S1 and S2, and Tables S5-S12).

FA. As shown in Fig. 3a, over half of the genetic influences on a given
tract (a2global þ a2specific) could be attributed to the global FA (a2global;
light blue). Genetic influences on global FA accounted for an average of
37.4% of the variance in any given tract (range in a2global¼ 0.06 to 0.64),
and were significant for all tracts. Another 32.7% of the variance, on
average, was explained by genetic influences specific to each measure
(range in a2specific¼ .17 to .50; dark blue). For example, the corpus cal-
losum (CC) and the inferior frontal superior frontal cortex (IFSFC) were
the most strongly explained by the global FA (a2global¼ 0.64 and 0.54,
respectively), whereas the cingulate portion of the cingulum (CgC) and
hippocampal portion of the cingulum (CgH) had the strongest evidence
for specific genetic influences (both a2specific¼ .50). On average, non-
shared environmental influences on total variance in tracts’ FA were
8.9% due to the global factor (range e2global¼ 0.05 to 0.15; light orange),
and 14.5% specific to each tract (range e2specific¼ .05 to .37; dark or-
ange). Shared environmental influences accounted for a small and
nonsignificant portion the total variance in each tract (average
c2global¼ 0.07, c2specific¼ .00).

As displayed in Fig. 4a, results were comparable for FA in tract sub-
divisions. Close to half the total genetic variance (a2global þ a2specific) for
FA on a given tract subdivision was explained by genetic influences on
the global FA measure (average a2global¼ 0.30, a2specific¼ .37). Non-
shared environmental influences were largely specific to subdivisions
of tracts (average e2global¼ 0.07, e2specific¼ .22), and shared environ-
mental influences were minimal and nonsignificant (average
c2global¼ 0.04, c2specific¼ .01).

MD. Similar results were observed for MD, although the estimated
effects of the global factor appeared to account for a larger portion of the
total variance than was the case for FA. As displayed in Fig. 3b, global MD
accounted for an average of 50.2% of the total variance in any given tract
(range in a2global¼ 0.17 to 0.63), with additional genetic influences ac-
counting for on average 23.7% of the variance (range in a2specific¼ .17 to



Fig. 3. Summary of the genetic (A), shared environmental (C), and non-shared environmental influences (E) on each of the 11 white matter tracts. For each type of
influence, the percent of the variance explained is broken down further into the genetic/environmental influences shared with the global measure (lighter color), and
the genetic/environmental influences unique to the tract (darker color). A. Results for fractional anisotropy (FA). B. Results for mean diffusivity (MD). In each his-
togram, the bottom row displays the mean results for all tracts. The heritability estimates, and the genetic and environmental correlations between global FA/MD and
tract FA/MD are displayed in the supplement (Tables S5 and S6). Similar results are displayed for axial and radial diffusivity in the supplement (Figure S1 and
Tables S7 and S8). ATR¼Anterior thalamic radiation, CC¼ corpus callosum, CgC¼ Cingulum, cingulate gyrus portion, CgH¼ Cingulum, hippocampal portion, IFO ¼
Inferior frontal occipital fasciculus, IFSFC ¼ Inferior frontal superior frontal cortex, ILF ¼ Inferior longitudinal fasciculus, SCS¼ superior corticostriate, SLF ¼ Superior
longitudinal fasciculus, SIFC ¼ Striatal inferior frontal cortex, Unc¼Uncinate.
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.42). Thus, about two-thirds of the total genetic variance on a given tract
was explained by global MD. Non-shared environmental influences were
explained by both global and specific influences (average e2global¼ 0.10,
e2specific¼ .13). Again, shared environmental influences were nonsignif-
icant (average c2global¼ 0.03, c2specific¼ .00).

Analyses of tract subdivisions in Fig. 4b revealed similar patterns of
results. Over half the genetic influences were explained by global MD
(average a2global¼ 0.35, a2specific¼ .29). Again, there were small but
significant non-shared environmental influences (average e2global¼ 0.09,
c2specific¼ .22), whereas shared environmental influences were nonsig-
nificant (average c2global¼ 0.05, c2specific¼ .00).

AD and RD. Results for AD and RD were similar to those for FA and
MD (see Table 4, Figures S1-S4). Global AD accounted for an average of
39.0% of the total variance in any given tract (range in a2global¼ 0.17 to
0.54), with additional genetic influences accounting for on average
32.6% of the variance (range in a2specific¼ .24 to .57). Global RD
accounted for an average of 45.5% of the total variance in any given tract
(range in a2global¼ 0.07 to 0.59), with additional genetic influences ac-
counting for an additional 25.7% of the variance, on average (range in
a2specific¼ .17 to .35). Thus, the results for AD were more similar to those
for FA (about half of the genetic influences explained by global measures)
and the results for RD were more similar to those for MD (about two-
thirds of the genetic influences were explained by global measures).
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Analyses for tract subdivisions followed a similar pattern, with genetic
variance in global measures explaining a slightly less proportion of the
variance in a given tract subdivision.

4. Discussion

The goal of the study was to better understand the genetic and
environmental etiology of white matter microstructure, especially the
contribution of global versus tract-specific genetic/environmental in-
fluences on FA or MD. The first principal component explained over half
of the variance in FA or MD across 11 tracts, and almost half of the
variance in the 22 tract subdivisions. Genetic influences accounted for
the largest portion of the total variance in any given tract or tract sub-
division, with over half the genetic influences on a given tract being
explained by the global measures. These patterns of results were
consistent across FA, MD, AD, and RD, with the results for AD slightly
more similar to those for FA and the results for RD more similar to those
for MD.

Global white matter measures are presumed to reflect factors that
influence all white matter such as myelination and cellular structure
(Alexander et al., 2011). By extension, it is reasonable to expect that
individual white matter structures have a common, but not necessarily
identical, set of genetic influences. Genetic influences unique to each



Fig. 4. Summary of the genetic (A), shared environmental (C), and non-shared environmental influences (E) on each of the 22 white matter tract subdivisions. As in
Fig. 3, each influence is decomposed into components shared with the global measure (lighter color), or unique to the tract subdivisions (darker color). Results for
fractional anisotropy (FA) are displayed on top and results mean diffusivity are displayed on the bottom. In each panel, the lowest row displays the mean for all tracts.
The actual estimates, the genetic/environmental correlations, and the results for axial and radial diffusivity are displayed in the supplement (Figure S2 and Tables S9-
S12). ATR¼ Anterior thalamic radiation, CC¼ corpus callosum, CgC¼ Cingulum, cingulate gyrus portion, CgH¼ Cingulum, hippocampal portion, IFO ¼ Inferior
frontal occipital fasciculus, ILF ¼ Inferior longitudinal fasciculus, SLF ¼ Superior longitudinal fasciculus, Unc¼Uncinate.
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tract likely represent the contribution of multiple but independent ge-
netic effects such as differential plasticity or regional timing of brain
maturation (e.g. posterior to anterior brain maturation during adoles-
cence and young adulthood; Croteau-Chonka et al., 2016). Regardless,
these results suggest that the genetic associations between a given white
matter tract and cognitive processes, behaviors, or disease phenotypes,
may reflect a combination of global and/or specific genetic influences. In
other words, without comparing with (or statistically controlling for) the
relevant global metric, it is unclear whether an association between
cognition, for instance, and a given tract reflects a unique association,
and/or is explained by an association with global white matter
microstructure.

These findings are also relevant to work on cognitive aging, as there is
already some evidence that general factors explain increasingly larger
proportions of variance in white matter microstructure with increasing
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age in middle-aged adults (aged 40–69 years; Cox et al., 2016).
Furthermore, although Chiang et al. (2011) revealed heritability of FA
may decline between adolescence and young adulthood, these findings
suggest there is still considerable heritability of white matter micro-
structure in late middle age across all diffusions metrics.

These results may also be useful in guiding ongoing efforts to use
genome-wide association studies to identify specific genes underlying
white matter microstructure. Analyses of global DTI measures are valu-
able for identifying genetic influences that underlie white matter varia-
tions across the entire brain. Because it is difficult to disentangle the
common and specific sources of genetic variance with unadjusted tract-
based measures, it would be beneficial to explore associations with
specific tracts with and without adjusting for the global measure of the
relevant DTI metric. Adjusting for global diffusion measures is analogous
to examining regional cortical thickness after adjusting for mean



Table 3
Estimates and 95% Confidence Intervals for the Genetic and Environmental Components of Variance in FA and MD that are Shared with Global Measures and that are
Specific to Each Tract.

Tracts Fractional Anisotropy (FA) Mean Diffusivity (MD)

a2 global a2 specific c2 global c2 specific e2 global e2 specific a2 global a2 specific c2 global c2 specific e2 global e2 specific

ATR 0.33 0.32 0.02 0.00 0.13 0.20 0.43 0.27 0.01 0.00 0.13 0.16
[.10, .50] [.08, .48] [.00, .30] [.00, .28] [.06, .23] [.15, .28] [.23, .59] [.06, .36] [.00, .28] [.00, .22] [.07, .23] [.12, .22]

CC 0.64 0.17 0.00 0.00 0.14 0.05 0.53 0.20 0.00 0.00 0.21 0.06
[.31, .74] [.08, .22] [.00, .33] [.00, .10] [.09, .22] [.04, .07] [.30, .63] [.11, .25] [.00, .24] [.00, .09] [.14, .32] [.04, .09]

CgC 0.16 0.50 0.11 0.00 0.08 0.14 0.47 0.25 0.00 0.00 0.02 0.26
[.01, .33] [.28, .63] [.00, .43] [.00, .17] [.04, .15] [.10, .21] [.30, .61] [.09, .35] [.00, .19] [.00, .12] [.00, .07] [.19, .35]

CgH 0.06 0.50 0.02 0.00 0.05 0.37 0.17 0.42 0.00 0.00 0.01 0.39
[.00, .20] [.08, .62] [.00, .42] [.00, .35] [.01, .14] [.27, .50] [.03, .29] [.14, .55] [.00, .33] [.00, .21] [.00, .07] [.29, .53]

IFO 0.53 0.23 0.01 0.00 0.12 0.12 0.63 0.17 0.00 0.00 0.11 0.09
[.27, .68] [.09, .31] [.00, .24] [.00, .12] [.07, .20] [.08, .16] [.46, .74] [.07, .22] [.00, .17] [.00, .08] [.06, .19] [.07, .13]

IFSFC 0.54 0.27 0.00 0.00 0.11 0.07 0.61 0.23 0.00 0.00 0.11 0.06
[.28, .64] [.19, .33] [.00, .27] [.00, .07] [.07, .18] [.05, .10] [.46, .70] [.16, .28] [.00, .14] [.00, .05] [.06, .17] [.04, .08]

ILF 0.47 0.34 0.00 0.00 0.06 0.12 0.61 0.22 0.01 0.00 0.07 0.09
[.25, .65] [.16, .45] [.00, .20] [.00, .13] [.03, .12] [.09, .18] [.44, .78] [.06, .31] [.00, .18] [.00, .14] [.03, .13] [.06, .13]

SCS 0.21 0.40 0.24 0.00 0.04 0.11 0.60 0.17 0.00 0.00 0.13 0.08
[.04, .45] [.19, .61] [.00, .52] [.00, .33] [.02, .08] [.08, .16] [.45, .73] [.08, .24] [.00, .13] [.00, .06] [.08, .22] [.06, .12]

SIFC 0.46 0.18 0.10 0.00 0.10 0.15 0.55 0.23 0.00 0.00 0.13 0.10
[.16, .65] [.01, .37] [.00, .44] [.00, .29] [.05, .17] [.11, .21] [.29, .65] [.11, .29] [.00, .30] [.00, .11] [.07, .21] [.07, .13]

SLF 0.51 0.33 0.01 0.00 0.08 0.07 0.62 0.22 0.00 0.00 0.10 0.06
[.30, .64] [.22, .40] [.00, .21] [.00, .07] [.05, .14] [.05, .10] [.47, .72] [.14, .28] [.00, .13] [.00, .05] [.06, .17] [.04, .09]

Unc 0.21 0.35 0.20 0.00 0.06 0.18 0.30 0.22 0.27 0.00 0.09 0.12
[.03, .45] [.14, .49] [.00, .52] [.00, .17] [.02, .12] [.13, .25] [.09, .54] [.06, .39] [.00, .56] [.00, .19] [.04, .16] [.09, .17]

Note: ATR¼ Anterior thalamic radiation, CC¼ corpus callosum, CgC¼ Cingulum, cingulate gyrus portion, CgH¼ Cingulum, hippocampal portion, IFO¼ Inferior frontal
occipital fasciculus, IFSFC ¼ Inferior frontal superior frontal cortex, ILF ¼ Inferior longitudinal fasciculus, SCS¼ superior corticostriate, SLF ¼ Superior longitudinal
fasciculus, SIFC ¼ Striatal inferior frontal cortex, Unc¼Uncinate.

Table 4
Estimates and 95% Confidence Intervals for the Genetic and Environmental Components of Variance in AD and RD that are Shared with Global Measures and that are
Specific to Each Tract.

Tracts Axial Diffusivity (AD) Radial Diffusivity (RD)

a2 global a2 specific c2 global c2 specific e2 global e2 specific a2 global a2 specific c2 global c2 specific e2 global e2 specific

ATR 0.46 0.31 0.00 0.00 0.05 0.18 0.41 0.23 0.03 0.00 0.16 0.17
[.30, .61] [.11, .40] [.00, .22] [.00, .17] [.02, .12] [.13, .25] [.19, .58] [.03, .38] [.00, .30] [.00, .25] [.09, .27] [.12, .23]

CC 0.47 0.24 0.00 0.00 0.21 0.08 0.56 0.19 0.00 0.00 0.20 0.06
[.24, .57] [.13, .30] [.00, .27] [.00, .27] [.14, .33] [.05, .11] [.31, .67] [.09, .24] [.00, .26] [.00, .10] [.13, .30] [.04, .08]

CgC 0.13 0.57 0.00 0.00 0.01 0.29 0.40 0.35 0.03 0.00 0.05 0.17
[.05, .28] [.29, .68] [.00, .21] [.00, .21] [.00, .05] [.21, .42] [.14, .54] [.16, .46] [.00, .38] [.00, .16] [.02, .10] [.12, .23]

CgH 0.17 0.34 0.00 0.00 0.00 0.49 0.07 0.31 0.24 0.00 0.03 0.35
[.08, .31] [.11, .50] [.00, .14] [.00, .13] [.00, .04] [.35, .66] [.00, .25] [.00, .58] [.00, .61] [.00, .38] [.00, .10] [.26, .48]

IFO 0.47 0.32 0.00 0.00 0.08 0.12 0.61 0.17 0.00 0.00 0.12 0.10
[.33, .65] [.12, .40] [.00, .19] [.00, .17] [.04, .15] [.09, .17] [.41, .72] [.07, .22] [.00, .19] [.00, .08] [.07, .21] [.08, .14]

IFSFC 0.53 0.24 0.06 0.00 0.08 0.09 0.58 0.25 0.00 0.00 0.11 0.06
[.34, .70] [.09, .39] [.00, .27] [.00, .21] [.04, .14] [.07, .13] [.40, .66] [.19, .31] [.00, .16] [.00, .04] [.07, .18] [.04, .09]

ILF 0.41 0.36 0.04 0.00 0.08 0.11 0.59 0.24 0.00 0.00 0.06 0.11
[.22, .56] [.18, .49] [.00, .29] [.00, .22] [.04, .14] [.08, .16] [.43, .78] [.06, .32] [.00, .15] [.00, .11] [.03, .12] [.07, .15]

SCS 0.42 0.32 0.02 0.00 0.10 0.13 0.48 0.35 0.00 0.00 0.09 0.08
[.25, .61] [.11, .45] [.00, .22] [.00, .21] [.05, .19] [.09, .19] [.30, .63] [.20, .43] [.00, .20] [.00, .13] [.05, .15] [.06, .12]

SIFC 0.46 0.24 0.09 0.00 0.09 0.12 0.51 0.24 0.01 0.00 0.13 0.11
[.24, .63] [.07, .38] [.00, .36] [.00, .23] [.04, .16] [.09, .17] [.24, .64] [.09, .32] [.00, .34] [.00, .15] [.07, .21] [.08, .16]

SLF 0.46 0.32 0.00 0.00 0.11 0.10 0.58 0.27 0.00 0.00 0.09 0.06
[.30, .61] [.15, .41] [.00, .21] [.00, .21] [.06, .19] [.07, .14] [.42, .68] [.18, .34] [.00, .15] [.00, .05] [.05, .15] [.04, .09]

Unc 0.30 0.32 0.03 0.00 0.09 0.26 0.21 0.23 0.38 0.00 0.08 0.11
[.13, .48] [.02, .45] [.00, .33] [.00, .28] [.03, .19] [.19, .36] [.04, .47] [.07, .41] [.00, .63] [.00, .18] [.04, .15] [.08, .15]

Note: ATR¼ Anterior thalamic radiation, CC¼ corpus callosum, CgC¼ Cingulum, cingulate gyrus portion, CgH¼ Cingulum, hippocampal portion, IFO¼ Inferior frontal
occipital fasciculus, IFSFC ¼ Inferior frontal superior frontal cortex, ILF ¼ Inferior longitudinal fasciculus, SCS¼ superior corticostriate, SLF ¼ Superior longitudinal
fasciculus, SIFC ¼ Striatal inferior frontal cortex, Unc¼Uncinate.
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thickness or examining regional cortical surface area after adjusting for
total surface area (Vuoksimaa et al., 2017), although it remains unclear
the most appropriate statistical approach to controlling for global
measures.

In contrast to genetic influences, shared environmental influences
were nonsignificant for either global or tract-specific influences regard-
less of the DTI metric. The lack of shared environmental influences is
consistent with other measures of brain structure (Giedd et al., 2007;
Peper et al., 2007; Pfefferbaum et al., 2000), and our earlier work
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(Vuoksimaa et al., 2017). Non-shared environmental influences
explained a modest proportion of variance, and although comparatively
smaller than for genetic influences, they also demonstrated some global
and tract-specific components. This could reflect effects of global and
specific measurement error, or the contribution of true environmental
factors that generate variation in global and tract-specific white matter.

A potential limitation of the study is that the results displayed in
Figs. 2 and 3 may be influenced by the relative size of tracts, given that
large tracts might be more strongly associated with the global measure
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simply because of their greater size. However, this does not entirely ac-
count for these results. First, the corpus callosum is the largest tract, yet it
exhibited a comparable degree of tract-specific variance after global
adjustment as other tracts (especially for MD). In an additional analysis,
we also adjusted for a global measure of FA that excluded the corpus
callosum. Even when the corpus callosum was excluded from the global
measure, global FA still accounted for 32% of the variance in the corpus
callosum (total heritability¼ 80%). Although variation in structure
across the corpus callosum may have influenced these findings (Kan-
chibhotla et al., 2014), we suspect that similar results would be observed
for other tracts if we had used a similar leave-one-out method in the
analyses of each tract. Furthermore, the size of the region being averaged
over might account for the findings that global influences accounted for a
larger proportion of the genetic variance in tracts (e.g., 53% for FA) than
subtracts (45% for FA). Voxel-wise analyses may have yielded different
results, and the proportion of variance explained by global influences
may vary more widely in smaller regions of interest (Eyler et al., 2012).
Again, a key point here is that the regional specificity of relationships
between white matter microstructure metrics and other measures may be
misinterpreted if the relevant global diffusion measure is not taken into
account.

Finally, it is important to acknowledge some limitations of the
generalizability of the study. First, this sample comprised only men, who
may demonstrate higher heritability than females, at least for FA (Chiang
et al., 2011). Second, the sample was based on veterans, although most
individuals did not report combat exposure and served in the military
approximately 4 decades earlier. Rates of post-traumatic stress disorder
symptoms and alcohol use problems were similar to those in the general
population (Reynolds et al., 2015). Rates of traumatic brain injury (27%)
were also similar to the median estimate for males (24%) across 14
studies of adults from the general population (Frost et al., 2013).
Furthermore, the results were unchanged after repeating the primary
analyses controlling for combat exposure. Nevertheless, it will be
important to replicate these findings in other samples from the general
population. Third, although we used conventional high resolution, low
noise diffusion-weighted sequences, it will be useful for future in-
vestigations to replicate this analysis using next generation, multi-shell
diffusion protocols (e.g. restricted spectrum imaging (RSI) or neurite
orientation dispersion and density imaging (NODDI)) to overcome con-
ventional DTI limitations in regions of cross fibers and to characterize
different cellular compartments (e.g. intracellular vs extracellular diffu-
sivity, etc).

5. Conclusion

The genetic and environmental influences on white matter micro-
structure demonstrate substantial diversity throughout the brain. How-
ever, global measures of FA, MD, AD, and RD appear to account for a
substantial proportion of variation across all tracts. Accordingly, it is
important to control for global diffusion measures when making in-
ferences on associations with white matter microstructure in specific
tracts, subdivisions, or brain regions.
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