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On Solution of the Inverse Problem for Confined
Aquifer Flow Via Maximum Likelihood'

Hugo A. Loaiciga’ and Miguel A. Mariiio’

Joint estimation of transmissivity (T) and storativity (S) in a confined aquifer is done via maximum
likelihood (ML). The differential equation of groundwater flow is discretized by the finite-element
method, leading to equation Yo, + I'x, = w,. FElements of matrices Y and T, as well as estimated
covariance matrix of noise term w,, are functions of T and S. By minimizing the negative log-
likelihood function corresponding to discretized groundwater flow equation with respect to T and
S, ML estimators are obtained. The ML approach is found to yield accurate estimates of T and S
(within 9 and 10% of their actual values, respectively) and showed quadratic convergence in New-
ton’s search technique. Prediction of aquifer response, using ML estimators, results in estimated
piezometric heads accurate to +0.5 m from their actual, exact values. Statistical properties of ML
estimators are derived and some basic results for statistical inference are given.

KEY WORDS: transmissivity, storativity, maximum likelihood, linear regression.

INTRODUCTION

Historically, two main approaches to estimating transmissivities and storativi-
ties have been used: (1) methods based on aquifer tests [see, e.g., Marifio and
Luthin, 1982, p. 291-336]; and (2) statistical or mathematical programming
techniques [see, e.g., McLaughlin (1975), Neuman (1980), Cooley (1982), Yeh
et al. (1983), Kitanidis and Vomvoris (1983), and Aboufirassi and Marifio
(1984)]. Proper estimates of groundwater flow parameters are indispensable for
simulation and prediction of aquifer response to natural or artificial inputs to a
groundwater reservoir.

This paper addresses estimation of groundwater flow parameters in con-
fined aquifers via maximum likelihood (ML). The equation for groundwater
flow is discretized via the finite-element method and expressed in a linear form.
The negative log-likelihood function of the discretized equation is subsequently
derived and minimized (using Newton’s method) with respect to unknown pa-
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678 Loaiciga and Marifio

rameters. Objectives of this paper are: (1) to develop an ML estimator for trans-
missivities and storativities in confined aquifers; (2) to apply the proposed meth-
odology and compare it with a linear estimation technique; and (3) to assess
statistical properties of ML estimators.

PROBLEM DESCRIPTION

The governing equation for two-dimensional flow in a confined aquifer is

B (799 L 3 (98 _p_ 9
3x<T6x>+6y<Tay> F_Sat M

in which ¢, T{=T(x, y)], S[=S(x, )], and F[=F(x, y, )] denote piezometric
head, transmissivity, storativity, and a sink/source, respectively. Following
Loaiciga and Marifio (1986), eq. 1 can be discretized by the finite-element
method within the flow field to yield

1 ¢, + T X, = u t=1,2,...,n
(GXG)GX1) (GXK)KX1 (GxX1)

with @, assumed known.

Matrices Y and I' contain unknown elements that are functions of trans-
missivities and storativities; ¢, contains unknown nodal heads in the flow do-
main; X, contains, as its first G elements, values of nodal heads at time t — 1
(i.e., 9, ) and remaining K — G (K = G) elements are functions of boundary
conditions and/or sink/source distribution throughout the field (an example is
given subsequently); u, is a vector of random disturbances that account for er-
rors in approximating eq. 1 by eq. 2 and that is assumed to have the following
properties

Eu) =0 ®3)
Euu/) =L @)
Ewu) =0, s#1¢ 5)

Equations 3-5 specity that u, is a white noise disturbance vector.
Under the assumption that u, has a multivariate normal distribution, the
likelihood function associated with eq. 2 is

n 1 n
L= (Z%LG/Z |2~ exp {—5 Z o+ TR I (e, + Px,)} ©6)

For estimation purposes, it is convenient to use the logarithm of eq. 6 to obtain
the following log-likelihood function
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G
nL = —%—111(2#) —gln T} + nln |¢|

~3 2 o, + Tx)" ' (o, + Tx) ™

Unknown matrices ¥ and I' have elements that are functions of transmis-
sivities and storativities. Therefore, one must maximize eq. 7 with respect to a
parameter vector @ (g X 1) whose elements are unknown transmissivities and
storativities, which vary within subdomains of the finite-element spatial dis-
cretization. The problem at hand consists of maximizing eq. 7 with respect
to 6.

NUMERICAL ESTIMATION ALGORITHM

In order to adhere to standard mathematical programming conventions, the
negative log-likelihood function eq. 7 is minimized. Minimization is numeri-
cally via Newton’s method. By letting f = -In L, search for an optimum starts
at some specified value 0;. Subsequent iteration values, say the (k + 1)st, are
obtained by first taking a second-order Taylor expansion of f about the current
(kth) point, i.e.

FO, + pY) = f(0) + VFO)T pi + 1 prGOP; (8)

in which Vf(0,) and G(0,) are gradient and matrix of second derivatives of f at
the current point 0, respectively. The right-hand side of eq. 8 is minimized by
Px (the step to the next point) given by

G(Opp, = —Vf(8) ©
Upon solution of eq. 9 for p,, the next iteration point is
01 =0, + (10)

In order to guarantee convergence to a local optimum, a steplength factor o
customarily is introduced such that

Oc = 0 + Py (11

where «, is selected to minimize (0, + oy p,) with respect to «,. Equation 11
is used iteratively until convergence is reached.

Conveniently, eq. 7 is simplified by taking its derivative with respect to
¥, equating to zero and solving for I, to obtain estimator £

A

£=1 [21 o, + Ix)(bo, + I‘xﬂ (12)

By substituting eq. 12 into eq. 7 and multiplying the resulting expression
by —1, one obtains the following expression for negative log-likelihood func-
tion f
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G 1 <
f= ”—2— In@m + 7 In = 2 (o, + Tx)(V, + I'x)’
t=

2

n |y + =
-n i
2
n A
=C+Eln\2| - nln|¢| (13)
in which
2
C= ’129 In 27) + n? = constant (14

In order to compute Vfand G at 9, matrix derivative results are useful (Gray-
bill, 1983)

dln A Y
;el. L tr [A"‘ a—e_J 4] > 0 (15)
947! _,04
_3_0-— = —A"! 5EA ! (16)
0% In |A4| [ _,04 _, 94 laZA}
=g AT AT S AT 17
02 w0 6T w2 a7

in which 4 should be replaced by L or ¢ in actual computations.

Equations 15-17 provide elements of Vf and G that are evaluated at the
current point in iterations of the Newton method. Optimum value 0% that min-
imizes eq. 13 is the maximum likelihood (ML) estimator of unknown parameter
vector 0.

PROPERTIES OF ESTIMATORS
Suppose & denotes the true but unknown vector of parameters. Let
1(®) = E(3°f130007) (18)
i(0) = 8°f/90007 (19)

in which the expectation in eq. 18 is with respect to @,. Matrices given in eqgs.
18 and 19 are Fisher information and sample information matrices, respec-
tively. For a sample size n sufficiently large, distribution of ML estimator 0%
is approximately

0* ~ N[O, I"(9)] (20

in which N denotes the multivariate normal distribution. From eq. 20, it follows
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that expression
6 — 05T I7'(8%)(0 — 6%) =< x’(9) @1

in which x2(g) is the (1 — «)th percentile of a x> variable with ¢ degrees of
freedom, represents an ellipsoid in g-dimensional 6 space centered at 0*; prob-
ability that this random ellipsoid covers the true parameter 8 is | — «. Equation
20 allows construction of a hypothesis test. Let

Hy:0=10°
H :06 #.0° (22)

in which 69 is the specified value in the null hypothesis H,,. The null hypothesis
H, is rejected at a significance level « if

0° — 057 717'0%(0° — 8% > xi(q) (23)

In practice, I(*) (see eq. 18) may be difficult to obtain, so sample information
matrix i(*) (see eq. 19) can replace I{-) in egs. 20, 21, and 23.

Nonlinear least-squares methods [see, e.g., Neuman (1980) and Cooley
(1982)] are related to the ML approach presented in this work, in the sense that
they are based on the discretized groundwater flow equation that leads to min-
imization of quadratic or nonlinear functions and impose similar assumptions
on the noise term. In addition, such nonlinear or generalized regression models
are solved commonly by means of iterative search techniques based on Newton-
type algorithms. Prior information on ML estimators may be incorporated
through selection of adequate initial parameter estimates, whereas Cooley’s
(1982) nonlinear regression approach incorporates such priors by expanding the
set of regression equations. Maximum likelihood estimates have desirable
asymptotic properties as discussed above and, in addition, small-sample ML
estimators usually are more efficient (i.e., have smaller variance) than compet-
ing nonlinear least-squares estimators.

APPLICATION OF THE ESTIMATION PROCEDURE

A one-dimensional confined aquifer (Fig. 1) is used as a test case for the ML
estimation approach discussed above. Unknown transmissivity 7 and storativity
S are estimated via ML, and subsequently, matrices  and T' are formed by
using functional relationships between their elements and T and S.

Generation of Head Values

Data upon which the ML method is implemented are obtained by deriving
an analytical solution to the confined aquifer flow problem shown (Fig. 1). The
closed-form (exact) solution is utilized to generate nodal values for times ¢ =
1,2, ..., n, which are used to substitute for ¢,, V¢, in eq. 13.



682 Loaiciga and Mariiio
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Fig. 1. Confined aquifer subject to time-dependent conditions and a discharge (of units
LT 'L Y atx = L/2.

The equation characterizing flow in the aquifer (Fig. 1.) is

¥ 3¢ L
Tax2 -8 = F ( - 2> (24)
and boundary and initial conditions are
640 =Hy ) x=0 t>0 (25)
op(H) = Hg(t) x=1L t>0 (26)
¢(0) = gx) O=<=x=L =0 27
By letting
X
X=— 28
F _|L T
* =0l X - = 29
F S ) L( 2>} and (29)
T (x\"
== 30
c=3 <L) (30
Equations 18-21 become
¥o , 3¢
—Co + o = —F% 31
“oxz T o S
$4(0) = Hy) X =0, t>0 (32)
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ép(t) = Hp(?)
¢(0) = g(X)

IA

™

X=snx

Solution to the probiem defined by eqs. 31-34 is

oX, ) = H,@{) {1 - )—1 + Hy@) X + 2
w s n=1

t
- sin (nX) [g e~ TR () du + b,,e‘c"zt]
0

in which

F (1)

PX, 1

[ilX)

SHT SRR

t>0

t=40

S sin (nX)[P(X, 1) — F¥*X, n]dX
0

So sin (nX)[g(X) + fi(X)] dX

X X
= —Hy® {1 - ~} - Hy®) =
™ ™

X X
= ~H,0) [1 - —} ~ Hy(0) =
T T

683

(33)
(34)

(33)

(36)

(37

(38)

(39)

Equations 35-39 were utilized to generate head values for time periods ¢ = 1,
2, ..., 20 (upon which Gaussian white noise was added), corresponding to
data H,, Hg, g(x), and F (Table 1).

Table 1. Basic Data for the Estimation Problem*

Nodal head (M)

Nodal head (M)

Period, ¢ 1 2 3 Period, 1 1 2 3
1 84.93 87.70 94.88 11 85.87 82.62 87.83
2 84.75 86.75 94.38 12 86.18 82.36 87.16
3 84.62 86.01 93.72 13 86.51 82.13 86.50
4 84.58 85.40 92.98 i4 86.86 81.93 85.85
5 84.62 84.86 92.22 15 87.23 81.74 85.22
6 84.72 84.38 91.46 16 87.61 81.57 84.60
7 84.88 83.95 90.70 17 88.00 81.42 84.00
8 85.08 83.57 89.96 i8 88.40 81.28 83.40
9 85.31 83.22 89.23 9 88.81 81.15 82.81
10 85.58 82.90 88.52 20 89.23 81.04 82.23

“Nodal heads were generated with Eq. 35 using T = 500 m*/day, S§ = 12 x 107%, [ = 500 m, o
= 0.5, and At = 1 day; F = 10 m*/day; g(x) = H,0) + [Hg(1) — HOW/L: H(1) = 80 + 1,

Hy(t) = 100 — 1.
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Computation of (Negative) Log-Likelihood Function

For the aquifer (Fig. 1) with constant values for T and S (the methodology
does not require constant parameters, but in order to be able to use the exact
solution eq. 35 to generate head values such simplification is needed), the ¢
and T" matrices (see eq. 2) are

2T | 2US o IS ]
I " 3Ar I 6At
‘p — _E.Y: + _E. %O)_T + gl}g _S)_T + ﬁ 40
l 6A!1 l 3A: ! 6A? “40)
wT A 20T 2IS
0 _E L2 =22
| I " 6At 1 31
T 2'T 2SS o'T IS T IS ]
I 3A1 I Ten -7 0 g 00
w'T A 20'T 21S o'T AY
r=(-*>-_->» £ _22 2 _ 2
l 6At I 3At l 6A? 0 0 0 01
IT !
0 o7 I8 20T 2 Ty By,
i I 6Ar I 3Ar I 6 |
@41

in which } < w < 1is a weighting factor, ' = 1 — w, [ = L/4, and At is the
simulation time period. Linear basis functions were used in finite-element dis-
cretization of eq. 24. Vector X, in eq. 2 is

X7 = [0t — 1), ¢yt — 1), 65 — 1), $» b5» b> 5 F1 (42)

in which_1—7 = wF(t) + (1 — w) F(t — 1) is average discharge (see Fig. 1) at x
= LI2; ¢4 = wpat) + (1 — ) &0 = 1); ¢4 = {wldat) — b4t — D} +
(1 — D)oL — ¢4t — DI}/ Ar; and similar definitions hold for ¢ and bp.

Matrices given in eqs. 40~41 show explicitly the functional relationships
between their elements and unknown parameters T and S. By having ¢, T, ¢,,
and x,,vz, the negative log-likelihood function f of eq. 13, is completely de-
fined, and the expressions given by eqs. 15-17 readily are evaluated when im-
plementing Newton’s method.

Estimation and Analysis of Results

The sample used to estimate 7 and S is tabulated (Table 1). Piezometric
heads were generated by eq. 35 and are accurate to +£0.001 m (in approximation
of the infinite series). Upon differentiation, the negative log-likelihood function
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(eq. 13) yielded

of n_ [a_, OE - a¢>
SRR B vl e -~ 43
) 2“< ao,) Rt g, “3)
Ff n ) >IN ) azﬁ}
—_— = — — —_— __+E —_—
02~ 2 tr[ TR T Y
0y 0
- —y 2yt Y 44
"“[ T aej “4)
oY —Etr[—i“gg)ﬁ"ég+‘2“‘ 622}
96,00, 2 80, a6, 86,06,
10y 6@
- AL SN pad 45
ntr{ 14 aez‘b 30, (45)

Equations 43-45 (with 8, = T and 8, = §) were used to evaluate Vf and
G at the current iteration point 0, during the kth iteration of Newton’s method
(see eqs. 9-10). Second derivatives with respect to. y vanish due to linear de-
pendence of its elements on T and S (see eq. 40). Expanded details on expres-
sions 9£/06;, 8°L/967 (i = 1, 2), and 3*£/36,06, are given in Appendix A.

Several initial estimates 6, were tried to test if convergence occurred to the
same local optimum. Convergence to a unique point occurred for all initial
estimates tried (which were within 50% of true values). In all cases, conver-
gence occurred within five iterations of Newton’s method, and a quadratic con-
vergence rate was observed. Contour plots of the negative log-likelihood func-
tion indicated that it is convex, with a flat surface around the unique local
optimum, as shown (Fig. 2) Optimal ML estimator point was T* = 456 m?*/
day and S* = 0.0108, whereas true values are 500 m*/day and 0.012, respec-
tively. The convergence path for initial estimators 7¥ = 350, §© = 0.006,
and standard errors of optimal estimators are shown (Table 2). The covariance
matrix of ML estimators is approximated by the inverse of the sample infor-
mation matrix (see eq. 19) evaluated at convergence values T* = 456 m*/day
and S* = 0.0108 (Rao, 1965) and is equal to

2273.5 0.12285 }

cov (T*, §%) = [
0.12285 0.0000137

Thus, standard errors of T* and §* are 47.7 m*/day and 0.00370, respectively.
Matrices ¢ and I' of the governing flow equation (see eqs. 40-41) were esti-
mated by replacing T and S in those equations by their estimators 7* and S*,
respectively. True values of Y and I, as well as those of their estimators x,7/ and
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Fig. 2. Contour plot of negative log-likelihood function.

T', are as follows

5410 4.337 0.282 0
y=11 51 ¥ =]0.282 4.337 0282
K 15 0 0.282 4.337
-3 -15 0 -1 0100
r=|-15 -3 -15 0 00 0 1
|l 0 -15 -3 0 -1 010
[—2.197 -1352 0 -1.070 0 0.817 0 0
I'=}-135 -2.197 —-1352 0 0 0 0 1
| 0 -1.352 -2.197 0 ~-1.070 © 0.817 0

From asymptotic properties of ML estimators (Lehmann, 1983), { and [' are
consistent estimators of ¢ and I', respectively, i.e.

plim ¢ =¢ and

plim =T
Therefore from eq. 2
¢, = (—¢ 'D)x, + ¢ 'u, = TIx, + &, V¢ (46)
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Table 2. Synopsis of Newton’s Search

Iteration T° s° f
0 350 0.0060 356
1 446 0.0080 352
2 445 0.0095 351.2
3 453 0.0105 350.8
4 455 0.0107 350.5
5 456 0.0108 350

47.7)° (0.00370)¢

4T = transmissivity (m*/day).
¢S = storativity (dimensionless).
“Standard errors of optimal estimators.

and expected value of ¢,, given ¢,_,, is
E((pt|(pt—l) = Ilx,, vt 47)

which can be used to simulate expected values of heads for any time ¢, given
heads at time ¢ — 1. From the invariance property of ML estimators (see, e.g.,
Bickel and Doksum, 1977, p. 99), I and Ix, = E((p,Iq)r_ 1) are also ML esti-
mators because they are functions of estimators  and I' (see eqs. 46-47).

Table 3 shows the estimated IT matrix by ML method and by a linear

regression (LR) technique (Loaiciga and Marifio, 1986). A derivation of IT by
LR is given in Appendix B. Simulated head values using ML and LR esti-
mators, as well as exact head values obtained from eq. 35 forr = 1, 2,
20, are shown (Table 4). Observe that LR estimates tend to slightly overestl—
mate head values at early time steps (i.e., # = 1, 2, . . ., 10). For time steps
larger than ¢ = 15, a slight underestimation of head values by LR technique is
apparent. Overall departures from exact values are within —0.10 and 0.50 m.
ML estimated heads show a tendency to slightly underestimate heads at nodes
1 and 2 for early time steps, but the tendency reverses to a moderate overesti-
mation for time steps after r = 15, at nodes 1 and 2. At node 3, estimated
values exceed actual ones at early time steps ( < 2) and subsequently tend to
fall below actual head values. Accuracy of estimated heads by ML method is
within 0.5 m for the entire simulation period.

In summary, performance of ML and LR estimators based on the predicted
response of an aquifer to pumping and time-varying boundary conditions is
roughly equivalent. The ML method yields unique and reasonable estimates of
T and S (deviations of 9 and 10% were observed about true values, respec-
tively). A disadvantage of the ML technique is the need for prior information
on T and S to initialize Newton’s method. The LR estimation technique does
not require such prior information, is more easily programmable, and, as a
subproduct, directly provides estimates of the covariance structure of esti-
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mators. However, unlike the ML method, LR estimation does not yield esti-
mates directly of T and S but of elements of matrices ¥ and I" only. The ML
estimation algorithm was implemented in a DEC-VAX 11/780 minicomputer
with a CPU time of approximately 30 s.

5. SUMMARY AND CONCLUSIONS

The equation of flow for confined aquifers has been discretized and ex-
pressed in linear form. The corresponding negative log-likelihood function of
the linearized flow equation has been derived and expressed as a nonlinear func-
tion of unknown transmissivities and storativities. A global optimum of the
negative log-likelihood function has been obtained by Newton’s method. A sen-
sitivity analysis with respect to the initial starting search point was conducted,
leading in all cases to the same estimates. Upon computation of transmissivity
and storativity estimates, matrices governing the flow equation were constructed
and head values simulated. Head values used for implementing the maximum
likelihood approach were generated by exact solution to a one-dimensional flow
problem (and noise-corrupted with Gaussian white noise), in which the confined
aquifer is subject to time-varying boundary head values and pumping. Experi-
ences of this study point out some interesting conclusions: (1) Maximum like-
lihood estimation leads to a nonlinear estimation problem. Unless good prior
information on parameter values (to start Newton’s method) exist, convergence
may be reached at undesirable estimate values. (2) If initial estimators are ad-
equate, convergence is fast (in fact, quadratic in Newton’s method) to a rea-
sonably accurate global optimum, when the negative log-likelihood function is
convex. (3) When ML and LR estimates of aquifer response (i.e., piezometric
heads) were compared, both methods produced predicted values of similar ac-
curacy (within 0.5 m from exact heads). (4) The choice between linear (e.g.,
LR) and nonlinear (e.g., ML) estimation presents analysts with a variety of
trade-offs. The main advantage of LR estimators is easy implementation. In
contrast, ML yields directly estimates for 7 and S, which also have desirable
asymptotic properties such as consistency and efficiency.
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APPENDIX A: MATRIX DERIVATIVE EXPRESSIONS

In implementation of Newton’s method, expressions 0%/88,, 8*£/06?, and
02£/36,00, (in which #, = T and §, = S) are required. Let
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4= 2 9.0/ (A1)
4= 2 ox/ (A2)
A; = 20 xx] (A3)

By using the expression for £ (see eq. 12) and the product rule for matrix
derivatives (i.e., for arbitrary matrices A(0;) and B(6,), 0AB/36; = A(dB/d6,)
+ (0A/30,)B), the following expressions are derived readily

1]«
3, " n {Z Wo A" + YA gl + Yol + YA,T;
+ Tods 7 + TAypg, + T AsTT + I‘AJ‘Q)} (A4)
L 2[4 r . — .,
FYH T rf:l (oArds + Yo ALy + Tydady + Tydsl'y) | (AS)
L 1] , , . .
860,00, a5 o diVo, + Vo dibe + VoAl + Yo, AiT,

+ Ty Asg, + Do Asby + Ty AT + F92A3F;)} (A6)

in which ,, = 0¥/06,, i = 1, 2, and similarly for the I" matrix. Equations A4~
A6 are used when evaluating eqs. 43-45.

APPENDIX B: DERIVATION OF LINEAR REGRESSION
ESTIMATOR K1

Forecasting heads via eq. 47 using linear estimation requires estimate II
by II using multivariate linear regression. Equation 2 can be wriiten for all time
indexest = 1,2, ..., n atonce, as

Yo, 0 ..., 0,] + XL X, .., x] = 0,0, ... ,n,]) (BD
or in compact form
Yy + I'X = U (B2)
Solving for ® in eq. B2 yields
&=y 'TX+y'U
nx +v (B3)
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From eq. B3 it follows immediately that the multivariate least-squares (linear)
estimator for II is

=& 'x"9 (B4)

Heads forecasts (eq. 47) are straightforwardly computed by using II of eq. B4
in eq. 47.

REFERENCES

Aboufirassi, M. and Marifio, M. A., 1984, A geostatically based approach to the identification of
aquifer transmissivities in Yolo Basin, California: Math. Geol., v. 16, p. 125-137.

Bickel, P. J. and K. A. Doksum, 1977, Mathematical statistics: Holden-Day, San Francisco, 492
P

Cooley, R. L., 1982, Incorporation of prior information on parameters into nonlinear regression
groundwater flow models, 1, Theory: Water Resour. Res., v. 18, p. 965-976.

Graybill, F. A., 1983, Matrices with applications in statistics: 2nd ed., Wadsworth International
Group, Belmont, Calif., 460 p.

Kitanidis, P. K. and E. G. Vomvoris, 1983, A geostatistical approach to the inverse problem in
groundwater modeling (steady state) and one dimensional simulations: Water Resour. Res.,
v. 19, p. 677-690.

Lehmann, E. L., 1983, Theory of point estimation: Wiley, New York, 506 p.

Loaiciga, H. A. and M. A. Marifio, 1986, The inverse problem in confined aquifer flow: Identi-
fication and estimation with extensions: Water Resour. Res., submitted.

Marifio, M. A. and J. N. Luthin, 1982, Seepage and groundwater: Developments in Water
Science, 13: Elsevier, Amsterdam/Oxford/New York, 499 p.

McLaughlin, D., 1975, Investigation of alternative procedures for estimating groundwater basin
parameters: Report prepared for the Office of Water Research and Technology, Water Re-
sources Engineers, Walnut Creek, California, 130 p.

Neuman, S. P., 1980, A statistical approach to the inverse problem of aquifer hydrology, 3, Im-
proved solution method and added perspective: Water Resour. Res., v. 16, p. 331-346.

Rao, C. R., 1965, Linear statistical inference and its applications: Wiley, New York, 625 p.

Yeh, W. W-G., Yoon, Y. S., and Lee, K. S., 1983, Aquifer parameter identification with kriging
and optimum parametrization: Water Resour. Res., v. 19, p. 225-233,





