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Abstract 

How does the presence of background noise affect the 
cognitive processes underlying spoken-word recognition? And 
how do these effects differ in native and non-native language 
listeners? We addressed these questions using artificial neural-
network modelling. We trained a deep auto-encoder 
architecture on binary phonological and semantic 
representations of 121 English and Dutch translation 
equivalents. We also varied exposure to the two languages to 
generate ‘native English’ and ‘non-native English’ trained 
networks. These networks captured key effects in the 
performance (accuracy rates and the number of erroneous 
responses per word stimulus) of English and Dutch listeners in 
an offline English spoken-word identification experiment 
(Scharenborg et al., 2017), which considered clean and noisy 
listening conditions and three intensities of speech-shaped 
noise, applied word-initially or word-finally. Our simulations 
suggested that the effects of noise on native and non-native 
listening are comparable and can be accounted for within the 
same cognitive architecture for spoken-word recognition. 

Keywords: spoken-word recognition; non-native listening; 
noise; computational modelling; deep neural networks 

Introduction 
The presence of background noise deteriorates speech 
perception and this effect is particularly pronounced in non-
native listeners (e.g., Cooke, García Lecumberri, & Barker, 
2008; Kilman et al., 2014, Scharenborg, Coumans, & van 
Hout, 2017). Theories of spoken-word recognition often 
assume that native and non-native listeners are affected by 
background noise differentially (Cooke et al., 2008, Meador, 
Flege, & Mackay, 2000). The pronounced difficulties of non-
native listeners in noisy listening conditions are thought to 
reflect the dual challenge of understanding imperfect speech 
signals with imperfect language knowledge (García 
Lecumberri, Cooke, & Cutler, 2010). There is a fairly good 
understanding of the differential effects of noise on native 
and non-native sound perception (see for a review: Garcia 
Lecumberri et al., 2010). Far less is known about the effects 
of noise on spoken-word recognition upstream of sound 
processing, and how these differ in native and non-native 
listeners.  

A recent study from our lab (Scharenborg et al., 2017) 
aimed to address this gap. The study employed an offline 
spoken-word identification experiment, in which English and 
Dutch students listened to English words in clean listening 
conditions and with background noise. Noise was applied at 
the onset or the offset of stimuli words and at different 

intensities. Scharenborg et al. (2017) found that even though 
non-native listeners performed overall worse than native 
listeners, the patterns resulting from the systematic 
manipulations of the position and intensity of noise were 
strikingly similar in the two groups. Based on these results, 
Scharenborg et al. (2017) hypothesised that, in contrast to 
standard theories of spoken-word recognition (Cooke et al., 
2008; Meador et al., 2000), noise has similar effects on native 
and non-native spoken-word recognition and that the lower 
overall performance of non-native compared to native 
listeners is primarily due to differences in exposure, rather 
than fundamental differences between the native and non-
native spoken-word recognition systems. 

In this study, we aim to further investigate this hypothesis 
from a computational modelling perspective. We developed 
a novel computational model of spoken-word recognition 
which addresses the effects of noise on native and non-native 
listenening. Our model, referred to as ListenIN, is based on 
an autoencoder deep neural network (DNN) architecture for 
word learning trained on composite representations of words, 
consisting of simplified representations of phonological 
forms of words (in line with, e.g., the TRACE model, 
McClelland & Elman, 1986; see also, Gaskell & Marslen-
Wilson, 1997; Smith, Monaghan, & Huettig, 2017) and their 
meanings (cf. Plunkett et al., 1992). The DNN architecture is 
cross-linguistically general (cf. Karaminis & Thomas, 2010) 
and can be exposed to different linguistic environments (e.g., 
English words only vs. English and Dutch translation 
equivalents, with greater exposure to the latter) to simulate 
different types of lexical knowledge (‘native English’ vs. 
‘non-native English/native Dutch’, correspondingly). 

We developed two versions of the model, one 
corresponding to a native English listener and one 
corresponding to a non-native English/native Dutch listener. 
We tested these models on an English spoken-word-
identification task, parallel to the human-listener experiment 
(Scharenborg et al., 2017). Crucially, the two models have 
emerged from the same initial neural network architecture 
being exposed to different linguistic environments. To 
foreshadow our results, using this procedure, we found that 
the models captured all key patterns in the human data. Our 
computational simulations demonstrate that, consistent with 
the hypothesis put forward in Scharenborg et al. (2017), the 
comparable effects of noise on native and non-native 
listening can be accounted for within the same cognitive 
architecture for spoken-word recognition. 
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The human data 
The target empirical data for our model came from an offline 
English spoken-word identification task, administered to 61 
native Dutch and 50 native English students (Scharenborg et 
al., 2017). The target data included two measurements: 
overall accuracy in word-identification and the number of 
different erroneous responses per incorrectly identified word. 
The first measure provides a general evaluation of offline 
spoken-word identification performance; the second measure 
addresses errors in further detail and taps on the notion of the 
(size of the) ‘competitor space’ during the activation process 
in spoken-word recognition (Scharenborg et al., 2017). 

The stimuli in Scharenborg et al. (2017) consisted of 126 
English words (45 disyllabic, 81 monosyllabic). Each word 
was presented without added noise (i.e., in the clear), and 
with stationary speech-shaped noise (SSN) added word-
initially or word-finally and at three signal-to-noise ratios 
(SNRs): 0, −6, and −12 dB. The average number of phones 
masked by noise was 2.44 ± 0.54 for the word-initial and 2.70 
± 0.94 for the word-final noise condition. 

Participants were instructed that they would be listening to 
English words partially obscured with noise, and were asked 
to type in the word they thought they heard. Each participant 
was tested on 168 stimuli, corresponding to 84 words 
presented with combinations of the three SNRs with the 
word-initial or the word-final condition, and the same 84 
words presented in the clear. Obvious spelling mistakes and 
homophones were corrected prior to data analysis. 

The upper left panel in Figure 1 shows overall accuracy in 
spoken-word identification in native (continuous lines) and 
non-native (dashed lines) listeners, in the clear listening 
condition and the three SNRs, and in conditions of word-
initial (thick lines) and word-final (thin lines) noise. With 
regards to accuracy, the key findings consisted of three main 
effects and three two-way interactions, which taken together 
indicated that there were no large differences in the effect of 
background noise on the processes underlying native and 
non-native spoken-word recognition. More precisely, the 
statistical modelling of the accuracy data showed significant 
main effects of SNR, noise position, and (listener) group. 
These results suggested that overall accuracy was lower in 
higher SNRs, in the word-initial than the word-final masking 
condition, and in non-native compared to native listening. 
Two-way interactions between the position of noise and 
group, the position of noise and SNR, and SNR and group 
suggested that the detrimental effects of word-initial relative 
to word-final noise were more pronounced in native listeners 
and in higher SNRs, and that accuracy decreased with SNR 
more rapidly in non-native listeners. However, as these 
interactions were ordinal (i.e., the lines did not cross), the 
combined results implied that the effects of noise on accuracy 
were not drastically different in native and non-native 
listeners (Scharenborg et al., 2017).  

For a complementary account of this result, the reader may 
inspect the upper-left plot of Figure 1. Two forceps-like 
patterns, consisting of a thick and a thin line, correspond to 
the effects of noise in each group. Crucially, the most  

 
Figure 1: Empirical data (left; from Scharenborg et al. 

2017) and simulation results (right) on accuracy rates (top) 
and the number of erroneous responses (bottom). 

 

 
Figure 2: Architecture, training, and testing of the neural 
network model. A: training on three types of mapping 

(indicated by the three vertical arrows); B: testing on the 
novel task of comprehension/word identification (indicated 

by the diagonal arrow). 
 
pronounced difference between native and non-native 
listening is the downward shift of the forceps-like pattern, 
rather than differences in shape, slopes, and direction. 

Turning to the number of alternative responses (lower left  
panel in Figure 1), the key, statistically significant findings 
were the main effects of group, SNR, and noise position 
(Scharenborg et al., 2017), showing again no large 
differences in the effects of background noise on native and 
non-native spoken-word recognition. Thus, not only did non-
native listeners make more errors, they also made more 
variable errors. The number of alternative responses 
increased with SNR and was higher in the word-initial than 
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the word-final condition. The statistical modelling also 
included the effects of word frequency (Scharenborg et al., 
2017) and showed that the number of alternative responses 
was higher for lower-frequency words (Scharenborg et al., 
2017). Figure 1 again shows that the effects of the systematic 
manipulations of noise manifest as forceps-like patterns, 
which are highly similar for native and non-native listeners 
(group differences accounted for by a vertical shift, rather 
than changes in shape/slope/direction). 

Computational modelling 

Experimental set-up 
Our research design involved a training and a test phase. 
During training, we developed two versions of the deep 
autoencoder neural network shown in Figure 2: one 
exhibiting robust knowledge of a monolingual vocabulary of 
English words (i.e., the ‘native’ listener); and one exhibiting 
knowledge of a bilingual vocabulary of English and Dutch 
translation equivalents, however, with less robust knowledge 
of English compared to Dutch words due to greater exposure 
to the latter (the ‘non-native’ listener) (cf. Filippi, Karaminis, 
& Thomas, 2014). The models were trained on composite 
word representations, which consisted of phonological forms 
and their meanings. The models were exposed to three types 
of input-output mapping, illustrated with vertical arrows in 
Figure 2A: between phonological forms; between meanings; 
and between combinations of phonological forms and their 
meanings (see Plunkett et al., 1992). 

At test, the models were assessed on their abilities for 
comprehension/spoken-word identification − that is, when 
presented with a phonological form only (no semantics 
input), they should generate the appropriate meaning in the 
output layer (diagonal arrow in Figure 2B). The neural 
networks received no explicit (supervised) training on these 
mappings. Comprehension/word-identification was thus a 
novel task for the model and correct word identification 
implied that it had learned to auto-associate phonological 
forms with their meanings. 

We tested the two versions of the trained neural network 
on a simulated English word-identification task, parallel to 
Scharenborg et al. (2017). In this task, the phonological 
representations presented in the input layer included word-
initial or word-final noise at three different intensities, as in 
Scharenborg et al. (2017). For each network, we obtained 
measures of accuracy in spoken-word identification and of 
the number of erroneous responses per incorrect response in 
the two conditions for the position of noise and in different 
noise intensities. We analysed the model-based measures 
with statistical modelling procedures similar to Scharenborg 
et al. (2017), and compared our results to the empirical study.  

We note that we also performed control simulations in 
which we simulated non-native listening by testing ‘native 
English/non-native Dutch’ models, that is, models trained on 
English and Dutch interleaved with a 3 : 1 ratio.  These 
simulations (not reported here) showed parallel results to 
those reported in this paper, and allowed us to establish that 

the differences in performance between native and non-
native models do not depend on whether the ‘native’ version 
is exposed to monolingual or bilingual linguistic 
environments. 

Architecture and representations 
The deep autoencoder neural network (Figure 2) used in the 
simulations comprised a phonological and a semantics 
pathway and had a symmetric structure, horizontally and 
vertically. The input and the output layer consisted of 292 
units representing phonology and 300 units representing 
semantics. The architecture had five hidden layers. The first 
hidden layer was bipartite and consisted of two banks of 150 
units, one fully connected to input phonology and another 
fully connected to input semantics. The second hidden layer 
(200 units) was composite, that is, it was fully connected to 
all the units of the first layer. The third hidden layer had 150 
units. As the autoencoder was symmetric, the fourth hidden 
layer was identical to the second hidden layer; and the fifth 
hidden layer was identical to the first hidden layer. 

The phonological form of words was represented using a 
feature-based representational scheme. Our scheme encoded 
51 distinct phones, 20 vowels and 31 consonants, using 22 
articulatory/phonological features: consonant, vowel, 
obstruent, sonorant, aspirated, voiced, plosive, continuant, 
nasal, lateral, rhotic, strident, labial, coronal, dorsal, glottal, 
distributed, high, mid, low, retracted, and long (cf. Karaminis 
& Thomas, 2010). 

Phonological forms of words were fitted to a 13-slot 
disyllabic template: CCCVVCCCVVCCC, where C denotes 
a consonant and V denotes a vowel. We used alignment to 
the left (similar to Shook & Marian, 2013) so as to 
incorporate in our model the incremental nature of speech 
processing. The phonological representations also included 
prosodic information, namely syllabic length and syllabic 
stress. Syllabic length was represented with thermometer 
encoding over 2 bits (monosyllabic = 01; disyllabic = 11), 
syllabic stress was represented with 2 one-hot bits. Finally, 
language information (2 one-hot units, English or Dutch) was 
also included in the phonological representations. This 
information is useful for the modelling of production 
(producing phonological forms given meanings) in future 
extensions of this model but was not used in the current 
simulations. In sum, the phonological forms of words are 
represented in a distributed manner over a 292-bit vector with 
an average of 25.94 ± 6.31 ‘ones’ per word. 

Word semantics was represented with a binary scheme 
based on a 300-dimensional word-embedding model trained 
on a corpus of 100 billion words from Google News 
(Mikolov et al. 2012; model retrieved from the gensim 
Python library, Řehůřek & Sojka, 2010). The real-numbered 
word-embeddings were transformed to binary 
representations by setting all values lower than -0.175 to 1, 
and all other values to 0. As a result of this transformation, 
word semantics were represented with an average of 52.73 ± 
11.48 ‘ones’ over a 300-bit vector.  
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Training 
The training set of the model consisted of 121 English words, 
and their 121 Dutch translations, taken from Scharenborg et 
al. (2017) (excluding five word pairs, where the Dutch 
translation equivalent was trisyllabic). English and Dutch 
translation equivalents had different phonological forms, and 
exactly the same semantics. 

Training the deep autoencoder combined three techniques, 
namely weight initialisation with pretraining, weight fine-
tuning with three phases of training, and denoising. We 
included these techniques in the design of the model based on 
pilot simulations (not reported here), which suggested that 
this combination enabled networks to auto-associate 
phonology and semantics, and show abilities for word 
comprehension and word production. 

Weight initialization with pretraining. The weights of the 
deep autoencoder were initialised using a pretraining method 
(Hinton & Salakhutdinov, 2006). Weights between the 
individual layers of the deep autoencoder (say between ‘Input 
Phonology’ and ‘Hidden P0’) were trained separately, within 
shallow (one hidden layer) autoencoders, considered 
specifically for the pretraining phase. For a demonstration of 
this method, see Hinton and Salakhutdinov (2006). 
Pretraining was implemented in MatLab with the neural 
network toolbox (Release 2016a, The Mathworks, 2016), 
using the Scaled Conjugate Gradient Algorithm (Moller, 
1993), with sparsity regularisation (Olshausen & Field, 1997) 
and the following parameters: 2000 epochs, L2 
WeightRegularization = 0.01, SparsityProportion = 0.10. 

Weight fine-tuning with three phases of training. After the 
weights of the deep network were initialised with pretraining, 
they were fine-tuned (within the deep network). Weight fine-
tuning lasted for 1000 epochs and used the back-propagation 
algorithm (Rumelhart, Hinton, & Williams, 1986) with the 
cross-entropy error criterion (Hinton, 1992) (lr = 0.05, 
momentum = 0.0). Similar to Plunkett et al. (1992), the 
following three phases are considered: (A) The phonology-
to-phonology phase, in which only input phonology was 
presented to the network, which was trained on producing the 
same phonological pattern in the output layer. No changes 
happened in the semantics pathway during this phase; (B) 
The semantics-to-semantics phase, which focused learning 
on the semantics side of the network; (C) The mixed phase, 
in which both phonology and semantics were presented in the 
input layer and learning happened across the whole network.  

Each epoch included 242 (2*121) training sweeps. In each 
sweep, a word was chosen probabilistically and was 
presented to the network. The probabilistic training regime 
was designed to implement either a ‘native English’ 
condition, in which networks were presented with English 
words only, or a ‘non-native English/native Dutch’ condition, 
in which networks were presented to English and Dutch 
words with a 1:3 ratio. For a given word, one of the following 
two sequences of the learning phases (chosen randomly) was 
applied: (A)−(C)−(A) or (B)−(C)−(B). The weight changes 

estimated by the learning algorithm were also multiplied by 
the log-transformed CELEX word frequencies (cf. Baayen, 
Piepenbrock, & Gulikers, 1995). 

Denoising. During the fine-tuning phase, random noise was 
also injected in the input layer of the network (‘denoising 
autoencoder’; see Vincent, Larochelle, Bengio, & Manzagol, 
2008; Zur, Jiang, Pesce, & Drukker, 2009). Noise was 
injected probabilistically, in half of the training sweeps and 
to the phonological part of the input or the semantics part or 
both. In all cases, the network should output denoised 
activations. The random noise added to a given input unit’s 
activation had a zero mean and SD equal to 7 times the SD of 
the unit's activation across the representations of the training 
set. The injected noise was therefore very high, often 
distorting the input patterns. 

Simulated spoken-word identification task  
In the simulated word-identification task, we presented the 
native and non-native versions of the models with 
phonological representations of words (and no semantics) at 
the input and evaluated whether they produced appropriate 
semantics in the output layer. The output was evaluated with 
a nearest neighbor criterion (output semantics should be 
closer to the appropriate semantics than any other semantics 
pattern). Similar to the human-listener experiment 
(Scharenborg et al., 2017), we included a zero-noise 
condition and three increasing levels of added noise. The 
added noise was implemented as a real-numbered vector 
selected from a Gaussian distribution with mean = 0 (‘clear’) 
and SD = .50 (‘low intensity’), .75 (‘medium intensity’), or 
1.00 (‘high intensity’). We also considered conditions of 
word-initial and word-final noise, by adding noise only to 
either the leftmost or the rightmost slots (correspondingly) of 
the phonological template. For individual words, word-initial 
and word-final noise was applied to the same phones as in 
Scharenborg et al. (2017).  

We performed two sets of simulations, with 10 replications 
(random seeds for weight initialisation) each. In the first set, 
we tested English word identification in models trained only 
on English words (i.e., ‘native listeners’). In the second set, 
we tested English word identification in the model trained on 
English and Dutch translation equivalents interleaved with a 
1:3 ratio (i.e., ‘non-native listeners’).  

Results 
The right panels of Figure 1 present the simulation results on 
the accuracy rates (top) and the number of erroneous 
responses for incorrect responses (bottom). Visual inspection 
of the combined results in Figure 1 suggests that the 
modelling results were highly similar to the human data (left 
panels) on both measures. The modelling output replicated 
the forceps-like patterns for the effects of the systematic 
manipulations of noise on the two measures of spoken-word 
identification in each group. And again, the effect of 
background noise was highly similar in the ‘native’ and ‘non-
native’ models: group differences were accounted for by a 
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vertical shift of the forceps-like performance patterns. 
However, the model presented bigger differences in the 
listening performance in the word-initial and the word-final 
condition (forceps-like performance patterns are more open 
and overlap in the right panels). 

The statistical analysis of the models’ accuracies showed 
main effects of group (β = -.348, SE = .144, p = .016), noise 
intensity (β = 1.138, SE = .089, p < .001), and position (β = -
1.734, SE = .136, p < .001), as well as two-way interactions 
between noise intensity and group (β = -.501, SE = .071, p < 
.001), position and noise intensity (β = .254, SE = .101, p < 
.001), and position and group (β = .393, SE = .143, p < .001). 
The models thus captured all six key findings of the human 
accuracy data (Scharenborg et al., 2017). Moreover, as 
interactions were ordinal: the combined results implied that 
the effects of noise on accuracy were not drastically different 
in the native and non-native models. This is also in line with 
the human data (Scharenborg et al., 2017). 

Turning to the number of erroneous responses, our 
statistical analysis, which accounted for error rates and word 
frequency (cf. Scharenborg et al., 2017), showed main effects 
of group (β = .515, SE = .088, p < .001), noise intensity (β = 
-1.310, SE =     .135, p < .001), and position (β = -.528, SE = 
.094, p <   .001), and a non-significant trend for an effect of 
word frequency (β = -.0854, SE = .051, p = 0.092). 
Importantly, there were no significant interactions between 
these factors and group. The model therefore captured the key 
findings in Scharenborg et al. (2017), including the similar 
effects of noise on the number of erroneous responses in 
native and non-native listening. 

Discussion and Conclusions 
In this paper, we present a computational model which is 
novel in addressing the effects of noise on the cognitive 
processes underlying spoken-word recognition in native and 
non-native listening. A key assumption of the model, 
grounded on the hypothesis put forward in Scharenborg et al. 
(2017), is that a common cognitive architecture underlies 
native and non-native spoken-word recognition. Based on 
this common architecture, which is differentiated only 
through its exposure to two different training sets, our model 
emulates human native and non-native lexical knowledge and 
captures key effects in the human data from Scharenborg et 
al. (2017). Indeed, ‘non-native’ models presented overall 
lower accuracy rates and overall higher numbers of erroneous 
responses than ‘native’ models. Yet, and consistent with the 
human data (Scharenborg et al., 2017), the effects of the 
systematic manipulations of noise on the two measures of 
spoken word-recognition were similar in the ‘native’ and the 
‘non-native’ models (vertical shifts in Figure 1).  
     Our results support the idea put forward in Scharenborg et 
al. (2017) that noise affects the cognitive processes 
underlying native and non-native spoken-word recognition in 
a similar fashion, and that performance differences between 
native and non-native listeners when listening in noise are 
mostly due to differences in exposure to the non-native 
language. An important question is whether this hypothesis 

also applies to online spoken-word comprehension, which 
involves subtler temporal dynamics than offline spoken-word 
recognition. Our current work focuses on extending our 
model, to address human data on online native and non-native 
spoken-word recognition in noise (by presenting 
phonological input incrementally, see Gaskell & Marslen-
Wilson, 1992) (Hintz & Scharenborg, 2016). 
     Our model captures the empirical data by bringing 
together principles and assumptions of earlier models of the 
bilingual lexicon and speech recognition, for example, 
feature-based, spatially encoded, representations of 
phonology with alignment to the left (Shook & Marian, 2013; 
Smith et al., 2017), a simplified scheme for the representation 
of word meanings (Smith et al., 2017), bilingual linguistic 
environments consisting of translation equivalents (Filippi et 
al., 2013; Shook & Marian, 2013, though see Zhao & Li, 
2010), and (semi-supervised) autoassociation of 
phonological and semantic representations (cf. Plunkett et al., 
1992).  
    Our model is not without shortcomings. Firstly, the 
feature- and slot-based representations of phonology and the 
implementation of speech-shaped noise as a random vector 
added to the binary phonological patterns are simplifying 
assumptions, which overlook key characteristics of speech. 
Future versions should consider input representations that are 
closer to speech signals (cf. Norris & McQueen, 2008; Ten 
Bosch, Boves, & Ernestus, 2015; Scharenborg, 2010), and 
which include more realistic implementations of noise. 
Future versions of the model could also employ recurrent 
DNN architectures. These are naturally suited to address the 
incremental nature of speech input, while they have 
supported some important recent advances in automatic 
speech recognition (Yu & Deng, 2016). Finally, non-native 
language learning involves considerable individual 
variability, in the mode, the timing, the exposure to the two 
languages, and in language typology. This variability will 
also be investigated in future versions of the model.  

In conclusion, in this paper, we present a computational 
model, which is novel for addressing the effects of noise on 
spoken-word recognition in native and non-native listening. 
The model successfully simulated human performance in a 
spoken-word identification task, which was administered to 
native and non-native listeners and included elaborate 
manipulations of listening conditions (Scharenborg et al., 
2017). The model’s success in capturing the human data 
supports a unified account of spoken-word recognition in 
noise in native and non-native listening using a neural-
network-modelling framework. 
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