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Mathematical Geology, Vol. 18, No. 7, 1986 

On Solution of the Inverse Problem for Confined 
Aquifer Flow Via Maximum Likelihood ~ 

Hugo A. Loaiciga 2 and Miguel A. Marifio 3 

Joint estimation o f  transmissivity (T) and storativity (S) in a confined aquifer is done via maximum 
likelihood (ML). The differential equation o f  groundwater flow is discretized by the finite-element 
method, leading to equation ~q~, + I'x, = u,. Elements o f  matrices t} and I', as well as estimated 
covariance matrix o f  noise term ut, are functions o f  T and S. By minimizing the negative log- 
likelihood function corresponding to discretized groundwater flow equation with respect to T and 
S, ML estimators are obtained. The ML approach is found to yield accurate estimates of  T and S 
(within 9 and 10% of  their actual values, respectively) and showed quadratic convergence in New- 
ton's search technique. Prediction of  aquifer response, using ML estimators, results in estimated 
piezometric heads accurate to ++_0.5 m from their actual, exact values. Statistical properties of  ML 
estimators are derived and some basic results for  statistical inference are givem 

KEY WORDS: transmissivity, storativity, maximum likelihood, linear regression. 

I N T R O D U C T I O N  

Historically, two main approaches to estimating transmissivities and storativi- 
ties have been used: (1) methods based on aquifer tests [see, e.g., Marifio and 
Luthin, 1982, p. 291-336]; and (2) statistical or mathematical programming 
techniques [see, e.g., McLaughlin (1975), Neuman (1980), Cooley (1982), Yeh 
et al. (1983), Kitanidis and Vomvoris (1983), and Aboufirassi and Marifio 
(1984)]. Proper estimates of groundwater flow parameters are indispensable for 
simulation and prediction of aquifer response to natural or artificial inputs to a 
groundwater reservoir. 

This paper addresses estimation of groundwater flow parameters in con- 
fined aquifers via maximum likelihood (ML). The equation for groundwater 
flow is discretized via the finite-element method and expressed in a linear form. 
The negative log-likelihood function of the discretized equation is subsequently 
derived and minimized (using Newton's method) with respect to unknown pa- 
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678 Loaiciga and Marifio 

rameters. Objectives of this paper are: (1) to develop an ML estimator for trans- 
missivities and storativities in confined aquifers; (2) to apply the proposed meth- 
odology and compare it with a linear estimation technique; and (3) to assess 
statistical properties of ML estimators. 

P R O B L E M  D E S C R I P T I O N  

The governing equation for two-dimensional flow in a confined aquifer is 

Ox T + ~y T - F : S - ~  (1) 

in which th, T[=T(x,  y)], S[=S(x,  y)], and F[=F(x,  y, t)] denote piezometric 
head, transmissivity, storativity, and a sink/source, respectively. Following 
Loaiciga and Marifio (1986), eq. 1 can be discretized by the finite-element 
method within the flow field to yield 

~b tpt + I '  xt = ut t = 1, 2 . . . .  , n 
(2) 

(G x G ) ( G  x 1) (G x K ) ( K  x 1) (G x 1) 

with 9o assumed known. 
Matrices ~ and I" contain unknown elements that are functions of trans- 

missivities and storativities; 9t contains unknown nodal heads in the flow do- 
main; xt contains, as its first G elements, values of nodal heads at time t - 1 
(i.e., q t -  l) and remaining K - G (K >__ G) elements are functions of boundary 
conditions and/or sink/source distribution throughout the field (an example is 
given subsequently); u t is a vector of random disturbances that account for er- 
rors in approximating eq. 1 by eq. 2 and that is assumed to have the following 
properties 

E(u,)  = 0 (3) 

E(utu~) = E (4) 

E(u~us T) = 0, s :# t (5) 

Equations 3-5 specify that ut is a white noise disturbance vector. 
Under the assumption that ut has a multivariate normal distribution, the 

likelihood function associated with eq. 2 is 

1 in 1 L - ( 2 7 r ) n G / 2  exp - t=l~] (lJ/l~t ~- Iaxt)T~'-l(lpl~t -~- ]xXt) (6) 

For estimation purposes, it is convenient to use the logarithm of eq. 6 to obtain 
the following log-likelihood function 



Solution of the Inverse Problem 679 

In L = nG In (270 n - In + n In 

+ rx,)T  - '  + r x , )  (7) 
2 t = l  

Unknown matrices ff and F have elements that are functions of transmis- 
sivities and storativities. Therefore, one must maximize eq. 7 with respect to a 
parameter vector 0 (q × 1) whose elements are unknown transmissivities and 
storativities, which vary within subdomains of the finite-element spatial dis- 
cretization. The problem at hand consists of maximizing eq. 7 with respect 
to 0. 

NUMERICAL ESTIMATION A L G O R I T H M  

In order to adhere to standard mathematical programming conventions, the 
negative log-likelihood function eq. 7 is minimized. Minimization is numeri- 
cally via Newton's method. By let t ingf  = - l n  L, search for an optimum starts 
at some specified value 00. Subsequent iteration values, say the (k + 1)st, are 
obtained by first taking a second-order Taylor expansion of f about the current 
(kth) point, i.e. 

T 
f(0k + Pk) = f(Ok) + Vf(Ok) r Pk + ½ Pk G(0k)pk (8) 

in which Vf(0k) and G(0k) are gradient and matrix of second derivatives of f a t  
the current point Oh, respectively. The right-hand side of eq. 8 is minimized by 
Pk (the step to the next point) given by 

G(0~)pk = --Vf(Ok) (9) 

Upon solution of eq. 9 for Pk, the next iteration point is 

0k÷~ = Ok + Pk (10) 

In order to guarantee convergence to a local optimum, a steplength factor c~k 
customarily is introduced such that 

0k+l = Oh + akPk (11) 

where c~ k is selected to minimize f(0k + c~k Pk) with respect to c% Equation 11 
is used iteratively until convergence is reached. 

Conveniently, eq. 7 is simplified by taking its derivative with respect to 
E, equating to zero and solving for E, to obtain estimator 

~ = l I n  t=l ~ (~(Dt + Fxt)(~ffJt + Fxt)T 1 (12) 

By substituting eq. 12 into eq. 7 and multiplying the resulting expression 
by - 1, one obtains the following expression for negative log-likelihood func- 
f i on f  
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f = ~-- In (27r) + ~ In t=,Z (~gt + I'xt)(~gt + Pxt) r 

n 2 

- n in + T 

in which 

n In I~1 - n In I~1 - - C +  2 (13) 

n G  n 2 
C = ~ In (270 + ~- = constant (14) 

In order to compute V f  and G at Ok, matrix derivative results are useful (Gray- 
bill, 1983) 

OOi IAI > 0 (15) 

c3A - I  _ A -  1 0 A  A -  1 (16) 
O O i ~ i i  

02 In Ial [_A_ j OA A-' OA A-' OZA] 
002 - tr _ ~ ~ / /  + ~ / 2 ]  (17) 

in which A should be replaced by ~ or ff in actual computations. 
Equations 15-17 provide elements of Vf and G that are evaluated at the 

current point in iterations of the Newton method. Optimum value 0* that min- 
imizes eq. 13 is the maximum likelihood (ML) estimator of unknown parameter 
vector 0. 

P R O P E R T I E S  O F  E S T I M A T O R S  

Suppose 0 denotes the true but unknown vector of parameters. Let 

I(0)  = E(O2f/O000 r) (18) 

i(0) = 02flO000 r (19) 

in which the expectation in eq. 18 is with respect to Or Matrices given in eqs. 
18 and 19 are Fisher information and sample information matrices, respec- 
tively. For a sample size n sufficiently large, distribution of ML estimator 0* 
is approximately 

O* - N [ 0 ,  l - ' ( 0 ) l  (20) 

in which N denotes the multivariate normal distribution. From eq. 20, it follows 
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that expression 

(0 - 0")7"I-~(0")(0  - 0") _< xZ(q)  (21) 

in which xZ(q) is the (1 - o0th percentile of a 2 variable with q degrees of 
freedom, represents an ellipsoid in q-dimensional 0 space centered at 0"; prob- 
ability that this random ellipsoid covers the true parameter 0 is 1 - c~. Equation 
20 allows construction of a hypothesis test. Let 

H o : 0 = 0  ° 

H1 : 0 :#. 0° (22) 

in which 0 ° is the specified value in the null hypothesis Ho. The null hypothesis 
Ho is rejected at a significance level c~ if 

(0 ° - 0 * ) ~ I - l ( 0 ° ) ( 0  ° - 0") > x~(q) (23) 

In practice, I ( ' )  (see eq. 18) may be difficult to obtain, so sample information 
matrix/( . )  (see eq. 19) can replace I( .)  in eqs. 20, 21, and 23. 

Nonlinear least-squares methods [see, e.g., Neuman (1980) and Cooley 
(1982)] are related to the ML approach presented in this work, in the sense that 
they are based on the discretized groundwater flow equation that leads to min- 
imization of quadratic or nonlinear functions and impose similar assumptions 
on the noise term. In addition, such nonlinear or generalized regression models 
are solved commonly by means of iterative search techniques based on Newton- 
type algorithms. Prior information on ML estimators may be incorporated 
through selection of adequate initial parameter estimates, whereas Cooley's 
(1982) nonlinear regression approach incorporates such priors by expanding the 
set of regression equations. Maximum likelihood estimates have desirable 
asymptotic properties as discussed above and, in addition, small-sample ML 
estimators usually are more efficient (i.e., have smaller variance) than compet- 
ing nonlinear least-squares estimators. 

APPLICATION OF THE ESTIMATION PROCEDURE 

A one-dimensional confined aquifer (Fig. 1) is used as a test case for the ML 
estimation approach discussed above. Unknown transmissivity T and storativity 
S are estimated via ML, and subsequently, matrices ~b and I" are formed by 
using functional relationships between their elements and T and S. 

G e n e r a t i o n  o f  H e a d  V a l u e s  

Data upon which the ML method is implemented are obtained by deriving 
an analytical solution to the confined aquifer flow problem shown (Fig. 1). The 
closed-form (exact) solution is utilized to generate nodal values for times t = 
1, 2 . . . . .  n, which are used to substitute for q0 t, qt, in eq. 13. 
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lement 1 )Element 2(~)Element 3 Element 

L 
Fig. 1. Confined aquifer subject to time-dependent conditions and a discharge (of units 

L3T- tL  - l )  at x = L/2. 

The equation characterizing flow in the aquifer (Fig. 1.) is 

 -ST:F  - 

and boundary and initial conditions are 

dPA(t ) = HA( t  ) x = 0 t > 0 

d~B(t) = H s ( t )  x = L t > 0 

~ ( 0 )  = g(x )  0 < x < L t = 0 

By letting 

XTl" 
X -  

L 

F* = ~ 

c = ~  

Equations 18-21 become 

32~ 3~ - F *  
+ o-7 = 

4,, ,(0 = HA(t)  X = O, 

and 

t > 0  

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 
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4~B(t) = HB(t) X = 7r t > 0 

c~(O) = g (X)  0 <_ X < 7r t = 0 

Solution to the problem defined by eqs. 31-34 is 

qS(X,t) = HA(011 _ X ]  + H s ( t )  X o~ - + ~  
71" n = l  

• s in(nX) Ifle-Cn2(t-U'Fn(u) du +bne-Cn2t I 

in which 

(33) 

(34) 

(35) 

Fn(t)  = - sin ( n X ) [ P ( X ,  t) - F * ( X ,  t)l d X  (36) 
7f 0 

bn = -2 sin (nX)[g(X)  + fl(X)] dX (37) 
7r o 

e ( x ,  t) = -H~_( t )  l - - H b ( t  ) - (38) 
7C 

f l ( X )  = -HA(0) 1 - - H B ( 0 ) -  (39) 
7t" 

Equations 35-39 were utilized to generate head values for time periods t = 1, 
2 . . . . .  20 (upon which Gaussian white noise was added), corresponding to 
data HA, liB, g(x),  and F (Table 1). 

Pefiod, t 1 

T a b l e  1. Basic Data for the Est imat ion Problem" 

m 

Nodal head (M) Nodal head (M) 

2 3 Period, t 1 2 3 

1 84.93 87.70 94.88 11 85.87 82.62 87.83 
2 84.75 86.75 94.38 12 86.18 82.36 87.16 

3 84.62 86.01 93,72 13 86,51 82.13 86.50 

4 84.58 85.40 92.98 14 86,86 81,93 85.85 

5 84.62 84.86 92.22 15 87,23 81.74 85.22 

6 84.72 84.38 91.46 16 87,61 81.57 84.60 

7 84.88 83.95 90.70 17 88.00 81.42 84.00 

8 85.08 83.57 89.96 18 88,40 81.28 83.40 
9 85.31 83.22 89.23 19 88.81 81.15 82,81 

10 85.58 82.90 88.52 20 89.23 81.04 82.23 
m 

~Nodal heads were generated with Eq. 35 using T = 500 m2/day, S = 12 × 10 3, 1 = 500 m, co 

= 0.5, and At  = 1 day; F = 10 m2/day; g(x) = HA(t) + [HB(t) -- HA(t)]x/L; HA(0 = 80 + t; 
He(t) = 100 - t. 
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Computation of  (Negative) Log-Likelihood Function 

For the aquifer (Fig. 1) with constant values for T and S (the methodology 
does not require constant parameters,  but in order to be able to use the exact 
solution eq. 35 to generate head values such simplification is needed), the 
and I" matrices (see eq. 2) are 

2COT 21S coT IS 0 

- - / -  + 3At l + 6A---t 

COT lS 2coT 21S wT 1S 

~b = - - ] - -  + 6A--~ --7-- + 3At l + 6 - ~  

coT IS 2COT 21S 

0 - - l -  + 6A---t T + 3A----t_ 

I, = 

m 

2CO'T 
0 

l 3At l 6At 

CO'T 1S 2CO'T 21S CO'T lS 

l 6At 

2IS co' T IS 

l 3At l 6At 

co'T lS 2co'T 2lS 

I 6At 1 3At 

T IS 
- - - -  0 

t -d 

0 0 0 

T 
0 - -  0 

l 

(40) 

0 0 

0 1 

1S 
N o 

(41 

in which ½ <__ co _< 1 is a weighting factor, co' = 1 - co, l = L/4, and At is the 
simulation time period. Linear basis functions were used in finite-element dis- 
cretization of  eq. 24. Vector  xt in eq. 2 is 

x r = [~bl(t - 1), 4,z(t - 1), q53(t - 1), ~a, ~ , ,  ~ ,  ~ ,  F] (42) 

in which F = coF(t) + (1 - co) F(t - 1) is average discharge (see Fig. 1) at x 
= L/2; (PA = COePA(t) + (1 -- CO) 4~a(t -- 1); qSA = {CO[~bA(t) -- (~A(t -- 1)] + 

(1 -- CO)[~bA(t) -- 6A(t -- 1)]}/At; and similar definitions hold for ~B and ~ , .  
Matrices given in eqs. 40-41 show explicitly the functional relationships 

between their elements and unknown parameters T and S. By having ~, I ' ,  q~t, 
a n d  x t , w t  , the negative log-likelihood function f of  eq. 13, is completely de- 
fined, and the expressions given by eqs. 15-17 readily are evaluated when im- 
plementing Newton ' s  method. 

Estimation and Analysis of  Results 

The sample used to estimate T and S is tabulated (Table 1). Piezometric 
heads were generated by eq. 35 and are accurate to _+0.001 m (in approximation 
of  the infinite series). Upon differentiation, the negative log-likelihood function 
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(eq. 13) yielded 

O0 i - -  2 

a2f n 
00~ - 2 

tr ~-1 0~ O~b . . . .  n tr (~b-I (43) 

- -  - - tr [ - ~ - '  O~ ]~-1 0 ~ 0 0  i ~ -{- ~--1 02~]90i2 

- n tr - i f - '  ~ /  ~ /  (44)  

n 
-- - tr 

002001 2 002 00 lJ 

- n tr - i f - '  ~ 2  ~ (45)  

Equations 43-45 (with 0t = T and 02 = S) were used to evaluate Vfand 
G at the current iteration point O k during the kth iteration of Newton's method 
(see eqs. 9-10). Second derivatives with respect to  ff vanish due to linear de- 
pendence of its elements on T and S (see eq. 40). Expanded details on expres- 
sions O~/OOi, 02C/00~ (i = 1, 2), and 02~/002001 are given in Appendix A. 

Several initial estimates 0o were tried to test if convergence occurred to the 
same local optimum. Convergence to a unique point occurred for all initial 
estimates tried (which were within 50% of true values). In all cases, conver- 
gence occurred within five iterations of Newton's method, and a quadratic con- 
vergence rate was observed. Contour plots of the negative log-likelihood func- 
tion indicated that it is convex, with a flat surface around the unique local 
optimum, as shown (Fig. 2) Optimal ML estimator point was T* = 456 m2/ 
day and S* = 0.0108, whereas true values are 500 m2/day and 0.012, respec- 
tively. The convergence path for initial estimators T (e) = 350, S (°) = 0.006, 
and standard errors of optimal estimators are shown (Table 2). The covariance 
matrix of ML estimators is approximated by the inverse of the sample infor- 
mation matrix (see eq. 19) evaluated at convergence values T* = 456 m2/day 
and S* = 0.0108 (Rao, 1965) and is equal to 

2273.5 0.12285 ] 

cov (T*, S*) = L0.12285 0.00001373 

Thus, standard errors of T* and S* are 47.7 m2/day and 0.00370, respectively. 
Matrices ~ and F of the governing flow equation (see eqs. 40-41) were esti- 
mated by replacing T and S in those equations by their estimators T* and S*, 
respectively. True values of ~b and I', as well as those of their estimators ~ and 
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7oo 

Fig. 2. Contour plot of negative log-likelihood function. 

I 750 

f', are as follows 

~/ = 5 ~/ = .282 4.337 0.282 

½ 0.282 4.337 L i 1010Z] 
r = - . 5  - 3  -1 .5  0 0 0 0 

-1 .5  - 3  0 - 1  0 1 

F -2.197 -1.352 0 -1.070 0 

I ' =  , - 1 . 3 5 2 - 2 . 1 9 7 - 1 . 3 5 2  0 0 

L0 - 1 . 3 5 2 - 2 . 1 9 7 0  -1.070 

00.817 00 i ]  

0 0.817 

From asymptotic properties of ML estimators (Lehmann, 1983), ~ and f' are 
consistent estimators of ff and F, respectively, i.e. 

p lim ~/ = ff and 
n --~ co 

p lim F = F 
n -~ co 

Therefore from eq. 2 

(Dt = ( - - ~ - l V ) x t  -st- ~ - l u t  = H x t  q- et, Vt (46) 
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Table 2. Synopsis of Newton's Search 

Iteration T a S b 

687 

0 350 0.0060 356 
1 446 0.0080 352 
2 445 0.0095 351.2 
3 453 0.0105 350.8 
4 455 0.0107 350.5 
5 456 0.0108 350 

(47.7) c (0.00370) ~ 

aT = transmissivity (m2/day). 
bS = storativity (dimensionless). 
"Standard errors of optimal estimators. 

and expected value of ~t, given q)t- 1, is 

E(q~t[q~t_ l) = I Ix t ,  Y t  (47) 

which can be used to simulate expected values of heads for any time t, given 
heads at time t - 1. From the invariance property of  ML estimators (see, e.g., 
Bickel and Doksum, 1977, p. 99), I~I and ~xt = /~(~ti~t-l) are also ML esti- 
mators because they are functions of estimators ~/and I ~ (see eqs. 46-47). 

Table 3 shows the estimated I] matrix by ML method and by a linear 
regression (LR) technique (Loaiciga and Marifio, 1986). A derivation of (I by 
LR is given in Appendix B. Simulated head values using ML and LR esti- 
mators, as well as exact head values obtained from eq. 35 for t = 1, 2 . . . . .  
20, are shown (Table 4). Observe that LR estimates tend to slightly overesti- 
mate head values at early time steps (i.e., t = 1, 2 . . . . .  10). For time steps 
larger than t = 15, a slight underestimation of head values by LR technique is 
apparent. Overall departures from exact values are within - 0 . 1 0  and 0.50 m. 
ML estimated heads show a tendency to slightly underestimate heads at nodes 
1 and 2 for early time steps, but the tendency reverses to a moderate overesti- 
mation for time steps after t = 15, at nodes 1 and 2. At node 3, estimated 
values exceed actual ones at early time steps (t ___ 2) and subsequently tend to 
fall below actual head values. Accuracy of estimated heads by ML method is 
within 0.5 m for the entire simulation period. 

In summary, performance of ML and LR estimators based on the predicted 
response of an aquifer to pumping and time-varying boundary conditions is 
roughly equivalent. The ML method yields unique and reasonable estimates of 
T and S (deviations of  9 and 10% were observed about true values, respec- 
tively). A disadvantage of the ML technique is the need for prior information 
on T and S to initialize Newton's method. The LR estimation technique does 
not require such prior information, is more easily programmable, and, as a 
subproduct, directly provides estimates of  the covariance structure of  esti- 
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mators. However, unlike the ML method, LR estimation does not yield esti- 
mates directly of T and S but of elements of matrices ~b and I" only. The ML 
estimation algorithm was implemented in a DEC-VAX 11/780 minicomputer 
with a CPU time of approximately 30 s. 

5. SUMMARY AND CONCLUSIONS 

The equation of flow for confined aquifers has been discretized and ex- 
pressed in linear form. The corresponding negative log-likelihood function of 
the linearized flow equation has been derived and expressed as a nonlinear func- 
tion of unknown transmissivities and storativities. A global optimum of the 
negative log-likelihood function has been obtained by Newton's method. A sen- 
sitivity analysis with respect to the initial starting search point was conducted, 
leading in all cases to the same estimates. Upon computation of transmissivity 
and storativity estimates, matrices governing the flow equation were constructed 
and head values simulated. Head values used for implementing the maximum 
likelihood approach were generated by exact solution to a one-dimensional flow 
problem (and noise-corrupted with Gaussian white noise), in which the confined 
aquifer is subject to time-varying boundary head values and pumping. Experi- 
ences of this study point out some interesting conclusions: (1) Maximum like- 
lihood estimation leads to a nonlinear estimation problem. Unless good prior 
information on parameter values (to start Newton's method) exist, convergence 
may be reached at undesirable estimate values. (2) If initial estimators are ad- 
equate, convergence is fast (in fact, quadratic in Newton's method) to a rea- 
sonably accurate global optimum, when the negative log-likelihood function is 
convex. (3) When ML and LR estimates of aquifer response (i.e., piezometric 
heads) were compared, both methods produced predicted values of similar ac- 
curacy (within 0.5 m from exact heads). (4) The choice between linear (e.g., 
LR) and nonlinear (e.g., ML) estimation presents analysts with a variety of 
trade-offs. The main advantage of LR estimators is easy implementation. In 
contrast, ML yields directly estimates for T and S, which also have desirable 
asymptotic properties such as consistency and efficiency. 
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APPENDIX A: MATRIX DERIVATIVE EXPRESSIONS 

In implementation of Newton's method, expressions Of2/00i, 02~/00~, and 
tJ2~/302301 (in which 01 = T and 02 = S) are required. Let 
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t = l  

n 

A 2 = Z (PtX T ( 1 2 )  
t = l  

A3 = Z x,x ,  r (13)  
t = l  

By using the expression for ~ (see eq. 12) and the product rule for matrix 
derivatives ( i .e . ,  for arbitrary matrices A(Oi) and B(Oi), OAB/OOi = A(OB/OOi) 
+ (OA/OOi)B), the fol lowing expressions are derived readily 

0~ 
_ 1 [ ~ (¢o+Al¢r + ¢Alt/./O T 4- ¢°iA2r ~ + ¢A2I'S, 

OOi n t_t= J 

r r  ] + I 'oiAT~ r + I'A2,~,ol 4- roiA3 I~T 4- I 'A3r~ , .  ) 

F 1 02~ 2 Z OkeA,7"o[ + ~)o,A2I'~ + I'o, Ar~or~ + r'o,A3r~) 
O 0 ~ - n  ,=l 

02= 1[  ~, r r ~ r 
0302001 n I_r= l (l~°111¢°2 4- ~be2Aj~b°' + ¢°'12r°2 + ~°2A2F°' 

(A4) 

(15) 

7 
T T T T T T [ 

q- ro,A2~bo2 4- I'o2A2~o, + ro, A3~Pe2 + ro2a3Po, ) (A6) 
3 

in which ~bo, = O~/O0 i, i = 1, 2, and similarly for the P matrix. Equations 1 4 -  
1 6  are used when evaluat ing eqs. 43-45 .  

A P P E N D I X  B: D E R I V A T I O N  O F  L I N E A R  R E G R E S S I O N  
E S T I M A T O R  1¢1 

Forecast ing heads via eq. 47 using linear estimation requires estimate YI 
by I] using multivariate l inear regression. Equation 2 can be written for all t ime 
indexes t = 1, 2, . . . , n at once, as 

~b[q~l, q~2, • • • , %,] + F [x l ,  x2 . . . . .  x~] = [u 1,u2 . . . . .  un] (B1) 

or in compact  form 

~b¢l, + EX = U (B2) 

Solving for • in eq. B2 yields 

= - ~ - ~ F X  + ~ - ~ U  

= FIX + V (B3) 
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From eq. B3 it follows immediately that the multivariate least-squares (linear) 
estimator for II is 

rl = (XrX)-'Xr, I, (B4) 

H e a d s  fo recas t s  (eq.  47 )  are s t r a i g h t f o r w a r d l y  c o m p u t e d  by  u s i n g  I I  o f  eq. B4  

in eq. 47 .  
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