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RESEARCH ARTICLE

Dissecting Spatiotemporal Structures in 
Spatial Transcriptomics via Diffusion-Based 
Adversarial Learning
Haiyun  Wang1†, Jianping  Zhao1†, Qing  Nie2, Chunhou  Zheng3*, 
and Xiaoqiang  Sun4*
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Recent advancements in spatial transcriptomics (ST) technologies offer unprecedented opportunities to 
unveil the spatial heterogeneity of gene expression and cell states within tissues. Despite these capabilities 
of the ST data, accurately dissecting spatiotemporal structures (e.g., spatial domains, temporal trajectories, 
and functional interactions) remains challenging. Here, we introduce a computational framework, PearlST 
(partial differential equation [PDE]-enhanced adversarial graph autoencoder of ST), for accurate inference 
of spatiotemporal structures from the ST data using PDE-enhanced adversarial graph autoencoder. PearlST 
employs contrastive learning to extract histological image features, integrates a PDE-based diffusion model 
to enhance characterization of spatial features at domain boundaries, and learns the latent low-dimensional 
embeddings via Wasserstein adversarial regularized graph autoencoders. Comparative analyses across 
multiple ST datasets with varying resolutions demonstrate that PearlST outperforms existing methods 
in spatial clustering, trajectory inference, and pseudotime analysis. Furthermore, PearlST elucidates 
functional regulations of the latent features by linking intercellular ligand–receptor interactions to most 
contributing genes of the low-dimensional embeddings, as illustrated in a human breast cancer dataset. 
Overall, PearlST proves to be a powerful tool for extracting interpretable latent features and dissecting 
intricate spatiotemporal structures in ST data across various biological contexts.

Introduction

Spatial transcriptomics (ST) technologies provides information 
of the spatial distribution of cells and gene expression [1]. 
Understanding the relative positioning of transcriptional expres-
sion within tissues is crucial for unraveling their spatial archi-
tectures and biological functions [2,3]. In recent years, the 
emerging spatial transcriptome sequencing technologies (e.g., 
10X Visium [4], Spatial Transcriptomics [5], Slide-seq [6], Slide-
seqV2 [7], HDST [8], seqFISH [9,10], seqFISH+ [11], MERFISH 
[12,13], and STARmap [14]) have facilitated the exploration of 
the intricate transcriptional architecture of heterogeneous tis-
sues, prominently advancing our comprehension of the cellular 
mechanisms underlying various diseases [4,15].

A fundamental challenge in the analysis of ST data lies in 
the dissection of spatiotemporal structures, encompassing spatial 
domains, temporal trajectories, and cellular networks. One illus-
trative instance involves the identification of spatial domains, 
defined as regions exhibiting coherence in both gene expression 
and histology, a task analogous to spatial clustering. Traditional 
clustering methods such as K-means and Louvain methods 

[16], which rely solely on gene expression, encounter difficulties 
in producing biologically meaningful outcomes as they over-
look spatial and histological information. Methods that employ 
cell type signatures for deconvolution [17,18] prove unsuitable 
for achieving cellular or subcellular resolution in ST data.

To address the spatial dependence of gene expression, sev-
eral methods have been developed. For instance, BayesSpace 
[19] employs a probability-density [20] approach to clustering 
by introducing a prior that assigns higher weight to physically 
close spots. SpecMix [21] enhances the non-negative matrix 
factorization model of gene expression by integrating graphical 
models of cellular spatial organization. SEDR [22] utilizes an 
autoencoder to learn a low-dimensional representation of gene 
expression, incorporating spatial information through a varia-
tional autoencoder. STAGATE [23] employs graph attention 
networks to learn low-dimensional representations of ST spots. 
Additionally, some methods incorporate histology images for 
spatial dependence normalization, such as stLearn [24] and 
DeepST [25]. SpaGCN [26] integrates spatial location, gene 
expression, and histological images to construct an undirected 
weighted graph for spatial clustering.
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SpaceFlow [27] initially introduced the concept of the pseudo- 
spatiotemporal map (pSM) and employed graph convolutional 
networks to learn latent features of cells or spots in ST data. 
Building on this, pysodb [28] incorporated the pSM into ST 
data analysis, utilizing internal functions for implementation. 
Additionally, stLearn [24] introduced a spatial graph-based 
method called pseudo-time-space, aiming to model and unveil 
relationships among dynamic changes in cell transcription states 
across organizational experiences. Consequently, the construc-
tion of spatiotemporal structures has progressively emerged as 
a key task in the analysis of ST data.

Nevertheless, several challenges persist in effectively char-
acterizing spatiotemporal structures in ST data. Firstly, existing 
methods face limitations in the effective characterization of 
spatial features at domain boundaries, often resulting in blurred 
edges of identified spatial regions. Secondly, the ST expression 
profile tends to be sparse, primarily due to both technical and 
biological noises, thereby hindering accurate quantification of 
expression features and pseudotime estimation. Thirdly, most 
of the existing methods fall short on deciphering biological 
functions of the learned latent features within the context of 
cellular interactions and gene regulations. In addition, tailored 
models specifically trained on the histology images associated 
with the ST data are desired to improve the extraction of fea-
tures from histology images for better spatial analysis.

To address the above gaps, we develop PearlST (partial differ-
ential equation [PDE]-enhanced adversarial graph autoencoder 

of ST) to dissect spatiotemporal structures, including spatial 
domains, temporal trajectories, and functional interactions of 
cells or spots, from the ST data. To this end, PearlST learns low-
dimensional latent embeddings of ST by leveraging PDE model-
based gene expression augmentation and adversarial learning 
through integrating spatial information, gene expression profiles, 
and histology image features. We benchmarked PearlST with 10 
existing methods and further evaluated its robust performance 
across multiple ST datasets obtained from various platforms, 
including 10X Visium, Stereo-seq, Slide-seqV2, MERFISH, and 
STARmap, and diverse tissues, such as the human dorsolateral 
prefrontal cortex (DLPFC), mouse visual cortex, mouse olfactory 
bulb (MOB), mouse embryo, mouse hippocampus, and human 
breast cancer.

Results

Overview of PearlST
PearlST comprises three integral components: gene expression 
augmentation, low-dimensional representation learning, and 
downstream analysis (Fig. 1). First, PearlST enhances gene expres-
sion by incorporating information from histology images, spatial 
location, and gene expression profiles of spatially nearest neigh-
bors for each spot. Notably, PearlST leverages ResNet-50 [29] 
within the SimCLR framework [30] to learn visual features of 
each spot image, utilizing histology images collected from diverse 
tissues across species. To ensure spatial proximity consistency 

Fig. 1. Overview of PearlST. Initially, spatial nearest neighbors are defined for each spot by calculating their similarity using a combination of spatial locations, gene expressions, 
and histology image features extracted by a tailored SimCLR model. Following this, a PDE-based diffusion model is employed to enhance transcriptional profiling data. 
Subsequently, a Wasserstein adversarial regularized graph autoencoder is constructed to learn a low-dimensional representation based on the spatial graph and gene expression 
matrix. Ultimately, the derived low-dimensional representations can be employed for various downstream analyses and applications, including spatial domain identification, 
trajectory inference, pseudo-spatiotemporal map generation, and analysis of cell–cell communications.
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across histology images, spatial locations, and gene expression, 
the 3 datasets are integrated to identify spatial nearest neigh-
bors for each spot. It is important to emphasize that the feature 
extraction module is exclusively employed for sequencing plat-
forms that generate histology images, such as 10X Visium. For 
other ST data, spatial coordinates and gene expression are used 
to compute the nearest neighbors of the spots. Subsequently, 
gene expression data undergo denoising and enhancement 
through a PDE-based diffusion model. Secondly, PearlST learns 
latent low-dimensional embeddings that encompass both spa-
tial information and augmented gene expressions by employing 
a Wasserstein adversarial regularized graph autoencoder. 
The introduction of a Wasserstein regularizer minimizes the 
1-Wasserstein distance [31] between distributions. Thirdly, the 
obtained latent embeddings are utilized for data visualization 
through Uniform Manifold Approximation and Projection 
(UMAP) [32]. Based on the latent embeddings, spatial domains 
are segmented using common clustering algorithms, defaulting 
to K-means or, alternatively, Louvain clustering. Furthermore, 
a pSM [27] of the tissue is computed by employing the diffusion 
pseudotime (DPT) method [33] based on the latent embed-
dings (Fig. 1).

Benchmarking PearlST with 10 other methods
To assess the efficacy of PearlST in identifying distinct layer-
specific expression profiles, we initially applied it to 12 human 
DLPFC samples. These samples were previously annotated into 
6 cortical layers and white matter (WM) by Maynard et al. [34], 
considering cytoarchitecture and selected gene markers. Using the 
manual annotation results as the ground truth, we employed 
the adjusted Rand index (ARI) to quantify the similarity between 
the inferred domains and the expert annotations across all 12 
sections. In this evaluation, we compared the performance of 
PearlST with 8 recently proposed spatial clustering approaches 
(BayesSpace [19], DeepST [25], SpaGCN [26], stLearn [24], 
SEDR [22], SpaceFlow [27], STAGATE [23], and SpecMix [21]), 
as well as 2 non-spatial clustering methods implemented by 
SCANPY [35] and Seurat [36]. We ran each method according 
to the official technical documentation and used the default 
parameters for each method (Note S1). The comparison results 
reveal that PearlST achieves a significantly higher median ARI 
score than the other methods across the 12 samples (Fig. 2A). 
Following that, STAGATE, DeepST, and BayesSpace have higher 
median ARI scores on these datasets. We conducted a one-sided 
Wilcoxon rank-sum test comparing the results of PearlST with 
these 3 methods. The statistical test results indicate that PearlST 
performs significantly better in clustering on the DLPFC dataset 
compared to STAGATE (P = 6.1 × 10−3), DeepST (P = 7 × 10−4), 
and BayesSpace (P = 2 × 10−4). Notably, SEDR and SpecMix 
exhibit comparable clustering performance.

Subsequently, we conducted a more detailed analysis on sec-
tion 151671 (Fig. 2B to D). We visualized the domain segmen-
tation results obtained by each method and compared them to 
expert annotations (Fig. 2B). Notably, all methods exhibited 
challenges in capturing the subtle structure of Layer 4, poten-
tially attributed to the spatial resolution limitations inherent in 
this specific ST data. Despite this, both PearlST and BayesSpace 
successfully captured the remaining structures (Layer 3, Layer 
5, Layer 6, and WM) as observed in the manual annotations. 
Furthermore, it was observed that the expression profiles of 
specific layers segmented by BayesSpace had more pronounced 
jagged edges, while the results from PearlST appeared relatively 

smoother. Specifically, for the subtle Layer 4 structure, BayesSpace 
annotated it as a large area, whereas PearlST provided a smaller 
and more refined annotation result. Other methods also seemed 
to dissect section 151671 into 5 layers, but there was more noise 
at the edges of layer-specific expression profiles, particularly for 
SCANPY and Seurat. Similar comparison results were observed 
across the remaining 11 samples (Figs. S1 to S3).

Additionally, we illustrate that PearlST excels in revealing 
distances between spatial domains and depicting spatial tra-
jectories in UMAP plots. To achieve this, we utilized SCANPY 
to reduce the low-dimensional representation of the output from 
various methods to 2 dimensions for UMAP visualization and 
PAGA (partition-based graph abstraction) trajectory inference. 
Notably, the UMAP plots generated by embeddings from 
PearlST and STAGATE exhibited well-organized cortical lay-
ers and consistent spatial trajectories, progressing from WM to 
Layer 3 (Fig. 2C and Fig. S4). Among the other methods, only 
DeepST and SpecMix results demonstrated somewhat similar 
consistency to PearlST. In the PAGA graphs (Fig. S5), the low-
dimensional representations of PearlST displayed an approxi-
mately linear developmental trajectory from Layer 3 to Layer 6, 
with stronger similarity observed between adjacent layers com-
pared to non-adjacent layers. Although the low-dimensional 
representation of DeepST also showcased a linear trajectory, it 
did not correctly depict the progression from Layer 3 to Layer 6.

In the final analysis, we compared the pSM inferred by differ-
ent methods, specifically focusing on spatially aware methodolo-
gies. STAGATE, SpaceFlow, SEDR, and PearlST all presented 
layer-patterned pSMs with a distinct and smooth color gradient 
(Fig. 2D). Notably, these maps suggested a pseudo-spatiotemporal 
ordering from WM to Layer 3, aligning with the developmen-
tal order of the cortex from the inside out and reflecting the 
hierarchical spatial organization of the tissue. However, it is 
crucial to highlight that only the results from PearlST exhibited 
a clear and unique developmental starting point, along with a 
smooth progression between neighboring layers (Fig. 2D and 
Fig. S6).

PearlST augments gene expression for better 
characterizing spatial expression patterns
Subsequently, we illustrate the efficacy of the PDE-based diffu-
sion model in noise reduction for ST data, emphasizing its abil-
ity to characterize spatial expression patterns. PearlST was 
applied to the 12 DLPFC samples utilized in the previous sec-
tion, and ablation experiments were designed to investigate the 
impact of data enhancement on downstream analyses. The 
findings revealed that enhancing gene expression data signifi-
cantly improved the accuracy of spatial domain identification 
(Fig. S7). For further validation, we selected 5 of these samples 
to demonstrate that the augmented data facilitated other spa-
tiotemporal structure inference tasks as well (Fig. S8). In the 
low-dimensional visualization results, the enhanced data show-
cased a clear hierarchical structure in samples 151507, 151670, 
151672, and 151675, while the results from the raw data were 
accompanied by a substantial amount of noise, and the original 
hierarchical structures were not even discernible in samples 
151507 and 151672 (Fig. S8A). The enhanced gene expression 
data notably contributed to the generation of more consistent 
PAGA trajectory inferences, particularly evident in samples 
151670 and 151672 (Fig. S8B). On these few samples, neither 
the raw nor the augmented data produced pSMs that exhibited 
a high degree of agreement with the true developmental order; 
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Fig. 2. Benchmarking PearlST against other methods in DLPFC tissue analysis. (A) Performance comparison of PearlST with 10 other methods in identifying layer-specific 
expression patterns across 12 DLPFC samples. (B) Visualization of spatial domain segmentation results obtained by various methods on the 151671 section, with a comparison 
against manual annotation. (C) UMAP visualization generated by STAGATE, SpaceFlow, SEDR, and PearlST, highlighting the consistency between UMAP results and layer-
specific expression profiles. It is important to note that, as end-to-end clustering approaches, the results of SpaGCN and BayesSpace cannot be visualized using UMAP. 
(D) Pseudo-spatiotemporal map inferred from low-dimensional representations derived from different methods.

https://doi.org/10.34133/research.0390
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however, the latter results demonstrated a clearer and more 
progressive order (Fig. S8C).

PearlST depicts the developmental trajectory in 
STARmap data of mouse visual cortex tissue
Furthermore, we applied PearlST to an image-based ST dataset 
generated by STARmap [14] with single-cell resolution. The 
STARmap dataset comprises 1,020 genes expressed on 1,207 
cells and has been annotated with 7 structural layers (Fig. 3A) 
and 16 cell types (Fig. 3B). Similar to previous analyses, we 
initially clustered the ST data using PearlST, considering expert 
annotations as the gold standard, and compared the results with 
4 other methods. The number of clusters for all compared 
approaches was set to 6. PearlST demonstrated the most accu-
rate domain segmentation with an ARI score of 0.67. SpaceFlow 
followed with an ARI of 0.60 and STAGATE was 0.54, while 
the remaining 3 methods yielded clustering results with ARI 
scores below 0.4 (Fig. 3C). These results are further manifested 
in the distribution of specific regions, revealing more overlap 
between regions produced by SCANPY and SEDR. In contrast, 
SpaceFlow, STAGATE, and PearlST exhibited significantly less 
overlap. While SpaceFlow showed slight overlap on CC and 

HPC and larger overlap on HPC and L6, wrongly identifying 
a portion of L1 as L2/3, PearlST only annotated a small portion 
of L1 to L2/3 and very few to L5 (Fig. 3C). The outputted low-
dimensional representations from these methods were used to 
compute the pSM. SCANPY exhibited the least satisfactory 
result, lacking a clear differentiation trajectory (Fig. 3G). Both 
STAGATE and SEDR results did not show a gradient process, 
with dark green dominating the former and light green domi-
nating the latter (Fig. 3E and F). SpaceFlow demonstrated a 
satisfactory progression from the left to the center; however, it 
presented an anomalous jump from the very first developmen-
tal stage on the right to the final form in the center (Fig. 3D). 
In contrast, the results from PearlST were the most satisfying, 
displaying a gradual color change from darker to lighter from 
left to right, effectively unveiling the developmental trajectory 
of the mouse visual cortex (Fig. 3H).

PearlST uncovers laminar structures in Stereo-seq 
data of coronal MOB tissue
We demonstrate here that PearlST excels in delineating the lami-
nar structure of data acquired with Stereo-seq [37]. Stereo-seq 
is an emerging spatial omics technology that provides subcellular 

Fig. 3. PearlST depicts the developmental trajectory in STARmap data of mouse visual cortex tissue. (A) Expert-annotated structural layers within the mouse visual cortex. 
(B) Visualization depicting the distribution of each cell type within the ST dataset. (C) Comparative performance assessment of SpaceFlow, STAGATE, SEDR, SCANPY, and 
PearlST in identifying spatial domains on the mouse visual cortex dataset. (D to H) Visualization of pseudo-spatiotemporal maps (pSMs) calculated using low-dimensional 
embeddings generated by SpaceFlow (D), STAGATE (E), SEDR (F), SCANPY (G), and PearlST (H).
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spatial resolution through DNA nanopore pattern array chips. 
For validation, we utilized a coronal MOB tissue dataset, a 
widely used model tissue with laminar organization. Fu et al. 
[22] annotated the laminar organization in the DAPI-stained 
image, containing the rostral migratory stream (RMS), granule 
cell layer (GCL), internal plexiform layer (IPL), mitral cell layer 
(MCL), external plexiform layer (EPL), olfactory nerve layer 
(ONL), and glomerular layer (GL) (Fig. 4A). SpaceFlow and 
PearlST partitioned this dataset into 7 layers, and STAGATE 
annotated the dataset into 8 layers according to original tutorial 
(Fig. 4B). Both PearlST and STAGATE provided well-defined 
layer structures and effectively demarcated the GL and MCL 
regions, while SpaceFlow results appeared to have extensive 
overlap. Subsequently, we applied marker genes from each ana-
tomical region to validate PearlST results (Fig. 4C and D). 
PearlST demonstrated good correspondence between clusters 
and known marker genes. Some marker genes, such as Mbp 
and Pcp4, showed high expression levels overlapping with 
neighboring regions, which is expected due to shared cell types 
in different internal structures of organs. Overall, PearlST accu-
rately identified relevant anatomical regions. Finally, we com-
puted the pSM using the low-dimensional representations of 
each method. The pSM values (green) were lowest in the EPL 
and increase as they move toward the interior. This sequence 
of pSM coincides with the developmental order of these layers, 
starting in the central EPL and developing outward toward the 
sides, leading to the MCL and the GL, ONL, and GCL develop-
ing last [38]. Values are highest in the interior, the peaks being 
in the GCL and RMS. This suggests that spatial flow calcula-
tions of pSM are not only clearer than non-spatial pseudotime 
estimation but also more accurately reflect the temporal and 
developmental relationships between cells. Overall, the pSM 
calculated by PearlST (Fig. 4G) is in high agreement with the 
real developmental order in these layers. In contrast, the pSM 
results from both STAGATE (Fig. 4E) and SpaceFlow (Fig. 4F) 
indicate a developmental direction from the outermost IPL 
layer to the middle-most MCL layer, which is inconsistent with 
the true developmental order.

PearlST reveals finer-grained tissue structures in 
Stereo-seq data of mouse embryo
In this example, we demonstrate that PearlST excels in revealing 
finer-grained tissue structures using Stereo-seq data of a mouse 
embryo at E12.5, containing 55,295 bins and 27,330 genes [37]. 
Chen et al. [37] annotated the mouse embryo E12.5 transcrip-
tional profile into 19 domains (Fig. 4H). Initially, we performed 
spatial clustering of this dataset using PearlST, setting the num-
ber of clusters to 19. The clustering results by PearlST matched 
the annotated regions well (Fig. 4I). PearlST effectively captured 
most of the fine-grained structures in the embryo, demonstrat-
ing high consistency with the original annotations. Major 
regions such as the cartilage primordium, brain, heart, dorsal 
root ganglion, liver, and muscle regions were accurately identi-
fied (Fig. 4I). However, there were 3 regions (blood vessel, lung, 
and sympathetic nerve) that PearlST did not annotate accu-
rately. Further visualization and comparison of annotations by 
PearlST and the ground truth for each major region demon-
strated higher consistency between them (Fig. 4J and K). 
Importantly, PearlST annotations exhibited high concordance 
with known marker genes of major organs (Fig. 4L). For 
instance, the cartilage primordium region is marked by Meox1, 
Pax1, and Pax9; the dorsal root ganglion region is marked by 

Prdm12 and Ntrk1; epidermis is marked by Krt5, Krt14, and 
Krt15; heart is marked by Nppa, Myl7, Myl2, and Myh7; liver 
is marked by Afp, Alb, and Fgb (Fig. 4L and Figs. S10 and S11). 
Additionally, there are regions marked by individual genes, 
such as the brain region marked by Tubb2b and the meninges 
region marked by Map1b.

PearlST accurately dissects the relevant anatomical 
regions in the Slide-seqV2 data of mouse 
hippocampus and MOB tissues
We further employed Slide-seqV2 ST data with a spatial resolu-
tion of 10 μm to evaluate the performance of PearlST. Initially, 
we applied PearlST to a Slide-seqV2 dataset from the mouse 
hippocampus [7], annotated by the Allen Reference Atlas [39] 
(Fig. 5A). As anticipated, PearlST effectively characterized the 
tissue structure, revealing distinct spatial domains. In compari-
son, the clusters identified by SpaceFlow lacked significant 
spatial separation (Fig. 5B). Notably, PearlST and STAGATE 
depicted a clear “rope-like” structure and an “arrowhead-like” 
structure in the hippocampal region, accurately identifying its 
5 spatial domains. This result is consistent with the annotation 
of hippocampal structures in the Allen Reference Atlas (Fig. 
5B). All 3 methods used for comparison produced spatially 
consistent clustering, capturing major anatomical regions such 
as the dentate gyrus (DG) and the pyramidal layers within 
Ammon’s horn, further divided into CA1, CA2, and CA3 
regions. In particular, PearlST and STAGATE exhibited sharper 
boundaries in delineating the CA3 and DG regions, aligning 
more closely with anatomical annotations (Fig. 5A and C) and 
marker gene expression (Fig. 5D). In contrast, SpaceFlow anno-
tated CA1, CA3, and DG as the same region. Additionally, both 
PearlST and SpaceFlow annotated the LH and V3 regions. To 
validate the clustering performance of PearlST, we examined 
the marker gene expression of the regions (Fig. 5D), revealing 
good agreement between most regions and their corresponding 
marker genes. This further supports the robustness and accu-
racy of PearlST in ST data analysis.

Furthermore, we applied PearlST to sections of the MOB 
sequenced by Slide-seqV2 [7] and observed that the spatial 
domains identified by PearlST were consistent with the annota-
tions in the Allen Reference Atlas (Fig. 5E). As previously men-
tioned, Fu et al. [22] annotated the laminar organization of the 
coronal MOB in the DAPI-stained image, including the RMS, 
GCL, IPL, MCL, EPL, ONL, and GL. In this case, PearlST anno-
tated the dataset into 10 regions, as in a previous study [23]. 
Specifically, PearlST identified 2 spatial domains corresponding 
to the accessory olfactory bulb (AOB) and the granular layer 
of the accessory olfactory bulb (AOBgr), respectively (Fig. 5F).

The spatial domains uncovered by PearlST are strongly sup-
ported by known gene markers (Fig. 5G and H). For instance, 
the gene Nrgn exhibited high expression in the GCL_1 domain, 
while the gene Gap43 showed strong expression in the seg-
mented region AOB, consistent with immunohistochemical 
experimental results [40]. The granular cell marker Atp2b4 [41] 
displayed strong expression in the identified AOBgr domain, 
and the mitral cell marker Gabra1 [42] exhibited dominant 
expression in the narrow MCL structure, also identified by 
PearlST. Notably, PearlST identified a spatial subgroup called 
GCL_1 that is predominantly expressed by Nrgn. Considering 
that Nrgn is a well-documented risk gene for schizophrenia 
[43], this suggests a potential association between this structural 
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Fig. 4. PearlST identifies laminar organization in Stereo-seq data of the mouse olfactory bulb (MOB) tissue and reveals finer-grained tissue structures in Stereo-seq data of 
mouse embryo. (A) Laminar organization of MOB annotated in the DAPI-stained image generated by Stereo-seq. (B) Spatial domains segmented by STAGATE, SpaceFlow, 
and PearlST on the Stereo-seq data of the MOB tissue. (C) Visualization of each domain identified by PearlST on the MOB tissue dataset. (D) Visualization of marker genes for 
each domain annotated by PearlST on the MOB tissue. (E to G) pSMs generated by SCANPY on the low-dimensional embedding of STAGATE (E), SpaceFlow (F), and PearlST 
(G). (H) Mouse embryo data at E12.5 annotated by Chen et al., treated as ground truth. (I) The annotation results of PearlST on the mouse embryo dataset, comprising 16 
regions, with 3 regions unannotated compared to the ground truth. (J) Visualization of each region annotated by Chen et al. on mouse embryo data. (K) Visualization of each 
region identified by PearlST on mouse embryo data. (L) Visualization of marker genes for each region identified by PearlST.
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Fig. 5. PearlST accurately dissects the relevant anatomical regions in Slide-seqV2 datasets of mouse hippocampus and mouse olfactory bulb tissues. (A) Annotation results for 
mouse hippocampus tissue based on the Allen Reference Atlas. (B) Clustering results of STAGATE, SpaceFlow, and PearlST for the mouse hippocampus tissue dataset, with the 
number of clusters set to 9 classes. (C) Visualization of each region in mouse hippocampal tissue under PearlST annotation results. (D) Visualization of marker gene expression 
corresponding to each region in mouse hippocampal tissue. (E) Annotation of MOB tissue based on the Allen Reference Atlas. (F) Visualization of PearlST annotation results 
on the MOB tissue dataset. (G) Visualization of each region identified by PearlST on the MOB data. (H) Visualization of marker genes for each domain identified by PearlST on 
the MOB tissue. PearlST reveals microenvironment heterogeneity and functional cellular interactions in 10X Visium data of human breast cancer.
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domain and cognitive function. In summary, these results dem-
onstrate the capability of PearlST to identify spatial domains in 
Slide-seqV2 sequencing data with much higher spatial resolution, 
enabling the exploration of tissue structures in finer detail.

PearlST reveals microenvironment heterogeneity 
and functional cellular interactions in 10X Visium 
data of human breast cancer
To investigate the spatial heterogeneity of the cancer microen-
vironment, we applied PearlST to a 10X Visium ST dataset of 
human breast cancer. Initially, we identified spatial domains for 
the human breast cancer dataset and compared the results with 
manual annotation based on pathological labeling from H&E 
staining by SEDR [22]. Notably, unlike previous datasets on 
DLPFC, mouse hippocampus, etc., which have clear and defined 
morphological boundaries, tumor tissues are highly heteroge-
neous and contain a complex microenvironment [22,44]. Based 
on pathological features, the histological image was segmented 
into 20 regions, consisting of 4 main morphotypes: ductal car-
cinoma in situ/lobular carcinoma in situ (DCIS/LCIS), healthy 
tissue (Healthy), invasive ductal carcinoma (IDC), and tumor 
surrounding regions with low features of malignancy (Tumor 
edge) (Fig. 6A). We assessed the similarity between clustered 
results and ground truth using the ARI score, comparing a range 
of popular spatial clustering methods. For Seurat and SCANPY, 
many of the computed clusters appeared fragmented and dis-
continuous (Fig. 6D), while STAGATE, SpaGCN, SpaceFlow, 
DeepST, and PearlST produced fewer disjointed clusters (Fig. 
6B to D). PearlST exhibited the best results in terms of region 
segmentation accuracy and edge noise, particularly for the iden-
tification of Tumor_edge_2, DCIS_LCIS_4, IDC_2, IDC_4, 
IDC_5, IDC_6, and Healthy_1. These results were also reflected 
in the ARI scores, with PearlST achieving the highest score at 
0.65 (Fig. 6B), while DeepST and stLearn scored under 0.55, 
and SEDR, SpaceFlow, and SCANPY scored around 0.49. The 
remaining 3 methods had lower ARI scores (Fig. 6C and D).

Continuing our analysis, we extended PearlST to study cell–
cell communication between regions. Initially, we selected 9 
regions that were closer to the manual annotations to explore 
the strength of their interactions (Fig. 6E). On a macro level, 
stronger interactions were observed between regions DCIS/
LCIS_4 and IDC_2, as well as between DCIS/LCIS_4 and 
IDC_4. Tumor_edge_2 received a significant number of ligand-
signaling molecules from IDC_4 and IDC_8. Notably, weaker 
interaction strengths were observed between regions of the 
same type, such as IDC, Tumor edge, and DCIS/LCIS (Fig. 6E). 
Zooming in on a micro level, we studied a multilayer signaling 
network between any 2 regions. Taking the example of con-
structing a multilayer communication network between 2 regions 
IDC_4 and Tumor_edge_1, we employed the law of mass reci-
procity to calculate the ligand–receptor (LR) scores between 
these regions. We then used random forest regression to establish 
the relationship between LR scores and low-dimensional embed-
dings of spots (Fig. S12A and B). To further explore the genes 
contributing significantly to the low-dimensional embeddings, 
we computed feature importance using stochastic perturba-
tions. Genes identified as significantly contributing genes were 
considered as target genes in the multilayer network. The role 
of LR pairs in regulating target genes was reflected by their 
previous effects on low-dimensional embeddings. The analysis 
revealed that certain LR pairs, including TNF-TNFRSF21, 

RBP4-STRA6, PDGFA-PDGFRB, TNC-CNTN1, and ALKAL2-
ALK, exhibited stronger interactions (Fig. 6F). In particular, 
ALKAL2-ALK exerted a dominant regulatory effect on the gen-
eration of embedding_9, while PDGFA-PDGFRB regulated 
embedding_5 and embedding_12 simultaneously (Fig. 6F and 
Fig. S12C to G).

Lastly, we performed functional enrichment analysis of target 
genes using clusterProfiler [45], encompassing KEGG (Kyoto 
Encyclopedia of Genes and Genomes) enrichment (Fig. S13A) and 
GO (Gene Ontology) enrichment (Fig. S13B). The analysis revealed 
that the target genes are significantly enriched in numerous signal-
ing pathways associated with cancer development and progression. 
Notable pathways include the PI3K-AKT signaling pathway [46], 
p53 signaling pathway [47], immunoglobulin-mediated immune 
response [48], and B cell receptor (BCR) signaling pathway [49] 
(Fig. S13). Notably, the abovementioned ALKAL2-ALK signaling 
[50–53] and PDGFA-PDGFRB signaling [54,55] have been report-
edly important in breast cancer growth and metastasis. Moreover, 
the PI3K-AKT pathway has been validated as the downstream 
signaling pathways of ALKAL2-ALK signaling and PDGFA-
PDGFRB signaling in human cancers [53,56,57]. These findings 
suggest important functional interactions between the 2 regions 
IDC_4 and Tumor_edge_1 through LR interactions in the tumor 
microenvironment. More specifically, from the multilayer and 
functional regulation network of the learned embedding, one 
can infer which target genes are important genes contributing 
to this embedding and how they are regulated by other domains 
via intercellular and intracellular signaling pathways.

Discussion
Accurately inferring spatiotemporal relationships of cells or 
spots from the ST data are pivotal for comprehending tissue 
structure and biological functionality. In this study, we introduce 
a diffusion-based adversarial learning approach to identifying 
spatiotemporal structures from the ST data. The developed tool, 
PearlST, combines a PDE-based diffusion model and an adver-
sarial graph autoencoder to effectively extract higher-order 
features and identify spatiotemporal structures from the ST 
data. Specifically, PearlST integrates spatial location, histology 
images, and gene expression to define spatial nearest neighbors 
and constructs a PDE-based diffusion model to enhance 
expression profiles, and then transforms ST data into low-
dimensional embeddings via a Wasserstein adversarial regular-
ized graph autoencoder, capturing both expression similarity and 
spatial proximity of cells. Based on the learned low-dimensional 
embeddings, PearlST can perform various downstream analy-
sis, including (a) dissecting spatial domains exhibiting con-
sistent expression patterns, well-defined boundaries, and 
reduced noise; (b) inferring spatiotemporal states of cells or 
spots and constructing cell developmental trajectories; and 
(c) connecting intercellular LR signaling to intracellular target 
genes established by constructing a multilayer network to inter-
pret biological functions of the latent embeddings. It should be 
noted that the augmented gene expression profiles are not only 
used for constructing the graph autoencoder but also used for 
other downstream analysis tasks such as feature plotting and 
pseudotime analysis, because the low-dimensional embeddings 
are generated by a graph autoencoder with augmented gene 
expression as input.

Such methodological advantages lead to PearlST’s strong 
capability in analyzing diverse properties of ST datasets generated 
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Fig. 6. PearlST reveals microenvironment heterogeneity and functional cellular interactions in 10X Visium data of human breast cancer. (A) Manual pathology labeling based 
on H&E staining from SEDR. (B) Spatial clustering results on human breast cancer by PearlST. (C) Spatial region segmentations and ARI scores generated by DeepST, SEDR, 
SpaceFlow, stLearn, and SpaGCN. (D) Spatial region segmentations and ARI scores obtained by SCANPY, Seurat, and STAGATE. (E) Visualization of interaction strengths 
among regions, where the size of the dots reflects the number of spots, and the thickness of the lines indicates the interaction strength. (F) Visualization of the multilayer 
cellular communication network between region IDC_4 and Tumor_edge_1, where each layer represents ligands, receptors, low-dimensional embeddings, and target genes 
from left to right.
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by different platforms with varying spatial resolutions. Notably, 
PearlST accurately unveiled the laminar organization of the 
DLPFC and the MOB. PearlST revealed finer-grained tissue 
structures of the mouse embryo, clearly identified known tissue 
structures of the hippocampus, and uncovered spatial domains. 
When applied to an image-based ST dataset at single-cell reso-
lution generated by STARmap, PearlST demonstrated the high-
est clustering accuracy and superior results in terms of both 
region segmentation accuracy and edge noise. The pSM calcu-
lated by PearlST exhibited layered patterns consistent with the 
developmental sequences of the mouse visual cortex tissue, 
which were not discernible from non-spatial pseudotime analy-
ses. Moreover, PearlST was applied to identify tumor regions in 
human breast cancer data obtained from 10X Visium, enabling 
the study of interactions between regions and regulations from 
LR interactions to target genes. Enrichment analysis of target 
genes revealed multiple signaling pathways linked to cancer 
development and progression.

We acknowledge that PearlST has some limitations. Firstly, 
the current version of PearlST is not very suitable for imaging-
based ST data (e.g., MERFISH [12,13]) that are characterized 
by a small number of genes. At present, we simply modified 
PearlST as follows. We refrained from employing a diffusion 
model for denoising. Instead, we solely utilized nearest-neighbor 
information to augment the transcriptional profile of each cell. 
Subsequently, K-means was directly applied for spatial domain 
dissection, while the graph autoencoder was not utilized. More 
details are described in Note S2. The results demonstrate that 
the modified PearlST can also be applied to ST data with low 
coverage. In our forthcoming research, we aim to refine our 
computational framework, thereby developing a unified version 
of PearlST capable of accommodating both high-coverage and 
low-coverage ST data. The second limitation is that for different 
datasets, different tuning hyperparameters may be needed to 
achieve the best results. These 3 hyperparameters are “epoch”, 
“dropout”, and “gp_lambda”. Among them, “epoch” controls the 
number of network training, “dropout” can prevent model 
overfitting, and “gp_lambda” is used to balance the loss of each 
part of the function. In addition, we used different spatial 
graphs for gene expression augmentation and graph autoen-
coder in the current version of PearlST, which can be refined 
by simply using Eq. 3 as a graph input of graph autoencoder.

There are several other aspects for improving our compu-
tational framework. First, while compared to other denoising 
methods, the PDE-based diffusion model has good interpret-
ability and high computational efficiency, one may incorporate 
deep learning-based augmentation techniques into the frame-
work of PearlST to further enhance the gene expression pro-
files. Second, based on the pseudotime derived from PearlST, 
dynamic models can be built to infer gene regulatory networks 
and cell–cell communication networks along with the temporal 
trajectories of cell fate development. Third, feature extraction 
from histological images can be further improved. We have 
observed that histological morphology plays a crucial role in 
data enhancement. Many existing methods rely on pre-trained 
models, such as ResNet50 trained on ImageNet, leading to a 
significant heterogeneity mismatch between the source and 
target data. This mismatch limits the reliability of visual features 
extracted from histological images. In contrast, the approach 
proposed by Zuo et al. [58], which utilizes contrastive learning 
to train SimCLR with an encoder network based on ResNet50 
for image feature extraction, appears more rational. However, 

its extended runtime is deemed impractical at this time. For 
instance, the execution time on any of the DLPFC samples 
using our NVIDIA GeForce RTX 3060 GPU exceeded 240 min. 
Here, we adopt a different strategy by training SimCLR with 
a substantial number of histological images and employing 
the trained model for target data. This approach not only 
reduces data heterogeneity but also minimizes the computa-
tional time required for feature extraction. Certainly, there 
may be alternative and potentially more effective methods 
for processing images, and further effort in this direction is 
warranted.

In summary, PearlST offers a versatile and effective tool for 
unraveling intricate spatiotemporal structures in ST data across 
various biological contexts. It excels in segmenting spatial 
domains, inferring spatiotemporal patterns of cells within tis-
sues, and constructing functional and multilayer cellular com-
munication networks between cell regions.

Materials and Methods

Data preprocessing
The preprocessing of gene expression matrix involves the fol-
lowing steps. Initially, gene filtering is executed to retain only 
those genes expressed in a minimum of 4 cells or more. 
Subsequently, normalization occurs, wherein the expression of 
each gene is divided by the total expression in the respective 
cell. This normalization ensures that each cell attains an identi-
cal total count after the process. The normalized expression is 
then multiplied by a scale factor (default 10,000) and subjected 
to log-transformation with a pseudo-count of one. Lastly, the 
top 2,000 highly variable genes are selected as the inputs for 
PearlST. The above procedures were implemented using the 
SCANPY package.

Integrating gene expression, histology image, 
and spatial locations to compute spatial 
nearest neighbors
Spatial gene expression technology offers transcriptome-wide 
gene expression profiles, accompanied by spatial position infor-
mation and/or tissue morphology. In the case of PearlST, these 
additional tissue data are leveraged to enhance gene expression 
in adjacent spots. PearlST employs ResNet-50 [29] trained 
through the SimCLR framework [30] to learn visual features 
from each spot image. The training dataset comprises histology 
images collected from various tissues of different species. PearlST 
evaluates gene expression similarity, morphological similarity, 
and spatial relationships between each pair of spots. The gene 
expression weight between spot i and spot j (ESij) was computed 
using the cosine similarity as follows:

where Gi and Gi denote the expression profiler and the mean 
expression of spot i, respectively. Following this, the morpho-
logical similarity between spot i and the adjacent spot j (MSij) 
was computed as follows:

(1)ESij =

(
Gi − Gi

)
⋅

(
Gj − Gj

)
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‖
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where Mi refers to the visual features of spot image i, with each 
spot image transformed into 2,048 dimensional latent variables. 
Subsequently, the spatial distance between the considered cell 
and all other cells is calculated. The distances between the top 
30 (optional) adjacent spots are then ordered to determine the 
radius γ (mean add variance). For a given spot i, a spot Sj is 
considered to be a neighbor, then PSij = 1 if and only if the 
Euclid distance between the 2 spots is less than γ; otherwise, 
PSij = 0. Finally, under the combined consideration of spatial 
gene expression, histological similarity, and spatial adjacency, 
the overall pseudo similarity (OS) between spots i and j can be 
expressed as:

We denote by NNi the set consisting of the top (default by 4) 
nearest neighbors of spot i according to Eq. 3. In this way, we 
integrate multiple pieces of information to more precisely cal-
culate the spatial nearest neighbors of each cell or spot.

Gene expression augmentation using the PDE-based 
diffusion model
Given the inherent noise in spatial transcriptome data, we uti-
lized a PDE-based diffusion model to both denoise and enhance 
gene expression. This enhancement is achieved by considering the 
spatial nearest neighbors of each spot, as obtained in the previous 
section. Here, the transcriptional profile of log-transformed gene 
expression for each spot is represented by u(x, y) = u(x, y, t)|t=0 
in a bounded region Ω. Then, the following PDE model is 
employed to describe the diffusion process of u(x, y),

where c(|∇u|) is referred to as the diffusion function, which is 
a function of the gradient mode of the image. In other words, 
the smoothing operator of this diffusion model varies with the 
changes in the magnitude of the gradient. For this purpose, we 
adopt a diffusion function proposed by Perona and Malik [59]:

where K is a constant, taken by default to be 0.2. Discretizing 
Eq. 4 gives its iterative difference form as:

In the above equation, ∇Sun
i,j
=un

i+1,j
− un

i,j
, ∇Eun

i,j
=un

i,j+1
− un

i,j
, 

∇Nun
i−1,j

= un
i−1,j

− un
i,j

, ∇Wun
i,j
= un

i,j−1
− un

i,j
, and λ is a small 

positive parameter, which, in this article, defaults to 0.1. See 
Note S3 for a more detailed derivation. Prior to data augmenta-
tion, the transcriptional profile of each spot is reshaped to a 
50 × 40 gray scale plot. Gene expression denoising is achieved 
by iteratively updating Eq. 6, where un

i,j
 denotes the pixel value 

at grid (i, j) and n represents iteration times. Next, gene expres-
sion augmentation is performed by substituting the gene 

expression of the corresponding spatial nearest neighbors of 
each spot obtained by Eq. 3 into Eq. 6 for iteration. This means 
that ∇Sun

i,j
, ∇Eun

i,j
, ∇Nun

i−1,j
, and ∇Wun

i,j
 are computed using the 

expressions of the nearest neighbors belonging to NNi. The 
number of iterations is set to 4 in this study, which reconciles 
both prediction performance and computational efficiency.

Wasserstein adversarial regularized 
graph autoencoder
Spatial expression graph construction
We construct a spatial expression graph (SEG) utilizing the 
augmented gene matrix of highly variable genes. The SEG is 
formed based on the spatial proximity of cells, where nodes 
represent cells or spots, and edges characterize the spatial rela-
tionships between these cells or spots. The SEG comprises 2 
matrices, count matrix X = {x1, x2, ⋯xN} and spatial adjacency 
matrix A ∈ RN×N, where N is equal to the number of cells or 
spots and Aij = 1 if node i and j are connected by an edge; 
otherwise, Aij = 0.

In this process, we adopt an alpha complexity-based approach 
to build a SEG. Initially, a Voronoi cell is generated for each cell 
or spot located at r as:

where C represents the set of coordinates for all the cells or 
spots, and ‖·‖ denotes the Euclidean distance. Subsequently, 
the 1-skeleton of the alpha complex [60] is employed to identify 
the neighborhood edges E of the spots, expressed as follows:

where Β(x, δ) is a circular region in R2 centered at x with radius 
δ, and k ∈ (i, j) represents the kth nearest neighbor at spatial 
position (i, j). k was set to 30 in our study. The radius δ is esti-
mated from the average distance of the k-nearest neighbors of 
the spot.

Graph autoencoder
Given the SEG G, we utilize a 2-layer graph convolutional net-
work as generator Φω(A, X) to encode the original node features 
X ∈ RN×d with the topological structure A into a low-dimensional 
representation Z ∈ RN×d′:

where A = D̃
−

1

2 ÃD̃
−

1

2 is the new “weighted” adjacency matrix 
for graph G after convolution, and the default value for the 
number of low dimensions d′ is 32. D̃ii =

∑

j Ãij is the degree 
matrix with Ã = A + I, I is a unit matrix. ReLU(h) =  max (0, h) 
is used as the activation function in the neural networks and 
the output matrix Z contains latent embeddings zi for each node 
vi ∈ V as row vectors. We assume that the low-dimensional 
representation follows a standard Gaussian distribution N(0, I) 
denoted by Pr and define the Φω generated low-dimensional 
embedding as Pg(Z| A, X), followed by reconstructing the adja-
cency matrix to learn the parameter ω using an inner product 
decoder:
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Here, the sigmoid activation function is used to make the 
decoded data in the range from 0 to 1 and the generator is 
optimized using the cross-entropy loss function:

where EPg refers to the expectation of the distribution Pg.

Wasserstein regularizer
To force the encoded distribution Pg(Z| A, X) into the target 
distribution N(0, I), we introduce a Wasserstein regularizer that 
helps to minimize the 1-Wasserstein distance between Pr and 
Pg [31]

fϕ in the above equation is a multilayer perceptron (MLP) con-
taining 2 hidden layers:

where W3, b1 and W4, b2 are weights and biases of the 2 hidden 
layers, and W5, b3 correspond to the output layer of MLP. This 
also leads to an adversarial learning framework with minimax 
objective:

Combined with the reconstruction loss during the training 
generator phase, the final loss function of the graph autoen-
coder is defined as:

Finally, the low-dimensional embeddings outputted by the 
graph autoencoders were applied to domain segmentation, pSM 
construction, spatial trajectory inference, and low-dimensional 
visualizations.

Domain segmentation and pSM computing
The domain segmentations are acquired by applying K-means 
to the low-dimensional embeddings from PearlST. The pSM is 
computed by employing the DPT algorithm [33], utilizing the 
low-dimensional representations output from PearlST. DPT 
employs diffusion-like random walks to estimate the ordering 
and transitions between cells. By utilizing the embeddings from 
PearlST, which encode both spatial location and gene expres-
sion profiles of cells, DPT generates a spatiotemporal order that 
is consistent in both space and pseudotime. The root cell of the 
pSM can be specified with a priori knowledge; otherwise, in 
our strategy, the cell in the embedding space that has the largest 
sum distance from the other cells is assigned as the root cell.

Spatial trajectory inference
We utilize the PAGA algorithm [61], implemented in the 
SCANPY package, to illustrate spatial trajectories. The low-
dimensional representation outputted by PearlST serves as input 
for PAGA, which constructs a topological map of relationships 
between cells by analyzing transcriptome similarities. The PAGA 
algorithm then leverages this topological map to infer the devel-
opmental trajectory of cells and calculate the expression dynam-
ics of each gene along the trajectory.

Inference of functional and multilayer cellular 
communication networks
Building on our prior work stMLnet [62], we quantify spa-
tially dependent LR signaling activity and infer downstream 
functions by associating LR pairs to the latent features learned 
by PearlST and target genes. Specifically, the spatial distance-
dependent LR signaling scores can be quantified based on a 
diffusion model and the law of mass action. After obtaining 
LR scores, we employed Random Forest regression to learn 
the regulatory relationship between LR pairs and the low-
dimensional representation of receiver cells. Additionally, we 
computed the feature importance of the graph autoencoder by 
random perturbations identifying those genes that contribute 
more to the low-dimensional representations and considering 
them as target genes. This process allowed us to construct a 
multilayered signaling network (ligand–receptor–embeddings–
target genes) for dissecting cellular communications between 
different spatial domains. Furthermore, enrichment analysis 
(e.g., KEGG or GO enrichment) of target genes can be per-
formed using tools like clusterProfiler [45] to elucidate the 
biological functions of the LR-mediated cellular interactions. 
For a more detailed description of the inference of functional 
and multilayer cellular communication networks, please refer 
to Note S4.
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github.com/JinmiaoChenLab/SEDR_analyses, and the other 
Stereo-seq data from mouse embryo data at E12.5 can be down-
loaded from https://db.cngb.org/stomics/mosta/ or the SODB 
database (https://gene.ai.tencent.com/SpatialOmics/). The Slide-
seqV2 dataset from MOB tissues is available at the Broad 
Institute Single Cell Portal at https://singlecell.broadinsti-
tute.org/single_cell/study/SCP815/highly-sensitive-spatial-
transcriptomics-at-near-cellular-resolution-with-slide-
seqv2#study-summary, and mouse hippocampus tissue acquired 
by Slide-seqV2 can be downloaded from https://portals.
broadinstitute.org/single_cell/study/slide-seq-study. Human 
breast cancer is obtained from the publicly available 10x 
Genomics Data Repository (https://www.10xgenomics.com/
resources/datasets/human-breast-cancer-block-a-section-
1-1-standard-1-1-0). The 4i datasets are from https://github.
com/scverse/squidpy. The mouse visual cortex STARmap data 
and MERFISH molecular data are accessible on https://gene.
ai.tencent.com/SpatialOmics/. A Python package of PearlST 
is available from https://github.com/SunXQlab/PearlST. The 
source codes used for analysis in this study are uploaded on 
https://github.com/SunXQlab/PearlST-Code.

Supplementary Materials
Notes S1 to S4 
Figs. S1 to S13 
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